
Managing database connections with
JDBC

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2

2. Application architecture ... 4

3. JDBC driver fundamentals.. 6

4. Database transactions... 14

5. Data sources .. 18

6. Connection pools... 23

7. Optimizing database communications 26

8. Summary .. 27

Managing database connections with JDBC Page 1 of 28

Section 1. About this tutorial

Should I take this tutorial?
This tutorial introduces the different concepts involved in establishing and managing a
database connection from within a Java application using Java Database Connection
(JDBC). It is targeted primarily at developers who want to understand what is "going on
under the hood" when using a database from within a Java application.

This tutorial assumes familiarity with the Java programming language. The links in
Resources on page 27 include referrals to additional information on both JDBC and
specific databases.

What is this tutorial about?
This tutorial demonstrates how to connect to a database using JDBC. While seemingly
innocuous, this subject is actually a stumbling block for both newcomers and veterans
alike. This tutorial will discuss how a Java application inside a JVM discovers and
communicates with a database, starting with the traditional JDBC driver and
DriverManager objects. After several examples that demonstrate the four different
types of JDBC drivers, the tutorial moves on to discuss DataSource objects that use
JNDI. A discussion of JNDI, and how to bind, use, rebind, and delete the DataSource
object is also included. Finally, the concept of a connection pool, and specifically
PooledConnection objects are introduced and demonstrated. The tutorial concludes
with a discussion of tuning issues that are often overlooked when developing database
connectivity applications.

Tools
While the tutorial provides numerous code snippets to reflect concepts and methods
described in the text, most people learn better by actually working through the
examples. To work through the examples, you will need to have the following tools
installed and working correctly:

* A text editor: Java source files are simply text, so to create and read them, all you
need is a text editor. If you have access to a Java IDE, you can also use it, but
sometimes they hide too many of the details.

* A Java development environment, such as the Java2 SDK, which is available at
http://java.sun.com/j2se/1.4/. The Java2 SDK, Standard Edition version 1.4,
includes the JDBC standard extensions as well as JNDI, which are both
necessary for some of the latter examples in the book.

* An SQL-compliant database: The examples in this tutorial use a wide variety of
different databases to help demonstrate how database independent JDBC
programming can be. Resources on page 27 contains links to more information on
both JDBC and databases.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 2 of 28

http://java.sun.com/j2se/1.4/

* A JDBC driver: Because the JDBC API is predominantly composed of interfaces,
you need to obtain an actual JDBC driver implementation in order to actually
connect to a database using JDBC. If your database (or your wallet) does not
allow the use of JDBC, you can always use the JDBC-ODBC bridge driver to
connect to any database (or data source) that supports the ODBC protocol.

About the author

Robert J. Brunner is an astrophysicist by day and a computer hacker by night. His
principal employer is the California Institute of Technology, where he works on
knowledge extraction and data-mining from large, highly distributed astronomical
databases. He has provided consulting to scientific data centers around the world,
provided Java and XML training to a variety of groups, and is currently working on the
book Enterprise Java Database Programming which will be published by Addison
Wesley in 2002. Feel free to contact him via e-mail at rjbrunner@pacbell.net.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 3 of 28

mailto:rjbrunner@pacbell.net

Section 2. Application architecture

Architecting your system
One of the most important design issues when developing a Java database application
is the overall system architecture; in particular, how many different components should
be deployed. Traditionally, this is characterized by how many tiers, or layers, the
application requires. There are two basic architectural models that can describe a
system: the two-tier model and the n-tier model.

Before jumping into the details of managing database connections from a Java
application, we need to discuss these two models. Each model has its own advantages
and disadvantages; each also requires certain components to be set up appropriately,
and, as a result, they each work best in different environments. The next two panels
discuss each of the two architectural models in more detail.

The two-tier model
The two-tier model is the traditional client-server framework; it has a client tier and a
server tier. This simple model requires that the client be intimately aware of the
database server. Thus, for example, the client needs database-specific code resulting
in a tight coupling between the two tiers. This tight coupling has several advantages.
First, it can decrease development time due to the fact the overall system is
considerably simpler and smaller. Second, the tight coupling can potentially improve
system performance as the client can easily take advantage of specific server
functionality that might not be available to a less tightly coupled system.

On the other hand, this tight coupling can lead to several problems. Most notably,
system maintenance can become more difficult because changes in the server can
break the client or visa versa. Furthermore, if the database changes, all of the client
code will need to be modified. If the client is highly distributed, propagating changes
throughout the system can be difficult, and in some scenarios impossible. As a result,
two-tier applications can be useful in a corporate LAN environment where complete
control of all clients is achieved, or at the initial, rapid prototyping stage of a project
where different options are being evaluated.

The n-tier model
The n-tier model has a client tier, at least one server tier, and at least one middle layer.
Because of the extra tier, many of the problems that affected the two-tier model are no
longer an issue. For example, the middle layer now maintains the database connection
information. This means the clients only need to know about the middle tier. Because
the middle tier is generally operating at the same physical location as the server (for
instance, both components can be behind the same firewall), maintaining the middle
tier is considerably easier than maintaining several hundred client installations.

Another advantage of the n-tier approach is that the overall system can easily scale to

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 4 of 28

handle more users. All one needs to do is add more middle tiers or server tiers,
depending on the results of the profiling operations. Because middle tiers are typically
implemented using Web servers -- using JavaServer Pages and Servlets technologies
-- it is simple to add load-balancing or even new hardware components.

All is not completely rosy, however, as the extra tier introduces additional complexity
into the overall system. This means more code, harder unit testing, and potentially
difficult and nasty bugs. Fortunately, the Java language provides many of the
necessary components, pre-built, for constructing viable n-tier applications.
Furthermore, this model lends itself to easily support authentication and
internationalization, as the middle layer controls the flow of information and provides a
natural location for handling security and localization concerns.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 5 of 28

Section 3. JDBC driver fundamentals

An overview of JDBC drivers
A casual inspection of the JDBC API quickly shows the dominance of interfaces within
the API, which might lead a user to wonder where the work is done. Actually this is a
strength of the approach that the JDBC developers took because the actual
implementation is provided by JDBC Driver vendors, who in turn provide the classes
that implement the necessary interfaces. This approach introduces competition that
provides the consumer with more choices, and for the most part, produces better
software. With all of the available drivers, choosing one can be difficult. Fortunately,
Sun Microsystems maintains a searchable database of over 150 JDBC drivers from a
wide array of vendors. This should be your first stop after selecting a database.

From a programming perspective, there are two main classes responsible for
establishing a connection with a database. The first class is DriverManager, which is
one of the few actual classes provided in the JDBC API. DriverManager is
responsible for managing a pool of registered drivers, essentially abstracting the details
of using a driver so the programmer does not have to deal with them directly. The
second class is the actual JDBC Driver class. These are provided by independent
vendors. The JDBC Driver class is responsible for establishing the database
connection and handling all of the communication with the database. JDBC drivers
come in four different types; the rest of this section discusses each one in detail.

Registering a JDBC driver
The first step in the process of creating a connection between a Java application and a
database is the registration of a JDBC driver with the Java virtual machine (JVM) in
which the Java application is running. In the traditional connection mechanism (as
opposed to the DataSource connection mechanism, discussed later in Data sources
on page 18), the connection and all database communications are controlled by the
DriverManager object. To establish a connection, a suitable JDBC driver for the
target database must be registered with the DriverManager object.

The JDBC specification (for more detail, see the JDBC API Tutorial and Reference in
Resources on page 27), states that JDBC drivers are supposed to register themselves
with the DriverManager object automatically when they are loaded into a JVM. For
example, the following code snippet uses a static initializer to first create an instance of
the persistentjava JDBC driver and then register it with the DriverManager.

static {
java.sql.DriverManager.registerDriver(new com.persistentjava.JdbcDriver()) ;

}

Registering a driver is simply a matter of loading the driver class into the JVM, which
can be done in several different ways. One way to do this is with the ClassLoader
Class.forName(com.persistentjava.JdbcDriver) ;. Another method, which
is not as well known, uses the jdbc.drivers system property. This method can be
used in one of three different ways:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 6 of 28

http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers

* From the command line:

java -Djdb.drivers=com.persistentjava.JdbcDriver Connect

* Within the java application:

System.setProperty("jdbc.drivers",
"com.persistentjava.JdbcDriver") ;

* By setting the jdbc.drivers property in the System property file, which is
generally system dependent

By separating the drivers with a colon, multiple drivers can be registered using the
aforementioned system property technique. One of the benefits of using the system
property technique is that drivers can be easily swapped in and out of the JVM without
modifying any code (or at least with minimal code changes). If multiple drivers are
registered, their order of precedence is: 1) JDBC drivers registered by the
jdbc.drivers property at JVM initialization, and 2) JDBC drivers dynamically loaded.
Because the jdbc.drivers property is only checked once upon the first invocation of
a DriverManager() method, it's important to ensure all drivers are registered
correctly before establishing the database connection.

Not all JVMs are created equal, however, and some JVMs do not follow the JVM
specification. As a result, static initializers do not always work as advertised. This
results in multiple ways to register a JDBC driver, including:

* Class.forName("com.persistentjava.JdbcDriver").newInstance()
;

* DriverManager.registerDriver(new
com.persistentjava.JdbcDriver()) ;

These alternatives should work fine in all JVMs, so you should feel comfortable using
them to work across the widest possible array of JVMs. One final issue is that
Class.forname() can throw a ClassNotFoundException, so you need to wrap
the registration code in an appropriate exception handler.

JDBC driver URLs
Once a JDBC driver has been registered with the DriverManager, it can be used to
establish a connection to a database. But how does the DriverManager select the
right driver, given that any number of different drivers might actually be registered?
(Remember, a single JVM might be supporting multiple concurrent applications, which
might be connecting to different databases with different drivers.) The technique is
quite simple: each JDBC driver uses a specific JDBC URL (which has the same format
as Web addresses) as a means of self-identification. The format of the URL is
straightforward and probably looks familiar: jdbc:sub-protocol:database
locator. The sub-protocol is specific to the JDBC driver and can be odbc, oracle,
db2, and so on depending on the actual JDBC driver vendor. The database locator is a
driver-specific indicator for uniquely specifying the database with which an application
wants to interact. Depending on the type of driver, this locater may include a hostname,
a port, and a database system name.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 7 of 28

When presented with a specific URL, the DriverManager iterates through the
collection of registered drivers until one of the drivers recognizes the specified URL. If
no suitable driver is found, an SQLException is thrown. The following list
demonstrates several specific examples of actual JDBC URLs:

* jdbc:odbc:jdbc
* jdbc:oracle:thin:@persistentjava.com:1521:jdbc";
* jdbc:db2:jdbc

Many drivers, including the JDBC-ODBC bridge driver, accept additional parameters at
the end of the URL such as username and password.

The method for obtaining a database connection, given a specific JDBC URL, is to call
getConnection() on the DriverManager object. This method comes in several
flavors:

* DriverManager.getConnection(url) ;
* DriverManager.getConnection(url, username, password) ;
* DriverManager.getConnection(url, dbproperties) ;

Here, url is a String object that is the JDBC URL; username and password are
String objects that are the username and password that the JDBC application should
use to connect to the data source; and dbproperties is a Java properties object
that encapsulates all of the parameters (possibly including username and password)
that a JDBC driver requires to successfully make a connection.

Now that we have the driver basics in hand, we can examine the individual driver types
in more detail.

Type one drivers
Type one drivers come in one variety: they all use
the JDBC-ODBC bridge, which is included as a
standard part of the JDK. Type one drivers are
differentiated by the ODBC (Open DataBase
Connectivity) driver attached to the JDBC-ODBC
bridge. To connect to a different data source, you
simply have to register (or effectively bind) a
different ODBC data source, using the ODBC

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 8 of 28

Administrator, to the appropriate data source
name.

Because ODBC has been around for quite a while
(longer than the Java language), ODBC drivers are
rather ubiquitous. This makes this type of JDBC
driver a good choice for learning how to connect
Java programs to databases. In fact, there are
even ODBC drivers that let you assign an ODBC
data source to Microsoft Excel applications or
plain-text files. The extra level of indirection,
however, can result in a performance penalty as
the JDBC is transferred into ODBC, which is then
transferred into the database-specific protocol.
Another potential problem for type one drivers is
their use in distributed applications. Because the
bridge itself does not support distributed
communication, the only way type one drivers can
work across a network is if the ODBC driver itself
supports remote interactions. For simple ODBC
drivers, this is not an option, and while big
databases do typically have ODBC drivers that can
work remotely, they cannot compete
performance-wise with the pure Java JDBC
drivers.

Coding for type one drivers
The class name for the JDBC-ODBC bridge driver is
sun.jdbc.odbc.JdbcOdbcDriver and the JDBC URL takes the form
jdbc:odbc:dsn, where dsn is the Data Source Name used to register the database
with the ODBC Administrator. For example, if a database is registered with an ODBC
data source name of jdbc, a username of java, and a password of sun, the following
code snippet can be used to establish a connection.

Note: In the interests of clarity and brevity, proper error handling and checking has
been left out of this code snippet. Later examples demonstrate this important
mechanism (specifically, trapping errors by chaining SQLException statements).

String url = "jdbc:odbc:jdbc" ;
Connection con ;
try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver") ;

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ") ;
System.err.println(e.getMessage()) ;
return ;

}
try {
con = DriverManager.getConnection(url, "java", "sun");

} catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());

} finally {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 9 of 28

try{
con.close ;

} catch(SQLException ex) {
System.err.println(SQLException: " + ex.getMessage()) ;

}
}

Type two drivers
Type two drivers are also known as partial Java
drivers, in that they translate the JDBC API directly
into a database-specific API. The database client
application (for the purposes of this tutorial, the
host that is running the JVM) must have the
appropriate database client library, which might
include binary code installed and possibly running.
For a distributed application, this requirement can
introduce extra licensing issues, as well as
potential nightmare code distribution issues. For
example, using a type two model restricts the
developer to client platforms and operating
systems supported by the database vendor's client
library.

This model can work effectively, however, when
the client base is tightly controlled. This typically
occurs in corporate LANs. One example of a type
two driver is the DB2 JDBC application driver. The
following example demonstrates how to establish a
connection using a DB2 driver.

String url = "jdbc:db2:jdbc" ;
try {
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver") ;

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ") ;
System.err.println(e.getMessage()) ;
return ;

}
...

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 10 of 28

Note how similar the above code snippet is to the
type one example. This is the primary selling
feature of type two model: the learning curve for a
programmer moving from one model to the other is
slight to nonexistent.

The last two driver types are pure Java drivers.
The benefit of pure Java drivers are their ease of
deployment in highly distributed environments.

Type three drivers
Type three drivers are pure Java drivers that
transform the JDBC API into a
database-independent protocol. The JDBC driver
does not communicate with the database directly; it
communicates with a middleware server, which in
turn communicates with the database. This extra
level of indirection provides flexibility in that
different databases can be accessed from the
same code because the middleware server hides
the specifics from the Java application. To switch
to a different database, you only need to change
parameters in the middleware server. (One point of
note: the database format you are accessing must
be supported by the middleware server.)

The downside to type three drivers is that the extra
level of indirection can hurt overall system
performance. On the other hand, if an application
needs to interact with a variety of database
formats, a type three driver is an efficient approach
due to the fact that the same JDBC driver is used
regardless of the underlying database. In addition,
because the middleware server can be installed on
a specific hardware platform, certain optimizations
can be performed to capitalize on profiling results.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 11 of 28

Type four drivers
Type four drivers are pure Java drivers that
communicate directly with the database. Many
programmers consider this the best type of driver,
as it typically provides optimal performance and
allows the developer to leverage database-specific
functionality. Of course this tight coupling can
hinder flexibility, especially if you need to change
the underlying database in an application. This
type of driver is often used in applets and other
highly distributed applications. The following code
snippet shows how to use a DB2 type four driver.

String url = "jdbc:db2://persistentjava.com:50000/jdbc" ;
try {
Class.forName("COM.ibm.db2.jdbc.net.DB2Driver") ;

} catch(java.lang.ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ") ;
System.err.println(e.getMessage()) ;
return ;

}
...

A complete type four driver example
The following example demonstrates how to use a JDBC driver from a third-party
vendor, in this case Merant, to connect to a DB2 database. DB2 UDB requires
additional, non-standard information to establish the database connection, which in this
example is appended to the JDBC URL as optional parameters.

package com.persistentjava;
import java.sql.*;
public class ConnectMerantDB2 {

static {
try {

Class.forName("com.merant.datadirect.jdbc.db2.DB2Driver").newInstance();
} catch (Exception e) {

System.out.println(e);
}

}
public static void main(String args[]) {

String url = "jdbc:merant:db2://persistentjava.com:50000;" ;
url += "DatabaseName=jdbc;CollectionId=DEFAULT;" ;
url += "PackageName=JDBCPKG;CreateDefaultPackage=TRUE";
Connection con;
System.out.println("Connecting");
try {

con = DriverManager.getConnection(url, "java", "sun");
System.out.println("Connection Established");
con.close();

// In this example, the proper handling of SQLExceptions is demonstrated
// as they can be potentially chained.
} catch (SQLException e) {

System.out.println("\nERROR:----- SQLException -----\n");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 12 of 28

while (e != null) {
System.out.println("Message: " + e.getMessage());
System.out.println("SQLState: " + e.getSQLState());
System.out.println("ErrorCode: " + e.getErrorCode());
e.printStackTrace();
e = e.getNextException();

}
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 13 of 28

Section 4. Database transactions

Transaction basics
One concept that causes problems for newcomers to the world of database application
development is the idea of transactions. Fundamentally, a transaction represents a
logical unit of work. Because the primary responsibility of a database is to preserve
information, it needs to have some means for a user to indicate that the current
program state should be saved. Likewise, when things have gone awry, there needs to
be a way to indicate that a database should ignore the current state and go back to the
previously saved program state.

In database parlance, these functions are called committing a transaction and rolling a
transaction back, respectively. To accomplish these tasks, the JDBC API includes two
methods as part of the Connection interface. Given a Connection object name
con, the program state is saved by calling con.commit() ; to return to the
previously saved state, con.rollback() ;. Both of these methods can throw
SQLExceptions if something goes wrong when the database actually performs the
operation, so you need to wrap them in try ... catch blocks.

More on transactions
In single-user mode, transactions are rather simple to understand -- they simply involve
the saving of, or forgetting of, an application's state. In multi-user mode, however,
transactions become much more complex. The classic demonstration of a multi-user
transaction is the bank account where one application is trying to debit an account,
while another application is trying to credit the same account. If you are familiar with
concurrent programming (also known as multithreaded programming), you probably
have seen this problem before. The fundamental issue is that unless the two
transactions are isolated from each other, one application might interrupt the other one
resulting in an incorrect program state. In our simple demo, that might mean an
account has the wrong amount in it, something that is not exactly conducive to
retaining customers.

Three common problems can arise when dealing with multiple users accessing the
same data:

* Dirty reads. A dirty read occurs when an application uses data that has been
modified by another application, and that data is in an uncommitted state. The
second application then requests that the data it was modifying be rolled back.
The data used by the first transaction is then corrupted, or "dirty".

* Non-repeatable reads. A non-repeatable read occurs when one transaction
obtains data, which is subsequently altered by a separate transaction, and the
first transaction re-reads the now altered data. Thus, the first transaction did a
non-repeatable read.

* Phantom reads. A phantom read occurs when one transaction acquires data via
some query, another transaction modifies some of the data, and the original

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 14 of 28

transaction retrieves the data a second time. The first transaction will now have a
different result set, which may contain phantom data.

Transaction levels
To solve the issues associated with multiple threads requesting the same data,
transactions are isolated from each other by locks. Most major databases support
different types of locks; therefore, the JDBC API supports different types of
transactions, which are assigned or determined by the Connection object. The
following transaction levels are available in the JDBC API:

* TRANSACTION_NONE indicates that transactions are not supported.

* TRANSACTION_READ_UNCOMMITTED indicates that one transaction can see
another transaction's changes before they are committed. Thus dirty reads,
nonrepeatable reads, and phantom reads are all allowed.

* TRANSACTION_READ_COMMITTED indicates that reading uncommitted data is not
allowed. This level still permits both nonrepeatable and phantom reads to occur.

* TRANSACTION_REPEATABLE_READ indicates that a transaction is guaranteed to
be able to re-read the same data without fail, but phantom reads can still occur.

* TRANSACTION_SERIALIZABLE is the highest transaction level and prevents dirty
reads, nonrepeatable reads, and phantom reads from occurring.

You might wonder why all transactions don't operate in
TRANSACTION_SERIALIZABLE mode in order to guarantee the highest degree of
data integrity. The problem is, similar to the issues involved with handling multiple
programming threads, the higher the level of transaction protection, the higher the
performance penalty.

Given a Connection object, you can explicitly set the desired transaction level,
assuming your database and JDBC driver support this feature:

con.setTransactionLevel(TRANSACTION_SERIALIZABLE) ;

You also can determine the current transaction level:

if(con.getTransactionLevel() == TRANSACTION_SERIALIZABLE)
System.out.println("Highest Transaction Level in operation.") ;

Batches and transaction
By default, JDBC drivers operate in what is called autocommit mode. In this mode, all
commands sent to the database operate in their own transaction. While this can be

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 15 of 28

useful to newcomers, it involves a performance penalty because transactions require a
certain amount of overhead to properly set everything up. If you want to be able to
explicitly control commits and rollbacks, you need to disable the autocommit mode:

con.setAutoCommit(false) ;

You can also quickly determine the autocommit mode for a given Connection object:

if(con.getAutoCommit() == true)
System.out.println("Auto Commit mode");

Many databases support batch operations, in which the transaction overhead is
minimized by performing multiple database update operations in a single operation, or
batch. Batch operations were introduced in JDBC 2.0, and require that a transaction is
not in autocommit mode. A batch operation is demonstrated in the following example,
which assumes that a Connection exists to a database that contains a simple table.

con.setAutoCommit(false) ;
Statement stmt = connection.createStatement() ;
stmt.addBatch("INSERT INTO people VALUES('Joe Jackson', 0.325, 25, 105) ;
stmt.addBatch("INSERT INTO people VALUES('Jim Jackson', 0.349, 18, 99) ;
stmt.addBatch("INSERT INTO people VALUES('Jack Jackson', 0.295, 15, 84) ;
int[] updateCounts = stmt.executeBatch() ;
con.commit() ;

Notice that the executeBatch() method returns an array of update counts, one for
each command in the batch operation. One last issue with batch operations is that they
can throw a new exception of type BatchUpdateException, which indicates at least
one of the commands in the batch operation failed. Thus, you need to add an
appropriate exception handler to your batch operations.

Fine-grained transaction control
Beginning with the JDBC 3.0 API, a new interface element was added relating to
transactions. This interface introduces the concept of savepoints. Savepoints provide
specific markers within a database application that can be used as arguments when
calling the rollback method. As a result, using the JDBC 3.0 API, it is now possible to
set a savepoint before starting a complicated database interaction and, depending on
the outcome, commit the entire transaction or rollback to the savepoint and return the
application to a known state.

To set a savepoint, create a Savepoint object from the Connection object, as
shown here:

Savepoint svpt = con.setSavepoint("Savepoint") ;

To rollback to a given Savepoint, simply pass the desired Savepoint object as a
parameter to the rollback method:

con.rollback(svpt) ;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 16 of 28

When they are no longer needed, release all Savepoint objects to free up potentially
expensive database resources for other users:

con.releaseSavepoint(svpt) ;

Note that when you commit or rollback a transaction, any created Savepoints may
become invalid depending on the exact order and type of operation. See the JDBC 3.0
API specification or your driver manual for more information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 17 of 28

Section 5. Data sources

Data source basics
One of the major benefits of using the JDBC API is to facilitate database-independent
programming, as the majority of JDBC applications can be easily transferred over to a
different database. Two main items still remain tied to a particular database, however,
namely the JDBC Driver class and the JDBC URL. With the introduction of data
sources in JDBC API 2.0, even these dependencies can be eliminated.

Essentially a DataSource object represents a particular source of data in a Java
application. Besides encapsulating the database and JDBC driver-specific information
into a single, standardized object, data sources can act as a Connection factory and
provide methods for setting and getting the particular properties that the DataSource
object requires for successful operation. Some of the standard properties a
DataSource object might require include:

* databaseName
* serverName
* portNumber
* userName
* password

One additional benefit of using a DataSource, which you might infer from the
properties above, is that sensitive security-related information like username,
password, and even database server are only coded in one place, which can be done
by a systems administrator. While the interaction with a DataSource object can be
done with a graphical application, it is instructive to actually see working examples.

While the concepts of a DataSource object are rather simple, to be used within a
Java application a DataSource object is referenced using the Java Naming and
Directory Interface, or JNDI. Before jumping into DataSource example code, the next
panel introduces the relevant concepts of JNDI that are needed to properly use a
DataSource object.

A quick primer on JNDI
JNDI is a Java API that encapsulates the concept of naming and directory servers in
much the same manner that JDBC encapsulates the concepts behind communicating
with a database. While this might seem confusing, it is actually quite straightforward --
all computer users use naming and directory services every day. For example, hard
drives work by dealing with tracks and sectors, yet a user only worries about filenames
and directories. The file system manages the naming service which associates a given
filename with a specific location on the hard drive. Another simple example is the Web,
where most users worry only about the name of the Web site, like
www.persistentjava.com, and not the underlying IP address. However, TCP/IP
communication is done using the IP address and not some human readable name. The
transformation between the two representations is performed by DNS, or Domain
Name System.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 18 of 28

While the JNDI provides a rich and useful API in its own right, our needs are
considerably simpler. In short, we need to know how to do four things:

* Create a name and bind it to a Java object
* Look up a name to retrieve a Java object
* Delete a name
* Rebind a name to a new Java object

Rather than provide contrived JNDI examples of the above tasks, the following four
panels show examples demonstrating these tasks using JDBC data sources. All of
these examples use the file system provider, which is a separate download.

Registering a data source
This example uses a third-party DataSource implementation from i-net software to
connect to an MS SQL Server database. The comments in the code detail the
important points of registering (or initializing) a JDBC data source.

// We need to import the actual DataSource implementation
import com.inet.tds.TdsDataSource;
import java.util.Hashtable;
import javax.naming.*;
import javax.naming.directory.*;
import java.sql.* ;
import javax.sql.* ;
public class InitializeJNDI {

// First we define the relevant parameters for this datasource
private String serverName = "persistentjava.com";
private int portNumber = 1433;
private String login = "java";
private String password = "sun";
private String databaseName = "jdbc";
// This is the name we will assign to our datasource. Because we are
// using the file system provider, our name follows the file system
// naming rules. The JNDI reserved subcontext for JDBC applications is
// jdbc, thus our name starts appropriately.
private String filePath = "jdbc/pjtutorial";
public InitializeJNDI() {
// To pass in the necessary parameters, we need to create and then
// populate a Hashtable.
Hashtable env = new Hashtable();
env.put(

Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
// Create the initial context
Context ctx = new InitialContext(env);
// Here we create the actual DataSource and then set the relevant
// parameters.
TdsDataSource ds = new TdsDataSource();
ds.setServerName(serverName);
ds.setPortNumber(portNumber);
ds.setDatabaseName(databaseName);
ds.setUser(login);
ds.setPassword(password);
ds.setDescription("JDBC DataSource Connection");
// Now we bind the DataSource object to the name we selected earlier.
ctx.bind(filePath, ds);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 19 of 28

ctx.close();
// Generic Exception handler, in practice, this would be replaced by an
// appropriate Exception handling hierarchy.
} catch (Exception ex) {

System.err.println("ERROR: " + ex.getMessage());
}

}
public static void main(String args[]) {

new InitializeJNDI();
}

}

Using a data source
The previous example established the binding relationship between the DataSource
object and a particular name. The JNDI magic is actually performed by an appropriate
service provider. In our case, we are using the file system provider. Other options exist,
including LDAP (Lightweight Directory Access Protocol) or even a DNS. To actually
make a connection, we need to look up the DataSource object using the name to
which it was bound. Notice in the following example that there is no database-specific
code anywhere in sight.

import java.util.Hashtable ;
import javax.naming.* ;
import java.sql.* ;
import javax.sql.* ;
public class UtilizeJNDI {
public UtilizeJNDI(){
try {
// We need to set up the JNDI context so that we can properly interface
// to the correct service provider, in this case the file system.
Hashtable env = new Hashtable() ;
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory") ;
Context ctx = new InitialContext(env) ;
// Given the JNDI Context, we lookup the object and are returned
// our DataSource
DataSource ds = (DataSource)ctx.lookup("jdbc/pjtutorial") ;
// Now we get a database connection and proceed to do our job.
Connection con = ds.getConnection() ;
System.out.println("Connection Established.") ;
con.close();

// Note that proper error handling is not included here in order to keep
// the example short.
}catch(Exception e) {
e.printStackTrace();

}
}
public static void main (String args[]){
new UtilizeJNDI() ;

}
}

Rebinding a data source

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 20 of 28

When you want to change the particular database or even JDBC DataSource vendor
that you want your code to communicate with, all you need to do is rebind a new
DataSource to the original name. In this example, we use the same driver, but
change several relevant parameters:

// We need to import the actual DataSource
import com.inet.tds.TdsDataSource;
import java.util.Hashtable;
import javax.naming.*;
import javax.naming.directory.*;
import java.sql.* ;
import javax.sql.* ;
public class InitializeJNDI {

// First we define the relevant parameters for this datasource
private String serverName = "persistentjava.com";
private int portNumber = 1434; // Note the new port number
private String login = "sun"; // New username/password combination
private String password = "java";
private String databaseName = "ds"; // And even a new database name.
// We keep the same name for our datasource, just bind a new DataSource
// to it.
private String filePath = "jdbc/pjtutorial";
public InitializeJNDI() {

// Establish the proper JNDI Context
Hashtable env = new Hashtable();
env.put(

Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
// Create the context
Context ctx = new InitialContext(env);
TdsDataSource ds = new TdsDataSource();
ds.setServerName(serverName);
ds.setPortNumber(portNumber);
ds.setDatabaseName(databaseName);
ds.setUser(login);
ds.setPassword(password);
ds.setDescription("JDBC DataSource Connection, take two");
// Now we just call the rebind method with the new DataSource.
ctx.rebind(filePath, ds);
ctx.close();

// Replace this with real Exception handlers in production code.
} catch (Exception ex) {

System.err.println("ERROR: " + ex.getMessage());
}

}
public static void main(String args[]) {

new InitializeJNDI();
}

}

Deleting a data source
Sometimes, you will want to delete a DataSource name so that it can no longer be
used:

import java.util.Hashtable ;
import javax.naming.* ;
import java.sql.* ;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 21 of 28

import javax.sql.* ;
public class DeleteJNDI {
public DeleteJNDI() {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
try {
Context ctx = new InitialContext(env);
// unbinding the name object association effectively deletes the object.
ctx.unbind("jdbc/pjtutorial") ;
ctx.close() ;

}catch (Exception ex) {
System.err.println("ERROR: " + ex.getMessage()) ;

}
}
public static void main (String args[]){
new DeleteJNDI() ;

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 22 of 28

Section 6. Connection pools

Why do we need connection pools?
When using either the DriverManager or the DataSource method for obtaining
database connections, each request for a new database connection involves significant
overhead. This can impact performance if obtaining new connections occurs frequently,
as might be the case in a Web server environment. To emphasize why this is true, let's
follow the potential path of a typical database connection request.

* The Java application calls getConnection().

* The JDBC vendor code (either the driver or the DataSource implementation)
requests a socket connection from the JVM.

* The JVM needs to check the security aspects of the potential call. For example,
applets are only allowed to communicate with the server from which they
originated.

* If approved, the call needs to pass through the host network interface and onto
the Corporate LAN.

* The call may need to pass through a firewall to reach the Internet or WAN.

* The call eventually reaches its destination subnet, where it may need to pass
through another firewall.

* The call reaches the database host.

* The database server processes the new connection request.

* The license server may need to be queried to determine if an appropriate license
is available.

* The database initializes a new client connection, including all memory and
operating system overheads.

* The return call is sent back to the JDBC client (where it has to pass through all of
the firewalls and routers).

* The JVM receives the return call and creates an appropriate Connection object.

* The requesting Java application receives the Connection object.

Clearly requesting a new Connection object introduces a large overhead and many
potential pitfalls. To minimize this overhead, why not just reuse database connections
rather than delete them when we are done using them? The JDBC designers used this
popular design pattern when creating the ConnectionPoolDataSource, which
allows you to create a pool of database connections that are reused rather than deleted

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 23 of 28

when closed.

What is a PooledConnection?
A PooledConnection is a special type of database connection that is not deleted
when it is closed, unlike regular Connection objects (the garbage collector can delete
regular connections once they are no longer referenced). Instead, the
PooledConnection is cached for later reuse, producing potentially large
performance improvements. Working with a pool of database connections is nearly
identical to working with DataSource objects. First, rather than create an instance of a
class that implements the DataSource interface, we create an instance of a class that
implements the ConnectionPoolDataSource. We can use JNDI to bind this new
data source to a name as before.

To actually use a pooled data source object, call getPooledConnection() on the
ConnectionPooledDataSource, which in turn establishes the database connection.
To create the Connection object that will be used, call getConnection() on the
PooledConnection object rather than the DriverManager or DataSource object
as before. One additional benefit of this approach is that it is much easier to manage a
set number of database connections with a ConnectionPool because it is taken care
of automatically. This automation can be very important if your client licenses limit the
number of clients that can simultaneously connect to a database.

The entire process is much easier than it sounds, as the following examples show.

Initializing a connection pool
In this example, we use the mSQL database and the open source mSQL JDBC driver
to create a PooledDataSource. All database-specific code is contained in the
initialization or binding process.

// First we import the relevant package
import com.imaginary.sql.msql.* ;
import java.util.Hashtable ;
import javax.naming.* ;
public class InitializeJNDI {
private String serverName = "localhost" ;
private String databaseName = "jdbc" ;
private String userName = "java" ;
private String password = "sun" ;
// The appropriate JNDI subcontext for PooledDataSources is jdbcpool
private String filePath = "jdbcPool/pjtutorial" ;
private int portNumber = 1114 ;
private int poolSize= 10 ; // We want to create a pool with 10 connections.
public InitializeJNDI() {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
try {
Context ctx = new InitialContext(env);
// Create the PooledDataSource and set the relevant parameters.
MsqlPooledDataSource ds = new MsqlPooledDataSource() ;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 24 of 28

ds.setServerName(serverName) ;
ds.setPort(portNumber) ;
ds.setDatabaseName(databaseName) ;
ds.setUser(userName) ;
ds.setPassword(password) ;
ds.setMaxPoolSize(poolSize) ;
// Bind the name and the DataSource object together
ctx.bind(filePath, ds) ;
ctx.close() ;

} catch (Exception ex) {
System.err.println("ERROR: " + ex.getMessage()) ;

}
}
public static void main (String args[]){
new InitializeJNDI() ;

}
}

Using a connection pool
Once we have initialized the PooledDataSource, we can now use it in Java
applications to create pools of database connections. The following example is
somewhat contrived, but it effectively demonstrates the important points. A more
realistic example might be a servlet, which would set up the pool of database
connections in the servlet init() method and (re-)use a connection for each new
service request.

import java.util.Hashtable ;
import javax.naming.* ;
import java.sql.* ;
import javax.sql.* ;
public class UtilizeJNDI {
public UtilizeJNDI(){
try {
Hashtable env = new Hashtable() ;
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory") ;
Context ctx = new InitialContext(env) ;
// Look up the DataSource given the appropriate name.
ConnectionPoolDataSource ds

= (ConnectionPoolDataSource)ctx.lookup("jdbcPool/pjtutorial") ;
// A PooledConnection provides a special Connection which is not
// destroyed when it is closed, but is instead placed back into the
// pool of connections.
PooledConnection pcon = ds.getPooledConnection() ;
Connection con = pcon.getConnection() ;
System.out.println("Connection Established") ;
con.close();

}
catch(Exception e) {
e.printStackTrace();

}
}
public static void main (String args[]){
new UtilizeJNDI() ;

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 25 of 28

Section 7. Optimizing database communications

JDBC DataSource and Driver methods
This section discusses some of the lesser known methods in the JDBC API that can be
used to improve system performance. This panel looks specifically at DataSource
and JDBC Driver methods, while the next panel looks at Connection methods.

First, all JDBC data source classes, either the Driver, the DataSource, or the
ConnectionPooledDataSource, provide the ability to explicitly designate a specific
character output stream, setLogWriter(). This stream accepts all logging and
tracing messages. A method is also available to obtain the current stream,
getLogWriter(), as well. This can be extremely valuable when trying to diagnose
strange bugs or to trace the flow of your application. In addition, all JDBC data source
classes provide a means for assigning (setLoginTimeout()) or obtaining
(getLoginTimeout()) the maximum amount of time that the data source class
should wait for a connection to be established.

One final interesting and seldom used class is the DriverPropertyInfo class. This
class encapsulates all of the property information needed by a driver to establish a
database connection. DriverPropertyInfo can be used by a graphical tool to
interactively find the parameters that a driver needs and prompt the database user for
the correct values.

JDBC Connection methods
A Connection or PooledConnection object also has several methods that can be
used to improve system performance, either directly or indirectly. First, assuming the
JDBC driver and underlying database support it, a connection object can be set to be
read-only, setReadOnly(). This can improve system performance for applications
that do not need to make any database changes, as the database does not need to
worry about caching new pages, maintaining journal entries, or acquiring write locks on
any of the data.

Two other methods that are somewhat related are the setAutoCommit() and
setTransactionIsolation() methods, which were discussed earlier in
Transaction basics on page 14 . Because transaction mismanangement can cause
some of the largest database performance penalties, these methods and their effects
should be clearly understood and carefully applied.

Finally, one last and frequently overlooked method is the nativeSQL() method, which
translates a given SQL query into the native query language of the underlying
database. By examining the native SQL version of your query, you might be able to
better understand how the database is interpreting your query, and then make suitable
modifications to your application to improve the overall performance.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 26 of 28

Section 8. Summary

Managing database connections
Hopefully this tutorial clearly explained what is going on "under the hood" when Java
applications manage database connections. Although there is a great deal of
information available online, it's often overly confusing if not contradictory. To clarify
this situation, in this tutorial we explored the entire arena of establishing and managing
a database connection using JDBC, including:

* The differences in 2-tier and n-tier applications
* The role and four types of JDBC drivers
* The basics behind DataSource objects
* PooledConnection objects

Now all that remains is for you to go out and build your own Java database application.

Resources
JDBC information

* Visit the official JDBC home page for the JDBC 2.0 and 3.0 specifications and
other information.

* JDBC API Tutorial and Reference, Second Edition (Addison-Wesley, 1999) by
White, Fisher, Cattell, Hamilton, and Hapner is the reference for JDBC
developers.

* "What's new in JDBC 3.0" by Josh Heidebrecht (develperWorks, July 2001)
provides an overview of the new features and enhancements in the new spec.

* "An easy JDBC wrapper" by Greg Travis (developerWorks, August 2001)
describes a simple wrapper library that makes basic database usage a snap.

* The Java Enablement with DB2 Web site provides an important collection of
useful DB2 and Java links.

* "Improved Performance with a Connection Pool" (Web Developer's Journal)
discusses how ConnectionPool objects can be used with Java servlets.

* Learn how to write your own Connection pool in "Implement a JDBC Connection
Pool via the Object Pool Pattern" (developer.com).

* In "Use JDBC for industrial strength performance" (developerWorks, January
2000), Lennart Jorelid discusses using server-side Java patterns with JDBC.

JDBC driver information
* To find a JDBC driver for a particular database, visit Sun's searchable database

of JDBC drivers.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 27 of 28

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www.amazon.com/exec/obidos/ASIN/0201433281/qid=1004571589/sr=1-1/ref=sr_1_2_1/104-1216552-5979126
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcnew/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcwrap/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcwrap/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcwrap/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcwrap/index.html
http://www-106.ibm.com/developerworks/java/library/j-jdbcwrap/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/java/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/java/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/java/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/java/&origin=j
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://softwaredev.earthweb.com/microsoft/article/0,,10720_626141,00.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://www-106.ibm.com/developerworks/java/library/jw-jdbc1/index.html
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers

* Merant is a third-party vendor that provides JDBC drivers for a range of
databases.

* i-net software is another third-party vendor for JDBC drivers.

* SourceForge offers an open source JDBC driver for the MySQL database.

* The Center for Imaginary Environments offers an open source JDBC driver for the
mSQL database.

Databases
Two other open-source databases that might be of interest are:

* PostgreSQL
* mySQL

Much of the example code in this tutorial was developed using DB2 Universal
Database. If you're using this platform or want to learn more about it from a technical
perspective, visit the DB2 Developer Domain, a centralized technical resource for the
DB2 developer community.

Feedback
We welcome your feedback on this tutorial, and look forward to hearing from you.
Additionally, you are welcome to contact the author, Robert Brunner, directly at
rjbrunner@pacbell.net.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Managing database connections with JDBC Page 28 of 28

http://www.merant.com
http://www.inetsoftware.de/
http://www.inetsoftware.de/
http://mmmysql.sourceforge.net
http://www.imaginary.com/Java/mSQL-JDBC/
http://www.imaginary.com/Java/mSQL-JDBC/
http://www.imaginary.com/Java/mSQL-JDBC/
http://www.imaginary.com/Java/mSQL-JDBC/
http://www.postgresql.org/
http://www.mysql.com/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/udb/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/udb/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/data/db2/udb/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.boulder.ibm.com/dmdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.boulder.ibm.com/dmdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.boulder.ibm.com/dmdd/&origin=j
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	What is this tutorial about?
	Tools
	About the author

	Application architecture
	Architecting your system
	The two-tier model
	The n-tier model

	JDBC driver fundamentals
	An overview of JDBC drivers
	Registering a JDBC driver
	JDBC driver URLs
	Type one drivers
	Coding for type one drivers
	Type two drivers
	Type three drivers
	Type four drivers
	A complete type four driver example

	Database transactions
	Transaction basics
	More on transactions
	Transaction levels
	Batches and transaction
	Fine-grained transaction control

	Data sources
	Data source basics
	A quick primer on JNDI
	Registering a data source
	Using a data source
	Rebinding a data source
	Deleting a data source

	Connection pools
	Why do we need connection pools?
	What is a PooledConnection?
	Initializing a connection pool
	Using a connection pool

	Optimizing database communications
	JDBC DataSource and Driver methods
	JDBC Connection methods

	Summary
	Managing database connections
	Resources
	Feedback

