
Java design patterns 101

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2

2. Design patterns overview ... 4

3. A brief introduction to UML class diagrams........................ 8

4. Creational patterns... 10

5. Structural patterns.. 12

6. Behavioral patterns .. 15

7. Concurrency patterns.. 18

8. Wrapup... 20

Java design patterns 101 Page 1 of 22

Section 1. About this tutorial

Should I take this tutorial?
This tutorial is for Java programmers who want to learn about design patterns as a means of
improving their object-oriented design and development skills. After reading this tutorial you
will:

* Understand what design patterns are and how they are described and categorized in
several well-known catalogs

* Be able to use design patterns as a vocabulary for understanding and discussing
object-oriented software design

* Understand a few of the most common design patterns and know when and how they
should be used

This tutorial assumes that you are familiar with the Java language and with basic
object-oriented concepts such as polymorphism, inheritance, and encapsulation. Some
understanding of the Unified Modeling Language (UML) is helpful, but not required; this
tutorial will provide an introduction to the basics.

What is this tutorial about?
Design patterns capture the experience of expert software developers, and present common
recurring problems, their solutions, and the consequences of those solutions in methodical
way.

This tutorial explains:

* Why patterns are useful and important for object-oriented design and development
* How patterns are documented, categorized, and cataloged
* When patterns should be used
* Some important patterns and how they are implemented

Tools
The examples in this tutorial are all written in the Java language. It is possible and sufficient
to read the code as a mental exercise, but to try out the code requires a minimal Java
development environment. A simple text editor (such as Notepad in Windows or vi in a UNIX
environment) and the Java Development Kit (version 1.2 or later) are all you need.

A number of tools are also available for creating UML diagrams (see Resources on page 20).
These are not necessary for this tutorial.

About the author

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 2 of 22

http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/

David Gallardo is an independent software consultant and author specializing in software
internationalization, Java Web applications, and database development. He has been a
professional software engineer for over 15 years and has experience with many operating
systems, programming languages, and network protocols. David most recently led database
and internationalization development at a business-to-business e-commerce company,
TradeAccess, Inc. Prior to that, he was a senior engineer in the International Product
Development group at Lotus Development Corporation, where he contributed to the
development of a cross-platform library providing Unicode and international language support
for Lotus products including Notes and 1-2-3.

You can contact David at david@gallardo.org.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 3 of 22

mailto:david@gallardo.org

Section 2. Design patterns overview

A brief history of design patterns
Design patterns were first described by architect Christopher Alexander in his book A Pattern
Language: Towns, Buildings, Construction (Oxford University Press, 1977). The concept he
introduced and called patterns -- abstracting solutions to recurring design problems -- caught
the attention of researchers in other fields, especially those developing object-oriented
software in the mid-to-late 1980s.

Research into software design patterns led to what is probably the most influential book on
object-oriented design: Design Patterns: Elements of Reusable Object-Oriented Software ,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995;
see Resources on page 20). These authors are often referred to as the "Gang of Four" and
the book is referred to as the Gang of Four (or GoF) book.

The largest part of Design Patterns is a catalog describing 23 design patterns. Other, more
recent catalogs extend this repertoire and most importantly, extend coverage to more
specialized types of problems. Mark Grand, in Patterns in Java: A Catalog of Reusable
Design Patterns Illustrated with UML, adds patterns addressing problems involving
concurrency, for example, and Core J2EE Patterns: Best Practices and Design Strategies by
Deepak Alur, John Crupi, and Dan Malks focuses on patterns for multi-tier applications using
Java 2 enterprise technologies.

There is an active pattern community that collects new patterns, continues research, and
takes leads in spreading the word on patterns. In particular, the Hillside Group sponsors
many conferences including one introducing newcomers to patterns under the guidance of
experts. Resources on page 20 provides additional sources of information about patterns and
the pattern community.

Pieces of a pattern
The Gang of Four described patterns as "a solution to a problem in a context". These three
things -- problem, solution, and context -- are the essence of a pattern. For documenting the
pattern it is additionally useful to give the pattern a name, to consider the consequences
using the pattern will have, and to provide an example or examples.

Different catalogers use different templates to document their patterns. Different catalogers
also use different names for the different parts of the pattern. Each catalog also varies
somewhat in the level of detail and analysis devoted to each pattern. The next several panels
describe the templates used in Design Patterns and in Patterns in Java.

Design Patterns template
Design Patterns uses the following template:

* Pattern name and classification: A conceptual handle and category for the pattern

* Intent: What problem does the pattern address?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 4 of 22

* Also known as: Other common names for the pattern

* Motivation: A scenario that illustrates the problem

* Applicability: In what situations can the pattern be used?

* Structure: Diagram using the Object Modeling Technique (OMT)

* Participants: Classes and objects in design

* Collaborations: How classes and objects in the design collaborate

* Consequences: What objectives does the pattern achieve? What are the tradeoffs?

* Implementation: Implementation details to consider, language-specific issues

* Sample code: Sample code in Smalltalk and C++

* Known uses: Examples from the real world

* Related patterns: Comparison and discussion of related patterns

Patterns in Java template
Patterns in Java uses the following template:

* Pattern Name: The name and a reference to where it was first described

* Synopsis: A very short description of the pattern

* Context: A description of the problem the pattern is intended to solve

* Forces: A description of the considerations that lead to the solution

* Solution: A description of the general solution

* Consequences: Implications of using the pattern

* Implementation: Implementation details to consider

* Java API Usage: When available, an example from the Java API is mentioned

* Code example: A code example in the Java language

* Related patterns: A list of related patterns

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 5 of 22

Learning patterns
The most important things to learn at first is the intent and context of each pattern: what
problem, and under what conditions, the pattern is intended to solve. This tutorial covers
some of the most important patterns, but skimming through a few catalogs and picking out
this information about each pattern is the recommended next step for the diligent developer.
In Design Patterns, the relevant sections to read are "Intent," "Motivation," and Applicability."
In Patterns in Java, the relevant sections are "Synopsis," "Context," and "Forces and
Solution."

Doing the background research can help you identify a pattern that lends itself as a solution
to a design problem you're facing. You can then evaluate the candidate pattern more closely
for applicability, taking into account the solution and its consequences in detail. If this fails,
you can look to related patterns.

In some cases, you might find more than one pattern that can be used effectively. In other
cases, there may not be an applicable pattern, or the cost of using an applicable pattern, in
terms of performance or complexity, may be too high, and an ad hoc solution may be the
best way to go. (Perhaps this solution can lead to a new pattern that has not yet been
documented!)

Using patterns to gain experience
A critical step in designing object-oriented software is discovering the objects. There are
various techniques that help: use cases, collaboration diagrams, or
Class-Responsibility-Collaboration (CRC) cards, for example -- but discovering the objects is
the hardest step for inexperienced designers to get right.

Lack of experience or guidance can lead to too many objects with too many interactions and
therefore dependencies, creating a monolithic system that is hard to maintain and impossible
to reuse. This defeats the aim of object-oriented design.

Design patterns help overcome this problem because they teach the lessons distilled from
experience by experts: patterns document expertise. Further, patterns not only describe how
software is structured, but more importantly, they also describe how classes and objects
interact, especially at run time. Taking these interactions and their consequences explicitly
into account leads to more flexible and reusable software.

When not to use patterns
While using a pattern properly results in reusable code, the consequences often include
some costs as well as benefits. Reusability is often obtained by introducing encapsulation, or
indirection, which can decrease performance and increase complexity.

For example, you can use the Facade pattern to wrap loosely related classes with a single
class to create a single set of functionality that is easy to use. One possible application might
be to create a facade for the Java Internationalization API. This approach might be
reasonable for a stand-alone application, where the need to obtain text from resource
bundles, format dates and time, and so on, is scattered in various parts of the applications.
But this may not be so reasonable for a multitier enterprise application that separates

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 6 of 22

presentation logic from business. If all calls to the Internationalization API are isolated in a
presentation module -- perhaps by wrapping them as JSP custom tags -- it would be
redundant to add yet another layer of indirection.

Another example of when patterns should be used with care is discussed in Concurrency
patterns on page 18 , regarding the consequences of the Single Thread Execution pattern.

As a system matures, as you gain experience, or flaws in the software come to light, it's good
to occasionally reconsider choices you've made previously. You may have to rewrite ad hoc
code so that it uses a pattern instead, or change from one pattern to another, or remove a
pattern entirely to eliminate a layer of indirection. Embrace change (or at least prepare for it)
because it's inevitable.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 7 of 22

Section 3. A brief introduction to UML class diagrams

Class diagrams
UML has become the standard diagramming tool for object-oriented design. Of the various
types of diagrams defined by UML, this tutorial only uses class diagrams. In class diagrams,
classes are depicted as boxes with three compartments:

The top compartment contains the class name; if the class is abstract the name is italicized.
The middle compartment contains the class attributes (also called properties, or variables).
The bottom compartment contains the class methods (also called operations). Like the class
name, if a method is abstract, its name is italicized.

Depending on the level of detail desired, it is possible to omit the properties and show only
the class name and its methods, or to omit both the properties and methods and show only
the class name. This approach is common when the overall conceptual relationship is being
illustrated.

Associations between classes
Any interaction between classes is depicted by a line drawn between the classes. A simple
line indicates an association, usually a conceptual association of any unspecified type. The
line can be modified to provide more specific information about the association. Navigability
is indicated by adding an open arrowhead. Specialization, or subclassing, is indicated by
adding a triangular arrowhead. Cardinal numbers (or an asterisk for an unspecified plurality)
can also be added to each end to indicate relationships, such as one-to-one and
many-to-one.

The following diagrams show these different types of associations:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 8 of 22

Resources on page 20 provides further reading on UML and Java language associations.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 9 of 22

Section 4. Creational patterns

Overview
Creational patterns prescribe the way that objects are created. These patterns are used
when a decision must be made at the time a class is instantiated. Typically, the details of the
classes that are instantiated -- what exactly they are, how, and when they are created -- are
encapsulated by an abstract superclass and hidden from the client class, which knows only
about the abstract class or the interface it implements. The specific type of the concrete class
is typically unknown to the client class.

The Singleton pattern, for example, is used to encapsulate the creation of an object in order
to maintain control over it. This not only ensures that only one is created, but also allows lazy
instantiation; that is, the instantiation of the object can be delayed until it is actually needed.
This is especially beneficial if the constructor needs to perform a costly operation, such as
accessing a remote database.

The Singleton pattern
This code demonstrates how the Singleton pattern can be used to create a counter to
provide unique sequential numbers, such as might be required for use as primary keys in a
database:

// Sequence.java
public class Sequence {
private static Sequence instance;
private static int counter;
private Sequence()
{
counter = 0; // May be necessary to obtain

// starting value elsewhere...
}
public static synchronized Sequence getInstance()
{
if(instance==null) // Lazy instantiation
{
instance = new Sequence();

}
return instance;

}
public static synchronized int getNext()
{
return ++counter;

}
}

Some things to note about this implementation:

* Synchronized methods are used to ensure that the class is thread-safe.

* This class cannot be subclassed because the constructor is private. This may or may
not be a good thing depending on the resource being protected. To allow subclassing,
the visibility of the constructor should be changed to protected.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 10 of 22

* Object serialization can cause problems; if a Singleton is serialized and then
deserialized more than once, there will be multiple objects and not a singleton.

The Factory Method pattern
In addition to the Singleton pattern, another common example of a creational pattern is the
Factory Method. This pattern is used when it must be decided at run time which one of
several compatible classes is to be instantiated. This pattern is used throughout the Java
API. For example, the abstract Collator class's getInstance() method returns a
collation object that is appropriate for the default locale, as determined by
java.util.Locale.getDefault():

Collator defaultCollator = getInstance();

The concrete class that is returned is actually always a subclass of Collator,
RuleBasedCollator, but that is an unimportant implementation detail. The interface
defined by the abstract Collator class is all that is required to use it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 11 of 22

Section 5. Structural patterns

Overview
Structural patterns prescribe the organization of classes and objects. These patterns are
concerned with how classes inherit from each other or how they are composed from other
classes.

Common structural patterns include Adapter, Proxy, and Decorator patterns. These patterns
are similar in that they introduce a level of indirection between a client class and a class it
wants to use. Their intents are different, however. Adapter uses indirection to modify the
interface of a class to make it easier for a client class to use it. Decorator uses indirection to
add behavior to a class, without unduly affecting the client class. Proxy uses indirection to
transparently provide a stand-in for another class.

The Adapter pattern
The Adapter pattern is typically used to allow the reuse of a class that is similar, but not the
same, as the class the client class would like to see. Typically the original class is capable of
supporting the behavior the client class needs, but does not have the interface the client
class expects, and it is not possible or practical to alter the original class. Perhaps the source
code is not available, or it is used elsewhere and changing the interface is inappropriate.

Here is an example that wraps OldClass so a client class can call it using a method,
NewMethod() defined in NewInterface:

public class OldClassAdapter implements NewInterface {
private OldClass ref;
public OldClassAdapter(OldClass oc)
{
ref = oc;

}
public void NewMethod()

{
ref.OldMethod();

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 12 of 22

The Proxy and Decorator patterns
A Proxy is a direct stand-in for another class, and it typically has the same interface as that
class because it implements a common interface or an abstract class. The client object is not
aware that it is using a proxy. A Proxy is used when access to the class the client would like
to use must be mediated in a way that is apparent to the client -- because it requires
restricted access or is a remote process, for example.

Decorator, like Proxy, is also a stand-in for another class, and it also has the same interface
as that class, usually because it is a subclass. The intent is different, however. The purpose
of the Decorator pattern is to extend the functionality of the original class in a way that is
transparent to the client class.

Examples of the Decorator pattern in the Java API are found in the classes for processing
input and output streams. BufferedReader(), for example, makes reading text from a file
convenient and efficient:

BufferedReader in = new BufferedReader(new FileReader("file.txt"));

The Composite pattern
The Composite pattern prescribes recursive composition for complex objects. The intent is to
allow all component objects to be treated in a consistent manner. All objects, simple and
complex, that participate in this pattern derive from a common abstract component class that
defines common behavior.

Forcing relationships into a part-whole hierarchy in this way minimizes the types of objects
that our system (or client subsystem) needs to manage. A client of a paint program, for
example, could ask a line to draw itself in the same way it would ask any other object,
including a composite object.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 13 of 22

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 14 of 22

Section 6. Behavioral patterns

Overview
Behavioral patterns prescribe the way objects interact with each other. They help make
complex behavior manageable by specifying the responsibilities of objects and the ways they
communicate with each other.

The Observer pattern
Observer is a very common pattern. You typically use this pattern when you're implementing
an application with a Model/View/Controller architecture. The Model/View part of this design
is intended to decouple the presentation of data from the data itself.

Consider, for example, a case where data is kept in a database and can be displayed in
multiple formats, as a table or a graph. The Observer pattern suggests that the display
classes register themselves with the class responsible for maintaining the data, so they can
be notified when the data changes, and so they can update their displays.

The Java API uses this pattern in the event model of its AWT/Swing classes. It also provides
direct support so this pattern can be implemented for other purposes.

The Java API provides an Observable class that can be subclassed by objects that want to
be observed. Among the methods Observable provides are:

* addObserver(Observer o) is called by Observable objects to register
themselves.

* setChanged() marks the Observable object as having changed.

* hasChanged() tests if the Observable object has changed.

* notifyObservers() notifies all observers if the Observable object has changed,
according to hasChanged().

To go along with this, an Observer interface is provided, containing a single method that is
called by an Observable object when it changes (providing the Observer has registered
itself with the Observable class, of course):

public void update(Observable o, Object arg)

The following example demonstrates how an Observer pattern can be used to notify a
display class for a sensor such as temperature has detected a change:

import java.util.*;
class Sensor extends Observable {
private int temp = 68;
void takeReading()
{
double d;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 15 of 22

d =Math.random();
if(d>0.75)
{
temp++;
setChanged();

}
else if (d<0.25)
{
temp--;
setChanged();

}
System.out.print("[Temp: " + temp + "]");

}
public int getReading()
{
return temp;

}
}
public class Display implements Observer {
public void update(Observable o, Object arg)
{

System.out.print("New Temp: " + ((Sensor) o).getReading());
}
public static void main(String []ac)
{

Sensor sensor = new Sensor();
Display display = new Display();
// register observer with observable class
sensor.addObserver(display);
// Simulate measuring temp over time
for(int i=0; i < 20; i++)
{

sensor.takeReading();
sensor.notifyObservers();
System.out.println();

}
}

}

The Strategy and Template patterns
Strategy and Template patterns are similar in that they allow different implementations for a
fixed set of behaviors. Their intents are different, however.

Strategy is used to allow different implementations of an algorithm, or operation, to be
selected dynamically at run time. Typically, any common behavior is implemented in an
abstract class and concrete subclasses provide the behavior that differs. The client is
generally aware of the different strategies that are available and can choose between them.

For example, an abstract class, Sensor, could define taking measurements and concrete
subclasses would be required to implement different techniques: one might provide a running
average, another might provide an instantaneous measurement, and yet another might hold
a peak (or low) value for some period of time.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 16 of 22

The intention of the Template pattern is not to allow behavior to be implemented in different
ways, as in Strategy, but rather to ensure that certain behaviors are implemented. In other
words, where the focus of Strategy is to allow variety, the focus of Template is to enforce
consistency.

The Template pattern is implemented as an abstract class and it is often used to provide a
blueprint or an outline for concrete subclasses. Sometimes this is used to implement hooks
in a system, such as an application framework.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 17 of 22

Section 7. Concurrency patterns

Overview
Concurrency patterns prescribe the way access to shared resources is coordinated or
sequenced. By far the most common concurrency pattern is Single Thread Execution, where
it must be ensured that only one thread has access to a section of code at a time. This
section of code is called a critical section, and typically it is a section of code that either
obtains access to a resource that must be shared, such as opening a port, or is a sequence
of operations that should be atomic, such as obtaining a value, performing calculations, and
then updating the value.

The Single Thread Execution pattern
The Singleton pattern we discussed earlier contains two good examples of the Single Thread
Execution pattern. The problem motivating this pattern first arises because this example uses
lazy instantiation -- delaying instantiating until necessary -- thereby creating the possibility
that two different threads may call getInstance() at the same time:

public static synchronized Sequence getInstance()
{
if(instance==null) // Lazy instantiation
{
instance = new Sequence();

}
return instance;

}

If this method were not protected against simultaneous access with synchronized, each
thread might enter the method, test and find that the static instance reference is null, and
each might try to create a new instance. The last thread to finish wins, overwriting the first
thread's reference. In this particular example, that might not be so bad -- it only creates an
orphaned object that garbage collector will eventually clean up -- but had there been a
shared resource that enforced single access, such as opening a port or opening a log file for
read/write access, the second thread's attempt to create an instance would have failed
because the first thread would have already obtained exclusive access to the shared
resource.

Another critical section of code in the Singleton example is the getNext() method:

public static synchronized int getNext()
{
return ++counter;

}

If this is not protected with synchronized, two threads calling it at the same time might
obtain the same current value and not the unique values this class is intended to provide. If
this were being used to obtain primary keys for a database insert, the second attempt to
insert with same primary key would fail.

As we discussed earlier, you should always consider the cost of using a pattern. Using

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 18 of 22

synchronized works by locking the section of code when it is entered by one thread and
blocking any other threads until the first thread is finished. If this is code used frequently by
many threads, this could cause a serious degradation in performance.

Another danger is that two threads could become deadlocked if one thread is blocked at one
critical section waiting for the second, while the second thread is blocked at another critical
section, waiting for the first.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 19 of 22

Section 8. Wrapup

Summary
Design patterns are a valuable tool for object-oriented design for a number of important
reasons:

* Patterns provide "...a solution to a problem in a context." (Design Patterns, Gamma,
Helm, Johnson, and Vlissides).

* Patterns capture the expertise of experienced designers in a methodical way and make
them available as design tools and learning tool for non-experts.

* Patterns provide a vocabulary for discussing object-oriented design at a significant level
of abstraction.

* Patterns catalogs serve as a glossary of idioms that help in understanding common, but
complex solutions to design problems.

Resources
Books

* Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995) is probably
the most influential resource on object-oriented design. Chapters 1, 2, and 6 are
essential reading for understanding object-oriented design in general or, in particular,
the role of patterns in object-oriented design.

* Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML by Mark
Grand (Wiley, 1998) is not as well written as Design Patterns, especially regarding
general object-oriented design issues, but the patterns in the catalog are easier to
understand, particularly because the examples are written using the Java language and
the recommendations address issues common for Java developers.

* Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
and Dan Malks (Prentice Hall, 2001) is a catalog of patterns for the design and
architecture of multitier enterprise applications.

* UML Distilled: Applying the Standard Object Modeling Language by Martin Fowler with
Kendall Scott (Addison-Wesley, 2000) offers an excellent introduction to the essentials
of UML. It includes a short but valuable discussion of using
Class-Responsibility-Collaboration cards for object-oriented design.

* The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, and
James Rumbaugh (Addison-Wesley, 1998) is helpful when you need more than just the
essentials.

Web resources

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 20 of 22

http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201633612/qid=1009945869/sr=2-1/ref=sr_2_75_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0471258393/qid=1009945936/sr=1-1/ref=sr_1_78_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0130648841/qid%3D1009945984/ref%3Dsr%5F11%5F0%5F1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/020165783X/qid=1009946032/sr=1-1/ref=sr_1_70_1/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318
http://www.amazon.com/exec/obidos/ASIN/0201571684/qid=1009946111/sr=2-2/ref=sr_2_75_2/104-6701554-0614318

* developerWorks has two good introductory articles on the Java programming language
and on object-oriented design in general:

* "The OO design process: Getting started" by Allen Holub

* "The object primer: Using object-oriented techniques to develop software" by
Scott W. Ambler

* There are also several articles on the Java language, patterns, and UML:

* "A UML workbook" (Part 1, Part 2, and Part 3) by Granville Miller

* "An overview of object relationships: The basics of UML and Java associations" by
Scott W. Ambler

* "Use your singletons wisely: Know when to use singletons, and when to leave
them behind" by J. B. Rainsberger

* "Developing Java solutions using Design Patterns" by Kelby Zordrager

* There are several Web sites with good information on patterns. The Hillside Group
plays a major role in the pattern community and its site, in particular, is an excellent
starting point:

* The Hillside Group Patterns home page

* Portland Pattern Repository

* Brad Appleton's Software Patterns Links

* "Christopher Alexander: An Introduction for Object-Oriented Designers" is an
interesting read for those wanting to learn more about the father of design patterns.

* The most discussed and dissected pattern, in this tutorial and elsewhere, is the
Singleton pattern. Here are two articles that cover the topic thoroughly from different
perspectives:

* "Implementing the Singleton Pattern in Java" by Rod Waldhoff

* "When is a singleton not a singleton?" by Joshua Fox

UML tools

* UML tools are of two types: those that provide CASE (Computer Aided Software
Engineering) and those that are only for creating diagrams. The CASE tools use UML
diagrams to generate code. They can also reverse-engineer code and generate
diagrams. Some people find these capabilities to be useful. Rational Rose and
Together/J are in this category, while ArgoUML and SmartDraw provide only drawing
capabilities:

* Rational Rose is an industrial-strength software design tool (and much more) that

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 21 of 22

http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/oo-design1/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/using-oo/index.html
http://www-106.ibm.com/developerworks/java/library/j-jmod0508/
http://www-106.ibm.com/developerworks/java/library/j-jmod0508/
http://www-106.ibm.com/developerworks/java/library/j-jmod0508/
http://www-106.ibm.com/developerworks/java/library/j-jmod0605/
http://www-106.ibm.com/developerworks/java/library/j-jmod0605/
http://www-106.ibm.com/developerworks/java/library/j-jmod0626/
http://www-106.ibm.com/developerworks/java/library/j-jmod0626/
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/tip-objrel/index.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/co-single.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www-106.ibm.com/developerworks/java/library/it-kelby1/index.html
http://www.hillside.net/patterns
http://www.hillside.net/patterns
http://www.hillside.net/patterns
http://www.hillside.net/patterns
http://www.hillside.net/patterns
http://www.hillside.net/patterns
http://c2.com/ppr/index.html
http://c2.com/ppr/index.html
http://c2.com/ppr/index.html
http://www.enteract.com/~bradapp/links/sw-pats.html
http://www.enteract.com/~bradapp/links/sw-pats.html
http://www.enteract.com/~bradapp/links/sw-pats.html
http://www.enteract.com/~bradapp/links/sw-pats.html
http://www.enteract.com/~bradapp/links/sw-pats.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://g.oswego.edu/dl/ca/ca/ca.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://members.tripod.com/rwald/java/articles/Singleton_in_Java.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/jw-01-2001/jw-0112-singleton.html
http://www.rational.com
http://www.rational.com

strictly enforces its interpretation of UML. This can be frustrating if developers are
using it for conceptual or informal designs. It's expensive, but you can download a
15-day evaluation version to test out.

* Together/J is also an industrial-strength software design tool that enforces its
interpretation of UML.

* ArgoUML is a free, Java language, open source, UML diagramming tool. It's much
smaller than Rational Rose or Together/J because it doesn't have the code
generation and other engineering tools, and it is significantly easier to use. Be
aware that the current version, 0.9.5 (as of December 2001), is beta and has
significant bugs.

* SmartDraw is an inexpensive general-purpose diagramming tool that includes
support for UML. Because it is designed as a general-purpose tool, it can be
awkward to use for UML. Don't miss the comprehensive UML tutorial from
SmartDraw.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!
Additionally, you are welcome to contact the author, David Gallardo, directly at
david@gallardo.org.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java design patterns 101 Page 22 of 22

http://www.togethersoft.com
http://www.argouml.org
http://www.smartdraw.com
http://www.smartdraw.com/resources/centers/uml/uml2.htm
http://www.smartdraw.com/resources/centers/uml/uml2.htm
mailto:david@gallardo.org
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	What is this tutorial about?
	Tools
	About the author

	Design patterns overview
	A brief history of design patterns
	Pieces of a pattern
	Design Patterns template
	Patterns in Java template
	Learning patterns
	Using patterns to gain experience
	When not to use patterns

	A brief introduction to UML class diagrams
	Class diagrams
	Associations between classes

	Creational patterns
	Overview
	The Singleton pattern
	The Factory Method pattern

	Structural patterns
	Overview
	The Adapter pattern
	The Proxy and Decorator patterns
	The Composite pattern

	Behavioral patterns
	Overview
	The Observer pattern
	The Strategy and Template patterns

	Concurrency patterns
	Overview
	The Single Thread Execution pattern

	Wrapup
	Summary
	Resources
	Feedback

