
Building servlets with session tracking

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. First, the basics of session tracking 4

3. Data in, data out: Using JSP technology 7

4. Scenario: A URL bookmarking system 9

5. Handling requests: BookmarkServlet.java 11

6. Manipulating user information: BKUser.java 16

7. Storing data: UserDB.java and userdb.txt 19

8. Enabling user interaction: Bookmarks.jsp 22

9. Summary 25

10. Appendix: Source code listings 26

Building servlets with session tracking Page 1

Section 1. Tutorial tips

Should I take this tutorial?
This tutorial teaches techniques for building Internet applications using servlet and JSP
technology. A key point is to enable session handling, so the servlet knows which user is
doing what. The tutorial shows a URL bookmarking system in which multiple users access a
system to add, remove, and update an HTML listing of bookmarks. The servlet uses JSP
technology to handle the user interaction.

You should be familiar with Java programming concepts such as the structure of the
language (packages, classes, and methods) and how object-oriented programming differs
from procedural programming. Prior experience writing servlets is helpful. If you need a
refresher on servlets, see another dW tutorial, " Building Java HTTP servlets ."

To write the servlets described in this tutorial, you simply need an editing environment. This
can be as basic as an operating system editor. In a development environment, many people
use IDEs because they have debuggers and other features specific to writing and testing
code.

To compile the servlets, you'll need the Java compiler (javac.exe). You'll also need the
Java server development kit (JSDK), which is typically an extension to the JDK. Most servers
support servlets based on the JSDK Version 2.1; many now support the latest release, JSDK
2.2. Once you have written your servlets, you can test them with the utility included in the
JSDK. The JSDK 2.0 has a utility called servletrunner, while JSDK 2.1 comes with a small
HTTP server. JSP technology and servlets form a part of the Java 2 Platform Enterprise
Edition, which supports and provides ready-built functionality.

To execute the servlets, you'll need an application server, such as WebSphere, or an HTTP
server with a servlet engine installed. HTTP servers are usually included with the application
servers. Most HTTP servers that are not included in an application server require installation
of an additional servlet engine such as Apache JServ.

Navigation
Navigating through the tutorial is easy:

* Select Next and Previous to move forward and backward through the tutorial.
* When you're finished with a section, select the next section. You can also use the Main

and Section Menus to navigate the tutorial.
* If you'd like to tell us what you think, or if you have a question for the author about the

content of the tutorial, use the Feedback button.

Getting help
For questions about the content of this tutorial, contact the author, Jeanne Murray, at
jeannem@us.ibm.com . If you have problems running the servlets, a direct contact with Barry
Busler, at barrybusler@us.ibm.com , will get you a faster answer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 2

http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/0EE353D3449DB625862569530047CD1A?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/0EE353D3449DB625862569530047CD1A?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/0EE353D3449DB625862569530047CD1A?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/0EE353D3449DB625862569530047CD1A?OpenDocument
mailto:jeannem@us.ibm.com
mailto:barrybusler@us.ibm.com

Jeanne Murray is on the developerWorks staff, a perch from which she cajoles others to
write servlets for tutorials. Thanks to Barry Busler for his contributions. Jeanne's been with
IBM in Research Triangle Park, NC, for 12 years, where she's worked on software design
and development projects ranging from mainframes to miniature devices.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 3

Section 2. First, the basics of session tracking

Why do you need session tracking?
Session tracking makes you a polite host or hostess - - it keeps you from having to ask "oh,
is it you again?" every time you receive a request. This is especially important in today's
e-commerce Web apps; a Web shopping cart, for example, needs to accurately reflect a
user's choices at every step in the process.

Internet communication protocols consist of two types: stateful and stateless. The server
associates a state with a connection; it remembers who the user is and handles all user
requests.
* Stateful protocols, such as telnet and FTP, can process multiple operations before

closing a connection. The server knows that all requests came from a single person.
* HTTP is a stateless protocol, which means every time a client asks for a Web page, the

protocol opens a separate connection to the server, and the server doesn't know the
context from one connection to the next. Each transaction is a single isolated
transaction. Imagine if every time you added an item to your shopping cart, it forgot all
your previous items, and couldn't even remember whose cart it was in the first place.

Some Web servers support persistent HTTP connections, meaning they keep a socket open
for multiple client requests. But this isn't exactly the easy way out; rather, you'll have to go
through all sorts of contortions to make sure the Web server supports them, that you comply
with the number of connections allowed on a single socket (or change it if you can find the
configuration setting), and generally get yourself all wrapped up in exception testing till the
day dawns dark and dreary.

The session tracking API
Techniques for identifying a session and associating data with it, even over multiple
connections, include using cookies, URL rewriting, and hidden form fields. These techniques,
which are explained more fully on the next three panels, do require additional work for
managing the information involved.

To eliminate the need for manually managing the session information within your code (no
matter what session tracking technique you're using), you use the HttpSession class of the
Java Servlet API. The HttpSession interface allows servlets to:
* View and manage information about a session
* Make sure information persists across multiple user connections, to include multiple

page requests as well as connections

Session tracking techniques: Cookies
Cookies are probably the most common approach for session tracking. Cookies store
information about a session in a human-readable file on the client's machine. Subsequent
sessions can access the cookie to extract information. The server associates a session ID
from the cookie with the data from that session. This gets more complicated when there are

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 4

multiple cookies involved, when you have to decide when to expire the cookie, and when you
have to generate so many unique session identifiers. Additionally, a cookie cannot grow
more than 4K in size, and no domain can have more than 20 cookies.

Cookies pose some privacy concerns for users. Some people don't like the fact that a
program can store and retrieve information about their habits. In addition, people are wary
that sensitive information -- such as a credit card number -- could be stored in a cookie.
We know this isn't good programming practice, but as for those other guys out there...)
Unfortunately, it is easy to use cookies inappropriately.

As a result, some users disable cookies or delete them altogether. Therefore, you should not
depend on them as your sole mechanism for session tracking.

Session tracking techniques: URL rewriting
URL rewriting is used to append data on the end of each URL that identifies the session. The
server associates the identifier with data it has stored about the session.

The URL is constructed using an HTTP GET. It may include a query string containing pairs of
parameters and values. For example:
http://www.server.com/getPreferences?uid=username&bgcolor=red&fgcolor=blue.
URLs can get quite lengthy.

URL rewriting is a good solution, especially if users have disabled cookies, in which case it
becomes a most excellent solution. But be sure to consider the following:
* You have to be sure to append the information to every URL that references your site.
* Appending parameters brings up privacy issues; you may not want the actual data you

are tracking to be visible.
* There's a loophole with this technique: users can leave the session and come back

using a bookmark, in which case your session information is lost.

These problems are not insurmountable, just tedious to tackle.

Session tracking techniques: Hidden form fields in HTML
Hidden form fields store information about the session. The hidden data can be retrieved
later by using the HTTPServletRequest object. When a form is submitted, the data is
included in the Get or Post.

Before you get excited though: form fields can be used only on dynamically generated
pages, so their use is limited. And there are security holes: people can view the HTML
source to see the stored data.

The HttpSession object
No matter which technique(s) you've used to collect session data, you need to store it
somewhere. In this tutorial, we use the HttpSession object to store the session data from

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 5

our servlet. This object matches a user to session data stored on a server. The basic steps
for using the HttpSession object are:
* Obtain a session object
* Read or write to it
* Either terminate the session by expiring it, or do nothing so it will expire on its own

A session persists for a certain time period, up to forever, depending on the value set in the
servlet. A unique session ID is used to track multiple requests from the same client to the
server.

Persistence is valid within the context of the Web application, which may be across multiple
servlets. A servlet can access an object stored by another servlet; the object is distinguished
by name and is considered bound to the session. These objects (called attributes when you
set and get them) are available to other servlets within the scope of a request, a session, or
an application.

Key methods used in HttpSession
HttpSession maintains and accesses the session information within a servlet so you don't
have to manipulate the information directly in your code.

Important methods used in HttpSession include:
* isNew(). Returns true if the client doesn't yet know about the session. If the client has

disabled cookies, then a session is new on each request.
* getId(). Returns a string containing the unique identifier assigned to this session.

Useful when using URL rewriting to identify the session.
* setAttribute(). Binds an object to this session, using the name specified. (Note:

this replaces the setValue() method of JSDK 2.1.)
* getAttribute(). Returns the object (with the specified name) bound in this session.

(Note: this replaces the getValue() method of JSDK 2.1.)
* setMaxInactiveInterval(). Specifies the time between client requests before the

servlet invalidates this session. A negative time indicates the session should never
timeout.

* invalidate(). Expires the current session and unbinds the object bound to it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 6

Section 3. Data in, data out: Using JSP technology

Handling client interaction with JSP technology
Now that you're familiar with session tracking and the HttpSession interface, we'll look at
another important technology for building our bookmarking servlet: JavaServer Pages (JSP)
technology.

JSP technology is used to manage the client interaction because it helps us separate the
presentation logic from the application logic. JSP technology was developed to separate
dynamic content from static HTML page design, meaning the page design can change
without having to worry about changing the content. JSP technology can generate XML as
easily as it can HTML, and the resulting file will send either XML or HTML to the client.

JSP technology from 10,000 feet
The contents of JSP files -- such as HTML tags, JSP tags, and scripts -- are basically
translated into a servlet by the application server. This process translates both the dynamic
and static elements declared within the JSP file into Java servlet code. The servlet generates
a response and sends it back to the Web server.

JSP technology is a server-side technology, which means all this processing occurs in the
server and is available to other components such as JavaBeans and Enterprise JavaBeans.
In fact, servlets typically interact with JSP files using beans as intermediaries. The servlet
does some computation, builds a bean with the results, and the JSP file does the formatting
to present the information to the user. This is the cleanest separation between logic and
presentation.

The basic steps for a servlet communicating with a JSP file to present information to a client
are as follows:
* A request first goes to a servlet, which handles the request.
* The results are stored in a bean.
* The servlet forwards the request to a JSP file.
* The JSP file obtains data values from the bean and handles all presentation elements.

Storing the results in a bean makes them accessible to other JSP pages. An alternative
approach is to store results in a session object, which is what we do in our bookmarking
example in this tutorial. This makes the data specific to a user session, rather than globally
available, which is appropriate for our application.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 7

Now you know enough about JSP technology to be dangerous, er, that is, enough to
understand this tutorial. For more indepth instruction, you can take another tutorial on
developerWorks: " Introduction to JavaServer Pages technology ."

If we weren't just doing a demo...the role of JDBC
To keep this tutorial simple, we access a data file to read and update stored user information.
In the real world, you would likely be using an external database to store your data. Then you
would use JDBC (Java Database Connectivity) to access the data.

JSP files can call JDBC statements directly to access back-end systems. One issue that
arises is that you don't want your Web page designers inadvertently modifying database
access statements. Therefore, a better solution would be to create JavaBeans components
to encapsulate the JDBC code. Also, JavaBeans components are a good alternative to
isolating JDBC code that is repetitively executed.

Because JDBC is the standard way to access databases from servlets, we'll tell you a bit
about it here. There is a comprehensive tutorial on this subject elsewhere on
developerWorks (" Java Database Connections ") if you want to try it on your own.

JDBC from 10,000 feet
JDBC standardizes the mechanism for connecting to databases, the syntax for sending
queries and committing transactions, and the structure for representing the results. The idea
is, if your queries follow standard SQL syntax, you should be able to change database hosts,
ports, and vendors with few changes to your code.

The basic steps for a servlet to access a relational database using JDBC are as follows:
* Load the class that references the appropriate JDBC driver.
* Specify the location of the database server.
* Get connected, which means pass the URL and the database username and password.
* Send, then execute, a query using SQL syntax.
* Process the results and return them to the browser. Numerous methods are available

for accessing the results by row and column, and for dynamically discovering high-level
information about a result (which is useful for ad hoc queries).

* Close the connection. Note that you only do this when you're really done; the overhead
of opening connections time and time again will kill your performance, and reusing
connections is an important technique for optimization. It is very important to remember
to close your connection so that garbage collection will clean up the unused object.
Sometimes databases have a limited number of connections available; you don't want
any unused connections lying around.

Again, we are not using JDBC in this tutorial so that we may keep life simple. However,
we've tried to structure the code and use naming conventions that make it easy for you to
infer where you'd insert database functionality.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 8

http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/9243E4DE5826DC1B862568C10061B5AF?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/9243E4DE5826DC1B862568C10061B5AF?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/9243E4DE5826DC1B862568C10061B5AF?OpenDocument

Section 4. Scenario: A URL bookmarking system

What the bookmarking system does
Our servlet demonstrates a URL bookmarking system in which multiple users access a
system to add, remove, and update an HTML listing of bookmarks. The bookmarks are
stored in a user information file. The servlet creates and tracks sessions and updates the
bookmark file. It uses JSP technology to handle the user interaction.

The system consists of several servlets, all of which are described in detail in this tutorial
(with the code):
* BookmarkServlet.java, which handles the user requests, performs the actions (add,

delete, etc.), stores results in a session object, and passes the request to the JSP file
* BKUser.java, which manages the user information. This object manipulates information

in the (pseudo) database format so it can be used by the Java code.
* UserDB.java, which, in combination with userdb.txt, stores the user information, to

include user name and password and all URLs for their bookmarks. This is our
simulated database.

* Bookmarks.jsp, which handles the user interaction by displaying data and providing the
interface for the user actions.

The components and the flow of information among them is shown here.

Tasks from the user's point of view
The user's tasks are to:
* Register with the system, as shown here.

* Log in, as shown here.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 9

* View, add, and delete bookmarks, as shown here.

Tasks from the servlet's point of view
The user has the easy part; the servlet does all the hard stuff. The servlet tasks are to:
* Register users. Some will be new, others already known to the system. The servlet also

validates user logins.
* Show each user his or her own bookmark list. The servlet keeps track of which user

gets which list.
* Store changes to the lists when users make updates.
* Write the changes to the file when the user registers or logs out.
* Close the session when the user is no longer actively making updates.

On to the code...
The following sections walk you through the code. For the purposes of explaining the hows
and whys, we've broken the code into chunks. (As a result, it may look as though all closing
braces aren't matched up in the individual code snippets; this isn't truly the case.) You can
view the code in its entirety in the appendix of this tutorial.

You may want to bring up the servlet package documentation (Version 2.2) in a secondary
browser window as you go through the next sections.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 10

index10.html
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/

Section 5. Handling requests: BookmarkServlet.java

This servlet's purpose in life
BookmarkServlet.java handles the requests
and performs the actions, which include user
registration, log in and log out, and the add and
delete functions. It stores results in the session
object and passes requests to the JSP file. Once a
user logs out, the servlet writes the data to the
userdb.txt file.

Declare a new class and initialize
The servlet starts with import statements, which give us access to other Java packages.
Next, we need to declare a new class, BookmarkServlet, by extending the HttpServlet class
(javax.servlet.http.HttpServlet). We also specify paths for the code, which
makes it easier to maintain. (The paths we use here are specific to the Tomcat server we
used for testing, which uses the default Sun Web-inf/classes directory.)

The init() method, which was new in JDSK 2.1, starts by calling the
super.init(ServletConfig) method in order to register the ServletConfig for later use.
This is typically done at the beginning of the init() method.

Next, we initialize UserDB, which we use to store the user and bookmark data. We will be
reading the stored user information from a file called userdb.txt. (Note: This is where
database connections would be opened and initialized if we were using JDBC.)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class BookmarkServlet extends HttpServlet{

private static final String pathtohtml="/examples/servlets/tut/";
private static final String pathtojsp="/Web-inf/classes/";
private static final String pathtoservlet = "";

public void init(ServletConfig cfig) throws ServletException{
super.init(cfig);
UserDB.initDB();

}

Set up the session object
Next we have the doGet() method, which passes GET requests to the doPost() method
below it. This is a common technique in servlets; it ensures that if some program issues a
POST request to this servlet (which could alter data), the servlet will enact the doGet()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 11

method in response.

The doPost() method first sets up the session object, which will be used for all the actions.
First we get the session associated with this client. If there is not one available, the true
parameter on getSession() indicates to create a new one. Then, we determine what
action is to be performed based on input to the servlet. The getParameter() method of
the request tells us whether the user wants to log in, add a bookmark, or perform another
operation. If we get invalid input, we redirect to an error page and exit the servlet.

public void doGet(HttpServletRequest request,
HttpServletResponse response){

this.doPost(request, response);
}

public void doPost(HttpServletRequest request,
HttpServletResponse response){

HttpSession session = request.getSession(true);

String action=request.getParameter("func");

try{

if(action==null){
response.sendRedirect(pathtohtml+"error.html");
return;

}

Determine the action: Log in
The next set of statements are if/else statements, where we implement the action. If the
user is logging in, the servlet gets the username and password through the BKUser interface.
We use the getParameter() method on the request to the UserDB object.

If the user login is valid, the servlet stores the user information in the session object using the
setAttribute() method. It then passes the request to the JSP file that provides the user
interface.

If the login is not valid, the servlet sends the user to the login error page.

if (action.equals("login")){

BKUser user= UserDB.getUser(request.getParameter("username"),
request.getParameter("password"));

if(user!=null){
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");

}

else{
response.sendRedirect(pathtohtml+"error.html");

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 12

Determine the action: Add, delete bookmark
The next statements handle the actions for adding and deleting bookmarks. But before we
can fulfill this request, we check to see if the user is already known to us. In both sets of
statements, before we perform the action, we check to see if the session is a new one by
using the isNew() method of the session object. If the user did indeed somehow get to the
add or delete function without logging in first, we send them to the login page.

The servlet uses the BKUser interface to manage the user information, including the
bookmark URL, which is represented by the href parameter. It then passes the information to
the JSP file.

else if (action.equals("add")){

if(session.isNew()){
response.sendRedirect(pathtohtml+"login.html");

}
else{

BKUser user = (BKUser)session.getAttribute("user");
user.addBookmark(request.getParameter("name"),

request.getParameter("href"));
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");

}
}

else if (action.equals("delete")){

if(session.isNew()){
response.sendRedirect(pathtohtml+"login.html");

}
else{

BKUser user = (BKUser)session.getAttribute("user");
user.delBookmark(request.getParameter("name"));

session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");
}

}

Determine the action: Register
This code handles the user registration, updating UserDB and setting up the user information
in BKUser. It stores user information in the session object using the setAttribute()
method.

else if (action.equals("register")){

UserDB.addUser(request.getParameter("username"),
request.getParameter("password"));

BKUser user= UserDB.getUser(request.getParameter("username"),

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 13

request.getParameter("password"));

if(user!=null){
session.setAttribute("user", user);

passItOn(request, response, pathtojsp+"Bookmarks.jsp");
UserDB.updateDB();

}
else{
response.sendRedirect(pathtohtml+"error.html");

}
}

Determine the action: Logout
Here we determine the user has chosen to log out. We write to the userdb.txt file using the
UserDB interface, then expire the session and redirect the user to the logout page. If we
were truly connected to a database, then we would also close the database connection.

else if (action.equals("logout")){
UserDB.updateDB();
session.invalidate();
response.sendRedirect(pathtohtml+"logout.html");

}
}
catch(Exception e){

e.printStackTrace();
}

}

Enable forwarding to the JSP file
This last section of code enables forwarding request information to the JSP file. The
RequestDispatcher method was introduced in SDK 2.1. It dispatches a request to either
a static resource, such as an HTML page, or another dynamic resource, such as a servlet or
JSP file. A request can either be forwarded or included, and the state can be made available
to the dispatched resource.

In essence, the servlet cannot print any data before calling forward() because the target
page will likely set one or more headers -- and this may not work if data has already been
sent. (This also applies to the include() method. The page it includes cannot set any
headers because the servlet calling the include() may have already printed data.)

When the forward() method returns, the calling servlet regains control. The output steam
is then closed at this point.

private void passItOn(HttpServletRequest request,
HttpServletResponse response, String nextpage)

throws ServletException, IOException{
RequestDispatcher disp = getServletContext().getRequestDispatcher(nextpage);
disp.forward(request, response);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 14

}

public void destroy(){
UserDB.closeDB();
}

}

Here's the code
Here's the BookmarkServlet.java code .

You can also view the code listing in the Appendix of this tutorial.

If you have the ability to execute your servlet on a server, compile the code and put the class
file in the servlet directory. Run the servlet using a URL with the following syntax. Remember
that the class file name is case sensitive.

http://host/path/BookmarkServlet

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 15

code/BookmarkServlet.java
code/BookmarkServlet.java
j-servlets2-10-1.html

Section 6. Manipulating user information: BKUser.java

This object's purpose in life
BKUser manages the user information and formats
it so all parties involved can read it. For example,
the data format housed in the userdb.txt file is
unreadable by the BookmarkServlet object;
BKUser takes care of encoding the URLs and sets
up a hashtable. Both actions make it easier to
parse the information.

Set up to read strings
The code starts with the housekeeping: import statements and class declaration. The
java.util and java.net packages provide the enumeration and encoding functions needed for
this object.

The BKUser() method is the constructor for the class. When a new BKUser object is
created, this method initializesthe user information for the object by parsing the dbstring.
We call it dbstring here as though we are accessing a database; in reality our system stores
the data in a file (called userdb.txt). The add and delete actions are handled with put() and
remove() methods.

import java.io.*;
import java.util.*;
import java.net.*;

public class BKUser{
public String name;
protected String password;
public Hashtable bookmarks;

public BKUser(String name, String password,
String dbstring){

this.name=name;
this.password=password;
this.bookmarks=new Hashtable();
if(dbstring!=null){

this.readDBString(dbstring);
}

}

public void addBookmark(String name, String href){
bookmarks.put(name, href);

}

public void delBookmark(String name){
bookmarks.remove(name);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 16

Format information for the data file
Here we convert the user information to the format for storage in the data file.

public String getDBString(){
String dbstring="";
boolean firsttime=true;

dbstring+=URLEncoder.encode(this.name) + " "
+ URLEncoder.encode(this.password) + " ";

for (Enumeration enum = bookmarks.keys() ; enum.hasMoreElements() ;) {
String bkname=(String)enum.nextElement();
String bkhref=(String)bookmarks.get(bkname);
if(firsttime){

dbstring+=URLEncoder.encode(bkname)+"!"
+URLEncoder.encode(bkhref);

firsttime=false;
}

else{
dbstring+="|"+URLEncoder.encode(bkname)+"!"

+URLEncoder.encode(bkhref);
}

}
return dbstring;

}

Extract user information
And here we get the user information from that data file format and decode it.

public void readDBString(String dbstring){
StringTokenizer sptok = new StringTokenizer(dbstring);
this.name=URLDecoder.decode(sptok.nextToken());
this.password=URLDecoder.decode(sptok.nextToken());
StringTokenizer pptok = new StringTokenizer(sptok.nextToken(),"|");
while (pptok.hasMoreTokens()) {

StringTokenizer exctok = new StringTokenizer(pptok.nextToken(),"!");
bookmarks.put(URLDecoder.decode(exctok.nextToken()),

URLDecoder.decode(exctok.nextToken()));
}

}
}

Here's the code
Here's the BKUser.java code .

You can also view the code listing in the Appendix of this tutorial.

If you have the ability to execute your servlet on a server, compile the code and put the class

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 17

code/BKUser.java
code/BKUser.java
j-servlets2-10-2.html

file in the servlet directory. Run the servlet using a URL with the following syntax. Remember
that the class file name is case sensitive.

http://host/path/BKUser

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 18

Section 7. Storing data: UserDB.java and userdb.txt

Purpose of these files

UserDB and userdb.txt form our "database." The UserDB object opens the data file and
reads and writes the data; userdb.txt file is our data store.

The userdb.txt file has the following format.

username password mark1!url1|mark2!url2|...markn!urln

Each user's information is on a separate line. Here is an example for a user named Bob, who
has the password pass.

bob pass IBM+Home!http%3A%2F%2Fwww.ibm.com|IBM+developerWorks!http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks

Make declarations
Here we declare the class UserDB and identify the data file, userdb.txt. We also enable the
read and write functions.

import java.io.*;
import java.util.*;

public final class UserDB{
static final String dbfile="userdb.txt";
static Vector users;

public static void initDB(){
users = new Vector();
readFromFile(dbfile);

}

public static void closeDB(){
writeToFile(dbfile);
users=null;

}

public static void updateDB(){
writeToFile(dbfile);

}

Read the data
This function opens the data file and scans the user information into the vector users, which

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 19

is of the type BKUser.

public static synchronized void readFromFile(String filename){
try{

BufferedReader in = new BufferedReader(new FileReader(dbfile));
String line;
while((line=in.readLine())!=null){
users.add(new BKUser(null, null, line.trim()));

}
in.close();

}
catch(Exception e){

e.printStackTrace();
}

}

Write the data
This function writes the information to the file. All of the user information and bookmarks from
the vector users is written to the file using the prescribed format.

username password mark1!url1|mark2!url2|...markn!urln

The readFromFile() and writeToFile() sections of code are synchronized to prevent
multiple writings from running into each other.

public static synchronized void writeToFile(String filename){
try{

PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(dbfile)));
for (Enumeration enum = users.elements() ; enum.hasMoreElements() ;) {

out.println(((BKUser)enum.nextElement()).getDBString());
}
out.close();

}
catch(Exception e){

e.printStackTrace();
}

}

Get information from BKUser
Here we retrieve user information from the database, and add a user to the database if
needed.

public static BKUser getUser(String username, String password){
BKUser user=null;
for (Enumeration enum = users.elements() ;

enum.hasMoreElements() ;) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 20

user=(BKUser)enum.nextElement();

if(user.name.equals(username)
ampamp(password)){
break;

}
else{
user=null;

}
}

return user;
}

public static void addUser(String username, String password){
users.add(new BKUser(username, password, null));

}
}

Here's the code
Here's the UserDB.java code .

You can also view the code listing in the Appendix of this tutorial.

If you have the ability to execute your servlet on a server, compile the code and put the class
file in the servlet directory. Run the servlet using a URL with the following syntax. Remember
that the class file name is case sensitive.

http://host/path/UserDB

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 21

code/UserDB.java
code/UserDB.java
j-servlets2-10-3.html

Section 8. Enabling user interaction: Bookmarks.jsp

Showing it all to the user
The JSP file gets the information from the session object and presents it to the user.
BookmarkServlet, through use of the BKUser and UserDB objects, has kept track of
individual user's information; now it is the role of the JSP file to display it to the user. The JSP
file also accepts and passes along the user requests for the actions such as add and delete.

We repeat the servlet and JSP interaction diagram here - - not to be redundant, but to
reinforce the point.

Set the stage
The first lines of the JSP file import the necessary Java classes using JSP directives. The
directive using the session attribute instructs the page to keep track of the user session. (A
value of false would disable this.) A JSP declaration is also used for the BKUser object.
Finally, we declare a constant for the URL to make the file easier to maintain.

The final statement in this section gets the user information for this session.

<%@ page import="java.util.*" %>
<%@ page import="java.net.*" %>
<%@ page import="BKUser" %>
<%@ page session="true" %>
<%! private BKUser user; %>
<%! private static final String servleturl =

"http://localhost:8080/examples/servlet/BookmarkServlet";
>
<%

user = (BKUser)session.getValue("user");

Determine user and session tracking information
This portion of the code inserts the username in the output to offer a personalized welcome.
The other interesting code (as oppposed to the fairly uninteresting HTML tags) encodes the
logout URL with the session tracking information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 22

<html>
<head>
<title>Bookmarks</title>
<body>
<h1 align="center">Welcome <%= user.name %></h1>
<table width="100%">
<tr>

<td><a href="<%= response.encodeURL(servleturl+"?func=logout")
>">Logout</td>

Display the bookmarks for user action
Next the code prints the bookmarks as rows in a table, then provides the user interface for
deleting and adding bookmarks. The information passed to the server in the responses is
encoded. This is necessary because the information could have spaces or other characters
that could be misread by the server.

The rest of the code handles the submit action and closes the HTML tags to end the page.

<td>Bookmark Name</td>
<td>Bookmark URL</td>

</tr>
<tr>

<td colspan="3"><hr></td>
</tr>

for (Enumeration enum = user.bookmarks.keys() ; enum.hasMoreElements() ;) {

String bkname=(String)enum.nextElement();
String bkhref=(String)user.bookmarks.get(bkname);

String deleteurl = response.encodeURL(servleturl +
&name="

+ URLEncoder.encode(bkname));
%>
<tr>

<td><a href="<%= deleteurl %>">Delete</td>
<td><a href="<%= bkhref %>" target="_blank"><%= bkname

/td>
<td><a href="<%= bkhref %>" target="_blank"><%= bkhref

/td>
</tr>

<%
}
%>
</table>
<hr>

<form action="<%= response.encodeURL(servleturl) %>" method="post">
<input type="hidden" name="func" value="add">
Add Bookmark Name <input type="text" size="30" name="name">
 Bookmark URL <input type="text" size="30" name="href">
<input type="submit" name="addsubmit" value="Add">
</form>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 23

</body>
</html>

Here's the code
Here's the Bookmarks.jsp code .

You can also view the code listing in the Appendix of this tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 24

code/Bookmarks.jsp
code/Bookmarks.jsp
j-servlets2-10-4.html

Section 9. Summary

Wrap up
The objective of this tutorial was to explain session tracking and how it can be used in
servlets. We threw in a few bonus concepts, including JSP technology, which handled the
user interaction, and a brief discussion of how you would use JDBC to access the data if it
was in a database (instead of a flat file, such as we used here). You should be able to use
the code in this tutorial to experiment further by registering new users and creating new
bookmark lists for them. You can also alter the HTML page that the user sees by changing
the JSP file.

Resources
The Java Servlet API is available on servers through a variety of industry partners and server
vendors. The java.sun.com site lists servers and tools that support the API.

The Java servlet package documentation (Version 2.2) is the definitive source of package,
interface, and class definitions.

To learn more about JSP technology, take the Introduction to JSP technology tutorial on
developerWorks.

To learn more about JDBC technology, take the JDBC tutorial on developerWorks.

Developers are finding interesting ways to use servlets with XML. Read more in Servlets and
XML: Made for each other on developerWorks.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

For questions about the content of this tutorial, contact the author, Jeanne Murray, at
jeannem@us.ibm.com . If you have problems running the servlets, a direct contact with Barry
Busler, at barrybusler@us.ibm.com , will get you a faster answer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 25

http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/industry.html
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://java.sun.com/products/servlet/2.2/javadoc/
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/9243E4DE5826DC1B862568C10061B5AF?OpenDocument
http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle/9243E4DE5826DC1B862568C10061B5AF?OpenDocument
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
http://www-106.ibm.com/developerworks/library/servlets-and-xml/?dwzone=java
mailto:jeannem@us.ibm.com
mailto:barrybusler@us.ibm.com

Section 10. Appendix: Source code listings

BookmarkServlet.java
Here is the source for BookmarkServlet.java.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class BookmarkServlet extends HttpServlet{

//define constants for easy update of the servlet
//if the locations of the resources are changed

private static final String pathtohtml="/examples/servlets/tut/";
private static final String pathtojsp="/Web-inf/classes/";

/**
*Servlet begins with the init() method. This method starts
*off by calling the super.init(ServletConfig) method in order
*to register the ServletConfig for later use. This is
*almost always done at the beginning of the init() method.
*Next we initialize the users database. This is where database
*connections would be opened and initialized if we were using
*JDBC. In our case, we will be reading the stored user
*information from a file (userdb.txt). This will be
*accomplished using a custom Java class (UserDB)
*with synchronized methods. If we were to use JDBC,
*we would want to use connection pooling.
*/

public void init(ServletConfig cfig) throws ServletException{
super.init(cfig);
UserDB.initDB();

}

/**
* Next we will have the doGet() method. This method will
* do nothing but pass GET requests to the doPost() method below.
*/

public void doGet(HttpServletRequest request,
HttpServletResponse response){

this.doPost(request, response);
}

/**
* Now we have the doPost() method. This will be the most complex.
* The doPost() method first sets up the session object
* which will be used for any of the actions that will be performed.
*/
public void doPost(HttpServletRequest request,

HttpServletResponse response){

// Get the session associated with this client. If there is not one

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 26

// available the getSession will create a new one.
// We are telling it to do this with the "true" parameter.

HttpSession session = request.getSession(true);

// Determine what action is to be performed.
String action=request.getParameter("func");

try{
// if we have gotten invalid input redirect to an error page
// and exit the servlet
if(action==null){
response.sendRedirect(pathtohtml+"error.html");
return;

}

/*
* In this set of if else statements, we are determining what action
* to perform based on input to the servlet. The getParameter()
* method of the request object is used to determine the input values.
* In each if statement we check to see if the session is a new
* session (user's first request to server) using the isNew() method
* of the session object. We then perform
* or a forward.
*/

if (action.equals("login")){
// If the user is logging in, we go get the information
// (username, password, bookmarks) for the user id and password.

BKUser user= UserDB.getUser(request.getParameter("username"),
request.getParameter("password"));

// If the user/pass is correct store the users information in
// the session object using the setAttribute method. Then pass
// off the request to a JSP that provides the user interface.
if(user!=null){
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");

}

// user/pass is incorrect; send the user to the login error page
else{
response.sendRedirect(pathtohtml+"error.html");

}
}

else if (action.equals("add")){
// by checking to see if the session is a new one,
// we are checking to see if the user somehow
// got to the add function without logging in first.
// If so, we send them to the login page.
if(session.isNew()){
response.sendRedirect(pathtohtml+"login.html");

}
else{
// Here we get the user information from the session object,
// add the bookmark, put the information back
// in the session object, and pass request to the JSP.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 27

BKUser user = (BKUser)session.getAttribute("user");
user.addBookmark(request.getParameter("name"),

request.getParameter("href"));
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");

}
}

else if (action.equals("delete")){
// by checking to see if the session is a new one,
// we are checking to see if the user somehow
// got to the delete function without loging in first.
// If so, we send them to the login page.
if(session.isNew()){
response.sendRedirect(pathtohtml+"login.html");

}
else{
// Here we get the user information from the session object,
// delete the bookmark, put the information back
// in the session object, and pass request to the JSP.
BKUser user = (BKUser)session.getAttribute("user");
user.delBookmark(request.getParameter("name"));
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");

}
}

else if (action.equals("register")){
UserDB.addUser(request.getParameter("username"),

request.getParameter("password"));

BKUser user= UserDB.getUser(request.getParameter("username"),
request.getParameter("password"));

// After inserting the user into the database,
// we store the user information in the session object
// using the setAttribute method. We then pass off
// the request to a JSP that provides the user interface.
if(user!=null){
session.setAttribute("user", user);
passItOn(request, response, pathtojsp+"Bookmarks.jsp");
UserDB.updateDB();

}
else{
response.sendRedirect(pathtohtml+"error.html");

}
}

else if (action.equals("logout")){
UserDB.updateDB();
// end the user session
session.invalidate();
response.sendRedirect(pathtohtml+"logout.html");

}
}
catch(Exception e){
e.printStackTrace();

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 28

/**
* We use this method to forward requests sent to the servlet
* to other resources. Forwarding allows us to separate the
* presentation from the application logic. When using "forward",
* the servlet cannot send any output before forwarding. If
* the servlet needs to send some output of it's own, the
* "include" method must be used.
*/
private void passItOn(HttpServletRequest request,

HttpServletResponse response, String nextpage)
throws ServletException, IOException{
RequestDispatcher disp = getServletContext().getRequestDispatcher(nextpage);
disp.forward(request, response);

}

/**
* The destroy method is called when the servlet is unloaded
* by the server. We close the database in this method.
*/

public void destroy(){
UserDB.closeDB();

}

} // class BookmarkServlet

BKUser.java
Here is the source for BKUser.java.

import java.io.*;
import java.util.*;
import java.net.*;

public class BKUser{
public String name;
protected String password;
public Hashtable bookmarks;

public BKUser(String name,
String password,
String dbstring){

this.name=name;
this.password=password;
this.bookmarks=new Hashtable();
if(dbstring!=null){
this.readDBString(dbstring);

}
}

public void addBookmark(String name, String href){
bookmarks.put(name, href);

}

public void delBookmark(String name){
bookmarks.remove(name);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 29

}

// convert user information to format for data file
public String getDBString(){
String dbstring="";
boolean firsttime=true;
dbstring += URLEncoder.encode(this.name) + " " +

URLEncoder.encode(this.password) + " ";
for (Enumeration enum = bookmarks.keys() ;

enum.hasMoreElements() ;) {
String bkname=(String)enum.nextElement();
String bkhref=(String)bookmarks.get(bkname);
if(firsttime){
dbstring+=URLEncoder.encode(bkname)+"!"+

URLEncoder.encode(bkhref);
firsttime=false;

}
else{
dbstring+="|"+URLEncoder.encode(bkname)+"!"+

URLEncoder.encode(bkhref);
}

}
return dbstring;

}

// extract user information from data file format
public void readDBString(String dbstring){
StringTokenizer sptok = new StringTokenizer(dbstring);
this.name=URLDecoder.decode(sptok.nextToken());
this.password=URLDecoder.decode(sptok.nextToken());
StringTokenizer pptok = new StringTokenizer(sptok.nextToken(),"|");
while (pptok.hasMoreTokens()) {
StringTokenizer exctok = new StringTokenizer(pptok.nextToken(),"!");
bookmarks.put(URLDecoder.decode(exctok.nextToken()),

URLDecoder.decode(exctok.nextToken()));
}

}
} //class BKUser

UserDB.java
Here is the source for UserDB.java.

import java.io.*;
import java.util.*;

public final class UserDB{
static final String dbfile="userdb.txt";
static Vector users;

// the objects stored in the users Vector will be of the type BKUser

public static void initDB(){
users = new Vector();
readFromFile(dbfile);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 30

public static void closeDB(){
writeToFile(dbfile);
users=null;

}

public static void updateDB(){
writeToFile(dbfile);

}
/**
* The following function will open the database file and scan
* into the Vector users all of the user information and bookmarks.
* The file will be of the format

"username password mark1!url1|mark2!url2|...markn!urln"
* with each user information on a separate line.
*/

public static synchronized void readFromFile(String filename){
try{
BufferedReader in = new BufferedReader(new FileReader(dbfile));
String line;
while((line=in.readLine())!=null){

users.add(new BKUser(null, null, line.trim()));
}
in.close();

}
catch(Exception e){
e.printStackTrace();

}
}

/**
* The following function will do the opposite of the previous function
* All of the user information and bookmarks from the Vector users
* will be written to the file using the format

"username password mark1!url1|mark2!url2|...markn!urln"
* with each user information on a separate line.
* These sections of code are synchronized to prevent multiple

writings from running into each other.
*/

public static synchronized void writeToFile(String filename){
try{

PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(dbfile)));
for (Enumeration enum = users.elements() ;

enum.hasMoreElements() ;) {
out.println(((BKUser)enum.nextElement()).getDBString());

}
out.close();

}
catch(Exception e){
e.printStackTrace();

}
}

// retrieve user information from the database
public static BKUser getUser(String username,

String password){
BKUser user=null;
for (Enumeration enum = users.elements() ;

enum.hasMoreElements() ;) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 31

user=(BKUser)enum.nextElement();

if(user.name.equals(username)
&&user.password.equals(password)){

break;
}

else{
user=null;

}
}
return user;

}

// add a user to the database
public static void addUser(String username, String password){
users.add(new BKUser(username, password, null));

}
} // class UserDB

Bookmarks.jsp
Here is the source for Bookmarks.jsp.

<%--
These steps are carried out in the first lines of the JSP:

JSP directives are used to import the classes needed by the
Java code in the page.

The directive using the session attribute instructs the page to
keep track of the user session. A value of "false" disables this.

A JSP declaration is used for a BKUser object.

Next a JSP declaration is used for a constant for easy
modification of the page if the servlet is moved.

--%>
<%@ page import="java.util.*" %>
<%@ page import="java.net.*" %>
<%@ page import="BKUser" %>
<%@ page session="true" %>
<%! private BKUser user; %>
<%! private static final String servleturl =

"http://localhost:8080/examples/servlet/BookmarkServlet";
>
<%
// get the user information for this session
user = (BKUser)session.getValue("user");
%>
<html>
<head>
<title>
Bookmarks
</title>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 32

<body>

<%-- Using JSP expression to insert username in the output --%>
<h1 align="center">Welcome <%= user.name %></h1>
<table width="100%">
<tr>

<%-- Encode the logout URL with the session tracking information
>

<td>
<a href="<%=response.encodeURL(servleturl+"?func=logout")%>

">Logout</td>
<td>Bookmark Name</td>
<td>Bookmark URL</td>

</tr>
<tr>

<td colspan="3"><hr></td>
</tr>

<%
// print bookmark rows of bookmark table
for (Enumeration enum = user.bookmarks.keys() ;

enum.hasMoreElements() ;) {

String bkname=(String)enum.nextElement();
String bkhref=(String)user.bookmarks.get(bkname);

//Encode URL for session tracking with response.encodeURL()
//URL encode the information passed to the server with URLEncoder.encode().
//This is needed since the parameter may have spaces or other
//characters that could be misread by the server.
String deleteurl = response.encodeURL(servleturl +

name="
+ URLEncoder.encode(bkname));

%>
<tr>

<td><a href="<%= deleteurl %>">Delete</td>
<td><a href="<%= bkhref %>" target="_blank"><%= bkname

>
<td><a href="<%= bkhref %>" target="_blank"><%= bkhref

>
</tr>

<%
}
%>
</table>
<hr>

<%-- Form for adding bookmarks --%>
<form action="<%= response.encodeURL(servleturl) %>" method="post">
<input type="hidden" name="func" value="add">
Add Bookmark Name <input type="text" size="30" name="name">
 Bookmark URL <input type="text" size="30" name="href">
<input type="submit" name="addsubmit" value="Add">
</form>

</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 33

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Building servlets with session tracking Page 34

