
EJB 3.0 Expert Group

Specification Lead:

Linda DeMichiel, Sun Microsystems

Michael Keith, Oracle Corporation

Please send comments to: ejb3-spec-feedback@sun.com

Final R
elease

Sun Microsystems

JSR 220: Enterprise JavaBeansTM,Version 3.0

EJB Core Contracts and Requirements

microsystems

May 2, 2006
Version 3.0, Final Release

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

nsfer-
tual

ternal
pec-

ifica-
the
h ex-

non-
t to
patent
tation
and
, or in-
censor
imple-
f the
the
anted

to the
, or
d here-
f Sun Mi-

ph or
ur In-
nt Im-
ious
under
con-

ve that
con-
ing it
rights
Specification: JSR-000220 Enterprise JavaBeans v.3.0 ("Specification")
Version: 3.0
Status: Final Release
Release: 8 May 2006

Copyright 2006 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. _License for Evaluation Purposes_. Sun hereby grants you a fully-paid, non-exclusive, non-tra
able, worldwide, limited license (without the right to sublicense), under Sun’s applicable intellec
property rights to view, download, use and reproduce the Specification only for the purpose of in
evaluation. This includes (i) developing applications intended to run on an implementation of the S
ification, provided that such applications do not themselves implement any portion(s) of the Spec
tion, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of
Specification in oral or written communications which discuss the Specification provided that suc
cerpts do not in the aggregate constitute a significant portion of the Specification.

2. _License for the Distribution of Compliant Implementations_. Sun also grants you a perpetual,
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the righ
sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below,
rights it may have covering the Specification to create and/or distribute an Independent Implemen
of the Specification that: (a) fully implements the Specification including all its required interfaces
functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space
clude any public or protected packages, classes, Java interfaces, fields or methods within the Li
Name Space other than those required/authorized by the Specification or Specifications being
mented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements o
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition,
foregoing license is expressly conditioned on your not acting outside its scope. No license is gr
hereunder for any other purpose (including, for example, modifying the Specification, other than
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title
interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is grante
under. Java, and Java-related logos, marks and names are trademarks or registered trademarks o
crosystems, Inc. in the U.S. and other countries.

3. _Pass-through Conditions_. You need not include limitations (a)-(c) from the previous paragra
any other particular "pass through" requirements in any license You grant concerning the use of yo
dependent Implementation or products derived from it. However, except with respect to Independe
plementations (and products derived from them) that satisfy limitations (a)-(c) from the prev
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses
Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims
cerning their implementation’s compliance with the Specification in question.

4. _Reciprocity Concerning Patent Licenses_.

a. With respect to any patent claims covered by the license granted under subparagraph 2 abo
would be infringed by all technically feasible implementations of the Specification, such license is
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seek
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent
2 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

de-

ragraph
nting
ainst
y oth-

r sub-
man-

if You
ing a

n im-
e ma-
e code
ations
con-

replace-
nd
t was

n that
gainst

r act

-

r im-
tech-

-

lting
d/or
ed to
which are or would be infringed by all technically feasible implementations of the Specification to
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subpa
2, whether or not their infringement can be avoided in a technically feasible manner when impleme
the Specification, such license shall terminate with respect to such claims if You initiate a claim ag
Sun that it has, in the course of performing its responsibilities as the Specification Lead, induced an
er entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted unde
paragraph 2 above, where the infringement of such claims can be avoided in a technically feasible
ner when implementing the Specification such license, with respect to such claims, shall terminate
initiate a claim against Sun that its making, having made, using, offering to sell, selling or import
Compliant Implementation infringes Your patent rights.

5. _Definitions_. For the purposes of this Agreement: "Independent Implementation" shall mean a
plementation of the Specification that neither derives from any of Sun’s source code or binary cod
terials nor, except with an appropriate and separate license from Sun, includes any of Sun’s sourc
or binary code materials; "Licensor Name Space" shall mean the public class or interface declar
whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming
vention adopted by Sun through the Java Community Process, or any recognized successors or
ments thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite a
accompanying TCK User’s Guide provided by Sun which corresponds to the Specification and tha
available either (i) from Sun 120 days before the first release of Your Independent Implementatio
allows its use for commercial purposes, or (ii) more recently than 120 days from such release but a
which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement o
outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release o
plement any portion of the Specification in any product. In addition, the Specification could include
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resu
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet an
implementation; and/or (iii) any claims that later versions or releases of any Specification furnish
you are incompatible with the Specification provided to you under this license.
3 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

by a
in the
rdance
with

), you
and (ii)
sub-
n the

law.
ction

gula-
d ac-
ay be

rior or
rranties
com-
mod-
ative
RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or
U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights
Software and accompanying documentation shall be only as set forth in this license; this is in acco
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis,
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitatio
Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdi
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import re
tions in other countries. Licensee agrees to comply strictly with all such laws and regulations an
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as m
required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all p
contemporaneous oral or written communications, proposals, conditions, representations and wa
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
munication between the parties relating to its subject matter during the term of this Agreement. No
ification to this Agreement will be binding, unless in writing and signed by an authorized represent
of each party.

Rev. April, 2006

Sun/Final/Full
4 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

9

Table of Contents

Chapter 1 Introduction.. 25

1.1 Target Audience... 25

1.2 What is New in EJB 3.0... 25

1.3 EJB 3.0 Expert Group.. 26

1.4 Organization of the Specification Documents ... 26

1.5 Document Conventions ... 27

Chapter 2 Overview.. 29

2.1 Overall Goals... 29

2.2 EJB Roles .. 30

2.2.1 Enterprise Bean Provider .. 31
2.2.2 Application Assembler.. 31
2.2.3 Deployer.. 31
2.2.4 EJB Server Provider .. 32
2.2.5 EJB Container Provider... 32
2.2.6 Persistence Provider .. 33
2.2.7 System Administrator ... 33

2.3 Enterprise Beans.. 34

2.3.1 Characteristics of Enterprise Beans .. 34
2.3.2 Flexible Model .. 34

2.4 Session, Entity, and Message-Driven Objects ... 35

2.4.1 Session Objects ... 35
2.4.2 Message-Driven Objects ... 36
2.4.3 Entity Objects.. 36

2.5 Standard Mapping to CORBA Protocols... 36

2.6 Mapping to Web Service Protocols ... 37

Chapter 3 Client View of a Session Bean... 3

3.1 Overview ... 39

3.2 Local, Remote, and Web Service Client Views... 41

3.2.1 Remote Clients.. 41
3.2.2 Local Clients ... 41
3.2.3 Choosing Between a Local or Remote Client View.......................... 42
3.2.4 Web Service Clients .. 43

3.3 EJB Container.. 44

3.4 Client View of Session Beans Written to the EJB 3.0 Simplified API............ 44

3.4.1 Obtaining a Session Bean’s Business Interface 44
3.4.2 Session Bean’s Business Interface .. 44
3.4.3 Client View of Session Object’s Life Cycle...................................... 45
3.4.4 Example of Obtaining and Using a Session Object 45
3.4.5 Session Object Identity ... 47

3.4.5.1 Stateful Session Beans.. 47
5 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

iew

1

ans
3.4.5.2 Stateless Session Beans... 47
3.5 The Web Service Client View of a Stateless Session Bean 48

3.5.1 JAX-WS Web Service Clients... 49
3.5.2 JAX-RPC Web Service Clients ... 50

3.6 Remote and Local Client View of Session Beans Written to the EJB 2.1 Client V
API50

3.6.1 Locating a Session Bean’s Home Interface....................................... 51
3.6.2 Session Bean’s Remote Home Interface ... 51

3.6.2.1 Creating a Session Object ... 52
3.6.2.2 Removing a Session Object .. 53

3.6.3 Session Bean’s Local Home Interface... 53
3.6.3.1 Creating a Session Object ... 53
3.6.3.2 Removing a Session Object .. 54

3.6.4 EJBObject and EJBLocalObject ... 54
3.6.5 Object Identity... 55
3.6.6 Client view of Session Object’s Life Cycle....................................... 55

3.6.6.1 References to Session Object Remote Interfaces................ 56
3.6.6.2 References to Session Object Local Interfaces................... 57

3.6.7 Creating and Using a Session Object .. 57
3.6.8 Object Identity... 59

3.6.8.1 Stateful Session Beans .. 59
3.6.8.2 Stateless Session Beans... 59
3.6.8.3 getPrimaryKey().. 60

3.6.9 Type Narrowing... 60

Chapter 4 Session Bean Component Contract.. 6

4.1 Overview.. 61

4.2 Conversational State of a Stateful Session Bean ... 62

4.2.1 Instance Passivation and Conversational State.................................. 63
4.2.2 The Effect of Transaction Rollback on Conversational State 65

4.3 Protocol Between a Session Bean Instance and its Container......................... 65

4.3.1 Required Session Bean Metadata.. 66
4.3.2 Dependency Injection.. 66
4.3.3 The SessionContext Interface.. 66
4.3.4 Session Bean Lifecycle Callback Interceptor Methods..................... 67
4.3.5 The Optional SessionBean Interface ... 68
4.3.6 Use of the MessageContext Interface by Stateless Session Beans.... 69
4.3.7 The Optional SessionSynchronization Interface for Stateful Session Be

70
4.3.8 Timeout Callbacks for Stateless Session Beans 70
4.3.9 Business Method Delegation... 70

4.3.10 Session Bean Creation... 71
4.3.10.1 Stateful Session Beans .. 71
4.3.10.2 Stateless Session Beans... 71

4.3.11 Stateful Session Bean Removal... 72
4.3.12 Business Method Interceptor Methods for Session Beans 72
4.3.13 Serializing Session Bean Methods .. 72
4.3.14 Transaction Context of Session Bean Methods................................. 73
 5/2/06 6

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

3

6

01

03

4

6

4.4 Stateful Session Bean State Diagram .. 73

4.4.1 Operations Allowed in the Methods of a Stateful Session Bean Class77
4.4.2 Dealing with Exceptions ... 81
4.4.3 Missed PreDestroy Calls ... 81
4.4.4 Restrictions for Transactions... 82

4.5 Stateless Session Beans ... 8

4.5.1 Stateless Session Bean State Diagram .. 84
4.5.2 Operations Allowed in the Methods of a Stateless Session Bean Class8
4.5.3 Dealing with Exceptions ... 90

4.6 The Responsibilities of the Bean Provider .. 91

4.6.1 Classes and Interfaces ... 91
4.6.2 Session Bean Class.. 91
4.6.3 Lifecycle Callback Interceptor Methods... 92
4.6.4 ejbCreate<METHOD> Methods... 93
4.6.5 Business Methods ... 93
4.6.6 Session Bean’s Business Interface .. 94
4.6.7 Session Bean’s Remote Interface.. 95
4.6.8 Session Bean’s Remote Home Interface ... 95
4.6.9 Session Bean’s Local Interface ... 96

4.6.10 Session Bean’s Local Home Interface... 96
4.6.11 Session Bean’s Web Service Endpoint Interface............................... 97

4.7 The Responsibilities of the Container Provider... 98

4.7.1 Generation of Implementation Classes ... 98
4.7.2 Generation of WSDL .. 99
4.7.3 Session Business Interface Implementation Class 99
4.7.4 Session EJBHome Class ... 99
4.7.5 Session EJBObject Class .. 100
4.7.6 Session EJBLocalHome Class .. 100
4.7.7 Session EJBLocalObject Class ... 100
4.7.8 Web Service Endpoint Implementation Class................................... 100
4.7.9 Handle Classes .. 100

4.7.10 EJBMetaData Class... 101
4.7.11 Non-reentrant Instances .. 101
4.7.12 Transaction Scoping, Security, Exceptions 101
4.7.13 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints1
4.7.14 SessionContext.. 101

Chapter 5 Message-Driven Bean Component Contract.. 1

5.1 Overview ... 103

5.2 Goals.. 10

5.3 Client View of a Message-Driven Bean .. 104

5.4 Protocol Between a Message-Driven Bean Instance and its Container........... 10

5.4.1 Required MessageDrivenBean Metadata .. 106
5.4.2 The Required Message Listener Interface... 106
5.4.3 Dependency Injection.. 107
5.4.4 The MessageDrivenContext Interface... 107
5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods 108
7 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

0

2
12

4

6

8

0

3

4

5

5.4.6 The Optional MessageDrivenBean Interface 108
5.4.7 Timeout Callbacks... 109
5.4.8 Message-Driven Bean Creation... 109
5.4.9 Message Listener Interceptor Methods for Message-Driven Beans.. 110

5.4.10 Serializing Message-Driven Bean Methods 110
5.4.11 Concurrency of Message Processing... 11
5.4.12 Transaction Context of Message-Driven Bean Methods................... 110
5.4.13 Activation Configuration Properties.. 111
5.4.14 Message Acknowledgment for JMS Message-Driven Beans............ 111
5.4.15 Message Selectors for JMS Message-Driven Beans 11
5.4.16 Association of a Message-Driven Bean with a Destination or Endpoint1

5.4.16.1 JMS Message-Driven Beans ... 112
5.4.17 Dealing with Exceptions ... 113
5.4.18 Missed PreDestroy Callbacks.. 114
5.4.19 Replying to a JMS Message .. 114

5.5 Message-Driven Bean State Diagram.. 11

5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class11
5.6 The Responsibilities of the Bean Provider .. 118

5.6.1 Classes and Interfaces ... 11
5.6.2 Message-Driven Bean Class.. 118
5.6.3 Message Listener Method ... 119
5.6.4 Lifecycle Callback Interceptor Methods ... 119

5.7 The Responsibilities of the Container Provider... 120

5.7.1 Generation of Implementation Classes ... 120
5.7.2 Deployment of JMS Message-Driven Beans 120
5.7.3 Request/Response Messaging Types... 12
5.7.4 Non-reentrant Instances... 120
5.7.5 Transaction Scoping, Security, Exceptions 120

Chapter 6 Persistence.. 121

Chapter 7 Client View of an EJB 2.1 Entity Bean.. 12

7.1 Overview.. 123

7.2 Remote Clients... 12

7.3 Local Clients.. 125

7.4 EJB Container.. 12

7.4.1 Locating an Entity Bean’s Home Interface 126
7.4.2 What a Container Provides.. 126

7.5 Entity Bean’s Remote Home Interface .. 127

7.5.1 Create Methods ... 128
7.5.2 Finder Methods ... 129
7.5.3 Remove Methods... 130
7.5.4 Home Methods .. 130

7.6 Entity Bean’s Local Home Interface.. 131

7.6.1 Create Methods ... 131
7.6.2 Finder Methods ... 132
 5/2/06 8

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

41

2

7

7.6.3 Remove Methods .. 132
7.6.4 Home Methods.. 133

7.7 Entity Object’s Life Cycle ... 133

7.7.1 References to Entity Object Remote Interfaces 135
7.7.2 References to Entity Object Local Interfaces.................................... 135

7.8 Primary Key and Object Identity... 136

7.9 Entity Bean’s Remote Interface... 137

7.10 Entity Bean’s Local Interface .. 138

7.11 Entity Bean’s Handle... 139

7.12 Entity Home Handles .. 140

7.13 Type Narrowing of Object References .. 140

Chapter 8 EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence........... 1

8.1 Overview ... 142

8.2 Container-Managed Entity Persistence and Data Independence..................... 14

8.3 The Entity Bean Provider’s View of Container-Managed Persistence............ 144

8.3.1 The Entity Bean Provider’s Programming Contract 145
8.3.2 The Entity Bean Provider’s View of Persistent Relationships 147
8.3.3 Dependent Value Classes .. 14
8.3.4 Remove Protocols ... 148

8.3.4.1 Remove Methods .. 148
8.3.4.2 Cascade-delete .. 149

8.3.5 Identity of Entity Objects.. 149
8.3.6 Semantics of Assignment for Relationships 150

8.3.6.1 Use of the java.util.Collection API to Update Relationships150
8.3.6.2 Use of Set Accessor Methods to Update Relationships...... 152

8.3.7 Assignment Rules for Relationships ... 153
8.3.7.1 One-to-one Bidirectional Relationships 154
8.3.7.2 One-to-one Unidirectional Relationships 155
8.3.7.3 One-to-many Bidirectional Relationships 156
8.3.7.4 One-to-many Unidirectional Relationships 160
8.3.7.5 Many-to-one Unidirectional Relationships......................... 163
8.3.7.6 Many-to-many Bidirectional Relationships........................ 165
8.3.7.7 Many-to-many Unidirectional Relationships...................... 169

8.3.8 Collections Managed by the Container ... 172
8.3.9 Non-persistent State .. 172

8.3.10 The Relationship Between the Internal View and the Client View... 173
8.3.10.1 Restrictions on Remote Interfaces 173

8.3.11 Mapping Data to a Persistent Store... 173
8.3.12 Example .. 174
8.3.13 The Bean Provider’s View of the Deployment Descriptor................ 177

8.4 The Entity Bean Component Contract .. 181

8.4.1 Runtime Execution Model of Entity Beans 181
8.4.2 Container Responsibilities .. 183

8.4.2.1 Container-Managed Fields.. 183
8.4.2.2 Container-Managed Relationships...................................... 183

8.5 Instance Life Cycle Contract Between the Bean and the Container 184
9 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

8

9

0

8.5.1 Instance Life Cycle.. 185
8.5.2 Bean Provider’s Entity Bean Instance’s View................................... 187
8.5.3 Container’s View ... 191
8.5.4 Read-only Entity Beans... 195
8.5.5 The EntityContext Interface .. 196
8.5.6 Operations Allowed in the Methods of the Entity Bean Class.......... 197
8.5.7 Finder Methods ... 199

8.5.7.1 Single-Object Finder Methods.. 200
8.5.7.2 Multi-Object Finder Methods ... 200

8.5.8 Select Methods .. 201
8.5.8.1 Single-Object Select Methods... 202
8.5.8.2 Multi-Object Select Methods.. 202

8.5.9 Timer Notifications.. 203
8.5.10 Standard Application Exceptions for Entities 203

8.5.10.1 CreateException.. 203
8.5.10.2 DuplicateKeyException .. 204
8.5.10.3 FinderException.. 204
8.5.10.4 ObjectNotFoundException ... 204
8.5.10.5 RemoveException ... 205

8.5.11 Commit Options .. 205
8.5.12 Concurrent Access from Multiple Transactions................................ 207
8.5.13 Non-reentrant and Re-entrant Instances.. 20

8.6 Responsibilities of the Enterprise Bean Provider .. 209

8.6.1 Classes and Interfaces ... 20
8.6.2 Enterprise Bean Class.. 209
8.6.3 Dependent Value Classes .. 21
8.6.4 ejbCreate<METHOD> Methods... 210
8.6.5 ejbPostCreate<METHOD> Methods .. 211
8.6.6 ejbHome<METHOD> Methods.. 212
8.6.7 ejbSelect<METHOD> Methods.. 212
8.6.8 Business Methods.. 212
8.6.9 Entity Bean’s Remote Interface... 213

8.6.10 Entity Bean’s Remote Home Interface.. 213
8.6.11 Entity Bean’s Local Interface.. 214
8.6.12 Entity Bean’s Local Home Interface ... 215
8.6.13 Entity Bean’s Primary Key Class .. 216
8.6.14 Entity Bean’s Deployment Descriptor... 216

8.7 The Responsibilities of the Container Provider... 216

8.7.1 Generation of Implementation Classes ... 217
8.7.2 Enterprise Bean Class.. 217
8.7.3 ejbFind<METHOD> Methods .. 218
8.7.4 ejbSelect<METHOD> Methods.. 218
8.7.5 Entity EJBHome Class .. 219
8.7.6 Entity EJBObject Class ... 219
8.7.7 Entity EJBLocalHome Class... 219
8.7.8 Entity EJBLocalObject Class .. 220
8.7.9 Handle Class.. 220

8.7.10 Home Handle Class... 220
8.7.11 Metadata Class .. 221
 5/2/06 10

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

225

7

8.7.12 Instance’s Re-entrance .. 221
8.7.13 Transaction Scoping, Security, Exceptions 221
8.7.14 Implementation of Object References... 221
8.7.15 EntityContext .. 221

8.8 Primary Keys ... 222

8.8.1 Primary Key That Maps to a Single Field in the Entity Bean Class . 222
8.8.2 Primary Key That Maps to Multiple Fields in the Entity Bean Class222
8.8.3 Special Case: Unknown Primary Key Class 222

Chapter 9 EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods

9.1 Overview ... 226

9.2 EJB QL Definition... 226

9.2.1 Abstract Schema Types and Query Domains.................................... 227
9.2.2 Query Methods.. 228
9.2.3 Naming.. 228
9.2.4 Examples... 229
9.2.5 The FROM Clause and Navigational Declarations........................... 230

9.2.5.1 Identifiers .. 231
9.2.5.2 Identification Variables ... 231
9.2.5.3 Range Variable Declarations... 232
9.2.5.4 Collection Member Declarations.. 233
9.2.5.5 Example .. 233
9.2.5.6 Path Expressions... 233

9.2.6 WHERE Clause and Conditional Expressions.................................. 234
9.2.6.1 Literals .. 235
9.2.6.2 Identification Variables ... 235
9.2.6.3 Path Expressions... 235
9.2.6.4 Input Parameters ... 236
9.2.6.5 Conditional Expression Composition 236
9.2.6.6 Operators and Operator Precedence 236
9.2.6.7 Between Expressions .. 237
9.2.6.8 In Expressions... 237
9.2.6.9 Like Expressions... 238

9.2.6.10 Null Comparison Expressions .. 238
9.2.6.11 Empty Collection Comparison Expressions 239
9.2.6.12 Collection Member Expressions... 239
9.2.6.13 Functional Expressions... 240

9.2.7 SELECT Clause .. 241
9.2.7.1 Null Values in the Query Result ... 241
9.2.7.2 Aggregate Functions in the SELECT Clause 242
9.2.7.3 Examples... 242

9.2.8 ORDER BY Clause... 243
9.2.9 Return Value Types ... 244

9.2.10 Null Values.. 246
9.2.11 Equality and Comparison Semantics .. 247
9.2.12 Restrictions.. 247

9.3 Examples ... 24

9.3.1 Simple Queries.. 248
11 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

55

ute

1

2
2

9.3.2 Queries with Relationships.. 248
9.3.3 Queries Using Input Parameters.. 249
9.3.4 Queries for Select Methods ... 249
9.3.5 EJB QL and SQL... 250

9.4 EJB QL BNF.. 251

Chapter 10 EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence 2

10.1 Overview of Bean-Managed Entity Persistence .. 256

10.1.1 Entity Bean Provider’s View of Persistence...................................... 256
10.1.2 Runtime Execution Model... 257
10.1.3 Instance Life Cycle.. 259
10.1.4 The Entity Bean Component Contract .. 261

10.1.4.1 Entity Bean Instance’s View ... 261
10.1.4.2 Container’s View... 265

10.1.5 Read-only Entity Beans... 268
10.1.6 The EntityContext Interface .. 268
10.1.7 Operations Allowed in the Methods of the Entity Bean Class.......... 269
10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods....... 272

10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attrib
273

10.1.9 Finder Method Return Type .. 274
10.1.9.1 Single-Object Finder... 274
10.1.9.2 Multi-Object Finders... 274

10.1.10 Timer Notifications.. 276
10.1.11 Standard Application Exceptions for Entities 276

10.1.11.1 CreateException.. 276
10.1.11.2 DuplicateKeyException .. 277
10.1.11.3 FinderException.. 277
10.1.11.4 ObjectNotFoundException ... 277
10.1.11.5 RemoveException ... 278

10.1.12 Commit Options .. 278
10.1.13 Concurrent Access from Multiple Transactions................................ 279
10.1.14 Non-reentrant and Re-entrant Instances.. 28

10.2 Responsibilities of the Enterprise Bean Provider .. 282

10.2.1 Classes and Interfaces ... 28
10.2.2 Enterprise Bean Class.. 28
10.2.3 ejbCreate<METHOD> Methods... 283
10.2.4 ejbPostCreate<METHOD> Methods .. 284
10.2.5 ejbFind Methods.. 284
10.2.6 ejbHome<METHOD> Methods.. 285
10.2.7 Business Methods.. 285
10.2.8 Entity Bean’s Remote Interface... 286
10.2.9 Entity Bean’s Remote Home Interface.. 287

10.2.10 Entity Bean’s Local Interface.. 288
10.2.11 Entity Bean’s Local Home Interface ... 288
10.2.12 Entity Bean’s Primary Key Class .. 289

10.3 The Responsibilities of the Container Provider... 290

10.3.1 Generation of Implementation Classes ... 290
 5/2/06 12

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

95

5

7

s

ss

3

6

10.3.2 Entity EJBHome Class.. 291
10.3.3 Entity EJBObject Class... 291
10.3.4 Entity EJBLocalHome Class... 291
10.3.5 Entity EJBLocalObject Class.. 292
10.3.6 Handle Class ... 292
10.3.7 Home Handle Class... 292
10.3.8 Metadata Class .. 293
10.3.9 Instance’s Re-entrance .. 293

10.3.10 Transaction Scoping, Security, Exceptions 293
10.3.11 Implementation of Object References... 293
10.3.12 EntityContext .. 293

Chapter 11 EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence........... 2

11.1 EJB 1.1 Entity Beans with Container-Managed Persistence........................... 29

11.1.1 Container-Managed Fields .. 296
11.1.2 ejbCreate, ejbPostCreate ... 29
11.1.3 ejbRemove... 298
11.1.4 ejbLoad.. 298
11.1.5 ejbStore ... 298
11.1.6 Finder Hethods.. 299
11.1.7 Home Methods.. 299
11.1.8 Create Methods ... 299
11.1.9 Primary Key Type ... 299

11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Clas
299

11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Cla
300

11.1.9.3 Special Case: Unknown Primary Key Class....................... 300

Chapter 12 Interceptors .. 301

12.1 Overview ... 301

12.2 Interceptor Life Cycle.. 302

12.3 Business Method Interceptors ... 30

12.3.1 Multiple Business Method Interceptor Methods............................... 303
12.3.2 Exceptions... 304

12.4 Interceptors for LifeCycle Event Callbacks .. 304

12.4.1 Multiple Callback Interceptor Methods for a Life Cycle Callback Event30
12.4.2 Exceptions... 307

12.5 InvocationContext.. 308

12.6 Default Interceptors ... 309

12.7 Method-level Interceptors.. 309

12.8 Specification of Interceptors in the Deployment Descriptor 310

12.8.1 Specification of Interceptors ... 310
12.8.2 Specification of the Binding of Interceptors to Beans 311

12.8.2.1 Examples... 313
13 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

7

e

3

30

ns

rip-

ans

ns
Chapter 13 Support for Transactions .. 315

13.1 Overview.. 315

13.1.1 Transactions... 315
13.1.2 Transaction Model... 316
13.1.3 Relationship to JTA and JTS ... 317

13.2 Sample Scenarios... 31

13.2.1 Update of Multiple Databases ... 317
13.2.2 Messages Sent or Received Over JMS Sessions and Update of Multipl

Databases318
13.2.3 Update of Databases via Multiple EJB Servers................................. 320
13.2.4 Client-Managed Demarcation ... 321
13.2.5 Container-Managed Demarcation ... 322

13.3 Bean Provider’s Responsibilities ... 323

13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation32
13.3.1.1 Non-Transactional Execution ... 323

13.3.2 Isolation Levels ... 324
13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation .. 324

13.3.3.1 getRollbackOnly and setRollbackOnly Methods................ 329
13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation3

13.3.4.1 javax.ejb.SessionSynchronization Interface........................ 331
13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method................. 332
13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method................. 332

13.3.5 Use of JMS APIs in Transactions.. 332
13.3.6 Specification of a Bean’s Transaction Management Type 332
13.3.7 Specification of the Transaction Attributes for a Bean’s Methods.... 333

13.3.7.1 Specification of Transaction Attributes with Metadata Annotatio
336

13.3.7.2 Specification of Transaction Attributes in the Deployment Desc
tor337

13.4 Application Assembler’s Responsibilities ... 339

13.5 Deployer’s Responsibilities ... 340

13.6 Container Provider Responsibilities .. 340

13.6.1 Bean-Managed Transaction Demarcation ... 340
13.6.2 Container-Managed Transaction Demarcation for Session and Entity Be

343
13.6.2.1 NOT_SUPPORTED.. 343
13.6.2.2 REQUIRED .. 344
13.6.2.3 SUPPORTS... 344
13.6.2.4 REQUIRES_NEW.. 344
13.6.2.5 MANDATORY ... 345
13.6.2.6 NEVER ... 345
13.6.2.7 Transaction Attribute Summary.. 345
13.6.2.8 Handling of setRollbackOnly Method................................ 346
13.6.2.9 Handling of getRollbackOnly Method................................ 347

13.6.2.10 Handling of getUserTransaction Method............................ 347
13.6.2.11 javax.ejb.SessionSynchronization Callbacks 347

13.6.3 Container-Managed Transaction Demarcation for Message-Driven Bea
347

13.6.3.1 NOT_SUPPORTED.. 348
 5/2/06 14

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

349

5

t

 Ses-

70
0

ac-
n-

-
e-

x-
13.6.3.2 REQUIRED .. 348
13.6.3.3 Handling of setRollbackOnly Method................................ 348
13.6.3.4 Handling of getRollbackOnly Method 349
13.6.3.5 Handling of getUserTransaction Method 349

13.6.4 Local Transaction Optimization.. 349
13.6.5 Handling of Methods that Run with “an unspecified transaction context”

13.7 Access from Multiple Clients in the Same Transaction Context..................... 350

13.7.1 Transaction “Diamond” Scenario with an Entity Object 351
13.7.2 Container Provider’s Responsibilities ... 352
13.7.3 Bean Provider’s Responsibilities... 352
13.7.4 Application Assembler and Deployer’s Responsibilities.................. 352
13.7.5 Transaction Diamonds involving Session Objects 352

Chapter 14 Exception Handling ... 355

14.1 Overview and Concepts... 35

14.1.1 Application Exceptions ... 355
14.1.2 Goals for Exception Handling... 356

14.2 Bean Provider’s Responsibilities... 356

14.2.1 Application Exceptions ... 356
14.2.2 System Exceptions .. 357

14.2.2.1 javax.ejb.NoSuchEntityException 359
14.3 Container Provider Responsibilities .. 359

14.3.1 Exceptions from a Session Bean’s Business Interface Methods....... 360
14.3.2 Exceptions from Method Invoked via Session or Entity Bean’s 2.1 Clien

View or through Web Service Client View362
14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Stateless

sion Bean with Web Service Client View365
14.3.4 Exceptions from Message-Driven Bean Message Listener Methods 366
14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Mes-

sage-Driven Bean367
14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method... 367
14.3.7 Exceptions from Other Container-invoked Callbacks....................... 368
14.3.8 javax.ejb.NoSuchEntityException... 369
14.3.9 Non-existing Stateful Session or Entity Object 370

14.3.10 Exceptions from the Management of Container-Managed Transactions3
14.3.11 Release of Resources .. 37
14.3.12 Support for Deprecated Use of java.rmi.RemoteException.............. 371

14.4 Client’s View of Exceptions .. 371

14.4.1 Application Exception... 372
14.4.1.1 Local and Remote Clients... 372
14.4.1.2 Web Service Clients.. 372

14.4.2 java.rmi.RemoteException and javax.ejb.EJBException 372
14.4.2.1 javax.ejb.EJBTransactionRolledbackException, javax.ejb.Trans

tionRolledbackLocalException, and javax.transaction.Transactio
RolledbackException373

14.4.2.2 javax.ejb.EJBTransactionRequiredException, javax.ejb.Transac
tionRequiredLocalException, and javax.transaction.TransactionR
quiredException374

14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalE
15 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

5

erce

0
-

4

per-

393

es
ception, and java.rmi.NoSuchObjectException374
14.5 System Administrator’s Responsibilities... 374

Chapter 15 Support for Distributed Interoperability... 37

15.1 Support for Distribution... 375

15.1.1 Client-Side Objects in a Distributed Environment............................ 376
15.2 Interoperability Overview.. 376

15.2.1 Interoperability Goals.. 377
15.3 Interoperability Scenarios.. 378

15.3.1 Interactions Between Web Containers and EJB Containers for E-Comm
Applications378

15.3.2 Interactions Between Application Client Containers and EJB Containers
Within an Enterprise’s Intranet379

15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet38
15.3.4 Intranet Application Interactions Between Web Containers and EJB Con

tainers381
15.4 Overview of Interoperability Requirements .. 381

15.5 Remote Invocation Interoperability ... 382

15.5.1 Mapping Java Remote Interfaces to IDL... 383
15.5.2 Mapping Value Objects to IDL ... 383
15.5.3 Mapping of System Exceptions... 383
15.5.4 Obtaining Stub and Client View Classes... 384
15.5.5 System Value Classes .. 38

15.5.5.1 HandleDelegate SPI .. 385
15.6 Transaction Interoperability... 386

15.6.1 Transaction Interoperability Requirements 386
15.6.1.1 Transaction Context Wire Format....................................... 386
15.6.1.2 Two-Phase Commit Protocol .. 386
15.6.1.3 Transactional Policies of Enterprise Bean References 388
15.6.1.4 Exception Handling Behavior... 388

15.6.2 Interoperating with Containers that do not Implement Transaction Intero
ability388

15.6.2.1 Client Container Requirements... 389
15.6.2.2 EJB container requirements .. 389

15.7 Naming Interoperability... 391

15.8 Security Interoperability .. 392

15.8.1 Introduction ... 392
15.8.1.1 Trust Relationships Between Containers, Principal Propagation
15.8.1.2 Application Client Authentication 394

15.8.2 Securing EJB Invocations.. 394
15.8.2.1 Secure Transport Protocol... 395
15.8.2.2 Security Information in IORs.. 396
15.8.2.3 Propagating Principals and Authentication Data in IIOP Messag

396
15.8.2.4 Security Configuration for Containers 398
15.8.2.5 Runtime Behavior ... 398
 5/2/06 16

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

0

ries

4

1

2

422
tory

ces

9

nt
Chapter 16 Enterprise Bean Environment .. 41

16.1 Overview ... 401

16.2 Enterprise Bean’s Environment as a JNDI Naming Context........................... 403

16.2.1 Sharing of Environment Entries.. 403
16.2.2 Annotations for Environment Entries ... 404
16.2.3 Annotations and Deployment Descriptors .. 405

16.3 Responsibilities by EJB Role .. 406

16.3.1 Bean Provider’s Responsibilities... 406
16.3.2 Application Assembler’s Responsibility ... 407
16.3.3 Deployer’s Responsibility ... 407
16.3.4 Container Provider Responsibility .. 407

16.4 Simple Environment Entries.. 407

16.4.1 Bean Provider’s Responsibilities... 408
16.4.1.1 Injection of Simple Environment Entries Using Annotations408
16.4.1.2 Programming Interfaces for Accessing Simple Environment Ent

408
16.4.1.3 Declaration of Simple Environment Entries in the Deployment

Descriptor409
16.4.2 Application Assembler’s Responsibility ... 413
16.4.3 Deployer’s Responsibility ... 413
16.4.4 Container Provider Responsibility .. 413

16.5 EJB References.. 41

16.5.1 Bean Provider’s Responsibilities... 414
16.5.1.1 Injection of EJB References ... 414
16.5.1.2 EJB Reference Programming Interfaces............................. 415
16.5.1.3 Declaration of EJB References in Deployment Descriptor 416

16.5.2 Application Assembler’s Responsibilities .. 418
16.5.2.1 Overriding Rules... 420

16.5.3 Deployer’s Responsibility ... 420
16.5.4 Container Provider’s Responsibility ... 421

16.6 Web Service References .. 42

16.7 Resource Manager Connection Factory References.. 42

16.7.1 Bean Provider’s Responsibilities... 422
16.7.1.1 Injection of Resource Manager Connection Factory References
16.7.1.2 Programming Interfaces for Resource Manager Connection Fac

References423
16.7.1.3 Declaration of Resource Manager Connection Factory Referen

in Deployment Descriptor424
16.7.1.4 Standard Resource Manager Connection Factory Types.... 426

16.7.2 Deployer’s Responsibility ... 427
16.7.3 Container Provider Responsibility .. 427
16.7.4 System Administrator’s Responsibility... 429

16.8 Resource Environment References.. 42

16.8.1 Bean Provider’s Responsibilities... 429
16.8.1.1 Injection of Resource Environment References 429
16.8.1.2 Resource Environment Reference Programming Interfaces429
16.8.1.3 Declaration of Resource Environment References in Deployme

Descriptor430
16.8.2 Deployer’s Responsibility ... 430
17 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

1

t

8

crip-

42

3

8

9

0

1

16.8.3 Container Provider’s Responsibility.. 431
16.9 Message Destination References ... 43

16.9.1 Bean Provider’s Responsibilities... 431
16.9.1.1 Injection of Message Destination References..................... 431
16.9.1.2 Message Destination Reference Programming Interfaces .. 432
16.9.1.3 Declaration of Message Destination References in Deploymen

Descriptor433
16.9.2 Application Assembler’s Responsibilities... 434
16.9.3 Deployer’s Responsibility ... 437
16.9.4 Container Provider’s Responsibility.. 437

16.10 Persistence Unit References .. 43

16.10.1 Bean Provider’s Responsibilities... 438
16.10.1.1 Injection of Persistence Unit References 438
16.10.1.2 Programming Interfaces for Persistence Unit References .. 438
16.10.1.3 Declaration of Persistence Unit References in Deployment Des

tor439
16.10.2 Application Assembler’s Responsibilities... 440

16.10.2.1 Overriding Rules... 441
16.10.3 Deployer’s Responsibility ... 441
16.10.4 Container Provider Responsibility .. 442
16.10.5 System Administrator’s Responsibility... 442

16.11 Persistence Context References... 4

16.11.1 Bean Provider’s Responsibilities... 443
16.11.1.1 Injection of Persistence Context References....................... 443
16.11.1.2 Programming Interfaces for Persistence Context References44
16.11.1.3 Declaration of Persistence Context References in Deployment

Descriptor444
16.11.2 Application Assembler’s Responsibilities... 446

16.11.2.1 Overriding Rules... 446
16.11.3 Deployer’s Responsibility ... 447
16.11.4 Container Provider Responsibility .. 447
16.11.5 System Administrator’s Responsibility... 447

16.12 UserTransaction Interface.. 44

16.12.1 Bean Provider’s Responsibility ... 449
16.12.2 Container Provider’s Responsibility.. 449

16.13 ORB References .. 44

16.13.1 Bean Provider’s Responsibility ... 450
16.13.2 Container Provider’s Responsibility.. 450

16.14 TimerService References... 45

16.14.1 Bean Provider’s Responsibility ... 451
16.14.2 Container Provider’s Responsibility.. 451

16.15 EJBContext References ... 45

16.15.1 Bean Provider’s Responsibility ... 451
16.15.2 Container Provider’s Responsibility.. 451

16.16 Deprecated EJBContext.getEnvironment Method... 452

Chapter 17 Security Management .. 455

17.1 Overview.. 455
 5/2/06 18

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

7

e

s

ptor

7

17.2 Bean Provider’s Responsibilities... 457

17.2.1 Invocation of Other Enterprise Beans ... 457
17.2.2 Resource Access ... 45
17.2.3 Access of Underlying OS Resources .. 458
17.2.4 Programming Style Recommendations... 458
17.2.5 Programmatic Access to Caller’s Security Context 458

17.2.5.1 Use of getCallerPrincipal.. 459
17.2.5.2 Use of isCallerInRole ... 461
17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Cod

461
17.3 Responsibilities of the Bean Provider and/or Application Assembler 463

17.3.1 Security Roles ... 464
17.3.2 Method Permissions.. 466

17.3.2.1 Specification of Method Permissions with Metadata Annotation
466

17.3.2.2 Specification of Method Permissions in the Deployment Descri
467

17.3.2.3 Unspecified Method Permissions 471
17.3.3 Linking Security Role References to Security Roles........................ 471
17.3.4 Specification of Security Identities in the Deployment Descriptor... 472

17.3.4.1 Run-as ... 472
17.4 Deployer’s Responsibilities ... 473

17.4.1 Security Domain and Principal Realm Assignment.......................... 473
17.4.2 Assignment of Security Roles... 474
17.4.3 Principal Delegation.. 474
17.4.4 Security Management of Resource Access....................................... 474
17.4.5 General Notes on Deployment Descriptor Processing...................... 475

17.5 EJB Client Responsibilities ... 475

17.6 EJB Container Provider’s Responsibilities.. 475

17.6.1 Deployment Tools ... 475
17.6.2 Security Domain(s) ... 476
17.6.3 Security Mechanisms .. 476
17.6.4 Passing Principals on EJB Calls.. 476
17.6.5 Security Methods in javax.ejb.EJBContext....................................... 477
17.6.6 Secure Access to Resource Managers... 47
17.6.7 Principal Mapping... 477
17.6.8 System Principal ... 477
17.6.9 Runtime Security Enforcement ... 478

17.6.10 Audit Trail ... 479
17.7 System Administrator’s Responsibilities... 479

17.7.1 Security Domain Administration .. 479
17.7.2 Principal Mapping... 479
17.7.3 Audit Trail Review.. 479

Chapter 18 Timer Service... 481

18.1 Overview ... 481

18.2 Bean Provider’s View of the Timer Service .. 482

18.2.1 The Timer Service Interface.. 483
19 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

6

1

2

18.2.2 Timeout Callbacks... 483
18.2.3 The Timer and TimerHandle Interfaces .. 485
18.2.4 Timer Identity.. 485
18.2.5 Transactions... 485

18.3 Bean Provider’s Responsibilities ... 486

18.3.1 Enterprise Bean Class.. 48
18.3.2 TimerHandle.. 486

18.4 Container’s Responsibilities .. 486

18.4.1 TimerService, Timer, and TimerHandle Interfaces 486
18.4.2 Timer Expiration and Timeout Callback Method.............................. 487
18.4.3 Timer Cancellation .. 487
18.4.4 Entity Bean Removal... 487

Chapter 19 Deployment Descriptor .. 489

19.1 Overview.. 489

19.2 Bean Provider’s Responsibilities ... 490

19.3 Application Assembler’s Responsibility.. 493

19.4 Container Provider’s Responsibilities.. 496

19.5 Deployment Descriptor XML Schema .. 496

Chapter 20 Ejb-jar File ... 539

20.1 Overview.. 539

20.2 Deployment Descriptor.. 540

20.3 Ejb-jar File Requirements.. 540

20.4 The Client View and the ejb-client JAR File ... 541

20.5 Requirements for Clients ... 54

20.6 Example ... 54

Chapter 21 Runtime Environment .. 543

21.1 Bean Provider’s Responsibilities ... 543

21.1.1 APIs Provided by Container.. 543
21.1.2 Programming Restrictions... 545

21.2 Container Provider’s Responsibility .. 547

21.2.1 Java 2 APIs Requirements... 548
21.2.2 EJB 3.0 Requirements ... 549
21.2.3 JNDI Requirements ... 550
21.2.4 JTA 1.1 Requirements ... 550
21.2.5 JDBC™ 3.0 Extension Requirements ... 550
21.2.6 JMS 1.1 Requirements .. 551
21.2.7 Argument Passing Semantics .. 551
21.2.8 Other Requirements... 552

Chapter 22 Responsibilities of EJB Roles ..553

22.1 Bean Provider’s Responsibilities ... 553
 5/2/06 20

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

4

0

22.1.1 API Requirements ... 553
22.1.2 Packaging Requirements... 553

22.2 Application Assembler’s Responsibilities... 554

22.3 EJB Container Provider’s Responsibilities.. 554

22.4 Persistence Provider’s Responsibilities ... 55

22.5 Deployer’s Responsibilities ... 554

22.6 System Administrator’s Responsibilities... 554

22.7 Client Programmer’s Responsibilities ... 555

Chapter 23 Related Documents .. 557

Appendix A Revision History .. 559

A.1 Public Draft ... 559

A.2 Proposed Final Draft.. 559

A.3 Final Release ... 56
21 5/2/06

Enterprise JavaBeans 3.0, Final Release

 5/2/06 22

Sun Microsystems, Inc.

List of Figures

Figure 1 Session Bean Example Objects ...46

Figure 2 Web Service Client View of Stateless Session Beans Deployed in a Container49

Figure 3 Life Cycle of a Session Object. ...56

Figure 4 Session Bean Example Objects ...58

Figure 5 Life Cycle of a Stateful Session Bean Instance...74

Figure 6 Life Cycle of a Stateless Session Bean ...84

Figure 7 Client view of Message-Driven Beans Deployed in a Container ..105

Figure 8 Life Cycle of a Message-Driven Bean...115

Figure 9 Client View of Entity Beans Deployed in a Container ..127

Figure 10 Client View of Entity Object Life Cycle ...134

Figure 11 View of Underlying Data Sources Accessed Through Entity Bean ...144

Figure 12 Relationship Example..174

Figure 13 Overview of the Entity Bean Runtime Execution Model..182

Figure 14 Life Cycle of an Entity Bean Instance...185

Figure 15 Multiple Clients Can Access the Same Entity Object Using Multiple Instances..................................207

Figure 16 Multiple Clients Can Access the Same Entity Object Using Single Instance.......................................208

Figure 17 Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File.229

Figure 18 Client View of Underlying Data Sources Accessed Through Entity Bean ...256

Figure 19 Overview of the Entity Bean Runtime Execution Model..258

Figure 20 Life Cycle of an Entity Bean Instance...259

Figure 21 Multiple Clients Can Access the Same Entity Object Using Multiple Instances..................................280

Figure 22 Multiple Clients Can Access the Same Entity Object Using Single Instance.......................................281

Figure 23 Updates to Simultaneous Databases..318

Figure 24 Message Sent to JMS Queue and Updates to Multiple Databases ..319

Figure 25 Message Sent to JMS Queue Serviced by Message-Driven Bean and Updates to Multiple Databases320

Figure 26 Updates to Multiple Databases in Same Transaction ..320

Figure 27 Updates on Multiple Databases on Multiple Servers ..321

Figure 28 Update of Multiple Databases from Non-Transactional Client...322

Figure 29 Transaction Diamond Scenario with Entity Object ...351

Figure 30 Transaction Diamond Scenario with a Session Bean ..353

Figure 31 Location of EJB Client Stubs. ...376

Figure 32 Heterogeneous EJB Environment ...377

Figure 33 Transaction Context Propagation ..387

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

........

..........

......117

..

.

......342

ged

naged

f a

ansac-

n Bean

Con-

 Bean..

n-

......
List of Tables

Table 1 Operations Allowed in the Methods of a Stateful Session Bean...79

Table 2 Operations Allowed in the Methods of a Stateless Session Bean ...88

Table 3 Operations Allowed in the Methods of a Message-Driven Bean ..

Table 4 Operations Allowed in the Methods of an Entity Bean...197

Table 5 Comparison of Finder and Select Methods ...202

Table 6 Summary of Commit-Time Options..206

Table 7 Definition of the AND Operator..246

Table 8 Definition of the OR Operator...246

Table 9 Definition of the NOT Operator ..246

Table 10 Operations Allowed in the Methods of an Entity Bean..269

Table 11 Summary of Commit-Time Options..278

Table 12 Container’s Actions for Methods of Beans with Bean-Managed Transaction................................

Table 13 Transaction Attribute Summary ..345

Table 14 Handling of Exceptions Thrown by a Business Interface Method of a Bean with Container-Mana
Transaction Demarcation360

Table 15 Handling of Exceptions Thrown by a Business Interface Method of a Session Bean with Bean-Ma
Transaction Demarcation362

Table 16 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View o
Bean with Container-Managed Transaction Demarcation363

Table 17 Handling of Exceptions Thrown by a Business Method of a Session Bean with Bean-Managed Tr
tion Demarcation365

Table 18 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateless Sessio
with Web Service Client View.365

Table 19 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
tainer-Managed Transaction Demarcation.366

Table 20 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Bean-Managed Transaction Demarcation.367

Table 21 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Message-Driven
367

Table 22 Handling of Exceptions Thrown by the Timeout Callback Method of an Enterprise Bean with Co
tainer-Managed Transaction Demarcation.368

Table 23 Handling of Exceptions Thrown by the Timeout Callback Method of an Enterprise Bean with
Bean-Managed Transaction Demarcation.368

Table 24 Java 2 Platform Security Policy for a Standard EJB Container ..549
23 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.
 5/2/06 24

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.
Chapter 1 Introduction
c-
ations.
l, and

latform

ndors
who

erprise

eans to

appli-
educ-
t, and

the
iner. A

nota-

uired
bject,
This is the specification of the Enterprise JavaBeansTM architecture. The Enterprise JavaBeans archite
ture is a architecture for the development and deployment of component-based business applic
Applications written using the Enterprise JavaBeans architecture are scalable, transactiona
multi-user secure. These applications may be written once, and then deployed on any server p
that supports the Enterprise JavaBeans specification.

1.1 Target Audience

The target audiences for this specification are the vendors of transaction processing platforms, ve
of enterprise application tools, vendors or object/relational mapping products, and other vendors
want to support the Enterprise JavaBeans (EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Ent
JavaBeans application programmer.

1.2 What is New in EJB 3.0

The Enterprise JavaBeans 3.0 architecture presented in this document extends Enterprise JavaB
include the following new functionality and simplifications to the earlier EJB APIs:

• Definition of the Java language metadata annotations that can be used to annotate EJB
cations. These metadata annotations are targeted at simplifying the developer’s task, at r
ing the number of program classes and interfaces the developer is required to implemen
at eliminating the need for the developer to provide an EJB deployment descriptor.

• Specification of programmatic defaults, including for metadata, to reduce the need for
developer to specify common, expected behaviors and requirements on the EJB conta
“configuration by exception” approach is taken whenever possible.

• Encapsulation of environmental dependencies and JNDI access through the use of an
tions, dependency injection mechanisms, and simple lookup mechanisms.

• Simplification of the enterprise bean types.

• Elimination of the requirement for EJB component interfaces for session beans. The req
business interface for a session bean can be a plain Java interface rather than an EJBO
EJBLocalObject, or java.rmi.Remote interface.
25 May 2, 2006 2:35 pm

Introduction Enterprise JavaBeans 3.0, Final Release EJB 3.0 Expert Group

Sun Microsystems, Inc.

for

ele-

jec-
and

y Pro-
B 3.0
ftware
any:
son,
arc
le:
mit
Sun
rshi;
eh-
ns;
• Elimination of the requirement for home interfaces for session beans.

• Simplification of entity persistence through the Java Persistence API.[2]. Support
light-weight domain modeling, including inheritance and polymorphism.

• Elimination of all required interfaces for persistent entities[2].

• Specification of Java language metadata annotations and XML deployment descriptor
ments for the object/relational mapping of persistent entities [2].

• A query language for Java Persistence that is an extension to EJB QL, with addition of pro
tion, explicit inner and outer join operations, bulk update and delete, subqueries,
group-by. Addition of a dynamic query capability and support for native SQL queries.

• An interceptor facility for session beans and message-driven beans.

• Reduction of the requirements for usage of checked exceptions.

• Elimination of the requirement for the implementation of callback interfaces.

1.3 EJB 3.0 Expert Group

The EJB 3.0 specification work is being conducted as part of JSR-220 under the Java Communit
cess Program. This specification is the result of the collaborative work of the members of the EJ
Expert Group. These include the following present and former expert group members: Apache So
Foundation: Jeremy Boynes; BEA: Seth White; Borland: Jishnu Mitra, Rafay Khawaja; E.piph
Karthik Kothandaraman; Fujitsu-Siemens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knut
Randy Schnier; IONA: Conrad O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, M
Fleury; Macromedia: Hemant Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Orac
Michael Keith, Debu Panda, Olivier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, U
Yalcinalp; SAS Institute: Rob Saccoccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey;
Microsystems: Linda DeMichiel, Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samda
Tmax Soft: Woo Jin Kim; Versant: David Tinker; Xcalia: Eric Samson, Matthew Adams; Reza B
forooz; Emmanuel Bernard; Wes Biggs; David Blevins; Scott Crawford; Geoff Hendrey; Oliver Ih
Oliver Kamps; Richard Monson-Haefel; Dirk Reinshagen; Carl Rosenberger; Suneet Shah.

1.4 Organization of the Specification Documents

This specification is organized into the following three documents:

• EJB 3.0 Simplified API

• EJB Core Contracts and Requirements

• Java Persistence API
 5/2/06 26

Document Conventions Enterprise JavaBeans 3.0, Final Release Introduction

Sun Microsystems, Inc.

d

is-
B QL).
rprise
r use in

e
Simpli-
con-

those

scrib-
The document “EJB 3.0 Simplified API” provides an overview of the simplified API that is introduce
by the Enterprise JavaBeans 3.0 release.

The document “Java Persistence API” is the specification of the new API for the management of pers
tence together with the full specification of the Java Persistence query language (a superset of EJ
It provides the definition of the persistence API that is required to be supported under the Ente
JavaBeans 3.0 release as well as the definition of how the Java Persistence API is supported fo
Java SE environments.

This document, “EJB Core Contracts and Requirements”, defines the contracts and requirements for th
use and implementation of Enterprise JavaBeans. These contracts include those for the EJB 3.0
fied API, as well as for the EJB 2.1 API, which is also required to be supported in this release. The
tracts and requirements for implementations of this specification also include, by reference,
defined in the “Java Persistence API” document [2].

1.5 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.
27 May 2, 2006 2:35 pm

Introduction Enterprise JavaBeans 3.0, Final Release Document Conventions

Sun Microsystems, Inc.
 5/2/06 28

Overall Goals Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

uild-

uild-

se of

tion
tails,

y of
then
Chapter 2 Overview

2.1 Overall Goals

The Enterprise JavaBeans (EJB) architecture has the following goals:

• The Enterprise JavaBeans architecture will be the standard component architecture for b
ing object-oriented business applications in the Java™ programming language.

• The Enterprise JavaBeans architecture will be the standard component architecture for b
ing distributed business applications in the Java™ programming language.

• The Enterprise JavaBeans architecture will support the development, deployment, and u
web services.

• The Enterprise JavaBeans architecture will make it easy to write applications: applica
developers will not have to understand low-level transaction and state management de
multi-threading, connection pooling, or other complex low-level APIs.

• Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™ philosoph
the Java programming language. An enterprise bean can be developed once, and
deployed on multiple platforms without recompilation or source code modification.
29 May 2, 2006 2:35 pm

Overview Enterprise JavaBeans 3.0, Final Release EJB Roles

Sun Microsystems, Inc.

ntime

ltiple

bin-

eans
ram-

Ven-

lan-

he EJB

nt and
spec-

of the
rt the

r
y

• The Enterprise JavaBeans architecture will address the development, deployment, and ru
aspects of an enterprise application’s life cycle.

• The Enterprise JavaBeans architecture will define the contracts that enable tools from mu
vendors to develop and deploy components that can interoperate at runtime.

• The Enterprise JavaBeans architecture will make it possible to build applications by com
ing components developed using tools from different vendors.

• The Enterprise JavaBeans architecture will provide interoperability between enterprise b
and Java Platform, Enterprise Edition (Java EE) components as well as non-Java prog
ming language applications.

• The Enterprise JavaBeans architecture will be compatible with existing server platforms.
dors will be able to extend their existing products to support Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java programming
guage APIs.

• The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

The purpose of the EJB 3.0 release is both to continue to achieve these goals and to improve t
architecture by reducing its complexity from the enterprise application developer’s point of view.

2.2 EJB Roles

The Enterprise JavaBeans architecture defines seven distinct roles in the application developme
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture
ifies the contracts that ensure that the product of each EJB Role is compatible with the product
other EJB Roles. The EJB specification focuses on those contracts that are required to suppo
development and deployment of ISV-written enterprise beans.

In some scenarios, a single party may perform several EJB Roles. For example, the Containe
Provider and the EJB Server Provider may be the same vendor. Or a single programmer ma
perform the two EJB Roles of the Enterprise Bean Provider and the Application Assembler.

The following sections define the seven EJB Roles.
 5/2/06 30

EJB Roles Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

or her
ible for
ans’ cli-
ay take
yment
oyment
erprise
use).

lops

Bean
ices

mbler.

. The
. The

with

mpo-

at appli-

beans.
yment
r with
ed to

mbler
nt. The
2.2.1 Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His
output is an ejb-jar file that contains one or more enterprise beans. The Bean Provider is respons
the Java classes that implement the enterprise beans’ business methods; the definition of the be
ent view interfaces; and declarative specification of the beans’ metadata. The beans’ metadata m
the form of metadata annotations applied to the bean classes and/or an external XML deplo
descriptor. The beans’ metadata—whether expressed in metadata annotations or in the depl
descriptor—includes the structural information of the enterprise beans and declares all the ent
beans’ external dependencies (e.g. the names and types of resources that the enterprise beans

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider deve
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the
Provider usually does not program transactions, concurrency, security, distribution, or other serv
into the enterprise beans. The Bean Provider relies on the EJB container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB Role of the Application Asse

2.2.2 Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units
input to the Application Assembler is one or more ejb-jar files produced by the Bean Provider(s)
Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along
their application assembly instructions.

The Application Assembler can also combine enterprise beans with other types of application co
nents when composing an application.

The EJB specification describes the case in which the application assembly step occursbefore the
deployment of the enterprise beans. However, the EJB architecture does not preclude the case th
cation assembly is performedafter the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise
The Application Assembler works with the enterprise bean’s metadata annotations and/or deplo
descriptor and the enterprise bean’s client-view contract. Although the Assembler must be familia
the functionality provided by the enterprise bean’s client-view interfaces, he or she does not ne
have any knowledge of the enterprise bean’s implementation.

2.2.3 Deployer

The Deployer takes one or more ejb-jar files produced by a Bean Provider or Application Asse
and deploys the enterprise beans contained in the ejb-jar files in a specific operational environme
operational environment includes a specific EJB server and container.
31 May 2, 2006 2:35 pm

Overview Enterprise JavaBeans 3.0, Final Release EJB Roles

Sun Microsystems, Inc.

.g. the
ans are
onnec-
follow
role,

terprise
n a spe-

ent of
by the
tional

s. The

ner to

onal

at their
sim-

buted
endor,

vider
Server
The Deployer must resolve all the external dependencies declared by the Bean Provider (e
Deployer must ensure that all resource manager connection factories used by the enterprise be
present in the operational environment, and he or she must bind them to the resource manager c
tion factory references declared in the metadata annotations or deployment descriptor), and must
the application assembly instructions defined by the Application Assembler. To perform his or her
the Deployer uses tools provided by the EJB Container Provider.

The Deployer’s output is a set of enterprise beans (or an assembled application that includes en
beans) that have been customized for the target operational environment, and that are deployed i
cific EJB container.

The Deployer is an expert at a specific operational environment and is responsible for the deploym
enterprise beans. For example, the Deployer is responsible for mapping the security roles defined
Bean Provider or Application Assembler to the user groups and accounts that exist in the opera
environment in which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment task
deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the contai
manage the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additi
classes and interfaces into the EJB container.

In some cases, a qualified Deployer may customize the business logic of the enterprise beans
deployment. Such a Deployer would typically use the Container Provider’s tools to write relatively
ple application code that wraps the enterprise bean’s business methods.

2.2.4 EJB Server Provider

The EJB Server Provider is a specialist in the area of distributed transaction management, distri
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS v
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Pro
roles are the same vendor. Therefore, it does not define any interface requirements for the EJB
Provider.

2.2.5 EJB Container Provider

The EJB Container Provider (Container Provider for short) provides:

• The deployment tools necessary for the deployment of enterprise beans.

• The runtime support for the deployed enterprise bean instances.
 5/2/06 32

EJB Roles Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

nviron-
y man-
ervices

o be
n does
o split

some
lable,
vider
, stan-
ompo-

po-
ithout

and

ching.
untime

sistent
ies and

istence
me.

nce Pro-
in [2].

rise’s
ystem
appli-
From the perspective of the enterprise beans, the container is a part of the target operational e
ment. The container runtime provides the deployed enterprise beans with transaction and securit
agement, network distribution of remote clients, scalable management of resources, and other s
that are generally required as part of a manageable server platform.

The “EJB Container Provider’s responsibilities” defined by the EJB architecture are meant t
requirements for the implementation of the EJB container and server. Since the EJB specificatio
not architect the interface between the EJB container and server, it is left up to the vendor how t
the implementation of the required functionality between the EJB container and server.

The expertise of the Container Provider is system-level programming, possibly combined with
application-domain expertise. The focus of a Container Provider is on the development of a sca
secure, transaction-enabled container that is integrated with an EJB server. The Container Pro
insulates the enterprise bean from the specifics of an underlying EJB server by providing a simple
dard API between the enterprise bean and the container. This API is the Enterprise JavaBeans c
nent contract.

The Container Provider typically provides support for versioning the installed enterprise bean com
nents. For example, the Container Provider may allow enterprise bean classes to be upgraded w
invalidating existing clients or losing existing enterprise bean objects.

The Container Provider typically provides tools that allow the System Administrator to monitor
manage the container and the beans running in the container at runtime.

2.2.6 Persistence Provider
The expertise of the Persistence Provider is in object/relational mapping, query processing, and ca
The focus of the Persistence Provider is on the development of a scalable, transaction-enabled r
environment for the management of persistence.

The Persistence Provider provides the tools necessary for the object/relational mapping of per
entities to a relational database, and the runtime support for the management of persistent entit
their mapping to the database.

The Persistence Provider insulates the persistent entities from the specifics of the underlying pers
substrate, providing a standard API between the persistent entities and the object/relational runti

The Persistence Provider may be the same vendor as the EJB Container vendor or the Persiste
vider may be a third-party vendor that provides a pluggable persistence environment as described

2.2.7 System Administrator
The System Administrator is responsible for the configuration and administration of the enterp
computing and networking infrastructure that includes the EJB server and container. The S
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans
cations at runtime.
33 May 2, 2006 2:35 pm

Overview Enterprise JavaBeans 3.0, Final Release Enterprise Beans

Sun Microsystems, Inc.

applica-

ta.

tries.

cified
nota-
be

rprise
addi-

pends

code

anu-
ent
yed.
envi-

t.

ven by
2.3 Enterprise Beans

Enterprise JavaBeans is an architecture for component-based transaction-oriented enterprise
tions.

2.3.1 Characteristics of Enterprise Beans

The essential characteristics of an enterprise bean are:

• An enterprise bean typically contains business logic that operates on the enterprise’s da

• An enterprise bean’s instances are managed at runtime by a container.

• An enterprise bean can be customized at deployment time by editing its environment en

• Various service information, such as transaction and security attributes, may be spe
together with the business logic of the enterprise bean class in the form of metadata an
tions, or separately, in an XML deployment descriptor. This service information may
extracted and managed by tools during application assembly and deployment.

• Client access is mediated by the container in which the enterprise bean is deployed.

• If an enterprise bean uses only the services defined by the EJB specification, the ente
bean can be deployed in any compliant EJB container. Specialized containers can provide
tional services beyond those defined by the EJB specification. An enterprise bean that de
on such a service can be deployed only in a container that supports that service.

• An enterprise bean can be included in an assembled application without requiring source
changes or recompilation of the enterprise bean.

• The Bean Provider defines a client view of an enterprise bean. The Bean Provider can m
ally define the client view or it can be generated automatically by application developm
tools. The client view is unaffected by the container and server in which the bean is deplo
This ensures that both the beans and their clients can be deployed in multiple execution
ronments without changes or recompilation.

2.3.2 Flexible Model

The enterprise bean architecture is flexible enough to implement the following:

• An object that represents a stateless service.

• An object that represents a stateless service and that implements a web service endpoin

• An object that represents a stateless service and whose invocation is asynchronous, dri
the arrival of messages.
 5/2/06 34

Session, Entity, and Message-Driven Objects Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

bjects

-grained
record,
in [2],

ple, it

pdate

object

ssion
• An object that represents a conversational session with a particular client. Such session o
automatically maintain their conversational state across multiple client-invoked methods.

• An entity object that represents a fine-grained persistent object.

Enterprise beans that are remotely accessible components are intended to be relatively coarse
business objects (e.g. shopping cart, stock quote service). Fine-grained objects (e.g. employee
line items on a purchase order) should be modeled as light weight persistent entities, as described
not as remotely accessible components.

Although the state management protocol defined by the Enterprise JavaBeans architecture is sim
provides an enterprise bean developer great flexibility in managing a bean’s state.

2.4 Session, Entity, and Message-Driven Objects

The Enterprise JavaBeans architecture defines the following types of enterprise bean objects:

• A session object.

• A message-driven object.

• An entity object.

2.4.1 Session Objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and u
such data.

• Is relatively short-lived.

• Is removed when the EJB container crashes. The client has to re-establish a new session
to continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of se
objects concurrently.

The EJB specification defines bothstatefulandstateless session beans. There are differences in the API
between stateful session beans and stateless session beans.
35 May 2, 2006 2:35 pm

Overview Enterprise JavaBeans 3.0, Final Release Standard Mapping to CORBA Protocols

Sun Microsystems, Inc.

pdate

mes-

mes-

ntity
te is

con-

EJB
d on
mote
2.4.2 Message-Driven Objects

A typical message-driven object has the following characteristics:

• Executes upon receipt of a single client message.

• Is asynchronously invoked.

• Can be transaction-aware.

• May update shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and u
such data.

• Is relatively short-lived.

• Is stateless.

• Is removed when the EJB container crashes. The container has to re-establish a new
sage-driven object to continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of
sage-driven objects concurrently.

2.4.3 Entity Objects

A typical entity object has the following characteristics:

• Is part of a domain model, providing an object view of data in the database.

• Can be long-lived (lives as long as the data in the database).

• The entity and its primary key survive the crash of the EJB container. If the state of an e
was being updated by a transaction at the time the container crashed, the entity’s sta
restored to the state of the last committed transaction when the entity is next retrieved.

A typical EJB container and server provide a scalable runtime environment for a large number of
currently active entity objects.

2.5 Standard Mapping to CORBA Protocols

To help interoperability for EJB environments that include systems from multiple vendors, the
specification requires compliant implementations to support the interoperability protocol base
CORBA/IIOP for remote invocations from Java EE clients. Implementations may support other re
invocation protocols in addition to IIOP.
 5/2/06 36

Mapping to Web Service Protocols Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

ns to
on-
31],
Chapter 15 summarizes the requirements for support for distribution and interoperability.

2.6 Mapping to Web Service Protocols

To support web service interoperability, the EJB specification requires compliant implementatio
support XML-based web service invocations using WSDL and SOAP or plain XML over HTTP in c
formance with the requirements of the JAX-WS [32], JAX-RPC [25], Web Services for Java EE [
and Web Services Metadata for the Java Platform [30] specifications.
37 May 2, 2006 2:35 pm

Overview Enterprise JavaBeans 3.0, Final Release Mapping to Web Service Protocols

Sun Microsystems, Inc.
 5/2/06 38

Overview Enterprise JavaBeans 3.0, Final Release Client View of a Session Bean

Sun Microsystems, Inc.

usiness
ctions,

tainer

ing on
t runs

n object

ing on
Chapter 3 Client View of a Session Bean

This chapter describes the client view of a session bean. The session bean itself implements the b
logic. The bean’s container provides functionality for remote access, security, concurrency, transa
and so forth.

While classes implemented by the container provide the client view of the session bean, the con
itself is transparent to the client.

3.1 Overview

For a client, a session object is a non-persistent object that implements some business logic runn
the server. One way to think of a session object is as a logical extension of the client program tha
on the server. A session object is not shared among multiple clients.

A client never directly accesses instances of the session bean’s class. A client accesses a sessio
through the session bean’s client view interface(s).

The client of a session bean may be a local client, a remote client, or a web service client, depend
the interface provided by the bean and used by the client.
39 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

nt con-
t view
that are

remote
ean is

PI as a

e term

e local
iner as

ervice
terms
ed in

ll be

a ses-

curity,
object

-
remote

ssion
rfaces

nd the
A remote client of an session bean can be another enterprise bean deployed in the same or differe
tainer; or it can be an arbitrary Java program, such as an application, applet, or servlet. The clien
of a session bean can also be mapped to non-Java client environments, such as CORBA clients
not written in the Java programming language.

The interface used by a remote client of a session bean is implemented by the container as a
business interface (or a remote EJBObject interface), and the remote client view of a session b
location-independent. A client running in the same JVM as the session object uses the same A
client running in a different JVM on the same or different machine.

Terminology note: This specification uses the termremote business interfaceto refer to the business
interface of an EJB 3.0 session bean that supports remote access. The termremote interfaceis used to
refer to the remote component interface of the EJB 2.1 client view. The termlocal business interface
refers to the local business interface of an EJB 3.0 session bean that supports local access. Th
local interface is used to refer to the local component interface of the EJB 2.1 client view.

Use of a session bean’s local business interface(s) or local interface entails the collocation of th
client and the session. The local client of an enterprise bean must be collocated in the same conta
the bean. The local client view is not location-independent.

The client of a stateless session bean may be a web service client. Only astatelesssession bean may
provide a web service client view. A web service client makes use of the enterprise bean’s web s
client view, as described by a WSDL document. The bean’s client view web service endpoint is in
of a JAX-WS endpoint [32] or JAX-RPC endpoint interface [25]. Web service clients are discuss
Sections 3.2.4 and 3.5.

While it is possible to provide more than one client view for a session bean, typically only one wi
provided.

The considerations that should be taken into account in determining the client view to be used for
sion bean are further described in Section 3.2, “Local, Remote, and Web Service Client Views”.

From its creation until destruction, a session object lives in a container. The container provides se
concurrency, transactions, swapping to secondary storage, and other services for the session
transparently to the client.

Each session object has an identity which, in general,does notsurvive a crash and restart of the con
tainer, although a high-end container implementation can mask container and server crashes to a
or web service client.

Multiple enterprise beans can be installed in a container. The container allows the clients of se
beans that provide local or remote client views to obtain the business interfaces and/or home inte
of the installed enterprise beans through dependency injection or to look them up via JNDI.

The client view of a session object is independent of the implementation of the session bean a
container.
 5/2/06 40

Local, Remote, and Web Service Client Views Enterprise JavaBeans 3.0, Final Release Client View of a Session Bean

Sun Microsystems, Inc.

deter-

ce. For a
cesses

bean
s remain

JVM
on the

.

with
an. A

VM of
view

or a ses-
client
he con-

an by
n avail-

nce”
tate of

.

3.2 Local, Remote, and Web Service Client Views

This section describes some of the considerations the Bean Provider should take into account in
mining the client view to provide for an enterprise bean.

3.2.1 Remote Clients

In EJB 3.0, a remote client accesses a session bean through the bean’s remote business interfa
session bean client and component written to the EJB 2.1 and earlier APIs, the remote client ac
the session bean through the session bean’s remote home and remote component interfaces.

Compatibility Note: The EJB 2.1 and earlier API required that a remote client access the session
by means of the session bean’s remote home and remote component interfaces. These interface
available for use with EJB 3.0, and are described in Section 3.6.

The remote client view of an enterprise bean is location independent. A client running in the same
as a bean instance uses the same API to access the bean as a client running in a different JVM
same or different machine.

The arguments and results of the methods of the remote business interface are passed by value

3.2.2 Local Clients

Session beans may have local clients. A local client is a client that is collocated in the same JVM
the session bean that provides the local client view and which may be tightly coupled to the be
local client of a session bean may be another enterprise bean or a web component.

Access to an enterprise bean through the local client view requires the collocation in the same J
both the local client and the enterprise bean that provides the local client view. The local client
therefore does not provide the location transparency provided by the remote client view.

In EJB 3.0, a local client accesses a session bean through the bean’s local business interface. F
sion bean or entity bean client and component written to the EJB 2.1 and earlier APIs, the local
accesses the enterprise bean through the bean’s local home and local component interfaces. T
tainer object that implements a local business interface is a local Java object.

Compatibility Note: The EJB 2.1 and earlier API required that a local client access the session be
means of the session bean’s local home and local component interfaces. These interfaces remai
able for use with EJB 3.0, and are described in Section 3.6.

The arguments and results of the methods of the local business interface are passed “by refere[1].
Enterprise beans that provide a local client view should therefore be coded to assume that the s
any Java object that is passed as an argument or result is potentially shared by caller and callee

[1] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of that primitive
type; an argument variable of a reference type hold a reference to the object. See [28].
41 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Local, Remote, and Web Service Client Views

Sun Microsystems, Inc.

l

ss
s

n

mote

rd to
ling

ween
d the

lient
d in a

he nar-

ervers,
and

han-

ively

ly on
wants
ming
a data
cop-
does

rovid-
The Bean Provider must be aware of the potential sharing of objects passed through loca
interfaces. In particular, the Bean Provider must be careful that the state of one enterprise
bean is not assigned as the state of another. In general, the references that are passed acro
local interfaces cannot be used outside of the immediate call chain and must never be stored a
part of the state of another enterprise bean. The Bean Provider must also exercise caution i
determining which objects to pass across local interfaces. This caution applies particularly in
the case where there is a change in transaction or security context.

3.2.3 Choosing Between a Local or Remote Client View

The following considerations should be taken into account in determining whether a local or re
access should be used for an enterprise bean.

• The remote programming model provides location independence and flexibility with rega
the distribution of components in the deployment environment. It provides a loose coup
between the client and the bean.

• Remote calls involve pass-by-value. This copy semantics provides a layer of isolation bet
caller and callee, and protects against the inadvertant modification of data. The client an
bean may be programmed to assume this parameter copying.

• Remote calls are potentially expensive. They involve network latency, overhead of the c
and server software stacks, argument copying, etc. Remote calls are typically programme
coarse-grained manner with few interactions between the client and bean.

• The objects that are passed as parameters on remote calls must be serializable.

• When the EJB 2.1 and earlier remote home and remote component interfaces are used, t
rowing of remote types requires the use ofjavax.rmi.PortableRemoteOb-
ject.narrow rather than Java language casts.

• Remote calls may involve error cases due to communication, resource usage on other s
etc., which are not expected in local calls. When the EJB 2.1 and earlier remote home
remote component interfaces are used, the client has to explicitly program handlers for
dling thejava.rmi.RemoteException .

• Because of the overhead of the remote programming model, it is typically used for relat
coarse-grained component access.

• Local calls involve pass-by-reference. The client and the bean may be programmed to re
pass-by-reference semantics. For example, a client may have a large document which it
to pass on to the bean to modify, and the bean further passes on. In the local program
model the sharing of state is possible. On the other hand, when the bean wants to return
structure to the client but the bean does not want the client to modify it, the bean explicitly
ies the data structure before returning it, while in the remote programming model the bean
not copy the data structure because it assumes that the system will do the copy.

• Because local calls involve pass-by-reference, the local client and the enterprise bean p
ing the local client view are collocated.
 5/2/06 42

Local, Remote, and Web Service Client Views Enterprise JavaBeans 3.0, Final Release Client View of a Session Bean

Sun Microsystems, Inc.

can-
n of

ent, it

-
-

Bean

ean,

eb ser-
ents.
s. The
lying
server.

view of
a lan-

ent view.

for a
service

ved in

to a
ervice
b ser-

age. A
-RPC

XML
• The collocation entailed by the local programming model means that the enterprise bean
not be deployed on a node different from that of its client—thus restricting the distributio
components.

• Because the local programming model provides more lightweight access to a compon
better supports more fine-grained component access.

Note that although collocation of the remote client and the enterprise bean may allow the con
tainer to reduce the overhead of calls through a remote business interface or remote compo
nent interface, such calls are still likely to be less efficient than calls made using a local
interface because any optimizations based on collocation must be done transparently.

The choice between the local and the remote programming model is a design decision that the
Provider makes when developing the enterprise bean.

While it is possible to provide both a remote client view and a local client view for an enterprise b
more typically only one or the other will be provided.

3.2.4 Web Service Clients
Stateless session beans may have web service clients.

A web service client accesses a stateless session bean through the web service client view. The w
vice client view is described by the WSDL document for the web service that the bean implem
WSDL is an XML format for describing a web service as a set of endpoints operating on message
abstract description of the service is bound to an XML based protocol (SOAP [27]) and under
transport (HTTP or HTTPS) by means of which the messages are conveyed between client and
(See references [25], [26], [30], [31], [32]).

The web service methods of a stateless session bean provide the basis of the web service client
the bean that is exported through WSDL. See references [30] and [25] for a description of how Jav
guage metadata annotations may be used to specify a stateless session bean’s web services cli

Compatibility Note: EJB 2.1 required the Bean Provider to define a web service endpoint interface
stateless session bean when he or she wished to expose the functionality of the bean as a web
endpoint through WSDL. This requirement to define the web service endpoint interface is remo
EJB 3.0. See [30].

A bean’s web service client view may be initially defined by a WSDL document and then mapped
web service endpoint that conforms to this, or an existing bean may be adapted to provide a web s
client view. Reference [31] describes various design-time scenarios that may be used for EJB we
vice endpoints.

The web service client view of an enterprise bean is location independent and remotable.

Web service clients may be Java clients and/or clients not written in the Java programming langu
web service client that is a Java client accesses the web service by means of the JAX-WS or JAX
client APIs. Access through web service clients occurs through SOAP 1.1, SOAP 1.2 or plain
over HTTP(S).
43 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release EJB Container

Sun Microsystems, Inc.

eans.
r mak-
e client

n bean
ry Java
e EJB
of the

in the

g

seg-
e to

t
ion of a
remote

the ses-
3.3 EJB Container

An EJB container (container for short) is a system that functions as the “container” for enterprise b
Multiple enterprise beans can be deployed in the same container. The container is responsible fo
ing the business interfaces and/or home interfaces of its deployed enterprise beans available to th
through dependency injection and/or through lookup in the JNDI namespace.

3.4 Client View of Session Beans Written to the EJB 3.0
Simplified API

The EJB 3.0 local or remote client of a session bean written to the EJB 3.0 API accesses a sessio
through its business interface. The business interface of an EJB 3.0 session bean is an ordina
interface, regardless of whether local or remote access is provided for the bean. In particular, th
3.0 session bean business interface is not one of the interface types required by earlier versions
EJB specification (i.e., EJBObject or EJBLocalObject interface).

3.4.1 Obtaining a Session Bean’s Business Interface

A client can obtain a session bean’s business interface through dependency injection or lookup
JNDI namespace.

For example, the business interfaceCart for the CartBean session bean may be obtained usin
dependency injection as follows:

@EJB Cart cart;

TheCart business interface could also be looked up using JNDI as shown in the following code
ment using thelookup method provided by the EJBContext interface. In this example, a referenc
the client bean’s SessionContext object is obtained through dependency injection:

@Resource SessionContext ctx;
...
Cart cart = (Cart)ctx.lookup(“cart”);

In both cases, the syntax used in obtaining the reference to theCart business interface is independen
of whether the business interface is local or remote. In the case of remote access, the actual locat
referenced enterprise bean and EJB container are, in general, transparent to the client using the
business interface of the bean.

3.4.2 Session Bean’s Business Interface
The session bean’s interface is an ordinary Java interface. It contains the business methods of
sion bean.
 5/2/06 44

Client View of Session Beans Written to the EJB 3.0 Simplified APIEnterprise JavaBeans 3.0, Final Release Client View of a Session

Sun Microsystems, Inc.

lue of a
ference

of the
that it

moved,
the

the cli-
ion bean

depen-
il how

e to its
ace in

hods on
thod.

ated as

al of a

t Con-

business
A reference to a session bean’s business interface may be passed as a parameter or return va
business interface method. If the reference is to a session bean’s local business interface, the re
may only be passed as a parameter or return value of a local business interface method.

The business interface of a stateful session bean typically contains a method to initialize the state
session object and a method to indicate that the client has finished using the session object and
can be removed. See Chapter 4, “Session Bean Component Contract”.

It is invalid to reference a session object that does not exist. If a stateful session bean has been re
attempted invocations on the stateful session bean business interface result in
javax.ejb.NoSuchEJBException .[2]

The container provides an implementation of a session bean’s business interface such that when
ent invokes a method on the instance of the business interface, the business method on the sess
instance and any interceptor methods are invoked as needed.

The container makes the session bean’s business interface available to the EJB 3.0 client through
dency injection and through lookup in the JNDI namespace. Section 16.5 describes in further deta
clients can obtain references to EJB business interfaces.

3.4.3 Client View of Session Object’s Life Cycle
From the point of view of the client, a session object exists once the client has obtained a referenc
business interface—whether through dependency injection or from lookup of the business interf
JNDI.

A client that has a reference to a session object’s business interface can then invoke business met
the interface and/or pass the reference as a parameter or return value of a business interface me[3]

A client may remove a stateful session bean by invoking a method of its business interface design
aRemove method.

The lifecycle of a stateless session bean does not require that it be removed by the client. Remov
stateless session bean instance is performed by the container, transparently to the client.

The contracts for session bean lifecycle are described in Chapter 4, “Session Bean Componen
tract”.

3.4.4 Example of Obtaining and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

[2] This may not apply to stateless session beans; see Section 4.5.

[3] Note that the EJB 3.0 session bean business interface is not an EJBObject. It is not valid to pass a reference to the remote
interface through a bean’s remote component interface.
45 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Client View of Session Beans Written to the

Sun Microsystems, Inc.

s of
t with

y injec-
s to it.
sion

al of the
t the fin-
Figure 1 Session Bean Example Objects

A client obtains a reference to aCart session object, which provides a shopping service, by mean
dependency injection or using JNDI lookup. The client then uses this session object to fill the car
items and to purchase its contents.Cart is a stateful session.

In this example, the client obtains a reference to the Cart’s business interface through dependenc
tion. The client then uses the business interface to initialize the session object and add a few item
ThestartShopping method is a business method that is provided for the initialization of the ses
object.

@EJB Cart cart;
...
cart.startShopping();
cart.addItem(66);
cart.addItem(22);

Finally the client purchases the contents of the shopping cart, and finishes the shopping activity.[4]

cart.purchase();
cart.finishShopping();

[4] It is part of the logic of an application designed using stateful session beans to designate a method that causes the remov
stateful session (and thus allows for the reclamation of resources used by the session bean). This example assumes tha
ishShopping method is such a Remove method. See Section 4.4 for further discussion.

CartBeanclient Cart

container
 5/2/06 46

Client View of Session Beans Written to the EJB 3.0 Simplified APIEnterprise JavaBeans 3.0, Final Release Client View of a Session

Sun Microsystems, Inc.

f the

ject is
terface

on bean
nt ses-

have the

s inter-
ce types
3.4.5 Session Object Identity

A client can test two session bean business interface references for identity by means o
Object.equals andObject.hashCode methods.

3.4.5.1 Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at the time the ob
created. A client of the stateful session bean business interface can determine if two business in
references refer to the same session object by use of theequals method.

For example,

@EJB Cart cart1;
@EJB Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must return false
 ...
}

All stateful session bean references to the same business interface for the same stateful sessi
instance will be equal. Stateful session bean references to different interface types or to differe
sion bean instances will not have the same identity.

3.4.5.2 Stateless Session Beans

All business object references of the same interface type for the same stateless session bean
same object identity, which is assigned by the container.

For example,

@EJB Cart cart1;
@EJB Cart cart2;
...
if (cart1.equals(cart1)) { // this test must return true
 ...
}
...
if (cart1.equals(cart2)) { // this test must also return true
 ...
}

Theequals method always returns true when used to compare references to the same busines
face type of the same session bean. Session bean references to either different business interfa
or different session beans will not be equal.
47 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release The Web Service Client View of a Stateless

Sun Microsystems, Inc.

hidden

n bean
d as a

ibed

teless
3.5 The Web Service Client View of a Stateless Session Bean

From the perspective of the client, the existence of the stateless session bean is completely
behind the web service endpoint that the bean implements.

The web service client’s access to the web service functionality provided by a stateless sessio
occurs through a web service endpoint. In the case of Java clients, this endpoint is accesse
JAX-WS or JAX-RPC service endpoint using the JAX-WS or JAX-RPC client view APIs, as descr
in [32] and [25].

The following diagram illustrates the view that is provided to Java EE web service clients of a sta
session bean through the JAX-WS client view APIs.
 5/2/06 48

The Web Service Client View of a Stateless Session BeanEnterprise JavaBeans 3.0, Final Release Client View of a Session Bean

Sun Microsystems, Inc.

the
can
the
web
X-WS
Figure 2 Web Service Client View of Stateless Session Beans Deployed in a Container

3.5.1 JAX-WS Web Service Clients

The Java EE web service client obtains a reference to the service instance of
javax.xml.ws.Service class through dependency injection or using JNDI. The service class
be a genericjavax.xml.ws.Service class or a generated service class which extends
javax.xml.ws.Service class. The service instance is then used to obtain a port object for the
service endpoint. The mechanisms and APIs for client web service access are described in the JA
specification [32] and in the Web Services for Java EE specification [31].

Client

Container

Stateless session
bean

Stateless
session bean
instances

Service class

Web service endpoint
49 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

oint,

n

s the
ice
e
in
mecha-
in the

gical
e

in

earlier
e pro-
The following example illustrates how a JAX-WS client obtains a reference to a web service endp
obtains a port object for the web service endpoint, and invokes a method on that endpoint.

@WebServiceRef
public StockQuoteService stockQuoteService;
...
StockQuoteProvider sqp =

stockQuoteService.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice(“ACME”);
...

The use of service references and theWebServiceRef annotation are described in further detail i
[32].

3.5.2 JAX-RPC Web Service Clients

The JAX-RPC web service client obtains a reference to the service object that implement
javax.xml.rpc.Service interface through dependency injection or using JNDI. The serv
interface can be a genericjavax.xml.rpc.Service interface or a generated service interfac
which extends thejavax.xml.rpc.Service interface. The service interface is then used to obta
a stub or proxy that implements the stateless session bean’s web service endpoint interface. The
nisms and APIs for client web service access are described in the JAX-RPC specification [25] and
Web Services for Java EE specification [31].

The following example illustrates how a Java EE client looks up a web service in JNDI using a lo
name called a service reference (specified using theservice-ref element), obtains a stub instanc
for a web service endpoint, and invokes a method on that endpoint.

Context ctx = new InitialContext();
com.example.StockQuoteService sqs = (com.example.StockQuoteService)

ctx.lookup(“java:comp/env/service/StockQuoteService”);
com.example.StockQuoteProvider sqp =

sqs.getStockQuoteProviderPort();
float quotePrice = sqp.getLastTradePrice(“ACME”);
...

The use of service references and theservice-ref deployment descriptor element are described
further detail in [31].

3.6 Remote and Local Client View of Session Beans Written to
the EJB 2.1 Client View API

The remainder of this chapter describes the Session Bean client view defined by the EJB 2.1 and
specifications. Support for the definition and use of these earlier client interfaces is required to b
vided by implementations of the EJB 3.0 specification.
 5/2/06 50

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.0, Final Release Cli-

Sun Microsystems, Inc.

bean’s
terface.
ection
in a

of

s are
inter-

remote

is
3.6.1 Locating a Session Bean’s Home Interface

The EJB 2.1 and earlier specifications require that the client first obtain a reference to a session
home interface, and then use the home interface to obtain a reference to the bean’s component in
This earlier programming model continues to be supported in the EJB 3.0. Both dependency inj
and use of the EJBContextlookup method may be used as an alternative to the JNDI APIs to obta
reference to the home interface.

For example, an EJB 3.0 client,com.acme.example.MySessionBean , might obtain a reference
to a bean’s home interface as follows:

@EJB CartHome cartHome;

This home interface could be looked up in JNDI using the EJBContextlookup method as shown in the
following code segment:

@Resource SessionContext ctx;
...
CartHome cartHome =

(CartHome)ctx.lookup(“com.acme.example.MySessionBean/cartHome”);

When the EJBContextlookup method is used to look up a home interface, the use
javax.rmi.PortableRemoteObject.narrow is not required.

The following code segments illustrate how the home interface is obtained when the JNDI API
used directly, as was required in the EJB 2.1 programming model. For example, the remote home
face for theCart session bean can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“java:comp/env/ejb/cart”),
CartHome.class);

If the Cart session bean provides a local client view instead of a remote client view andCartHome is
a local home interface, this lookup might be as follows:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)

initialContext.lookup(“java:comp/env/ejb/cart”);

3.6.2 Session Bean’s Remote Home Interface

This section is specific to session beans that provide a remote client view using the remote and
home interfaces.

This was the only way of providing a remote client view in EJB 2.1 and earlier releases. The
remote client view provided by the business interface in EJB 3.0 as described in Section 3.4
now to be preferred.
51 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

n that
ession

session
kup in

e
to
d cli-

ritten
table

ject)
con-
ltiple

on can
ned via

s-
e-

n’s
The container provides the implementation of the remote home interface for each session bea
defines a remote home interface that is deployed in the container. The object that implements a s
bean’s remote home interface is called a session EJBHome object. The container makes the
bean’s remote home interface available to the client through dependency injection or through loo
the JNDI namespace.

The remote home interface allows a client to do the following:

• Create a new session object.

• Remove a session object.

• Get the javax.ejb.EJBMetaData interface for the session bean. Th
javax.ejb.EJBMetaData interface is intended to allow application assembly tools
discover information about the session bean, and to allow loose client/server binding an
ent-side scripting.

• Obtain a handle for the remote home interface. The home handle can be serialized and w
to stable storage. Later, possibly in a different JVM, the handle can be deserialized from s
storage and used to obtain back a reference of the remote home interface.

The life cycle of the distributed object implementing the remote home interface (the EJBHome ob
or the local Java object implementing the local home interface (the EJBLocalHome object) is
tainer-specific. A client application should be able to obtain a home interface, and then use it mu
times, during the client application’s lifetime.

A client can pass a remote home object reference to another application. The receiving applicati
use the home interface in the same way that it would use a remote home object reference obtai
JNDI.

3.6.2.1 Creating a Session Object

A home interface defines one or morecreate<METHOD> methods, one for each way to create a se
sion object. The arguments of thecreate methods are typically used to initialize the state of the cr
ated session object.

The return type of acreate<METHOD> method on the remote home interface is the session bea
remote interface.

The following example illustrates a remote home interface that defines twocreate<METHOD> meth-
ods:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

Cart createLargeCart(String customerName, String account)
throws RemoteException, BadAccountException,

CreateException;
}

 5/2/06 52

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.0, Final Release Cli-

Sun Microsystems, Inc.

a

home

s

defines
bean’s
bean’s

local
e bean’s

a
e

cal
The following example illustrates how a client creates a new session object using acreate<METHOD>
method of theCartHome interface:

cartHome.create(“John”, “7506”);

3.6.2.2 Removing a Session Object

A remote client may remove a session object using theremove() method of the
javax.ejb.EJBObject interface, or the remove(Handle handle) method of the
javax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBHome.remove(Object primaryKey) method on a session results in
javax.ejb.RemoveException .

3.6.3 Session Bean’s Local Home Interface

This section is specific to session beans that provide a local client view using the local and local
interfaces.

This was the only way of providing a local client view in EJB 2.1 and earlier releases. The
local client view provided by the business interface in EJB 3.0 as described in Section 3.4 i
now to be preferred.

The container provides the implementation of the local home interface for each session bean that
a local home interface that is deployed in the container. The object that implements a session
local home interface is called a session EJBLocalHome object. The container makes the session
local home interface available to the client through JNDI.

The local home interface allows a local client to do the following:

• Create a new session object.

• Remove a session object.

A client can pass a local home object reference to another application through its local interface. A
home object reference cannot be passed as an argument or result of a method on an enterpris
remote home or remote interface.

3.6.3.1 Creating a Session Object

A local home interface defines one or morecreate<METHOD> methods, one for each way to create
session object. The arguments of thecreate methods are typically used to initialize the state of th
created session object.

The return type of acreate<METHOD> method on the local home interface is the session bean’s lo
interface.
53 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

t inter-
interface

n of a

:

tion of
The following example illustrates a local home interface that defines twocreate<METHOD> methods:

public interface CartHome extends javax.ejb.EJBLocalHome {
Cart create(String customerName, String account)

throws BadAccountException, CreateException;
Cart createLargeCart(String customerName, String account)

throws BadAccountException, CreateException;
}

The following example illustrates how a client creates a new session object using acreate<METHOD>
method of theCartHome interface:

cartHome.create(“John”, “7506”);

3.6.3.2 Removing a Session Object

A local client may remove a session object using theremove() method of thejavax.ejb.EJBLo-
calObject interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBLocalHome.remove(Object primaryKey) method on a session results in
a javax.ejb.RemoveException .

3.6.4 EJBObject and EJBLocalObject

A remote or local client that uses the EJB 2.1 client view APIs uses the session bean’s componen
face to access a session bean instance. The class that implements the session bean’s component
is provided by the container. Instances of a session bean’s remote interface are called sessionEJBOb-
jects. Instances of a session bean’s local interface are called sessionEJBLocalObjects.

A session EJBObject supports:

• The business logic methods of the object. The session EJBObject delegates invocatio
business method to the session bean instance.

• The methods of thejavax.ejb.EJBObject interface. These methods allow the client to

• Get the session object’s remote home interface.

• Get the session object’s handle.

• Test if the session object is identical with another session object.

• Remove the session object.

A session EJBLocalObject supports:

• The business logic methods of the object. The session EJBLocalObject delegates invoca
a business method to the session bean instance.

• The methods of thejavax.ejb.EJBLocalObject interface. These methods allow the
client to:
 5/2/06 54

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.0, Final Release Cli-

Sun Microsystems, Inc.

to

For this
bjects,

home

to per-
ong as
ed the

ht to
nd then
d on the

life
• Get the session object’s local home interface.

• Test if the session object is identical with another session object.

• Remove the session object.

The implementation of the methods defined in thejavax.ejb.EJBObject and
javax.ejb.EJBLocalObject interfaces is provided by the container. They are not delegated
the instances of the session bean class.

3.6.5 Object Identity

Session objects are intended to be private resources used only by the client that created them.
reason, session objects, from the client’s perspective, appear anonymous. In contrast to entity o
which expose their identity as a primary key, session objects hide their identity. As a result, theEJBOb-
ject.getPrimaryKey() method results in ajava.rmi.RemoteException and theEJBLo-
calObject.getPrimaryKey() method results in ajavax.ejb.EJBException , and the
EJBHome.remove(Object primaryKey) and theEJBLocalHome.remove(Object pri-
maryKey) methods result in ajavax.ejb.RemoveException if called on a session bean. If the
EJBMetaData.getPrimaryKeyClass() method is invoked on aEJBMetaData object for a
session bean, the method throws thejava.lang.RuntimeException .

Since all session objects hide their identity, there is no need to provide a finder for them. The
interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle
sistent storage. When the handle is later deserialized, the session object it returns will work as l
the session object still exists on the server. (An earlier timeout or server crash may have destroy
session object.)

A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to a session object is obtained from a handle, a
a method on the session object is invoked, the container performs the usual access checks base
caller’s principal.

3.6.6 Client view of Session Object’s Life Cycle

From the point of view of a local or remote client using the EJB 2.1 and earlier client view API, the
cycle of a session object is illustrated below.
55 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

t has a

ng:

tically

tateful
Figure 3 Life Cycle of a Session Object.

A session object does not exist until it is created. When a client creates a session object, the clien
reference to the newly created session object’s component interface.

3.6.6.1 References to Session Object Remote Interfaces

A client that has a reference to a session object’s remote interface can then do any of the followi

• Invoke business methods defined in the session object’s remote interface.

• Get a reference to the session object’s remote home interface.

• Get a handle for the session object.

• Pass the reference as a parameter or return value within the scope of the client.

• Remove the session object. A container may also remove the session object automa
when the session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted remote invocations on a s
session object that does not exist result in ajava.rmi.NoSuchObjectException .[5]

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

object.remove(),

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException or

home.remove(...),

container crash,

handle.getEJBObject()

or
container crash

system exception in bean,
bean timeout,

or bean timeout

home.create<METHOD>(...)

NoSuchObjectLocalException
 5/2/06 56

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.0, Final Release Cli-

Sun Microsystems, Inc.

:

tically

ession

rough
n argu-
3.6.6.2 References to Session Object Local Interfaces

A client that has a reference to a session object’s local interface can then do any of the following

• Invoke business methods defined in the session object’s local interface.

• Get a reference to the session object’s local home interface.

• Pass the reference as a parameter or return value of a local interface method.

• Remove the session object. A container may also remove the session object automa
when the session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted invocations on a stateful s
object that does not exist result injavax.ejb.NoSuchObjectLocalException .[6]

A client can pass a local object reference or local home object reference to another application th
its local interface. A local object reference or local home object reference cannot be passed as a
ment or result of a method on an enterprise bean’s remote home or remote interface.

3.6.7 Creating and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

[5] This may not apply to stateless session beans; see Section 4.5.

[6] This may not apply to stateless session beans; see Section 4.5.
57 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

ject

n tempo-
get-

later to

art ses-
Figure 4 Session Bean Example Objects

A client creates a remoteCart session object, which provides a shopping service, using acre-
ate<METHOD>method of theCart ’s remote home interface. The client then uses this session ob
to fill the cart with items and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping sessio
rarily for a day or two, and later complete the session. The client might implement this feature by
ting the session object’s handle, saving the serialized handle in persistent storage, and using it
reestablish access to the originalCart .

For the following example, we start by looking up theCart ’s remote home interface in JNDI. We then
use the remote home interface to create aCart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.createLargeCart(...);
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at a later time so we serialize a handle to this c
sion object and store it in a file:

Handle cartHandle = cart.getHandle();
// serialize cartHandle, store in a file...

CartBeanclient

Cart

CartHome

container
 5/2/06 58

Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View APIEnterprise JavaBeans 3.0, Final Release Cli-

Sun Microsystems, Inc.

ct, and

invok-
l
g the

ect iden-
(each
ave a

fer-
Finally we deserialize the handle at a later time, re-create the reference to the cart session obje
purchase the contents of the shopping cart:

Handle cartHandle = ...; // deserialize from a file...
Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(

cartHandle.getEJBObject(), Cart.class);
cart.purchase();
cart.remove();

3.6.8 Object Identity

3.6.8.1 Stateful Session Beans
A stateful session object has a unique identity that is assigned by the container at create time.

A remote client can determine if two remote object references refer to the same session object by
ing theisIdentical(EJBObject otherEJBObject) method on one of the references. A loca
client can determine if two local object references refer to the same session object by invokin
isIdentical(EJBLocalObject otherEJBLocalObject) method.

The following example illustrates the use of theisIdentical method for a stateful session object.

FooHome fooHome = ...; // obtain home of a stateful session bean
Foo foo1 = fooHome.create(...);
Foo foo2 = fooHome.create(...);

if (foo1.isIdentical(foo1)) {// this test must return true
...

}

if (foo1.isIdentical(foo2)) {// this test must return false
...

}

3.6.8.2 Stateless Session Beans

All session objects of the same stateless session bean within the same home have the same obj
tity, which is assigned by the container. If a stateless session bean is deployed multiple times
deployment results in the creation of a distinct home), session objects from different homes will h
different identity.

The isIdentical(EJBObject otherEJBObject) and isIdentical(EJBLocalOb-
ject otherEJBLocalObject) methods always returns true when used to compare object re
ences of two session objects of the same stateless session bean.
59 May 2, 2006 2:35 pm

Client View of a Session Bean Enterprise JavaBeans 3.0, Final Release Remote and Local Client View of Session

Sun Microsystems, Inc.

t.

tions

likely

remote
The following example illustrates the use of theisIdentical method for a stateless session objec

FooHome fooHome = ...; // obtain home of a stateless session bean
Foo foo1 = fooHome.create();
Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) {// this test returns true
...

}

if (foo1.isIdentical(foo2)) {// this test returns true
...

}

3.6.8.3 getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result ofgetPrima-
ryKey() on a session EJBObject reference results injava.rmi.RemoteException . The result
of getPrimaryKey() on a session EJBLocalObject reference results injavax.ejb.EJBExcep-
tion .

3.6.9 Type Narrowing
A client program that is intended to be interoperable with all compliant EJB container implementa
must use thejavax.rmi.PortableRemoteObject.narrow method to perform type-narrow-
ing of the client-side representations of the remote home and remote interfaces.[7]

Note: Programs using the cast operator for narrowing the remote and remote home interfaces are
to fail if the container implementation uses RMI-IIOP as the underlying communication transport.

[7] Use of javax.rmi.PortableRemoteObject.narrow is not needed when the EJBContext lookup method is used to look up the
home interface.
 5/2/06 60

Overview Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

ycle of

respon-

ate.

fic cli-
Chapter 4 Session Bean Component Contract

This chapter specifies the contract between a session bean and its container. It defines the life c
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s
sibilities for managing session bean state.

4.1 Overview

A session bean instance is an instance of the session bean class. It holds the session object’s st

A session bean instance is an extension of the client that creates it:

• In the case of a stateful session bean, its fields contain aconversational stateon behalf of the
session object’s client. This state describes the conversation represented by a speci
ent/session object pair.

• It typically reads and updates data in a database on behalf of the client.

• In the case of a stateful session bean, its lifetime is controlled by the client.
61 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final ReleaseConversational State of a Stateful Session Bean

Sun Microsystems, Inc.

-

s

veloper
time of
an’s per-

ed data-
ion com-
e next
in
tic man-
nsaction

n bean
imple-

s; any

across

lues,
s from

orarily
rans-

as open
sion bean
es in the
A container may also terminate a session bean instance’s life after a deployer-specified time
out or as a result of the failure of the server on which the bean instance is running. For this
reason, a client should be prepared to recreate a new session object if it loses the one it i
using.

Typically, a session object’s conversational state is not written to the database. A session bean de
simply stores it in the session bean instance’s fields and assumes its value is retained for the life
the instance. A developer may use an extended persistence context to store a stateful session be
sistent conversational state. See the document “Java Persistence API” of this specification [2].

A session bean that does not make use of the Java Persistence API must explicitly manage cach
base data. A session bean instance must write any cached database updates prior to a transact
pletion, and it must refresh its copy of any potentially stale database data at the beginning of th
transaction. A session bean must also refresh anyjava.sql Statement objects before they are used
a new transaction context. Use of the Java Persistence API provides a session bean with automa
agement of database data, including the automatic flushing of cached database updates upon tra
commit. See [2].

The container manages the life cycle of the session bean instances. It notifies the instances whe
action may be necessary, and it provides a full range of services to ensure that the session bean
mentation is scalable and can support a large number of clients.

A session bean may be either:

• stateless—the session bean instances contain no conversational state between method
instance can be used for any client.

• stateful—the session bean instances contain conversational state which must be retained
methods and transactions.

4.2 Conversational State of a Stateful Session Bean

The conversational state of astatefulsession object is defined as the session bean instance’s field va
its associated interceptors and their instance field values, plus the transitive closure of the object
these instances’ fields reached by following Java object references.

To efficiently manage the size of its working set, a session bean container may need to temp
transfer the state of an idlestatefulsession bean instance to some form of secondary storage. The t
fer from the working set to secondary storage is called instancepassivation. The transfer back is called
activation.

In advanced cases, a session object’s conversational state may contain open resources, such
sockets and open database cursors. A container cannot retain such open resources when a ses
instance is passivated. A developer of a stateful session bean must close and open the resourc
PrePassivate and PostActivate lifecycle callback interceptor methods.[8]

[8] Note that this requirement does not apply to the EntityManager and EntityManagerFactory objects.
 5/2/06 62

Conversational State of a Stateful Session BeanEnterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

less the

d
at are

able.

rializ-

t is pos-
A container may only passivate a stateful session bean instance when the instance isnot in a transaction.

A container must not passivate a stateful session bean with an extended persistence context un
following conditions are met:[9]

• All the entities in the persistence context are serializable.

• The EntityManager is serializable.

A stateless session bean is never passivated.

4.2.1 Instance Passivation and Conversational State

The Bean Provider is required to ensure that thePrePassivate method leaves the instance fields an
the fields of its associated interceptors ready to be serialized by the container. The objects th
assigned to the instance’s non-transient fields and the non-transient fields of its interceptors
after thePrePassivate method completes must be one of the following.

• A serializable object[10].

• A null .

• A reference to an enterprise bean’s business interface.

• A reference to an enterprise bean’s remote interface, even if the stub class is not serializ

• A reference to an enterprise bean’s remote home interface, even if the stub class is not se
able.

• A reference to an entity bean’s local interface, even if it is not serializable.

• A reference to an entity bean’s local home interface, even if it is not serializable.

• A reference to theSessionContext object, even if it is not serializable.

• A reference to the environment naming context (that is, thejava:comp/env JNDI context)
or any of its subcontexts.

• A reference to theUserTransaction interface.

• A reference to a resource manager connection factory.

• A reference to a container-managedEntityManager object, even if it is not serializable.

[9] The container is not permitted to destroy a stateful session bean instance because it does not meet these requirements.

[10] Note that the Java Serialization protocol dynamically determines whether or not an object is serializable. This means that i
sible to serialize an object of a serializable subclass of a non-serializable declared field type.
63 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final ReleaseConversational State of a Stateful Session Bean

Sun Microsystems, Inc.

nces
erfaces,

versa-

a

t inter-

uring

f the

ces and
classes

e’s state

f the

o the
fer-
• A reference to anEntityManagerFactory object obtained via injection or JNDI lookup,
even if it is not serializable.

• A reference to ajavax.ejb.Timer object.

• An object that is not directly serializable, but becomes serializable by replacing the refere
to an enterprise bean’s business interface, an enterprise bean’s home and component int
the references to theSessionContext object, the references to thejava:comp/env
JNDI context and its subcontexts, the references to theUserTransaction interface, and
the references to theEntityManager and/orEntityManagerFactory by serializable
objects during the object’s serialization.

This means, for example, that the Bean Provider must close all JDBC™ connections in thePrePas-
sivate method and assign the instance’s fields storing the connections tonull .

The last bulleted item covers cases such as storing Collections of component interfaces in the con
tional state.

The Bean Provider must assume that the content of transient fields may be lost between thePrePas-
sivate and PostActivate notifications. Therefore, the Bean Provider should not store in
transient field a reference to any of the following objects:SessionContext object; environ-
ment JNDI naming context and any its subcontexts; business interfaces; home and componen
faces; EntityManager interface; EntityManagerFactory interface; UserTransaction
interface.

The restrictions on the use of transient fields ensure that containers can use Java Serialization d
passivation and activation.

The following are the requirements for the container.

The container performs the Java programming language Serialization (or its equivalent) o
instance’s state (and its interceptors’ state) after it invokes thePrePassivate method on the instance
and its interceptors.

The container must be able to properly save and restore the reference to the business interfa
home and component interfaces of the enterprise beans stored in the instance’s state even if the
that implement the object references are not serializable.

The container must be able to properly save and restore references to timers stored in the instanc
even if the classes that implement the timers are not serializable.

The container may use, for example, the object replacement technique that is part o
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to external-
ize the home and component references.

If the session bean instance stores in its conversational state an object reference t
javax.ejb.SessionContext interface, the container must be able to save and restore the re
ence across the instance’s passivation. The container can replace the originalSessionContext
object with a different and functionally equivalentSessionContext object during activation.
 5/2/06 64

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.

o the
e the
with a

tance’s
alent

anaged

.

ents for

guage
excep-

s ini-

nd the
by the

ontainer
ations

s, and
If the session bean instance stores in its conversational state an object reference t
java:comp/env JNDI context or its subcontext, the container must be able to save and restor
object reference across the instance’s passivation. The container can replace the original object
different and functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to theUserTransac-
tion interface, the container must be able to save and restore the object reference across the ins
passivation. The container can replace the original object with a different and functionally equiv
object during activation.

If the session bean instance stores in its conversational state an object reference to a container-m
EntityManager or to anEntityManagerFactory obtained via injection or JNDI lookup, the
container must be able to save and restore the object reference across the instance’s passivation

The container may destroy a session bean instance if the instance does not meet the requirem
serialization afterPrePassivate .

While the container is not required to use the Serialization protocol for the Java programming lan
to store the state of a passivated session instance, it must achieve the equivalent result. The one
tion is that containers are not required to reset the value oftransient fields during activation[11].
Declaring the session bean’s fields astransient is, in general, discouraged.

4.2.2 The Effect of Transaction Rollback on Conversational State

A session object’s conversational state is not transactional. It is not automatically rolled back to it
tial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state a
state of the underlying database, the bean developer (or the application development tools used
developer) must use theafterCompletion notification to manually reset its state.

4.3 Protocol Between a Session Bean Instance and its
Container

Containers themselves make no actual service demands on the session bean instances. The c
makes calls on a bean instance to provide it with access to container services and to deliver notific
issued by the container.

[11] This is to allow the container to swap out an instance’s state through techniques other than the Java Serialization protocol. For
example, the container’s Java Virtual Machine implementation may use a block of memory to keep the instance’s variable
the container swaps the whole memory block to the disk instead of performing Java Serialization on the instance.
65 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.

eful ses-

with the

bean

or other
makes
ted, and

an

-

by the

ular

uch
with

has
action

obtain
4.3.1 Required Session Bean Metadata

A session bean must be annotated or denoted in the deployment descriptor as a stateless or stat
sion bean. A stateless session bean must be annotated with theStateless annotation or denoted in
the deployment descriptor as a stateless session bean. A stateful session bean must be annotated
Stateful annotation or denoted in the deployment descriptor as a stateful session bean. TheState-
ful and Stateless annotations are component-defining annotations and are applied to the
class.

4.3.2 Dependency Injection

A session bean may use dependency injection mechanisms to acquire references to resources
objects in its environment (see Chapter 16, “Enterprise Bean Environment”). If a session bean
use of dependency injection, the container injects these references after the bean instance is crea
before any business methods are invoked on the bean instance. If a dependency on theSessionCon-
text is declared, or if the bean class implements the optionalSessionBean interface (see Section
4.3.5), theSessionContext is also injected at this time. If dependency injection fails, the be
instance is discarded.

Under the EJB 3.0 API, the bean class may acquire theSessionContext interface through
dependency injection without having to implement theSessionBean interface. In this case,
the Resource annotation (orresource-env-ref deployment descriptor element) is
used to denote the bean’s dependency on theSessionContext . See Chapter 16, “Enter-
prise Bean Environment”.

4.3.3 The SessionContext Interface

If the bean specifies a dependency on theSessionContext interface (or if the bean class imple
ments theSessionBean interface), the container must provide the session bean instance with aSes-
sionContext . This gives the session bean instance access to the instance’s context maintained
container. TheSessionContext interface has the following methods:

• The getCallerPrincipal method returns thejava.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the session bean instance’s caller has a partic
role.

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback. Only instances of a session bean
container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback. Only instances of a session bean with container-managed trans
demarcation can use this method.

• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface. The instance can use this interface to demarcate transactions and to
 5/2/06 66

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.

marca-

e timed

rvice
e this

all this

er-

eans

sion

ion

ses-

JNDI

eptor
on 4.6.3
transaction status. Only instances of a session bean with bean-managed transaction de
tion can use this method.

• The getTimerService method returns thejavax.ejb.TimerService interface.
Only stateless session beans can use this method. Stateful session beans cannot b
objects.

• The getMessageContext method returns thejavax.xml.rpc.handler.Mes-
sageContext interface of a stateless session bean that implements a JAX-RPC web se
endpoint. Only stateless session beans with web service endpoint interfaces can us
method.

• ThegetBusinessObject(Class businessInterface) method returns the session
bean’s business interface. Only session beans with an EJB 3.0 business interface can c
method.

• The getInvokedBusinessInterface method returns the session bean business int
face through which the bean was invoked.

• ThegetEJBObject method returns the session bean’s remote interface. Only session b
with a remote EJBObject interface can call this method.

• The getEJBHome method returns the session bean’s remote home interface. Only ses
beans with a remote home interface can call this method.

• ThegetEJBLocalObject method returns the session bean’s local interface. Only sess
beans with a local EJBLocalObject interface can call this method.

• ThegetEJBLocalHome method returns the session bean’s local home interface. Only
sion beans with a local home interface can call this method.

• The lookup method enables the session bean to look up its environment entries in the
naming context.

4.3.4 Session Bean Lifecycle Callback Interceptor Methods
The following lifecycle event callbacks are supported for session beans. Lifecycle callback interc
methods may be defined directly on the bean class or on a separate interceptor class. See Secti
and Chapter 12.
67 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.

the
er.

tion

d by
lly

and

n

nce.
iners

sivated,
ession

and then

n

n bean
revi-
use of
.

• PostConstruct

• PreDestroy

• PostActivate

• PrePassivate

The PostConstruct callback invocations occur before the first business method invocation on
bean. This is at a point after which any dependency injection has been performed by the contain

The PostConstruct lifecycle callback interceptor methods execute in an unspecified transac
and security context.

ThePreDestroy callback notification signals that the instance is in the process of being remove
the container. In thePreDestroy lifecycle callback interceptor methods, the instance typica
releases the resources that it has been holding.

The PreDestroy lifecycle callback interceptor methods execute in an unspecified transaction
security context.

ThePrePassivate andPostActivate lifecycle callback interceptor methods are only called o
stateful session bean instances.

ThePrePassivate callback notification signals the intent of the container to passivate the insta
ThePostActivate notification signals the instance it has just been reactivated. Because conta
automatically maintain the conversational state of a stateful session bean instance when it is pas
these notifications are not needed for most session beans. Their purpose is to allow stateful s
beans to maintain those open resources that need to be closed prior to an instance’s passivation
reopened during an instance’s activation.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in a
unspecified transaction and security context.

4.3.5 The Optional SessionBean Interface

The session bean class is not required to implement theSessionBean interface or theSerializ-
able interface. Interceptor classes for the bean are likewise not required to implement theSerial-
izable interface.

Compatibility Note: The SessionBean interface was required to be implemented by the sessio
class in earlier versions of the Enterprise JavaBeans specification. In EJB 3.0, the functionality p
ously provided by the SessionBean interface is available to the bean class through selective
dependency injection (of the SessionContext) and optional lifecycle callback interceptor methods

The SessionBean interface defines four methods:setSessionContext , ejbRemove , ejb-
Passivate , andejbActivate .
 5/2/06 68

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.

bean
ts ses-

con-
ses in

The
llow

ce’s pas-

as

to the

ccesses

see
SOAP

should

mes-
, if any.

inter-
The setSessionContext method is called by the bean’s container to associate a session
instance with its context maintained by the container. Typically a session bean instance retains i
sion context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the
tainer. In theejbRemove method, the instance typically releases the same resources that it relea
theejbPassivate method.

Under the EJB 3.0 API, the bean class may optionally define aPreDestroy lifecycle call-
back interceptor method for notification of the container’s removal of the bean instance.

The ejbPassivate notification signals the intent of the container to passivate the instance.
ejbActivate notification signals the instance it has just been reactivated. Their purpose is to a
stateful session beans to maintain those open resources that need to be closed prior to an instan
sivation and then reopened during an instance’s activation. TheejbPassivate andejbActivate
methods are only called on stateful session bean instances.

Under the EJB 3.0 API, the bean class may optionally definePrePassivate and/orPost-
Activate lifecycle callback interceptor methods for notification of the passivation/activa-
tion of the bean instance.

This specification requires that theejbRemove , ejbActivate , andejbPassivate methods of
the SessionBean interface, and theejbCreate method of a stateless session bean be treated
PreDestroy , PostActivate , PrePassivate andPostConstruct life cycle callback inter-
ceptor methods, respectively.

If the session bean implements theSessionBean interface, thePreDestroy annotation can only be
applied to theejbRemove method; thePostActivate annotation can only be applied to the
ejbActivate method; thePrePassivate annotation can only be applied to theejbPassivate
method. Similar requirements apply to use of deployment descriptor metadata as an alternative
use of annotations.

4.3.6 Use of the MessageContext Interface by Stateless Session Beans
A stateless session bean that implements a web service endpoint using the JAX-RPC contracts a
the JAX-RPCMessageContext interface by means of theSessionContext.getMessage-
Context method. TheMessageContext interface allows the stateless session bean instance to
the SOAP message for the web service endpoint, as well as the properties set by the JAX-RPC
message handlers, if any. The stateless session bean may use theMessageContext interface to set
properties for the JAX-RPC message response handlers, if any.

A stateless session bean that implements a web service endpoint using the JAX-WS contracts
use the JAX-WSWebServiceContext , which can be injected by use of theResource annotation.
TheWebServiceContext interface allows the stateless session bean instance to see the SOAP
sage for the web service endpoint, as well as the properties set by the JAX-WS message handlers
The stateless session bean may use theWebServiceContext interface to set properties for the
JAX-WS message handlers, if any. See [32]. The JAX-WS MessageContext is also accessible to
ceptors for stateless session bean web service endpoints. See Section 12.5.
69 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.

zation
ey may

. The
eces-

ion.

leted
ce. At
ause the

tion

need to

nchro-
action

cations
lback
beans

llback

e busi-
4.3.7 The Optional SessionSynchronization Interface for Stateful Session Beans

A stateful session bean class can optionally implement thejavax.ejb.SessionSynchroniza-
tion interface. This interface provides the session bean instances with transaction synchroni
notifications. The instances can use these notifications, for example, to manage database data th
cache within transactions—e.g., if the Java Persistence API is not used.

The afterBegin notification signals a session bean instance that a new transaction has begun
container invokes this method before the first business method within a transaction (which is not n
sarily at the beginning of the transaction). TheafterBegin notification is invoked with the transac-
tion context. The instance may do any database work it requires within the scope of the transact

ThebeforeCompletion notification is issued when a session bean instance’s client has comp
work on its current transaction but prior to committing the resource managers used by the instan
this time, the instance should write out any database updates it has cached. The instance can c
transaction to roll back by invoking thesetRollbackOnly method on its session context.

TheafterCompletion notification signals that the current transaction has completed. A comple
status oftrue indicates that the transaction has committed. A status offalse indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may
manually reset its state if a rollback occurred.

All container providers must supportSessionSynchronization . It is optional only for the bean
implementor. If a bean class implementsSessionSynchronization , the container must invoke
theafterBegin , beforeCompletion , andafterCompletion notifications as required by the
specification.

Only a stateful session bean with container-managed transaction demarcation may implement theSes-
sionSynchronization interface. A stateless session bean must not implement theSession-
Synchronization interface.

There is no need for a session bean with bean-managed transaction demarcation to rely on the sy
nization call backs because the bean is in control of the commit—the bean knows when the trans
is about to be committed and it knows the outcome of the transaction commit.

4.3.8 Timeout Callbacks for Stateless Session Beans
A stateless session bean can be registered with the EJB Timer Service for time-based event notifi
if it provides a timeout callback method. The container invokes the bean instance’s timeout cal
method when a timer for the bean has expired. See Chapter 18, “Timer Service”. Stateful session
cannot be registered with the EJB Timer Service, and therefore should not implement timeout ca
methods.

4.3.9 Business Method Delegation

The session bean’s business interface, component interface, or web service endpoint defines th
ness methods callable by a client.
 5/2/06 70

Protocol Between a Session Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final ReleaseSession Bean Component Contract

Sun Microsystems, Inc.

at
ion
i-

s to
ser-

class’s
bean’s
eta-

ribed

alls the

class-
liza-

r-
-

lization
ch ses-
een the
cus-

le
n have
class
The container classes that implement these are generated by the container tools. The class th
implements the session bean’s business interface and the class that implements a sess
bean’s component interface delegate an invocation of a business method to the matching bus
ness method that is implemented in the session bean class. The class that handles request
the web service endpoint invokes the stateless session bean method that matches the web
vice method corresponding to the SOAP request.

4.3.10 Session Bean Creation

The container creates an instance of a session bean as follows. First, the container calls the bean
newInstance method to create a new session bean instance. Second, the container injects the
SessionContext , if applicable, and performs any other dependency injection as specified by m
data annotations on the bean class or by the deployment descriptor. Third, the container calls thePost-
Construct lifecycle callback interceptor methods for the bean, if any. The additional steps desc
below apply if the session bean is invoked through the EJB 2.1 client view APIs.

4.3.10.1 Stateful Session Beans

If the bean is a stateful session bean and the client has used one of thecreate<METHOD> methods
defined in the session bean’s home or local home interface to create the bean, the container then c
instance’s initialization method whose signature matches the signature of thecreate<METHOD>
invoked by the client, passing to the method the input parameters sent from the client. If the bean
was written to the EJB 3.0 API, and has been adapted for use with an earlier client view, this initia
tion method is a matchingInit method, as designated by use of theInit annotation, or
init-method deployment descriptor element[12]. If the bean class was written to the EJB 2.1 or ea
lier API, this initialization method is a matchingejbCreate<METHOD> method, as described in Sec
tion 4.6.4.

Each stateful session bean class that has a home interface must have at least one such initia
method. The number and signatures of a session bean’s initialization methods are specific to ea
sion bean class. Since a stateful session bean represents a specific, private conversation betw
bean and its client, its initialization parameters typically contain the information the client uses to
tomize the bean instance for its use.

4.3.10.2 Stateless Session Beans

A stateless session bean that has an EJB 2.1 local or remote client view has a singlecreate method on
its home interface. In this case, EJB 2.1 required the stateless session bean class to have a singejb-
Create method have no arguments. Under EJB 3.0, it is not required that a stateless session bea
an ejbCreate method, even when it has a home interface. An EJB 3.0 stateless session bean
may have aPostConstruct method, as described in Section 4.3.4.

If the stateless session bean instance has anejbCreate method, the container treats theejbCreate
method as the instance’sPostConstruct method, and, in this case, thePostConstruct annota-
tion (or deployment descriptor metadata) can only be applied to the bean’sejbCreate method.

[12] Any initialization methods defined for the bean by means of theinit-method deployment descriptor element apply in addition
to those defined by means of annotations.
71 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Session Bean Instance and

Sun Microsystems, Inc.

of

the
ssion

esig-

emove

ed.
t

thods
invoca-
service

many
rialized

ceptor
Since stateless session bean instances are typically pooled, the time of the client’s invocation
thecreate method need not have any direct relationship to the container’s invocation of the
PostConstruct /ejbCreate method on the stateless session bean instance.

A stateless session bean that provides only a web service client view has nocreate method. If the
ejbCreate method required by EJB 2.1 is present, it is likewise treated by the container as
instance’sPostConstruct method, and is invoked when the container needs to create a new se
bean instance in order to service a client request.

4.3.11 Stateful Session Bean Removal
A stateful session bean written to the EJB 3.0 API typically has one or more remove methods d
nated by means of theRemove annotation orremove-method deployment descriptor element.[13]

Invocation of the remove method causes the removal of the stateful session bean after the r
method successfully completes. If theRemove annotation specifies the value ofretainIfExcep-
tion astrue , and theRemovemethod throws an application exception, the instance is not remov
The retain-if-exception subelement of theremove-method deployment descriptor elemen
may be explicitly specified to override theretainIfException value specified or defaulted by the
Remove annotation.

4.3.12 Business Method Interceptor Methods for Session Beans

TheAroundInvoke interceptor methods are supported for session beans. These interceptor me
may be defined on the bean class and/or on interceptor classes, and apply to the handling of the
tion of the business methods of the bean’s business interface, component interface, and/or web
endpoint.

For stateful session beans that implement theSessionSynchronization interface,afterBe-
gin occurs before anyAroundInvoke method invocation, andbeforeCompletion after all
AroundInvoke invocations are finished.

Interceptors are described in Chapter 12, “Interceptors”.

4.3.13 Serializing Session Bean Methods

The container serializes calls to each session bean instance. Most containers will support
instances of a session bean executing concurrently; however, each instance sees only a se
sequence of method calls. Therefore, a session bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the business method inter
methods, lifecycle callback interceptor methods, timeout callback methods,beforeCompletion ,
and so on), and it must serialize these callbacks with the client-invoked business method calls.

[13] Any remove methods defined for the bean by means of theremove-method deployment descriptor element apply in addition to
those defined by means of annotations.
 5/2/06 72

Stateful Session Bean State Diagram Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

siness
client,
bean’s
the

-
e

a
e session

ot

terface,
mined
r.

e

e
d
ecified

ons

licate
Clients are not allowed to make concurrent calls to a stateful session object. If a client-invoked bu
method is in progress on an instance when another client-invoked call, from the same or different
arrives at the same instance of a stateful session bean class, if the second client is a client of the
business interface, the concurrent invocation may result in the second client receiving
javax.ejb.ConcurrentAccessException [14]. If the EJB 2.1 client view is used, the con
tainer may throw thejava.rmi.RemoteException if the second client is a remote client, or th
javax.ejb.EJBException if the second client is a local client. This restriction does not apply to
stateless session bean because the container routes each request to a different instance of th
bean class.

In certain special circumstances (e.g., to handle clustered web container architectures), the
container may instead queue or serialize such concurrent requests. Clients, however, cann
rely on this behavior.

4.3.14 Transaction Context of Session Bean Methods

The implementation of a method defined in a session bean’s business interface or component in
a web service method, or a timeout callback method is invoked in the scope of a transaction deter
by the transaction attribute specified in the bean’s metadata annotations or deployment descripto

A session bean’safterBegin andbeforeCompletion methods are always called with the sam
transaction context as the business methods executed between theafterBegin andbeforeCom-
pletion methods.

A session bean’snewInstance , setSessionContext , other dependency injection methods, lif
cycle callback interceptor methods, andafterCompletion methods are called with an unspecifie
transaction context. Refer to section 13.6.5 for how the container executes methods with an unsp
transaction context.

For example, it would be wrong to perform database operations within a session bean’sPostCon-
struct or PreDestroy lifecycle callback interceptor methods and to assume that the operati
are part of the client’s transaction. ThePostConstruct and PreDestroy methods are not con-
trolled by a transaction attribute because handling rollbacks in these methods would greatly comp
the session instance’s state diagram.

4.4 Stateful Session Bean State Diagram

The following figure illustrates the life cycle of a stateful session bean instance.

[14] The javax.ejb.ConcurrentAccessException is a subclass of thejavax.ejb.EJBException . If the business
interface is a remote business interface that extendsjava.rmi.Remote , the client will receive thejava.rmi.RemoteEx-
ception instead.
73 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.

n bean
Figure 5 Life Cycle of a Stateful Session Bean Instance

The following steps describe the life cycle of a stateful session bean instance:

• A session bean instance’s life starts when a client obtains a reference to a stateful sessio
instance through dependency injection or JNDI lookup, or when the client invokes acre-

tx method

commitafterBegin()

1. beforeCompletion()

does not
 exist

method ready passive

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks, if any

PreDestroy callbacks, if any

Remove method
chosen as LRU victim

non-tx method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

method

2. afterCompletion(true)
afterCompletion(false)

rollback

tx method non-tx or different tx method
ERROR

timeout

or timeout

instance throws system
exception from any method

create<METHOD>(args)

PrePassivate callbacks, if any

PostActivate callbacks, if any

dependency injection,
business interface lookup, or

4. Init method, or
 ejbCreate<METHOD>, if any
 5/2/06 74

Stateful Session Bean State Diagram Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

er to
Next,

r
eploy-

lient

nce is

plicit
ce, as
DI)

saction
nd the
either

” and
tions.

ction.

si-
n. The

ansac-

to the
ct and
hat the

the

of the

tabase).

mit or

atically
ate<METHOD>method on the session bean’s home interface. This causes the contain
invokenewInstance on the session bean class to create a new session bean instance.
the container injects the bean’sSessionContext , if applicable, and performs any othe
dependency injection as specified by metadata annotations on the bean class or by the d
ment descriptor. The container then calls thePostConstruct lifecycle callback interceptor
method(s) for the bean, if any. Finally, if the session bean was written to the EJB 2.1 c
view, the container invokes the matchingejbCreate<METHOD> or Init method on the
instance. The container then returns the session object reference to the client. The insta
now in the method ready state.

NOTE: When a stateful session bean is looked up or otherwise obtained through the ex
JNDI lookup mechanisms, the container must provide a new stateful session bean instan
required by the Java EE specification (Section “Java Naming and Directory Interface (JN
Naming Context” [12]).

• The session bean instance is now ready for client’s business methods. Based on the tran
attributes in the session bean’s metadata annotations and/or deployment descriptor a
transaction context associated with the client’s invocation, a business method is executed
in a transaction context or with an unspecified transaction context (shown as “tx method
“non-tx method” in the diagram). See Chapter 13 for how the container deals with transac

• A non-transactional method is executed while the instance is in the method ready state.

• An invocation of a transactional method causes the instance to be included in a transa
When the session bean instance is included in a transaction, the container issues theafter-
Begin method on it. TheafterBegin method is invoked on the instance before any bu
ness method or business method interceptor method is executed as part of the transactio
instance becomes associated with the transaction and will remain associated with the tr
tion until the transaction completes.

• Session bean methods invoked by the client in this transaction can now be delegated
bean instance. An error occurs if a client attempts to invoke a method on the session obje
the bean’s metadata annotations and/or deployment descriptor for the method requires t
container invoke the method in a different transaction context than the one with which
instance is currently associated or in an unspecified transaction context.

• If a transaction commit has been requested, the transaction service notifies the container
commit request before actually committing the transaction, and the container issues abefor-
eCompletion on the instance. WhenbeforeCompletion is invoked, the instance
should write any cached updates to the database[15]. If a transaction rollback had been
requested instead, the rollback status is reached without the container issuing abeforeCom-
pletion . The container may not call thebeforeCompletion method if the transaction
has been marked for rollback (nor does the instance write any cached updates to the da

• The transaction service then attempts to commit the transaction, resulting in either a com
rollback.

[15] Note that if the Java Persistence API is used, the persistence provider will use the beforeCompletion notification to autom
flush any updates to the container-managed persistence context to the database. See [2].
75 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.

the
ginning

from
con-
n
y stor-
saction.

ct after
r the
iness

he con-
res the

kes
the
oci-
siness

e of
• When the transaction completes, the container issuesafterCompletion on the instance,
specifying the status of the completion (either commit or rollback). If a rollback occurred,
bean instance may need to reset its conversational state back to the value it had at the be
of the transaction.

• The container’s caching algorithm may decide that the bean instance should be evicted
memory. (This could be done at the end of each method, or by using an LRU policy). The
tainer invokes thePrePassivate lifecycle callback interceptor method(s) for the bea
instance, if any. After this completes, the container saves the instance’s state to secondar
age. A session bean can be passivated only between transactions, and not within a tran

• While the instance is in the passivated state, the container may remove the session obje
the expiration of a timeout specified by the Deployer. All object references and handles fo
session object become invalid. If a client attempts to invoke a method on the bean’s bus
interface, the container will throw thejavax.ejb.NoSuchEJBException [16]. If the EJB
2.1 client view is used, the container will throw thejava.rmi.NoSuchObjectExcep-
tion if the client is a remote client, or thejavax.ejb.NoSuchObjectLocalExcep-
tion if the client is a local client.

• If a client invokes a session object whose session bean instance has been passivated, t
tainer will activate the instance. To activate the session bean instance, the container resto
instance’s state from secondary storage and invokes thePostActivate method for the
instance, if any.

• The session bean instance is again ready for client methods.

• When the client calls a business method of the bean that has been designated as aRemove
method, or aremove method on the home or component interface, the container invo
PreDestroy lifecycle callback interceptor method(s) (if any) for the bean instance after
Remove method completes.[17] This ends the life of the session bean instance and the ass
ated session object. If a client subsequently attempts to invoke a method on the bean’s bu
interface, the container will throw thejavax.ejb.NoSuchEJBException [18]. If the EJB
2.1 client view is used, any subsequent attempt causes thejava.rmi.NoSuchObjectEx-
ception to be thrown if the client is a remote client, or thejavax.ejb.NoSuchOb-
jectLocalException if the client is a local client. (The
java.rmi.NoSuchObjectException is a subclass of thejava.rmi.RemoteEx-
ception ; the javax.ejb.NoSuchObjectLocalException is a subclass of the
javax.ejb.EJBException). Note that a container can also invoke thePreDestroy
method on the instance without a client call to remove the session object after the lifetim
the EJB object has expired. If theRemove method completes successfully or if theRemove
methods throws an application exception for whichretainIfException is not true or if a
system exception is thrown,SessionSynchronization methods are not called on the
bean instance. If an application exception is thrown for whichretainIfException is true,

[16] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.NoSuchObject-
Exception is thrown to the client instead.

[17] If the Remove annotation specifies the value ofretainIfException astrue , and theRemove method throws an applica-
tion exception, the instance is not removed (and thePreDestroy lifecycle callback interceptor methods are not invoked).

[18] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.NoSuchObject-
Exception is thrown to the client instead.
 5/2/06 76

Stateful Session Bean State Diagram Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

ces can

manager
e EJB

t

the bean is neither destroyed nor discarded, andSessionSynchronization methods, if
any, are called on the instance at the end of transaction.

The container must call theafterBegin , beforeCompletion , and afterComple-
tion methods if the session bean class implements, directly or indirectly, theSessionSyn-
chronization interface. The container does not call these methods if the session bean
class does not implement theSessionSynchronization interface.

4.4.1 Operations Allowed in the Methods of a Stateful Session Bean Class

Table 1 defines the methods of a stateful session bean class from which the session bean instan
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers,Timer methods, theEntityManager andEntity-
ManagerFactory methods, and other enterprise beans.

If a session bean instance attempts to invoke a method of theSessionContext interface, and that
access is not allowed in Table 1, the container must throw thejava.lang.IllegalStateExcep-
tion.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
or entity manager factory, and that access is not allowed in Table 1, the behavior is undefined by th
architecture.

If a session bean instance attempts to invoke a method of theTimer interface and the access is no
allowed in Table 1, the container must throw thejava.lang.IllegalStateException .
77 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.
 5/2/06 78

Stateful Session Bean State Diagram Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
Table 1 Operations Allowed in the Methods of a Stateful Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection
methods (e.g., setSes-
sionContext)

SessionContext methods:getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

SessionContext methods:getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, Pre-
Destroy, PrePassivate,
PostActivate lifecycle
callback interceptor
methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

business method
from business inter-
face or from compo-
nent interface;
business method inter-
ceptor method

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
getRollbackOnly, isCallerInRole, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject,
getInvokedBusinessInterface, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getInvokedBusiness-
Interface, getUserTransaction,
lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods
79 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.

ecified
ith an

trans-

ot

n
erface.
Notes:

• The PostConstruct , PreDestroy , PrePassivate , PostActivate , Init , and/or
ejbCreate<METHOD> , ejbRemove , ejbPassivate , andejbActivate methods of
a session bean with container-managed transaction demarcation execute with an unsp
transaction context. Refer to Subsection 13.6.5 for how the container executes methods w
unspecified transaction context.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing the operations in Table 1 follow:

• Invoking the getBusinessObject method is disallowed if the session bean does n
define an EJB 3.0 business interface.

• Invoking thegetInvokedBusinessInterface method is disallowed if the session bea
does not define an EJB 3.0 business interface or was not invoked through a business int

afterBegin
beforeCompletion

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
getRollbackOnly, isCallerInRole, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods

N/A

(a bean with bean-managed transaction
demarcation cannot implement the Ses-
sionSynchronization interface)

afterCompletion

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, lookup

JNDI access to java:comp/env

Table 1 Operations Allowed in the Methods of a Stateful Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation
 5/2/06 80

Stateful Session Bean State Diagram Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

n

ontext,

ethods
curity

ged

-
ce.

ion
ked by
ed in
thods

subse-
w the
ll

g
n

• Invoking thegetEJBObject andgetEJBHome methods is disallowed if the session bea
does not define a remote client view.

• Invoking thegetEJBLocalObject andgetEJBLocalHome methods is disallowed if the
session bean does not define a local client view.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the container does not have a meaningful transaction c
and to all session beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean m
for which the container does not have a meaningful transaction context and/or client se
context.

• TheUserTransaction interface is unavailable to enterprise beans with container-mana
transaction demarcation.

• TheTimerService interface is unavailable to stateful session beans.

• Invoking thegetMessageContext method is disallowed for stateful session beans.

• Invoking thegetEJBObject andgetEJBLocalObject methods is disallowed in the ses
sion bean methods in which there is no session object identity established for the instan

4.4.2 Dealing with Exceptions
A RuntimeException that is not an application exception thrown from any method of the sess
bean class (including the business methods and the lifecycle callback interceptor methods invo
the container) results in the transition to the “does not exist” state. Exception handling is describ
detail in Chapter 14. See section 12.4.2 for the rules pertaining to lifecycle callback interceptor me
when more than one such method applies to the bean class.

From the client perspective, the corresponding session object does not exist any more. If a client
quently attempts to invoke a method on the bean’s business interface, the container will thro
javax.ejb.NoSuchEJBException [19]. If the EJB 2.1 client view is used, the container wi
throw the java.rmi.NoSuchObjectException if the client is a remote client, or the
javax.ejb.NoSuchObjectLocalException if the client is a local client.

4.4.3 MissedPreDestroy Calls

The Bean Provider cannot assume that the container will always invoke thePreDestroy lifecycle
callback interceptor method(s) (orejbRemove method) for a session bean instance. The followin
scenarios result in thePreDestroy lifecycle callback interceptor method(s) not being called for a
instance:

[19] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.NoSuchObject-
Exception is thrown to the client instead.
81 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateful Session Bean State Diagram

Sun Microsystems, Inc.

above
periodi-

n bean
peri-

busi-
nt pro-

ke a
tadata
ethod

e, the

e the
ainer

t to
• A crash of the EJB container.

• A system exception thrown from the instance’s method to the container.

• A timeout of client inactivity while the instance is in thepassive state. The timeout is speci-
fied by the Deployer in an EJB container implementation-specific way.

If resources are allocated in aPostConstruct lifecycle callback interceptor method (orejbCre-
ate<METHOD>method) and/or in the business methods, and normally released in aPreDestroy
lifecycle callback interceptor method, these resources will not be automatically released in the
scenarios. The application using the session bean should provide some clean up mechanism to
cally clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the sessio
stores the shopping cart content in a database, the application should provide a program that runs
odically and removes “abandoned” shopping carts from the database.

4.4.4 Restrictions for Transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked
ness methods. The restrictions are enforced by the container and must be observed by the clie
grammer.

• A session bean instance can participate in at most a single transaction at a time.

• If a session bean instance is participating in a transaction, it is an error for a client to invo
method on the session object such that the transaction attribute specified in the bean’s me
annotations and/or the deployment descriptor would cause the container to execute the m
in a different transaction context or in an unspecified transaction context. In such a cas
javax.ejb.EJBException will be thrown to a client of the bean’s business interface[20].
If the EJB 2.1 client view is used, the container throws thejava.rmi.RemoteException
to the client if the client is a remote client, or thejavax.ejb.EJBException if the client
is a local client.

• If a session bean instance is participating in a transaction, it is an error for a client to invok
remove method on the session object’s home or component interface object. The cont
must detect such an attempt and throw thejavax.ejb.RemoveException to the client.
The container should not mark the client’s transaction for rollback, thus allowing the clien
recover.

[20] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.
 5/2/06 82

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

eans that
.

tance
f such
.

elegate a
dele-

hat the

d. Due
iva-
ion bean
is not

f clients,
ns may
t by the

stateful
object.

es-
ion

es a cli-
4.5 Stateless Session Beans

Stateless session beans are session beans whose instances have no conversational state. This m
all bean instances are equivalent when they are not involved in servicing a client-invoked method

The term “stateless” signifies that an instance has no state for a specific client. However, the ins
variables of the instance can contain the state across client-invoked method calls. Examples o
state include an open database connection and an object reference to an enterprise bean object

The Bean Provider must exercise caution if retaining any application state across method
calls. In particular, references to common bean state should not be returned through multiple
local interface method calls.

Because all instances of a stateless session bean are equivalent, the container can choose to d
client-invoked method to any available instance. This means, for example, that the container may
gate the requests from the same client within the same transaction to different instances, and t
container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client loa
to client “think time,” this number is typically much smaller than the number of active clients. Pass
tion is not needed or used for stateless sessions. The container creates another stateless sess
instance if one is needed to handle an increase in client work load. If a stateless session bean
needed to handle the current client work load, the container can destroy it.

Because stateless session beans minimize the resources needed to support a large population o
depending on the implementation of the container, applications that use stateless session bea
scale somewhat better than those using stateful session beans. However, this benefit may be offse
increased complexity of the client application that uses the stateless beans.

Compatibility Note: Local and remote clients using the EJB 2.1 client view interfaces use thecreate
andremove methods on the home interface of a stateless session bean in the same way as on a
session bean. To the EJB 2.1 client, it appears as if the client controls the life cycle of the session
However, the container handles thecreate and remove calls without necessarily creating and
removing an EJB instance. The home interface of a stateless session bean must have onecreate
method that takes no arguments. Thecreate method of the remote home interface must return the s
sion bean’s remote interface. Thecreate method of the local home interface must return the sess
bean’s local interface. There can be no othercreate methods in the home interface.

There is no fixed mapping between clients and stateless instances. The container simply delegat
ent’s work to any available instance that is method-ready.

A stateless session bean must not implement thejavax.ejb.SessionSynchronization inter-
face.
83 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems, Inc.

session
es and

ontainer
cy
escrip-
r
direct

y client
4.5.1 Stateless Session Bean State Diagram

When a client calls a method on a stateless session object or invokes a method on a stateless
bean through its web service client view, the container selects one of its method-ready instanc
delegates the method invocation to it.

The following figure illustrates the life cycle of astateless session bean instance.

Figure 6 Life Cycle of a Stateless Session Bean

The following steps describe the life cycle of a session bean instance:

• A stateless session bean instance’s life starts when the container invokes thenewInstance
method on the session bean class to create a new session bean instance. Next, the c
injections the bean’sSessionContext , if applicable, and performs any other dependen
injection as specified by metadata annotations on the bean class or by the deployment d
tor. The container then calls thePostConstruct lifecycle callback interceptor methods fo
the bean, if any. The container can perform the instance creation at any time—there is no
relationship to a client’s invocation of a business method or thecreate method.

• The session bean instance is now ready to be delegated a business method call from an
or a call from the container to the timeout callback method.

does not
 exist

method-ready
 pool

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks,

PreDestroy callbacks, if any

method timeout callback method

method()
newInstance()

action initiated by client
action initiated by container

if any
 5/2/06 84

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

educe

sion
• When the container no longer needs the instance (usually when the container wants to r
the number of instances in the method-ready pool), the container invokes thePreDestroy
lifecycle callback interceptor methods for it, if any. This ends the life of the stateless ses
bean instance.
85 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems, Inc.

nces can

manager
e EJB
4.5.2 Operations Allowed in the Methods of a Stateless Session Bean Class

Table 2 defines the methods of a stateless session bean class in which the session bean insta
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers,TimerService and Timer methods, theEntity-
Manager andEntityManagerFactory methods, and other enterprise beans.

If a session bean instance attempts to invoke a method of theSessionContext interface, and the
access is not allowed in Table 2, the container must throw thejava.lang.IllegalStateExcep-
tion.

If a session bean instance attempts to invoke a method of theTimerService or Timer interface and
the access is not allowed in Table 2, the container must throw thejava.lang.IllegalStateEx-
ception .

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
or entity manager factory, and the access is not allowed in Table 2, the behavior is undefined by th
architecture.
 5/2/06 86

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
.

87 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems, Inc.
Table 2 Operations Allowed in the Methods of a Stateless Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection-
methods (e.g., setSes-
sionContext)

SessionContext methods:getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

SessionContext methods:getEJBHome,
getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back interceptor
methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getEJBObject,
getEJBLocalObject,getTimerService,
lookup

JNDI access to java:comp/env

EntityManagerFactory access

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getEJBObject,
getEJBLocalObject, getUserTransac-
tion, getTimerService, lookup

JNDI access to java:comp/env

EntityManagerFactory access

business method
from business inter-
face or component
interface; business
method interceptor
method

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
getInvokedBusinessInterface, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, getInvokedBusi-
nessInterface, lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

business method
from web service end-
point

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
getMessageContext, lookup

Message context methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, getMessageCon-
text, lookup

UserTransaction methods

Message context methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods
 5/2/06 88

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.
timeout callback
method

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getRollbackOnly, set-
RollbackOnly, getEJBObject, getE-
JBLocalObject, getTimerService,
lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods:getBusinessOb-
ject, getEJBHome, getEJBLocal-
Home, getCallerPrincipal,
isCallerInRole, getEJBObject, getE-
JBLocalObject, getUserTransaction,
getTimerService, lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

Table 2 Operations Allowed in the Methods of a Stateless Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation
89 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems, Inc.

trans-

ot

n
erface.

n

ontext,

at

point.

in the
ontext

ged

rise
ked by
ed in
thods

ing the
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing operations in Table 2:

• Invoking the getBusinessObject method is disallowed if the session bean does n
define an EJB 3.0 business interface.

• Invoking thegetInvokedBusinessInterface method is disallowed if the session bea
does not define an EJB 3.0 business interface or was not invoked through a business int

• Invoking thegetEJBObject andgetEJBHome methods is disallowed if the session bea
does not define a remote client view.

• Invoking thegetEJBLocalObject andgetEJBLocalHome methods is disallowed if the
session bean does not define a local client view.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the container does not have a meaningful transaction c
and for all session beans with bean-managed transaction demarcation.

• Invoking the getMessageContext method is disallowed in session bean methods th
were not invoked by the container through the session bean’s web service endpoint. Theget-
MessageContext method returns thejavax.xml.rpc.handler.MessageCon-
text interface of a stateless session bean that implements a JAX-RPC web service end

• Accessing resource managers, enterprise beans, and the EntityManager is disallowed
session bean methods for which the container does not have a meaningful transaction c
and/or client security context.

• The UserTransaction interface is unavailable to session beans with container-mana
transaction demarcation.

4.5.3 Dealing with Exceptions
A RuntimeException that is not an application exception thrown from any method of the enterp
bean class (including the business methods and the lifecycle callback interceptor methods invo
the container) results in the transition to the “does not exist” state. Exception handling is describ
detail in Chapter 14. See section 12.4.2 for the rules pertaining to lifecycle callback interceptor me
when more than one such method applies to the bean class.

From the client perspective, the session object continues to exist. The client can continue access
session object because the container can delegate the client’s requests to another instance.
 5/2/06 90

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

ean can

remote

des an

JB 2.1

define
lers are

this

s busi-
4.6 The Responsibilities of the Bean Provider

This section describes the responsibilities of the session Bean Provider to ensure that a session b
be deployed in any EJB container.

4.6.1 Classes and Interfaces

The session Bean Provider is responsible for providing the following class files[21]:

• Session bean class.

• Session bean’s business interface(s), if the session bean provides an EJB 3.0 local or
client view.

• Session bean’s remote interface and remote home interface, if the session bean provi
EJB 2.1 remote client view.

• Session bean’s local interface and local home interface, if the session bean provides an E
local client view.

• Session bean’s web service endpoint interface, if any.

• Interceptor classes, if any.

The Bean Provider for a stateless session bean that provides a web service client view may also
JAX-WS or JAX-RPC message handlers for the bean. The requirements for such message hand
defined in [31] and [32].

4.6.2 Session Bean Class

The following are the requirements for the session bean class:

• The class must be defined aspublic , must not befinal , and must not beabstract . The
class must be a top level class.

• The class must have apublic constructor that takes no parameters. The container uses
constructor to create instances of the session bean class.

• The class must not define thefinalize() method.

• The class must implement the bean’s business interface(s) or the methods of the bean’
ness interface(s), if any.

[21] Note that the interfaces provided by the Bean Provider may have been generated by tools.
91 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.

ces, if

ce.

ean has
t call-

e
per-

lass.

thods
EJB

e cases,
ack

r class
ed in
• The class must implement the business methods of the bean’s EJB 2.1 client view interfa
any.

Optionally:

• The class may implement, directly or indirectly, thejavax.ejb.SessionBean interface.

• If the class is a stateful session bean, it may implement thejavax.ejb.SessionSyn-
chronization interface.

• The class may implement the session bean’s web service endpoint or component interfa

• If the class is a stateless session bean, it may implement thejavax.ejb.TimedObject
interface. See Chapter 18, “Timer Service”.

• The class may implement theejbCreate method(s).

• The session bean class may have superclasses and/or superinterfaces. If the session b
superclasses, the business methods, lifecycle callback interceptor methods, the timeou
back method, the methods of the optionalSessionSynchronization interface, the
Init or ejbCreate<METHOD> methods, theRemove methods, and the methods of th
SessionBean interface, may be defined in the session bean class, or in any of its su
classes. A session bean class must not have a superclass that is itself a session bean c

• The session bean class is allowed to implement other methods (for example helper me
invoked internally by the business methods) in addition to the methods required by the
specification.

4.6.3 Lifecycle Callback Interceptor Methods
PostConstruct , PreDestroy , PrePassivate , andPostActivate lifecycle callback inter-
ceptor methods may be defined for session beans. IfPrePassivate or PostActivate lifecycle
callbacks are defined for stateless session beans, they are ignored.[22]

Compatibility Note: If thePostConstruct lifecycle callback interceptor method is theejbCreate
method, if thePreDestroy lifecycle callback interceptor method is theejbRemove method, if the
PostActivate lifecycle callback interceptor method is theejbActivate method, or if thePre-
Passivate lifecycle callback interceptor method is theejbPassivate method, these callback
methods must be implemented on the bean class itself (or on its superclasses). Except for thes
the method names can be arbitrary, but must not start with “ejb” to avoid conflicts with the callb
methods defined by the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an intercepto
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defin
Section 12.4, “Interceptors for LifeCycle Event Callbacks” .

[22] Note that this might result from the use of default interceptors, for example.
 5/2/06 92

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

.1

er-

the

EJB

ion

w these

with

the
rface or
4.6.4 ejbCreate<METHOD> Methods

The session bean class of a session bean that has a home interface may define one or moreejbCre-
ate<METHOD>methods. TheseejbCreate methods are intended for use only with the EJB 2
components. The signatures of theejbCreate methods must follow these rules:

• The method name must haveejbCreate as its prefix.

• The method must be declared aspublic .

• The method must not be declared asfinal or static .

• The return type must bevoid .

• The method arguments must be legal types for RMI/IIOP if there is acreate<METHOD> cor-
responding to theejbCreate<METHOD> method on the session bean’s remote home int
face.

• A stateless session bean may define only a singleejbCreate method, with no arguments.

• The throws clause may define arbitrary application exceptions, possibly including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed theejbCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
1.1 or EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherRuntimeException to indicate non-application exceptions to the container (see Sect
14.2.2). An EJB 2.0 and later compliant enterprise bean should not throw thejava.rmi.Remote-
Exception from theejbCreate method .

4.6.5 Business Methods

The session bean class may define zero or more business methods whose signatures must follo
rules:

• The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts
the callback methods used by the EJB architecture.

• The business method must be declared aspublic .

• The method must not be declared asfinal or static .

• The argument and return value types for a method must be legal types for RMI/IIOP if
method corresponds to a business method on the session bean’s remote business inte
remote interface.
93 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.

RPC
’s web

.1 or

ion

ust be
be a

he

rface
B 2.1

ocal or

busi-
s the

more
e of

an by
he

has
• The argument and return value types for a method must be legal types for JAX-WS / JAX-
if the method is a web service method or corresponds to a method on the session bean
service endpoint.

• Thethrows clause may define arbitrary application exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherRuntimeException to indicate non-application exceptions to the container (see Sect
14.2.2). An EJB 2.0 or later compliant enterprise bean should not throw thejava.rmi.RemoteEx-
ception from a business method.

4.6.6 Session Bean’s Business Interface

The following are the requirements for the session bean’s business interface:

• The interface must not extend thejavax.ejb.EJBObject or javax.ejb.EJBLo-
calObject interface.

• If the business interface is a remote business interface, the argument and return values m
of valid types for RMI/IIOP. The remote business interface is not required or expected to
java.rmi.Remote interface. The throws clause should not include the
java.rmi.RemoteException . The methods of the business interface may only throw t
java.rmi.RemoteException if the interface extendsjava.rmi.Remote .

• The interface is allowed to have superinterfaces.

• If the interface is a remote business interface, its methods must not expose local inte
types, timers or timer handles, or the managed collection classes that are used for EJ
entity beans with container-managed persistence as arguments or results.

• The bean class must implement the interface or the interface must be designated as a l
remote business interface of the bean by means of theLocal or Remote annotation or in the
deployment descriptor. The following rules apply:

• If bean class implements a single interface, that interface is assumed to be the
ness interface of the bean. This business interface will be a local interface unles
interface is designated as a remote business interface by use of theRemote annota-
tion on the bean class or interface or by means of the deployment descriptor.

• A bean class is permitted to have more than one interface. If a bean class has
than one interface—excluding the interfaces listed below—any business interfac
the bean class must be explicitly designated as a business interface of the be
means of theLocal or Remote annotation on the bean class or interface or in t
deployment descriptor.

• The following interfaces are excluded when determining whether the bean class
more than one interface:java.io.Serializable ; java.io.Externaliz-
able ; any of the interfaces defined by thejavax.ejb package.
 5/2/06 94

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

face of

ter-
ate its
mple-

heir

ubject

e ses-

s-

rface
beans

heir

face
• The same business interface cannot be both a local and a remote business inter
the bean.[23]

• While it is expected that the bean class will typically implement its business in
face(s), if the bean class uses annotations or the deployment descriptor to design
business interface(s), it is not required that the bean class also be specified as i
menting the interface(s).

4.6.7 Session Bean’s Remote Interface

The following are the requirements for the session bean’s remote interface:

• The interface must extend thejavax.ejb.EJBObject interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and theirthrows clauses
must include thejava.rmi.RemoteException .

• The remote interface is allowed to have superinterfaces. Use of interface inheritance is s
to the RMI/IIOP rules for the definition of remote interfaces.

• For each method defined in the remote interface, there must be a matching method in th
sion bean’s class. The matching method must have:

• The same name.

• The same number and types of arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the se
sion bean class must be defined in thethrows clause of the method of the remote
interface.

• The remote interface methods must not expose local interface types, local home inte
types, timers or timer handles, or the managed collection classes that are used for entity
with container-managed persistence as arguments or results.

4.6.8 Session Bean’s Remote Home Interface

The following are the requirements for the session bean’s remote home interface:

• The interface must extend thejavax.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and that theirthrows
clauses must include thejava.rmi.RemoteException .

[23] It is also an error if theLocal and/orRemote annotations are specified both on the bean class and on the referenced inter
and the values differ.
95 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.

nce is

-

ce

the

ession

s-
l

• The remote home interface is allowed to have superinterfaces. Use of interface inherita
subject to the RMI/IIOP rules for the definition of remote interfaces.

• A session bean’s remote home interface must define one or morecreate<METHOD> meth-
ods. A stateless session bean must define exactly onecreate method with no arguments.

• Eachcreate method of a stateful session bean must be namedcreate<METHOD> , and it
must match one of theInit methods orejbCreate<METHOD> methods defined in the ses
sion bean class. The matchingInit method orejbCreate<METHOD> method must have
the same number and types of arguments. (Note that the return type is different.) Thecreate
method for a stateless session bean must be named “create ” but need not have a matching
“ejbCreate ” method.

• The return type for acreate<METHOD> method must be the session bean’s remote interfa
type.

• All the exceptions defined in thethrows clause of anejbCreate<METHOD> method of the
session bean class must be defined in thethrows clause of the matchingcreate<METHOD>
method of the remote home interface.

• Thethrows clause must includejavax.ejb.CreateException .

4.6.9 Session Bean’s Local Interface

The following are the requirements for the session bean’s local interface:

• The interface must extend thejavax.ejb.EJBLocalObject interface.

• The throws clause of a method defined in the local interface must not include
java.rmi.RemoteException .

• The local interface is allowed to have superinterfaces.

• For each method defined in the local interface, there must be a matching method in the s
bean’s class. The matching method must have:

• The same name.

• The same number and types of arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the se
sion bean class must be defined in thethrows clause of the method of the loca
interface.

4.6.10 Session Bean’s Local Home Interface

The following are the requirements for the session bean’s local home interface:

• The interface must extend thejavax.ejb.EJBLocalHome interface.
 5/2/06 96

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

the

-

ce

imple-

. The
defined
b Ser-

e. The
].

oint
s for

pecifi-
SDL
the

r

• The throws clause of a method in the local home interface must not include
java.rmi.RemoteException .

• The local home interface is allowed to have superinterfaces.

• A session bean’s local home interface must define one or morecreate<METHOD> methods.
A stateless session bean must define exactly onecreate method with no arguments.

• Eachcreate method of a stateful session bean must be namedcreate<METHOD> , and it
must match one of theInit methods orejbCreate<METHOD> methods defined in the ses
sion bean class. The matchingInit method orejbCreate<METHOD> method must have
the same number and types of arguments. (Note that the return type is different.) Thecreate
method for a stateless session bean must be named “create ” but need not have a matching
“ejbCreate ” method.

• The return type for acreate<METHOD> method must be the session bean’s local interfa
type.

• All the exceptions defined in thethrows clause of anejbCreate<METHOD> method of the
session bean class must be defined in thethrows clause of the matchingcreate<METHOD>
method of the local home interface.

• Thethrows clause must includejavax.ejb.CreateException .

4.6.11 Session Bean’s Web Service Endpoint Interface

EJB 3.0 does not require the definition of a web service endpoint interface for session beans that
ment a web service endpoint.

The following are requirements for session beans with JAX-RPC web service endpoint interfaces
JAX-WS and Web Services for Java EE specifications do not require that a separate interface be
for a web service endpoint. The requirements for web service endpoints under JAX-WS and We
vices for Java EE are given in [32] and [31].

The following are the requirements for a stateless session bean’s web service endpoint interfac
web service endpoint interface must follow the rules for JAX-RPC service endpoint interfaces [25

• The web service endpoint interface must extend thejava.rmi.Remote interface.

• The methods defined in the interface must follow the rules for JAX-RPC service endp
interfaces. This means that their argument and return values must be of valid type
JAX-RPC, and theirthrows clauses must include thejava.rmi.RemoteException .
Thethrows clause may additionally include application exceptions.

Note that JAX-RPC Holder classes may be used as method parameters. The JAX-RPC s
cation requires support for Holder classes as part of the standard Java mapping of W
operations in order to handle out and inout parameters. Holder classes implement
javax.xml.rpc.holders.Holder interface. See the JAX-RPC specification [25] fo
further details.
97 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.

tching

s-
-

ct as
an

rface
cal or
s that

s or as

end-
ider

ializa-

ment
y
or as

e Con-
bean

iner, we
yment

lasses
of the

and by
• For each method defined in the web service endpoint interface, there must be a ma
method in the session bean’s class. The matching method must have:

• The same name.

• The same number and types of arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the se
sion bean class must be defined in thethrows clause of the method of the web ser
vice endpoint interface.

• The web service endpoint interface must not include an EJBObject or EJBLocalObje
either a parameter or return type. An array or JAX-RPC value type must not include
EJBObject or EJBLocalObject as a contained element. The web service endpoint inte
methods must not expose business interface types, local or remote interface types, lo
remote home interface types, timers or timer handles, or the managed collection classe
are used for entity beans with container-managed persistence as arguments or result
fields of value types.

• JAX-RPC serialization rules apply for any value types that are used by the web service
point interface. If it is important that Java serialization semantics apply, the Bean Prov
should use the restricted set of JAX-RPC value types for which the semantics of Java ser
tion apply under JAX-RPC serialization. See the JAX-RPC specification [25] for details.

• The web service endpoint interface must not include constant (aspublic final static)
declarations.

• The Bean Provider must designate the web service endpoint interface in the deploy
descriptor by means of theservice-endpoint element. The service endpoint itself is onl
exposed within a web service if it is referenced by a web service deployment descript
defined by [31].

4.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support a session bean. Th
tainer Provider is responsible for providing the deployment tools and for managing the session
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the Container Provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

4.7.1 Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional c
when the session bean is deployed. The tools obtain the information that they need for generation
additional classes by introspecting the classes and interfaces provided by the Bean Provider
examining the session bean’s deployment descriptor.
 5/2/06 98

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

lass).

Home

s).

he ses-
runtime.

ethods
wrap-
ot

ava to

yment

passive
thod on

bean’s
The deployment tools must generate the following classes:

• A class that implements the session bean’s business interface.

• A class that implements the session bean’s remote home interface (session EJBHome c

• A class that implements the session bean’s remote interface (session EJBObject class).

• A class that implements the session bean’s local home interface (session EJBLocal
class).

• A class that implements the session bean’s local interface (session EJBLocalObject clas

• A class that implements the session bean’s web service endpoint.

The deployment tools may also generate a class that mixes some container-specific code with t
sion bean class. This code may, for example, help the container to manage the bean instances at
The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business m
and is used to customize the business logic to an existing operational environment. For example, a
per for adebit function on theAccountManager bean may check that the debited amount does n
exceed a certain limit.

4.7.2 Generation of WSDL
Reference [31] describes the generation of a WSDL document for a web service endpoint. The J
WSDL mapping must adhere to the requirements of JAX-RPC or JAX-WS [32].

4.7.3 Session Business Interface Implementation Class

The container’s implementation of the session business interface, which is generated by the deplo
tools, implements the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
state), invoke any business method interceptor methods, and invoke the matching business me
the instance.

The container provider is responsible for providing the implementation of theequals andhashCode
methods for the business interface, in conformance with the requirements of section 3.6.5.

4.7.4 Session EJBHome Class

The session EJBHome class, which is generated by the deployment tools, implements the session
remote home interface. This class implements the methods of thejavax.ejb.EJBHome interface
and thecreate<METHOD> methods specific to the session bean.
99 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.

ession

passive
thod on

session

session

passive
thod on

he con-
hall the
ion bean

remote
The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method.

4.7.5 Session EJBObject Class

The session EJBObject class, which is generated by the deployment tools, implements the s
bean’s remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the
business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
state), invoke any business method interceptor methods, and invoke the matching business me
the instance.

4.7.6 Session EJBLocalHome Class

The session EJBLocalHome class, which is generated by the deployment tools, implements the
bean’s local home interface. This class implements the methods of thejavax.ejb.EJBLocalHome
interface and thecreate<METHOD> methods specific to the session bean.

The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method.

4.7.7 Session EJBLocalObject Class

The session EJBLocalObject class, which is generated by the deployment tools, implements the
bean’s local interface. It implements the methods of thejavax.ejb.EJBLocalObject interface
and the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
state), invoke any business method interceptor methods, and invoke the matching business me
the instance.

4.7.8 Web Service Endpoint Implementation Class
The implementation class for a stateless session bean’s web service endpoint is generated by t
tainer’s deployment tools. This class must handle requests to the web service endpoint, unmars
SOAP request, invoke any business method interceptor methods, and invoke the stateless sess
method that matches the web service endpoint method that corresponds to the request.

4.7.9 Handle Classes

The deployment tools are responsible for implementing the handle classes for the session bean’s
home and remote interfaces.
 5/2/06 100

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release Session Bean Component Contract

Sun Microsystems, Inc.

remote
the

client
y throw

tance.

xcep-

e end-

methods.

ote inter-

 o
4.7.10 EJBMetaData Class

The deployment tools are responsible for implementing the class that provides metadata to the
client view contract. The class must be a valid RMI Value class and must implement
javax.ejb.EJBMetaData interface.

4.7.11 Non-reentrant Instances

The container must ensure that only one thread can be executing an instance at any time. If a
request arrives for an instance while the instance is executing another request, the container ma
the javax.ejb.ConcurrentAccessException to the second client[24]. If the EJB 2.1 client
view is used, the container may throw thejava.rmi.RemoteException to the second request if
the client is a remote client, or thejavax.ejb.EJBException if the client is a local client.[25]

Note that a session object is intended to support only a single client. Therefore, it would be an
application error if two clients attempted to invoke the same session object.

One implication of this rule is that an application cannot make loopback calls to a session bean ins

4.7.12 Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and e
tion handling, as described in Chapters 13, 17, and 14, respectively.

4.7.13 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints
The container must support the use of JAX-WS and JAX-RPC message handlers for web servic
points. Container requirements for support of message handlers are specified in [32] and [31].

If message handlers are present, they must be invoked before any business method interceptor

4.7.14 SessionContext

The container must implement theSessionContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the session bean’s rem
face type. Specifically, the bean instance does not have to use thePortableRemoteObject.nar-
row method for the type conversion.

[24] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.

[25] In certain special circumstances (e.g., to handle clustered web container architectures), the container may instead queuer serial-
ize such concurrent requests. Clients, however, cannot rely on this behavior.
101 May 2, 2006 2:35 pm

Session Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.

nguage
e bean
The container must implement theEJBContext.lookup method such that when thelookup
method is used to look up a bean’s remote home interface, a bean instance can use the Java la
cast to convert the returned value to a session bean’s remote home interface type. Specifically, th
instance does not have to use thePortableRemoteObject.narrow method for the type conver-
sion.
 5/2/06 102

Overview Enterprise JavaBeans 3.0, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.

the life

tainer’s

oked by
by the
class. A
listener

running
n or end-
Chapter 5 Message-Driven Bean Component
Contract

This chapter specifies the contract between a message-driven bean and its container. It defines
cycle of the message-driven bean instances.

This chapter defines the developer’s view of message-driven bean state management and the con
responsibility for managing message-driven bean state.

5.1 Overview

A message-driven bean is an asynchronous message consumer. A message-driven bean is inv
the container as a result of the arrival of a message at the destination or endpoint that is serviced
message-driven bean. A message-driven bean instance is an instance of a message-driven bean
message-driven bean is defined for a single messaging type, in accordance with the message
interface it employs.

To a client, a message-driven bean is a message consumer that implements some business logic
on the server. A client accesses a message-driven bean by sending messages to the destinatio
point for which the message-driven bean class is the message listener.
103 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Goals

Sun Microsystems, Inc.

ces are

ages for

s of the
ples of

ynchro-
e func-

am of

the des-
to any
ocessing

behind
lowing
Message-driven beans are anonymous. They have no client-visible identity.

Message-driven bean instances have no conversational state. This means that all bean instan
equivalent when they are not involved in servicing a client message.

A message-driven bean instance is created by the container to handle the processing of the mess
which the message-driven bean is the consumer. Its lifetime is controlled by the container.

A message-driven bean instance has no state for a specific client. However, the instance variable
message-driven bean instance can contain state across the handling of client messages. Exam
such state include an open database connection and a reference to an enterprise bean.

5.2 Goals

The goal of the message-driven bean model is to make developing an enterprise bean that is as
nously invoked to handle the processing of incoming messages as simple as developing the sam
tionality in any other message listener.

A further goal of the message-driven bean model is to allow for the concurrent processing of a stre
messages by means of container-provided pooling of message-driven bean instances.

5.3 Client View of a Message-Driven Bean

To a client, a message-driven bean is simply a message consumer. The client sends messages to
tination or endpoint for which the message-driven bean is the message listener just as it would
other destination or endpoint. The message-driven bean, as a message consumer, handles the pr
of the messages.

From the perspective of the client, the existence of a message-driven bean is completely hidden
the destination or endpoint for which the message-driven bean is the message listener. The fol
diagram illustrates the view that is provided to a message-driven bean’s clients.
 5/2/06 104

Client View of a Message-Driven Bean Enterprise JavaBeans 3.0, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.

mes-
k. The
t using

JNDI

llows.
Figure 7 Client view of Message-Driven Beans Deployed in a Container

A client’s JNDI name space may be configured to include the destinations or endpoints of
sage-driven beans installed in multiple EJB containers located on multiple machines on a networ
actual locations of an enterprise bean and EJB container are, in general, transparent to the clien
the enterprise bean.

References to message destinations can be injected, or they can be looked up in the client’s
namespace.

For example, the reference to the queue for a JMS message-driven bean might be injected as fo

@Resource Queue stockInfoQueue;

Client
destination

Container

Message-driven
bean

Message-
driven bean
instances

or endpoint
105 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.

fol-

otocol

ntainer
he con-
n bean
n bean

sages.

es. It is
en the
essage

The calls
otifica-

d to any

he mes-
sing the
.

distin-
Alternatively, the queue for theStockInfo JMS message-driven bean might be located using the
lowing code segment:

Context initialContext = new InitialContext();
Queue stockInfoQueue = (javax.jms.Queue)initialContext.lookup

(“java:comp/env/jms/stockInfoQueue”);

The remainder of this section describes the message-driven bean life cycle in detail and the pr
between the message-driven bean and its container.

5.4 Protocol Between a Message-Driven Bean Instance and its
Container

From its creation until destruction, a message-driven bean instance lives in a container. The co
provides security, concurrency, transactions, and other services for the message-driven bean. T
tainer manages the life cycle of the message-driven bean instances, notifying the instances whe
action may be necessary, and providing a full range of services to ensure that the message-drive
implementation is scalable and can support the concurrent processing of a large number of mes

From the Bean Provider’s point of view, a message-driven bean exists as long as its container do
the container’s responsibility to ensure that the message-driven bean comes into existence wh
container is started up and that instances of the bean are ready to receive an asynchronous m
delivery before the delivery of messages is started.

Containers themselves make no actual service demands on the message-driven bean instances.
a container makes on a bean instance provide it with access to container services and deliver n
tions issued by the container.

Since all instances of a message-driven bean are equivalent, a client message can be delivere
available instance.

5.4.1 Required MessageDrivenBean Metadata

A message-driven bean must be annotated with theMessageDriven annotation or denoted in the
deployment descriptor as a message-driven bean.

5.4.2 The Required Message Listener Interface
The message-driven bean class must implement the appropriate message listener interface for t
saging type that the message-driven bean supports or specify the message listener interface u
MessageDriven metadata annotation or themessaging-type deployment descriptor element
The specific message listener interface that is implemented by a message-driven bean class
guishes the messaging type that the message-driven bean supports.
 5/2/06 106

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final Release Message-DrivenBean

Sun Microsystems, Inc.

age lis-

the
t

urces or
driven
stance is
ency on

en
ess

uch
bean

has
naged
The message-driven bean class’s implementation of thejavax.jms.MessageListener
interface distinguishes the message-driven bean as a JMS message-driven bean.

The bean’s message listener method (e.g.,onMessage in the case ofjavax.jms.MessageLis-
tener) is called by the container when a message has arrived for the bean to service. The mess
tener method contains the business logic that handles the processing of the message.

A bean’s message listener interface may define more than one message listener method. If
message listener interface contains more than one method, it is the resource adapter tha
determines which method is invoked. See [15].

If the message-driven bean class implements more than one interface other thanjava.io.Serial-
izable , java.io.Externalizable , or any of the interfaces defined by thejavax.ejb pack-
age, the message listener interface must be specified by themessageListenerInterface element
of the MessageDriven annotation or themessaging-type element of themessage-driven
deployment descriptor element.

5.4.3 Dependency Injection

A message-driven bean may use dependency injection mechanisms to acquire references to reso
other objects in its environment (see Chapter 16, “Enterprise Bean Environment”). If a message-
bean makes use of dependency injection, the container injects these references after the bean in
created, and before any message-listener methods are invoked on the bean instance. If a depend
the MessageDrivenContext is declared, or if the bean class implements the optionalMes-
sageDrivenBean interface (see Section 5.4.6), theMessageDrivenContext is also injected at
this time. If dependency injection fails, the bean instance is discarded.

Under the EJB 3.0 API, the bean class may acquire theMessageDrivenContext inter-
face through dependency injection without having to implement theMessageDrivenBean
interface. In this case, theResource annotation (orresource-env-ref deployment
descriptor element) is used to denote the bean’s dependency on theMessageDrivenCon-
text . See Chapter 16, “Enterprise Bean Environment”.

5.4.4 The MessageDrivenContext Interface

If the bean specifies a dependency on theMessageDrivenContext interface (or if the bean class
implements theMessageDrivenBean interface), the container must provide the message-driv
bean instance with aMessageDrivenContext . This gives the message-driven bean instance acc
to the instance’s context maintained by the container. TheMessageDrivenContext interface has
the following methods:

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback. Only instances of a message-driven
with container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback. Only instances of a message-driven bean with container-ma
transaction demarcation can use this method.
107 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.

action
rcation

es in

s may

the
er.

tion

and
• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface that the instance can use to demarcate transactions, and to obtain trans
status. Only instances of a message-driven bean with bean-managed transaction dema
can use this method.

• ThegetTimerService method returns thejavax.ejb.TimerService interface.

• The getCallerPrincipal method returns thejava.security.Principal that is
associated with the invocation.

• The isCallerInRole method is inherited from theEJBContext interface. Mes-
sage-driven bean instances must not call this method.

• ThegetEJBHome andgetEJBLocalHome methods are inherited from theEJBContext
interface. Message-driven bean instances must not call these methods.

• The lookup method enables the message-driven bean to look up its environment entri
the JNDI naming context.

5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods
The following lifecycle event callbacks are supported for message-driven beans. Callback method
be defined directly on the bean class or on a separate interceptor class[26]. See Section 5.6.4.

• PostConstruct

• PreDestroy

The PostConstruct callback occurs before the first message listener method invocation on
bean. This is at a point after which any dependency injection has been performed by the contain

The PostConstruct lifecycle callback interceptor method executes in an unspecified transac
and security context.

ThePreDestroy callback occurs at the time the bean is removed from the pool or destroyed.

The PreDestroy lifecycle callback interceptor method executes in an unspecified transaction
security context.

5.4.6 The Optional MessageDrivenBean Interface

The message-driven bean class is not required to implement thejavax.ejb.MessageDriven-
Bean interface.

[26] If PrePassivate or PostActivate lifecycle callbacks are defined for message-driven beans, they are ignored.
 5/2/06 108

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final Release Message-DrivenBean

Sun Microsystems, Inc.

nter-
riven-
of the

es-
n bean

con-

.

f

tions if
llback

calls the
con-
-
criptor.
-

Compatibility Note: The MessageDrivenBean interface was required by earlier versions of the E
prise JavaBeans specification. In EJB 3.0, the functionality previously provided by the MessageD
Bean interface is available to the bean class through selective use of dependency injection (
MessageDrivenContext) and optional lifecycle callback methods.

The MessageDrivenBean interface defines two methods,setMessageDrivenContext and
ejbRemove .

The setMessageDrivenContext method is called by the bean’s container to associate a m
sage-driven bean instance with its context maintained by the container. Typically a message-drive
instance retains its message-driven context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the
tainer. In theejbRemove method, the instance releases the resources that it is holding.

Under the EJB 3.0 API, the bean class may optionally define aPreDestroy callback method
for notification of the container’s removal of the bean instance.

This specification requires that theejbRemove and theejbCreate methods of a message-driven
bean be treated as thePreDestroy andPostConstruct lifecycle callback methods, respectively
If the message-driven bean implements theMessageDrivenBean interface, thePreDestroy
annotation can only be applied to theejbRemove method. Similar requirements apply to use o
deployment descriptor metadata as an alternative to the use of annotations.

5.4.7 Timeout Callbacks
A message driven bean can be registered with the EJB timer service for time-based event notifica
it provides a timeout callback method. The container invokes the bean instance’s timeout ca
method when a timer for the bean has expired. See Chapter 18, “Timer Service”.

5.4.8 Message-Driven Bean Creation

The container creates an instance of a message-driven bean in three steps. First, the container
bean class’newInstance method to create a new message-driven bean instance. Second, the
tainer injects the bean’sMessageDrivenContext , if applicable, and performs any other depen
dency injection as specified by metadata annotations on the bean class or by the deployment des
Third, the container calls the instance’sPostConstruct lifecycle callback methods, if any. See Sec
tion 5.6.4.
109 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.

lements

eans.
ly to the

rt many
a serial-
eentrant.

eptor
listener

ly, thus
he exact
ugh the
f mes-
are out of
ssage to

deter-
escrip-

, and
Compatibility Note: EJB 2.1 required the message-driven bean class to implement theejbCreate
method. This requirement has been removed in EJB 3.0. If the message-driven bean class imp
theejbCreate method, theejbCreate method is treated as the bean’sPostConstruct method,
and thePostConstruct annotation can only be applied to theejbCreate method.

5.4.9 Message Listener Interceptor Methods for Message-Driven Beans

The AroundInvoke business method interceptor methods are supported for message-driven b
These interceptor methods may be defined on the bean class or on a interceptor class and app
handling of the invocation of the bean’s message listener method(s).

Interceptors are described in Chapter 12, “Interceptors”.

5.4.10 Serializing Message-Driven Bean Methods

The container serializes calls to each message-driven bean instance. Most containers will suppo
instances of a message-driven bean executing concurrently; however, each instance sees only
ized sequence of method calls. Therefore, a message-driven bean does not have to be coded as r

The container must serialize all the container-invoked callbacks (e.g., lifecycle callback interc
methods and timeout callback methods), and it must serialize these callbacks with the message
method calls.

5.4.11 Concurrency of Message Processing

A container allows many instances of a message-driven bean class to be executing concurrent
allowing for the concurrent processing of a stream of messages. No guarantees are made as to t
order in which messages are delivered to the instances of the message-driven bean class, altho
container should attempt to deliver messages in order when it does not impair the concurrency o
sage processing. Message-driven beans should therefore be prepared to handle messages that
sequence: for example, the message to cancel a reservation may be delivered before the me
make the reservation.

5.4.12 Transaction Context of Message-Driven Bean Methods

A bean’s message listener and timeout callback methods are invoked in the scope of a transaction
mined by the transaction attribute specified in the bean’s metadata annotations or deployment d
tor. If the bean is specified as using container-managed transaction demarcation, either theREQUIRED
or the NOT_SUPPORTEDtransaction attribute must be used for the message listener methods
either theREQUIRED, REQUIRES_NEW, or theNOT_SUPPORTEDtransaction attribute for timeout
callback methods. See Chapter 13, “Support for Transactions”
 5/2/06 110

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final Release Message-DrivenBean

Sun Microsystems, Inc.

uses
ansac-

-
n con-
saction

mes-
knowl-

-
ed by
the

5.4.14

t. Mes-
es con-
a part of
annot be
ainer. If
r JMS

the

.

When a message-driven bean using bean-managed transaction demarcation uses thejavax.trans-
action.UserTransaction interface to demarcate transactions, the message receipt that ca
the bean to be invoked is not part of the transaction. If the message receipt is to be part of the tr
tion, container-managed transaction demarcation with theREQUIREDtransaction attribute must be
used.

The newInstance method,setMessageDrivenContext , the message-driven bean’s depen
dency injection methods, and lifecycle callback methods are called with an unspecified transactio
text. Refer to Subsection 13.6.5 for how the container executes methods with an unspecified tran
context.

5.4.13 Activation Configuration Properties
The Bean Provider may provide information to the Deployer about the configuration of the
sage-driven bean in its operational environment. This may include information about message ac
edgement modes, message selectors, expected destination or endpoint types, etc.

Activation configuration properties are specified by means of theactivationConfig element of
theMessageDriven annotation oractivation-config deployment descriptor element. Activa
tion configuration properties specified in the deployment descriptor are added to those specifi
means of theMessageDriven annotation. If a property of the same name is specified in both,
deployment descriptor value overrides the value specified in the annotation.

Activation configuration properties for JMS message-driven beans are described in Sections
through 5.4.16.

5.4.14 Message Acknowledgment for JMS Message-Driven Beans

JMS message-driven beans should not attempt to use the JMS API for message acknowledgmen
sage acknowledgment is automatically handled by the container. If the message-driven bean us
tainer-managed transaction demarcation, message acknowledgment is handled automatically as
the transaction commit. If bean-managed transaction demarcation is used, the message receipt c
part of the bean-managed transaction, and, in this case, the receipt is acknowledged by the cont
bean-managed transaction demarcation is used, the Bean Provider can indicate whethe
AUTO_ACKNOWLEDGEsemantics orDUPS_OK_ACKNOWLEDGEsemantics should apply by using the
activationConfig element of theMessageDriven annotation or by using theactiva-
tion-config-property deployment descriptor element. The property name used to specify
acknowledgment mode isacknowledgeMode . If the acknowledgeMode property is not specified,
JMSAUTO_ACKNOWLEDGEsemantics are assumed. The value of theacknowledgeMode property
must be eitherAuto-acknowledge or Dups-ok-acknowledge for a JMS message-driven bean
111 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Protocol Between a Message-Driven Bean

Sun Microsystems, Inc.

sages a
t a JMS
by using

the

in the
ination

ean is
bean

tended

ean is
5.4.15 Message Selectors for JMS Message-Driven Beans
The Bean Provider may declare the JMS message selector to be used in determining which mes
JMS message-driven bean is to receive. If the Bean Provider wishes to restrict the messages tha
message-driven bean receives, the Bean Provider can specify the value of the message selector
the activationConfig element of theMessageDriven annotation or by using theactiva-
tion-config-property deployment descriptor element. The property name used to specify
message selector ismessageSelector .

For example:

@MessageDriven(activationConfig={
@ActivationConfigProperty(

propertyName=”messageSelector”,
propertyValue=”JMSType = ‘car’ AND color = ‘blue’ and weight

> 2500”)})

<activation-config>
<activation-config-property>
<activation-config-property-name>messageSelector</activation-con-
fig-property-name>
<activation-config-property-value>JMSType = ‘car’ AND color = ‘blue’
AND weight > 2500</activation-config-property-value>
</activation-config-property>
</activation-config>

The Application Assembler may further restrict, but not replace, the value of themessageSelector
property of a JMS message-driven bean.

5.4.16 Association of a Message-Driven Bean with a Destination or Endpoint

A message-driven bean is associated with a destination or endpoint when the bean is deployed
container. It is the responsibility of the Deployer to associate the message-driven bean with a dest
or endpoint.

5.4.16.1 JMS Message-Driven Beans

A JMS message-driven bean is associated with a JMS Destination (Queue or Topic) when the b
deployed in the container. It is the responsibility of the Deployer to associate the message-driven
with a Queue or Topic.

The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is in
to be associated with a queue or a topic by using theactivationConfig element of theMes-
sageDriven annotation or by using theactivation-config-property deployment descrip-
tor element. The property name used to specify the destination type associated with the b
destinationType . The value for this property must be eitherjavax.jms.Queue or
javax.jms.Topic for a JMS message-driven bean.
 5/2/06 112

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.0, Final Release Message-DrivenBean

Sun Microsystems, Inc.

dicate

urable

ed

en if the
able

that
n avail-
the EJB
ervice

Queue.
tribued

es-
ntainer)
d trans-
e
es per-

bean

ending
client’s

pplica-
If the message-driven bean is intended to be used with a topic, the Bean Provider may further in
whether a durable or non-durable subscription should be used by using theactivationConfig ele-
ment of theMessageDriven annotation or by using theactivation-config-property
deployment descriptor element. The property name used to specify whether a durable or non-d
subscription should be used issubscriptionDurability . The value for this property must be
eitherDurable or NonDurable for a JMS message-driven bean. If a topic subscription is specifi
andsubscriptionDurability is not specified, a non-durable subscription is assumed.

• Durable topic subscriptions, as well as queues, ensure that messages are not missed ev
EJB server is not running. Reliable applications will typically make use of queues or dur
topic subscriptions rather than non-durable topic subscriptions.

• If a non-durable topic subscription is used, it is the container’s responsibility to make sure
the message driven bean subscription is active (i.e., that there is a message driven bea
able to service the message) in order to ensure that messages are not missed as long as
server is running. Messages may be missed, however, when a bean is not available to s
them. This will occur, for example, if the EJB server goes down for any period of time.

The Deployer should avoid associating more than one message-driven bean with the same JMS
If there are multiple JMS consumers for a queue, JMS does not define how messages are dis
between the queue receivers.

5.4.17 Dealing with Exceptions

A message-driven bean’s message listener method must not throw thejava.rmi.RemoteExcep-
tion .

Message-driven beans should not, in general, throwRuntimeExceptions .

A RuntimeException that is not an application exception thrown from any method of the m
sage-driven bean class (including a message listener method and the callbacks invoked by the co
results in the transition to the “does not exist” state. If a message-driven bean uses bean-manage
action demarcation and throws aRuntimeException , the container should not acknowledge th
message. Exception handling is described in detail in Chapter 14. See Section 12.4.2 for the rul
taining to lifecycle callback interceptor methods when more than one such method applies to the
class.

From the client perspective, the message consumer continues to exist. If the client continues s
messages to the destination or endpoint associated with the bean, the container can delegate the
messages to another instance.

The message listener methods of some messaging types may throw application exceptions. An a
tion exception is propagated by the container to the resource adapter.
113 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Message-Driven Bean State Diagram

Sun Microsystems, Inc.

ult in

pplica-
ean up

n sent.
from

sage’s
of the
o

e

mer, the
 method.
5.4.18 Missed PreDestroy Callbacks

The Bean Provider cannot assume that the container will always invoke thePreDestroy callback
method (orejbRemove method) for a message-driven bean instance. The following scenarios res
thePreDestroy callback method not being called on an instance:

• A crash of the EJB container.

• A system exception thrown from the instance’s method to the container.

If the message-driven bean instance allocates resources in thePostConstruct lifecycle callback
method and/or in the message listener method, and releases normally the resources in thePreDes-
troy method, these resources will not be automatically released in the above scenarios. The a
tion using the message-driven bean should provide some clean up mechanism to periodically cl
the unreleased resources.

5.4.19 Replying to a JMS Message

In standard JMS usage scenarios, the messaging mode of a message’sJMSReplyTo destination
(Queue or Topic) is the same as the mode of the destination to which the message has bee
Although a message-driven bean is not directly dependent on the mode of the JMS destination
which it is consuming messages, it may contain code that depends on the mode of its mes
JMSReplyTo destination. In particular, if a message-driven bean replies to a message, the mode
reply’s message producer and the mode of theJMSReplyTo destination must be the same. In order t
implement a message-driven bean that is independent ofJMSReplyTo mode, the Bean Provider
should useinstanceOf to test whether aJMSReplyTo destination is a Queue or Topic, and then us
a matching message producer for the reply.

5.5 Message-Driven Bean State Diagram

When a client sends a message to a Destination for which a message-driven bean is the consu
container selects one of its method-ready instances and invokes the instance’s message listener

The following figure illustrates the life cycle of a message-driven bean instance.
 5/2/06 114

Message-Driven Bean State Diagram Enterprise JavaBeans 3.0, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.

bean’s
speci-
tainer

sociated
ack

tainer
es the
s-
Figure 8 Life Cycle of a Message-Driven Bean.

The following steps describe the life cycle of a message-driven bean instance:

• A message-driven bean instance’s life starts when the container invokesnewInstance on
the message-driven bean class to create a new instance. Next, the container injects the
MessageDrivenContext, if applicable, and performs any other dependency injection as
fied by metadata annotations on the bean class or by the deployment descriptor. The con
then calls the bean’sPostConstruct lifecycle callback methods, if any.

• The message-driven bean instance is now ready to be delivered a message sent to its as
destination or endpoint by any client or a call from the container to the timeout callb
method.

• When the container no longer needs the instance (which usually happens when the con
wants to reduce the number of instances in the method-ready pool), the container invok
PreDestroy lifecycle callback methods for it, if any. This ends the life of the me
sage-driven bean instance.

does not
 exist

method-ready
 pool

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks, if any

PreDestroy callbacks, if any

message listener method

message listener

newInstance()

action resulting from client message arrival

action initiated by container
method

Timeout callback method
115 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release Message-Driven Bean State Diagram

Sun Microsystems, Inc.

nstances

the
5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class

Table 3 defines the methods of a message-driven bean class in which the message-driven bean i
can access the methods of thejavax.ejb.MessageDrivenContext interface, the
java:comp/env environment naming context, resource managers,TimerService and Timer
methods, theEntityManager and EntityManagerFactory methods, and other enterprise
beans.

If a message-driven bean instance attempts to invoke a method of theMessageDrivenContext
interface, and the access is not allowed in Table 3, the container must throw and log
java.lang.IllegalStateException.

If a message-driven bean instance attempts to invoke a method of theTimerService or Timer
interface, and the access is not allowed in Table 3, the container must throw thejava.lang.Ille-
galStateException .
 5/2/06 116

Message-Driven Bean State Diagram Enterprise JavaBeans 3.0, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.

nager or
e EJB

ute in
If a bean instance attempts to access a resource manager, an enterprise bean, or an entity ma
entity manager factory, and the access is not allowed in Table 3, the behavior is undefined by th
architecture.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theMessageDriven-
Context interface should be used only in the message-driven bean methods that exec

Table 3 Operations Allowed in the Methods of a Message-Driven Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection
methods (e.g., setMes-
sageDrivenContext)

MessageDrivenContext methods:lookup

JNDI access to java:comp/env

MessageDrivenContext methods:lookup

JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back methods

MessageDrivenContext methods:getTim-
erService, lookup

JNDI access to java:comp/env

EntityManagerFactory access

MessageDrivenContext methods:
getUserTransaction, getTimerSer-
vice, lookup

JNDI access to java:comp/env

EntityManagerFactory access

message listener
method, business
method interceptor
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, getTimerService,
lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, getTimerService, lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

timeout callback
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, getTimerService,
lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, getTimerService, lookup

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods
117 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Bean Provider

Sun Microsystems, Inc.

tion.

action

on-

h-
s. The

a mes-

y the
ase of

this
the context of a transaction. The container must throw thejava.lang.IllegalState-
Exception if the methods are invoked while the instance is not associated with a transac

The reasons for disallowing operations in Table 3:

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
message-driven bean methods for which the container does not have a meaningful trans
context, and for all message-driven beans with bean-managed transaction demarcation.

• The UserTransaction interface is unavailable to message-driven beans with c
tainer-managed transaction demarcation.

• InvokinggetEJBHome or getEJBLocalHome is disallowed in message-driven bean met
ods because there are no EJBHome or EJBLocalHome objects for message-driven bean
container must throw and log thejava.lang.IllegalStateException if these meth-
ods are invoked.

5.6 The Responsibilities of the Bean Provider

This section describes the responsibilities of the message-driven Bean Provider to ensure that
sage-driven bean can be deployed in any EJB container.

5.6.1 Classes and Interfaces

The message-driven Bean Provider is responsible for providing the following class files:

• Message-driven bean class.

• Interceptor classes, if any.

5.6.2 Message-Driven Bean Class

The following are the requirements for the message-driven bean class:

• The class must implement, directly or indirectly, the message listener interface required b
messaging type that it supports or the methods of the message listener interface. In the c
JMS, this is thejavax.jms.MessageListener interface.

• The class must be defined aspublic , must not befinal , and must not beabstract . The
class must be a top level class.

• The class must have apublic constructor that takes no arguments. The container uses
constructor to create instances of the message-driven bean class.

• The class must not define thefinalize method.
 5/2/06 118

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.0, Final Release Message-Driven Bean Component Contract

Sun Microsystems, Inc.

e-driven
rceptor

A mes-

ethods
spec-

message

s-
e

r these
call-

r class
ed in
Optionally:

• The class may implement, directly or indirectly, thejavax.ejb.MessageDrivenBean
interface.

• The class may implement, directly or indirectly, thejavax.ejb.TimedObject interface.

• The class may implement theejbCreate method.

The message-driven bean class may have superclasses and/or superinterfaces. If the messag
bean has superclasses, the methods of the message listener interface, lifecycle callback inte
methods, the timeout method, theejbCreate method, and the methods of theMessageDriven-
Bean interface may be defined in the message-driven bean class or in any of its superclasses.
sage-driven bean class must not have a superclass that is itself a message-driven bean class

The message-driven bean class is allowed to implement other methods (for example, helper m
invoked internally by the message listener method) in addition to the methods required by the EJB
ification.

5.6.3 Message Listener Method

The message-driven bean class must define the message listener methods. The signature of a
listener method must follow these rules:

The method must be declared aspublic .

The method must not be declared asfinal or static .

5.6.4 Lifecycle Callback Interceptor Methods

PostConstruct andPreDestroy lifecycle callback interceptor methods may be defined for me
sage-driven beans. IfPrePassivate or PostActivate lifecycle callbacks are defined, they ar
ignored.[27]

Compatibility Note: If thePostConstruct lifecycle callback interceptor method is theejbCreate
method, or if thePreDestroy lifecycle callback interceptor method is theejbRemove method, these
callback methods must be implemented on the bean class itself (or on its superclasses). Except fo
cases, the method names can be arbitrary, but must not start with “ejb” to avoid conflicts with the
back methods defined by the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an intercepto
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defin
Section 12.4, “Interceptors for LifeCycle Event Callbacks” .

[27] This might result from the use of default interceptor classes, for example.
119 May 2, 2006 2:35 pm

Message-Driven Bean Component Contract Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.

bean.
mes-

iner, we
yment

lasses
enera-
e Bean

mes-
ances at

umer of

ibility to

xcep-
5.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support a message-driven
The Container Provider is responsible for providing the deployment tools, and for managing the
sage-driven bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the Container Provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

5.7.1 Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional c
when the message-driven bean is deployed. The tools obtain the information that they need for g
tion of the additional classes by introspecting the classes and interfaces provided by the enterpris
Provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the
sage-driven bean class. This code may, for example, help the container to manage the bean inst
runtime. Subclassing, delegation, and code generation can be used by the tools.

5.7.2 Deployment of JMS Message-Driven Beans

The Container Provider must support the deployment of a JMS message-driven bean as the cons
a JMS queue or a durable subscription.

5.7.3 Request/Response Messaging Types
If the message listener supports a request/response messaging type, it is the container’s respons
deliver the message response.

5.7.4 Non-reentrant Instances

The container must ensure that only one thread can be executing an instance at any time.

5.7.5 Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and e
tion handling, as described in Chapters 13, 17, and 14.
 5/2/06 120

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release Persistence

Sun Microsystems, Inc.

nced in

he doc-
ce

ence,

er the
aged
ctively.
Chapter 6 Persistence

The model for persistence and object/relational mapping has been considerably revised and enha
the Enterprise JavaBeans 3.0 release.

The contracts and requirements for entities defined by Enterprise JavaBeans 3.0 are specified in t
ument “Java Persistence API” [2], which also contains the full specification of the Java Persisten
query language and the metadata for object/relational mapping.

A compliant implementation of this specification is required to implement the contracts for persist
query language, and object/relational mapping specified in the document “Java Persistence API” [2].

Chapters 7, 8, and 10 of this specification document discuss the client view of entity beans und
earlier EJB 2.1 programming model, the contracts for EJB 2.1 Entity Beans with Container-Man
Persistence, and the contracts for EJB 2.1 Entity Beans with Bean-Managed Persistence respe
Use of these earlier APIs is required to be supported by EJB 3.0 implementations.
121 May 2, 2006 2:35 pm

Persistence Enterprise JavaBeans 3.0, Final Release The Responsibilities of the Container Provider

Sun Microsystems, Inc.
 5/2/06 122

Overview Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

y the
erprise

con-

ecifica-
in the

ntities
g enter-
Chapter 7 Client View of an EJB 2.1 Entity Bean

This chapter describes the client view of an EJB 2.1 entity bean. It is actually a contract fulfilled b
container in which the entity bean is deployed. Only the business methods are supplied by the ent
bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the
tainer, the container itself is transparent to the client.

The contents of this chapter apply only to entities as defined in the Enterprise JavaBeans 2.1 sp
tion[3]. The client view of a persistent entity as defined by Enterprise JavaBeans 3.0 is described
document “Java Persistence API” of this specification [2].

7.1 Overview

For a client, an entity bean is a component that represents an object-oriented view of some e
stored in a persistent storage, such as a database, or entities that are implemented by an existin
prise application.

The client of an entity bean may be a local client or the client may be a remote client.
123 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Remote Clients

Sun Microsystems, Inc.

client
ussed

lient,
e entity
client

an is

ner in
th the

tainer,
allows
o exe-
t can
p the
ntity

ainer.
entity

rfaces.

M as
ifferent

es. The
cessible

t con-
e client
nts not
This section provides an overview of the entity bean client view that is independent of whether the
is a remote client or a local client. The differences between remote clients and local clients are disc
in the following sections.

From its creation until its destruction, an entity object lives in a container. Transparently to the c
the container provides security, concurrency, transactions, persistence, and other services for th
objects that live in the container. The container is transparent to the client—there is no API that a
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity be
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the contai
which the entity object has been created. The object identity is implemented by the container wi
cooperation of the enterprise bean class.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a con
the container provides a class that implements a home interface for the entity bean. This interface
the client to create, find, and remove entity objects within the enterprise bean’s home as well as t
cute home business methods, which are not specific to a particular entity bean object. A clien
obtain the entity bean’s home interface through dependency injection, or the client can look u
entity bean’s home interface through JNDI. It is the responsibility of the container to make the e
bean’s home interface available in the JNDI name space.

A client view of an entity bean is independent of the implementation of the entity bean and its cont
This ensures that a client application is portable across all container implementations in which the
bean might be deployed.

7.2 Remote Clients

A remote client accesses an entity bean through the entity bean’s remote and remote home inte
The remote and remote home interfaces of the entity bean provide the remote client view.

The remote client view of an entity bean is location independent. A client running in the same JV
an entity bean instance uses the same API to access the entity bean as a client running in a d
JVM on the same or different machine.

The container provides classes that implement the entity bean’s remote and remote home interfac
objects that implement the remote home and remote objects are remote Java objects, and are ac
from a client through the standard Java™ APIs for remote object invocation [6].

A remote client of an entity object can be another enterprise bean deployed in the same or differen
tainer or can be an arbitrary Java program, such as an application, applet, or servlet. The remot
view of an entity bean can also be mapped to non-Java client environments, such as CORBA clie
written in the Java programming language.
 5/2/06 124

Local Clients Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

bean

The
ean
ans-

t inter-
ponent
l Java

sed by
y Java

an, or a

e Bean
ns are
lient
ill be

hapter
ssed in

order
istence

rprise
7.3 Local Clients

Entity beans may also have local clients. A local client is a client that is collocated with the entity
and which may be tightly coupled to the bean.

Unlike the remote client view, the local client view of an entity bean is not location independent.
local client view requires the collocation in the same JVM of both the local client and the entity b
that provides the local client view. The local client view therefore does not provide the location tr
parency provided by the remote client view.

A local client accesses an entity bean through the entity bean’s local home and local componen
faces. The container provides classes that implement the entity bean’s local home and local com
interfaces. The objects that implement the local home and local component interfaces are loca
objects.

The arguments of the methods of the local component interface and local home interface are pas
reference[28]. Such entity beans and their clients must be coded to assume that the state of an
object that is passed as an argument or result is potentially shared by caller and callee.

A local client of an entity bean may be a session bean, a message-driven bean, another entity be
web-tier component.

The choice between the use of a local or remote programming model is a design decision that th
Provider makes when developing the entity bean application. In general, however, entity bea
intended to be used with local clients. While it is possible to provide both a client view and a local c
view for an entity bean with container-managed persistence, it is more likely that the entity bean w
designed with the local view in mind.

Entity beans that have container-managed relationships with other entity beans, as described in C
8, “EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence”, must be acce
the same local scope as those related beans, and therefore typically provide a local client view. In
to be the target of a container-managed relationship, an entity bean with container-managed pers
must provide a local component interface.

7.4 EJB Container

An EJB container (container for short) is a system that functions as a runtime container for ente
beans.

[28] More literally, references are passed by value in the JVM: an argument variable of primitive type holds a value of that primitive
type; an argument variable of a reference type hold a reference to the object. See [28].
125 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release EJB Container

Sun Microsystems, Inc.

a con-
entity

ethods,
home
in the

client:

tes an
e the
chines

g

eans
te cli-
Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in
tainer, the container provides a home interface that allows the client to create, find, and remove
objects that belong to the entity bean. The home interface may also provide home business m
which are not specific to a particular entity bean object. The container makes the entity bean’s
interface (defined by the Bean Provider and implemented by the Container Provider) available
JNDI name space for clients.

An EJB server may host one or multiple EJB containers. The containers are transparent to the
there is no client-level API to manipulate the container.

7.4.1 Locating an Entity Bean’s Home Interface

A client obtains an entity bean’s home interface through dependency injection, or the client loca
entity bean’s home interface using JNDI. A client’s JNDI name space may be configured to includ
home interfaces of enterprise beans deployed in multiple EJB containers located on multiple ma
on a network. The actual location of an EJB container is, in general, transparent to the client.

For example, the local home interface for theAccount entity bean can be located using the followin
code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)

initialContext.lookup(“java:comp/env/ejb/accounts”);

If dependency injection were used, the home interface could be obtained as follows:

@EJB AccountHome accountHome;

7.4.2 What a Container Provides

The following diagram illustrates the view that a container provides to the client of the entity b
deployed in the container. Note that a client may be a local client of some entity beans and a remo
ent of others.
 5/2/06 126

Entity Bean’s Remote Home Interface Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

s are

ployed
emote
Figure 9 Client View of Entity Beans Deployed in a Container

7.5 Entity Bean’s Remote Home Interface

This section is specific to entity beans that provide a remote client view. Local home interface
described in Section 7.6.

The container provides the implementation of the remote home interface for each entity bean de
in the container that defines a remote home interface. An object that implements an entity bean’s r
home interface is called anEJBHome object.

The entity bean’s remote home interface allows a client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

entity bean 1

EJB objects

EJBLocalHome

EJB objectsEJBLocalObjects

entity bean 2

other enterprise beans
127 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Bean’s Remote Home Interface

Sun Microsystems, Inc.

data
ding

stable
orage

“

n’s

he
• Remove an entity object from the home.

• Execute a home business method.

• Get thejavax.ejb.EJBMetaData interface for the entity bean. Thejavax.ejb.EJB-
MetaData interface is intended to allow application assembly tools to discover the meta
information about the entity bean. The metadata information allows loose client/server bin
and scripting.

• Obtain a handle for the home interface. The home handle can be serialized and written to
storage. Later, possibly in a different JVM, the handle can be deserialized from stable st
and used to obtain a reference to the home interface.

An entity bean’s remote home interface must extend thejavax.ejb.EJBHome interface and follow
the standard rules for Java programming language remote interfaces.

7.5.1 Create Methods

An entity bean’s remote home interface can define zero or morecreate<METHOD> methods, one for
each way to create an entity object. The arguments of thecreate methods are typically used to initial-
ize the state of the created entity object. The name of each create method starts with the prefixcre-
ate ” .

The return type of acreate<METHOD> method on the remote home interface is the entity bea
remote interface.

The throws clause of everycreate<METHOD> method on the remote home interface includes t
java.rmi.RemoteException and thejavax.ejb.CreateException . It may include addi-
tional application-level exceptions.

The following home interface illustrates three possiblecreate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException,

LowInitialBalanceException;
public Account createLargeAccount(String firstname,

String lastname, double initialBalance)
 throws RemoteException, CreateException;

 ...
}

 5/2/06 128

Entity Bean’s Remote Home Interface Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

starts
d
finder
senting
.7 and

the

type,

t not
The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

7.5.2 Finder Methods

An entity bean’s remote home interface defines one or more finder methods[29], one for each way to find
an entity object or collection of entity objects within the home. The name of each finder method
with the prefix “find ”, such asfindLargeAccounts . The arguments of a finder method are use
by the entity bean implementation to locate the requested entity objects. The return type of a
method on the remote home interface must be the entity bean’s remote interface, or a type repre
a collection of objects that implement the entity bean’s remote interface (see Subsections 8.5
10.1.9).

The throws clause of every finder method on the remote home interface includes
java.rmi.RemoteException and thejavax.ejb.FinderException exceptions.

The remote home interface includes thefindByPrimaryKey(primaryKey) method, which
allows a client to locate an entity object using a primary key. The name of the method is alwaysfind-
ByPrimaryKey ; it has a single argument that is the same type as the entity bean’s primary key
and its return type is the entity bean’s remote interface. There is a uniquefindByPrima-
ryKey(primaryKey) method for an entity bean on its remote home interface; this method mus
be overloaded. The implementation of thefindByPrimaryKey(primaryKey) method must
ensure that the entity object exists.

The following example shows thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws RemoteException, FinderException;
}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

[29] ThefindByPrimaryKey method is mandatory for the remote home interface of all entity beans.
129 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Bean’s Remote Home Interface

Sun Microsystems, Inc.

ntity

ote cli-

ds are
tance.

ot start
ean
d argu-
pes for

the
7.5.3 Remove Methods

Thejavax.ejb.EJBHome interface defines several methods that allow the client to remove an e
object.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,

RemoveException;
void remove(Object primaryKey) throws RemoteException,

RemoveException;
}

After an entity object has been removed, subsequent attempts to access the entity object by a rem
ent result in thejava.rmi.NoSuchObjectException .

7.5.4 Home Methods

An entity bean’s remote home interface may define one or more home methods. Home metho
methods that the Bean Provider supplies for business logic that is not specific to an entity bean ins

Home methods on the remote home interface can have arbitrary method names, but they must n
with “create ”, “ find ”, or “ remove ” . The arguments of a home method are used by the entity b
implementation in computations that do not depend on a specific entity bean instance. The metho
ments and return value types of a home method on the remote home interface must be legal ty
RMI-IIOP.

The throws clause of every home method on the remote home interface includes
java.rmi.RemoteException . It may also include additional application-level exceptions.

The following example shows two home methods:

public interface EmployeeHome extends javax.ejb.EJBHome {
...
// this method returns a living index depending on
// the state and the base salary of an employee:
// the method is not specific to an instance
public float livingIndex(String state, float Salary)

throws RemoteException;

// this method adds a bonus to all of the employees
// based on a company profit-sharing index
public void addBonus(float company_share_index)

throws RemoteException, ShareIndexOutOfRangeException;

...
}

 5/2/06 130

Entity Bean’s Local Home Interface Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

yed in
l home

“

al

e
st
7.6 Entity Bean’s Local Home Interface

The container provides the implementation of the local home interface for each entity bean deplo
the container that defines a local home interface. An object that implements an entity bean’s loca
interface is called anEJBLocalHome object.

The entity bean’s local home interface allows a local client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

• Remove an entity object from the home.

• Execute a home business method.

An entity bean’s local home interface must extend thejavax.ejb.EJBLocalHome interface.

7.6.1 Create Methods

An entity bean’s local home interface can define zero or morecreate<METHOD> methods, one for
each way to create an entity object. The arguments of thecreate methods are typically used to initial-
ize the state of the created entity object. The name of each create method starts with the prefixcre-
ate ” .

The return type of acreate<METHOD> method on the local home interface is the entity bean’s loc
interface.

The throws clause of everycreate<METHOD> method on the local home interface includes th
javax.ejb.CreateException . It may include additional application-level exceptions. It mu
not include thejava.rmi.RemoteException .

The following local home interface illustrates three possiblecreate methods:

public interface AccountHome extends javax.ejb.EJBLocalHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws CreateException, LowInitialBalanceException;

public Account createLargeAccount(String firstname,
String lastname, double initialBalance)
 throws CreateException;

 ...
}

131 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Bean’s Local Home Interface

Sun Microsystems, Inc.

starts
d
finder
ting a
0.1.9).

the

nd its

ded.
The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

7.6.2 Finder Methods

An entity bean’s local home interface defines one or more finder methods[30], one for each way to find
an entity object or collection of entity objects within the home. The name of each finder method
with the prefix “find ”, such asfindLargeAccounts . The arguments of a finder method are use
by the entity bean implementation to locate the requested entity objects. The return type of a
method on the local home interface must be the entity bean’s local interface, or a type represen
collection of objects that implement the entity bean’s local interface (see Subsections 8.5.7 and 1

The throws clause of every finder method on the local home interface includes
javax.ejb.FinderException . The throws clause must not include thejava.rmi.Remo-
teException.

The local home interface includes thefindByPrimaryKey(primaryKey) method, which allows
a client to locate an entity object using a primary key. The name of the method is alwaysfindByPri-
maryKey ; it has a single argument that is the same type as the entity bean’s primary key type, a
return type is the entity bean’s local interface. There is a uniquefindByPrimaryKey(prima-
ryKey) method for an entity bean on its local home interface; this method must not be overloa
The implementation of thefindByPrimaryKey method must ensure that the entity object exists.

The following example shows thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBLocalHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws FinderException;
}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

7.6.3 Remove Methods

The javax.ejb.EJBLocalHome interface defines theremove method to allow the client to
remove an entity object.

public interface EJBLocalHome {
void remove(Object primaryKey) throws RemoveException,

EJBException;
}

[30] ThefindByPrimaryKey method is mandatory for the local home interface of all Entity Beans.
 5/2/06 132

Entity Object’s Life Cycle Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

by the

meth-
ce.

puta-

lica-

er-
ote or
After an entity object has been removed, subsequent attempts to access the local entity object
local client result in thejavax.ejb.NoSuchObjectLocalException .

7.6.4 Home Methods

An entity bean’s local home interface may define one or more home methods. Home methods are
ods that the Bean Provider supplies for business logic that is not specific to an entity bean instan

Home methods can have arbitrary method names, but they must not start with “create ”, “ find ”, or
“ remove ” . The arguments of a home method are used by the entity bean implementation in com
tions that do not depend on a specific entity bean instance.

The throws clause of a home method on the local home interface may include additional app
tion-level exceptions. It must not include thejava.rmi.RemoteException.

The following example shows two home methods:

public interface EmployeeHome extends javax.ejb.EJBLocalHome {
...
// this method returns a living index depending on
// the state and the base salary of an employee:
// the method is not specific to an instance
public float livingIndex(String state, float Salary);

// this method adds a bonus to all of the employees
// based on a company profit sharing index
public void addBonus(float company_share_index)

throws ShareIndexOutOfRangeException;

...
}

7.7 Entity Object’s Life Cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The term “ref
enced” in the diagram means that the client program has a reference to the entity object’s rem
local interface.)
133 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Object’s Life Cycle

Sun Microsystems, Inc.

ted,
ass is
nce to

n are
r than
rd),
using
and
Figure 10 Client View of Entity Object Life Cycle

An entity object does not exist until it is created. Until it is created, it has no identity. After it is crea
it has identity. A client creates an entity object using the entity bean’s home interface, whose cl
implemented by the container. When a client creates an entity object, the client obtains a refere
the newly created entity object.

In an environment with legacy data, entity objects may “exist” before the container and entity bea
deployed. In addition, an entity object may be “created” in the environment via a mechanism othe
by invoking acreate<METHOD> method of the home interface (e.g. by inserting a database reco
but still may be accessible via the finder methods. Also, an entity object may be deleted directly
other means than theremove operation (e.g. by deletion of a database record). The “direct insert”
“direct delete” transitions in the diagram represent such direct database manipulation.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.remove(...)

object.remove()

release reference

object.businessMethod(...)

object.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException or

home.remove(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or

home.find(...)

home.businessMethod(...)

home.create<METHOD>(...)

NoSuchObjectLocalException
 5/2/06 134

Entity Object’s Life Cycle Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

y the
ash of
ously
by cli-

the cli-

ays:

face.

ntity

ing

ace.
All entity objects are considered persistent objects. The lifetime of an entity object is not limited b
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a cr
the Java Virtual Machine may result in a rollback of current transactions, it does not destroy previ
created entity objects nor invalidate the references to the home and component interfaces held
ents.

Multiple clients can access the same entity object concurrently. Transactions are used to isolate
ents’ work from each other.

7.7.1 References to Entity Object Remote Interfaces

A client can get a reference to an existing entity object’s remote interface in any of the following w

• Receive the reference as a parameter in a method call (input parameter or result).

• Find the entity object using a finder method defined in the entity bean’s remote home inter

• Obtain the reference from the entity object’s handle. (See Section 7.11).

A client that has a reference to an entity object’s remote interface can do any of the following:

• Invoke business methods on the entity object through the remote interface.

• Obtain a reference to the enterprise bean’s remote home interface.

• Pass the reference as a parameter or return value of a method call.

• Obtain the entity object’s primary key.

• Obtain the entity object’s handle.

• Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an e
object that does not exist result in anjava.rmi.NoSuchObjectException being thrown.

7.7.2 References to Entity Object Local Interfaces

A local client can get a reference to an existing entity object’s local interface in any of the follow
ways:

• Receive the reference as a result of a method call.

• Find the entity object using a finder method defined in the entity bean’s local home interf

A local client that has a reference to an entity object’s local interface can do any of the following:

• Invoke business methods on the entity object through the local interface.
135 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Primary Key and Object Identity

Sun Microsystems, Inc.

n an

.

e and

l Value
imary
nt class

entity

. (That
nce).
oking
ence

me,
• Obtain a reference to the enterprise bean’s local home interface.

• Pass the reference as a parameter or return value of a local method call.

• Obtain the entity object’s primary key.

• Remove the entity object.

All local references to an entity object that does not exist are invalid. All attempted invocations o
entity object that does not exist result in ajavax.ejb.NoSuchObjectLocalException being
thrown.

A local interface type must not be passed as an argument or result of a remote interface method

7.8 Primary Key and Object Identity

Every entity object has a unique identity within its home. If two entity objects have the same hom
the same primary key, they are considered identical.

The Enterprise JavaBeans architecture allows a primary key class to be any class that is a lega
Type in RMI-IIOP, subject to the restrictions defined in Subsections 8.6.13 and 10.2.12. The pr
key class may be specific to an entity bean class (i.e., each entity bean class may define a differe
for its primary key, but it is possible that multiple entity beans use the same primary key class).

A client that holds a reference to an entity object’s component interface can determine the
object’s identity within its home by invoking thegetPrimaryKey method on the reference.

The object identity associated with a reference does not change over the lifetime of the reference
is, getPrimaryKey always returns the same value when called on the same entity object refere
If an entity object has both a remote home interface and a local home interface, the result of inv
thegetPrimaryKey method on a reference to the entity object’s remote interface and on a refer
to the entity object’s local interface is the same.

A client can test whether two entity object references refer to the same entity object by using theisI-
dentical method. Alternatively, if a client obtains two entity object references from the same ho
it can determine if they refer to the same entity by comparing their primary keys using theequals
method.
 5/2/06 136

Entity Bean’s Remote Interface Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

o

ct by

he
a pro-

ran-

emote
ss

ol-
The following code illustrates using theisIdentical method to test if two object references refer t
the same entity object:

Account acc1 = ...;
Account acc2 = ...;

if (acc1.isIdentical(acc2)) {
// acc1 and acc2 are the same entity object

} else {
// acc2 and acc2 are different entity objects

}

A client that knows the primary key of an entity object can obtain a reference to the entity obje
invoking thefindByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e. use of t==
operator) for entity object references. The result of comparing two object references using the Jav
gramming languageObject.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not gua
teed to yield the same result. Therefore, a client should always use theisIdentical method to deter-
mine if two entity object references refer to the same entity object.

Note that the use ofisIdentical for the comparison of object references applies to the
implementation of the methods of thejava.util.Collection API as well.

7.9 Entity Bean’s Remote Interface

A client can access an entity object through the entity bean’s remote interface. An entity bean’s r
interface must extend thejavax.ejb.EJBObject interface. A remote interface defines the busine
methods that are callable by remote clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObject interface defines the methods that allow the client to perform the f
lowing operations on an entity object’s reference:

• Obtain the remote home interface for the entity object.

• Remove the entity object.
137 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Bean’s Local Interface

Sun Microsystems, Inc.

.

iner to

local

er-

e bean

for
• Obtain the entity object’s handle.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in thejavax.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class

Note that the entity object does not expose the methods of thejavax.ejb.EnterpriseBean
interface to the client. These methods are not intended for the client—they are used by the conta
manage the enterprise bean instances.

7.10 Entity Bean’s Local Interface

A local client can access an entity object through the entity bean’s local interface. An entity bean’s
interface must extend thejavax.ejb.EJBLocalObject interface. A local interface defines the
business methods that are callable by local clients.

The following example illustrates the definition of an entity bean’s local interface:

public interface Account extends javax.ejb.EJBLocalObject {
void debit(double amount)

throws InsufficientBalanceException;
void credit(double amount);
double getBalance();

}

Note that the methods of the entity bean’s local interface must not throw thejava.rmi.RemoteEx-
ception .

The javax.ejb.EJBLocalObject interface defines the methods that allow the local client to p
form the following operations on an entity object’s local reference:

• Obtain the local home interface for the entity object.

• Remove the entity object.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in thejavax.ejb.EJBLo-
calObject interface. Only the business methods are delegated to the instances of the enterpris
class.

Note that the entity object does not expose the methods of thejavax.ejb.EntityBean or the
optionaljavax.ejb.TimedObject interface to the local client. These methods are not intended
the local client—they are used by the container to manage the enterprise bean instances.
 5/2/06 138

Entity Bean’s Handle Enterprise JavaBeans 3.0, Final Release Client View of an EJB 2.1 Entity Bean

Sun Microsystems, Inc.

as a
g the

t
refer-

ce

gram
g in a
typi-

server

ents
of the
ile the

fica-

B con-
7.11 Entity Bean’s Handle

An entity object’s handle is an object that identifies the entity object on a network. A client that h
reference to an entity object’s remote interface can obtain the entity object’s handle by invokin
getHandle method on the remote interface. ThegetHandle method is only available on the remote
interface.

Since a handle class extendsjava.io.Serializable , a client may serialize the handle. The clien
may use the serialized handle later, possibly in a different process or even system, to re-obtain a
ence to the entity object identified by the handle.

The client code must use thejavax.rmi.PortableRemoteObject.narrow method to convert
the result of thegetEJBObject method invoked on a handle to the entity bean’s remote interfa
type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a pro
running in one JVM must be able to obtain and serialize the handle, and another program runnin
different JVM must be able to deserialize it and re-create an object reference. An entity handle is
cally implemented to be usable over a long period of time—it must be usable at least across a
restart.

Containers that store long-lived entities will typically provide handle implementations that allow cli
to store a handle for a long time (possibly many years). Such a handle will be usable even if parts
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced wh
client has stored the handle. Support for this “quality of service” is not required by the EJB speci
tion.

An EJB container is not required to accept a handle that was generated by another vendor’s EJ
tainer.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account entity object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the
// handle to resurrect an object reference to the
// account entity object.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account)javax.rmi.PortableRemoteObject.narrow(

handle.getEJBObject(), Account.class);
account.debit(100.00);
139 May 2, 2006 2:35 pm

Client View of an EJB 2.1 Entity Bean Enterprise JavaBeans 3.0, Final Release Entity Home Handles

Sun Microsystems, Inc.

ht to
then a
caller’s

t can
ge, and
se the
face.

gram
erent
mple-
t.

tions

likely
A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to an object is obtained from a handle, and
method on the object is invoked, the container performs the usual access checks based on the
principal.

7.12 Entity Home Handles

The EJB specification allows a client to obtain a handle for the remote home interface. The clien
use the home handle to store a reference to an entity bean’s remote home interface in stable stora
re-create the reference later. This handle functionality may be useful to a client that needs to u
remote home interface in the future, but does not know the JNDI name of the remote home inter

A handle to a remote home interface must implement thejavax.ejb.HomeHandle interface.

The client code must use thejavax.rmi.PortableRemoteObject.narrow method to convert
the result of thegetEJBHome method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At a minimum, a pro
running in one JVM must be able to serialize the handle, and another program running in a diff
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically i
mented to be usable over a long period of time—it must be usable at least across a server restar

7.13 Type Narrowing of Object References

A client program that is intended to be interoperable with all compliant EJB container implementa
must use thejavax.rmi.PortableRemoteObject.narrow method to perform type-narrow-
ing of the client-side representations of the remote home and remote interfaces.

Note: Programs that use the cast operator to narrow the remote and remote home interfaces are
to fail if the container implementation uses RMI-IIOP as the underlying communication transport.
 5/2/06 140

Type Narrowing of Object References Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

etween
el for
ent of

that an
B con-

Con-
te and

istence
ies, as

ot sup-
Chapter 8 EJB 2.1 Entity Bean Component Contract
for Container-Managed Persistence

The EJB 2.1 entity bean component contract for container-managed persistence is the contract b
an entity bean and its container. It defines the life cycle of the entity bean instances, the mod
method delegation of the business methods invoked by the client, and the model for the managem
the entity bean’s persistent state and relationships. The main goal of this contract is to ensure
entity bean component using container-managed persistence is portable across all compliant EJ
tainers.

This chapter defines the Enterprise Bean Provider’s view of this contract and responsibilities of the
tainer Provider for managing the life cycle of the enterprise bean instances and their persistent sta
relationships.

The contents of this chapter apply only to entity bean components with container-managed pers
as defined in the Enterprise JavaBeans 2.1 specification [3]. The contracts for persistent entit
defined by Enterprise JavaBeans 3.0, are described in the document “Java Persistence API” of this spec-
ification [2].

Note that use of dependency injection, interceptors, and Java language metadata annotations is n
ported for EJB 2.1 entity beans.
141 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

ps a set
ovider
ed fields
esses its
bstract

e Bean
s and
ersistent
manage

ed per-
resenta-
r and

d by its
of the

etween
e con-
etween
of
on. This
n or

ainers
bean

oes not
d by the
ersis-
r codes
sistence
ess, is
8.1 Overview

In accordance with the architecture for container-managed persistence, the Bean Provider develo
of entity beans for an application, and determines the relationships among them. The Bean Pr
designs an abstract persistence schema for each entity bean, which defines its container-manag
and relationships, and determines the methods for accessing them. The entity bean instance acc
container-managed fields and relationships at runtime by means of the methods defined for its a
persistence schema.

The abstract persistence schema is specified in the deployment descriptor that is produced by th
Provider. The Deployer, using the Container Provider’s tools, determines how the persistent field
relationships defined by the abstract persistence schema are mapped to a database or other p
store, and generates the necessary additional classes and interfaces that enable the container to
the persistent fields and relationships of the entity bean instances at runtime.

This chapter describes the component contract for an EJB 2.1 entity bean with container-manag
sistence, and how data independence is maintained between the entity bean instance and its rep
tion in the persistent store. It describes this contract from the viewpoints of both the Bean Provide
the container.

8.2 Container-Managed Entity Persistence and Data
Independence

The EJB component model provides a separation between the client view of a bean (as presente
home and component interfaces) and the entity bean class (which provides the implementation
client view). The EJB architecture for container-managed persistence adds to this a separation b
the entity bean class (as defined by the Bean Provider) and its persistent representation. Th
tainer-managed persistence architecture thus provides not only a layer of data independence b
the client view of a bean as anentity objectand the Bean Provider’s internal view of the bean in terms
the entity bean instance, but also between the entity bean instance and its persistent representati
allows an entity bean to be evolved independently from its clients, without requiring the redefinitio
recompilation of those clients, and it allows an entity bean to be redeployed across different cont
and different persistent data stores, without requiring the redefinition or recompilation of the entity
class.

In container-managed persistence, unlike in bean-managed persistence, the Bean Provider d
write database access calls in the methods of the entity bean class. Instead, persistence is handle
container at runtime. The entity Bean Provider must specify in the deployment descriptor those p
tent fields and relationships for which the container must handle data access. The Bean Provide
all persistent data access by using the accessor methods that are defined for the abstract per
schema. The implementation of the persistent fields and relationships, as well as all data acc
deferred to the container.
 5/2/06 142

Container-Managed Entity Persistence and Data IndependenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Component

Sun Microsystems, Inc.

elated
lational
s input
used

legates
r of the

n entity
is the

ships
cific to
e log-
ips.

depen-
mple,
sses that
plement
urce.
It is the responsibility of the Deployer to map the abstract persistence schema of a set of interr
entity bean classes into the physical schema used by the underlying data store (e.g., into a re
schema) by using the Container Provider’s tools. The Deployer uses the deployment descriptor a
to the Container Provider’s tools to perform this mapping. The Container Provider’s tools are also
to generate the concrete implementation of the entity bean classes, including the code that de
calls to the accessor methods of the entity bean class to the runtime persistent data access laye
container.

The EJB deployment descriptor for EJB 2.1 entity beans describeslogical relationships among entity
beans. It does not provide a mechanism for specifying how the abstract persistence schema of a
bean or of a set of interrelated entity beans is to be mapped to an underlying database. This
responsibility of the Deployer, who, using the Container Provider’s tools, uses the logical relation
that are specified in the deployment descriptor to map to the physical relationships that are spe
the underlying resource. It is the responsibility of the container to manage the mapping between th
ical and physical relationships at runtime and to manage the referential integrity of the relationsh

The advantage of using container-managed persistence is that the entity bean can be logically in
dent of the data source in which the entity is stored. The Container Provider’s tools can, for exa
generate classes that use JDBC or SQLJ to access the entity state in a relational database; cla
implement access to a non-relational data source, such as an IMS database; or classes that im
function calls to existing enterprise applications. These tools are typically specific to each data so
143 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

in an
frame

ompo-
create,
ified in

d can
ce. The
Figure 11 View of Underlying Data Sources Accessed Through Entity Bean

8.3 The Entity Bean Provider’s View of Container-Managed
Persistence

An entity bean implements an object view of a business entity or set of business entities stored
underlying database or implemented by an existing enterprise application (for example, by a main
program or by an ERP application).

An entity bean with container-managed persistence typically consists of its entity bean class; a c
nent interface which defines its client view business methods; a home interface which defines the
remove, home, and finder methods of its client view; and its abstract persistence schema as spec
the deployment descriptor.

A client of an entity bean can control the life cycle of a bean by using the bean’s home interface an
manipulate the bean as a business entity by using the methods defined by its component interfa
home and component interfaces of a bean define its client view.

container

Order 100

Order

container

Order 100

entity bean

existing
application

(a) Entity bean is an object view of a collection of related records

(b) Entity bean is an object view of an existing application

Order entity
bean

 in the database

client

client
 5/2/06 144

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

s with

n Pro-
ncom-

er-man-
e
e local
d by its

nother

pically
beans
ethod
d per-

ility to

d
to
rs

ct

er

s

bean

er pro-

-man-
An entity bean with container-managed persistence typically has container-managed relationship
other container-managed persistence entity beans, as defined by therelationships element of the
deployment descriptor. The architecture for container-managed persistence thus allows the Bea
vider to implement complex applications by defining a complex abstract persistence schema e
passing multiple entity bean classes related by means of container-managed relationships.

An entity bean accesses related entity beans by means of the accessor methods for its contain
aged relationship fields, which are specified by thecmr-field elements of its abstract persistenc
schema defined in the deployment descriptor. Entity bean relationships are defined in terms of th
interfaces of the related beans, and the view an entity bean presents to its related beans is define
local home and local interfaces. Thus, an entity bean can be the target of a relationship from a
entity bean only if it has a local interface.

The Bean Provider programming an application that uses container-managed persistence ty
avoids calls to the methods of the remote home and remote interfaces in favor of invoking related
by means of the methods of their local interfaces. Unlike remote method calls, such internal m
invocations are made using call-by-reference and commonly do not involve the checking of metho
missions.

The Enterprise JavaBeans architecture for container-managed persistence provides great flexib
the Bean Provider in designing an application.

For example, a group of related entity beans—Order , LineItem , andCustomer —might
all be defined as having only local interfaces, with a remotable session bean containing the
business logic that drives their invocation. The individual entity beans form a coordinated
whole that provides an interrelated set of services that are exposed by their several home an
component interfaces. The services provided by the local network of entity beans is exposed
the remote client view through the home and remote interfaces of the session bean, which offe
a coarser grained remote service.

Alternatively, a single entity bean might represent an independent, remotable business obje
that forms a unit of distribution that is designed to be referenced remotely by multiple enter-
prise beans and/or other remote clients. Such a remotable entity bean might make use of oth
entity beans within its local scope to further model its complex internal state. For example, an
Order entity bean might make use of aLineItem entity bean internally, not exposing it to
remote clients. In this case, theOrder entity bean might define both a remote and a local com-
ponent interface, where the local interface is presented only to the related entity beans, such a
LineItem , and the remote interface is presented to session beans and/or web-tier clients.

8.3.1 The Entity Bean Provider’ s Programming Contract

The Bean Provider must observe the following programming contract when defining an entity
class that uses container-managed persistence:

• The Bean Provider must define the entity bean class as an abstract class. The contain
vides the implementation class that is used at runtime.

• The container-managed persistent fields and container-managed relationship fields mustnotbe
defined in the entity bean class. From the perspective of the Bean Provider, the container
145 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

d are
anaged

ust be

ith a

sistent
aBeans

e con-
d
the

rms of

y or
es:
-
ction

. An
.

in the

posed

xposed

pt to
ovider
in the

icted to
aged persistent fields and container-managed relationship fields are virtual fields only, an
accessed through get and set accessor methods. The implementation of the container-m
persistent fields and container-managed relationship fields is supplied by the container.

• The container-managed persistent fields and container-managed relationship fields m
specified in the deployment descriptor using thecmp-field and cmr-field elements
respectively. The names of these fields must be valid Java identifiers and must begin w
lowercase letter, as determined byjava.lang.Character.isLowerCase .

• The Bean Provider must define the accessor methods for the container-managed per
fields and container-managed relationship fields as get and set methods, using the Jav
conventions. The implementation of the accessor methods is supplied by the container.

• The accessor methods must be public, must be abstract, and must bear the name of th
tainer-managed persistent field (cmp-field) or container-managed relationship fiel
(cmr-field) that is specified in the deployment descriptor, and in which the first letter of
name of the cmp-field or cmr-field has been uppercased and prefixed by “get ” or “set ”.

• The accessor methods for a container-managed relationship field must be defined in te
the local interface of the related entity bean, as described in Section 8.3.2.

• The accessor methods for container-managed relationship fields for one-to-man
many-to-many relationships must utilize one of the following Collection interfac
java.util.Collection or java.util.Set . The Collection interfaces used in rela
tionships are specified in the deployment descriptor. The implementation of the colle
classes used for the container-managed relationship fields is supplied by the container.

• An entity bean local interface type (or a collection of such) can be the type of a cmr-field
entity bean local interface type (or a collection of such) cannot be the type of a cmp-field

• The accessor methods for the container-managed relationship fields must not be exposed
remote interface of an entity bean.

• The local interface types of the entity bean and of related entity beans must not be ex
through the remote interface of the entity bean.

• The collection classes that are used for container-managed relationships must not be e
through the remote interface of the entity bean.

• Once the primary key for an entity bean has been set, the Bean Provider must not attem
change it by use of set accessor methods on the primary key cmp-fields. The Bean Pr
should therefore not expose the set accessor methods for the primary key cmp-fields
component interface of the entity bean.

• The Bean Provider must ensure that the Java types assigned to the cmp-fields are restr
the following: Java primitive types and Java serializable types.
 5/2/06 146

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

ce.

onship
ed

n be
ection

hich
of the
strict

itself
nship

hods for

lasses
bean

tion of

ss may
naged
ote (or

mp-field

s is not
8.3.2 The Entity Bean Provider’ s View of Persistent Relationships

An entity bean may have relationships with other entity beans with container-managed persisten

Relationships may be one-to-one, one-to-many, or many-to-many relationships.

Container-managed relationships can exist only among entity beans within the same local relati
scope, as defined by therelationships element in the deployment descriptor. Container-manag
relationships are defined in terms of the local interfaces of the related beans.

Relationships may be either bidirectional or unidirectional. If a relationship is bidirectional, it ca
navigated in both directions, whereas a unidirectional relationship can be navigated in one dir
only.

A unidirectional relationship is implemented with a cmr-field on the entity bean instance from w
navigation can take place, and no related cmr-field on the entity bean instance that is the target
relationship. Unidirectional relationships are typically used when the Bean Provider wishes to re
the visibility of a relationship.

An entity bean that does not have a local interface can have only unidirectional relationships from
to other entity beans. The lack of a local interface prevents other entity beans from having a relatio
to it.

The bean developer navigates or manipulates relationships by using the get and set accessor met
the container-managed relationship fields and thejava.util.Collection API for collection-val-
ued container-managed relationship fields.

The Bean Provider must consider the type and cardinality of relationships when the entity bean c
are programmed. The get method for a cmr-field must return either the local interface of the entity
or a collection (eitherjava.util.Collection or java.util.Set) of the same. The set
method for the relationship must take as an argument the entity bean’s local interface or a collec
the same.

8.3.3 Dependent Value Classes

A dependent value class is a concrete class that is the value of a cmp-field. A dependent value cla
be a class that the Bean Provider wishes to use internally within an entity bean with container-ma
persistence, and/or it may be a class that the Bean Provider chooses to expose through the rem
local) interface of the entity bean.

A dependent value class can be the value of a cmp-field; it cannot be the value of a cmr-field.

The get accessor method for a cmp-field that corresponds to a dependent value class returns acopyof
the dependent value class instance. The assignment of a dependent value class value to a c
using the set accessor method causes the value to be copied to the target cmp-field.

A dependent value class must be serializable. The internal structure of a dependent value clas
described in the EJB deployment descriptor.
147 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

e.

ean

m all

lation-
or

r a
ect

on the

value
n argu-

, the
usly in

xam-
ss

must be
8.3.4 Remove Protocols

The Bean Provider can specify the removal of an entity object in two ways:

• By the use of aremove method on the entity bean’s component interface or home interfac

• By the use of acascade-delete specification in the deployment descriptor.

8.3.4.1 Remove Methods

When theremove method is invoked on an entity object, the container must invoke the entity B
Provider’sejbRemove method as described in Section 8.5.3. After the Bean Provider’sejbRemove
method returns (and prior to returning to the client), the container must remove the entity object fro
relationships in which it participates, and then remove its persistent representation.[31]

• Once an entity has been removed from a relationship, the accessor methods for any re
ships to the entity will reflect this removal. An accessor method for a one-to-one
many-to-one relationship to the entity will return null; and an accessor method fo
many-to-many relationship to the entity will return a collection from which the entity obj
has been removed.

• The container must detect any subsequent attempt to invoke an accessor method
removed entity object and throw thejava.rmi.NoSuchObjectException if the client
is a remote client or thejavax.ejb.NoSuchObjectLocalException if the client is a
local client. The container must detect an attempt to assign a removed entity object as the
of a cmr-field of another object (whether as an argument to a set accessor method or as a
ment to a method of the java.util.Collection API) and throw the
java.lang.IllegalArgumentException .

After removing the entity object from all relationships and removing its persistent representation
container must then cascade the removal to all entity beans with which the entity had been previo
container-managed relationships for which thecascade-delete option was specified.

More than one relationship may be affected by the removal of an entity object, as in the following e
ple. Once the shipping address object used by theOrder bean has been removed, the billing addre
accessor method will also return null.

public void changeAddress()
Address a = createAddress();
setShippingAddress(a);
setBillingAddress(a);
//both relationships now reference the same entity object
getShippingAddress().remove();
if (getBillingAddress() == null) // it must be

...
else ...

// this is impossible....

[31] At this point it must appear to the application that the entity has been removed from the persistent store. If the container employs
an optimistic caching strategy and defers the removal of the entity from the database (e.g., to the end of transaction), this
invisible to the application.
 5/2/06 148

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

not
ject to

to
ntity

n-
bjects
ts.

a
ject or

e
s been
ships to

hip to
will

bject
de the
rela-

it
bjects,

.

ined

ance,
cribed
rimary
The remove method, alone, causes only the entity on which it is invoked to be removed. It does
cause the deletion to be cascaded to other entity objects. In order for the deletion of one entity ob
be automatically cascaded to another, thecascade-delete mechanism should be used.

8.3.4.2 Cascade-delete

The cascade-delete deployment descriptor element is used within a particular relationship
specify that the lifetime of one or more entity objects is dependent upon the lifetime of another e
object.

The cascade-delete deployment descriptor element is contained within theejb-relation-
ship-role element. Thecascade-delete element can only be specified for anejb-rela-
tionship-role element contained in an ejb-relation element if the other
ejb-relationship-role element in the sameejb-relation element specifies amulti-
plicity of One. Thecascade-delete option cannot be specified for a many-to-many relatio
ship. The deletion of one entity object can only be cascaded to cause the deletion of other entity o
if the first entity object is in a one-to-one or one-to-many relationship with those other entity objec

If an entity is deleted, and thecascade-delete deployment descriptor element is specified for
related entity bean, then the removal is cascaded to cause the removal of the related entity ob
objects. As with theremove operation, the removal triggered by thecascade-delete option
causes the container to invoke theejbRemove method on the entity bean instance that is to b
removed before the persistent representation of that entity object is removed. Once an entity ha
removed from a relationship because of a cascaded delete, the accessor methods for any relation
the entity will reflect this removal. An accessor method for a one-to-one or many-to-one relations
the entity will return null; and an accessor method for a many-to-many relationship to the entity
return a collection from which the entity object has been removed. After removing the entity o
from all relationships and removing its persistent representation, the container must then casca
removal to all entity beans with which the entity had been previously been in container-managed
tionships for which thecascade-delete option was specified.

The use ofcascade-delete causes only the entity object or objects in the relationship for which
is specified to be deleted. It does not cause the deletion to be further cascaded to other entity o
unless they are participants in relationship roles for whichcascade-delete has also been specified

8.3.5 Identity of Entity Objects
From the viewpoint of the Bean Provider, entity objects have a runtime object identity that is mainta
by the container.

The container maintains the persistent identity of an entity object on the basis of its primary key.

The primary key of an entity bean may or may not be visible as one or more cmp-fields of the inst
depending on the way in which it is specified. The Bean Provider specifies the primary key as des
in Section 8.8. Once it has been set, the Bean Provider must not attempt to change the value of a p
key field by means of a set method on its cmp-fields.
149 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

ass is

in a set
s of a

the

i-

s deter-

ssign an

r
e
r-field,

r-field.

or

pecial

hip

is
., it is

e, if
ding a
is or
l-
d

When a new instance of an entity bean whose primary key fields are visible in the entity bean cl
created, the Bean Provider must use theejbCreate<METHOD> method to set all the primary key
fields of the entity bean instance before the instance can participate in a relationship, e.g. be used
accessor method for a cmr-field. The Bean Provider must not reset a primary key value by mean
set method on any of its cmp-fields after it has been set in theejbCreate<METHOD> method. If the
Bean Provider attempts to reset a primary key value, the container must throw
java.lang.IllegalStateException .

Note that the container’s implementation of the referential integrity semantics for con-
tainer-managed relationships must not cause the value of the primary key to change.

The Bean Provider should not use untrimmed or blank-padded string-valued primary key
fields. Use of untrimmed primary key fields may cause comparison operations based on pr
mary keys to fail, and may result in non-portable behavior. If untrimmed strings are used in
primary key fields or other cmp-fields, the container or database system may trim them.

8.3.6 Semantics of Assignment for Relationships
The assignment operations for container-managed relationships have a special semantics that i
mined by the referential integrity semantics for the relationship multiplicity.

In the case of a one-to-one relationship, when the Bean Provider uses a set accessor method to a
object from a cmr-field in one instance to a cmr-field of thesame relationship type(i.e., as defined by
the ejb-relation andejb-relationship-role deployment descriptor elements) in anothe
instance, the object is effectivelymovedand the value of the source cmr-field is set to null in the sam
transaction context. If the argument to the set accessor method is not of the same type as the cm
the container must throw thejava.lang.IllegalArgumentException .

In the case of a one-to-many or many-to-many relationship, either thejava.util.Collection
API or a set accessor method may be used to manipulate the contents of a collection-valued cm
These two approaches are discussed below.

8.3.6.1 Use of the java.util.Collection API to Update Relationships
The methods of thejava.util.Collection API for the container-managed collections used f
collection-valued cmr-fields have the usual semantics, with the following exception: theadd andadd-
All methods applied to container-managed collections in one-to-many relationships have a s
semantics that is determined by the referential integrity of one-to-many relationships.

• If the argument to theadd method is already an element of a collection-valued relations
field of thesame relationship typeas the target collection (as defined by theejb-relation
andejb-relationship-role deployment descriptor elements), it is removed from th
first relationship and added, in the same transaction context, to the target relationship (i.e
effectively moved from one collection of the relationship type to the other). For exampl
there is a one-to-many relationship between field offices and sales representatives, ad
sales representative to a new field office will have the effect of removing him or her from h
her current field office. If the argument to theadd method is not an element of a collection-va
ued relationship of thesame relationship type, it is simply added to the target collection an
not removed from its current collection, if any.
 5/2/06 150

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

has

n-
,
s-
-

ed
must
llec-

is not

-man-
ection
han by
er-

e

ct the
re is a
tative to
• The addAll method, when applied to a target collection in a one-to-many relationship,
similar semantics, applied to the members of its collection argument individually.

Note that in the case of many-to-many relationships, adding an element or elements to the co
tents of a collection-valued cmr-field has no effect on the source collection, if any. For example
if there is a many-to-many relationship between customers and sales representatives, a cu
tomer can be added to the set of customers handled by a particular sales representative with
out affecting the set of customers handled by any other sales representative.

When thejava.util.Collection API is used to manipulate the contents of container-manag
relationship fields, the argument to any Collection method defined with a single Object parameter
be of the element type of the collection defined for the target cmr-field. The argument for any co
tion-valued parameter must be ajava.util.Collection (or java.util.Set), all of whose
elements are of the element type of the collection defined for the target cmr-field. If an argument
of the correct type for the relationship, the container must throw thejava.lang.IllegalArgu-
mentException .

The Bean Provider should exercise caution when using an Iterator over a collection in a container
aged relationship. In particular, the Bean Provider should not modify the container-managed coll
while the iteration is in progress in any way that causes elements to be added or removed, other t
the java.util.Iterator.remove() method. If elements are added or removed from the und
lying container-managed collection used by an iterator other than by thejava.util.Itera-
tor.remove() method, the container should throw th
java.lang.IllegalStateException on the next operation on the iterator.

The following example illustrates how operations on container-managed relationships that affe
contents of a collection-valued cmr-field viewed through an iterator can be avoided. Because the
one-to-many relationship between field offices and sales representatives, adding a sales represen
a new field office causes the sales representative to be removed from the current field office.

Collection nySalesreps = nyOffice.getSalesreps();
Collection sfSalesreps = sfOffice.getSalesreps();

Iterator i = nySalesreps.iterator();
Salesrep salesrep;

// a wrong way to transfer the salesrep
while (i.hasNext()) {

salesrep = (Salesrep)i.next();
sfSalesreps.add(salesrep); // removes salesrep from nyOffice

}

// this is a correct and safe way to transfer the salesrep
while (i.hasNext()) {

salesrep = (Salesrep)i.next();
i.remove();
sfSalesreps.add(salesrep);

}

151 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

deter-
The
thod is

ld of
collec-
th the

n object

ced by
plied to

ction

n

ifferent

ove a

f the
signed
renced
them-
us has
8.3.6.2 Use of Set Accessor Methods to Update Relationships
The semantics of a set accessor method, when applied to a collection-valued cmr-field, is also
mined by the referential integrity semantics associated with the multiplicity of the relationship.
identity of the collection object referenced by a cmr-field does not change when a set accessor me
executed.

In the case of a one-to-many relationship, if a collection of entity objects is assigned from a cmr-fie
in one instance to a cmr-field of the same relationship type in another instance, the objects in the
tion are effectively moved. The contents of the collection of the target instance are replaced wi
contents of the collection of the source instance, but theidentityof the collection object containing the
instances in the relationship does not change. The source cmr-field references the same collectio
as before (i.e., the identity of the collection object is preserved), but the collection is empty.

The Bean Provider can thus use the set method to move objects between the collections referen
cmr-fields of the same relationship type in different instances. The set accessor method, when ap
a cmr-field in a one-to-many relationship thus has the semantics of thejava.util.Collection
methodsclear , followed by addAll , applied to the target collection; andclear , applied to the
source collection. It is the responsibility of the container to transfer the contents of the colle
instances in the same transaction context.

Note that if the collection that is passed to the cmr setter method is an unmanaged collectio
(i.e., not itself the value of a collection-valued cmr-field), the same requirements apply in the
case that the collection contains entity objects that already participate in a one-to-many rela-
tionship of the same relationship type as the target cmr-field.

In the following example, the telephone numbers associated with the billing address of anOrder bean
instance are transferred to the shipping address. Billing address and shipping address are d
instances of the same local interface type,Address . Address is related toTelephoneNumber in a
one-to-many relationship. The example illustrates how a Bean Provider uses the set method to m
set of instances.

public void changeTelephoneNumber() {
Address a = getShippingAddress();
Address b = getBillingAddress();
Collection c = b.getTelephoneNumbers();
a.setTelephoneNumbers(b.getTelephoneNumbers());
if (c.isEmpty()) { // must be true...
...

}

In the case of a many-to-many relationship, if the value of a cmr-field is assigned to a cmr-field o
same relationship type in another instance, the objects in the collection of the first instance are as
as the contents of the cmr-field of the second instance. The identities of the collection objects refe
by the cmr-fields do not change. The contents of the collections are shared, but not the collections
selves. The set accessor method, when applied to a cmr-field in a many-to-many relationship th
the semantics of thejava.util.Collection methodsclear , followed byaddAll , applied to
the target collection.
 5/2/06 152

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

tatives,
ill result
riginally
repre-

sign-

-one,

inter-

” at the
ignated
For example, if there is a many-to-many relationship between customers and sales represen
assigning the set of customers of one sales representative to the another sales representative w
in both sales representatives handling the same customers. If the second sales representative o
handled a different group of customers, those customers will no longer be handled by that sales
sentative.

public void shareCustomers(SalesRep rep) {
setCustomers(rep.getCustomers());
// the customers are shared among the sales reps

}

The following section, 8.3.7, “Assignment Rules for Relationships”, defines the semantics of as
ment for relationships in further detail.

8.3.7 Assignment Rules for Relationships
This section defines the semantics of assignment and collection manipulation in one-to
one-to-many, and many-to-many container-managed relationships.

The figures make use of two entity beans, with local interface types A and B. Instances with local
face typeA are typically designated asa1 ,...,an ; instances with local interface typeB are typically des-
ignated asb1 ,...,bm. InterfaceA exposes accessor methodsgetB andsetB for navigable relationships
with B: getB returns an instance ofB or a collection of instances ofB, depending on the multiplicity of
the relationship. Similarly,B exposes accessor methodsgetA and setA for navigable relationships
with A.

All changes in each subsection are assumed to be applied to the figure labeled “Before change
beginning of the subsection (i.e., changes are not cumulative). The results of changes are des
graphically as well as in conditional expressions expressed in the JavaTM programming language.
153 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.1 One-to-one Bidirectional Relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

Expected result:

(b2.isIdentical(a1.getB())) &&
(a2.getB() == null) &&
(b1.getA() == null) &&
(a1.isIdentical(b2.getA()))

b1

0..1 0..1
A B

a1

b2a2

Before change:

A and B are in a one-to-one bidirectional relationship:

b1a1

b2a2

After change:
 5/2/06 154

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.2 One-to-one Unidirectional Relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

Expected result:

(b2.isIdentical(a1.getB())) && (a2.getB() == null)

b1

0..1 0..1
A B

a1

b2a2

Before change:

A and B are in a one-to-one unidirectional relationship:

b1a1

b2a2

After change:
155 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.3 One-to-many Bidirectional Relationships

Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a one-to-many bidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

 5/2/06 156

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m)) &&
(b11.getA() == null) &&
(b12.getA() == null) && ... &&
(b1n.getA() == null) &&
(a1.isIdentical(b21.getA())) &&
(a1.isIdentical(b22.getA())) && ...&&
(a1.isIdentical(b2m.getA()))

Change:

b2m.setA(b1n.getA());

a1

a2

After change:

b1
b1

b1
b1

b1n

b2
b2

b2
b2

b2
b2m
157 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) && ... &&
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(a1.isIdentical(b2m.getA()))

Change:

a1.getB().add(b2m);

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

 5/2/06 158

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) && ... &&
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) && ... &&
(a2.isIdentical(b2m_1.getA())) &&
(a1.isIdentical(b2m.getA()))

Change:

a1.getB().remove(b1n);

Expected result:

(b1n.getA() == null) &&
(b1 == a1.getB()) &&
(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n_1)) &&
!(b1.contains(b1n))

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

159 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
8.3.7.4 One-to-many Unidirectional Relationships

b1a1

b2a2

After change:

b1
b1
b1n-1

b2
b2

b2
b2

b2m

b1n

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a one-to-many unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

 5/2/06 160

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m))

Change:

a1.getB().add(b2m);

Expected result:

(b1 == a1.getB()) &&
(b1.contains(b2m))

a1

a2

After change:

b1
b1

b1
b1

b1n

b2
b2

b2
b2

b2
b2m
161 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Change:

a1.getB().remove(b1n);

Expected result:

(a1.getB().contains(b11)) &&
(a1.getB().contains(b12)) && ... &&
(a1.getB().contains(b1n_1)) &&
!(a1.getB().contains(b1n)) &&

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n-1

b1n
 5/2/06 162

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.5 Many-to-one Unidirectional Relationships

Before change:

B b11, b12, ... , b1n;
B b21, b22, ... , b2m;
// the following is true
// (a1.isIdentical(b11.getA())) && ... && (a1.isIdentical(b1n.getA()
)) &&
// (a2.isIdentical(b21.getA())) && ... && (a2.isIdentical(b2m.getA()
))

Change:

b1j.setA(b2k.getA());

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a many-to-one unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

163 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected result:

(a1.isIdentical(b11.getA())) &&
(a1.isIdentical(b12.getA())) &&
...
(a2.isIdentical(b1j.getA())) &&
...
(a1.isIdentical(b1n.getA())) &&
(a2.isIdentical(b21.getA())) &&
(a2.isIdentical(b22.getA())) &&
...
(a2.isIdentical(b2k.getA())) &&
...
(a2.isIdentical(b2m.getA()))

b1a1

b2a2

After change:

b1

b1j

b1
b1

b2
b2

b2
b2

b2m

n

 5/2/06 164

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.6 Many-to-many Bidirectional Relationships

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many bidirectional relationship:

b2a2

b3a3

b4a4

b5a5
165 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&
(b1.getA().contains(a1)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5)) &&
(b5.getA().contains(a4)) &&
(b5.getA().contains(a5)) &&

Change:

a1.setB(a3.getB());

Expected result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a1)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5))
 5/2/06 166

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
167 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
 5/2/06 168

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
8.3.7.7 Many-to-many Unidirectional Relationships

Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&

Change:

a1.setB(a3.getB());

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many unidirectional relationship:

b2a2

b3a3

b4a4

b5a5
169 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
Expected Result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&

Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
 5/2/06 170

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
171 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

r-man-
pply to

ects

ions.

essor

ment
type

ued

ment
the

mul-

sistent

te of the

rsistent
hould be
8.3.8 Collections Managed by the Container
The collections that are used in the representation of one-to-many and many-to-many containe
aged relationships are implemented and managed by the container. The following semantics a
these collections:

• It is the responsibility of the container to preserve the runtime identity of the collection obj
used in container-managed relationships.

• There is no constructor available to the Bean Provider for the container-managed collect

• If there are no related values for a given container-managed relationship, the get acc
method for that cmr-field returns an empty collection (and notnull).

• It is the responsibility of the container to raise thejava.lang.IllegalArgumentEx-
ception if the Bean Provider attempts to assignnull as the value of a collection-valued
cmr-field by means of the set accessor method.

• It is the responsibility of the container to ensure that when thejava.util.Collection
API is used to manipulate the contents of container-managed relationship fields, the argu
to any Collection method defined with a single Object parameter must be of the element
of the collection defined for the target cmr-field. The argument for any collection-val
parameter must be ajava.util.Collection (or java.util.Set), all of whose ele-
ments are of the element type of the collection defined for the target cmr-field. If an argu
is not of the correct type for the relationship, the container must throw
java.lang.IllegalArgumentException .

• It is the responsibility of the container to throw thejava.lang.IllegalStateExcep-
tion if an attempt is made to modify a container-managed collection corresponding to a
tivalued cmr-field using thejava.util.Collection API outside of the transaction
context in which the collection object was initially materialized.

• It is the responsibility of the container to throw thejava.lang.IllegalStateExcep-
tion if an attempt is made to use ajava.util.Iterator for a container-managed col-
lection in a transaction context other than that in which the iterator was obtained.

8.3.9 Non-persistent State
The Bean Provider may use instance variables in the entity bean instance to maintain non-per
state, e.g. a JMS connection.

The Bean Provider can use instance variables to store values that depend on the persistent sta
entity bean instance, although this use is not encouraged. The Bean Provider should use theejbLoad
method to resynchronize the values of any instance variables that depend on the entity bean’s pe
state. In general, any non-persistent state that depends on the persistent state of an entity bean s
recomputed during theejbLoad method.
 5/2/06 172

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

ents or
avoid

invoca-

e layer.

to the
ference
deter-

per-

lation-
on-

rough

sed for

of the

can be

ty bean

ould be
ing is
The Bean Provider should exercise care in passing the contents of instance variables as the argum
results of method invocations when local interfaces are used. In general, the Bean Provider should
passing state that is maintained in instance variables as the argument or result of a local method
tion.

8.3.10 The Relationship Between the Internal View and the Client View

In designing the entity bean, the Bean Provider should keep in mind the following:

• The classes that are exposed by the remote interface are decoupled from the persistenc
Instances of these classes are passed to and from the client by value.

• The classes that are exposed by the local interface of the bean may be tightly coupled
bean’s internal state. Instances of these classes are passed to and from the client by re
and may therefore be modified by the client. The Bean Provider should exercise care in
mining what is exposed through the local interface of the bean.

8.3.10.1 Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an entity bean with container-managed
sistence.

• The Bean Provider must not expose the get and set methods for container-managed re
ship fields or the persistentCollection classes that are used in container-managed relati
ships through the remote interface of the bean.

• The Bean Provider must not expose local interface types or local home interface types th
the remote interface or remote home interface of the bean.

• The Bean Provider must not expose the container-managed collection classes that are u
relationships through the remote interface of the bean.

• The Bean Provider must not expose timers or timer handles through the remote interface
bean.

Dependent value classes can be exposed in the remote interface or remote home interface and
included in the client ejb-jar file.

The Bean Provider is free to expose get and set methods that correspond to cmp-fields of the enti
through the bean’s remote interface.

8.3.11 Mapping Data to a Persistent Store

This specification does not prescribe how the abstract persistence schema of an entity bean sh
mapped to a relational (or other) schema of a persistent store, or define how such a mapp
described.
173 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

are
8.3.12 Example
Figure 12 illustrates anOrder entity bean with relationships to line items and customers, which
other entity beans within the same local scope.Product is indirectly related toOrder by means of
the relationship betweenLineItem andProduct . Sample code for theOrderBean class follows
the figure.

Figure 12 Relationship Example

OrderBean

<<abstract>>

getOrderStatus
setOrderStatus
getLineItems
setLineItems
getCreditApproved
setCreditApproved
getCustomer
setCustomer
...

LineItem

*

1

1

* *

1

Order-LineItem

Product-LineItem

Order-Customer

Customer

Product
 5/2/06 174

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.
package com.acme.order;

// This example shows the implementation of OrderBean, the
// entity bean class for the OrderEJB entity bean. OrderEJB has
// container-managed relationships with the entity beans
// CustomerEJB and LineItemEJB.
// This example illustrates the use of local interfaces.

import java.util.Collection;
import java.util.Vector;
import java.util.Date;

import javax.naming.*;

public abstract class OrderBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 // define status codes for processing

 static final int BACKORDER = 1;
 static final int SHIPPED = 2;
 static final int UNSHIPPED = 3;

 // get and set methods for the cmp fields

 public abstract int getOrderStatus();
 public abstract void setOrderStatus(int orderStatus);

 public abstract boolean getCreditApproved();
 public abstract void setCreditApproved(boolean creditapproved);

 public abstract Date getOrderDate();
 public abstract void setOrderDate(Date orderDate);

 // get and set methods for the relationship fields

 public abstract Collection getLineItems();
 public abstract void setLineItems(Collection lineitems);

 public abstract Customer getCustomer();
 public abstract void setCustomer(Customer customer);

 // business methods.

 // addLineItem:
 // This method is used to add a line item.
 // It creates the lineitem object and adds it to the
 // persistent managed relationship.

 public void addLineItem(Product product,
 int quantity,
 Address address)

throws InsufficientInfoException
 {

// create a new line item
175 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
if (validAddress(address)) {
 // Address is a legacy class. It is a dependent value
 // class that is available both in the client and in
 // the entity bean, and is serializable.
 // We will use the address as the value of a cmp field
 // of lineItem.

 try {
 Context ic = new InitialContext();
 LineItemLocalHome litemLocalHome =
 (LineItemLocalHome)ic.lookup("LineItemEJB");
 LineItem litem = litemLocalHome.create();

 litem.setProduct(product);
 litem.setQuantity(quantity);
 litem.setTax(calculateTax(product.getPrice(),
 quantity,
 address));
 litem.setStatus(UNSHIPPED);
 // set the address for the line item to be shipped
 litem.setAddress(address);
 // The lineItem entity bean uses a dependent value
 // class to represent the dates for the order status.
 // This class holds shipment date, expected shipment
 // date, credit approval date, and inventory
 // dates which are internal to the order fullfillment

// process. Not all this information will be available
 // to the client.

 Dates dates = new Dates();
 litem.setDates(dates);
 getLineItems().add(litem);
 } catch (Exception someexception) {}

} else {
 throw new InsufficientInfoException();
}

 }

 // getOrderLineItems:
 // This method makes a view of the lineitems that are in this
 // order available in the client. It makes only the relevant
 // information visible to the client and hides the internal
 // details of the representation of the lineitem
 public Collection getOrderLineItems() {

Vector clientlineitems = new Vector();
Collection lineitems = getLineItems();
java.util.Iterator iterator = lineitems.iterator();
// ClientLineItem is a value class that is used in
// the client view.
// The entity bean provider abstracts from the persistent
// representation of the line item to construct the client
// view.
ClientLineItem clitem;
while (iterator.hasNext()) {
 LineItem litem = (LineItem)iterator.next();
 clitem = new ClientLineItem();
 // only the name of the product is available in the
 // client view
 5/2/06 176

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

in the

hemas

he
 clitem.setProductName(litem.getProduct().getName());
 clitem.setQuantity(litem.getQuantity());
 // the client view gets a specific descriptive message
 // depending on the line item status.
 clitem.setCurrentStatus(
 statusCodeToString(litem.getStatus()));
 // address is not copied to the client view.
 // as this class includes other information with
 // respect to the order handing that should not be
 // available to the client. Only the relevant info
 // is copied.
 int lineitemStatus = litem.getStatus();
 if (lineitemStatus == BACKORDER) {

clitem.setShipDate(
litem.getDates().getExpectedShipDate());

 } else if (lineitemStatus == SHIPPED) {
clitem.setShipDate(
litem.getDates().getShippedDate());

 }
 //add the new line item
 clientlineitems.add(clitem);
}
// return the value objects to the client
return clientlineitems;

 }

// other methods internal to the entity bean class
...

 // other javax.ejb.EntityBean methods
...

}

8.3.13 The Bean Provider’ s View of the Deployment Descriptor

The persistent fields (cmp-fields) and relationships (cmr-fields) of an entity bean must be declared
deployment descriptor.

The deployment descriptor provides the following information about the abstract persistence sc
of entity beans and their container-managed relationships:

• An ejb-name element for each entity bean. Theejb-name must be a valid Java identifier
and must be unique within theejb-name elements of the ejb-jar file.

• An abstract-schema-name element for each entity bean. The
abstract-schema-name must be a valid Java identifier and must be unique within t
abstract-schema-name elements of the ejb-jar file. Theabstract-schema-name
element is used in the specification of EJB QL queries.

• A set of ejb-relation elements, each of which contains a pair ofejb-relation-
ship-role elements to describe the two roles in the relationship.[32]
177 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

lti-
• Eachejb-relationship-role element describes a relationship role: its name, its mu
plicity within a relation, and its navigability. It specifies the name of thecmr-field that is
used from the perspective of the relationship participant. Thecmr-field-type element
must be specified if the type of the cmr-field isjava.util.Collection or
java.util.Set . Each relationship role refers to an entity bean by means of anejb-name
element contained in therelationship-role-source element.

[32] The relation names and the relationship role names are not used in the code provided by the Bean Provider.
 5/2/06 178

The Entity Bean Provider’s View of Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Com-

Sun Microsystems, Inc.

istence
naged
The following example shows a deployment descriptor segment that defines the abstract pers
schema for a set of related entity beans. The deployment descriptor elements for container-ma
persistence and relationships are described further in Chapter 19.

<ejb-jar>

...

<enterprise-beans>
...
</enterprise-beans>

<relationships>

<!--
ONE-TO-MANY: Order LineItem
-->

<ejb-relation>
<ejb-relation-name>Order-LineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
order-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>lineitem-belongsto-order
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>order</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

<!--
ONE-TO-MANY unidirectional relationship:
Product is not aware of its relationship with LineItem
-->

<ejb-relation>
<ejb-relation-name>Product-LineItem</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
179 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.
product-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>ProductEJB</ejb-name>
</relationship-role-source>

 <!-- since Product does not know about LineItem
 there is no cmr field in Product for accessing

Lineitem
 -->

</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
lineitem-for-product
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>product</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

</ejb-relation>

<!--
ONE-TO-MANY: Order Customer:
-->

<ejb-relation>
<ejb-relation-name>Order-Customer</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
customer-has-orders
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>CustomerEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>orders</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
order-belongsto-customer
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>
 5/2/06 180

The Entity Bean Component Contract Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

its con-

ontract
client
<cmr-field-name>customer</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

...

</ejb-jar>

8.4 The Entity Bean Component Contract

This section specifies the container-managed persistence contract between an entity bean and
tainer.

8.4.1 Runtime Execution Model of Entity Beans

This subsection describes the runtime model and the classes used in the description of the c
between an entity bean and its container. Figure 13 shows an overview of the runtime model. The
of an entity bean may be a local client or it may be a remote client.
181 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release The Entity Bean

Sun Microsystems, Inc.

entity
the Con-

ple-
e

Figure 13 Overview of the Entity Bean Runtime Execution Model

An enterprise bean is an object whose class is provided by the Bean Provider. The class of an
bean with container-managed persistence is abstract. The concrete bean class is generated by
tainer Provider’s tools at deployment time. The container is also responsible for providing the im
mentation of the java.util.Collection classes that are used in maintaining th
container-managed relationships of the entity bean.

container

EJB objects

EJB Home

EJB objects
EJB Objects

EJB objects

EJB Local Home

EJB objects
EJB Local Objects

enterprise bean

instances

enterprise bean

 instances

enterprise bean 1

enterprise bean 2

container provided
classes

classes provided by

container
bean provider and

client
 5/2/06 182

The Entity Bean Component Contract Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

ime
client
ntainer
entity
refer-
entity

ovider’s

or
ecific to
by the
ple-

nt data
ty bean
moval,

lt of the
hrough
emes.

ion of
d to use

JBOb-
anage

e
d

on-
antics
ntity
An entity EJBObject or EJBLocalObject is an object whose class was generated at deployment t
by the Container Provider’s tools. A client never references an entity bean instance directly—a
always references an entity EJBObject or EJBLocalObject whose class is generated by the Co
Provider’s tools. The entity EJBObject class implements an entity bean’s remote interface. The
EJBLocalObject class implements an entity bean’s local interface. A related entity bean never
ences another entity bean instance directly—a related entity bean, like any other local client of an
bean, always references an entity EJBLocalObject whose class is generated by the Container Pr
tools.

An entityEJBHomeor EJBLocalHomeobject provides life cycle operations (create, find, remove) f
its entity objects as well as home business methods, which are business methods that are not sp
an entity bean instance. The class for the entity EJBHome or EJBLocalHome object is generated
Container Provider’s tools at deployment time. The entity EJBHome or EJBLocalHome object im
ments the entity bean’s remote or local home interface that was defined by the Bean Provider.

8.4.2 Container Responsibilities
The following are the container responsibilities for the management of persistent state.

8.4.2.1 Container-Managed Fields

An entity bean with container-managed persistence relies on the container to perform persiste
access on behalf of the entity bean instances. The container transfers data between an enti
instance and the underlying resource manager. The container also implements the creation, re
and lookup of the entity object in the underlying database.

The container transfers data between the entity bean and the underlying data source as a resu
execution of the entity bean’s methods. Because of the requirement that all data access occur t
the accessor methods, the container can implement both eager and lazy loading and storing sch

The container is responsible for implementing the entity bean class by providing the implementat
the get and set accessor methods for its abstract persistence schema. The container is allowe
Java serialization to store the container-managed persistent fields (cmp-fields).

The container must also manage the mapping between primary keys and EJBLocalObjects or E
jects. If both a remote and a local interface are specified for the entity bean, the container must m
the mapping between EJBObjects and EJBLocalObjects.

Because the container is free to optimize the delivery of persistent data to the bean instanc
(for example, by the use of lazy loading strategies), the contents of the entity bean instance an
the contents of container-managed collections may not be fully materialized.

8.4.2.2 Container-Managed Relationships

The container maintains the relationships among entity beans.

• It is the responsibility of the container to maintain the referential integrity of the c
tainer-managed relationships, as described in Section 8.3.6, in accordance with the sem
of the relationship type as specified in the deployment descriptor. For example, if an e
183 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

ld of
t also

rela-
t to a
-
tains

-
hich
n is

in
tially

ner that
bean is added to a collection corresponding to the container-managed relationship fie
another entity bean, the container-managed relationship field of the first entity bean mus
be updated by the container in the same transaction context.

• It is the responsibility of the container to throw thejava.lang.IllegalArgumentEx-
ception when the argument to a set method in a relationship is an instance of the wrong
tionship type or a collection containing instances of the wrong type, or when an argumen
method of thejava.util.Collection API used to manipulate a collection-valued con
tainer-managed relationship field is an instance of the wrong type or a collection that con
instances of the wrong type (see Section 8.3.6).

• It is the responsibility of the container to throw thejava.lang.IllegalStateExcep-
tion when a method of thejava.util.Collection API is used to access a collec
tion-valued cmr-field within a transaction context other than the transaction context in w
the cmr-field was initially materialized. For example, if the container-managed collectio
returned as the result of a local interface method with transaction attributeRequiresNew ,
and the client attempts to access the collection, the container must throw theIllegal-
StateException .

• It is the responsibility of the container to throw thejava.lang.IllegalStateExcep-
tion when ajava.util.Iterator is used to access a collection-valued cmr-field with
a transaction context other than the transaction context in which the iterator was ini
obtained.

8.5 Instance Life Cycle Contract Between the Bean and the
Container

This section describes the part of the component contract between the entity bean and the contai
relates to the management of the entity bean instance’s life cycle.
 5/2/06 184

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

bject
8.5.1 Instance Life Cycle

Figure 14 Life Cycle of an Entity Bean Instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity o
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance usingnewIn-
stance . The container then invokes thesetEntityContext method to pass the instance
a reference to theEntityContext interface. TheEntityContext interface allows the

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()ejbPostCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(args)

ejbCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(args)

ejbSelect<METHOD>(args)

ejbSelect<METHOD>(args)

ejbTimeout(arg)
185 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

t the

While
entity
tance
state.
any of

s

ce is

ts that

n the
s the
ce an
in the

pecific
e the

deter-

ods

ssivate
e
e con-

ossi-

e
the

ked
instance to invoke services provided by the container and to obtain the information abou
caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool.
the instance is in the available pool, the instance is not associated with any particular
object identity. All instances in the pool are considered equivalent, and therefore any ins
can be assigned by the container to any entity object identity at the transition to the ready
While the instance is in the pooled state, the container may use the instance to execute
the entity bean’s finder methods (shown asejbFind<METHOD> in the diagram) or any of the
entity bean’s home methods (shownejbHome<METHOD>in the diagram). The instance doe
not move to the ready state during the execution of a finder or a home method. AnejbSe-
lect<METHOD> method may be called by an entity bean’s home method while the instan
in the pooled state.

• An instance transitions from the pooled state to the ready state when the container selec
instance to service a client call to an entity object or anejbTimeout method. There are two
possible transitions from the pooled to the ready state: through theejbCreate<METHOD>
and ejbPostCreate<METHOD> methods, or through theejbActivate method. The
container invokes theejbCreate<METHOD> and ejbPostCreate<METHOD> methods
when the instance is assigned to an entity object during entity object creation (i.e., whe
client invokes a create method on the entity bean’s home object). The container invoke
ejbActivate method on an instance when an instance needs to be activated to servi
invocation on an existing entity object—this occurs because there is no suitable instance
ready state to service the client’s call or theejbTimeout method.

• When an entity bean instance is in the ready state, the instance is associated with a s
entity object identity. While the instance is in the ready state, the container can synchroniz
state of the instance with the state of the entity in the underlying data source whenever it
mines the need to, in the process invoking theejbLoad andejbStore methods zero or
more times. A business method can be invoked on the instance zero or more times. Theejb-
Timeout method can be invoked on the instance zero or more times. Invocations of theejb-
Load andejbStore methods can be arbitrarily mixed with invocations of business meth
andejbTimeout method invocations. AnejbSelect<METHOD> method can be called by
a business method (orejbLoad or ejbStore method orejbTimeout method) while the
instance is in the ready state.

• The container can choose to passivate an entity bean instance within a transaction. To pa
an instance, the container first invokes theejbStore method to allow the instance to prepar
itself for the synchronization of the database state with the instance’s state, and then th
tainer invokes theejbPassivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three p
ble transitions from the ready to the pooled state: through theejbPassivate method,
through theejbRemove method, and because of a transaction rollback forejbCreate ,
ejbPostCreate , or ejbRemove (not shown in Figure 14). The container invokes th
ejbPassivate method when the container wants to disassociate the instance from
entity object identity without removing the entity object. The container invokes theejbRe-
move method when the container is removing the entity object (i.e., when the client invo
the remove method on the entity object’s component interface or aremove method on the
entity bean’s home interface). IfejbCreate , ejbPostCreate , or ejbRemove is called
 5/2/06 186

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

oled

bject
bean

, the

.

si-
“does

bject
onent
client’s

oling
ation.
.

ider:

ntity

.5 for
of an
ss its
and the transaction rolls back, the container will transition the bean instance to the po
state.

• When the instance is put back into the pool, it is no longer associated with an entity o
identity. The container can assign the instance to any entity object within the same entity
home.

• The container can remove an instance in the pool by calling theunsetEntityContext
method on the instance.

Notes:

1. TheEntityContext interface passed by the container to the instance in thesetEntity-
Context method is an interface, not a class that contains static information. For example
result of theEntityContext.getPrimaryKey method might be different each time an
instance moves from the pooled state to the ready state, and the result of thegetCaller-
Principal andisCallerInRole methods may be different in each business method

2. A RuntimeException thrown from any method of an entity bean class (including the bu
ness methods and the callbacks invoked by the container) results in the transition to the
not exist” state. The container must not invoke any method on the instance after aRuntime-
Exception has been caught. From the caller’s perspective, the corresponding entity o
continues to exist. The client can continue accessing the entity object through its comp
interface because the container can use a different entity bean instance to delegate the
requests. Exception handling is described further in Chapter 14.

3. The container is not required to maintain a pool of instances in the pooled state. The po
approach is an example of a possible implementation, but it is not the required implement
Whether the container uses a pool or not has no bearing on the entity bean coding style

8.5.2 Bean Provider’ s Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract as seen by the Bean Prov

The entity Bean Provider is responsible for implementing the following methods in the abstract e
bean class:

• A public constructor that takes no arguments.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Subsection 13.6
how the container executes methods with an unspecified transaction context). An identity
entity object is not available during this method. The entity bean must not attempt to acce
persistent state and relationships using the accessor methods during this method.
187 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

pecific
erve

ct is
t state

by the

g-
n-
nt

hods,
of
will be
Java

ro-

ting
revi-

the
-
Pro-

-
s the cli-

y bea
The instance can take advantage of thesetEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method. The entity bean must not attempt to access its persisten
and relationships using the accessor methods during this method.

The instance can take advantage of theunsetEntityContext method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;

There are zero[33] or moreejbCreate<METHOD> methods, whose signatures match the si
natures of thecreate<METHOD> methods of the entity bean’s home interface. The co
tainer invokes anejbCreate<METHOD> method on an entity bean instance when a clie
invokes a matchingcreate<METHOD> method on the entity bean’s home interface.

The entity Bean Provider’s responsibility is to initialize the instance in theejbCre-
ate<METHOD>methods from the input arguments, using the get and set accessor met
such that when theejbCreate<METHOD> method returns, the persistent representation
the instance can be created. The entity Bean Provider is guaranteed that the values that
initially returned by the instance’s get methods for container-managed fields will be the
language defaults (e.g. 0 for integer,null for pointers), except for collection-valued
cmr-fields, which will have the empty collection (or set) as their value. The entity Bean P
vider must not attempt to modify the values of cmr-fields in anejbCreate<METHOD>
method. This should be done in theejbPostCreate<METHOD> method instead.

The entity object created by theejbCreate<METHOD> method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the exis
entity objects within the same home. However, it is legal to reuse the primary key of a p
ously removed entity object. The implementation of the Bean Provider’sejbCre-
ate<METHOD> methods should be coded to return a null.[34]

An ejbCreate<METHOD> method executes in the transaction context determined by
transaction attribute of the matchingcreate<METHOD> method. The database insert opera
tions are performed by the container within the same transaction context after the Bean
vider’sejbCreate<METHOD> method completes.

• public void ejbPostCreate<METHOD>(...);

For each ejbCreate<METHOD> method, there is a matchingejbPostCre-
ate<METHOD>method that has the same input parameters but whose return type isvoid .
The container invokes the matchingejbPostCreate<METHOD> method on an instance

[33] An entity bean has noejbCreate <METHOD>andejbPostCreate <METHOD>methods if it does not define any create meth
ods in its home interface. Such an entity bean does not allow its clients to create new EJB objects. The entity bean restrict
ents to accessing entities that were created through direct database inserts.

[34] The above requirement is to allow the creation of an entity bean with bean-managed persistence by subclassing an entitn
with container-managed persistence.
 5/2/06 188

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

ce

ct and

pre-

from

in the

t not
ng this

ly
the

ociate
vail-
any
ically

t not
ng this

cli-
the

t

rmined
after it invokes theejbCreate<METHOD> method with the same arguments. The instan
can discover the primary key by callinggetPrimaryKey on its entity context object.

The entity object identity is available during theejbPostCreate<METHOD> method. The
instance may, for example, obtain the component interface of the associated entity obje
pass it to another enterprise bean as a method argument.

The entity Bean Provider may use theejbPostCreate<METHOD> to set the values of
cmr-fields to complete the initialization of the entity bean instance.

An ejbPostCreate<METHOD> method executes in the same transaction context as the
viousejbCreate<METHOD> method.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.

This method executes with an unspecified transaction context. The entity bean mus
attempt to access its persistent state or relationships using the accessor methods duri
method.

The instance can obtain the identity of the entity object via thegetPrimaryKey , getE-
JBLocalObject , or getEJBObject method on the entity context. The instance can re
on the fact that the primary key and entity object identity will remain associated with
instance until the completion ofejbPassivate or ejbRemove .

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. TheejbPassivate method gives the instance the chance to release
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during theejbActivate method.)

This method executes with an unspecified transaction context. The entity bean mus
attempt to access its persistent state or relationships using the accessor methods duri
method.

The instance can still obtain the identity of the entity object via thegetPrimaryKey ,
getEJBLocalObject , orgetEJBObject method of theEntityContext interface.

• public void ejbRemove() ;

The container invokes theejbRemove method on an entity bean instance in response to a
ent-invokedremove operation on the entity bean’s home or component interface or as
result of a cascade-delete operation. The instance is in the ready state whenejbRemove is
invoked and it will be entered into the pool when the method completes.

The entity Bean Provider can use theejbRemove method to implement any actions that mus
be done before the entity object’s persistent representation is removed.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance at the beginning of theejbRemove method is the
same as it would be at the beginning of a business method.

This method and the database delete operation(s) execute in the transaction context dete
by the transaction attribute of theremove method that triggered theejbRemove method.
189 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

he
ov-

f this
stance

ith the

ed just
the
pend
persis-

ues

of the

ith the

e

f

te the

r Pro-
ed in

nce to
d
lects
The instance can still obtain the identity of the entity object via thegetPrimaryKey ,
getEJBLocalObject , orgetEJBObject method of theEntityContext interface.

After the entity Bean Provider’sejbRemove returns, and in the same transaction context, t
container removes the entity bean from all relationships in which it participates before rem
ing the entity object’s persistent representation.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate method.

• public void ejbLoad() ;

When the container needs to synchronize the state of an enterprise bean instance w
entity object’s persistent state, the container calls theejbLoad method.

The entity Bean Provider can assume that the instance’s persistent state has been load
before theejbLoad method is invoked. It is the responsibility of the Bean Provider to use
ejbLoad method to recompute or initialize the values of any instance variables that de
on the entity bean’s persistent state. In general, any transient state that depends on the
tent state of an entity bean should be recalculated using theejbLoad method. The entity bean
can use theejbLoad method, for instance, to perform some computation on the val
returned by the accessor methods (for example, uncompressing text fields).

This method executes in the transaction context determined by the transaction attribute
business method orejbTimeout method that triggered theejbLoad method.

• public void ejbStore();

When the container needs to synchronize the state of the entity object’s persistent state w
state of the enterprise bean instance, the container first calls theejbStore method on the
instance.

The entity Bean Provider should use theejbStore method to update the instance using th
accessor methods before its persistent state is synchronized. For example, theejbStore
method may perform compression of text before the text is stored in the database.

The Bean Provider can assume that after theejbStore method returns, the persistent state o
the instance is synchronized.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate method invoked on the instance. All business methods or theejbTimeout method
invoked between the previousejbLoad or ejbCreate<METHOD> method and thisejb-
Store method are also invoked in the same transaction context.

• public <primary key type or collection>ejbFind<METHOD>(...) ;

The Bean Provider of an entity bean with container-managed persistence does not wri
finder (ejbFind<METHOD>) methods.

The finder methods are generated at the entity bean deployment time using the Containe
vider’s tools. The syntax for the Bean Provider’s specification of finder methods is describ
the document “Java Persistence API” of this specification [2].

• public <type>ejbHome<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invoked<METHOD>home method. The instance is in the poole
state (i.e., it is not assigned to any particular entity object identity) when the container se
 5/2/06 190

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

d

ans-

acces-
bean

query
Bean

er Pro-

the

ce
nd

tion

r must

tance,

, the

tances
the instance to execute theejbHome<METHOD> method on it, and it is returned to the poole
state when the execution of theejbHome<METHOD> method completes.

TheejbHome<METHOD>method executes in the transaction context determined by the tr
action attribute of the matching<METHOD> home method, as described in Section 13.6.2.

The entity Bean Provider provides the implementation of theejbHome<METHOD>method.
The entity bean must not attempt to access its persistent state or relationships using the
sor methods during this method because a home method is not specific to a particular
instance.

• public abstract <type>ejbSelect<METHOD>(...) ;

The Bean Provider may provide zero or more select methods. A select method is a
method that is not directly exposed to the client in the home or component interface. The
Provider typically calls a select method within a business method.

The Bean Provider defines the select methods asabstract methods.

The select methods are generated at the entity bean deployment time using the Contain
vider’s tools.

The syntax for the specification of select methods is described in the document “Java Persis-
tence API” of this specification [2].

The ejbSelect<METHOD> method executes in the transaction context determined by
transaction attribute of the invoking business method.

• public void ejbTimeout(...);

The container invokes theejbTimeout method on an instance when a timer for the instan
has expired. TheejbTimeout method notifies the instance of the time-based event a
allows the instance to execute the business logic to handle it.

The ejbTimeout method executes in the transaction context determined by its transac
attribute.

8.5.3 Container’s View

This subsection describes the container’s view of the state management contract. The containe
call the following methods:

• public void setEntityContext(ec) ;

The container invokes this method to pass a reference to theEntityContext interface to
the entity bean instance. The container must invoke this method after it creates the ins
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of ins
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.
191 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

lt of a

e

e
eth-

(or

ating
entity

ting
revi-

a

it can

hing

can

ntity
i.e.,

transac-

n the
must
if the
• public PrimaryKeyClass ejbCreate<METHOD>(...) ;
public void ejbPostCreate<METHOD>(...) ;

The container invokes these two methods during the creation of an entity object as a resu
client invoking acreate<METHOD> method on the entity bean’s home interface.

The container invokes theejbCreate<METHOD> method whose signature matches th
create<METHOD> method invoked by the client.

Prior to invoking theejbCreate<METHOD> method provided by the Bean Provider, th
container must ensure that the values that will be initially returned by the instance’s get m
ods for container-managed fields will be the Java language defaults (e.g. 0 for integer,null
for pointers), except for collection-valued cmr-fields, which must have the empty collection
set) as their value.

The container is responsible for calling theejbCreate<METHOD> method, for obtaining the
primary key fields of the newly created entity object persistent representation, and for cre
an entity EJBObject reference and/or EJBLocalObject reference for the newly created
object. The container must establish the primary key before it invokes theejbPostCre-
ate<METHOD> method.

The entity object created by theejbCreate<METHOD> method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the exis
entity objects within the same home. However, it is legal to reuse the primary key of a p
ously removed entity object. The container may, but is not required to, throw theDupli-
cateKeyException on the Bean Provider’s attempt to create an entity object with
duplicate primary key[35].

The container may create the representation of the entity in the database immediately, or
defer it to a later time (for example to the time after the matchingejbPostCre-
ate<METHOD>has been called, or to the end of the transaction), depending on the cac
strategy that it uses.

The container then invokes the matchingejbPostCreate<METHOD> method with the
same arguments on the instance to allow the instance to fully initialize itself. The instance
discover the primary key by calling thegetPrimaryKey method on its entity context object.

Finally, the container returns the entity object’s remote interface (i.e., a reference to the e
EJBObject) to the client if the client is a remote client or the entity object’s local interface (
a reference to the entity EJBLocalObject) if the client is a local client.

The container must invoke theejbCreate<METHOD> and ejbPostCreate<METHOD>
methods and create the representation of the persistent instance in the database in the
tion context determined by the transaction attribute of the matchingcreate<METHOD>
method, as described in subsection 13.6.2.

• public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., whe
instance is taken from the pool and assigned to an entity object identity). The container
ensure that the primary key of the associated entity object is available to the instance
instance invokes thegetPrimaryKey , getEJBLocalObject , or getEJBObject
method on itsEntityContext interface.

The container invokes this method with an unspecified transaction context.

[35] Containers using optimistic caching strategies, for example, may rollback the transaction at a later point.
 5/2/06 192

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

must

en the
The

o the

invoke

delete

nce is

le to

n-
rtici-

it can
hing

re
oked

ith the

base,
is

-
tainer
the
Note that instance is not yet ready for the delivery of a business method. The container
still invoke theejbLoad method prior to a business method.

• public void ejbPassivate() ;

The container invokes this method on an entity bean instance at passivation time (i.e., wh
instance is being disassociated from an entity object identity and moved into the pool).
container must ensure that the identity of the associated entity object is still available t
instance if the instance invokes thegetPrimaryKey , getEJBLocalObject , or getEJ-
BObject method on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first
theejbStore method on the instance before it invokesejbPassivate on it.

• public void ejbRemove();

The container invokes theejbRemove method in response to a client-invokedremove oper-
ation on the entity bean’s home or component interface or as the result of a cascade-
operation. The instance is in the ready state whenejbRemove is invoked and it will be
entered into the pool when the method completes.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the persistent state of the instance at the beginning of theejbRemove
method is the same as it would be at the beginning of a business method (i.e., if the insta
not already synchronized from the state in the database, the container must invokeejbLoad
before it invokesejbRemove).

The container must ensure that the identity of the associated entity object is still availab
the instance in theejbRemove method (i.e., the instance can invoke thegetPrimaryKey ,
getEJBLocalObject , or getEJBObject method on itsEntityContext in the
ejbRemove method).

After the entity Bean Provider’sejbRemove method returns, and in the same transaction co
text, the container removes the entity bean instance from all relationships in which it pa
pates and then removes the entity object’s persistent representation.

The container may delete the representation of the entity in the database immediately, or
defer it to a later time (for example to the end of the transaction), depending on the cac
strategy that it uses.

The container must ensure that theejbRemove method and database delete operations a
performed in the transaction context determined by the transaction attribute of the inv
remove method, as described in subsection 13.6.2.

• public void ejbLoad() ;

When the container needs to synchronize the state of an enterprise bean instance w
entity object’s state in the database, the container calls theejbLoad method. Depending on
its caching strategy, the container may first read the entity object’s state from the data
before invoking theejbLoad method, or it may use a lazy loading strategy in making th
state visible to the instance.

The exact times that the container invokesejbLoad depend on the configuration of the com
ponent and the container, and are not defined by the EJB architecture. Typically, the con
will call ejbLoad before the first business method within a transaction or before invoking
ejbTimeout method on an instance.
193 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

action

ith the

ean is
ethod
er the
same

-

e

the
storing
istent

s
ust
entity

r-
n

in the
a
the

-

ate.
ed by

er
it to

n

The container must invoke this method in the transaction context determined by the trans
attribute of the business method orejbTimeout method that triggered theejbLoad
method.

• public void ejbStore() ;

When the container needs to synchronize the state of the entity object in the database w
state of the enterprise bean instance, the container calls theejbStore method on the
instance. This synchronization always happens at the end of a transaction, unless the b
specified as read-only (see section 8.5.4). However, the container may also invoke this m
when it passivates the instance in the middle of a transaction, or when it needs to transf
most recent state of the entity object to another instance for the same entity object in the
transaction.

The container must invoke this method in the same transaction context as the previousejb-
Load , ejbCreate<METHOD> , or ejbTimeout method invoked on the instance. All busi
ness methods or theejbTimeout method invoked between the previousejbLoad or
ejbCreate <METHOD> method and thisejbStore method are also invoked in the sam
transaction context.

After the ejbStore method returns, the container may store the persistent state of
instance to the database, depending on its caching strategy. If the container uses a lazy
caching strategy, it is the container’s responsibility to write the representation of the pers
object to the database in the same transaction context as that of theejbStore method.

• public <primary key type or collection>ejbFind<METHOD>(...) ;

The implementation of theejbFind<METHOD> method is supplied by the container.

The container invokes theejbFind<METHOD> method on an instance when a client invoke
a matchingfind<METHOD> method on the entity bean’s home interface. The container m
pick an instance that is in the pooled state (i.e., the instance is not associated with any
object identity) for the execution of theejbFind<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls thesetEntityContext method on
the instance before dispatching the finder method.

The container must invoke theejbFind<METHOD> method in the transaction context dete
mined by the transaction attribute of the matchingfind method, as described in subsectio
13.6.2.

The container is responsible for ensuring that updates to the states of all entity beans
same transaction context as theejbFind<METHOD> method and whose abstract schem
types are accessed in the method’s EJB QL query are visible in the results of
ejbFind<METHOD> method. Before invoking theejbFind<METHOD> method, the con-
tainer must first synchronize the state of those entity bean instances by invoking theejb-
Store method on them. This requirement does not apply to theejbFindByPrimaryKey
method. The results of theejbFindByPrimaryKey method, however, must reflect the enti
ties that have been created or removed within the same transaction context.

After the ejbFind<METHOD> method completes, the instance remains in the pooled st
The container may, but is not required to, immediately activate the objects that were locat
the finder using the transition through theejbActivate method.

If the ejbFind<METHOD> method is declared to return a single primary key, the contain
creates an entity EJBObject (EJBLocalObject) reference for the primary key and returns
the client (local client). If theejbFind<METHOD> method is declared to return a collectio
 5/2/06 194

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

ref-

t time

com-
ethod

ute of

in the
a

t time

s
ust
entity

e.

r-

e
e con-

by

. A
ated by
hanges
of primary keys, the container creates a collection of entity EJBObject (EJBLocalObject)
erences for the primary keys returned from theejbFind<METHOD> method, and returns the
collection to the client (local client).

The implementations of the finder methods are generated at the entity bean deploymen
using the Container Provider’s tools.

• public <type> ejbSelect<METHOD>(...) ;

A select method is a query method that is not directly exposed to the client in the home or
ponent interface. The Bean Provider typically calls a select method within a business m
or home method.

A select method executes in the transaction context determined by the transaction attrib
the invoking business method.

The container is responsible for ensuring that all updates to the states of all entity beans
same transaction context as theejbSelect<METHOD> method and whose abstract schem
types are accessed in the EJB QL query for theejbSelect<METHOD> method are visible in
the results of theejbSelect<METHOD> method by invoking theejbStore method on
those entity bean instances.

The implementations of the select methods are generated at the entity bean deploymen
using the Container Provider’s tools.

• public <type> ejbHome<METHOD>(...) ;

The container invokes theejbHome<METHOD>method on an instance when a client invoke
a matching<METHOD>home method on the entity bean’s home interface. The container m
pick an instance that is in the pooled state (i.e., the instance is not associated with any
object identity) for the execution of theejbHome<METHOD>method. If there is no instance
in the pooled state, the container creates one and calls thesetEntityContext method on
the instance before dispatching the home method.

After theejbHome<METHOD> method completes, the instance remains in the pooled stat

The container must invoke theejbHome<METHOD>method in the transaction context dete
mined by the transaction attribute of the matching<METHOD>home method, as described in
subsection 13.6.2.

• public void ejbTimeout(...);

The container invokes theejbTimeout method on the instance when a timer with which th
entity has been registered expires. If there is no suitable instance in the ready state, th
tainer must activate an instance, invoking theejbActivate method and transitioning it to
the ready state.

The container invokes theejbTimeout method in the context of a transaction determined
its transaction attribute.

8.5.4 Read-only Entity Beans
Compliant implementations of this specification may optionally support read-only entity beans
read-only entity bean is an entity bean whose instances are not intended to be updated and/or cre
the application. Read-only beans are best suited for situations where the underlying data never c
or changes infrequently.
195 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

aded

and the

ecifica-

ole.

uch

has
Containers that support read-only beans do not call theejbStore method on them. TheejbLoad
method should typically be called by the container when the state of the bean instance is initially lo
from the database, or at designated refresh intervals.[36]

If a read-only bean is used, the state of such a bean should not be updated by the application,
behavior is unspecified if this occurs.[37]

Read-only beans are designated by vendor-specific means that are outside the scope of this sp
tion, and their use is therefore not portable.

8.5.5 The EntityContext Interface

A container provides the entity bean instances with anEntityContext , which gives the entity bean
instance access to the instance’s context maintained by the container. TheEntityContext interface
has the following methods:

• ThegetEJBObject method returns the entity bean’s remote interface.

• ThegetEJBHome method returns the entity bean’s remote home interface.

• ThegetEJBLocalObject method returns the entity bean’s local interface.

• ThegetEJBLocalHome method returns the entity bean’s local home interface.

• The getCallerPrincipal method returns thejava.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the entity bean instance’s caller has a particular r

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback.

• ThegetPrimaryKey method returns the entity bean’s primary key.

• ThegetTimerService method returns thejavax.ejb.TimerService interface.

• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface. Entity bean instances must not call this method.

[36] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-specific.

[37] For example, an implementation might choose to ignore such updates or to disallow them.
 5/2/06 196

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

NDI

cess the

manager
e EJB
• The lookup method enables the entity bean to look up its environment entries in the J
naming context.

8.5.6 Operations Allowed in the Methods of the Entity Bean Class

Table 4 defines the methods of an entity bean class in which the enterprise bean instances can ac
methods of thejavax.ejb.EntityContext interface, thejava:comp/env environment nam-
ing context, resource managers,TimerService and Timer methods, theEntityManager and
EntityManagerFactory methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of theEntityContext interface, and the
access is not allowed in Table 4, the container must throw thejava.lang.IllegalStateExcep-
tion.

If a entity bean instance attempts to invoke a method of theTimerService or Timer interface and
the access is not allowed in Table 4, the container must throw thejava.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to access a resource manager, an enterprise bean, an entity
or entity manager factory, and the access is not allowed in Table 4, the behavior is undefined by th
architecture.

Table 4 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods: getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

ejbCreate

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbPostCreate

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access
197 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.
ejbRemove

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbHome

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access

ejbActivate
ejbPassivate

EntityContext methods: getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

business method
from component
interface

EntityContext methods: getEJBHome, getEJBLocalHome,
getCallerPrincipal, getRollbackOnly, isCallerInRole, setRollbackOnly,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

ejbTimeout

EntityContext methods: getEJBHome, getEJBLocalHome,
getRollbackOnly, setRollbackOnly, getCallerPrincipal, isCallerInRole,
getEJBObject, getEJBLocalObject, getPrimaryKey, getTimerService, lookup
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
Timer service or Timer methods
EntityManagerFactory access
EntityManager access

Table 4 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
 5/2/06 198

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

xt of a

with

text.

state of
does

with
he

query
char-
.
ter 9

ith the
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the conte
transaction. The container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking thegetEJBObject , getEJBLocalObject , andgetPrimaryKey methods is
disallowed in the entity bean methods in which there is no entity object identity associated
the instance.

• Invoking thegetEJBObject and getEJBHome methods is disallowed if the entity bean
does not define a remote client view.

• Invoking thegetEJBLocalObject andgetEJBLocalHome methods is disallowed if the
entity bean does not define a local client view.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
entity bean methods for which the container does not have a meaningful transaction con

• Accessing resource managers and enterprise beans, including accessing the persistent
an entity bean instance, is disallowed in the entity bean methods for which the container
not have a meaningful transaction context or client security context.

8.5.7 Finder Methods
An entity bean’s home interface defines one or morefinder methods[38], one for each way to find an
entity object or collection of entity objects within the home. The name of each finder method starts
the prefix “find ”, such asfindLargeAccounts . The arguments of a finder method are used in t
implementation of the query for the finder method to locate the requested entity objects.

Every finder method exceptfindByPrimaryKey(key) must be associated with aquery element
in the deployment descriptor. The entity Bean Provider declaratively specifies the EJB QL finder
and associates it with the finder method in the deployment descriptor. A finder method is normally
acterized by an EJB QL query string specified in thequery element. EJB QL is described in Chapter 9
A compliant implementation of this specification is required to support EJB QL as defined in Chap
for use with finder methods.

In the case that both the remote home interface and local home interface define a finder method w
same name and argument types, the EJB QL query string specified by thequery element defines the
semantics of both methods.

[38] ThefindByPrimaryKey method is mandatory for all entity beans.
199 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

t.

the
ocal

inter-

This
es an
n pri-
as a

ists of
set of
, or a

ed on

ntity

ified
8.5.7.1 Single-Object Finder Methods

Some finder methods (such asfindByPrimaryKey) are designed to return at most one entity objec
For single-object finders, the result type of afind<METHOD>method defined in the entity bean’s
remote home interface is the entity bean’s remote interface, and the result type of
find<METHOD>method defined in the entity bean’s local home interface is the entity bean’s l
interface.

The following code illustrates the definition of a single-object finder defined on the remote home
face.

// Entity’s home interface
public interface AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

Note that a finder method defined on the local home interface must not throw theRemoteEx-
ception .

In general, when defining a single-object finder method other thanfindByPrimaryKey , the entity
Bean Provider should be sure that the finder method will always return only a single entity object.
may occur, for example, if the EJB QL query string that is used to specify the finder query includ
equality test on the entity bean’s primary key fields. If the entity Bean Provider uses an unknow
mary key class (see Section 8.8.3), the Bean Provider will typically define the finder method
multi-object finder.

Note that a single-object finder method may return a null value. If the result set of the query cons
a single null value, the container must return the null value as the result of the method. If the result
a query for a single-object finder method contains more than one value (whether non-null, null
combination), the container must throw theFinderException from the finder method. If the result
set of the query contains no values, the container must throw theObjectNotFoundException .

8.5.7.2 Multi-Object Finder Methods

Some finder methods are designed to return multiple entity objects. For multi-object finders defin
the entity bean’s local home interface, the result type of thefind<METHOD>method is a collection of
objects implementing the entity bean’s local interface. For multi-object finders defined on the e
bean’s remote home interface, the result type of thefind<METHOD>method is a collection of objects
implementing the entity bean’s remote interface.

The Bean Provider uses the Java™ 2java.util.Collection interface to define a collection type
for the result type of a finder method for an entity bean with container-managed persistence.

The collection of values returned by the container may contain duplicates if DISTINCT is not spec
in the SELECT clause of the query for the finder method.
 5/2/06 200

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

turns

inter-

e:

Unlike
thod is
t not be

string.
that

ty
in the
cified
fica-

Ob-
he

t is
t to an
ce.
The collection of values returned by the container may contain null values if the finder method re
the values of a cmr-field and null values are not eliminated by the query.

A portable client program must use thePortableRemoteObject.narrow method to convert the
objects contained in the collections returned by a finder method on the entity bean’s remote home
face to the entity bean’s remote interface type.

The following is an example of a multi-object finder method defined on the remote home interfac

// Entity’s home interface
public interface AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

Note that if this finder method were defined on the local home interface, it would not throw the
RemoteException .

8.5.8 Select Methods
Select methods are query methods for use by the Bean Provider within an entity bean instance.
finder methods, select methods are not specified in the entity bean’s home interface. A select me
an abstract method defined by the Bean Provider on an entity bean class. A select method mus
exposed in the home or component interface of an entity bean.

The semantics of a select method, like those of a finder method, are defined by an EJB QL query
A select method is similar to a finder method, but unlike a finder method, but it can return values
correspond to any cmp- or cmr-field type.

Every select method must be associated with aquery element in the deployment descriptor. The enti
Bean Provider declaratively specifies the EJB QL query and associates it with the select method
deployment descriptor. A select method is normally characterized by an EJB QL query string spe
in thequery element. EJB QL is described in Chapter 9. A compliant implementation of this speci
tion is required to support EJB QL as defined in Chapter 9 for use with select methods.

Typically anejbSelect<METHOD> method that returns entity objects returns these as EJBLocal
jects. If theejbSelect<METHOD> method returns an EJBObject or collection of EJBObjects, t
Bean Provider must specify the value of theresult-type-mapping element in thequery deploy-
ment descriptor element for the select method asRemote .

An ejbSelect<METHOD> is not based on the identity of the entity bean instance on which i
invoked. However, the Bean Provider can use the primary key of an entity bean as an argumen
ejbSelect<METHOD> to define a query that is logically scoped to a particular entity bean instan

The following table illustrates the semantics of finder and select methods.
201 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

-object
only a
esig-

ists of
set of

l, or a
t

ds, the

of the
If the
e
. If a

fied.

turns
Table 5 Comparison of Finder and Select Methods

8.5.8.1 Single-Object Select Methods

Some select methods are designed to return at most one value. In general, when defining a single
select method, the entity Bean Provider must be sure that the select method will always return
single object or value. If the query specified by the select method returns multiple values of the d
nated type, the container must throw theFinderException .

Note that a single-object select method may return a null value. If the result set of the query cons
a single null value, the container must return the null value as the result of the method. If the result
a query for a single-object select method contains more than one value (whether non-null, nul
combination), the container must throw theFinderException from the select method. If the resul
set of the query contains no values, the contain must throw theObjectNotFoundException .

The Bean Provider will typically define a select method as a multi-object select method.

8.5.8.2 Multi-Object Select Methods

Some select methods are designed to return multiple values. For these multi-object select metho
result type of theejbSelect<METHOD> method is a collection of objects.

The Bean Provider uses the Java™ 2java.util.Collection interface orjava.util.Set
interface to define a collection type for the result type of a select method. The type of the elements
collection is determined by the type of the SELECT clause of the corresponding EJB QL query.
Bean Provider uses thejava.util.Collection interface, the collection of values returned by th
container may contain duplicates if DISTINCT is not specified in the SELECT clause of the query
query for a select method whose result type isjava.util.Set does not specify DISTINCT in its
SELECT clause, the container must interpret the query as if SELECT DISTINCT had been speci

The collection of values returned by the container may contain null values if the select method re
the values of a cmr-field or cmp-field and null values are not eliminated by the query.

Finder methods Select methods

method find<METHOD> ejbSelect<METHOD>

visibility exposed to client internal to entity bean class

instance arbitrary bean instance in pooled state instance: current instance (could be bean
instance in pooled state or ready state)

return value EJBObjects or EJBLocalObjects of the same
type as the entity bean

EJBObjects, EJBLocalObjects, or cmp-field
types
 5/2/06 202

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

if it
e’s

istence.

ed but
tion
g the

ion
efore
The following is an example of a multi-object select method definition in theOrderBean class:

// OrderBean implementation class
public abstract class OrderBean implements javax.ejb.EntityBean{

...
public abstract java.util.Collection

ejbSelectAllOrderedProducts(Customer customer)
throws FinderException;
// internal finder method to find all products ordered

8.5.9 Timer Notifications
An entity bean can be registered with the EJB timer service for time-based event notifications
implements thejavax.ejb.TimedObject interface. The container invokes the bean instanc
ejbTimeout method when a timer for the bean has expired. See Chapter 18, “Timer Service”.

8.5.10 Standard Application Exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

This section describes the use of these exceptions by entity beans with container-managed pers

8.5.10.1 CreateException

From the client’s perspective, aCreateException (or a subclass ofCreateException) indi-
cates that an application level error occurred during acreate<METHOD> operation. If a client
receives this exception, the client does not know, in general, whether the entity object was creat
not fully initialized, or not created at all. Also, the client does not know whether or not the transac
has been marked for rollback. (However, the client may determine the transaction status usin
UserTransaction interface or thesetRollbackOnly method of theEJBContext interface.)

Both the container and the Bean Provider may throw theCreateException (or subclass ofCre-
ateException) from the create<METHOD> , ejbCreate<METHOD> and ejbPostCre-
ate<METHOD> methods to indicate an application-level error from the create or initializat
operation. Optionally, the container or Bean Provider may mark the transaction for rollback b
throwing this exception.
203 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

rity

, the

entity
y key,

n.

s

elect
the

at

excep-
lect

.

The container or Bean Provider is encouraged to mark the transaction for rollback only if data integ
would be lost if the transaction were committed by the client. Typically, when aCreateException is
thrown, it leaves the database in a consistent state, allowing the client to recover. For example
ejbCreate<METHOD> method may throw theCreateException to indicate that the some of the
arguments to thecreate<METHOD> method are invalid.

The container treats theCreateException as any other application exception. See Section 14.3.

8.5.10.2 DuplicateKeyException

The DuplicateKeyException is a subclass ofCreateException . It may be thrown by the
container to indicate to the client or local client that the entity object cannot be created because an
object with the same key already exists. The unique key causing the violation may be the primar
or another key defined in the underlying database.

Normally, the container should not mark the transaction for rollback before throwing the exceptio

When the client or local client receives aDuplicateKeyException , the client knows that the
entity was not created, and that the transaction has not typically been marked for rollback.

8.5.10.3 FinderException

From the client’s perspective, aFinderException (or a subclass ofFinderException) indi-
cates that an application level error occurred during thefind operation. Typically, the transaction ha
not been marked for rollback because of theFinderException .

The container throws theFinderException (or subclass ofFinderException) from the imple-
mentation of a finder or select method to indicate an application-level error in the finder or s
method. The container should not, typically, mark the transaction for rollback before throwing
FinderException .

The container treats theFinderException as any other application exception. See Section 14.3.

8.5.10.4 ObjectNotFoundException

TheObjectNotFoundException is a subclass ofFinderException . The container throws the
ObjectNotFoundException from the implementation of a finder or select method to indicate th
the requested object does not exist.

Only single-object finder or select methods (see Subsections 8.5.7 and 8.5.8) should throw this
tion. Multi-object finder or select methods must not throw this exception. Multi-object finder or se
methods should return an empty collection as an indication that no matching objects were found
 5/2/06 204

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

-
t also
e the

per-
wing

rity

f the
e the

nows
torage.
sistent

is in

ption
e per-
persis-
istent
nstead
nsure
erate
ction.

con-
leted.

may be
8.5.10.5 RemoveException

From the client’s perspective, aRemoveException (or a subclass ofRemoveException) indi-
cates that an application level error occurred during aremove operation. If a client receives this excep
tion, the client does not know, in general, whether the entity object was removed or not. The clien
does not know if the transaction has been marked for rollback. (However, the client may determin
transaction status using theUserTransaction interface.)

The container or Bean Provider throws theRemoveException (or subclass ofRemoveExcep-
tion) from a remove method to indicate an application-level error from the entity object removal o
ation. Optionally, the container or Bean Provider may mark the transaction for rollback before thro
this exception.

The container or Bean Provider is encouraged to mark the transaction for rollback only if data integ
would be lost if the transaction were committed by the client. Typically, when aRemoveException is
thrown, it leaves the database in a consistent state, allowing the client to recover.

The container treats theRemoveException as any other application exception. See Section 14.3.

8.5.11 Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition o
instance state at transaction commit time. This flexibility allows the container to optimally manag
association of an entity object identity with the enterprise bean instances.

The container can select from the following commit-time options:

• Option A : The container caches a “ready” instance between transactions. The container k
that the bean instance has exclusive access to the state of the object in the persistent s
Therefore, the container does not have to synchronize the instance’s state from the per
storage at the beginning of the next transaction or have to verify that the instance’s state
sync with the persistent storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. In contrast to O
A, in this option the instance may not have exclusive access to the state of the object in th
sistent storage. Therefore, the container must synchronize the instance’s state from the
tent storage at the beginning of the next transaction if the instance’s state in the pers
storage has changed. Containers using optimistic concurrency control strategies may i
choose to rollback the transaction if this invariant has not been met: The container must e
that in order for a transaction to be successfully committed, the transaction must only op
on instance data that is in sync with the persistent storage at the beginning of the transa

• Option C: The container does not cache a “ready” instance between transactions. The
tainer returns the instance to the pool of available instances after a transaction has comp

Variants of these strategies that capture the same semantics from the Bean Provider’s viewpoint
employed, e.g., to optimize data access.
205 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

ts:

state
when

s of the

previ-
e
’s state

in order
sync

n com-

bean
vider
The following illustrative lazy loading strategies are consistent with the intent of these requiremen

• If ejbLoad is called at the beginning of the transaction without the instance’s persistent
having been loaded from the persistent storage, the persistent state must be faulted in
ejbLoad causes the bean’s getter accessor methods to be invoked. If theejbLoad method is
empty, data may be faulted in as needed in the course of executing the businesss method
bean.

• If the instance’s persistent state is cached between transactions,ejbLoad need not be called
and persistent data need not be faulted in from the persistent storage (unless it has not
ously been accessed). In this case, becauseejbLoad has been previously called when th
instance was entered into the ready state for the first time, and because the bean instance
is consistent with its persistent state, there is no need to callejbLoad unless the instance’s
state in the persistent storage has changed. In this case, the container must ensure that
for the transaction to be successfully committed, the instance’s persistent state was in
with the persistent storage at the beginning of the transaction.

The following table provides a summary of the commit-time options.

Note that the container synchronizes the instance’s state with the persistent storage at transactio
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity
will work correctly regardless of the commit-time option chosen by the container. The Bean Pro
writes the entity bean in the same way.

Note: The Bean Provider relies on theejbLoad method to be invoked in order to resynchro-
nize the bean’s transient state with its persistent state. It is the responsibility of the container to
call theejbLoad method at the beginning of a new transaction if the bean instance’s persis-
tent data has changed.[39]

Table 6 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No

[39] It is consistent with this specification to provide options for this refresh to be deferred or avoided in the case of read-only beans.
 5/2/06 206

Instance Life Cycle Contract Between the Bean and the ContainerEnterprise JavaBeans 3.0, Final ReleaseEJB 2.1 Entity Bean Compo-

Sun Microsystems, Inc.

oncur-
ensure
ctions.

chro-

which
nder-

this

could
ted,

lock
ainer
of the
on).

trol
8.5.12 Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about c
rent access from multiple transactions. The Bean Provider may assume that the container will
appropriate synchronization for entity objects that are accessed concurrently from multiple transa

The container typically uses one of the following implementation strategies to achieve proper syn
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in
the entity object is being accessed. The transaction synchronization is performed by the u
lying database during the accessor method calls performed by the business methods, theejb-
Timeout method, and by theejbLoad , ejbCreate<METHOD> , ejbStore , and
ejbRemove methods. The commit-time options B and C in Subsection 8.5.11 apply to
type of container.

Figure 15 Multiple Clients Can Access the Same Entity Object Using Multiple Instances

With this strategy, the type of lock acquired byejbLoad or get accessor method (if a lazy loading
cache management strategy is used) leads to a trade-off. IfejbLoad or the accessor method acquires
an exclusive lock on the instance's state in the database, the throughput of read-only transactions
be impacted. IfejbLoad or the accessor method acquires a shared lock and the instance is upda
then eitherejbStore or a set accessor method will need to promote the lock to an exclusive
(which may cause a deadlock if it happens concurrently under multiple transactions), or, if the cont
uses an optimistic cache concurrency control strategy, the container will need to validate the state
cache against the database at transaction commit (which may result in a rollback of the transacti

It is expected that containers will provide deployment-time configuration options that will allow con
to be exercised over the logical transaction isolation levels that their caching strategies provide.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
207 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release InstanceLife

Sun Microsystems, Inc.

e con-
to this
r.

-reen-
ith the
to the
eaded,

in the
calls
oked

ty con-

ject an
cuting
e bean,
stance

t throw
’s
• The container acquires exclusive access to the entity object’s state in the database. Th
tainer activates a single instance and serializes the access from multiple transactions
instance. The commit-time option A in Subsection 8.5.11 applies to this type of containe

Figure 16 Multiple Clients Can Access the Same Entity Object Using Single Instance

8.5.13 Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non
trant entity bean executes a client request in a given transaction context, and another request w
same transaction context arrives for the same entity object, the container will throw an exception
second request. This rule allows the Bean Provider to program the entity bean as single-thr
non-reentrant code.

The functionality of entity beans with container-managed persistence may require loopbacks
same transaction context. An example of a loopback is when the client calls entity object A, A
entity object B, and B calls back A in the same transaction context. The entity bean’s method inv
by the loopback shares the current execution context (which includes the transaction and securi
texts) with the Bean’s method invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must re
attempt to re-enter the instance via the entity bean’s component interface while the instance is exe
a business method. (This can happen, for example, if the instance has invoked another enterpris
and the other enterprise bean tries to make a loopback call.) If the attempt is made to reenter the in
through the remote interface, the container must throw thejava.rmi.RemoteException to the
caller. If the attempt is made to reenter the instance through the local interface, the container mus
the javax.ejb.EJBException to the caller. The container must allow the call if the Bean
deployment descriptor specifies that the entity bean is re-entrant.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
 5/2/06 208

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

st code
neral,
ul to

d may
al con-
backs.
criptor,

n with

pro-

lient

ce and
home
ed.
Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider mu
the entity bean with the anticipation of a loopback call. Second, since the container cannot, in ge
tell a loopback from a concurrent call from a different client, the client programmer must be caref
avoid code that could lead to a concurrent call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same entity object are illegal an
lead to unpredictable results. Since the container cannot, in general, distinguish between an illeg
current call and a legal loopback, application programmers are encouraged to avoid using loop
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment des
allowing the container to detect and prevent illegal concurrent calls from clients.

8.6 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of an entity Bean Provider to ensure that an entity bea
container-managed persistence can be deployed in any EJB container.

8.6.1 Classes and Interfaces

The entity Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes

• Primary key class

• Entity bean’s remote interface and entity bean’s remote home interface, if the entity bean
vides a remote client view

• Entity bean’s local interface and local home interface, if the entity bean provides a local c
view

The Bean Provider must provide a remote interface and a remote home interface or a local interfa
a local home interface for the bean. The Bean Provider may provide a remote interface, remote
interface, local interface, and local home interface for the bean. Other combinations are not allow

8.6.2 Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class may implement, directly or indirectly, thejavax.ejb.TimedObject interface.

The class must be defined aspublic and must beabstract . The class must be a top level class.

The class must define a public constructor that takes no arguments.
209 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilities

Sun Microsystems, Inc.

of the
tances

e
tance in
e.g., the
ds).

t persis-

rclasses,

voked

meth-

.

an cla
The class must not define thefinalize() method.

The class may, but is not required to, implement the entity bean’s component interface[40]. If the class
implements the entity bean’s component interface, the class must provide no-op implementations
methods defined by that interface. The container will never invoke these methods on the bean ins
at runtime.

The entity bean class must implement the business methods, and theejbCreate<METHOD> and
ejbPostCreate<METHOD> methods as described later in this section.

The entity bean class must implement theejbHome<METHOD>methods that correspond to the hom
business methods specified in the bean’s home interface. These methods are executed on an ins
the pooled state; hence they must not access state that is particular to a specific bean instance (
accessor methods for the bean’s abstract persistence schema must not be used by these metho

The entity bean class must implement the get and set accessor methods of the bean’s abstrac
tence schema asabstract methods.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate<METHOD> andejbPostCreate<METHOD> methods, and
the methods of theEntityBean interface and/or theTimedObject interface may be implemented
in the enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods in
internally by the business methods) in addition to the methods required by the EJB specification.

The entity bean class does not implement the finder methods. The implementations of the finder
ods are provided by the container.

The entity bean class must implement anyejbSelect<METHOD> methods as abstract methods.

8.6.3 Dependent Value Classes

The following are the requirements for a dependent value class:

The class must be defined aspublic and must not beabstract .

The class must be serializable.

8.6.4 ejbCreate<METHOD> Methods

The entity bean class must implement theejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface or local home interface

[40] If the entity bean class does implement the component interface, care must be taken to avoid passing ofthis as a method argu-
ment or result. This potential error can be avoided by choosing not to implement the component interface in the entity bess.
 5/2/06 210

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

I-IIOP.

EJB

r
ow

the

an

e
.x
The entity bean class may define zero or moreejbCreate<METHOD> methods whose signatures
must follow these rules:

The method name must haveejbCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must be the entity bean’s primary key type.

If the ejbCreate<METHOD> method corresponds to acreate<METHOD> on the entity bean’s
remote home interface, the method arguments and return value types must be legal types for RM

The throws clause must define thejavax.ejb.CreateException . The throws clause may
define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed theejbCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
1.1 or EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherjava.lang.RuntimeException to indicate non-application exceptions to the containe
(see Section 14.2.2). TheejbCreate method of an entity bean with cmp-version 2.x must not thr
the java.rmi.RemoteException .

8.6.5 ejbPostCreate<METHOD> Methods

For eachejbCreate<METHOD> method, the entity bean class must define a matchingejbPost-
Create<METHOD> method, using the following rules:

The method name must haveejbPostCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbCreate<METHOD>
method.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed theejbPostCreate method to throw thejava.rmi.Remo-
teException to indicate a non-application exception. This practice was deprecated in EJB 1.1—
EJB 1.1 or EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBExcep-
tion or anotherjava.lang.RuntimeException to indicate non-application exceptions to th
container (see Section 14.2.2). TheejbPostCreate method of an entity bean with cmp-version 2
must not throw thejava.rmi.RemoteException .
211 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilities

Sun Microsystems, Inc.

follow-

follow-

these

d argu-
8.6.6 ejbHome<METHOD> Methods

The entity bean class may define zero or more home methods whose signatures must follow the
ing rules:

An ejbHome<METHOD>method must exist for every home<METHOD>method on the entity bean’s
remote home or local home interface. The method name must haveejbHome as its prefix followed by
the name of the<METHOD> method in which the first character has been uppercased.

The method must be declared aspublic .

The method must not be declared asstatic .

If the ejbHome<METHOD>method corresponds to a home<METHOD>on the entity bean’s remote
home interface, the method argument and return value types must be legal types for RMI-IIOP.

Thethrows clause may define arbitrary application specific exceptions. Thethrows clause must not
throw thejava.rmi.RemoteException .

8.6.7 ejbSelect<METHOD> Methods

The entity bean class may define one or more select methods whose signatures must follow the
ing rules:

The method name must haveejbSelect as its prefix.

The method must be declared aspublic .

The method must be declared asabstract .

The throws clause must define thejavax.ejb.FinderException . The throws clause may
define arbitrary application specific exceptions.

8.6.8 Business Methods

The entity bean class may define zero or more business methods whose signatures must follow
rules:

The method names can be arbitrary, but they must not start with ‘ejb ’ to avoid conflicts with the call-
back methods used by the EJB architecture.

The business method must be declared aspublic .

The method must not be declared asfinal or static .

If the business method corresponds to a method of the entity bean’s remote interface, the metho
ment and return value types must be legal types for RMI-IIOP.
 5/2/06 212

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

.1 or

r
row the

their

to the

bean’s

e

, timer
persis-

rgu-

ject to
Thethrows clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherjava.lang.RuntimeException to indicate non-application exceptions to the containe
(see Section 14.2.2).The business methods of an entity bean with cmp-version 2.x must not th
java.rmi.RemoteException.

8.6.9 Entity Bean’s Remote Interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that
argument and return value types must be valid types for RMI-IIOP, and theirthrows clauses must
include thejava.rmi.RemoteException .

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the enterpris
Bean class must be defined in thethrows clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types
handles, or the managed collection classes that are used for entity beans with container-managed
tence as arguments or results.

8.6.10 Entity Bean’s Remote Home Interface

The following are the requirements for the entity bean’s home interface:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their a
ment and return types must be of valid types for RMI-IIOP, and theirthrows clauses must include the
java.rmi.RemoteException .

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is sub
the RMI-IIOP rules for the definition of remote interfaces.
213 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilities

Sun Microsystems, Inc.

its

r a

turn the

types,
h con-
Each method defined in the remote home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Eachcreate method must be named “create<METHOD> ”, e.g. createLargeAccounts . Each
create method name must match one of theejbCreate<METHOD> methods defined in the enterprise
bean class. The matchingejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.)

The return type for acreate<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in thethrows clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in thethrows clause
of the matchingcreate method of the home interface (i.e., the set of exceptions defined for thecre-
ate method must be a superset of the union of exceptions defined for theejbCreate<METHOD> and
ejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateEx-
ception .

Eachfinder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for afind<METHOD> method must be the entity bean’s remote interface type (fo
single-object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include thefindByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

Thethrows clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, but they must not start with “create ”, “ find ”, or
“ remove ”. Their argument and return types must be of valid types for RMI-IIOP, and theirthrows
clauses must include thejava.rmi.RemoteException . The matchingejbHome method speci-
fied in the entity bean class must have the same number and types of arguments and must re
same type as the home method as specified in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface
timers or timer handles, or the managed collection classes that are used for entity beans wit
tainer-managed persistence as arguments or results.

8.6.11 Entity Bean’s Local Interface

The following are the requirements for the entity bean’s local interface:

The interface must extend thejavax.ejb.EJBLocalObject interface.
 5/2/06 214

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

bean’s

e

its

n’s

the

tity
der).
For each method defined in the local interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the enterpris
Bean class must be defined in thethrows clause of the method of the local interface.

8.6.12 Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:

The interface must extend thejavax.ejb.EJBLocalHome interface.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Eachcreate method must be named “create<METHOD> ”, e.g. createLargeAccounts . Each
create method name must match one of theejbCreate<METHOD> methods defined in the enterprise
bean class. The matchingejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.)

The return type for acreate<METHOD> method on the local home interface must be the entity bea
local interface type.

All the exceptions defined in thethrows clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in thethrows clause
of the matchingcreate method of the local home interface (i.e., the set of exceptions defined for
create method must be a superset of the union of exceptions defined for theejbCreate<METHOD>
andejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateEx-
ception .

Eachfinder method must be named “find<METHOD>” (e.g. findLargeAccounts).

The return type for afind<METHOD> method defined on the local home interface must be the en
bean’s local interface type (for a single-object finder), or a collection thereof (for a multi-object fin

The local home interface must always include thefindByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.
215 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.

me
d in the
ce

ribed in

jb-jar

ng the

ent, it

Con-
ns at
Thethrows clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, but they must not start with “create ”, “ find ”, or
“ remove ”. The matchingejbHome method specified in the entity bean class must have the sa
number and types of arguments and must return the same type as the home method as specifie
home interface of the bean. Thethrows clause of a home method defined on the local home interfa
must not include thejava.rmi.RemoteException .

8.6.13 Entity Bean’s Primary Key Class

The Bean Provider must specify a primary key class in the deployment descriptor.

The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of thehashCode() and equals(Object
other) methods to simplify the management of the primary keys by the container.

8.6.14 Entity Bean’s Deployment Descriptor

The Bean Provider must specify the relationships in which the entity beans participate in therela-
tionships element.

The Bean Provider must provide unique names to designate entity beans as follows, and as desc
Section 8.3.13.

• The Bean Provider must specify unique names for entity beans which are defined in the e
file by using theejb-name element.

• The Bean Provider must specify a unique abstract schema name for an entity bean usi
abstract-schema-name deployment descriptor element.

The Bean Provider must define a query for each finder or select method exceptfindByPrima-
ryKey(key) . Typically this will be provided as the content of theejb-ql element contained in the
query element for the entity bean. The syntax of EJB QL is defined in Chapter 9.

Since EJB QL query strings are embedded in the deployment descriptor, which is an XML docum
may be necessary to encode the following characters in the query string: “>”, “ <“.

8.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support entity beans. The
tainer Provider is responsible for providing the deployment tools, and for managing the entity bea
runtime, including their persistent state and relationships.
 5/2/06 216

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

iner, we
vider.
r ven-

addi-
r gen-
Bean

ome

s).

ome

to the

e entity
at runt-

ds and
ple, a
ot

t.

schema.
Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools described in this section are provided by the Container Pro
Alternatively, the deployment tools may be provided by a different vendor who uses the containe
dor’s specific API.

8.7.1 Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of
tional classes when the entity bean is deployed. The tools obtain the information that they need fo
eration of the additional classes by introspecting the classes and interfaces provided by the
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s remote home interface (i.e., the entity EJBH
class).

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject clas

• A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalH
class).

• A class that implements the entity bean’s local interface (i.e., the EJBLocalObject class).

• A class that implements the entity bean class (i.e., a concrete class corresponding
abstract entity bean class that was provided by the Bean Provider).

The deployment tools may also generate a class that mixes some container-specific code with th
bean class. The code may, for example, help the container to manage the entity bean instances
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business metho
that is used to customize the business logic for an existing operational environment. For exam
wrapper for adebit function on theAccount bean may check that the debited amount does n
exceed a certain limit, or perform security checking that is specific to the operational environmen

8.7.2 Enterprise Bean Class

The following are the requirements for a concrete entity bean class:

The class must extend the abstract entity bean class provided by the Bean Provider.

The class must be defined aspublic and must not beabstract .

The class must define a public constructor that takes no arguments.

The class must implement the get and set accessor methods of the bean’s abstract persistence
217 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.

by the

tity
e

a

ent of

with

n-

e

e
values
The class must not define thefinalize method.

The entity bean class must implement theejbFind<METHOD> methods.

The entity bean class must implement theejbSelect<METHOD> methods.

The entity bean class is allowed to implement other methods in addition to the methods required
EJB specification.

8.7.3 ejbFind<METHOD> Methods

For eachfind<METHOD> method in the remote home interface or local home interface of the en
bean, there must be a correspondingejbFind<METHOD> method with the same argument types in th
concrete entity bean class.

The method name must haveejbFind as its prefix.

The method must be declared aspublic .

If the ejbFind<METHOD> method corresponds to afind<METHOD> on the entity bean’s remote
home interface, the method argument and return value types must be legal types for RMI-IIOP.

The return type of anejbFind<METHOD> method must be the entity bean’s primary key type, or
collection of primary keys.

The throws clause must define thejavax.ejb.FinderException . The throws clause may
define arbitrary application specific exceptions.

Every finder method exceptejbFindByPrimaryKey(key) is specified in thequery deployment
descriptor element for the entity. The container must use the EJB QL query string that is the cont
theejb-ql element or the descriptive query specification contained in thedescription element as
the definition of the query of the correspondingejbFind<METHOD> method.

8.7.4 ejbSelect<METHOD> Methods

For eachejbSelect<METHOD> method in the abstract entity bean class, there must be a method
the same argument and result types in the concrete entity bean class.

Every select method is specified in aquery deployment descriptor element for the entity. The co
tainer must use the EJB QL query string that is the content of theejb-ql element or the descriptive
query specification that is contained in thedescription element as the definition of the query of th
correspondingejbSelect<METHOD> method.

The container must use the contents of thequery element, the corresponding EJB QL string and th
type of the values selected as specified by the SELECT clause to determine the type of the
returned by a select method.
 5/2/06 218

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

type is

ean’s

ce
e
of
eys

ean’s

is not

ean’s
The container must ensure that there are no duplicates returned by a select method if the return
java.util.Set.

8.7.5 Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity b
remote home interface. This class implements the methods of thejavax.ejb.EJBHome interface,
and the type-specificcreate andfinder methods specific to the entity bean.

The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method, followed by the matchingejbPostCreate<METHOD> method, passing thecre-
ate<METHOD> parameters to these matching methods.

The implementation of theremove methods defined in thejavax.ejb.EJBHome interface must
activate an instance (if an instance is not already in the ready state) and invoke theejbRemove method
on the instance.

The implementation of eachfind<METHOD> method invokes a matchingejbFind<METHOD>
method. The implementation of thefind<METHOD> method must create an entity object referen
for the primary key returned from theejbFind<METHOD> and return the entity object reference to th
client. If theejbFind<METHOD> method returns a collection of primary keys, the implementation
the find<METHOD> method must create a collection of entity object references for the primary k
and return the collection to the client.

The implementation of each<METHOD>home method invokes a matchingejbHome<METHOD>
method (in which the first character of<METHOD>is uppercased in the name of theejb-
Home<METHOD>method), passing the parameters of the<METHOD>method to the matchingejb-
Home<METHOD>method.

8.7.6 Entity EJBObject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity b
remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the
remote business methods specific to the entity bean.

The implementation of theremove method (defined in thejavax.ejb.EJBObject interface)
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of each remote business method must activate an instance (if an instance
already in the ready state) and invoke the matching business method on the instance.

8.7.7 Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity b
local home interface. This class implements the methods of thejavax.ejb.EJBLocalHome inter-
face, and the type-specificcreate andfinder methods specific to the entity bean.
219 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final ReleaseThe Responsibil-

Sun Microsystems, Inc.

r-

e
r-

ean’s

is not

handle

le class

e han-
The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method, followed by the matchingejbPostCreate<METHOD> method, passing thecre-
ate<METHOD> parameters to these matching methods.

The implementation of theremove method defined in thejavax.ejb.EJBLocalHome interface
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of eachfind<METHOD> method invokes a matchingejbFind<METHOD>
method. The implementation of thefind<METHOD> method must create a local entity object refe
ence for the primary key returned from theejbFind<METHOD> and return the local entity object ref-
erence to the local client. If theejbFind<METHOD> method returns a collection of primary keys, th
implementation of thefind<METHOD> method must create a collection of local entity object refe
ences for the primary keys and return the collection to the local client.

The implementation of each<METHOD>home method invokes a matchingejbHome<METHOD>
method (in which the first character of<METHOD>is uppercased in the name of theejb-
Home<METHOD>method), passing the parameters of the<METHOD>method to the matchingejb-
Home<METHOD> method.

8.7.8 Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity b
local interface. It implements the methods of thejavax.ejb.EJBLocalObject interface and the
local business methods specific to the entity bean.

The implementation of theremove method (defined in thejavax.ejb.EJBLocalObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke theejbRe-
move method on the instance.

The implementation of each local business method must activate an instance (if an instance
already in the ready state) and invoke the matching business method on the instance.

8.7.9 Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The
class must be serializable by the Java Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a sing
for all deployed entity beans.

8.7.10 Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. Th
dle class must be serializable by the Java Serialization protocol.
 5/2/06 220

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

o, use a

tion to
ment

, use a

ption

tainer
ents are
across
ct has
ean is

lient
ethod
in the

te inter-
Because the home handle class is not entity bean specific, the container may, but is not required t
single class for the home handles of all deployed entity beans.

8.7.11 Metadata Class

The deployment tools are responsible for implementing the class that provides metadata informa
the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must imple
the javax.ejb.EJBMetaData interface.

Because the metadata class is not entity bean specific, the container may, but is not required to
single class for all deployed enterprise beans.

8.7.12 Instance’s Re-entrance

The container runtime must enforce the rules defined in Section 8.5.13.

8.7.13 Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exce
handling described in Chapters 13, 17, and 14.

8.7.14 Implementation of Object References

The container should implement the distribution protocol between the remote client and the con
such that the object references of the remote home and remote interfaces used by entity bean cli
usable for a long period of time. Ideally, a remote client should be able to use an object reference
a server crash and restart. An object reference should become invalid only when the entity obje
been removed, or after a reconfiguration of the server environment (for example, when the entity b
moved to a different EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the c
code needs to have a recovery handler for the system exceptions thrown from the individual m
invocations on the remote home and remote interface, the client should not be forced to re-obta
object references.

8.7.15 EntityContext

The container must implement theEntityContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the entity bean’s remo
face type. Specifically, the bean instance does not have to use thePortableRemoteObject.nar-
row method for the type conversion.
221 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Primary Keys

Sun Microsystems, Inc.

rimary
ction,

ersis-

ient for
d in a

e
ust be

anaged
aged

or the
ppens

ow the
. The
ying
y not be

ent
8.8 Primary Keys

The container must be able to manipulate the primary key type of an entity bean. Therefore, the p
key type for an entity bean with container-managed persistence must follow the rules in this subse
in addition to those specified in Subsection 8.6.13.

There are two ways to specify a primary key class for an entity bean with container-managed p
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is conven
single-field keys. Without the first method, simple types such as String would have to be wrappe
user-defined class.

8.8.1 Primary K ey That Maps to a Single Field in the Entity Bean Class

The Bean Provider uses theprimkey-field element of the deployment descriptor to specify th
container-managed field of the entity bean class that contains the primary key. The field’s type m
the primary key type.

8.8.2 Primary K ey That Maps to Multiple Fields in the Entity Bean Class

The primary key class must bepublic , and must have apublic constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-m
fields. (This allows the container to extract the primary key fields from an instance’s container-man
fields, and vice versa.)

8.8.3 Special Case: Unknown Primary K ey Class

In special situations, the entity Bean Provider may choose not to specify the primary key class
primary key fields for an entity bean with container-managed persistence. This case usually ha
when the entity bean does not have a natural primary key, and/or the Bean Provider wants to all
Deployer using the Container Provider’s tools to select the primary key fields at deployment time
entity bean’s primary key type will usually be derived from the primary key type used by the underl
database system that stores the entity objects. The primary key used by the database system ma
known to the Bean Provider.

In this special case, the type of the argument of thefindByPrimaryKey method must be declared as
java.lang.Object . The Bean Provider must specify the primary key class in the deploym
descriptor as of the typejava.lang.Object .
 5/2/06 222

Primary Keys Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

ider’s
bean
imary
is case,
before

velops
when

ram-
neral,

e meth-
When defining the primary key for the enterprise bean, the Deployer using the Container Prov
tools will typically add additional container-managed fields to the concrete subclass of the entity
class (this typically happens for entity beans that do not have a natural primary key, and the pr
keys are system-generated by the underlying database system that stores the entity objects). In th
the container must generate the primary key value when the entity bean instance is created (and
ejbPostCreate is invoked on the instance.)

The primary key class is specified at deployment time in the situations when the Bean Provider de
an entity bean that is intended to be used with multiple back-ends that provide persistence, and
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application prog
ming model, because the clients written prior to deployment of the entity bean may not use, in ge
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, th
ods should not depend on the type of the object returned fromEntityContext.getPrimaryKey ,
because the return type is determined by the Deployer after the EJB class has been written.
223 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Primary Keys

Sun Microsystems, Inc.
 5/2/06 224

Primary Keys Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

th con-
y meth-

is
y
s

Chapter 9 EJB QL: EJB 2.1 Query Language for
Container-Managed Persistence Query
Methods

The Enterprise JavaBeans query language, EJB QL, is used to define queries for entity beans wi
tainer-managed persistence. EJB QL enables the Bean Provider to specify the semantics of quer
ods in a portable way.

This chapter provides the complete definition of EJB QL that is required to be supported for
use with EJB 2.1 entity beans with container managed persistence. Implementations of th
specification are permitted, but not required, to provide the extensions to EJB QL defined b
the Java Persistence query language [2] for use with finder and select methods. Application
that make use of such extensions in finder and select methods will not be portable.
225 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final Release Over-

Sun Microsystems, Inc.

con-
atabase
facili-
resen-

le.

s, includ-
model.

the rela-
sed on
entity

if the
 query.

B QL is

rface.
ntity

stract
low the
bean

nd rela-
over
9.1 Overview

EJB QL is a query specification language for the finder and select methods of entity beans with
tainer-managed persistence. EJB QL can be compiled to a target language, such as SQL, of a d
or other persistent store. This allows the execution of queries to be shifted to the native language
ties provided by the persistent store, instead of requiring queries to be executed on the runtime rep
tation of the entity beans’ state. As a result, query methods can be optimizable as well as portab

The Enterprise JavaBeans query language uses the abstract persistence schemas of entity bean
ing their relationships, for its data model. It defines operators and expressions based on this data

The Bean Provider uses EJB QL to write queries based on the abstract persistence schemas and
tionships defined in the deployment descriptor. EJB QL depends on navigation and selection ba
the cmp-fields and cmr-fields of the related entity beans. The Bean Provider can navigate from an
bean to other entity beans by using the names of cmr-fields in EJB QL queries.

EJB QL allows the Bean Provider to use the abstract schema types of entity beans in a query
abstract persistence schemas of the beans are defined in the same deployment descriptor as the

It is possible to parse and validate EJB QL queries before entity beans are deployed because EJ
based on the abstract schema types of entity beans.

EJB QL queries can be used in two different ways:

• as queries for selecting entity objects through finder methods defined in the home inte
Finder methods allow the results of an EJB QL query to be used by the clients of the e
bean.

• as queries for selecting entity objects or other values derived from an entity bean’s ab
schema type through select methods defined on the entity bean class. Select methods al
Bean Provider to use EJB QL to find objects or values related to the state of an entity
without directly exposing the results to the client.

9.2 EJB QL Definition

EJB QL uses a SQL-like syntax to select objects or values based on the abstract schema types a
tionships of entity beans. The path expressions of EJB QL allow the Bean Provider to navigate
relationships defined by the cmr-fields of the abstract schema types of entity beans.

This chapter provides the full definition of the language.
 5/2/06 226

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

pres-

y the

y the

dicate

ethod

naged
m the
s; the
es in

n pro-
chema

JB QL.

type

type
g

An EJB QL query is a string which consists of the following clauses:

• a SELECT clause, which determines the type of the objects or values to be selected.

• a FROM clause, which provides declarations that designate the domain to which the ex
sions specified in the SELECT clause and WHERE clause of the query apply.

• an optional WHERE clause, which may be used to restrict the results that are returned b
query.

• an optional ORDER BY clause, which may be used to order the results that are returned b
query.

In BNF syntax, an EJB QL query is defined as:

EJB QL :: = select_clause from_clause [where_clause] [orderby_clause]

An EJB QL query must always have a SELECT and a FROM clause. The square brackets [] in
that the WHERE and ORDER BY clauses are optional.

An EJB QL query may have parameters that correspond to the parameters of the finder or select m
for which it is defined.

An EJB QL query is statically defined in theejb-ql deployment descriptor element.

9.2.1 Abstract Schema Types and Query Domains

EJB QL is a typed language whose design is based on the type model of EJB 2.0 container-ma
persistence. Every expression in EJB QL has a type. The type of the expression is derived fro
structure of the expression; the abstract schema types of the identification variable declaration
types to which the cmp-fields and cmr-fields evaluate; and the types of literals. The allowable typ
EJB QL are the abstract schema types of entity beans and cmp-fields.

The abstract schema type of an entity bean is derived from its entity bean class and the informatio
vided in the deployment descriptor. There is a one-to-one mapping between entity bean abstract s
types and entity bean homes. Abstract schema names, as specified by theabstract-schema-name
elements in the deployment descriptor, are used to denote entity bean abstract schema types in E

Informally, the abstract schema type of an entity bean can be characterized as follows:

• For every get accessor method of the entity bean class that corresponds to acmp-field ele-
ment in the deployment descriptor, there is a field (“cmp-field”) whose abstract schema
corresponds to the result type of the accessor method.

• For every get accessor method of the entity bean that corresponds to acmr-field element in
the deployment descriptor, there is a field (“cmr-field”) whose type is the abstract schema
of the entity bean denoted by theejb-name element contained in the correspondin
ejb-relationship-role element (or, if the role has a multiplicity ofMany, a collection
of such).
227 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

imple-

con-

p-

s

-

Using
schema

n and
ome

hat is
n of
ce of
g the
ome
ple-

posed
ersis-
h the
ction
or a

rovider
that they
le.
Abstract schema types are specific to the EJB QL data model. The container is not required to
ment or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entity beans with
tainer-managed persistence that are defined in the same deployment descriptor.

The Bean Provider creates an ejb-jar file which contains a deployment descriptor describing
several entity beans and their relationships. EJB QL assumes that a single deployment descri
tor in an ejb-jar file constitutes a nondecomposable unit for the container responsible for
implementing the abstract persistence schemas of the entity beans and the relationship
defined in the deployment descriptor and the ejb-jar file. Queries can be written by utilizing
navigation over the cmr-fields of related beans supplied in the same ejb-jar by the Bean Pro
vider because they are implemented and managed by the same container.

The domain of a query may be restricted by thenavigabilityof the relationships of the entity bean on
which it is based. The cmr-fields of an entity bean’s abstract schema type determine navigability.
the cmr-fields and their values, a query can select related entity beans and use their abstract
types in the query.

9.2.2 Query Methods

EJB QL is used for two types of query methods:

• Finder methods—Finder methods are defined in the home interface(s) of an entity bea
return entity objects or local entity objects. A finder method that is defined on the remote h
interface must return either an EJBObject or a collection of EJBObjects; a finder method t
defined on the local home interface must return either an EJBLocalObject or a collectio
EJBLocalObjects. The result type of a finder method defined on the remote home interfa
an entity bean is the entity bean’s remote interface (or a collection of objects implementin
entity bean’s remote interface). The result type of a finder method defined on the local h
interface of an entity bean is the entity bean’s local interface (or a collection of objects im
menting the entity bean’s local interface).

• Select methods—Select methods are a special type of query method not directly ex
through the client view. The Bean Provider typically uses select methods to select the p
tent state of an entity object or to select entities that are related to the entity bean for whic
query is defined. The result type of a select method can be an EJBLocalObject (or a colle
of EJBLocalObjects), an EJBObject (or a collection of EJBObjects), a cmp-field value (
collection of such), or the result of an aggregate function.

9.2.3 Naming

Entity beans are designated in EJB QL query strings by their abstract schema names. The Bean P
assigns unique abstract schema names to entity beans as part of the development process so
can be used within queries. These unique names are scoped within the deployment descriptor fi
 5/2/06 228

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

entity
are
.

n in

s

ne
.)

and
.

9.2.4 Examples

The following convention refers to the names used for entity beans in subsequent examples: An
bean as a whole is designated by<name>EJB, and its entity bean class and abstract schema type
designated by<name>, following the convention used to name the local interface of an entity bean

The first example assumes that the Bean Provider provides several entity beans,OrderEJB , Pro-
ductEJB , LineItemEJB , ShippingAddressEJB , and BillingAddressEJB . The abstract
schema types for these entity beans areOrder , Product , LineItem , ShippingAddress , and
BillingAddress respectively. These beans are logically in the same ejb-jar file, as show
Figure 17. Only two of the entity beans,OrderEJB andProductEJB, have remote interfaces and
remote home interfaces.

Figure 17 Several Entity Beans with Abstract Persistence Schemas Defined in the Same Ejb-jar File.

The entity beansShippingAddress andBillingAddress each have one-to-many relationship
with Order . There is also a one-to-many relationship betweenOrder and Lineitem . The entity
beanLineItem is related toProduct in a many-to-one relationship.

EJB QL allows the Bean Provider to specify finder queries forOrderEJB by navigating over the
cmr-fields and cmp-fields defined byOrder andLineItem . A finder method query to find all orders
with pending line items might be written as follows:

SELECT DISTINCT OBJECT(o)
FROM Order AS o, IN(o.lineItems) AS l
WHERE l.shipped = FALSE

This query navigates over the cmr-fieldlineItems of the abstract schema typeOrder to find line
items, and uses the cmp-fieldshipped of LineItem to select those orders that have at least one li
item that has not yet shipped. (Note that this query does not select orders that have no line items

Although predefined reserved identifiers, such as DISTINCT, OBJECT, FROM, AS, IN, WHERE,
FALSE appear in upper case in this example, predefined reserved identifiers are case insensitive

Order

LineItem

Shipping
Address

Billing
Address

1
m

m

1

m
1

m

1

Product
229 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

d will
a type
bean’s
orre-
Objects

ed entity
e

er

ges.

vari-

FROM
The SELECT clause of this example designates the return type of this query to be of typeOrder . If this
query is defined for a finder method on the entity bean’s remote home interface, the finder metho
return objects of the entity bean’s remote interface type corresponding to the abstract schem
instances selected by the query. If this same query is defined for a finder method on the entity
local home interface, the finder method will return objects of the entity bean’s local interface type c
sponding to these same abstract schema type instances. Finder methods must always return EJB
or EJBLocalObjects of the bean type for which the query method is defined.

Because the same deployment descriptor defines the abstract persistence schemas of the relat
beans, the Bean Provider can also specify a query forOrderEJB that utilizes the abstract schema typ
of ProductEJB , and hence the cmp-fields and cmr-fields of both the abstract schema typesOrder
and Product . For example, if the abstract schema typeProduct has a cmp-field named
product_type , a finder query forOrderEJB can be specified using this cmp-field. Such a find
query might be: “Find all orders for products with product typeoffice supplies”. An EJB QL query
string for this might be as follows.

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type = ‘office_supplies’

BecauseOrder is related toProduct by means of the relationships betweenOrder andLineItem
and betweenLineItem andProduct , navigation using the cmr-fieldslineItems andproduct
is needed to express the query. This query is specified by using theabstract-schema-name for
OrderEJB , namelyOrder , which designates the abstract schema type over which the query ran
The basis for the navigation is provided by the cmr-fieldslineItems andproduct of the abstract
schema typesOrder andLineItem respectively.

9.2.5 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification
ables. The domain of the query may be constrained by path expressions.

Identification variables designate instances of a particular entity bean abstract schema type. The
clause can contain multiple identification variable declarations separated by a comma (,).

from_clause ::= FROM identification_variable_declaration
[, identification_variable_declaration]*

identification_variable_declaration ::= collection_member_declaration |
 range_variable_declaration

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier
range_variable_declaration :: abstract_schema_name [AS] identifier

The following subsections discuss the constructs used in the FROM clause.
 5/2/06 230

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

a Java
ntifier

n vari-

n
re

An

t be

ollow-

vari-
9.2.5.1 Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with
identifier start character, and all other characters must be Java identifier part characters. An ide
start character is any character for which the methodCharacter.isJavaIdentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the methodCharacter.isJavaIdentifierPart
returns true. The question mark (?) character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB QL:SELECT, FROM, WHERE, DISTINCT, OBJECT,
NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN[41], EMPTY, MEMBER,
OF, IS, AVG, MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identificatio
ables.

It is recommended that the Bean Provider not use other SQL reserved words as identificatio
variables in EJB QL queries because they may be used as EJB QL reserved identifiers in futu
versions of the EJB specification.

9.2.5.2 Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.
identification variable may be declared using the special operators IN and, optionally, AS.

All identification variables must be declared in the FROM clause. Identification variables canno
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the f
ing:

• abstract-schema-name

• ejb-name[42]

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
able. For example, consider the previous finder query forOrderEJB :

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.product_type = ‘office_supplies’

[41] Not currently used in EJB QL; reserved for future use.

[42] Use of ejb-names in EJB QL is reserved for future use.
231 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

vari-
f entity
JB QL

f two

res-

ction
dec-

QL;

path
e Bean

bean
type is

ity for
OM
is
In the FROM clause declarationIN(o.lineItems) l , the identification variablel evaluates to any
LineItem value directly reachable fromOrder . The cmr-field lineItems is a collection of
instances of the abstract schema typeLineItem and the identification variablel refers to an element
of this collection. The type ofl is the abstract schema type ofLineItem .

An identification variable ranges over the abstract schema type of an entity bean. An identification
able designates an instance of an entity bean abstract schema type or an element of a collection o
bean abstract schema types instances. Identification variables are existentially quantified in an E
query.

An identification variable always designates a reference to a single value. It is declared in one o
ways; as a range variable or as a collection member identification variable:

• A range variable is declared using the abstract schema name of an entity bean.

• A collection member identification variable is declared using a collection-valued path exp
sion.

The identification variable declarations are evaluated from left to right in the FROM clause. A colle
member identification variable declaration can use the result of a preceding identification variable
laration of the query string.

9.2.5.3 Range Variable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of S
optionally, it uses the AS keyword.

range_variable_declaration ::= abstract_schema_name [AS] identifier

Objects or values that are related to an entity bean are typically obtained by navigation using
expressions. However, navigation does not reach all objects. Range variable declarations allow th
Provider to designate a “root” for objects which may not be reachable by navigation.

If the Bean Provider wants to select values by comparing more than one instance of an entity
abstract schema type, more than one identification variable ranging over the abstract schema
needed in the FROM clause.

The following finder method query returns orders whose quantity is greater than the order quant
John Smith. This example illustrates the use of two different identification variables in the FR
clause, both of the abstract schema typeOrder . The SELECT clause of this query determines that it
the orders with quantities larger than John Smith’s that are returned.

SELECT DISTINCT OBJECT(o1)
FROM Order o1, Order o2
WHERE o1.quantity > o2.quantity AND

o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’
 5/2/06 232

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

vigation
e based
expres-

r, the
e path
alued

the

le,

ation
s

tion

is, the

. Path
tes to a
in a
9.2.5.4 Collection Member Declarations

An identification variable declared by acollection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression. Such a path expression represents a na
involving the cmr-fields of an entity bean abstract schema type. Because a path expression can b
on another path expression, the navigation can use the cmr-fields of related entity beans. Path
sions are discussed in Section 9.2.5.6.

An identification variable of a collection member declaration is declared using a special operato
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. Th
expression evaluates to a collection type specified as a result of navigation to a collection-v
cmr-field of an entity bean abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier

For example, the FROM clause for a query defined forOrderEJB might contain the following collec-
tion member declaration:

IN(o.lineItems) l

In this example,lineItems is the name of a cmr-field whose value is a collection of instances of
abstract schema typeLineItem of theLineItemEJB entity bean. The identification variablel des-
ignates a member of this collection, asingleLineItem abstract schema type instance. In this examp
o is an identification variable of the abstract schema typeOrder .

9.2.5.5 Example

The following FROM clause contains two identification variable declaration clauses. The identific
variable declared in the first clause is used in the second clause. The clauses declare the variableo and
l respectively. The range variable declarationOrder AS o designates the identification variableo as
a range variable whose type is the abstract schema type,Order . The identification variablel has the
abstract schema typeLineItem . Because the clauses are evaluated from left to right, the identifica
variablel can utilize the results of the navigation ono.

FROM Order AS o, IN(o.lineItems) l

9.2.5.6 Path Expressions

An identification variable followed by the navigation operator (.) and a cmp-field or cmr-field is a path
expression. The type of the path expression is the type computed as the result of navigation; that
type of the cmp-field or cmr-field to which the expression navigates.

Depending on navigability, a path expression that leads to a cmr-field may be further composed
expressions can be composed from other path expressions if the original path expression evalua
single-valued type (not a collection) corresponding to a cmr-field. A path expression that ends
cmp-field is terminal and cannot be further composed.
233 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

n-ter-
ot par-

s:

ela-
d

a

 type.

corre-

collec-

EJB
ed in

owing:

es that
Path expression navigability is composed using “inner join” semantics. That is, if the value of a no
minal cmr-field in the path expression is null, the path is considered to have no value, and does n
ticipate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follow

cmp_path_expression ::=
{identification_variable | single_valued_cmr_path_expression}.cmp_field

single_valued_cmr_path_expression ::=
identification_variable.[single_valued_cmr_field .]*single_valued_cmr_field

single_valued_path_expression ::=
cmp_path_expression | single_valued_cmr_path_expression

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field

A single_valued_cmr_field is designated by the name of a cmr-field in a one-to-one or many-to-one r
tionship. The type of asingle_valued_cmr_path_expression is the abstract schema type of the relate
entity bean.

A collection_valued_cmr_field is designated by the name of a cmr-field in a one-to-many or
many-to-many relationship. The type of acollection_valued_cmr_field is a collection of values of the
abstract schema type of the related entity bean.

Navigation to a related entity bean results in a value of the related entity bean’s abstract schema

The evaluation of a path expression terminating in a cmp-field results in the abstract schema type
sponding to the Java type designated by the cmp-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
tion. For example, ifo designatesOrder , the path expressiono.lineItems.product is illegal
since navigation tolineItems results in a collection. This case should produce an error when the
QL query string is verified. To handle such a navigation, an identification variable must be declar
the FROM clause to range over the elements of thelineItems collection. Another path expression
must be used to navigate over each such element in the WHERE clause of the query, as in the foll

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineItems) l
WHERE l.product.name = ‘widget’

9.2.6 WHERE Clause and Conditional Expressions

The WHERE clause of a query consists of a conditional expression used to select objects or valu
satisfy the expression. The WHERE clause thus restricts the result of a query.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression
 5/2/06 234

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

sion of

gle
ava

xact
r

or a
ers in

ccor-

the

tifica-
a type.

l

The following sections describe the language constructs that can be used in a conditional expres
the WHERE clause.

9.2.6.1 Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a sin
quote is represented by two single quotes—for example: ‘literal’’s’. EJB QL string literals, like J
String literals, use unicode character encoding.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. E
numeric literals support numbers in the range of Javalong . Exact numeric literals use the Java intege
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2,
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numb
the range of Javadouble . Approximate literals use the Java floating point literal syntax.

The Bean Provider may utilize appropriate suffixes to indicate the specific type of the literal in a
dance with the Java Language Specification.

The boolean literals areTRUE andFALSE.

Although predefined reserved literals appear in upper case, they are case insensitive.

9.2.6.2 Identification Variables

All identification variables used in the WHERE clause of an EJB QL query must be declared in
FROM clause, as described in Section 9.2.5.2.

Identification variables are existentially quantified in the WHERE clause. This means that an iden
tion variable represents a member of a collection or an instance of an entity bean’s abstract schem
An identification variable never designates a collection in its entirety.

9.2.6.3 Path Expressions

It is illegal to use acollection_valued_path_expression within a WHERE clause as part of a conditiona
expression except in anempty_collection_comparison_expression or collection_member_expression.
235 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

lause

er of
se all

meter
. It is
stract

logical

osed of
values,
9.2.6.4 Input Parameters
The following rules apply to input parameters. Input parameters can only be used in the WHERE c
of a query.

• Input parameters are designated by the question mark (?) prefix followed by an integer. For
example:?1 .

• Input parameters are numbered starting from 1.

• The number of distinct input parameters in an EJB QL query must not exceed the numb
input parameters for the finder or select method. It is not required that the EJB QL query u
of the input parameters for the finder or select method.

• An input parameter evaluates to the abstract schema type of the corresponding para
defined in the signature of the finder or select method with which the query is associated
the responsibility of the container to map the input parameter to the appropriate ab
schema type value.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 9.2.10.

9.2.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations,
operations, path expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are comp
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric
and numeric literals.

Arithmetic operations use numeric promotion.

Standard bracketing() for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

9.2.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
 5/2/06 236

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

is as

ws:

val-
ection
• Navigation operator (.)

• Arithmetic operators:

+, - unary

*, / multiplication and division

+, - addition and subtraction

• Comparison operators :=, >, >=, <, <=, <> (not equal)

• Logical operators:NOT, AND, OR

The following sections describe other operators used in specific expressions.

9.2.6.7 Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in an conditional expression
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 9.2.10.

Examples are:

p.age BETWEEN 15 and 19 is equivalent top.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent top.age < 15 OR p.age > 19

9.2.6.8 In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follo

cmp_path_expression [NOT] IN ({literal | input_parameter} [, {literal | input_parameter}]*)

Thecmp_path_expression must have a string or numeric value. The literal and/or input_parameter
ues must belike the same abstract schema type of the cmp_path_expression in type. (See S
9.2.11).

Examples are:
237 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

the

fol-

tand for
ed
er-

ws:
o.country IN (’UK’, ’US’, ’France’) is true forUKand false forPeru , and is equivalent
to the expression(o.country = ’UK’) OR (o.country = ’US’) OR (o.country = ’
France’) .

o.country NOT IN (’UK’, ’US’, ’France’) is false forUKand true forPeru , and is
equivalent to the expressionNOT ((o.country = ’UK’) OR (o.country = ’US’) OR
(o.country = ’France’)) .

There must be at least one element in the comma separated list that defines the set of values forIN
expression.

If the value of acmp_path_expression in an IN or NOT IN expression isNULLor unknown, the value of
the expression is unknown.

9.2.6.9 Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as
lows:

cmp_path_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

Thecmp_path_expression must have a string value. Thepattern_value is a string literal or a string-val-
ued input parameter in which an underscore (_) stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters s
themselves. The optionalescape_character is a single-character string literal or a character-valu
input parameter (i.e.,char or Character) and is used to escape the special meaning of the und
score and percent characters inpattern_value.[43]

Examples are:

• address.phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

• asentence.word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

• aword.underscored LIKE ‘_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

• address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

If the value of thecmp_path_expression or pattern_valueis NULLor unknown, the value of the LIKE
expression is unknown. If theescape_character is specified and isNULL, the value of the LIKE expres-
sion is unknown.

9.2.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follo

[43] Refer to [24] for a more precise characterization of these rules.
 5/2/06 238

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

ameter

an

ession

n

mpar-
iable.

e of a
e, the

ion is

collec-

n

{single_valued_path_expression | input_parameter } IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input par
is aNULL value.

9.2.6.11 Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expr
is empty (i.e, has no elements).

Note that a collection-valued path expression can only be used in the WHERE clause in a
empty collection comparison expression or in a collection member expression.

The collection designated by the collection-valued path expression used in an empty collection co
ison expression must not be used in the FROM clause for the declaration of an identification var
An identification variable declared as a member of a collection implicitly designates the existenc
non-empty relationship; testing whether the same collection is empty is contradictory. Therefor
following query is invalid.

SELECT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison express
unknown, the value of the empty comparison expression is unknown.

9.2.6.12 Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF[44] in an
collection_member_expression is as follows:

{single_valued_cmr_path_expression | identification_variable | input_parameter }
[NOT] MEMBER [OF] collection_valued_path_expression

This expression tests whether the designated value is a member of the collection specified by the
tion-valued path expression.

Note that a collection-valued path expression can only be used in the WHERE clause in a
empty collection comparison expression or in a collection member expression.

[44] The use of the reserved word OF is optional in this expression.
239 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

R OF
f the
ction

a

-

l as the

ional

Dbc

ications
If the collection valued path expression designates an empty collection, the value of the MEMBE
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, i
value of the collection-valued path expression or single-valued cmr path expression in the colle
member expression is unknown, the value of the collection member expression is unknown.

9.2.6.13 Functional Expressions

EJB QL includes the following built-in functions[45], which may be used in the WHERE clause of
query.

String Functions:

• CONCAT(String, String) returns aString

• SUBSTRING(String, start, length) returns aString

• LOCATE(String, String [, start]) [46] returns anint

• LENGTH(String) returns anint

Note thatstart and length are integer values. The first position in a string is designated as1 by
these functions.

Arithmetic Functions:

• ABS(number) returns a number (int , float , or double) of the same type as the argu
ment to the function

• SQRT(double) returns adouble

• MOD(int, int) returns anint

Numeric arguments to these functions may correspond to the numeric Java object types as wel
primitive numeric types.

If the value of any argument to a functional expression is null or unknown, the value of the funct
expression is unknown.

[45] These functions are a subset of the functions defined for JDBC 2.0 and later drivers, as described in Appendix C of the J 3.0
specification [29].

[46] Containers and databases may not support the use of the optional, third argument of the LOCATE function. Portable appl
should therefore avoid use of this argument.
 5/2/06 240

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

e vari-
n aggre-

either
type of

pera-

elow is

uery
d for
lt
s if
y the

owing

to the
and to

con-
Bean
f the
9.2.7 SELECT Clause
The SELECT clause denotes the query result. The SELECT clause contains either a single rang
able that ranges over an entity bean abstract schema type, a single-valued path expression, or a
gate select expression. In the case of a finder method, the SELECT clause is restricted to contain
a single range variable or a single-valued path expression that evaluates to the abstract schema
the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] {select_expression | OBJECT (identification_variable)}

select_expression ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM | COUNT} ([DISTINCT] cmp_path_expression) |
COUNT ([DISTINCT] identification_variable | single_valued_cmr_path_expression)

All standalone identification variables in the SELECT clause must be qualified by the OBJECT o
tor. The SELECT clause must not use the OBJECT operator to qualify path expressions.

Note that the SELECT clause must be specified to return a single-valued expression. The query b
therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the q
result. If DISTINCT is not specified, duplicate values are not eliminated unless the query is specifie
a method whose result type isjava.util.Set. If a query is specified for a method whose resu
type isjava.util.Set , but does not specify DISTINCT, the container must interpret the query a
SELECT DISTINCT had been specified. In general, however, the Bean Provider should specif
DISTINCT keyword when writing queries for methods that returnjava.util.Set .

The SELECT clause determines the type of the values returned by a query. For example, the foll
query returns a collection of products:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

It is the responsibility of the container to map the abstract schema types returned by the query
Java types that are returned by the finder or select method with which the query is associated
materialize those return types, as described in Section 9.2.9.

9.2.7.1 Null Values in the Query Result

If the result of an EJB QL query corresponds to a cmr-field or cmp-field whose value is null, the
tainer must include that null value in the result that is returned by the finder or select method. The
Provider can use the IS NOT NULL construct to eliminate such null values from the result set o
query.
241 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

query
. If the
hether

duce
type

r she
s, e.g.,

ession.

VG,

regate
te in

and
es, or

y that

yword

er or
If the finder or select method is a single-object finder or select method, and the result set of the
consists of a single null value, the container must return the null value as the result of the method
result set of a query for a single-object finder or select method contains more than one value (w
non-null, null, or a combination), the container must throw the FinderException.

Note, however, that cmp-field types defined in terms of Java numeric primitive types cannot pro
NULL values in the query result. An EJB QL query that returns such a cmp-field type as a result
must not return a null value. (If the Bean Provider wishes to allow null values for cmp-fields, he o
should specify those cmp-fields to have the equivalent Java object types instead of primitive type
Integer rather thanint .)

9.2.7.2 Aggregate Functions in the SELECT Clause
The result of an EJB QL query may be the result of an aggregate function applied to a path expr

The following aggregate functions can be used in the SELECT clause of an EJB QL query: A
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the agg
function must terminate in a cmp-field. The path expression argument to COUNT may termina
either a cmp-field or a cmr-field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX
MIN must correspond to orderable cmp-field types (i.e., numeric types, string types, character typ
date types).

The argument to an aggregate function may be preceded by the keyword DISTINCT to specif
duplicate values are to be eliminated before the aggregate function is applied.[47]

Null values are eliminated before the aggregate function is applied, regardless of whether the ke
DISTINCT is specified.

9.2.7.3 Examples

The following example returns all line items related to some order:

SELECT OBJECT(l)
FROM Order o, IN(o.lineItems) l

The following query returns all line items regardless of whether a line item is related to any ord
product:

SELECT OBJECT(l)
FROM LineItems AS l

[47] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.
 5/2/06 242

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

spec-

.

e one
The following query returns the average order quantity:

SELECT AVG(o.quantity)
FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

The following query returns the number of items in John Smith’s entire order.

SELECT COUNT(l)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

The following query returns the total number of orders.

SELECT COUNT(o)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been
ified.

SELECT COUNT(l.price)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’

Note that this is equivalent to:

SELECT COUNT(l)
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
AND l.price IS NOT NULL

9.2.8 ORDER BY Clause
The ORDER BY clause allows the objects or values that are returned by the query to be ordered

The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, the SELECT clause of the query must b
of the following:

1. an identification variable x, denoted as OBJECT(x)

2. a single_valued_cmr_path_expression
243 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

act

scend-

-null
s not

result

type, a
query

that is

ethod
thod.
3. a cmp_path_expression

In the first two cases, eachorderby_item must be an orderable cmp-field of the entity bean abstr
schema type value returned by the SELECT clause. In the third case, theorderby_item must evaluate to
the same cmp-field of the same entity bean abstract schema type as thecmp_path_expression in the
SELECT clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT OBJECT(o)
FROM Customer c, IN(c.orders) o
WHERE c.address.state = ‘CA’
ORDER BY o.quantity, o.totalcost

SELECT o.quantity
FROM Customer c, IN(c.orders) o
WHERE c.address.state = ‘CA’
ORDER BY o.quantity

SELECT l.product.product_name
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
ORDER BY l.product.price

SELECT l.product.product_name
FROM Order o, IN(o.lineItems) l
WHERE o.customer.lastname = ‘Smith’ AND o.customer.firstname = ‘John’
ORDER BY o.quantity

If more than oneorderby_item is specified, the left-to-right sequence of theorderby_item elements
determines the precedence, whereby the leftmostorderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that de
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non
values in the ordering or all null values must appear after all non-null values in the ordering, but it i
specified which.

It is the container’s responsibility to ensure that the ordering of the query result is preserved in the
of the finder or select method if the ORDER BY clause is used.

9.2.9 Return Value Types

The value of a query result, specified by the SELECT clause, is an entity bean abstract schema
cmp-field type, or the result of an aggregate function. The finder or select method with which the
is associated in the deployment descriptor determines how this result is mapped to the Java type
visible as the result of the query method.

How the result type of a query is mapped depends on whether the query is defined for a finder m
on the remote home interface, for a finder method on the local home interface, or for a select me
 5/2/06 244

EJB QL Definition Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

e that
finder
inter-
a col-
d is
llec-

e, the
ances
the

nding
func-

sin-
bject
n of

lect
rimi-

lect
ction

object

or an
the

ult
ggre-

ult
the

thod
thod

uery
• The result type of a query for a finder method must be the entity bean abstract schema typ
corresponds to the entity bean type of the entity bean on whose home interface the
method is defined. If the query is used for a finder method defined on the remote home
face of the bean, the result of the finder method is the entity bean’s remote interface (or
lection of objects implementing the entity bean’s remote interface). If the finder metho
defined on the local home interface, the result is the entity bean’s local interface (or a co
tion of objects implementing the entity bean’s local interface).

• If the result type of a query for a select method is an entity bean abstract schema typ
return values for the query method are instances of the entity bean’s local interface or inst
of the entity bean’s remote interface, depending on whether the value of
result-type-mapping deployment descriptor element contained in thequery element
for the select method isLocal or Remote . The default value forresult-type-mapping
is Local .

• If the result type of a query used for a select method is an abstract schema type correspo
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

• If the Java type of the cmp-field is an object type and the select method is a
gle-object select method, the result of the select method is an instance of that o
type. If the select method is a multi-object select method, the result is a collectio
instances of that type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a single-object select method, the result of the select method is that p
tive type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a multi-object select method, the result of the select method is a colle
of values of the corresponding wrappered type (e.g., Integer).

• If the select method query is an aggregate query, the select method must be a single-
select method.

• The result type of the select method must be a primitive type, a wrappered type,
object type that is compatible with the standard JDBC conversion mappings for
type of the cmp-field [29].

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is an object type and there are no values to which the a
gate function can be applied, the select method returns null.

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is a primitive type and there are no values to which
aggregate function can be applied, the container must throw theObjectNotFoun-
dException .

• If the aggregate query uses the COUNT operator, the result of the select me
should be an exact numeric type. If there are no values to which the COUNT me
can be applied, the result of the select method is 0.

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the q
result is null.
245 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.

lue.

lue.
9.2.10 Null Values

When the target of a reference does not exist in the persistent store, its value is regarded asNULL. SQL
92NULL semantics [24] defines the evaluation of conditional expressions containingNULL values.

The following is a brief description of these semantics:

• Comparison or arithmetic operations with a NULL value always yield an unknown value.

• Two NULL values are not considered to be equal, the comparison yields an unknown va

• Comparison or arithmetic operations with an unknown value always yield an unknown va

• The IS NULL and IS NOT NULL operators convert aNULL cmp-field or single-valued
cmr-field value into the respective TRUE or FALSE value.

• Boolean operators use three valued logic, defined by Table 7, Table 8, and Table 9.

Table 7 Definition of the AND Operator

AND T F U

T T F U

F F F F

U U F U

Table 8 Definition of the OR Operator

OR T F U

T T T T

F T F U

U T U U

Table 9 Definition of the NOT Operator

NOT

T F

F T

U U
 5/2/06 246

Examples Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

lue.
ped to

L com-

r is the
e
tion
pt for

rimary

-

does
umer-

that

refore,
ns are

sed on
Note: EJB QL defines the empty string, ‘’, as a string with 0 length, which is not equal to a NULL va
However, NULL values and empty strings may not always be distinguished when queries are map
some persistent stores. The Bean Provider should therefore not rely on the semantics of EJB Q
parisons involving the empty string and NULL value.

9.2.11 Equality and Comparison Semantics

EJB QL only permits the values oflike types to be compared. A type islike another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the othe
wrappered Java class type equivalent (e.g.,int andInteger are like types in this sense). There is on
exception to this rule: it is valid to compare numeric values for which the rules of numeric promo
apply. Conditional expressions attempting to compare non-like type values are disallowed exce
this numeric case.

Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
cmp-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.

Two entity objects of the same abstract schema type are equal if and only if they have the same p
key value.

9.2.12 Restrictions

Date and time values should use the standard Javalong millisecond value. The standard way to pro
duce millisecond values is to usejava.util.Calendar .

Although SQL requires support for fixed decimal comparison in arithmetic expressions, EJB QL
not. For this reason EJB QL restricts exact numeric literals to those without a decimal point (and n
ics with a decimal point as an alternate representation for approximate numeric values).

Support for the BigDecimal and BigInteger types is optional for containers in EJB 2.1. Applications
depend on such types in EJB QL queries may not be portable.

Boolean comparison is restricted to= and<>.

EJB QL does not support the use of comments.

The data model for container-managed persistence does not currently support inheritance. The
entity objects of different types cannot be compared. EJB QL queries that contain such compariso
invalid.

9.3 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are ba
the example presented in Section 9.2.4.
247 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final Release Exam-

Sun Microsystems, Inc.

ry can
9.3.1 Simple Queries

Find all orders:

SELECT OBJECT(o)
FROM Order o

Find all orders that need to be shipped to California:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shipping_address.state
FROM Order o

9.3.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l

Note that the result of this query does not include orders with no associated line items. This que
also be written as:

SELECT OBJECT(o)
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT OBJECT(o)
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.shipped = FALSE
 5/2/06 248

Examples Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

umes
s, as in

dress
ned in

rimary

nt for

ter:
Find all orders in which the shipping address differs from the billing address. This example ass
that the Bean Provider uses two distinct entity beans to designate shipping and billing addresse
Figure 17.

SELECT OBJECT(o)
FROM Order o
WHERE
NOT (o.shipping_address.state = o.billing_address.state AND

 o.shipping_address.city = o.billing_address.city AND
 o.shipping_address.street = o.billing_address.street)

If the Bean Provider uses a single entity bean in two different relationships for both the shipping ad
and the billing address, the above expression can be simplified based on the equality rules defi
Section 9.2.11. The query can then be written as:

SELECT OBJECT(o)
FROM Order o
WHERE o.shipping_address <> o.billing_address

The query checks whether the same entity bean abstract schema type instance (identified by its p
key) is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Developme
the J2EE Platform’:

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.type = ‘book’ AND

l.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

9.3.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parame

SELECT DISTINCT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the cmp-field name, i.e., a string.

9.3.4 Queries for Select Methods
The following select queries illustrate the selection of values other than entity beans.

The following EJB QL query selects the names of all products that have been ordered.

SELECT DISTINCT l.product.name
FROM Order o, IN(o.lineItems) l
249 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final Release Exam-

Sun Microsystems, Inc.

ber.
te that
uery
n
ultiple

if the

ype of

hat of
t used
bles
pe.

xisting
ty and

a rela-
tabase.
f EJB

y bean
d table
le that
The following query finds the names of all products in the order specified by a particular order num
The order number is specified by a parameter that corresponds to the primary key of Order. No
because this query does not specify DISTINCT in its SELECT clause, if it is specified for a q
method whose return type isjava.util.Collection , the collection that is returned may contai
duplicates. In this example, such duplicates correspond to products that have been ordered m
times in the given order.

SELECT l.product.name
FROM Order o, IN(o.lineItems) l
WHERE o.ordernumber = ?1

It is the responsibility of the container to interpret the query such that no duplicates are produced
result type of the query method isjava.util.Set .

Consider the following query for a select method:

SELECT o.shipping_address.city
FROM Order o

This query returns the names of all the cities of the shipping addresses of all orders. The result t
the select method, which is eitherjava.util.Collection or java.util.Set , determines
whether the query may return duplicate city names.

9.3.5 EJB QL and SQL

EJB QL, like SQL, treats the FROM clause as a cartesian product. The FROM clause is similar to t
SQL in that the declared identification variables affect the results of the query even if they are no
in the WHERE clause. The Bean Provider should use caution in defining identification varia
because the domain of the query can depend on whether there are any values of the declared ty

For example, the FROM clause below defines a query over all orders that have line items and e
products. If there are no Product instances in the persistent store, the domain of the query is emp
no order is selected.

SELECT OBJECT(o)
FROM Order AS o, IN(o.lineItems) l, Product p

The container can represent the abstract schemas of a set of entity beans in an application using
tional database. There are multiple ways to define a mapping to a set of tables in a relational da
Although this area is beyond the scope of this specification, a sample mapping and translation o
QL to SQL is described to clarify the semantics of EJB QL.

A mapping strategy from a set of entity beans to a relational database might be to map each entit
to a separate table. One-to-many relationships may be represented by foreign keys in the relate
from the many side and many-to-many relationships may be represented by using an auxiliary tab
contains the primary keys of the related objects.
 5/2/06 250

EJB QL BNF Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.

s. If the

con-

ables.
repre-

ntity
pri-
Because the FROM clause represents a cartesian product, the SQL result may contain duplicate
query is for a method whose return type isjava.util.Set , the container would therefore typically
utilize a SELECT DISTINCT clause in translating the query to SQL. The query method result may
tain duplicates if the return type of the query method isjava.util.Collection and DISTINCT is
not specified in the SELECT clause of the EJB QL query.

The following translation example illustrates the mapping of entity beans to relational database t
The entity bean OrderEJB is represented by the table ORDER and the entity bean LineItemEJB is
sented by the table LINEITEM. The column OKEY represents the primary key for OrderEJB e
bean, FKEY represents the foreign key column of LINEITEM that holds the values of the ORDER
mary keys. FKEY is defined in the LINEITEM table to model the one-to-many relationship.

Using this mapping, the following EJB QL finder query

SELECT OBJECT(o)
FROM Order o, IN(o.lineItems) l
WHERE l.quantity > 5

might be represented in SQL as

SELECT DISTINCT o.OKEY
FROM ORDERBEAN o, LINEITEM l
WHERE o.OKEY = l.FKEY AND l.QUANTITY > 5

9.4 EJB QL BNF

EJB QL BNF notation summary:

• { ... } grouping

• [...] optional constructs

• boldface keywords

The following is the complete BNF notation for EJB QL:

EJB QL ::= select_clause from_clause [where_clause] [orderby_clause]
from_clause ::= FROM identification_variable_declaration

[, identification_variable_declaration]*
identification_variable_declaration ::= collection_member_declaration |

 range_variable_declaration
collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier
range_variable_declaration ::= abstract_schema_name [AS] identifier
cmp_path_expression ::=

{identification_variable | single_valued_cmr_path_expression}.cmp_field
single_valued_cmr_path_expression ::=

identification_variable.[single_valued_cmr_field.]* single_valued_cmr_field
single_valued_path_expression ::=
251 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.
cmp_path_expression | single_valued_cmr_path_expression
collection_valued_path_expression ::=

identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field
select_clause ::= SELECT [DISTINCT] {select_expression | OBJECT(identification_variable)}
select_expression ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM | COUNT} ([DISTINCT] cmp_path_expression) |
COUNT ([DISTINCT] identification_variable | single_valued_cmr_path_expression)

where_clause ::= WHERE conditional_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

between_expression ::=
arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression
in_expression ::=

cmp_path_expression [NOT] IN
({literal | input_parameter} [, { literal | input_parameter}]*)

like_expression ::=
cmp_path_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
{single_valued_cmr_path_expression | identification_variable | input_parameter}

[NOT] MEMBER [OF] collection_valued_path_expression
comparison_expression ::=

string_value comparison_operator string_expression |
boolean_value { =|<>} boolean_expression} |
datetime_value comparison_operator datetime_expression |
entity_bean_value { = | <> } entity_bean_expression |
arithmetic_value comparison_operator arithmetic_expression

arithmetic_value ::= cmp_path_expression | functions_returning_numerics
comparison_operator ::=

= | > | >= | < | <= | <>
arithmetic_expression ::= arithmetic_term | arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::= cmp_path_expression | literal | (arithmetic_expression) |

input_parameter | functions_returning_numerics
string_value ::= cmp_path_expression | functions_returning_strings
string_expression ::= string_primary | input_parameter
string_primary ::= cmp_path_expression | literal | (string_expression) |

functions_returning_strings
 5/2/06 252

EJB QL BNF Enterprise JavaBeans 3.0, Final Release EJB QL: EJB 2.1 Query Language for Con-

Sun Microsystems, Inc.
datetime_value ::= cmp_path_expression
datetime_expression ::= datetime_value | input_parameter
boolean_value ::= cmp_path_expression
boolean_expression ::= cmp_path_expression | literal | input_parameter
entity_bean_value ::= single_valued_cmr_path_expression | identification_variable
entity_bean_expression ::= entity_bean_value | input_parameter
functions_returning_strings ::= CONCAT(string_expression, string_expression) |

SUBSTRING(string_expression, arithmetic_expression, arithmetic_expression)
functions_returning_numerics::=

LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression]) |
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression)

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*
orderby_item ::= cmp_path_expression [ASC | DESC]
253 May 2, 2006 2:35 pm

EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query MethodsEnterprise JavaBeans 3.0, Final ReleaseEJBQL

Sun Microsystems, Inc.
 5/2/06 254

EJB QL BNF Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

n entity
d del-

ompo-

ider’s
Bean

terprise
aBeans

ot sup-
Chapter 10 EJB 2.1 Entity Bean Component Contract
for Bean-Managed Persistence

The entity bean component contract for bean-managed persistence is the contract between a
bean and its container. It defines the life cycle of the entity bean instances and the model for metho
egation of the client-invoked business methods. The main goal of this contract is to ensure that a c
nent using bean-managed persistence is portable across all compliant EJB containers.

This chapter defines the Enterprise Bean Provider’s view of this contract and the Container Prov
responsibility for managing the life cycle of the enterprise bean instances. It also describes the
Provider’s responsibilities when persistence is provided by the Bean Provider.

The contents of this chapter apply only to bean-managed persistence entities as defined in the En
JavaBeans 2.1 specification [3]. The contracts for persistent entities, as defined by Enterprise Jav
3.0, are described in the document “Java Persistence API” of this specification [2].

Note that use of dependency injection, interceptors, and Java language metadata annotations is n
ported for EJB 2.1 entity beans.
255 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

entity
ERP
bean

ider to
lasses
istence.

g. using
in the
10.1 Overview of Bean-Managed Entity Persistence

An entity bean implements an object view of an entity stored in an underlying database, or an
implemented by an existing enterprise application (for example, by a mainframe program or by an
application). The data access protocol for transferring the state of the entity between the entity
instances and the underlying database is referred to as object persistence.

The entity bean component protocol for bean-managed persistence allows the entity Bean Prov
implement the entity bean’s persistence directly in the entity bean class or in one or more helper c
provided with the entity bean class. This chapter describes the contracts for bean-managed pers

Figure 18 Client View of Underlying Data Sources Accessed Through Entity Bean

10.1.1 Entity Bean Provider’ s View of Persistence

Using bean-managed persistence, the entity Bean Provider writes database access calls (e.
JDBCTM or SQLJ) directly in the entity bean component. The data access calls are performed
ejbCreate<METHOD> , ejbRemove , ejbFind<METHOD> , ejbLoad , andejbStore methods,
and/or in the business methods.

Account

container

client
Account 100

entity bean

Account

container

client
Account 100

entity bean

existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application
 5/2/06 256

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

ted in a
ty bean
ferent

ication
ponents
data
dapting
es not
com-

etween
The data access calls can be coded directly into the entity bean class, or they can be encapsula
data access component that is part of the entity bean. Directly coding data access calls in the enti
class may make it more difficult to adapt the entity bean to work with a database that has a dif
schema, or with a different type of database.

We expect that most enterprise beans with bean-managed persistence will be created by appl
development tools which will encapsulate data access in components. These data access com
will probably not be the same for all tools. Further, if the data access calls are encapsulated in
access components, the data access components may require deployment interfaces to allow a
data access to different schemas or even to a different database type. This EJB specification do
define the architecture for data access objects, strategies for tailoring and deploying data access
ponents or ensuring portability of these components for bean-managed persistence.

10.1.2 Runtime Execution Model

This section describes the runtime model and the classes used in the description of the contract b
an entity bean with bean-managed persistence and its container.
257 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

by
inter-
refer-
entity

d)
stance.
ider’s
ean’s
Figure 19 Overview of the Entity Bean Runtime Execution Model

An enterprise bean instance is an object whose class is provided by the Bean Provider.

An entity EJBObject or EJBLocalObject is an object whose class is generated at deployment time
the Container Provider’s tools. The entity EJBObject class implements the entity bean’s remote
face. The entity EJBLocalObject class implements the entity bean’s local interface. A client never
ences an entity bean instance directly—a client always references an entity EJBObject or
EJBLocalObject whose class is generated by the Container Provider’s tools.

An entityEJBHomeor EJBLocalHomeobject provides the life cycle operations (create, remove, fin
for its entity objects as well as home business methods, which are not specific to an entity bean in
The class for the entity EJBHome or EJBLocalHome object is generated by the Container Prov
tools at deployment time. The entity EJBHome or EJBLocalHome object implements the entity b
home interface that was defined by the Bean Provider.

Classes are provided by
Bean Provider

Classes are generated by
Container Provider tools

client

container

EJB objects

EJB Home

EJB objectsEJB Objects

enterprise bean
instances

EJB objects

EJB Local Home

EJB objectsEJB Local Objects

enterprise bean
instances

enterprise bean 1

enterprise bean 2
 5/2/06 258

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

bject
10.1.3 Instance Life Cycle

Figure 20 Life Cycle of an Entity Bean Instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity o
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance usingnewIn-
stance . The container then invokes thesetEntityContext method to pass the instance
a reference to theEntityContext interface. TheEntityContext interface allows the

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()

ejbCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(...)

ejbPostCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(...)

ejbTimeout(arg)
259 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

t the

While
entity
tance
state.
any of

he

ts that

n the
er
d to
itable

pecific
the
on

e

e of
ver it

ssivate
-

ossi-

e
the

ked

oled
instance to invoke services provided by the container and to obtain the information abou
caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool.
the instance is in the available pool, the instance is not associated with any particular
object identity. All instances in the pool are considered equivalent, and therefore any ins
can be assigned by the container to any entity object identity at the transition to the ready
While the instance is in the pooled state, the container may use the instance to execute
the entity bean’s finder methods (shown asejbFind<METHOD> in the diagram) or home
methods (shown asejbHome<METHOD>in the diagram). The instance does not move to t
ready state during the execution of a finder or a home method.

• An instance transitions from the pooled state to the ready state when the container selec
instance to service a client call to an entity object or anejbTimeout method. There are two
possible transitions from the pooled to the ready state: through theejbCreate<METHOD>
and ejbPostCreate<METHOD> methods, or through theejbActivate method. The
container invokes theejbCreate<METHOD> andejbPostCreate<METHOD> methods
when the instance is assigned to an entity object during entity object creation (i.e., whe
client invokes acreate<METHOD> method on the entity bean’s home object). The contain
invokes theejbActivate method on an instance when an instance needs to be activate
service an invocation on an existing entity object—this occurs because there is no su
instance in the ready state to service the client’s call or theejbTimeout method.

• When an entity bean instance is in the ready state, the instance is associated with a s
entity object identity. While the instance is in the ready state, the container can invoke
ejbLoad andejbStore methods zero or more times. A business method can be invoked
the instance zero or more times. TheejbTimeout method can be invoked on the instanc
zero or more times. Invocations of theejbLoad andejbStore methods can be arbitrarily
mixed with invocations of business methods or theejbTimeout method. The purpose of the
ejbLoad andejbStore methods is to synchronize the state of the instance with the stat
the entity in the underlying data source—the container can invoke these methods whene
determines a need to synchronize the instance’s state.

• The container can choose to passivate an entity bean instance within a transaction. To pa
an instance, the container first invokes theejbStore method to allow the instance to syn
chronize the database state with the instance’s state, and then the container invokes theejb-
Passivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three p
ble transitions from the ready to the pooled state: through theejbPassivate method,
through theejbRemove method, and because of a transaction rollback forejbCreate ,
ejbPostCreate , or ejbRemove (not shown in Figure 20). The container invokes th
ejbPassivate method when the container wants to disassociate the instance from
entity object identity without removing the entity object. The container invokes theejbRe-
move method when the container is removing the entity object (i.e., when the client invo
the remove method on the entity object’s component interface, or aremove method on the
entity bean’s home interface). IfejbCreate , ejbPostCreate , or ejbRemove is called
and the transaction rolls back, the container will transition the bean instance to the po
state.
 5/2/06 260

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

bject
bean

, the

he
to the
ter a
ntity
com-
ate the

oling
ation.
.

its con-

:

reate

.5 for
of an
• When the instance is put back into the pool, it is no longer associated with an entity o
identity. The container can assign the instance to any entity object within the same entity
home.

• An instance in the pool can be removed by calling theunsetEntityContext method on
the instance.

Notes:

1. TheEntityContext interface passed by the container to the instance in thesetEntity-
Context method is an interface, not a class that contains static information. For example
result of theEntityContext.getPrimaryKey method might be different each time an
instance moves from the pooled state to the ready state, and the result of thegetCaller-
Principal andisCallerInRole methods may be different in each business method.

2. A RuntimeException thrown from any method of the entity bean class (including t
business methods and the callbacks invoked by the container) results in the transition
“does not exist” state. The container must not invoke any method on the instance af
RuntimeException has been caught. From the client perspective, the corresponding e
object continues to exist. The client can continue accessing the entity object through its
ponent interface because the container can use a different entity bean instance to deleg
client’s requests. Exception handling is described further in Chapter 14.

3. The container is not required to maintain a pool of instances in the pooled state. The po
approach is an example of a possible implementation, but it is not the required implement
Whether the container uses a pool or not has no bearing on the entity bean coding style

10.1.4 The Entity Bean Component Contract

This section specifies the contract between an entity bean with bean-managed persistence and
tainer.

10.1.4.1 Entity Bean Instance’s View

The following describes the entity bean instance’s view of the contract:

The Bean Provider is responsible for implementing the following methods in the entity bean class

• A public constructor that takes no arguments. The container uses this constructor to c
instances of the entity bean class.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Subsection 13.6
how the container executes methods with an unspecified transaction context). An identity
entity object is not available during this method.
261 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

pecific
erve

ct is

by the

g-
er
es

-
. The

the
n

ty

s it to

pre-

from

in the

restricts
The instance can take advantage of thesetEntityContext method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method.

The instance can take advantage of theunsetEntityContext method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;

There are zero[48] or moreejbCreate<METHOD> methods, whose signatures match the si
natures of thecreate<METHOD> methods of the entity bean home interface. The contain
invokes anejbCreate<METHOD> method on an entity bean instance when a client invok
a matchingcreate<METHOD> method to create an entity object.

The implementation of theejbCreate<METHOD> method typically validates the client-sup
plied arguments, and inserts a record representing the entity object into the database
method also initializes the instance’s variables. TheejbCreate<METHOD> method must
return the primary key for the created entity object.

An ejbCreate<METHOD> method executes in the transaction context determined by
transaction attribute of the matchingcreate<METHOD> method, as described in subsectio
13.6.2.

• public void ejbPostCreate<METHOD>(...);

For each ejbCreate<METHOD> method, there is a matchingejbPostCre-
ate<METHOD>method that has the same input parameters but whose return value isvoid .
The container invokes the matchingejbPostCreate<METHOD> method on an instance
after it invokes theejbCreate<METHOD> method with the same arguments. The enti
object identity is available during theejbPostCreate<METHOD> method. The instance
may, for example, obtain the component interface of the associated entity object and pas
another enterprise bean as a method argument.

An ejbPostCreate<METHOD> method executes in the same transaction context as the
viousejbCreate<METHOD> method.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.

[48] An entity Bean has noejbCreate<METHOD> andejbPostCreate<METHOD> methods if it does not define any create
methods in its home interface. Such an entity bean does not allow the clients to create new entity objects. The entity bean
the clients to accessing entities that were created through direct database inserts.
 5/2/06 262

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

in the

key
of

y

ociate
vail-
any
ically

in the

-

of the
e

tation

f this
stance

e that
in the
y time

ld not
ay take
om
This method executes with an unspecified transaction context. The instance can obta
identity of the entity object via thegetPrimaryKey , getEJBLocalObject , or getEJ-
BObject method on the entity context. The instance can rely on the fact that the primary
and entity object identity will remain associated with the instance until the completion
ejbPassivate or ejbRemove .

Note that the instance should not use theejbActivate method to read the state of the entit
from the database; the instance should load its state only in theejbLoad method.

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. TheejbPassivate method gives the instance the chance to release
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during theejbActivate method.)

This method executes with an unspecified transaction context. The instance can still obta
identity of the entity object via thegetPrimaryKey , getEJBLocalObject , or getEJ-
BObject method of theEntityContext interface.

Note that an instance should not use theejbPassivate method to write its state to the data
base; an instance should store its state only in theejbStore method.

• public void ejbRemove() ;

The container invokes this method on an instance as a result of a client’s invoking aremove
method. The instance is in the ready state whenejbRemove is invoked and it will be entered
into the pool when the method completes.

This method executes in the transaction context determined by the transaction attribute
remove method that triggered theejbRemove method. The instance can still obtain th
identity of the entity object via thegetPrimaryKey , getEJBLocalObject , or getEJ-
BObject method of theEntityContext interface.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance variables at the beginning of theejbRemove method
is the same as it would be at the beginning of a business method.

An entity bean instance should use this method to remove the entity object’s represen
from the database.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate method.

• public void ejbLoad() ;

The container invokes this method on an instance in the ready state to inform the instanc
it should synchronize the entity state cached in its instance variables from the entity state
database. The instance should be prepared for the container to invoke this method at an
that the instance is in the ready state.

If the instance is caching the entity state (or parts of the entity state), the instance shou
use the previously cached state in the subsequent business method. The instance m
advantage of theejbLoad method, for example, to refresh the cached state by reading it fr
the database.
263 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

of the

tance
tance

y time

in the

nce to
d
lects
d

ans-

-
. The

bsec-

nce to
d
lects
d

ans-
2.

ce
nd

tion
This method executes in the transaction context determined by the transaction attribute
business method orejbTimeout method that triggered theejbLoad method.

• public void ejbStore();

The container invokes this method on an instance to inform the instance that the ins
should synchronize the entity state in the database with the entity state cached in its ins
variables. The instance should be prepared for the container to invoke this method at an
that the instance is in the ready state.

An instance should write any updates cached in the instance variables to the database
ejbStore method.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate<METHOD>method invoked on the instance. All business methods or theejbTimeout
method invoked between the previousejbLoad or ejbCreate<METHOD> method and this
ejbStore method are also invoked in the same transaction context.

• public <primary key type or collection>ejbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invokedfind<METHOD> method. The instance is in the poole
state (i.e., it is not assigned to any particular entity object identity) when the container se
the instance to execute theejbFind<METHOD> method on it, and it is returned to the poole
state when the execution of theejbFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the tr
action attribute of the matchingfind method, as described in subsection 13.6.2.

The implementation of anejbFind<METHOD> method typically uses the method’s argu
ments to locate the requested entity object or a collection of entity objects in the database
method must return a primary key or a collection of primary keys to the container (see Su
tion 10.1.9).

• public <type> ejbHome<METHOD>(...) ;

The container invokes this method on any instance when the container selects the insta
execute a matching client-invoked<METHOD>home method. The instance is in the poole
state (i.e., it is not assigned to any particular entity object identity) when the container se
the instance to execute theejbHome<METHOD> method on it, and it is returned to the poole
state when the execution of theejbHome<METHOD> method completes.

TheejbHome<METHOD>method executes in the transaction context determined by the tr
action attribute of the matching<METHOD> home method, as described in subsection 13.6.

• public void ejbTimeout(...);

The container invokes theejbTimeout method on an instance when a timer for the instan
has expired. TheejbTimeout method notifies the instance of the time-based event a
allows the instance to execute the business logic to handle it.

The ejbTimeout method executes in the transaction context determined by its transac
attribute.
 5/2/06 264

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

r must

tance,

, the

tances

lt of a

e

bject
kes a

ntity
ace

ching

n the
must
if the

must

en the
The
10.1.4.2 Container’s View

This subsection describes the container’s view of the state management contract. The containe
call the following methods:

• public void setEntityContext(ec) ;

The container invokes this method to pass a reference to theEntityContext interface to
the entity bean instance. The container must invoke this method after it creates the ins
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of ins
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;
public void ejbPostCreate<METHOD>(...) ;

The container invokes these two methods during the creation of an entity object as a resu
client invoking acreate<METHOD> method on the entity bean’s home interface.

The container first invokes theejbCreate<METHOD> method whose signature matches th
create<METHOD> method invoked by the client. TheejbCreate<METHOD> method
returns a primary key for the created entity object. The container creates an entity EJBO
reference and/or EJBLocalObject reference for the primary key. The container then invo
matchingejbPostCreate<METHOD> method to allow the instance to fully initialize itself.
Finally, the container returns the entity object’s remote interface (i.e., a reference to the e
EJBObject) to the client if the client is a remote client, or the entity object’s local interf
(i.e., a reference to the entity EJBLocalObject) to the client if the client is a local client.

The container must invoke theejbCreate<METHOD> andejbPostCreate<METHOD>
methods in the transaction context determined by the transaction attribute of the mat
create<METHOD> method, as described in subsection 13.6.2.

• public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., whe
instance is taken from the pool and assigned to an entity object identity). The container
ensure that the primary key of the associated entity object is available to the instance
instance invokes thegetPrimaryKey , getEJBLocalObject , or getEJBObject
method on itsEntityContext interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container
still invoke theejbLoad method prior to a business method orejbTimeout method invo-
cation.

• public void ejbPassivate() ;

The container invokes this method on an entity bean instance at passivation time (i.e., wh
instance is being disassociated from an entity object identity and moved into the pool).
265 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

o the

invoke

a cli-

ction
he

data-
ed

for the
hat the
ner,

. After
tate
is not

action

for the
is syn-
ed as
en it
most

trans-

ously
container must ensure that the identity of the associated entity object is still available t
instance if the instance invokes thegetPrimaryKey , getEJBLocalObject , or getEJ-
BObject method on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first
theejbStore method on the instance before it invokesejbPassivate on it.

• public void ejbRemove();

The container invokes this method before it ends the life of an entity object as a result of
ent invoking aremove operation.

The container invokes this method in the transaction context determined by the transa
attribute of the invokedremove method. The container must ensure that the identity of t
associated entity object is still available to the instance in theejbRemove method (i.e., the
instance can invoke thegetPrimaryKey , getEJBLocalObject , or getEJBObject
method on itsEntityContext in theejbRemove method).

The container must ensure that the instance’s state is synchronized from the state in the
base before invoking theejbRemove method (i.e., if the instance is not already synchroniz
from the state in the database, the container must invokeejbLoad before it invokesejbRe-
move).

• public void ejbLoad() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its instance state from its state in the database. The exact times t
container invokesejbLoad depend on the configuration of the component and the contai
and are not defined by the EJB architecture. Typically, the container will callejbLoad before
the first business method within a transaction or before invoking theejbTimeout method to
ensure that the instance can refresh its cached state of the entity object from the database
the firstejbLoad within a transaction, the container is not required to recognize that the s
of the entity object in the database has been changed by another transaction, and it
required to notify the instance of this change via anotherejbLoad call.

The container must invoke this method in the transaction context determined by the trans
attribute of the business method orejbTimeout method that triggered theejbLoad
method.

• public void ejbStore() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its state in the database with the state of the instance’s fields. Th
chronization always happens at the end of a transaction, unless the bean is specifi
read-only (see section 10.1.5). However, the container may also invoke this method wh
passivates the instance in the middle of a transaction, or when it needs to transfer the
recent state of the entity object to another instance for the same entity object in the same
action (see Subsection 13.7).

The container must invoke this method in the same transaction context as the previ
invokedejbLoad , ejbCreate<METHOD> , orejbTimeout method.

• public <primary key type or collection>ejbFind<METHOD>(...) ;
 5/2/06 266

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

s
ust
entity

e
action

ate.
ed by

r-
n

er
cli-

entity

ntity
om
for

s
ust
entity

e.

r-

e
e con-

by
The container invokes theejbFind<METHOD> method on an instance when a client invoke
a matchingfind<METHOD> method on the entity bean’s home interface. The container m
pick an instance that is in the pooled state (i.e., the instance is not associated with any
object identity) for the execution of theejbFind<METHOD> method. If there is no instance
in the pooled state, the container creates one and calls thesetEntityContext method on
the instance before dispatching the finder method.

Before invoking theejbFind<METHOD> method, the container must first synchronize th
state of any non-read-only entity bean instances that are participating in the same trans
context as is used to execute theejbFind<METHOD> by invoking theejbStore method on
those entity bean instances.[49]

After the ejbFind<METHOD> method completes, the instance remains in the pooled st
The container may, but is not required to, immediately activate the objects that were locat
the finder using the transition through theejbActivate method.

The container must invoke theejbFind<METHOD> method in the transaction context dete
mined by the transaction attribute of the matchingfind method, as described in subsectio
13.6.2.

If the ejbFind<METHOD> method is declared to return a single primary key, the contain
creates an entity EJBObject reference for the primary key and returns it to the client if the
ent is a remote client. If the client is a local client, the container creates and returns an
EJBLocalObject reference for the primary key. If theejbFind<METHOD> method is
declared to return a collection of primary keys, the container creates a collection of e
EJBObject or EJBLocalObject references for the primary keys returned fr
ejbFind<METHOD> , and returns the collection to the client. (See Subsection 10.1.9
information on collections.)

• public <type> ejbHome<METHOD>(...) ;

The container invokes theejbHome<METHOD>method on an instance when a client invoke
a matching<METHOD>home method on the entity bean’s home interface. The container m
pick an instance that is in the pooled state (i.e., the instance is not associated with any
object identity) for the execution of theejbHome<METHOD>method. If there is no instance
in the pooled state, the container creates one and calls thesetEntityContext method on
the instance before dispatching the home method.

After theejbHome<METHOD> method completes, the instance remains in the pooled stat

The container must invoke theejbHome<METHOD>method in the transaction context dete
mined by the transaction attribute of the matching<METHOD>home method, as described in
subsection 13.6.2.

• public void ejbTimeout(...);

The container invokes theejbTimeout method on the instance when a timer with which th
entity has been registered expires. If there is no suitable instance in the ready state, th
tainer must activate an instance, invoking theejbActivate method and transitioning it to
the ready state.

The container invokes theejbTimeout method in the context of a transaction determined
its transaction attribute.

[49] The EJB specification does not require the distributed flushing of state. The container in which theejbFind<METHOD>
method executes is not required to propagate the flush to a different container.
267 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

. A
ated by
hanges

aded

and the

ecifica-

ole.

uch

has
10.1.5 Read-only Entity Beans
Compliant implementations of this specification may optionally support read-only entity beans
read-only entity bean is an entity bean whose instances are not intended to be updated and/or cre
the application. Read-only beans are best suited for situations where the underlying data never c
or changes infrequently.

Containers that support read-only beans do not call theejbStore method on them. TheejbLoad
method should typically be called by the container when the state of the bean instance is initially lo
from the database, or at designated refresh intervals.[50]

If a read-only bean is used, the state of such a bean should not be updated by the application,
behavior is unspecified if this occurs.[51]

Read-only beans are designated by vendor-specific means that are outside the scope of this sp
tion, and their use is therefore not portable.

10.1.6 The EntityContext Interface

A container provides the entity bean instances with anEntityContext , which gives the entity bean
instance access to the instance’s context maintained by the container. TheEntityContext interface
has the following methods:

• ThegetEJBObject method returns the entity bean’s remote interface.

• ThegetEJBHome method returns the entity bean’s remote home interface.

• ThegetEJBLocalObject method returns the entity bean’s local interface.

• ThegetEJBLocalHome method returns the entity bean’s local home interface.

• The getCallerPrincipal method returns thejava.security.Principal that
identifies the invoker.

• The isCallerInRole method tests if the entity bean instance’s caller has a particular r

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback.

• ThegetPrimaryKey method returns the entity bean’s primary key.

• ThegetTimerService method returns thejavax.ejb.TimerService interface.

[50] The ability to refresh the state of a read-only bean and the intervals at which such refresh occurs are vendor-specific.]

[51] For example, an implementation might choose to ignore such updates or to disallow them.
 5/2/06 268

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

NDI

access

tity man-
ned by
• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface. Entity bean instances must not call this method.

• The lookup method enables the entity bean to look up its environment entries in the J
naming context.

10.1.7 Operations Allowed in the Methods of the Entity Bean Class

Table 10 defines the methods of an entity bean class in which the enterprise bean instances can
the methods of thejavax.ejb.EntityContext interface, thejava:comp/env environment
naming context, resource managers,TimerService andTimer methods, theEntityManager-
Factory andEntityManager methods, and other enterprise beans.

If an entity bean instance attempts to invoke a method of theEntityContext interface, and the
access is not allowed in Table 10, the container must throw thejava.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to invoke a method of theTimerService or Timer interface and
the access is not allowed in Table 10, the container must throw thejava.lang.IllegalState-
Exception.

If an entity bean instance attempts to access a resource manager, an enterprise bean, or an en
ager or entity manager factory, and the access is not allowed in Table 10, the behavior is undefi
the EJB architecture.

Table 10 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods:getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

ejbCreate

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getTimerService,
lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access
269 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.
ejbPostCreate

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

ejbRemove

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

ejbFind

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

ejbHome

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getTimerService,
lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

ejbActivate
ejbPassivate

EntityContext methods:getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Table 10 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
 5/2/06 270

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

xt of a

with
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the conte
transaction. The container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking thegetEJBObject , getEJBLocalObject , andgetPrimaryKey methods is
disallowed in the entity bean methods in which there is no entity object identity associated
the instance.

ejbLoad
ejbStore

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

business method
from component inter-
face

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

ejbTimeout

EntityContext methods:getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getRollbackOnly, setRollbackOnly, getEJBObject, getE-
JBLocalObject, getPrimaryKey, getTimerService, lookup

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

Timer service or Timer methods

EntityManagerFactory access

EntityManager access

Table 10 Operations Allowed in the Methods of an Entity Bean

Bean method Bean method can perform the following operations
271 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

ntext.

ods for
text.

etween
part of

t of

sh
vokes

nce’s

is-
h the

e the

hed
the
• Invoking thegetEJBObject and getEJBHome methods is disallowed if the entity bean
does not define a remote client view.

• Invoking thegetEJBLocalObject andgetEJBLocalHome methods is disallowed if the
entity bean does not define a local client view.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
entity bean methods for which the container does not have a meaningful transaction co
These are the methods that have theNotSupported , Never , or Supports transaction
attribute.

• Accessing resource managers and enterprise beans is disallowed in the entity bean meth
which the container does not have a meaningful transaction context or client security con

10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state b
business method invocations. An instance may choose to cache the entire entity object’s state,
the state, or no state at all.

The container-invokedejbLoad andejbStore methods assist the instance with the managemen
the cached entity object’s state. The instance should handle theejbLoad andejbStore methods as
follows:

• When the container invokes theejbStore method on the instance, the instance should pu
all cached updates of the entity object’s state to the underlying database. The container in
the ejbStore method at the end of a transaction[52], and may also invoke it at other times
when the instance is in the ready state. (For example the container may invokeejbStore
when passivating an instance in the middle of a transaction, or when transferring the insta
state to another instance to support distributed transactions in a multi-process server.)

• When the container invokes theejbLoad method on the instance, the instance should d
card any cached entity object’s state. The instance may, but is not required to, refres
cached state by reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cach
entity object’s state:

• An instance loads the entire entity object’s state in theejbLoad method and caches it until
the container invokes theejbStore method. The business methods read and write the cac
entity state. TheejbStore method writes the updated parts of the entity object’s state to
database.

• An instance loads the most frequently used part of the entity object’s state in theejbLoad
method and caches it until the container invokes theejbStore method. Additional parts of

[52] This call may be omitted if the bean has been specified as read-only.
 5/2/06 272

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

usiness

access
ovide

ce

ce
ion con-
saction

er
uaran-
ransac-

e

n con-

should
the entity object’s state are loaded as needed by the business methods. TheejbStore method
writes the updated parts of the entity object’s state to the database.

• An instance does not cache any entity object’s state between business methods. The b
methods access and modify the entity object’s state directly in the database. TheejbLoad
andejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data
calls in the entity bean class. We expect that they will rely on application development tools to pr
various data access components that encapsulate data access and provide state caching.

10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attribute

The use of theejbLoad andejbStore methods for caching an entity object’s state in the instan
works well only if the container can use transaction boundaries to drive theejbLoad andejbStore
methods. When theNotSupported [53] transaction attribute is assigned to a component interfa
method, the corresponding enterprise bean class method executes with an unspecified transact
text (See Subsection 13.6.5). This means that the container does not have any well-defined tran
boundaries to drive theejbLoad andejbStore methods on the instance.

Therefore, theejbLoad andejbStore methods are “unreliable” for the instances that the contain
uses to dispatch the methods with an unspecified transaction context. The following are the only g
tees that the container provides for the instances that execute the methods with an unspecified t
tion context:

• The container invokes at least oneejbLoad betweenejbActivate and the first business
method in the instance.

• The container invokes at least oneejbStore between the last business method on th
instance and theejbPassivate method[54].

Because the entity object’s state accessed between theejbLoad andejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transactio
text, the Bean Provider should not attempt to use theejbLoad andejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation of theejbLoad and
ejbStore methods should be a no-op (i.e., an empty method), and each business method
access the entity object’s state directly in the database.

[53] This applies also to theNever andSupports attribute.

[54] This ejbStore call may be omitted if the bean has been specified as read-only.
273 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

ty

f the
ocal

.

e

ed in

ntity
ean’s

ntity
10.1.9 Finder Method Return Type

10.1.9.1 Single-Object Finder

Some finder methods (such asejbFindByPrimaryKey) are designed to return at most one enti
object. For single-object finders, the result type of afind<METHOD>method defined in the entity
bean’s remote home interface is the entity bean’s remote interface, and the result type o
find<METHOD>method defined in the entity bean’s local home interface is the entity bean’s l
interface. The result type of the correspondingejbFind<METHOD> method defined in the entity’s
implementation class is the entity bean’s primary key type.

The following code illustrates the definition of a single-object finder on the remote home interface

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

Note that a finder method defined on the local home interface, however, must not throw th
RemoteException .

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public AccountPrimaryKey ejbFindByPrimaryKey(

AccountPrimaryKey primkey)
throws FinderException

{
...

}
...

}

10.1.9.2 Multi-Object Finders

Some finder methods are designed to return multiple entity objects. For multi-object finders defin
the entity bean’s remote home interface, the result type of thefind<METHOD>method is a collection
of objects implementing the entity bean’s remote interface. For multi-object finders defined in the e
bean’s local home interface, the result type is a collection of objects implementing the entity b
local interface. In either case, the result type of the correspondingejbFind<METHOD> implementa-
tion method defined in the entity bean’s implementation class is a collection of objects of the e
bean’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:

• the Java™ 2java.util.Collection interface

• the JDK™ 1.1java.util.Enumeration interface
 5/2/06 274

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

lients

ace to

ain-
A Bean Provider targeting containers and clients based on Java 2 should use thejava.util.Col-
lection interface for the finder’s result type.

A Bean Provider who wants to ensure that the entity bean is compatible with containers and c
based on JDK 1.1 must use thejava.util.Enumeration interface for the finder’s result type[55].

The Bean Provider must ensure that the objects in thejava.util.Enumeration or
java.util.Collection returned from theejbFind<METHOD> method are instances of the
entity bean’s primary key class.

A client program must use thePortableRemoteObject.narrow method to convert the objects
contained in the collections returned by a finder method on the entity bean’s remote home interf
the entity bean’s remote interface type.

The following is an example of a multi-object finder method definition that is compatible with cont
ers and clients based on Java 2:

// Entity’s remote home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Collection ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

[55] The finder will be also compatible with Java 2-based containers and clients.
275 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

and

s if it
e’s

ed but
tion
g the
The following is an example of a multi-object finder method definition compatible with containers
clients that are based on both JDK 1.1 and Java 2:

// Entity’s remote home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Enumeration ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

10.1.10 Timer Notifications
An entity bean can be registered with the EJB Timer Service for time-based event notification
implements thejavax.ejb.TimedObject interface. The container invokes the bean instanc
ejbTimeout method when a timer for the bean has expired. See Chapter 18, “Timer Service”.

10.1.11 Standard Application Exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

10.1.11.1 CreateException

From the client’s perspective, aCreateException (or a subclass ofCreateException) indi-
cates that an application level error occurred during thecreate<METHOD> operation. If a client
receives this exception, the client does not know, in general, whether the entity object was creat
not fully initialized, or not created at all. Also, the client does not know whether or not the transac
has been marked for rollback. (However, the client may determine the transaction status usin
UserTransaction interface or thesetRollbackOnly method of theEJBContext interface.)
 5/2/06 276

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

l
ction

be

se an
imary

cep-

t

-

ro-

ders
ation
The Bean Provider throws theCreateException (or subclass ofCreateException) from the
ejbCreate<METHOD> andejbPostCreate<METHOD> methods to indicate an application-leve
error from the create or initialization operation. Optionally, the Bean Provider may mark the transa
for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when aCreateException is thrown,
it leaves the database in a consistent state, allowing the client to recover. For example,ejbCreate
may throw theCreateException to indicate that the some of the arguments to thecre-
ate<METHOD> method are invalid.

The container treats theCreateException as any other application exception. See Section 14.3.

10.1.11.2 DuplicateKeyException

The DuplicateKeyException is a subclass ofCreateException . It is thrown by theejb-
Create<METHOD> method to indicate to the client that the entity object cannot be created becau
entity object with the same key already exists. The unique key causing the violation may be the pr
key, or another key defined in the underlying database.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the ex
tion.

When the client receives theDuplicateKeyException , the client knows that the entity was no
created, and that the client’s transaction has not typically been marked for rollback.

10.1.11.3 FinderException

From the client’s perspective, aFinderException (or a subclass ofFinderException) indi-
cates that an application level error occurred during thefind operation. Typically, the client’s transac
tion has not been marked for rollback because of theFinderException .

The Bean Provider throws theFinderException (or subclass ofFinderException) from the
ejbFind<METHOD> method to indicate an application-level error in the finder method. The Bean P
vider should not, typically, mark the transaction for rollback before throwing theFinderException .

The container treats theFinderException as any other application exception. See Section 14.3.

10.1.11.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass ofFinderException . It is thrown by the
ejbFind<METHOD> method to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 10.1.9) should throw this exception. Multi-object fin
must not throw this exception. Multi-object finders should return an empty collection as an indic
that no matching objects were found.
277 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

-
t also
e the

ion.
n.

be

f the
e the
bean

ainer
storage.
sistent

ption
e state
ance’s

con-
leted.
10.1.11.5 RemoveException

From the client’s perspective, aRemoveException (or a subclass ofRemoveException) indi-
cates that an application level error occurred during aremove operation. If a client receives this excep
tion, the client does not know, in general, whether the entity object was removed or not. The clien
does not know if the transaction has been marked for rollback. (However, the client may determin
transaction status using theUserTransaction interface.)

The Bean Provider throws theRemoveException (or subclass ofRemoveException) from the
ejbRemove method to indicate an application-level error from the entity object removal operat
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exceptio

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when aRemoveException is thrown,
it leaves the database in a consistent state, allowing the client to recover.

The container treats theRemoveException as any other application exception. See Section 14.3.

10.1.12 Commit Options

The Entity Bean protocol is designed to give the container the flexibility to select the disposition o
instance state at transaction commit time. This flexibility allows the container to optimally manag
caching of entity object’s state and the association of an entity object identity with the enterprise
instances.

The container can select from the following commit-time options:

• Option A : The container caches a “ready” instance between transactions. The cont
ensures that the instance has exclusive access to the state of the object in the persistent
Therefore, the container does not have to synchronize the instance’s state from the per
storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. In contrast to O
A, in this option the container does not ensure that the instance has exclusive access to th
of the object in the persistent storage. Therefore, the container must synchronize the inst
state from the persistent storage at the beginning of the next transaction.

• Option C: The container does not cache a “ready” instance between transactions. The
tainer returns the instance to the pool of available instances after a transaction has comp

The following table provides a summary of the commit-time options.

Table 11 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes
 5/2/06 278

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

n com-

bean
vider

oncur-
ensure
ctions.

chro-

which
tically
ethods

syn-
Note that the container synchronizes the instance’s state with the persistent storage at transactio
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity
will work correctly regardless of the commit-time option chosen by the container. The Bean Pro
writes the entity bean in the same way.

10.1.13 Concurrent Access from Multiple Transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about c
rent access from multiple transactions. The Bean Provider may assume that the container will
appropriate synchronization for entity objects that are accessed concurrently from multiple transa

The container typically uses one of the following implementation strategies to achieve proper syn
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in
the entity object is being accessed. The transaction synchronization is performed automa
by the underlying database during the database access calls performed by the business m
and theejbTimeout method; and by theejbLoad , ejbCreate<METHOD> , ejbStore ,
andejbRemove methods. The database system provides all the necessary transaction
chronization; the container does not have to perform any synchronization logic.

Option B Yes Yes No

Option C Yes No No

Table 11 Summary of Commit-Time Options

Write instance state
to database

Instance stays
ready

Instance state
remains valid
279 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Overviewof

Sun Microsystems, Inc.

could

rrently

e con-
to this
Figure 21 Multiple Clients Can Access the Same Entity Object Using Multiple Instances

With this strategy, the type of lock acquired byejbLoad leads to a trade-off. IfejbLoad acquires an
exclusive lock on the instance's state in the database, then throughput of read-only transactions
be impacted. IfejbLoad acquires a shared lock and the instance is updated, thenejbStore will
need to promote the lock to an exclusive lock. This may cause a deadlock if it happens concu
under multiple transactions.

• The container acquires exclusive access to the entity object’s state in the database. Th
tainer activates a single instance and serializes the access from multiple transactions
instance. The commit-time option A applies to this type of container.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
 5/2/06 280

Overview of Bean-Managed Entity Persistence Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

-reen-
ith the
to the
eaded,

t. An
ack
urrent
voked

ject an
cuting
e bean,
stance

t throw
’s

st code
neral,
ul to
Figure 22 Multiple Clients Can Access the Same Entity Object Using Single Instance

10.1.14 Non-reentrant and Re-entrant Instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non
trant entity bean executes a client request in a given transaction context, and another request w
same transaction context arrives for the same entity object, the container will throw an exception
second request. This rule allows the Bean Provider to program the entity bean as single-thr
non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction contex
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls b
A in the same transaction context. The entity bean’s method invoked by the loopback shares the c
execution context (which includes the transaction and security contexts) with the bean’s method in
by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the container must re
attempt to re-enter the instance via the entity bean’s component interface while the instance is exe
a business method. (This can happen, for example, if the instance has invoked another enterpris
and the other enterprise bean tries to make a loopback call.) If the attempt is made to reenter the in
through the remote interface, the container must throw thejava.rmi.RemoteException to the
caller. If the attempt is made to reenter the instance through the local interface, the container mus
the javax.ejb.EJBException to the caller. The container must allow the call if the bean
deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with caution. First, the Bean Provider mu
the entity bean with the anticipation of a loopback call. Second, since the container cannot, in ge
tell a loopback from a concurrent call from a different client, the client programmer must be caref
avoid code that could lead to a concurrent call in the same transaction context.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
281 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilitiesof

Sun Microsystems, Inc.

d may
al con-
backs.
criptor,

ensure

mote

lient

ace an
home
ed.

s.
Concurrent calls in the same transaction context targeted at the same entity object are illegal an
lead to unpredictable results. Since the container cannot, in general, distinguish between an illeg
current call and a legal loopback, application programmers are encouraged to avoid using loop
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment des
allowing the container to detect and prevent illegal concurrent calls from clients.

10.2 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of a bean-managed persistence entity Bean Provider to
that the entity bean can be deployed in any EJB container.

10.2.1 Classes and Interfaces

The Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes

• Primary key class

• Entity bean’s remote interface and remote home interface, if the entity bean provides a re
client view

• Entity bean’s local interface and local home interface, if the entity bean provides a local c
view

The Bean Provider must provide a remote interface and a remote home interface or a local interf
local home interface for the bean. The Bean Provider may provide a remote interface, remote
interface, local interface, and local home interface for the bean. Other combinations are not allow

10.2.2 Enterprise Bean Class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class may implement, directly or indirectly, thejavax.ejb.TimedObject interface.

The class must be defined aspublic and must not beabstract . The class must be a top level clas

The class must not be defined asfinal .

The class must define a public constructor that takes no arguments.

The class must not define thefinalize method.
 5/2/06 282

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

of the

bstract.

rclasses,
e

voked

the

an cla
The class may, but is not required to, implement the entity bean’s component interface[56]. If the class
implements the entity bean’s component interface, the class must provide no-op implementations
methods defined in thejavax.ejb.EJBObject or javax.ejb.EJBLocalObject interface.
The container will never invoke these methods on the bean instances at runtime.

A no-op implementation of these methods is required to avoid defining the entity bean class as a

The entity bean class must implement the business methods, and theejbCreate<METHOD> , ejb-
PostCreate<METHOD> , ejbFind<METHOD> , and ejbHome<METHOD>methods as described
later in this section.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate and ejbPostCreate methods, the finder methods, and th
methods of theEntityBean interface or theTimedObject interface may be implemented in the
enterprise bean class or in any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods in
internally by the business methods) in addition to the methods required by the EJB specification.

10.2.3 ejbCreate<METHOD> Methods

The entity bean class must implement theejbCreate<METHOD> methods that correspond to the
create<METHOD> methods specified in the entity bean’s home interface.

The entity bean class may define zero or moreejbCreate<METHOD> methods whose signatures
must follow these rules:

The method name must haveejbCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP if the ejbCre-
ate<METHOD> corresponds to acreate<METHOD> on the entity bean’s remote home interface.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

[56] If the entity bean class does implement the component interface, care must be taken to avoid passing ofthis as a method argu-
ment or result. This potential error can be avoided by choosing not to implement the component interface in the entity bess.
283 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilitiesof

Sun Microsystems, Inc.

EJB

r

is
jects

al to

the

an

e
the
Compatibility Note: EJB 1.0 allowed theejbCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
1.1 or EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherjava.lang.RuntimeException to indicate non-application exceptions to the containe
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw thejava.rmi.Remote-
Exception . from theejbCreate method.

The entity object created by theejbCreate<METHOD> method must have a unique primary key. Th
means that the primary key must be different from the primary keys of all the existing entity ob
within the same home. TheejbCreate<METHOD> method should throw theDuplicateKeyEx-
ception on an attempt to create an entity object with a duplicate primary key. However, it is leg
reuse the primary key of a previously removed entity object.

10.2.4 ejbPostCreate<METHOD> Methods

For eachejbCreate<METHOD> method, the entity bean class must define a matchingejbPost-
Create<METHOD> method, using the following rules:

The method name must haveejbPostCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbCreate<METHOD>
method.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed theejbPostCreate method to throw thejava.rmi.Remo-
teException to indicate a non-application exception. This practice was deprecated in EJB 1.1—
EJB 1.1 or EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBExcep-
tion or anotherjava.lang.RuntimeException to indicate non-application exceptions to th
container (see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw
java.rmi.RemoteException . from theejbPostCreate method.

10.2.5 ejbFind Methods

The entity bean class may also define additionalejbFind<METHOD> finder methods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind ” (e.g. ejbFindByPrimaryKey ,
ejbFindLargeAccounts , ejbFindLateShipments).
 5/2/06 284

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

mary

the

.1 or

r

t

follow-

these
A finder method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument types must be legal types for RMI-IIOP if theejbFind<METHOD> method cor-
responds to afind<METHOD> method on the entity bean’s remote home interface.

The return type of a finder method must be the entity bean’s primary key type, or a collection of pri
keys (see Subsection 10.1.9).

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.FinderException .

Compatibility Note: EJB 1.0 allowed the finder methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherjava.lang.RuntimeException to indicate non-application exceptions to the containe
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw thejava.rmi.Remote-
Exception . from theejbFind method.

Every entity bean must define theejbFindByPrimaryKey method. The result type for this method
must be the primary key type (i.e., theejbFindByPrimaryKey method must be a single-objec
finder).

10.2.6 ejbHome<METHOD> Methods
The entity bean class may define zero or more home methods whose signatures must follow the
ing rules:

An ejbHome<METHOD>method must exist for every home<METHOD>method on the entity bean’s
remote home or local home interface. The method name must haveejbHome as its prefix followed by
the name of the<METHOD> method in which the first character has been uppercased.

The method must be declared aspublic .

The method must not be declared asstatic .

The method argument and return value types must be legal types for RMI-IIOP if theejbHome method
corresponds to a method on the entity bean’s remote home interface.

Thethrows clause may define arbitrary application specific exceptions. Thethrows clause must not
throw thejava.rmi.RemoteException .

10.2.7 Business Methods

The entity bean class may define zero or more business methods whose signatures must follow
rules:
285 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilitiesof

Sun Microsystems, Inc.

orre-

.1 or

r

their

to the

bean’s

e

timers
r-man-
The method names can be arbitrary, but they must not start with ‘ejb ’ to avoid conflicts with the call-
back methods used by the EJB architecture.

The business method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument and return value types must be legal types for RMI-IIOP if the method c
sponds to a business method on the entity bean’s remote interface.

Thethrows clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 or later compliant enterprise bean should throw thejavax.ejb.EJBException or
anotherjava.lang.RuntimeException to indicate non-application exceptions to the containe
(see Section 14.2.2). An EJB 2.0 or later enterprise bean should not throw thejava.rmi.Remote-
Exception . from a business method.

10.2.8 Entity Bean’s Remote Interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that
argument and return value types must be valid types for RMI-IIOP, and theirthrows clauses must
include thejava.rmi.RemoteException .

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the enterpris
bean class must be defined in thethrows clause of the method of the remote interface.

The remote interface methods must not expose local interface types, local home interface types,
or timer handles, or the managed collection classes that are used for entity beans with containe
aged persistence as arguments or results.
 5/2/06 286

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

rgu-

ject to

return

ns
for

d

r a
10.2.9 Entity Bean’s Remote Home Interface

The following are the requirements for the entity bean’s remote home interface:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their a
ment and return types must be of valid types for RMI-IIOP, and that theirthrows clauses must include
the java.rmi.RemoteException .

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is sub
the RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the remote home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Eachcreate method must be the named “create<METHOD> ”, and it must match one of theejb-
Create<METHOD> methods defined in the enterprise bean class. The matchingejbCre-
ate<METHOD>method must have the same number and types of its arguments. (Note that the
type is different.)

The return type for acreate<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in thethrows clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in thethrows clause
of the matchingcreate<METHOD> method of the remote home interface (i.e., the set of exceptio
defined for thecreate<METHOD> method must be a superset of the union of exceptions defined
theejbCreate<METHOD> andejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateEx-
ception .

Eachfinder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it must
match one of theejbFind<METHOD> methods defined in the entity bean class (e.g.ejbFind-
LargeAccounts). The matchingejbFind<METHOD> method must have the same number an
types of arguments. (Note that the return type may be different.)

The return type for afind<METHOD> method must be the entity bean’s remote interface type (fo
single-object finder), or a collection thereof (for a multi-object finder).

The remote home interface must always include thefindByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.
287 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release Responsibilitiesof

Sun Microsystems, Inc.

t

ve
specified

types,
anaged

the

bean’s

e

All the exceptions defined in thethrows clause of anejbFind method of the entity bean class mus
be included in thethrows clause of the matchingfind method of the remote home interface.

Thethrows clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, provided that they do not clash withcreate , find , and
remove method names. The matchingejbHome method specified in the entity bean class must ha
the same number and types of arguments and must return the same type as the home method as
in the remote home interface of the bean.

The remote home interface methods must not expose local interface types, local home interface
timer handles, or the managed collection classes that are used for entity beans with container-m
persistence as arguments or results.

10.2.10 Entity Bean’s Local Interface

The following are the requirements for the entity bean’s local interface:

The interface must extend thejavax.ejb.EJBLocalObject interface.

The throws clause of a method defined on the local interface must not include
java.rmi.RemoteException .

The local interface is allowed to have superinterfaces.

For each method defined in the local interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in thethrows clause of the matching method of the enterpris
Bean class must be defined in thethrows clause of the method of the local interface.

10.2.11 Entity Bean’s Local Home Interface

The following are the requirements for the entity bean’s local home interface:

The interface must extend thejavax.ejb.EJBLocalHome interface.

The throws clause of a method on the local home interface must not include thejava.rmi.Remo-
teException .

The local home interface is allowed to have superinterfaces.

Each method defined in the local home interface must be one of the following:
 5/2/06 288

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

return

ns
for

d

in-

t

ve
specified

the
• A create method.

• A finder method.

• A home method.

Eachcreate method must be the named “create<METHOD> ”, and it must match one of theejb-
Create<METHOD> methods defined in the enterprise bean class. The matchingejbCre-
ate<METHOD>method must have the same number and types of its arguments. (Note that the
type is different.)

The return type for acreate<METHOD> method must be the entity bean’s local interface type.

All the exceptions defined in thethrows clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise bean class must be included in thethrows clause
of the matchingcreate<METHOD> method of the local home interface (i.e., the set of exceptio
defined for thecreate<METHOD> method must be a superset of the union of exceptions defined
theejbCreate<METHOD> andejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateEx-
ception .

Each finder method must be named “find<METHOD>” (e.g. findLargeAccounts), and it
must match one of theejbFind<METHOD> methods defined in the entity bean class (e.g.ejbFind-
LargeAccounts). The matchingejbFind<METHOD> method must have the same number an
types of arguments. (Note that the return type may be different.)

The return type for afind<METHOD> method must be the entity bean’s local interface type (for a s
gle-object finder), or a collection thereof (for a multi-object finder).

The local home interface must always include thefindByPrimaryKey method, which is always a
single-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in thethrows clause of anejbFind method of the entity bean class mus
be included in thethrows clause of the matchingfind method of the local home interface.

Thethrows clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, provided that they do not clash withcreate , find , and
remove method names. The matchingejbHome method specified in the entity bean class must ha
the same number and types of arguments and must return the same type as the home method as
in the local home interface of the bean.

The throws clause of any method on the entity bean’s local home interface must not include
java.rmi.RemoteException .

10.2.12 Entity Bean’s Primary Key Class

The Bean Provider must specify a primary key class in the deployment descriptor.
289 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release TheResponsibilities

Sun Microsystems, Inc.

persis-
nd for

iner, we
yment

addi-
r gen-

y Bean

ome

s).

ome

ass).

e entity
at runt-

ds and
ple, a
ot

t.
The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of thehashCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.

10.3 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support bean-managed
tence entity beans. The Container Provider is responsible for providing the deployment tools, a
managing entity bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the Container Provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

10.3.1 Generation of Implementation Classes

The deployment tools provided by the Container Provider are responsible for the generation of
tional classes when the entity bean is deployed. The tools obtain the information that they need fo
eration of the additional classes by introspecting the classes and interfaces provided by the entit
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s remote home interface (i.e., the entity EJBH
class).

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject clas

• A class that implements the entity bean’s local home interface (i.e., the entity EJBLocalH
class).

• A class that implements the entity bean’s local interface (i.e., the entity EJBLocalObject cl

The deployment tools may also generate a class that mixes some container-specific code with th
bean class. The code may, for example, help the container to manage the entity bean instances
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business metho
that is used to customize the business logic for an existing operational environment. For exam
wrapper for adebit function on theAccount bean may check that the debited amount does n
exceed a certain limit, or perform security checking that is specific to the operational environmen
 5/2/06 290

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

ean’s

or
.,
e
for

ean’s

ady in

ean’s
10.3.2 Entity EJBHome Class

The entity EJBHome class, which is generated by deployment tools, implements the entity b
remote home interface. This class implements the methods of thejavax.ejb.EJBHome interface,
and the type-specific create, finder, and home methods specific to the entity bean.

The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method, followed by the matchingejbPostCreate<METHOD> method, passing thecre-
ate<METHOD> parameters to these matching methods.

The implementation of theremove methods defined in thejavax.ejb.EJBHome interface must
activate an instance (if an instance is not already in the ready state) and invoke theejbRemove method
on the instance.

The implementation of eachfind<METHOD> method invokes a matchingejbFind<METHOD>
method. The implementation of thefind<METHOD> method must create an entity object reference f
the primary key returned from theejbFind<METHOD> and return the entity object reference (i.e
EJBObject) to the client. If theejbFind<METHOD> method returns a collection of primary keys, th
implementation of thefind<METHOD> method must create a collection of entity object references
the primary keys and return the collection to the client.

The implementation of each<METHOD>home method invokes a matchingejbHome<METHOD>
method (in which the first character of<METHOD>is uppercased in the name of theejb-
Home<METHOD> method), passing the<METHOD> parameters to the matching method.

10.3.3 Entity EJBObject Class

The entity EJBObject class, which is generated by deployment tools, implements the entity b
remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of theremove method (defined in thejavax.ejb.EJBObject interface)
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of each business method must activate an instance (if an instance is not alre
the ready state) and invoke the matching business method on the instance.

10.3.4 Entity EJBLocalHome Class

The entity EJBLocalHome class, which is generated by deployment tools, implements the entity b
local home interface. This class implements the methods of thejavax.ejb.EJBLocalHome inter-
face, and the type-specific create, finder, and home methods specific to the entity bean.

The implementation of eachcreate<METHOD> method invokes a matchingejbCreate<METHOD>
method, followed by the matchingejbPostCreate<METHOD> method, passing thecre-
ate<METHOD> parameters to these matching methods.
291 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release TheResponsibilities

Sun Microsystems, Inc.

ce
.,

f-

ean’s

ady in

handle

single

e han-

to, use
The implementation of theremove method defined in thejavax.ejb.EJBLocalHome interface
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of eachfind<METHOD> method invokes a matchingejbFind<METHOD>
method. The implementation of thefind<METHOD> method must create an entity object referen
for the primary key returned from theejbFind<METHOD> and return the entity object reference (i.e
EJBLocalObject) to the client. If theejbFind<METHOD> method returns a collection of primary
keys, the implementation of thefind<METHOD> method must create a collection of entity object re
erences for the primary keys and return the collection to the client.

The implementation of each<METHOD>home method invokes a matchingejbHome<METHOD>
method (in which the first character of<METHOD>is uppercased in the name of theejb-
Home<METHOD> method), passing the<METHOD> parameters to the matching method.

10.3.5 Entity EJBLocalObject Class

The entity EJBLocalObject class, which is generated by deployment tools, implements the entity b
local interface. It implements the methods of thejavax.ejb.EJBLocalObject interface and the
business methods specific to the entity bean.

The implementation of theremove method (defined in thejavax.ejb.EJBLocalObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke theejbRe-
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not alre
the ready state) and invoke the matching business method on the instance.

10.3.6 Handle Class

The deployment tools are responsible for implementing the handle class for the entity bean. The
class must be serializable by the Java Serialization protocol.

As the handle class is not entity-bean specific, the container may, but is not required to, use a
class for all deployed entity beans.

10.3.7 Home Handle Class

The deployment tools responsible for implementing the home handle class for the entity bean. Th
dle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity-bean specific, the container may, but is not required
a single class for the home handles of all deployed entity beans.
 5/2/06 292

The Responsibilities of the Container Provider Enterprise JavaBeans 3.0, Final Release EJB 2.1 Entity Bean Component Contract for

Sun Microsystems, Inc.

tion to
ment

, use a

ption

h that
able for
sh and
ed, or
a dif-

lient
ethod
ct ref-

te inter-
10.3.8 Metadata Class

The deployment tools are responsible for implementing the class that provides metadata informa
the remote client view contract. The class must be a valid RMI-IIOP Value Type, and must imple
the javax.ejb.EJBMetaData interface.

Because the metadata class is not entity-bean specific, the container may, but is not required to
single class for all deployed enterprise beans.

10.3.9 Instance’s Re-entrance

The container runtime must enforce the rules defined in Section 10.1.14.

10.3.10 Transaction Scoping, Security, Exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exce
handling described in Chapters 13, 17, and 14.

10.3.11 Implementation of Object References

The container should implement the distribution protocol between the client and the container suc
the object references of the remote home and remote interfaces used by entity bean clients are us
a long period of time. Ideally, a client should be able to use an object reference across a server cra
restart. An object reference should become invalid only when the entity object has been remov
after a reconfiguration of the server environment (for example, when the entity bean is moved to
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the c
code needs to have a recovery handler for the system exceptions thrown from the individual m
invocations on the home and remote interface, the client should not be forced to re-obtain the obje
erences.

10.3.12 EntityContext

The container must implement theEntityContext.getEJBObject method such that the bean
instance can use the Java language cast to convert the returned value to the entity bean’s remo
face type. Specifically, the bean instance does not have to use thePortableRemoteObject.nar-
row method for the type conversion.
293 May 2, 2006 2:35 pm

EJB 2.1 Entity Bean Component Contract for Bean-Managed PersistenceEnterprise JavaBeans 3.0, Final Release TheResponsibilities

Sun Microsystems, Inc.
 5/2/06 294

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.

tence.

es the
entity

n-man-
r.

home
entity
Chapter 11 EJB 1.1 Entity Bean Component Contract
for Container-Managed Persistence

This chapter specifies the EJB 1.1 entity bean component contract for container-managed persis

EJB 1.1 entity beans are deprecated with this version of the Enterprise JavaBeans specification.

11.1 EJB 1.1 Entity Beans with Container-Managed Persistence

Chapter 10, “EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence” describ
component contract for entity beans with bean-managed persistence. The contract for an EJB 1.1
bean with container-managed persistence is the same as the contract for an entity bean with bea
aged persistence as described in Chapter 10, except for the differences described in this chapte

An EJB 1.1 entity bean with container-managed persistence cannot have a local interface or local
interface. Use of the local interfaces of other enterprise beans is not supported for an EJB 1.1
bean with container-managed persistence.
295 May 2, 2006 2:35 pm

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.

d per-
nt the
an-

ols to
d meth-
ager at

eation,

access

es. The

nd the

le for

ersis-
e of its

con-
of the
for

ce can

elds are
es of

con-
effect

f per-
le, by
Use of the EJB Timer Service is not supported for an EJB 1.1 entity bean with container-manage
sistence. An EJB 1.1 entity bean with container-managed persistence should not impleme
javax.ejb.TimedObject interface. Use of dependency injection, interceptors, and any Java l
guage metadata annotations is not supported for EJB 1.1 entity beans.

11.1.1 Container-Managed Fields

An EJB 1.1 entity bean with container-managed persistence relies on the Container Provider’s to
generate methods that perform data access on behalf of the entity bean instances. The generate
ods transfer data between the entity bean instance’s variables and the underlying resource man
the times defined by the EJB specification. The generated methods also implement the cr
removal, and lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data
must be deferred to the container.

The EJB 1.1 entity Bean Provider is responsible for using thecmp-field elements of the deployment
descriptor to declare the instance’s fields that the container must load and store at the defined tim
fields must be defined in the entity bean class aspublic , and must not be defined astransient .

The container is responsible for transferring data between the entity bean’s instance variables a
underlying data source before or after the execution of theejbCreate , ejbRemove , ejbLoad , and
ejbStore methods, as described in the following subsections. The container is also responsib
the implementation of the finder methods.

The EJB 2.0 or later deployment descriptor for an EJB 1.1 entity bean with container-managed p
tence indicates that the entity bean uses container-managed persistence and that the valu
cmp-version element is1.x .

The EJB 1.1 component contract does not architect support for relationships for entity beans with
tainer-managed persistence. The EJB 2.0 and later specifications do not support the use
cmr-field , ejb-relation , or query deployment descriptor elements or their subelements
EJB 1.1 entity beans.

The following requirements ensure that an EJB 1.1 entity bean with container-managed persisten
be deployed in any compliant container.

• The Bean Provider must ensure that the Java types assigned to the container-managed fi
restricted to the following: Java primitive types, Java serializable types, and referenc
enterprise beans’ remote or remote home interfaces.

• The Container Provider may, but is not required to, use Java Serialization to store the
tainer-managed fields in the database. If the container chooses a different approach, the
should be equivalent to that of Java Serialization. The container must also be capable o
sisting references to enterprise beans’ remote and remote home interfaces (for examp
storing their handle or primary key).
 5/2/06 296

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.

r the
with
ill be

state in

, he or
s con-
by the
pically
s, pos-

of the
r may

inserts
ce,

nguage

the

tabase.

on of
-

tence
les for

base,
e, and
estab-
p-

n

Although the above requirements allow the Bean Provider to specify almost any arbitrary type fo
container-managed fields, we expect that in practice the Bean Provider of EJB 1.1 entity beans
container-managed persistence will use relatively simple Java types, and that most containers w
able to map these simple Java types to columns in a database schema to externalize the entity
the database, rather than use Java serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fields
she should provide mapping instructions to the Deployer. The mapping between the instance’
tainer-managed fields and the schema of the underlying database manager will be then realized
data access classes generated by the Container Provider’s tools. Because entity beans are ty
coarse-grained objects, the content of the container-managed fields may be stored in multiple row
sibly spread across multiple database tables. These mapping techniques are beyond the scope
EJB specification, and do not have to be supported by an EJB compliant container. (The containe
simply use the Java serialization protocol in all cases).

11.1.2 ejbCreate, ejbPostCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that
a record into the database in theejbCreate methods. However, with container-managed persisten
the container performs the database insert after theejbCreate method completes.

The container must ensure that the values of the container-managed fields are set to the Java la
defaults (e.g. 0 for integer,null for pointers) prior to invoking anejbCreate method on an instance.

The EJB 1.1 entity Bean Provider’s responsibility is to initialize the container-managed fields in
ejbCreate methods from the input arguments such that when anejbCreate method returns, the
container can extract the container-managed fields from the instance and insert them into the da

TheejbCreate methods must be defined to return the primary key class type. The implementati
theejbCreate methods should be coded to return anull . The returned value is ignored by the con
tainer.

Note: The above requirement is to allow the creation of an entity bean with bean-managed persis
by subclassing an EJB 1.1 entity bean with container-managed persistence. The Java language ru
overriding methods in subclasses requires the signatures of theejbCreate methods in the subclass
and the superclass be the same.

The container is responsible for creating the entity object’s representation in the underlying data
extracting the primary key fields of the newly created entity object representation in the databas
for creating an entity EJBObject reference for the newly created entity object. The container must
lish the primary key before it invokes theejbPostCreate method. The container may create the re
resentation of the entity in the database immediately afterejbCreate returns, or it can defer it to a
later time (for example to the time after the matchingejbPostCreate has been called, or to the end
of the transaction).

The container then invokes the matchingejbPostCreate method on the instance. The instance ca
discover the primary key by calling thegetPrimaryKey method on its entity context object.
297 May 2, 2006 2:35 pm

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.

er-
te

ne

base.

text
n

object’s
e con-

s from

ad by

tate of
it

n-
The container must invokeejbCreate , perform the database insert operation, and invokeejbPost-
Create in the transaction context determined by the transaction attribute of the matchingcreate
method, as described in subsection 13.6.2.

The container throws theDuplicateKeyException if the newly created entity object would have
the same primary key as one of the existing entity objects within the same home.

11.1.3 ejbRemove

The container invokes theejbRemove method on an entity bean instance with container-managed p
sistence in response to a client-invokedremove operation on the entity bean’s remote home or remo
interface.

The entity Bean Provider can use theejbRemove method to implement any actions that must be do
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokes theejbRemove method. This means
that the state of the instance variables at the beginning of theejbRemove method is the same as it
would be at the beginning of a business method.

After ejbRemove returns, the container removes the entity object’s representation from the data

The container must performejbRemove and the database delete operation in the transaction con
determined by the transaction attribute of the invokedremove method, as described in subsectio
13.6.2.

11.1.4 ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity
state in the database, the container reads the entity object’s state from the database into th
tainer-managed fields and then it invokes theejbLoad method on the instance.

The entity Bean Provider can rely on the container’s having loaded the container-managed field
the database just before the container invokes theejbLoad method. The entity bean can use theejb-
Load method, for instance, to perform some computation on the values of the fields that were re
the container (for example, uncompressing text fields).

11.1.5 ejbStore

When the container needs to synchronize the state of the entity object in the database with the s
the enterprise bean instance, the container first calls theejbStore method on the instance, and then
extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use theejbStore method to set up the values of the container-ma
aged fields just before the container writes them to the database. For example, theejbStore method
may perform compression of text before the text is stored in the database.
 5/2/06 298

EJB 1.1 Entity Beans with Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity Bean Component

Sun Microsystems, Inc.

vider’s
ts the

hods

pro-
n of

tainer
e Bean
he for-

for an
ion to

ersis-

ient for

e
ust be
11.1.6 Finder Hethods

The entity Bean Provider does not write the finder (ejbFind<METHOD>) methods.

The finder methods are generated at the entity bean deployment time using the Container Pro
tools. The tools can, for example, create a subclass of the entity bean class that implemen
ejbFind<METHOD> methods, or the tools can generate the implementation of the finder met
directly in the class that implements the entity bean’s remote home interface.

Note that theejbFind<METHOD> names and parameter signatures of EJB 1.1 entity beans do not
vide the container tools with sufficient information for automatically generating the implementatio
the finder methods for methods other thanejbFindByPrimaryKey . Therefore, the Bean Provider is
responsible for providing a description of each finder method. The entity bean Deployer uses con
tools to generate the implementation of the finder methods based in the description supplied by th
Provider. The EJB1.1 component contract for container-managed persistence does not specify t
mat of the finder method description.

11.1.7 Home Methods
The EJB1.1 entity bean contract does not supportejbHome methods.

11.1.8 Create Methods

The EJB1.1 entity bean contract does not supportcreate<METHOD> methods.

11.1.9 Primary K ey Type

The container must be able to manipulate the primary key type. Therefore, the primary key type
entity bean with container-managed persistence must follow the rules in this subsection, in addit
those specified in Subsection 10.2.12.

There are two ways to specify a primary key class for an entity bean with container-managed p
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is conven
single-field keys. Without the first method, simple types such asString would have to be wrapped in a
user-defined class.

11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Class

The Bean Provider uses theprimkey-field element of the deployment descriptor to specify th
container-managed field of the entity bean class that contains the primary key. The field’s type m
the primary key type.
299 May 2, 2006 2:35 pm

EJB 1.1 Entity Bean Component Contract for Container-Managed PersistenceEnterprise JavaBeans 3.0, Final Release EJB 1.1 Entity

Sun Microsystems, Inc.

anaged
aged

for an
an does
imary
pri-
ry key

bclass
beans
erlying

ent

velops
when

ram-
neral,

e meth-
11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Class

The primary key class must bepublic , and must have apublic constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-m
fields. (This allows the container to extract the primary key fields from an instance’s container-man
fields, and vice versa.)

11.1.9.3 Special Case: Unknown Primary Key Class

In special situations, the entity Bean Provider may choose not to specify the primary key class
entity bean with container-managed persistence. This case usually happens when the entity be
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the pr
key fields at deployment time. The entity bean’s primary key type will usually be derived from the
mary key type used by the underlying database system that stores the entity objects. The prima
used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to su
the entity bean class to add additional container-managed fields (this typically happens for entity
that do not have a natural primary key, and the primary keys are system-generated by the und
database system that stores the entity objects).

In this special case, the type of the argument of thefindByPrimaryKey method must be declared as
java.lang.Object , and the return value of ejbCreate must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deploym
descriptor as of the typejava.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider de
an entity bean that is intended to be used with multiple back-ends that provide persistence, and
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application prog
ming model, because the clients written prior to deployment of the entity bean may not use, in ge
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, th
ods should not depend on the type of the object returned fromEntityContext.getPrimaryKey ,
because the return type is determined by the Deployer after the EJB class has been written.
 5/2/06 300

Overview Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

r on an

ociated
ds are

ethod

s well.
Chapter 12 Interceptors

Interceptors are used to interpose on business method invocations and lifecycle events that occu
enterprise bean instance.

12.1 Overview

An interceptor method may be defined on an enterprise bean class or on an interceptor class ass
with the bean. An interceptor class is a class—distinct from the bean class itself—whose metho
invoked in response to business method invocations and/or lifecycle events on the bean.

Any number of interceptor classes may be defined for a bean class.

It is possible to carry state across multiple interceptor method invocations for a single business m
invocation or lifecycle callback event for a bean in the context data of theInvocationContext
object.

An interceptor class must have a public no-arg constructor.

The programming restrictions that apply to enterprise bean components apply to interceptors a
See Section 21.1.2.
301 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final Release Interceptor Life Cycle

Sun Microsystems, Inc.

tions or
denoted
ean.
er in
.1.
eptors

fined

ssoci-
or class
oved. In
ssivated
ons 4.4,

spective

stance

injec-
g con-

stance.

bles 1,

nd life-
pen-

ed with
Interceptor methods and interceptor classes are defined for a bean by means of metadata annota
the deployment descriptor. When annotations are used, one or more interceptor classes are
using theInterceptors annotation on the bean class itself and/or on business methods of the b
If multiple interceptors are defined, the order in which they are invoked is determined by the ord
which they are specified in theInterceptors annotation, as described in sections 12.3.1 and 12.4
The deployment descriptor may be used as an alternative to specify the invocation order of interc
or to override the order specified in metadata annotations.

Default interceptors may be defined at the level of the ejb-jar file, to apply to all components de
within the ejb-jar. See Section 12.6.

12.2 Interceptor Life Cycle

The lifecycle of an interceptor instance is the same as that of the bean instance with which it is a
ated. When the bean instance is created, interceptor instances are created for each intercept
defined for the bean. These interceptor instances are destroyed when the bean instance is rem
the case of interceptors associated with stateful session beans, the interceptor instances are pa
upon bean instance passivation, and activated when the bean instance is activated. See secti
4.5.1, and 5.5.

Both the interceptor instance and the bean instance are created or activated before any of the re
PostConstruct or PostActivate callbacks are invoked. AnyPreDestroy andPrePassi-
vate callbacks are invoked before the respective destruction or passivation of either the bean in
or interceptor instance.

An interceptor instance may hold state. An interceptor instance may be the target of dependency
tion. Dependency injection is performed when the interceptor instance is created, using the namin
text of the associated enterprise bean. ThePostConstruct interceptor callback method is invoked
after this dependency injection has taken place on both the interceptor instances and the bean in

Interceptors can invoke JNDI, JDBC, JMS, other enterprise beans, and the EntityManager. See Ta
2, 3.

The interceptors for a bean share the enterprise naming context of the bean for whose methods a
cycle events they are invoked. Annotations and/or XML deployment descriptor elements for de
dency injection or for direct JNDI lookup refer to this shared naming context.

The EJBContext object may be injected into an interceptor class. The interceptor may use thelookup
method of the EJBContext interface to access the bean’s JNDI naming context.

The use of an extended persistence context is only supported for interceptors that are associat
stateful session beans.
 5/2/06 302

Business Method Interceptors Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

e listener

asses.

ontext

rather
”.

tion
speci-

the
n the

efined
e bean

ame

ceptor
r class,

 order:
12.3 Business Method Interceptors

Interceptor methods may be defined for business methods of sessions beans and for the messag
methods of message-driven beans. Business method interceptor methods are denoted by theAround-
Invoke annotation oraround-invoke deployment descriptor element.

AroundInvoke methods may be defined on superclasses of the bean class or interceptor cl
However, only oneAroundInvoke method may be present on a given class. AnAroundInvoke
method cannot be a business method of the bean.

AroundInvoke methods can have public, private, protected, or package level access. AnAround-
Invoke method must not be declared asfinal or static .

AroundInvoke methods have the following signature:

Object <METHOD>(InvocationContext) throws Exception

An AroundInvoke method can invoke any component or resource that a business method can.

Business method interceptor method invocations occur within the same transaction and security c
as the business method for which they are invoked.

Business method interceptor methods may be defined to apply to business methods individually,
than to all the business methods of the bean class. See Section 12.7, “Method-level Interceptors

12.3.1 Multiple Business Method Interceptor Methods
If multiple interceptor methods are defined for a bean, the following rules governing their invoca
order apply. The deployment descriptor may be used to override the interceptor invocation order
fied in annotations, as described in section 12.8.

• Default interceptors, if any, are invoked first. Default interceptors can only be specified in
deployment descriptor. Default interceptors are invoked in the order of their specification i
deployment descriptor.

• If there are any interceptor classes defined on the bean class, the interceptor methods d
by those interceptor classes are invoked before any interceptor methods defined on th
class itself.

• The AroundInvoke methods defined on those interceptor classes are invoked in the s
order as the specification of the interceptor classes in theInterceptors annotation.

• If an interceptor class itself has superclasses, the interceptor methods defined by the inter
class’s superclasses are invoked before the interceptor method defined by the intercepto
most general superclass first.

• After the interceptor methods defined on interceptor classes have been invoked, then, in
303 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final Release Interceptors for LifeCycle Event Callbacks

Sun Microsystems, Inc.

o be
are
n the

for

that

nnota-

l the
e val-

at are

ep-

hod
ption.
nally

r by

erceptor
th-
inds.

ans.
• If any method-level interceptors are defined for the business method that is t
invoked, theAroundInvoke methods defined on those interceptor classes
invoked in the same order as the specification of those interceptor classes i
Interceptors annotation applied to that business method. (See Section 12.7
the description of method-level interceptors).

• If a bean class has superclasses, anyAroundInvoke methods defined on those
superclasses are invoked, most general superclass first.

• TheAroundInvoke method, if any, on the bean class itself is invoked.

• If an AroundInvoke method is overridden by another method (regardless of whether
method is itself anAroundInvoke method), it will not be invoked.

The deployment descriptor may be used to override the interceptor invocation order specified in a
tions. See Section 12.8.2.

The InvocationContext object provides metadata that enables interceptor methods to contro
behavior of the invocation chain, including whether the next method in the chain is invoked and th
ues of its parameters and result. The use of theInvocationContext interface is described in Sec-
tion 12.5.

12.3.2 Exceptions

Business method interceptor methods may throw runtime exceptions or application exceptions th
allowed in thethrows clause of the business method.

AroundInvoke methods are allowed to catch and suppress exceptions and recover by callingpro-
ceed() . AroundInvoke methods are allowed to throw runtime exceptions or any checked exc
tions that the business method allows within its throws clause.

AroundInvoke methods run in the same Java call stack as the bean business method.Invoca-
tionContext.proceed() will throw the same exception as any thrown by the business met
unless an interceptor further down the Java call stack has caught it and thrown a different exce
Exceptions and initialization and/or cleanup operations should typically be handled in try/catch/fi
blocks around theproceed() method.

AroundInvoke methods can mark the transaction for rollback by throwing a runtime exception o
calling the EJBContextsetRollbackOnly() method.AroundInvoke methods may cause this
rollback before or afterInvocationContext.proceed() is called.

If a system exception escapes the interceptor chain the bean instance and any associated int
instances are discarded. ThePreDestroy callbacks are not invoked in this case: the interceptor me
ods in the chain should perform any necessary clean-up operations as the interceptor chain unw

12.4 Interceptors for LifeCycle Event Callbacks

Lifecycle callback interceptor methods may be defined for session beans and message driven be
 5/2/06 304

Interceptors for LifeCycle Event Callbacks Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

irectly

yment

on the

text.

rceptor
od for
cified

vents

re:

ess. A
Interceptor methods for lifecycle event callbacks can be defined on an interceptor class and/or d
on the bean class. ThePostConstruct , PreDestroy , PostActivate , andPrePassivate
annotations are used to define an interceptor method for a lifecycle callback event. If the deplo
descriptor is used to define interceptors, thepost-construct , pre-destroy , post-acti-
vate , andpre-passivate elements are used.

Lifecycle callback interceptor methods and business method interceptor methods may be defined
same interceptor class.

Lifecycle callback interceptor methods are invoked in an unspecified transaction and security con

Lifecycle callback interceptor methods may be defined on superclasses of the bean class or inte
classes. However, a given class may not have more than one lifecycle callback interceptor meth
the same lifecycle event. Any subset or combination of lifecycle callback annotations may be spe
on a given class.

A single lifecycle callback interceptor method may be used to interpose on multiple callback e
(e.g.,PostConstruct andPostActivate).

Lifecycle callback interceptor methods defined on an interceptor class have the following signatu

void <METHOD> (InvocationContext)

Lifecycle callback interceptor methods defined on a bean class have the following signature:

void <METHOD>()

Lifecycle callback interceptor methods can have public, private, protected, or package level acc
lifecycle callback interceptor method must not be declared asfinal or static .
305 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final Release Interceptors for LifeCycle Event Callbacks

Sun Microsystems, Inc.

ules
rcep-

the
n the

ceptor
inter-

ked in

efined
eptor

been
Examples:

@Stateful public class ShoppingCartBean implements ShoppingCart {
 private float total;
 private Vector productCodes;
 public int someShoppingMethod(){...};
 ...
 @PreDestroy void endShoppingCart() {...};
 }

public class MyInterceptor {
...

@PostConstruct
public void any-method-name (InvocationContext ctx) {

...
ctx.proceed();
...

}

@PreDestroy
public void any-other-method-name (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

12.4.1 Multiple Callback Inter ceptor Methods for a Life Cycle Callback Event

If multiple callback interceptor methods are defined for a lifecycle event for a bean, the following r
governing their invocation order apply. The deployment descriptor may be used to override the inte
tor invocation order specified in annotations, as described in section 12.8.

• Default interceptors, if any, are invoked first. Default interceptors can only be specified in
deployment descriptor. Default interceptors are invoked in the order of their specification i
deployment descriptor.

• If there are any interceptor classes defined on the bean class, the lifecycle callback inter
methods defined by those interceptor classes are invoked before any lifecycle callback
ceptor methods defined on the bean class itself.

• The lifecycle callback interceptor methods defined on those interceptor classes are invo
the same order as the specification of the interceptor classes in theInterceptors annota-
tion.

• If an interceptor class itself has superclasses, the lifecycle callback interceptor methods d
by the interceptor class’s superclasses are invoked before the lifecycle callback interc
method defined by the interceptor class, most general superclass first.

• After the lifecycle callback interceptor methods defined on interceptor classes have
invoked, then:
 5/2/06 306

Interceptors for LifeCycle Event Callbacks Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

ed on

ed.

s of
rent

nnota-

k. If

s in

l the

ation

e and

s the

lback
thrown
all or
in the

ations

as a
any
• If a bean class has superclasses, any lifecycle callback interceptor methods defin
those superclasses are invoked, most general superclass first.

• The lifecycle callback interceptor method, if any, on the bean class itself is invok

• If a lifecycle callback interceptor method is overridden by another method (regardles
whether that method is itself a lifecycle callback interceptor method (of the same or diffe
type)), it will not be invoked.

The deployment descriptor may be used to override the interceptor invocation order specified in a
tions, as described in section 12.8.2.

All lifecycle callback interceptor methods for a given lifecycle event run in the same Java call stac
there is no corresponding callback method on the bean class (or any of its superclasses), theInvoca-
tionContext.proceed invocation on the last interceptor method defined on an interceptor clas
the chain will be a no-op.

The InvocationContext object provides metadata that enables interceptor methods to contro
invocation of further methods in the chain. See Section 12.5.

12.4.2 Exceptions
Lifecycle callback interceptor methods may throw system runtime exceptions, but not applic
exceptions.

A runtime exception thrown by any lifecycle interceptor callback method causes the bean instanc
its interceptors to be discarded after the interceptor chain unwinds.

The lifecycle callback interceptor methods for a lifecycle event run in the same Java call stack a
lifecycle callback method on the bean class.InvocationContext.proceed() will throw the
same exception as any thrown by another lifecycle callback interceptor method or lifecycle cal
method on the bean class unless an interceptor further down the Java call stack has caught it and
a different exception. A lifecycle callback interceptor method (other than a method on the bean c
its superclasses) may catch an exception thrown by another lifecycle callback interceptor method
invocation chain, and clean up before returning. Exceptions and initialization and/or cleanup oper
should typically be handled in try/catch/finally blocks around theproceed() method.

The PreDestroy callbacks are not invoked when the bean and the interceptors are discarded
result of such exceptions: the lifecycle callback interceptor methods in the chain should perform
necessary clean-up operations as the interceptor chain unwinds.
307 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final Release InvocationContext

Sun Microsystems, Inc.

l the

usi-
ntext
as
ss sepa-
sult of

en
tion.
voked
mber of
ument-

hen
ods
an

ds
12.5 InvocationContext

The InvocationContext object provides metadata that enables interceptor methods to contro
behavior of the invocation chain.

public interface InvocationContext {
public Object getTarget();
public Method getMethod();
public Object[] getParameters();
public void setParameters(Object[] params);
public java.util.Map<String, Object> getContextData();
public Object proceed() throws Exception;

}

The sameInvocationContext instance will be passed to each interceptor method for a given b
ness method or lifecycle event interception. This allows an interceptor to save information in the co
data property of theInvocationContext that can be subsequently retrieved in other interceptors
a means to pass contextual data between interceptors. The contextual data is not sharable acro
rate business method invocations or lifecycle callback events. If interceptors are invoked as a re
the invocation on a web service endpoint, the map returned bygetContextData will be the
JAX-WS MessageContext [32]. The lifecycle of theInvocationContext instance is otherwise
unspecified.

The getTarget method returns the bean instance. ThegetMethod method returns the method of
the bean class for which the interceptor was invoked. ForAroundInvoke methods, this is the busi-
ness method on the bean class; for lifecycle callback interceptor methods,getMethod returns null.

ThegetParameters method returns the parameters of the business method invocation. IfsetPa-
rameters has been called,getParameters returns the values to which the parameters have be
set. ThesetParameters method modifies the parameters used for the business method invoca
Modifying the parameter values does not affect the determination of the business method that is in
on the bean class. The parameter types must match the types for the business method, and the nu
parameters supplied must equal the number of parameters the business method, or the IllegalArg
Exception is thrown.

The proceed method causes the invocation of the next interceptor method in the chain, or, w
called from the lastAroundInvoke interceptor method, the business method. Interceptor meth
must always callInvocationContext.proceed() or no subsequent interceptor methods or be
business method or lifecycle callback methods will be invoked. Theproceed method returns the result
of the next method invoked. If a method returnsvoid , proceed returnsnull . For lifecycle callback
interceptor methods, if there is no callback method defined on the bean class, the invocation ofpro-
ceed in the last interceptor method in the chain is a no-op, andnull is returned. If there is more than
one such interceptor method, the invocation ofproceed causes the container to execute those metho
in order.
 5/2/06 308

Default Interceptors Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

ment

ection

nvoca-

ned
ethod
bean
used to

es not
e of the

 a
ot
12.6 Default Interceptors

Default interceptors may be defined to apply to all the components within the ejb-jar. The deploy
descriptor is used to define default interceptors and their relative ordering. See Section 12.8.2.

Default interceptors are automatically applied to all components defined in the ejb-jar. TheExclude-
DefaultInterceptors annotation or exclude-default-interceptors deployment
descriptor element is used to exclude the invocation of default interceptors for a bean.

The default interceptors are invoked before any other interceptors for a bean. Theintercep-
tor-order deployment descriptor element may be used to specify alternative orderings. See S
12.8.2.

12.7 Method-level Interceptors

A business method interceptor method may be defined to apply to a specific business method i
tion, rather than to all of the business methods of the bean class[57].

Method-specific business method interceptors can be defined by applying theInterceptors annota-
tion to the method for which the interceptors are to be invoked, or by means of theintercep-
tor-binding deployment descriptor element. If more than one method-level interceptor is defi
for a business method, the interceptors are invoked in the order specified. Method-level business m
interceptors are invoked in addition to any default interceptors and interceptors defined for the
class (and its superclasses), as described in Section 12.3.1. The deployment descriptor may be
override this ordering.

The same interceptor may be applied to more than one method of the bean class:

@Stateless
public class MyBean ... {

public void notIntercepted() {}

@Interceptors(org.acme.MyInterceptor.class)
public void someMethod() {
}

@Interceptors(org.acme.MyInterceptor.class)
public void anotherMethod() {
}

}

The applicability of a method-level interceptor to more than one business method of a bean do
affect the relationship between the interceptor instance and the bean class—only a single instanc
interceptor class is created per bean instance.

[57] Method-level interceptor are used to specify business method interceptor methods. If an interceptor class that is used as
method-level interceptor defines lifecycle callback interceptor methods, those lifecycle callback interceptor methods are n
invoked. See section 12.4.1.
309 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final ReleaseSpecification of Interceptors in the Deployment

Sun Microsystems, Inc.

tion of

he

pecific

ceptors
fied in

f an

y-
The ExcludeDefaultInterceptors annotation orexclude-default-interceptors
deployment descriptor element, when applied to a business method, is used to exclude the invoca
default interceptors for that method. TheExcludeClassInterceptors annotation or
exclude-class-interceptors deployment descriptor element is used similarly to exclude t
invocation of the class-level interceptors[58].

In the following example, if there are no default interceptors, only the interceptorMyInterceptor
will be invoked whensomeMethod is called.

@Stateless
@Interceptors(org.acme.AnotherInterceptor.class)
public class MyBean ... {

...
@Interceptors(org.acme.MyInterceptor.class)
@ExcludeClassInterceptors
public void someMethod() {
}

}

If default interceptors have also been defined for the bean class, they can be excluded for the s
method by applying theExcludeDefaultInterceptors annotation on the method.

@Stateless
@Interceptors(org.acme.AnotherInterceptor.class)
public class MyBean ... {

...
@ExcludeDefaultInterceptors
@ExcludeClassInterceptors
@Interceptors(org.acme.MyInterceptor.class)
public void someMethod() {
}

}

12.8 Specification of Interceptors in the Deployment Descriptor

The deployment descriptor can be used as an alternative to metadata annotations to specify inter
and their binding to enterprise beans or to override the invocation order of interceptors as speci
annotations.

12.8.1 Specification of Interceptors

The interceptor deployment descriptor element is used to specify the interceptor methods o
interceptor class. The interceptor methods are specified by using thearound-invoke , pre-con-
struct , post-destroy , pre-passivate , andpost-activate elements.

[58] Class level interceptors are those interceptors defined by theInterceptors annotation applied to the bean class (or its deplo
ment descriptor equivalents).
 5/2/06 310

Specification of Interceptors in the Deployment DescriptorEnterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

thod, a
regard-
tion of

ter-

n the
all

the

pplied

and
ds

-
s-level

nd/or
-level
inter-

ugment
criptor
tions

er-

at

The
of

r at a
At most one method of a given interceptor class can be designated as an around-invoke me
pre-construct method, a post-destroy method, a pre-passivate method, or a post-activate method,
less of whether the deployment descriptor is used to define interceptors or whether some combina
annotations and deployment descriptor elements is used.

12.8.2 Specification of the Binding of Interceptors to Beans
The interceptor-binding element is used to specify the binding of interceptor classes to en
prise beans and their business methods. The subelements of theinterceptor-binding element
are as follows:

• The ejb-name element must be the name of one of the enterprise beans contained i
ejb-jar or the wildcard value "* " (which is used to define interceptors that are bound to
beans in the ejb-jar).

• The interceptor-class element specifies the interceptor class. Theintercep-
tor-order element is used as an optional alternative to specify a total ordering over
interceptors defined for the given level and above.

• Theexclude-default-interceptors andexclude-class-interceptors ele-
ments specify that default interceptors and class interceptors, respectively, are not to be a
to a bean class and/or business method.

• The method-name element specifies the method name for a method-level interceptor;
the optionalmethod-params elements identify a single method among multiple metho
with an overloaded method name.

Interceptors bound to all classes using the wildcard syntax “* ” are default interceptors for the compo
nents in the ejb-jar. In addition, interceptors may be bound at the level of the bean class (clas
interceptors) or business methods of the class (method-level interceptors).

The binding of interceptors to classes is additive. If interceptors are bound at the class-level a
default-level as well as at the method-level, both class-level and/or default-level as well as method
interceptors will apply. The deployment descriptor may be used to augment the interceptors and
ceptor methods defined by means of annotations. When the deployment descriptor is used to a
the interceptors specified in annotations, the interceptor methods specified in the deployment des
will be invoked after those specified in annotations, according to the ordering specified in sec
12.3.1 and 12.4.1. Theinterceptor-order deployment descriptor element may be used to ov
ride this ordering.

The exclude-default-interceptors element disables default interceptors for the level
which it is specified and lower. That is,exclude-default-interceptors when applied at the
class-level disables the application of default-interceptors for all methods of the class.
exclude-class-interceptors element applied to a method, disables the application
class-level interceptors for the given method. Explicitly listing an excluded higher-level intercepto
lower level causes it to be applied at that level and below.
311 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final ReleaseSpecification of Interceptors in the Deployment

Sun Microsystems, Inc.

using
/or

vel
(unless

rs

ss-level

cified
is style
ciated
It is possible to override this ordering for interceptors specified in sections 12.3.1 and 12.4.1 by
the interceptor-order element to specify a total ordering of interceptors at class-level and
method-level. If theinterceptor-order element is used, the ordering specified at the given le
must be a total order over all interceptor classes that have been defined at that level and above
they have been explicitly excluded by means of one of theexclude- elements described above).[59]

There are four possible styles of the interceptor element syntax:

Style 1:

<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>INTERCEPTOR</interceptor-class>

</interceptor-binding>

Specifying the ejb-name element as the wildcard value "* " designates default interceptors (intercepto
that apply to all enterprise beans contained in the ejb-jar).

Style 2:

<interceptor-binding>
<ejb-name>EJBNAME</ejb-name>
<interceptor-class>INTERCEPTOR</interceptor-class>

</interceptor-binding>

This style is used to refer to interceptors associated with the specified enterprise bean class (cla
interceptors).

Style 3:

<interceptor-binding>
<ejb-name>EJBNAME</ejb-name>
<interceptor-class>INTERCEPTOR</interceptor-class>
<method-name>METHOD</method-name>

</interceptor-binding>

This style is used to associate a method-level interceptor with the specified method of the spe
enterprise bean. If there are multiple methods with the same overloaded name, the element of th
refers to all the methods with the overloaded name. Method-level interceptors can only be asso
with business methods of the bean class. Note that the wildcard value "* " cannot be used to specify
method-level interceptors.

[59] The Deployer must insure that this condition is met if the interceptor-order is incomplete.
 5/2/06 312

Specification of Interceptors in the Deployment DescriptorEnterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems, Inc.

ecified
loaded
ut
ins no
re pair

order-

hey
Style 4:

<interceptor-binding>
<ejb-name>EJBNAME</ejb-name>
<interceptor-class>INTERCEPTOR</interceptor-class>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
<interceptor-binding>

This style is used to associated a method-level interceptor with the specified method of the sp
enterprise bean. This style is used to refer to a single method within a set of methods with an over
name. The valuesPARAM-1throughPARAM-nare the fully-qualified Java types of the method’s inp
parameters (if the method has no input arguments, the method-params element conta
method-param elements). Arrays are specified by the array element’s type, followed by one or mo
of square brackets (e.g.int[][]).

If both styles 3 and 4 are used to define method-level interceptors for the same bean, the relative
ing of those method-level interceptors is undefined.

12.8.2.1 Examples
Examples of the usage of theinterceptor-binding syntax are given below.

Style 1: The following interceptors apply to all components in the ejb-jar as default interceptors. T
will be invoked in the order specified.

<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.acme.MyDefaultIC</interceptor-class>
<interceptor-class>org.acme.MyDefaultIC2</interceptor-class>

</interceptor-binding>

Style 2: The following interceptors are the class-level interceptors of theEmployeeService bean.
They will be invoked in the order specified after any default interceptors.

<interceptor-binding>
<ejb-name>EmployeeService</ejb-name>
<interceptor-class>org.acme.MyIC</interceptor-class>
<interceptor-class>org.acme.MyIC2</interceptor-class>

</interceptor-binding>
313 May 2, 2006 2:35 pm

Interceptors Enterprise JavaBeans 3.0, Final ReleaseSpecification of Interceptors in the Deployment

Sun Microsystems, Inc.

rcep-

ethod
Style 3: The following interceptors apply to all themyMethod methods of theEmployeeService
bean. They will be invoked in the order specified after any default interceptors and class-level inte
tors.

<interceptor-binding>
<ejb-name>EmployeeService</ejb-name>
<interceptor-class>org.acme.MyIC</interceptor-class>
<interceptor-class>org.acme.MyIC2</interceptor-class>
<method-name>myMethod</method-name>

</interceptor-binding>

Style 4: The following interceptor element refers to themyMethod(String firstName,
String LastName) method of theEmployeeService bean.

<interceptor-binding>
<ejb-name>EmployeeService</ejb-name>
<interceptor-class>org.acme.MyIC</interceptor-class>
<method-name>myMethod</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</interceptor-binding>

The following example illustrates a Style 3 element with more complex parameter types. The m
myMethod(char s, int i, int[] iar, mypackage.MyClass mycl, mypack-
age.MyClass[][] myclaar) would be specified as:

<interceptor-binding>
<ejb-name>EmployeeService</ejb-name>
<interceptor-class>org.acme.MyIC</interceptor-class>
<method-name>myMethod</method-name>
<method-params>

<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[]</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>

</method-params>
</interceptor-binding>

The following example illustrates the total ordering of interceptors using theinterceptor-order
element:

<interceptor-binding>
 <ejb-name>EmployeeService</ejb-name>

<interceptor-order>
<interceptor-class>org.acme.MyIC</interceptor-class>
<interceptor-class>org.acme.MyDefaultIC</intercep-

tor-class>
<interceptor-class>org.acme.MyDefaultIC2</intercep-

tor-class>
<interceptor-class>org.acme.MyIC2</interceptor-class>

</interceptor-order>
</interceptor-binding>
 5/2/06 314

Overview Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

ansac-
on that
e sites

narios

the
pro-
ion’s
fully
ram-
Chapter 13 Support for Transactions

One of the key features of the Enterprise JavaBeans™ architecture is support for distributed tr
tions. The Enterprise JavaBeans architecture allows an application developer to write an applicati
atomically updates data in multiple databases which may be distributed across multiple sites. Th
may use EJB servers from different vendors.

13.1 Overview

This section provides a brief overview of transactions and illustrates a number of transaction sce
in EJB.

13.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free
application programmer from dealing with the complex issues of failure recovery and multi-user
gramming. If the application programmer uses transactions, the programmer divides the applicat
work into units called transactions. The transactional system ensures that a unit of work either
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the prog
mer to design the application as if it ran in an environment that executes units of work serially.
315 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

terprise
buted
n in the

ns using
en

.

d
in
ut
n-

ructions
ctions,
an
saction
r the

n demar-
er pro-
uch as
ging pro-

nager
source
uted
ordi-
ation

-man-
se of
.

ve any
Support for transactions is an essential element of the Enterprise JavaBeans architecture. The En
Bean Provider and the client application programmer are not exposed to the complexity of distri
transactions. The Bean Provider can choose between using programmatic transaction demarcatio
enterprise bean code (this style is calledbean-managed transaction demarcation) or declarative transac-
tion demarcation performed automatically by the EJB container (this style is calledcontainer-managed
transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactio
the javax.transaction.UserTransaction interface. All resource manager accesses betwe
theUserTransaction.begin andUserTransaction.commit calls are part of a transaction

The terms resource and resource manager used in this chapter refer to the resources declare
using the Resource annotation in the enterprise bean class or using the resource-ref element
the enterprise bean’s deployment descriptor. This includes not only database resources, b
also other resources, such as JMS Connections. These resources are considered to be “ma
aged” by the container.[60]

With container-managed transaction demarcation, the container demarcates transactions per inst
provided by the developer in metadata annotations or in the deployment descriptor. These instru
called transaction attributes, tell the container whether it should include the work performed by
enterprise bean method in a client’s transaction, run the enterprise bean method in a new tran
started by the container, or run the method with “no transaction” (Refer to Subsection 13.6.5 fo
description of the “no transaction” case).

Regardless of whether an enterprise bean uses bean-managed or container-managed transactio
cation, the burden of implementing transaction management is on the EJB container and serv
vider. The EJB container and server implement the necessary low-level transaction protocols, s
the two-phase commit protocol between a transaction manager and a database system or messa
vider, transaction context propagation, and distributed two-phase commit.

Many applications will consist of one or several enterprise beans that all use a single resource ma
(typically a relational database management system). The EJB container can make use of re
manager local transactions as an optimization technique for enterprise beans for which distrib
transactions are not needed. A resource manager local transaction does not involve control or co
nation by an external transaction manager. The container’s use of local transactions as an optimiz
technique for enterprise beans with either container-managed transaction demarcation or bean
aged transaction demarcation is not visible to the enterprise beans. For a discussion of the u
resource manager local transactions as a container optimization strategy, refer to [12] and [15]

13.1.2 Transaction Model

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot ha
child (nested) transactions.

[60] Note that environment entries other than resources are specified with theResource annotation and/orresource-ref deploy-
ment descriptor element as well.
 5/2/06 316

Sample Scenarios Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

n
a-
-

nager
grams,

rvice
ol for
ansac-
use a

archi-
APIs

f the

data in

abase
calls

updates
Note: The decision not to support nested transactions allows vendors of existing transactio
processing and database management systems to incorporate support for Enterprise Jav
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java
Beans may be enhanced to take advantage of nested transactions.

13.1.3 Relationship to JTA and JTS
The Java™ Transaction API (JTA) [8] is a specification of the interfaces between a transaction ma
and the other parties involved in a distributed transaction processing system: the application pro
the resource managers, and the application server.

The Java Transaction Service (JTS) [9] API is a Java binding of the CORBA Object Transaction Se
(OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP protoc
transaction propagation between servers. The JTS API is intended for vendors who implement tr
tion processing infrastructure for enterprise middleware. For example, an EJB server vendor may
JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB container to support the JTS interfaces. The EJB
tecture requires that the EJB container support the JTA API defined in [8] and the Connector
defined in [15].

13.2 Sample Scenarios

This section describes several scenarios that illustrate the distributed transaction capabilities o
Enterprise JavaBeans architecture.

13.2.1 Update of Multiple Databases
The Enterprise JavaBeans architecture makes it possible for an application program to update
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data using two dat
connections that the Deployer configured to connect with two different databases, A and B. Then X
another enterprise bean, Y. Bean Y updates data in database C. The EJB server ensures that the
to databases A, B, and C are either all committed or all rolled back.
317 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Sample Scenarios

Sun Microsystems, Inc.

ehind
ransac-
ensure

sages to
tabases

queue
with a
tabase
olled
Figure 23 Updates to Simultaneous Databases

The application programmer does not have to do anything to ensure transactional semantics. B
the scenes, the EJB server enlists the database connections as part of the transaction. When the t
tion commits, the EJB server and the database systems perform a two-phase commit protocol to
atomic updates across all three databases.

13.2.2 MessagesSentor ReceivedOver JMS Sessionsand Updateof Multiple Databases
The Enterprise JavaBeans architecture makes it possible for an application program to send mes
or receive messages from one or more JMS Destinations and/or to update data in one or more da
in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X sends a message to a JMS
A and updates data in a database B using connections that the Deployer configured to connect
JMS provider and a database. Then X calls another enterprise bean, Y. Bean Y updates data in da
C. The EJB server ensures that the operations on A, B, and C are either all committed, or all r
back.

X

client EJB Server

Y

database A database Bdatabase C
 5/2/06 318

Sample Scenarios Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

enter-
MS and

S pro-
e EJB
atomic

-driven
onnect
essage,
 back.
Figure 24 Message Sent to JMS Queue and Updates to Multiple Databases

The application programmer does not have to do anything to ensure transactional semantics. The
prise beans X and Y perform the message send and database updates using the standard J
JDBC™ APIs. Behind the scenes, the EJB server enlists the session on the connection to the JM
vider and the database connections as part of the transaction. When the transaction commits, th
server and the messaging and database systems perform a two-phase commit protocol to ensure
updates across all the three resources.

In the following figure, a client sends a message to the JMS queue A serviced by the message
bean X. Bean X updates data using two database connections that the deployer configured to c
with two different databases, B and C. The EJB server ensures that the dequeuing of the JMS m
its receipt by bean X, and the updates to databases B and C are either all committed or all rolled

X

client EJB Server

Y

queue A database B database C
319 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Sample Scenarios

Sun Microsystems, Inc.

ases

a sin-

, and
ata in
data-
Figure 25 Message Sent to JMS Queue Serviced by Message-Driven Bean and Updates to Multiple Datab

13.2.3 Update of Databases via Multiple EJB Servers
The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in
gle transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data in database A
then calls another enterprise bean Y that is installed in a remote EJB server. Bean Y updates d
database B. The Enterprise JavaBeans architecture makes it possible to perform the updates to
bases A and B in a single transaction.

Figure 26 Updates to Multiple Databases in Same Transaction

X

client EJB Server
queue A

database B database C

X

client EJB Server

database A

Y

EJB Server

database B
 5/2/06 320

Sample Scenarios Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

Y. This

if the

the

tomic
figure.

ction
at the
When X invokes Y, the two EJB servers cooperate to propagate the transaction context from X to
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB servers use a distributed two-phase commit protocol (
capability exists) to ensure the atomicity of the database updates.

13.2.4 Client-Managed Demarcation

A Java client can use thejavax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtains thejavax.transaction.User-
Transaction interface through dependency injection or lookup in the bean’s EJBContext or in
JNDI name space.

A client program using explicit transaction demarcation may perform, via enterprise beans, a
updates across multiple databases residing at multiple EJB servers, as illustrated in the following

Figure 27 Updates on Multiple Databases on Multiple Servers

The application programmer demarcates the transaction withbegin andcommit calls. If the enter-
prise beans X and Y are configured to use a client transaction (i.e., their methods have transa
attributes that either require or support an existing transaction context), the EJB server ensures th
updates to databases A and B are made as part of the client’s transaction.

Xclient

EJB Server

database A

Y

EJB Server

database B

begin

commit
321 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Sample Scenarios

Sun Microsystems, Inc.

r com-
nterpo-
ction

e con-
d that
cludes

bean
he
ching
other
tomat-
.

e and,

B 2.1 and
13.2.5 Container-Managed Demarcation

Whenever a client invokes a method on an enterprise bean’s business interface (or on the home o
ponent interface of an enterprise bean), the container interposes on the method invocation. The i
sition allows the container to control transaction demarcation declaratively through the transa
attribute set by the developer. (See Section 13.3.7 for a description of transaction attributes.)

For example, if an enterprise bean method is configured with theREQUIREDtransaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, th
tainer automatically initiates a transaction whenever a client invokes an enterprise bean metho
requires a transaction context. If the client request contains a transaction context, the container in
the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise
X, and the invoked method has theREQUIRED[61] transaction attribute. Because the message from t
client does not include a transaction context, the container starts a new transaction before dispat
the method on X. Bean X’s work is performed in the context of the transaction. When X calls
enterprise beans (Y in our example), the work performed by the other enterprise beans is also au
ically included in the transaction (subject to the transaction attribute of the other enterprise bean)

Figure 28 Update of Multiple Databases from Non-Transactional Client

The container automatically commits the transaction at the time X returns a reply to the client.

If a message-driven bean’s message listener method is configured with theREQUIREDtransaction
attribute, the container automatically starts a new transaction before the delivery of the messag
hence, before the invocation of the method.[62]

[61] In this chapter we use theTransactionAttribute annotation values to refer to transaction attributes. The deployment
descriptor may be used as an overriding mechanism or an alternative to the use of annotations, and must be used for EJ
1.1 entity beans, for which the use of annotations is not supported.

X

client EJB Server

Y

database A database B

begin

commit
 5/2/06 322

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

and all

espon-

demar-
rcation),
saction

trans-
action

arcation

on. An
tion.

within

e bean’s

ansaction
me way
nsaction

nsaction
saction
n’s
n meth-

ined in
JMS requires that the transaction be started before the dequeuing of the message. See [13].

The container automatically enlists the resource manager associated with the arriving message
the resource managers accessed by the message listener method with the transaction.

13.3 Bean Provider’s Responsibilities

This section describes the Bean Provider’s view of transactions and defines the Bean Provider’s r
sibilities.

13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation
When designing an enterprise bean, the developer must decide whether the enterprise bean will
cate transactions programmatically in the business methods (bean-managed transaction dema
or whether the transaction demarcation is to be performed by the container based on the tran
attributes specified in metadata annotations or in the deployment descriptor (container-managed
action demarcation). Typically enterprise beans will be specified to have container-managed trans
demarcation. This is the default if no transaction management type is specified.

A session bean or a message-driven bean can be designed with bean-managed transaction dem
or with container-managed transaction demarcation. (But it cannot be both at the same time.)

An EJB 2.1 or EJB 1.1 entity bean must always use container-managed transaction demarcati
EJB 2.1 or EJB 1.1 entity bean must not be designated with bean-managed transaction demarca

A transaction management type cannot be specified for EJB 3.0 entities. EJB 3.0 entities execute
the transactional context of the caller. See the document“Java Persistence API”[2] of this specification
for a discussion of transactions involving EJB 3.0 entities.

An enterprise bean instance can access resource managers in a transaction only in the enterpris
methods in which there is a transaction context available.

13.3.1.1 Non-Transactional Execution

Some enterprise beans may need to access resource managers that do not support an external tr
coordinator. The container cannot manage the transactions for such enterprise beans in the sa
that it can for the enterprise beans that access resource managers that support an external tra
coordinator.

If an enterprise bean needs to access a resource manager that does not support an external tra
coordinator, the Bean Provider should design the enterprise bean with container-managed tran
demarcation and assign theNOT_SUPPORTEDtransaction attribute to the bean class or to all the bea
methods. The EJB architecture does not specify the transactional semantics of the enterprise bea
ods. See Subsection 13.6.5 for how the container implements this case.

[62] We use the term “container” here to encompass both the container and the messaging provider. When the contracts outl
[15] are used, it may be the messaging provider that starts the transaction.
323 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

work

tion is

EJB

e same
nter-

rce man-

agers
same

may
ne so

tion, the
prise
er can

antee
t of a

uire a

lation
ols. The
ccess
in a

ager in

n-man-
13.3.2 Isolation Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation leveldescribes the degree to which the access to a resource manager by a transac
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

• The API for managing an isolation level is resource-manager-specific. (Therefore, the
architecture does not define an API for managing isolation levels.)

• If an enterprise bean uses multiple resource managers, the Bean Provider may specify th
or different isolation level for each resource manager. This means, for example, that if an e
prise bean accesses multiple resource managers in a transaction, access to each resou
ager may be associated with a different isolation level.

• The Bean Provider must take care when setting an isolation level. Most resource man
require that all accesses to the resource manager within a transaction are done with the
isolation level. An attempt to change the isolation level in the middle of a transaction
cause undesirable behavior, such as an implicit sync point (a commit of the changes do
far).

• For session beans and message-driven beans with bean-managed transaction demarca
Bean Provider can specify the desirable isolation level programmatically in the enter
bean’s methods, using the resource-manager specific API. For example, the Bean Provid
use the java.sql.Connection.setTransactionIsolation method to set the
appropriate isolation level for database access.

• The container provider should insure that suitable isolation levels are provided to guar
data consistency for EJB 2.1 and 2.0 entity beans. Typically this means that an equivalen
repeatable read or serializable isolation level should be available for applications that req
high degree of isolation.

• For entity beans with EJB 2.1 container-managed persistence and earlier, transaction iso
is managed by the data access classes that are generated by the container provider’s to
tools must ensure that the management of the isolation levels performed by the data a
classes will not result in conflicting isolation level requests for a resource manager with
transaction.

• Additional care must be taken if multiple enterprise beans access the same resource man
the same transaction. Conflicts in the requested isolation levels must be avoided.

13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean with bea
aged transaction demarcation.
 5/2/06 324

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

a mes-

tion.

to

ust not
ke the

a busi-
the con-
lls until

out call-

timeout

T

The enterprise bean with bean-managed transaction demarcation must be a session bean or
sage-driven bean.

An instance that starts a transaction must complete the transaction before it starts a new transac

The Bean Provider uses theUserTransaction interface to demarcate transactions. All updates
the resource managers between theUserTransaction.begin andUserTransaction.com-
mit methods are performed in a transaction. While an instance is in a transaction, the instance m
attempt to use the resource-manager specific transaction demarcation API (e.g. it must not invo
commit or rollback method on the java.sql.Connection interface or on the
javax.jms.Session interface).[63]

A stateful session bean instance may, but is not required to, commit a started transaction before
ness method returns. If a transaction has not been completed by the end of a business method,
tainer retains the association between the transaction and the instance across multiple client ca
the instance eventually completes the transaction.

A stateless session bean instance must commit a transaction before a business method or time
back method returns.

A message-driven bean instance must commit a transaction before a message listener method or
callback method returns.

[63] However, use of the Java Persistence API EntityTransaction interface is supported. See [2] for a description of the Entityransac-
tion interface and its use.
325 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

abase
The following example illustrates a business method that performs a transaction involving two dat
connections.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.sql.DataSource database2;

public void someMethod(...) {
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 object and set it up for transactions
con1 = database1.getConnection();

stmt1 = con1.createStatement();

// obtain con2 object and set it up for transactions
con2 = database2.getConnection();

stmt2 = con2.createStatement();

//
// Now do a transaction that involves con1 and con2.
//
// start the transaction
ut.begin();

// Do some updates to both con1 and con2. The container
// automatically enlists con1 and con2 with the transaction.
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt1.close();
stmt2.close();
con1.close();
con2.close();

}
...

}

 5/2/06 326

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

data-
The following example illustrates a business method that performs a transaction involving both a
base connection and a JMS connection.

@Stateless
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.jms.QueueConnectionFactory qcf1;
@Resource javax.jms.Queue queue1;

public void someMethod(...) {
java.sql.Connection dcon;
java.sql.Statement stmt;
javax.jms.QueueConnection qcon;
javax.jms.QueueSession qsession;
javax.jms.QueueSender qsender;
javax.jms.Message message;

// obtain db conn object and set it up for transactions

dcon = database1.getConnection();

stmt = dcon.createStatement();

// obtain jms conn object and set up session for transactions
qcon = qcf1.createQueueConnection();
qsession = qcon.createQueueSession(true,0);
qsender = qsession.createSender(queue1);
message = qsession.createTextMessage();
message.setText(“some message”);

//
// Now do a transaction that involves the two connections.
//
// start the transaction
ut.begin();

// Do database updates and send message. The container
// automatically enlists dcon and qsession with the
// transaction.
stmt.executeQuery(...);
stmt.executeUpdate(...);
stmt.executeUpdate(...);
qsender.send(message);

// commit the transaction
ut.commit();

// release connections
stmt.close();
qsender.close();
qsession.close();
dcon.close();
qcon.close();

}
...

}

327 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

client

tance
The following example illustrates a stateful session bean that retains a transaction across three
calls, invoked in the following order:method1 , method2 , andmethod3 .[64]

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;
@Resource javax.sql.DataSource database2;
java.sql.Connection con1;
java.sql.Connection con2;

public void method1(...) {
java.sql.Statement stmt;

// start a transaction
ut.begin();

// make some updates on con1
con1 = database1.getConnection();
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

//
// The container retains the transaction associated with the
// instance to the next client call (which is method2(...)).

}

public void method2(...) {
java.sql.Statement stmt;

con2 = database2.getConnection();
stmt = con2.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// The container retains the transaction associated with the
// instance to the next client call (which is method3(...)).

}

public void method3(...) {
java.sql.Statement stmt;

// make some more updates on con1 and con2
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt.close();

[64] Note that the Bean Provider must use the pre-passivation callback method here to close the connections and set the ins vari-
ables for the connection to null.
 5/2/06 328

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

method
e cli-

ethods,
con1.close();
con2.close();

}
...

}

It is possible for an enterprise bean to open and close a database connection in each business
(rather than hold the connection open until the end of transaction). In the following example, if th
ent executes the sequence of methods (method1 , method2 , method2 , method2 , andmethod3),
all the database updates done by the multiple invocations ofmethod2 are performed in the scope of the
same transaction, which is the transaction started inmethod1 and committed inmethod3 .

@Stateful
@TransactionManagement(BEAN)
public class MySessionBean implements MySession {

@Resource javax.Transaction.UserTransaction ut;
@Resource javax.sql.DataSource database1;

public void method1(...) {
// start a transaction
ut.begin();

}

public void method2(...) {
java.sql.Connection con;
java.sql.Statement stmt;

// open connection
con = database1.getConnection();

// make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// close the connection
stmt.close();
con.close();

}

public void method3(...) {

// commit the transaction
ut.commit();

}
...

}

13.3.3.1 getRollbackOnly and setRollbackOnly Methods

An enterprise bean with bean-managed transaction demarcation must not use thegetRollbackOnly
andsetRollbackOnly methods of theEJBContext interface.

An enterprise bean with bean-managed transaction demarcation has no need to use these m
because of the following reasons:
329 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

s of a

action

g con-

tor meth-
-man-
tion of
ethods

tor meth-
in or
• An enterprise bean with bean-managed transaction demarcation can obtain the statu
transaction by using thegetStatus method of the javax.transaction.User-
Transaction interface.

• An enterprise bean with bean-managed transaction demarcation can rollback a trans
using therollback method of thejavax.transaction.UserTransaction inter-
face.

13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean usin
tainer-managed transaction demarcation.

The enterprise bean’s business methods, message listener methods, business method intercep
ods, lifecycle callback interceptor methods, or timeout callback method must not use any resource
ager specific transaction management methods that would interfere with the container’s demarca
transaction boundaries. For example, the enterprise bean methods must not use the following m
of thejava.sql.Connection interface:commit , setAutoCommit , androllback ; or the fol-
lowing methods of thejavax.jms.Session interface:commit androllback .

The enterprise bean’s business methods, message listener methods, business method intercep
ods, lifecycle callback interceptor methods, or timeout callback method must not attempt to obta
use thejavax.transaction.UserTransaction interface.
 5/2/06 330

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

trans-
he con-

nt the

tion of
The following is an example of a business method in an enterprise bean with container-managed
action demarcation. The business method updates two databases using JDBC™ connections. T
tainer provides transaction demarcation as specified by the transaction attribute.[65]

@Stateless public class MySessionBean implements MySession {
...

@TransactionAttribute(REQUIRED)
public void someMethod(...) {

java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 and con2 connection objects
con1 = ...;
con2 = ...;

stmt1 = con1.createStatement();
stmt2 = con2.createStatement();

//
// Perform some updates on con1 and con2. The container
// automatically enlists con1 and con2 with the container-
// managed transaction.
//
stmt1.executeQuery(...);
stmt1.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// release connections
con1.close();
con2.close();

}
...

}

13.3.4.1 javax.ejb.SessionSynchronization Interface

A stateful session bean with container-managed transaction demarcation can optionally impleme
javax.ejb.SessionSynchronization interface. The use of theSessionSynchroniza-
tion interface is described in Subsection 4.3.7.

[65] REQUIRED is the default transaction attribute value for container managed transaction demarcation. The explicit specifica
the transaction attribute is therefore not required in this example.
331 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

mit.
wing
cause

unt
rs a

The
beans,
astruc-

ssage,
use a
ceipt

ean, the

n con-
ner can

ion if the
e-driven
es-
e of the
13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method

An enterprise bean with container-managed transaction demarcation can use thesetRollbackOnly
method of itsEJBContext object to mark the transaction such that the transaction can never com
Typically, an enterprise bean marks a transaction for rollback to protect data integrity before thro
an application exception, if the application exception class has not been specified to automatically
the container to rollback the transaction.

For example, anAccountTransfer bean which debits one account and credits another acco
could mark a transaction for rollback if it successfully performs the debit operation, but encounte
failure during the credit operation.

13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method

An enterprise bean with container-managed transaction demarcation can use thegetRollbackOnly
method of itsEJBContext object to test if the current transaction has been marked for rollback.
transaction might have been marked for rollback by the enterprise bean itself, by other enterprise
or by other components (outside of the EJB specification scope) of the transaction processing infr
ture.

13.3.5 Use of JMS APIs in Transactions
The Bean Provider should not make use of the JMS request/reply paradigm (sending of a JMS me
followed by the synchronous receipt of a reply to that message) within a single transaction. Beca
JMS message is typically not delivered to its final destination until the transaction commits, the re
of the reply within the same transaction will not take place.

Because the container manages the transactional enlistment of JMS sessions on behalf of a b
parameters of thecreateSession(boolean transacted, int acknowledgeMode) , cre-
ateQueueSession(boolean transacted, int acknowledgeMode) and createTop-
icSession(boolean transacted, int acknowledgeMode) methods are ignored. It is
recommended that the Bean Provider specify that a session is transacted, but provide0 for the value of
the acknowledgment mode.

The Bean Provider should not use the JMSacknowledge method either within a transaction or
within an unspecified transaction context. Message acknowledgment in an unspecified transactio
text is handled by the container. Section 13.6.5 describes some of the techniques that the contai
use for the implementation of a method invocation with an unspecified transaction context.

13.3.6 Specification of a Bean’s Transaction Management Type

By default, a session bean or message-driven bean has container managed transaction demarcat
transaction management type is not specified. The Bean Provider of a session bean or a messag
bean can use theTransactionManagement annotation to declare whether the session bean or m
sage-driven bean uses bean-managed or container-managed transaction demarcation. The valu
TransactionManagement annotation is eitherCONTAINERor BEAN. TheTransactionMan-
agement annotation is applied to the enterprise bean class.
 5/2/06 332

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

neces-
 used.

assem-
nt type
pter 19

specify
action

ase.

ean’s

n a cli-

peci-
s inter-
eout

ributes
lback

on the
for the

s are
inter-
Alternatively, the Bean Provider can use thetransaction-type deployment descriptor element to
specify the bean’s transaction management type. If the deployment descriptor is used, it is only
sary to explicitly specify the bean’s transaction management type if bean-managed transaction is

The transaction management type of a bean is determined by the Bean Provider. The application
bler is not permitted to use the deployment descriptor to override a bean’s transaction manageme
regardless of whether it has been explicitly specified or defaulted by the Bean Provider. (See Cha
for information about the deployment descriptor.)

13.3.7 Specification of the Transaction Attrib utes for a Bean’s Methods

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
the transaction attributes for the enterprise bean’s methods. By default, the value of the trans
attribute for a method of a bean with container-managed transaction demarcation is theREQUIRED
transaction attribute, and the transaction attribute does not need to be explicitly specified in this c

A transaction attribute is a value associated with each of the following methods

• a method of a bean’s business interface

• a message listener method of a message-driven bean

• a timeout callback method

• a stateless session bean’s web service endpoint method

• for beans written to the EJB 2.1 and earlier client view, a method of a session or entity b
home or component interface

The transaction attribute specifies how the container must manage transactions for a method whe
ent invokes the method.

Transaction attributes are specified for the following methods:

• For a session bean written to the EJB 3.0 client view API, the transaction attributes are s
fied for those methods of the session bean class that correspond to the bean’s busines
face, the direct and indirect superinterfaces of the business interface, and for the tim
callback method, if any.

• For a stateless session bean that provides a web service client view, the transaction att
are specified for the bean’s web service endpoint methods, and for the timeout cal
method, if any.

• For a message-driven bean, the transaction attributes are specified for those methods
message-driven bean class that correspond to the bean’s message listener interface and
timeout callback method, if any.

• For a session bean written to the EJB 2.1 and earlier client view, the transaction attribute
specified for the methods of the component interface and all the direct and indirect super
333 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

y.
erface.

thods
of the

e
g the
e;

se
for the
ed

to spec-
ransac-
ride or
ecified
pplies,

bean’s
es at
plica-

plica-

th
faces of the component interface, excluding the methods of thejavax.ejb.EJBObject or
javax.ejb.EJBLocalObject interface; and for the timeout callback method, if an
Transaction attributes must not be specified for the methods of a session bean’s home int

• For a EJB 2.1 (and earlier) entity bean, the transaction attributes are specified for the me
defined in the bean’s component interface and all the direct and indirect superinterfaces
component interface, excluding thegetEJBHome , getEJBLocalHome , getHandle ,
getPrimaryKey , andisIdentical methods; for the methods defined in the bean’s hom
interface and all the direct and indirect superinterfaces of the home interface, excludin
getEJBMetaData andgetHomeHandle methods specific to the remote home interfac
and for the timeout callback method, if any.[66]

By default, if aTransactionAttribute annotation is not specified for a method of an enterpri
bean with container-managed transaction demarcation, the value of the transaction attribute
method is defined to beREQUIRED. The rules for the specification of transaction attributes are defin
in Section 13.3.7.1.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations
ify the transaction attributes (or as a means to supplement or override metadata annotations for t
tion attributes). Transaction attributes specified in the deployment descriptor are assumed to over
supplement transaction attributes specified in annotations. If a transaction attribute value is not sp
in the deployment descriptor, it is assumed that the transaction attribute specified in annotations a
or—in the case that no annotation has been specified—that the value isRequired .

The application assembler is permitted to override the transaction attribute values using the
deployment descriptor. The deployer is also permitted to override the transaction attribute valu
deployment time. Caution should be exercised when overriding the transaction attributes of an ap
tion, as the transactional structure of an application is typically intrinsic to the semantics of the ap
tion.

Enterprise JavaBeans defines the following values for theTransactionAttribute metadata anno-
tation:

• MANDATORY

• REQUIRED

• REQUIRES_NEW

• SUPPORTS

• NOT_SUPPORTED

• NEVER

The deployment descriptor values that correspond to these annotation values are the following:

[66] Note that the deployment descriptor must be used to specify transaction attributes for EJB 2.1 and earlier entity bean meods if
the transaction attribute is notRequired (the default value).
 5/2/06 334

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

ts the

tion. If
ction

for
ces of

me

wever,
porta-
• Mandatory

• Required

• RequiresNew

• Supports

• NotSupported

• Never

In this chapter, we use theTransactionAttribute annotation values to refer to transaction
attributes. As noted, however, the deployment descriptor may be used.

Refer to Subsection 13.6.2 for the specification of how the value of the transaction attribute affec
transaction management performed by the container.

For a message-driven bean’s message listener methods (or interface), only theREQUIREDand
NOT_SUPPORTED TransactionAttribute values may be used.

For an enterprise bean’s timeout callback method only theREQUIRES, REQUIRES_NEWand
NOT_SUPPORTED transaction attributes may be used.

If an enterprise bean implements thejavax.ejb.SessionSynchronization interface, only the
following values may be used for the transaction attributes of the bean’s methods:REQUIRED,
REQUIRES_NEW, MANDATORY.

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transac
the bean were invoked without a transaction, the container would not be able to send the transa
synchronization calls.

For entity beans that use EJB 2.1 container-managed persistence, only theRequired ,
RequiresNew , or Mandatory deployment descriptor transaction attribute values should be used
the methods defined in the bean’s component interface and all the direct and indirect superinterfa
the component interface, excluding thegetEJBHome , getEJBLocalHome , getHandle ,
getPrimaryKey , and isIdentical methods; and for the methods defined in the bean’s ho
interface and all the direct and indirect superinterfaces of the home interface, excluding thegetEJB-
MetaData andgetHomeHandle methods specific to the remote home interface.

The Bean Provider and Application Assembler must exercise caution when using the
RequiresNew transaction attributes with the navigation of container-managed relation-
ships. If higher levels of isolation are used, navigating a container-managed relationship in a
new transaction context may result in deadlock.

Containers mayoptionallysupport the use of theNotSupported , Supports , andNever transac-
tion attributes for the methods of EJB 2.1 entity beans with container-managed persistence. Ho
entity beans with container-managed persistence that use these transaction attributes will not be
ble.
335 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

-
on-
n

e

lan-

the

usiness

all
d, it is
ss is

action
Containers may optionally support the use of theNotSupported , Supports , andNever
transaction attributes for the methods of EJB 2.1 entity beans with container-managed persis
tence because the use of these transaction modes may be needed to make use of c
tainer-managed persistence with non-transactional data stores. In general, however, the Bea
Provider and Application Assembler should avoid use of theNotSupported ,Supports ,
and Never transaction attribute values for the methods of entity beans with container-man-
aged persistence because it may lead to inconsistent results or to the inconsistent and/or to th
partial updating of persistent state and relationships in the event of concurrent use.

13.3.7.1 Specification of Transaction Attributes with Metadata Annotations
The following is the description of the rules for the specification of transaction attributes using Java
guage metadata annotations.

TheTransactionAttribute annotation is used to specify a transaction attribute. The value of
transaction attribute annotation is given by the enumTransactionAttributeType:

public enum TransactionAttributeType {
MANDATORY,
REQUIRED,
REQUIRES_NEW,
SUPPORTS,
NOT_SUPPORTED,
NEVER

}

The transaction attributes for the methods of a bean class may be specified on the class, the b
methods of the class, or both.

Specifying theTransactionAttribute annotation on the bean class means that it applies to
applicable business interface methods of the class. If the transaction attribute type is not specifie
assumed to beREQUIRED. The absence of a transaction attribute specification on the bean cla
equivalent to the specification ofTransactionAttribute(REQUIRED) on the bean class.

A transaction attribute may be specified on a method of the bean class to override the trans
attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A transaction attribute specified on a superclassSapplies to the business methods defined byS.
If a class-level transaction attribute is not specified onS, it is equivalent to specification of
TransactionAttribute(REQUIRED) onS.

• A transaction attribute may be specified on a business methodM defined by classS to override
for methodM the transaction attribute value explicitly or implicitly specified on the classS.

• If a methodM of classSoverrides a business method defined by a superclass ofS, the transac-
tion attribute ofM is determined by the above rules as applied to classS.
 5/2/06 336

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

ploy-

ansac-
d for

ecified
y for

usi-
ds; and

e. It is
Example:

@TransactionAttribute(SUPPORTS)
public class SomeClass {

public void aMethod () {...}
public void bMethod () {...}
...

}

@Stateless public class ABean extends SomeClass implements A {

public void aMethod () {...}

@TransactionAttribute(REQUIRES_NEW)
public void cMethod () {...}

 ...
}

AssumingaMethod , bMethod , cMethod are methods of interfaceA, their transaction attributes are
REQUIRED, SUPPORTS, andREQUIRES_NEWrespectively.

13.3.7.2 Specification of Transaction Attributes in the Deployment Descriptor

The following is the description of the rules for the specification of transaction attributes in the de
ment descriptor. (See Section 19.5 for the complete syntax of the deployment descriptor.)

Note that even in the absence of the use of annotations, it is not necessary to explicitly specify tr
tion attributes for all of the methods listed in section 13.3.7. If a transaction attribute is not specifie
a method in an EJB 3.0 deployment descriptor, the transaction attribute defaults toRequired .

If the deployment descriptor is used to override annotations, and transaction attributes are not sp
for some methods, the values specified in annotations (whether explicit or defaulted) will appl
those methods.

13.3.7.2.1 Use of the container-transaction element

The container-transaction element may be used to define the transaction attributes for b
ness, home, component, and message-listener interface methods; web service endpoint metho
timeout callback methods. Eachcontainer-transaction element consists of a list of one or
moremethod elements, and thetrans-attribute element. Thecontainer-transaction
element specifies that all the listed methods are assigned the specified transaction attribute valu
required that all the methods specified in a singlecontainer-transaction element be methods
of the same enterprise bean.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods. There are three legal styles of composing themethod element:

Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>
337 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

s for

mes-
od of
name,

r

ame.
e

ement

ame
erfaces,
terface

inter-
remote
This style is used to specify a default value of the transaction attribute for the method
which there is no Style 2 or Style 3 element specified. There must be at most onecon-
tainer-transaction element that uses the Style 1method element for a given enter-
prise bean.

Style 2:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of a business, home, component or
sage listener interface method; web service endpoint method; or timeout callback meth
the specified enterprise bean. If there are multiple methods with the same overloaded
this style refers to all the methods with the same name. There must be at most onecon-
tainer-transaction element that uses the Style 2method element for a given method
name. If there is also acontainer-transaction element that uses Style 1 element fo
the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>

This style is used to refer to a single method within a set of methods with an overloaded n
If there is also acontainer-transaction element that uses the Style 2 element for th
method name, or the Style 1 element for the bean, the value specified by the Style 3 el
takes precedence.

The optionalmethod-intf element can be used to differentiate between methods with the s
name and signature that are multiply defined across the business, component, and home int
and/or web service endpoint. However, if the same method is a method of both a local business in
and the local component interface, the same transaction attribute applies to the method for both
faces. Likewise, if the same method is a method of both a remote business interface and the
component interface, the same transaction attribute applies to the method for both interfaces.
 5/2/06 338

Application Assembler’s Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

scrip-
e

naged
enter-

anism
g con-

,

The following is an example of the specification of the transaction attributes in the deployment de
tor. TheupdatePhoneNumber method of theEmployeeRecord enterprise bean is assigned th
transaction attributeMandatory ; all other methods of theEmployeeRecord bean are assigned the
attributeRequired . All the methods of the enterprise beanAardvarkPayroll are assigned the
attributeRequiresNew .

<ejb-jar>
...
<assembly-descriptor>

...
<container-transaction>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

13.4 Application Assembler’s Responsibilities

This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-ma
transaction demarcation. The Application Assembler must not define transaction attributes for an
prise bean with bean-managed transaction demarcation.

The Application Assembler can use the deployment descriptor transaction attribute mech
described above to override or change the transaction attributes for enterprise beans usin
tainer-managed transaction demarcation.

The Application Assembler should exercise caution in the changing the transaction attributes
as the behavior specified by the transaction attributes is typically an intrinsic part of the
semantics of an application.
339 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Deployer’s Responsibilities

Sun Microsystems, Inc.

nt time.

-

r is
naged
in the

and/or
istener
esource
onment

ed by
n fac-
f the
llows

bean

erprise

emarca-

d trans-
bean’s
client

ession
iates the
bean
13.5 Deployer’s Responsibilities

The Deployer is permitted to override or change the values of transaction attributes at deployme

The Deployer should exercise caution in the changing the transaction attributes, as the behav
ior specified by the transaction attributes is typically an intrinsic part of the semantics of an
application.

Compatibility Note: For applications written to the EJB 2.1 specification (and earlier), the deploye
responsible for ensuring that the methods of the deployed enterprise beans with container-ma
transaction demarcation have been assigned a transaction attribute if this has not be specified
deployment descriptor.

13.6 Container Provider Responsibilities

This section defines the responsibilities of the Container Provider.

Every client method invocation on a session or entity bean via the bean’s business interface (
home and component interface), web service endpoint, and every invocation of a message l
method on a message-driven bean is interposed by the container, and every connection to a r
manager used by an enterprise bean is obtained via the container. This managed execution envir
allows the container to affect the enterprise bean’s transaction management.

This does not imply that the container must interpose on every resource manager access perform
the enterprise bean. Typically, the container interposes only on the resource manager connectio
tory (e.g. a JDBC data source) JNDI look up by registering the container-specific implementation o
resource manager connection factory object. The resource manager connection factory object a
the container to obtain thejavax.transaction.xa.XAResource interface as described in the
JTA specification and pass it to the transaction manager. After the set up is done, the enterprise
communicates with the resource manager without going through the container.

13.6.1 Bean-Managed Transaction Demarcation
This subsection defines the container’s responsibilities for the transaction management of ent
beans with bean-managed transaction demarcation.

Note that only session and message-driven beans can be used with bean-managed transaction d
tion.

The container must manage client invocations to an enterprise bean instance with bean-manage
action demarcation as follows. When a client invokes a business method via one of the enterprise
client view interfaces, the container suspends any transaction that may be associated with the
request. If there is a transaction associated with the instance (this would happen if a stateful s
bean instance started the transaction in some previous business method), the container assoc
method execution with this transaction. If there are interceptor methods associated with the
instances, these actions are taken before the interceptor methods are invoked.
 5/2/06 340

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

ut call-
hrough
r

anag-

for the

action
retain
stance
tainer
ansac-

thod, it
s. The
usiness

-

rceptor
meth-
eted, in
t as fol-

ro
criptor
] for fur-
The container must make thejavax.transaction.UserTransaction interface available to
the enterprise bean’s business method, message listener method, interceptor method, or timeo
back method via dependency injection into the enterprise bean class or interceptor class, and t
lookup via the javax.ejb.EJBContext interface, and in the JNDI naming context unde
java:comp/UserTransaction . When an instance uses thejavax.transaction.User-
Transaction interface to demarcate a transaction, the container must enlist all the resource m
ers used by the instance between thebegin and commit —or rollback —methods with the
transaction. When the instance attempts to commit the transaction, the container is responsible
global coordination of the transaction commit[67].

In the case of astatefulsession bean, it is possible that the business method that started a trans
completes without committing or rolling back the transaction. In such a case, the container must
the association between the transaction and the instance across multiple client calls until the in
commits or rolls back the transaction. When the client invokes the next business method, the con
must invoke the business method (and any applicable interceptor methods for the bean) in this tr
tion context.

If a statelesssession bean instance starts a transaction in a business method or interceptor me
must commit the transaction before the business method (or all its interceptor methods) return
container must detect the case in which a transaction was started, but not completed, in the b
method or interceptor method for the business method, and handle it as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• Discard the instance of the session bean.

• Throw the javax.ejb.EJBException [68]. If the EJB 2.1 client view is used, the con
tainer should throwjava.rmi.RemoteException if the client is a remote client, or
throw thejavax.ejb.EJBException if the client is a local client.

If a message-driven bean instance starts a transaction in a message listener method or inte
method, it must commit the transaction before the message listener method (or all its interceptor
ods) returns. The container must detect the case in which a transaction was started, but not compl
a message listener method or interceptor method for the message listener method, and handle i
lows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• Discard the instance of the message-driven bean.

[67] The container typically relies on a transaction manager that is part of the EJB server to perform the two-phase commit acss all
the enlisted resource managers. If only a single resource manager is involved in the transaction and the deployment des
indicates that connection sharing may be used, the container may use the local transaction optimization. See [12] and [15
ther discussion.

[68] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.
341 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

thod, it
ect the
ndle it

arized
is cur-
evious

with a
ith an

d with
es the
action
com-
a web

ciated
ciated
a mes-

with a
es the
If a session bean or message-driven bean instance starts a transaction in a timeout callback me
must commit the transaction before the timeout callback method returns. The container must det
case in which a transaction was started, but not completed, in a timeout callback method, and ha
as follows:

• Log this as an application error to alert the System Administrator.

• Roll back the started transaction.

• Discard the instance of the bean.

The actions performed by the container for an instance with bean-managed transaction are summ
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that
rently associated with the instance (i.e. a transaction that was started but not completed by a pr
business method).

The following items describe each entry in the table:

• If the client request is not associated with a transaction and the instance is not associated
transaction, or if the bean is a message-driven bean, the container invokes the instance w
unspecified transaction context.

• If the client request is associated with a transaction T1, and the instance is not associate
a transaction, the container suspends the client’s transaction association and invok
method with an unspecified transaction context. The container resumes the client’s trans
association (T1) when the method (together with any associated interceptor methods)
pletes. This case can never happen for a message-driven bean or for the invocation of
service endpoint method of a stateless session bean.

• If the client request is not associated with a transaction and the instance is already asso
with a transaction T2, the container invokes the instance with the transaction that is asso
with the instance (T2). This case can never happen for a stateless session bean or
sage-driven bean: it can only happen for a stateful session bean.

• If the client is associated with a transaction T1, and the instance is already associated
transaction T2, the container suspends the client’s transaction association and invok

Table 12 Container’s Actions for Methods of Beans with Bean-Managed Transaction

Client’s transaction
Transaction currently
associated with instance

Transaction associated
with the method

none none none

T1 none none

none T2 T2

T1 T2 T2
 5/2/06 342

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

tainer
ssoci-
bean or

s in a

ion,

clared
and for
ans, the
d using

of an
nterface
epend

o the

n con-
tainer

d transac-
that are

ext with
method with the transaction context that is associated with the instance (T2). The con
resumes the client’s transaction association (T1) when the method (together with any a
ated interceptor methods) completes. This case can never happen for a stateless session
a message-driven bean: it can only happen for a stateful session bean.

The container must allow the enterprise bean instance to serially perform several transaction
method.

When an instance attempts to start a transaction using thebegin method of thejavax.transac-
tion.UserTransaction interface while the instance has not committed the previous transact
the container must throw thejavax.transaction.NotSupportedException in the begin
method.

The container must throw thejava.lang.IllegalStateException if an instance of a bean
with bean-managed transaction demarcation attempts to invoke thesetRollbackOnly or
getRollbackOnly method of thejavax.ejb.EJBContext interface.

13.6.2 Container-Managed Transaction Demarcation for Session and Entity Beans

The container is responsible for providing the transaction demarcation for the session beans de
with container-managed transaction demarcation, entity beans with bean-managed persistence,
EJB 2.1 and EJB 1.1 entity beans with container-managed persistence. For these enterprise be
container must demarcate transactions as specified by the transaction attribute values specifie
metadata annotations in the bean class or specified in the deployment descriptor.

The following subsections define the responsibilities of the container for managing the invocation
enterprise bean business method when the method is invoked via the enterprise bean’s business i
(and/or home or component interface), or web service endpoint. The container’s responsibilities d
on the value of the transaction attribute.

13.6.2.1 NOT_SUPPORTED

The container invokes an enterprise bean method whose transaction attribute is set t
NOT_SUPPORTED value with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before invoking the enterprise bean’s business method. The con
resumes the suspended association when the business method has completed. The suspende
tion context of the client is not passed to the resource managers or other enterprise bean objects
invoked from the business method.

If the business method invokes other enterprise beans, the container passes no transaction cont
the invocation.

Refer to Subsection 13.6.5 for more details of how the container can implement this case.
343 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

to the

ntext,

action
to the
ccessed
ns, the
trans-

ore the

cribed

s as

trans-
at will

et to

action
to the
ccessed
ns, the
trans-

ore the

n con-
d. The
transac-
13.6.2.2 REQUIRED

The container must invoke an enterprise bean method whose transaction attribute is set
REQUIRED value with a valid transaction context.

If a client invokes the enterprise bean’s method while the client is associated with a transaction co
the container invokes the enterprise bean’s method in the client’s transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a trans
context, the container automatically starts a new transaction before delegating a method call
enterprise bean business method. The container automatically enlists all the resource managers a
by the business method with the transaction. If the business method invokes other enterprise bea
container passes the transaction context with the invocation. The container attempts to commit the
action when the business method has completed. The container performs the commit protocol bef
method result is sent to the client.

13.6.2.3 SUPPORTS

The container invokes an enterprise bean method whose transaction attribute is set toSUPPORTSas
follows.

• If the client calls with a transaction context, the container performs the same steps as des
in theREQUIRED case.

• If the client calls without a transaction context, the container performs the same step
described in theNOT_SUPPORTED case.

The SUPPORTS transaction attribute must be used with caution. This is because of the different
actional semantics provided by the two possible modes of execution. Only the enterprise beans th
execute correctly in both modes should use theSUPPORTS transaction attribute.

13.6.2.4 REQUIRES_NEW

The container must invoke an enterprise bean method whose transaction attribute is s
REQUIRES_NEWwith a new transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a trans
context, the container automatically starts a new transaction before delegating a method call
enterprise bean business method. The container automatically enlists all the resource managers a
by the business method with the transaction. If the business method invokes other enterprise bea
container passes the transaction context with the invocation. The container attempts to commit the
action when the business method has completed. The container performs the commit protocol bef
method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before starting the new transaction and invoking the business metho
container resumes the suspended transaction association after the business method and the new
tion have been completed.
 5/2/06 344

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

cribed

r

ction

s as

e busi-
nsaction
ile T2
13.6.2.5 MANDATORY

The container must invoke an enterprise bean method whose transaction attribute is set toMANDATORY
in a client’s transaction context. The client is required to call with a transaction context.

• If the client calls with a transaction context, the container performs the same steps as des
in theREQUIRED case.

• If the client calls without a transaction context, the container throws thejavax.ejb.EJB-
TransactionRequiredException [69]. If the EJB 2.1 client view is used, the containe
throws thejavax.transaction.TransactionRequiredException exception if
the client is a remote client, or thejavax.ejb.TransactionRequiredLocalExcep-
tion if the client is a local client.

13.6.2.6 NEVER

The container invokes an enterprise bean method whose transaction attribute is set toNEVERwithout a
transaction context defined by the EJB specification. The client is required to call without a transa
context.

• If the client calls with a transaction context, the container throws thejavax.ejb.EJBEx-
ception [70]. If the EJB 2.1 client view is used, the container throws thejava.rmi.Remo-
teException exception if the client is a remote client, or the
javax.ejb.EJBException if the client is a local client.

• If the client calls without a transaction context, the container performs the same step
described in theNOT_SUPPORTED case.

13.6.2.7 Transaction Attribute Summary

The following table provides a summary of the transaction context that the container passes to th
ness method and resource managers used by the business method, as a function of the tra
attribute and the client’s transaction context. T1 is a transaction passed with the client request, wh
is a transaction initiated by the container.

[69] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejavax.transac-
tion.TransactionRequiredException is thrown to the client instead.

[70] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.

Table 13 Transaction Attribute Summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers

NOT_SUPPORTED
none none none

T1 none none
345 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

faces or
d with

iner

od to
r must

ction.
ainer
r per-
If the enterprise bean’s business method invokes other enterprise beans via their business inter
home and component interfaces, the transaction indicated in the column “Transaction associate
business method” will be passed as part of the client context to the target enterprise bean.

See Subsection 13.6.5 for how the container handles the “none” case in Table 13.

13.6.2.8 Handling of setRollbackOnly Method

The container must handle theEJBContext.setRollbackOnly method invoked from a business
method executing with theREQUIRED, REQUIRES_NEW, or MANDATORYtransaction attribute as fol-
lows:

• The container must ensure that the transaction will never commit. Typically, the conta
instructs the transaction manager to mark the transaction for rollback.

• If the container initiated the transaction immediately before dispatching the business meth
the instance (as opposed to the transaction being inherited from the caller), the containe
note that the instance has invoked thesetRollbackOnly method. When the business
method invocation completes, the container must roll back rather than commit the transa
If the business method has returned normally or with an application exception, the cont
must pass the method result or the application exception to the client after the containe
formed the rollback.

The container must throw thejava.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly method is invoked from a business method executing with theSUP-
PORTS, NOT_SUPPORTED, orNEVER transaction attribute.

REQUIRED
none T2 T2

T1 T1 T1

SUPPORTS
none none none

T1 T1 T1

REQUIRES_NEW
none T2 T2

T1 T2 T2

MANDATORY
none error N/A

T1 T1 T1

NEVER
none none none

T1 error N/A

Table 13 Transaction Attribute Summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers
 5/2/06 346

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

invoke

ss

ast
ack by

come.

beans
enter-

class or
ptor.)

of a
value of

en
r mes-
context
13.6.2.9 Handling of getRollbackOnly Method

The container must handle theEJBContext.getRollbackOnly method invoked from a business
method executing with theREQUIRED, REQUIRES_NEW, orMANDATORY transaction attribute.

The container must throw thejava.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly method is invoked from a business method executing with theSUP-
PORTS, NOT_SUPPORTED, orNEVER transaction attribute.

13.6.2.10 Handling of getUserTransaction Method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to
the getUserTransaction method of theEJBContext interface, the container must throw the
java.lang.IllegalStateException .

13.6.2.11 javax.ejb.SessionSynchronization Callbacks

If a session bean class implements thejavax.ejb.SessionSynchronization interface, the
container must invoke theafterBegin , beforeCompletion , and afterCompletion call-
backs on the instance as part of the transaction commit protocol.

The container invokes theafterBegin method on an instance before it invokes the first busine
method in a transaction.

The container invokes thebeforeCompletion method to give the enterprise bean instance the l
chance to cause the transaction to rollback. The instance may cause the transaction to roll b
invoking theEJBContext.setRollbackOnly method.

The container invokes theafterCompletion(boolean committed) method after the comple-
tion of the transaction commit protocol to notify the enterprise bean instance of the transaction out

13.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans

The container is responsible for providing the transaction demarcation for the message-driven
that the Bean Provider declared as with container-managed transaction demarcation. For these
prise beans, the container must demarcate transactions as specified by annotations on the bean
in the deployment descriptor. (See Chapter 19 for more information about the deployment descri

The following subsections define the responsibilities of the container for managing the invocation
message-driven bean’s message listener method. The container’s responsibilities depend on the
the transaction attribute.

Only the NOT_SUPPORTEDand REQUIREDtransaction attributes may be used for message-driv
bean message listener methods. The use of the other transaction attributes is not meaningful fo
sage-driven bean message listener methods because there is no pre-existing client transaction
(REQUIRES_NEW, SUPPORTS) and no client to handle exceptions (MANDATORY, NEVER).
347 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

te is set

tion con-

attribute
ssage
ethod
n. The

f the

the

-

a-

e

iner

it the

the
13.6.3.1 NOT_SUPPORTED

The container invokes a message-driven bean message listener method whose transaction attribu
to NOT_SUPPORTED with an unspecified transaction context.

If the message listener method invokes other enterprise beans, the container passes no transac
text with the invocation.

13.6.3.2 REQUIRED

The container must invoke a message-driven bean message listener method whose transaction
is set toREQUIREDwith a valid transaction context. The resource managers accessed by the me
listener method within the transaction are enlisted with the transaction. If the message listener m
invokes other enterprise beans, the container passes the transaction context with the invocatio
container attempts to commit the transaction when the message listener method has completed.

Messaging systems may differ in quality of service with regard to reliability and transactionality o
dequeuing of messages.

The requirement for JMS are as follows:

A transaction must be started before the dequeuing of the JMS message and, hence, before
invocation of the message-driven bean’sonMessage method. The resource manager associ-
ated with the arriving message is enlisted with the transaction as well as all the resource man
agers accessed by theonMessage method within the transaction. If theonMessage method
invokes other enterprise beans, the container passes the transaction context with the invoc
tion. The transaction is committed when theonMessage method has completed. If the
onMessage method does not successfully complete or the transaction is rolled back, messag
redelivery semantics apply.

13.6.3.3 Handling of setRollbackOnly Method

The container must handle theEJBContext.setRollbackOnly method invoked from a message
listener method executing with theREQUIRED transaction attribute as follows:

• The container must ensure that the transaction will never commit. Typically, the conta
instructs the transaction manager to mark the transaction for rollback.

• The container must note that the instance has invoked thesetRollbackOnly method.
When the method invocation completes, the container must roll back rather than comm
transaction.

The container must throw and log thejava.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly method is invoked from a message listener method executing with
NotSupported transaction attribute
 5/2/06 348

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

the

mpts to

otations
Section
scrip-

cation.

con-
anaged
i-

ses in
ethod

arca-

on.
13.6.3.4 Handling of getRollbackOnly Method

The container must handle theEJBContext.getRollbackOnly() method invoked from a mes-
sage listener method executing with theREQUIRED transaction attribute.

The container must throw and log thejava.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly method is invoked from a message listener method executing with
NOT_SUPPORTED transaction attribute.

13.6.3.5 Handling of getUserTransaction Method

If an instance of a message-driven bean with container-managed transaction demarcation atte
invoke thegetUserTransaction method of theEJBContext interface, the container must throw
and log thejava.lang.IllegalStateException .

13.6.4 Local Transaction Optimization

The container may use a local transaction optimization for enterprise beans whose metadata ann
or deployment descriptor indicates that connections to a resource manager are shareable (see
16.7.1.3, “Declaration of Resource Manager Connection Factory References in Deployment De
tor”). The container manages the use of the local transaction optimization transparent to the appli

The container may use the optimization for transactions initiated by the container for a bean with
tainer-managed transaction demarcation and for transactions initiated by a bean with bean-m
transaction demarcation with theUserTransaction interface. The container cannot apply the opt
mization for transactions imported from a different container.

The use of local transaction optimization approach is discussed in [12] and [15].

13.6.5 Handling of Methods that Run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the ca
which the EJB architecture does not fully define the transaction semantics of an enterprise bean m
execution.

This includes the following cases:

• The execution of a method of an enterprise bean with container-managed transaction dem
tion for which the value of the transaction attribute isNOT_SUPPORTED, NEVER, or SUP-
PORTS.

• The execution of aPostConstruct , PreDestroy , PostActivate , or PrePassi-
vate callback method of a session bean with container-managed transaction demarcati[71]

[71] See Chapter 4, “Session Bean Component Contract”.
349 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Access from Multiple Clients in the Same

Sun Microsystems, Inc.

n

ethod
enta-

d with
):

ithout a

saction

single

into a

re also
e the

se bean

ction
he EJB

r such a

tainer’s
• The execution of aPostConstruct or PreDestroy callback method of a message-drive
bean with container-managed transaction demarcation.[72]

The EJB specification does not prescribe how the container should manage the execution of a m
with an unspecified transaction context—the transaction semantics are left to the container implem
tion. Some techniques for how the container may choose to implement the execution of a metho
an unspecified transaction context are as follows (the list is not inclusive of all possible strategies

• The container may execute the method and access the underlying resource managers w
transaction context.

• The container may treat each call of an instance to a resource manager as a single tran
(e.g. the container may set the auto-commit option on a JDBC connection).

• The container may merge multiple calls of an instance to a resource manager into a
transaction.

• The container may merge multiple calls of an instance to multiple resource managers
single transaction.

• If an instance invokes methods on other enterprise beans, and the invoked methods a
designated to run with an unspecified transaction context, the container may merg
resource manager calls from the multiple instances into a single transaction.

• Any combination of the above.

Since the enterprise bean does not know which technique the container implements, the enterpri
must be written conservatively not to rely on any particular container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified transa
context may leave the resource managers accessed from the method in an unpredictable state. T
architecture does not define how the application should recover the resource managers’ state afte
failure.

13.7 Access from Multiple Clients in the Same Transaction
Context

This section describes a more complex distributed transaction scenario, and specifies the con
behavior required for this scenario.

[72] See Chapter 5, “Message-Driven Bean Component Contract”.
 5/2/06 350

Access from Multiple Clients in the Same Transaction ContextEnterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

ram A
it the

eates a

dif-
s pur-

ss an
imple-
hines.
con-
tion, the
object

ibuted
le net-

access
ming

in all
13.7.1 Transaction “Diamond” Scenario with an Entity Object

An entity object may be accessed by multiple clients in the same transaction. For example, prog
may start a transaction, call program B and program C in the transaction context, and then comm
transaction. If programs B and C access the same entity object, the topology of the transaction cr
diamond.

Figure 29 Transaction Diamond Scenario with Entity Object

An example (not realistic in practice) is a client program that tries to perform two purchases at two
ferent stores within the same transaction. At each store, the program that is processing the client’
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C acce
entity object through different network paths. This case is challenging because many EJB servers
ment the EJB container as a collection of multiple processes, running on the same or multiple mac
Each client is typically connected to a single process. If clients B and C connect to different EJB
tainer processes, and both B and C need to access the same entity object in the same transac
issue is how the container can make it possible for B and C to see a consistent state of the entity
within the same transaction[73].

The above example illustrates a simple diamond. We use the term diamond to refer to any distr
transaction scenario in which an entity object is accessed in the same transaction through multip
work paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent
to an entity object in the same transaction context would be considered an application program
error, and it would be handled in a container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists
distributed transaction processing systems.

[73] This diamond problem applies only to the case when B and C are in the same transaction.

Program A

Program C

Program B

Entity
object

TX1

TX1

TX1

TX1

EJB Container
351 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Access from Multiple Clients in the Same

Sun Microsystems, Inc.

trans-

involv-

l dia-

istrib-
rough
in the

detect

involv-

ode the
prob-
s of the

to the

ur. In
s.

er-spe-
os.

at use
nd then
The following subsections define the responsibilities of the EJB Roles when handling distributed
action topologies that may lead to a diamond involving an entity object.

13.7.2 Container Provider’ s Responsibilities
This Subsection specifies the EJB container’s responsibilities with respect to the diamond case
ing an entity object.

The EJB specification requires that the container provide support for local diamonds. In a loca
mond, components A, B, C, and D are deployed in the same EJB container.

The EJB specification does not require an EJB container to support distributed diamonds. In a d
uted diamond, a target entity object is accessed from multiple clients in the same transaction th
multiple network paths, and the clients (programs B and C) are not enterprise beans deployed
same EJB container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the container can
that a client invocation would lead to a diamond, the container should throw thejavax.ejb.EJBEx-
ception (or java.rmi.RemoteException if the EJB 2.1 remote client view is used).

13.7.3 Bean Provider’ s Responsibilities
This Subsection specifies the Bean Provider’s responsibilities with respect to the diamond case
ing an entity object.

The diamond case is transparent to the Bean Provider—the Bean Provider does not have to c
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond
lem implemented by the container is transparent to the bean and does not change the semantic
bean.

13.7.4 Application Assembler and Deployer’s Responsibilities
This Subsection specifies the Application Assembler and Deployer’s responsibilities with respect
diamond case involving an entity object.

The Application Assembler and Deployer should be aware that distributed diamonds might occ
general, the Application Assembler should try to avoid creating unnecessary distributed diamond

If a distributed diamond is necessary, the Deployer should advise the container (using a contain
cific API) that an entity objects of the entity bean may be involved in distributed diamond scenari

13.7.5 Transaction Diamonds involving Session Objects
While it is illegal for two clients to access the same session object, it is possible for applications th
session beans to encounter the diamond case. For example, program A starts a transaction a
invokes two different session objects.
 5/2/06 352

Access from Multiple Clients in the Same Transaction ContextEnterprise JavaBeans 3.0, Final Release Support for Transactions

Sun Microsystems, Inc.

) across
rrect

session
etween

detect

ult in
Figure 30 Transaction Diamond Scenario with a Session Bean

If the session bean instances cache the same data item (e.g. the current balance of Account 100
method invocations in the same transaction, most likely the program is going to produce inco
results.

The problem may exist regardless of whether the two session objects are the same or different
beans. The problem may exist (and may be harder to discover) if there are intermediate objects b
the transaction initiator and the session objects that cache the data.

There are no requirements for the Container Provider because it is impossible for the container to
this problem.

The Bean Provider and Application Assembler must avoid creating applications that would res
inconsistent caching of data in the same transaction by multiple session objects.

Program A

Session
instance 1

TX1

TX1

EJB Container

Session
instance 2

read and cache
Account 100

read and cache
Account 100
353 May 2, 2006 2:35 pm

Support for Transactions Enterprise JavaBeans 3.0, Final Release Access from Multiple Clients in the Same

Sun Microsystems, Inc.
 5/2/06 354

Overview and Concepts Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

of an

pplica-
client

port-

’s
ice end-
Chapter 14 Exception Handling

14.1 Overview and Concepts

14.1.1 Application Exceptions

An application exceptionis an exception defined by the Bean Provider as part of the business logic
application.Application exceptions are distinguished fromsystem exceptions in this specification.

Enterprise bean business methods use application exceptions to inform the client of abnormal a
tion-level conditions, such as unacceptable values of the input arguments to a business method. A
can typically recover from an application exception. Application exceptions are not intended for re
ing system-level problems.

For example, theAccount enterprise bean may throw an application exception to report that adebit
operation cannot be performed because of an insufficient balance. TheAccount bean should not use
an application exception to report, for example, the failure to obtain a database connection.

An application exception may be defined in thethrows clause of a method of an enterprise bean
business interface, home interface, component interface, message listener interface, or web serv
point.
355 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

f the
ot

ptions

o the
ules on

client

roll-
action
ppli-

rlying

n han-

ptions
ss
n that
An application exception may be a subclass (direct or indirect) ofjava.lang.Exception (i.e., a
“checked exception”), or an application exception class may be defined as a subclass o
java.lang.RuntimeException (an “unchecked exception”). An application exception may n
be a subclass of thejava.rmi.RemoteException . The java.rmi.RemoteException and
its subclasses are reserved for system exceptions.

The javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Fin-
derException , and subclasses thereof are considered to be application exceptions. These exce
are used as standard application exceptions to report errors to the client from thecreate , remove ,
andfinder methods of the EJBHome and/or EJBLocalHome interfaces of components written t
EJB 2.1 client view (see Subsections 8.5.10 and 10.1.11). These exceptions are covered by the r
application exceptions that are defined in this chapter.

14.1.2 Goals for Exception Handling

The EJB specification for exception handling is designed to meet these high-level goals:

• An application exception thrown by an enterprise bean instance should be reported to the
precisely (i.e., the client gets the same exception)[74].

• An application exception thrown by an enterprise bean instance should not automatically
back a client’s transaction unless the application exception was defined to cause trans
rollback. The client should typically be given a chance to recover a transaction from an a
cation exception.

• An unexpected exception that may have left the instance’s state variables and/or unde
persistent data in an inconsistent state can be handled safely.

14.2 Bean Provider’s Responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exceptio
dling.

14.2.1 Application Exceptions

The Bean Provider defines application exceptions. Application exceptions that are checked exce
may be defined as such by being listed in thethrows clauses of the methods of the bean’s busine
interface, home interface, component interface, and web service endpoint. An application exceptio
is an unchecked exception is defined as an application exception by annotating it with theApplica-
tionException metadata annotation, or denoting it in the deployment descriptor with theappli-
cation-exception element.

[74] This may not be the case where web services protocols are used. See [25].
 5/2/06 356

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

dmin-
level

r-
p-

iness

s the
the
t

ide

ation

it the
appli-
tance

ction

can

tions

w as

stances
ion to

ns and
ty bean
callback
Because application exceptions are intended to be handled by the client, and not by the System A
istrator, they should be used only for reporting business logic exceptions, not for reporting system
problems.

Certain messaging types may define application exceptions in their message listener inte
faces. The resource adapter in use for the particular messaging type determines how the exce
tion is processed. See [15].

The Bean Provider is responsible for throwing the appropriate application exception from the bus
method to report a business logic exception to the client.

An application exception does not automatically result in marking the transaction for rollback unles
ApplicationException annotation is applied to the exception class and is specified with
rollback element valuetrue or theapplication-exception deployment descriptor elemen
for the exception specifies therollback element astrue . The rollback subelement of the
application-exception deployment descriptor element may be explicitly specified to overr
therollback value specified or defaulted by theApplicationException annotation.

The Bean Provider must do one of the following to ensure data integrity before throwing an applic
exception from an enterprise bean instance:

• Ensure that the instance is in a state such that a client’s attempt to continue and/or comm
transaction does not result in loss of data integrity. For example, the instance throws an
cation exception indicating that the value of an input parameter was invalid before the ins
performed any database updates.

• If the application exception is not specified to cause transaction rollback, mark the transa
for rollback using theEJBContext.setRollbackOnly method before throwing the
application exception. Marking the transaction for rollback will ensure that the transaction
never commit.

The Bean Provider is also responsible for using the standard EJB application excep
(javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Find-
erException , and subclasses thereof) for beans written to the EJB 2.1 and earlier client vie
described in Subsections 8.5.10 and 10.1.11.

Bean Providers may define subclasses of the standard EJB application exceptions and throw in
of the subclasses in the enterprise bean methods. A subclass will typically provide more informat
the client that catches the exception.

14.2.2 System Exceptions

A system exception is an exception that is ajava.rmi.RemoteException (or one of its sub-
classes) or aRuntimeException that is not an application exception.

This subsection describes how the Bean Provider should handle various system-level exceptio
errors that an enterprise bean instance may encounter during the execution of a session or enti
business method, a message-driven bean message listener method, an interceptor method, or a
method (e.g.ejbLoad).
357 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

thod, or
t the
unex-
xam-

ptions,

w the
that is
act

error
excep-

stem

e con-

xcep-

appli-
An enterprise bean business method, message listener method, business method interceptor me
lifecycle callback interceptor method may encounter various exceptions or errors that preven
method from successfully completing. Typically, this happens because the exception or error is
pected, or the exception is expected but the EJB Provider does not know how to recover from it. E
ples of such exceptions and errors are: failure to obtain a database connection, JNDI exce
unexpectedRemoteException from invocation of other enterprise beans[75], unexpectedRunt-
imeException , JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allo
method to successfully complete, the method should throw a suitable non-application exception
compatible with the method’sthrows clause. While the EJB specification does not prescribe the ex
usage of the exception, it encourages the Bean Provider to follow these guidelines:

• If the bean method encounters a system exception or error, it should simply propagate the
from the bean method to the container (i.e., the bean method does not have to catch the
tion).

• If the bean method performs an operation that results in a checked exception[76] that the bean
method cannot recover, the bean method should throw thejavax.ejb.EJBException
that wraps the original exception.

• Any other unexpected error conditions should be reported using thejavax.ejb.EJBEx-
ception.

Note that thejavax.ejb.EJBException is a subclass of thejava.lang.RuntimeExcep-
tion , and therefore it does not have to be listed in thethrows clauses of the business methods.

The container catches a non-application exception; logs it (which can result in alerting the Sy
Administrator); and, unless the bean is a message-driven bean, throws thejavax.ejb.EJBExcep-
tion [77] or, if the web service client view is used, thejava.rmi.RemoteException . If the EJB
2.1 client view is used, the container throws thejava.rmi.RemoteException (or subclass
thereof) to the client if the client is a remote client, or throws thejavax.ejb.EJBException (or
subclass thereof) to the client if the client is a local client. In the case of a message-driven bean, th
tainer logs the exception and then throws ajavax.ejb.EJBException that wraps the original
exception to the resource adapter. (See [15]).

The exception that is seen by the client is described in section 14.3. It is determined both by the e
tion that is thrown by the container and/or bean and the client view.

The Bean Provider can rely on the container to perform the following tasks when catching a non-
cation exception:

• The transaction in which the bean method participated will be rolled back.

[75] Note that the enterprise bean business method may attempt to recover from aRemoteException . The text in this subsection
applies only to the case when the business method does not wish to recover from theRemoteException .

[76] A checked exception is one that is not a subclass ofjava.lang.RuntimeException .

[77] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.
 5/2/06 358

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

ing a

abase.

ompo-

e EJB

n busi-

d inter-
• No other method will be invoked on an instance that threw a non-application exception.

This means that the Bean Provider does not have to perform any cleanup actions before throw
non-application exception. It is the container that is responsible for the cleanup.

14.2.2.1 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . It should be thrown by the EJB
2.1 entity bean class methods to indicate that the underlying entity has been removed from the dat

A bean-managed persistence entity bean class typically throws this exception from theejbLoad and
ejbStore methods, and from the methods that implement the business methods defined in the c
nent interface.

14.3 Container Provider Responsibilities

This section describes the responsibilities of the Container Provider for handling exceptions. Th
architecture specifies the container’s behavior for the following exceptions:

• Exceptions from the business methods of session and entity beans, including session bea
ness method interceptor methods.

• Exceptions from message-driven bean message listener methods and business metho
ceptor methods.

• Exceptions from timeout callback methods.

• Exceptions from other container-invoked callbacks on the enterprise bean.

• Exceptions from management of container-managed transaction demarcation.
359 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

siness
hrown
e table
ethod

e client
view

ed
14.3.1 Exceptions from a Session Bean’s Business Interface Methods
Table 16 specifies how the container must handle the exceptions thrown by the methods of the bu
interface for beans with container-managed transaction demarcation, including the exceptions t
by business method interceptor methods which intercept the invocation of business methods. Th
specifies the container’s action as a function of the condition under which the business interface m
executes and the exception thrown by the method. The table also illustrates the exception that th
will receive and how the client can recover from the exception. (Section 14.4 describes the client’s
of exceptions in detail.) The notation “AppException” denotes an application exception.

Table 14 Handling of Exceptions Thrown by a Business Interface Method of a Bean with Container-Manag
Transaction Demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required , Man-
datory , andSup-
ports attributes.

AppException Re-throw AppException.

Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

Receives AppException.

Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
unless the application
exception is specified as
causing rollback (the
commit would fail if the
instance calledset-
RollbackOnly).

all other exceptions and
errors

Log the exception or
error [Note B].

Mark the transaction for
rollback.

Discard instance
[Note C].

Throw javax.ejb.EJB-
TransactionRolled-
backException to client.
[Note D]

Receives
javax.ejb.EJBTransac-
tionRolledbackExcep-
tion

Continuing transaction is
fruitless.
 5/2/06 360

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

min-

acks

nsac-

emote-

emote-

ed
Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called
setRollback-
Only() , then rollback
the transaction, and
re-throw AppException.

Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback,
and then re-throw
AppException.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Rollback the con-
tainer-started transaction.

Discard instance.

Throw EJBException to
client.[Note E]

ReceivesEJBException .

If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with theNotSup-
ported , Never , and
Supports attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw EJBException to
client.[Note F]

ReceivesEJBException .

If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Notes:

[A] The caller can be another enterprise bean or an arbitrary client program.

[B] Log the exception or errormeans that the container logs the exception or error so that the System Ad
istrator is alerted of the problem.

[C] Discard instance means that the container must not invoke any business methods or container callb
on the instance.

[D] If the business interface is a remote business interface that extends java.rmi.Remote, the javax.tra
tion.TransactionRolledbackException is thrown to the client, which will receive this exception.

[E] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.R
Exception is thrown to the client, which will receive this exception.

[F] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.R
Exception is thrown to the client, which will receive this exception.

Table 14 Handling of Exceptions Thrown by a Business Interface Method of a Bean with Container-Manag
Transaction Demarcation

 Method condition Method exception Container’s action Client’s view
361 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

siness
wn by
e table
ethod

e client
view

’s busi-
rfaces

aged

emote-
Table 15 specifies how the container must handle the exceptions thrown by the methods of the bu
interface for beans with bean-managed transaction demarcation, including the exceptions thro
business method interceptor methods which intercept the invocation of business methods. Th
specifies the container’s action as a function of the condition under which the business interface m
executes and the exception thrown by the method. The table also illustrates the exception that th
will receive and how the client can recover from the exception. (Section 14.4 describes the client’s
of exceptions in detail.)

14.3.2 Exceptionsfr om Method Invokedvia Sessionor Entity Bean’s2.1Client View or
thr ough Web Service Client View

Business methods in this context are considered to be the methods defined in the enterprise bean
ness interface, home interface, component interface, or web service endpoint (including superinte
of these); and the following session bean or entity bean methods:ejbCreate<METHOD> , ejb-
PostCreate<METHOD> , ejbRemove , ejbHome<METHOD>, andejbFind<METHOD> methods.

Table 15 Handling of Exceptions Thrown by a Business Interface Method of a Session Bean with Bean-Man
Transaction Demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.

Throw EJBException to
client. [Note A]

Notes:

[A] If the business interface is a remote business interface that extends java.rmi.Remote, the java.rmi.R
Exception is thrown to the client, which will receive this exception.

ReceivesEJBException .
 5/2/06 362

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

ods for
siness

fies the
nd the
nt will
iew of

f a
Table 16 specifies how the container must handle the exceptions thrown by the business meth
beans with container-managed transaction demarcation, including the exceptions thrown by bu
method interceptor methods which intercept the invocation of business methods. The table speci
container’s action as a function of the condition under which the business method executes a
exception thrown by the business method. The table also illustrates the exception that the clie
receive and how the client can recover from the exception. (Section 14.4 describes the client’s v
exceptions in detail.) The notation “AppException” denotes an application exception.

Table 16 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View o
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required , Man-
datory , andSup-
ports attributes.

AppException Re-throw AppException

Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

Receives AppException.

Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
unless the application
exception is specified as
causing rollback (the
commit would fail if the
instance calledset-
RollbackOnly).

all other exceptions and
errors

Log the exception or
error [Note B].

Mark the transaction for
rollback.

Discard instance
[Note C].

Throw javax.transac-
tion.Transaction-
RolledbackException to
remote client; throw
javax.ejb.Transac-
tionRolledbackLocal-
Exception to local client.

Receivesjavax.trans-
action.Transaction-
RolledbackException or
javax.ejb.Transac-
tionRolledbackLocal-
Exception

Continuing transaction is
fruitless.
363 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

e for

min-

acks

f a
Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called
setRollback-
Only() , then rollback
the transaction, and
re-throw AppException.

Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback,
and then re-throw
AppException.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Rollback the con-
tainer-started transaction.

Discard instance.

Throw RemoteException
to remote or web service
client [Note D]; throw
EJBException to local
client.

ReceivesRemoteExcep-
tion or EJBException .

If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with theNotSup-
ported , Never , and
Supports attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw RemoteException
to remote or web service
client; throwEJBExcep-
tion to local client.

ReceivesRemoteExcep-
tion or EJBException .

If the client executes in a
transaction, the client’s
transaction may or may
not be marked for roll-
back.

Notes:

[A] The caller can be another enterprise bean or an arbitrary client program. This case is not applicabl
methods of the web service endpoint.

[B] Log the exception or errormeans that the container logs the exception or error so that the System Ad
istrator is alerted of the problem.

[C] Discard instance means that the container must not invoke any business methods or container callb
on the instance.

[D] Throw RemoteException to web service client means that the container maps theRemoteExcep-
tion to the appropriate SOAP fault. See [25].

Table 16 Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View o
Bean with Container-Managed Transaction Demarcation

 Method condition Method exception Container’s action Client’s view
 5/2/06 364

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

ods for
method
e con-
excep-
ceive
xcep-

 Bean
Table 17 specifies how the container must handle the exceptions thrown by the business meth
beans with bean-managed transaction demarcation, including the exceptions thrown by business
interceptor methods which intercept the invocation of business methods. The table specifies th
tainer’s action as a function of the condition under which the business method executes and the
tion thrown by the business method. The table also illustrates the exception that the client will re
and how the client can recover from the exception. (Section 14.4 describes the client’s view of e
tions in detail.)

14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Stateless Session
Bean with Web Service Client View
Table 18 specifies how the container must handle the exceptions thrown by thePostConstruct and
PreDestroy methods for stateless session beans with a web service client view.

Table 17 Handling of Exceptions Thrown by a Business Method of a Session Bean with Bean-Managed
Transaction Demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.

Throw RemoteException
to remote or web service
client [Note A]; throw
EJBException to local
client.

Notes:

[A] Throw RemoteException to web service client means that the container maps theRemoteExcep-
tion to the appropriate SOAP fault. See [25].

ReceivesRemoteExcep-
tion or EJBException .

Table 18 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateless Session
with Web Service Client View.

Bean method condition Bean method exception Container action

Bean is stateless session
bean with web service
client view

system exceptions Log the exception or
error.

Discard instance.
365 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

s mes-

method
eptions
stener
h the
14.3.4 Exceptions from Message-Driven Bean Message Listener Methods

This section specifies the container’s handling of exceptions thrown from a message-driven bean’
sage listener method.

Table 19 specifies how the container must handle the exceptions thrown by a message listener
of a message-driven bean with container-managed transaction demarcation, including the exc
thrown by business method interceptor methods which intercept the invocation of message li
methods. The table specifies the container’s action as a function of the condition under whic
method executes and the exception thrown by the method.

Table 19 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

Bean method runs in the
context of a transaction
that the container started
immediately before dis-
patching the method.
This case happens with
Required attribute.

AppException

Mark the transaction for
rollback if the applica-
tion exception is speci-
fied as causing rollback.

If the instance called
setRollbackOnly ,
rollback the transaction
and re-throw AppExcep-
tion to resource adapter.

Otherwise, attempt to
commit the transaction
unless the application
exception is specified as
causing rollback and
re-throw AppException
to resource adapter.

system exceptions Log the exception or
error[Note A].

Rollback the con-
tainer-started transaction.

Discardinstance[NoteB].

Throw EJBException
that wraps the original
exception to resource
adapter.

Notes:

[A] Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

Bean method runs with
an unspecified transac-
tion context.
This case happens with
theNotSupported
attribute.

AppException Re-throw AppException
to resource adapter.

system exceptions Log the exception or
error.

Discard instance.

Throw EJBException
that wraps the original
exception to resource
adapter
 5/2/06 366

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

thod of
ntainer’s
y tthe

meout

on

Bean.
Table 20 specifies how the container must handle the exceptions thrown by a message listener me
a message-driven bean with bean-managed transaction demarcation. The table specifies the co
action as a function of the condition under which the method executes and the exception thrown b
method.

14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Message-Driven
Bean
Table 21 specifies how the container must handle the exceptions thrown by thePostConstruct and
PreDestroy methods of message-driven beans.

14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method

This section specifies the container’s handling of exceptions thrown from an enterprise bean’s ti
callback method.

[B] Discard instance means that the container must not invoke any methods
the instance.

Table 20 Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Bean-Managed Transaction Demarcation.

Bean method condition Bean method exception Container action

Bean is message-driven
bean

AppException Re-throw AppException
to resource adapter.

system exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.

Throw EJBException
that wraps the original
exception to resource
adapter.

Table 21 Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Message-Driven

Bean method condition Bean method exception Container action

Bean is message-driven
bean

system exceptions Log the exception or
error.

Discard instance.
367 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

t call-
ptions

con-
meth-

on

on
Table 22 and Table 23 specify how the container must handle the exceptions thrown by the timeou
back method of an enterprise bean. The timeout callback method does not throw application exce
and cannot throw exceptions to the client.

14.3.7 Exceptions from Other Container-invoked Callbacks

This subsection specifies the container’s handling of exceptions thrown from the other
tainer-invoked callbacks on the enterprise bean. This subsection applies to the following callback
ods:

Table 22 Handling of Exceptions Thrown by the Timeout Callback Method of an Enterprise Bean with
Container-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

Bean timeout callback
method runs in the con-
text of a transaction that
the container started
immediately before dis-
patching the method.

system exceptions Log the exception or
error[Note A].

Rollback the con-
tainer-started transaction.

Discardinstance[NoteB].

Notes:

[A] Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[B] Discard instance means that the container must not invoke any methods
the instance.

Table 23 Handling of Exceptions Thrown by the Timeout Callback Method of an Enterprise Bean with
Bean-Managed Transaction Demarcation.

 Method condition Method exception Container’s action

The bean timeout call-
back method may make
use of UserTransaction.

system exceptions Log the exception or
error[Note A].

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discardinstance[NoteB].

Notes:

[A] Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[B] Discard instance means that the container must not invoke any methods
the instance.
 5/2/06 368

Container Provider Responsibilities Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

tor.

tainer

w the

the

the

the
• Dependency injection methods.

• The ejbActivate , ejbLoad , ejbPassivate , ejbStore , setEntityContext ,
andunsetEntityContext methods of theEntityBean interface.

• The PostActivate and PrePassivate callback methods, and/orejbActivate ,
ejbPassivate , andsetSessionContext methods of theSessionBean interface.

• ThesetMessageDrivenContext method of theMessageDrivenBean interface.

• The afterBegin, beforeCompletion and afterCompletion methods of the
SessionSynchronization interface.

The container must handle all exceptions or errors from these methods as follows:

• Log the exception or error to bring the problem to the attention of the System Administra

• If the instance is in a transaction, mark the transaction for rollback.

• Discard the instance (i.e., the container must not invoke any business methods or con
callbacks on the instance).

• If the exception or error happened during the processing of a client invoked method, thro
javax.ejb.EJBException [78]. If the EJB 2.1 client view or web service client view is
used, throw thejava.rmi.RemoteException to the client if the client is a remote client
or throw thejavax.ejb.EJBException to the client if the client is a local client. If the
instance executed in the client’s transaction, the container should throw
javax.ejb.EJBTransactionRolledbackException [79]. If the EJB 2.1 client view
or web service client view is used, the container should throw thejavax.transac-
tion.TransactionRolledbackException to a remote client or the
javax.ejb.TransactionRolledbackLocalException to a local client, because it
provides more information to the client. (The client knows that it is fruitless to continue
transaction.)

14.3.8 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . If it is thrown by a method of an
entity bean class, the container must handle the exception using the rules forEJBException
described in Sections 14.3.2, 14.3.4, and 14.3.7.

To give the client a better indication of the cause of the error, the container should throw
java.rmi.NoSuchObjectException (which is a subclass ofjava.rmi.RemoteExcep-
tion) to a remote client, or thejavax.ejb.NoSuchObjectLocalException to a local client.

[78] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.

[79] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejavax.transac-
tion.TransactionRolledbackException is thrown to the client instead.
369 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Container Provider Responsibilities

Sun Microsystems, Inc.

should
r

ns, as
excep-

w the
e

e
m-
ethod,

d the
e

usiness

e cli-

lease all
in the

stance
r can-
JDK

ations
gar-
14.3.9 Non-existing Stateful Session or Entity Object

If a client makes a call to a stateful session or entity object that has been removed, the container
throw thejavax.ejb.NoSuchEJBException [80]. If the EJB 2.1 client view is used, the containe
should throw the java.rmi.NoSuchObjectException (which is a subclass of
java.rmi.RemoteException) to a remote client, or thejavax.ejb.NoSuchObjectLo-
calException to a local client.

14.3.10 Exceptions from the Management of Container-Managed Transactions

The container is responsible for starting and committing the container-managed transactio
described in Subsection 13.6.2. This subsection specifies how the container must deal with the
tions that may be thrown by the transaction start and commit operations.

If the container fails to start or commit a container-managed transaction, the container must thro
javax.ejb.EJBException [81]. If the web service client view or EJB 2.1 client view is used, th
container must throw thejava.rmi.RemoteException to a remote or web service client and th
javax.ejb.EJBException to a local client. In the case where the container fails to start or co
mit a container-managed transaction on behalf of a message-driven bean or a timeout callback m
the container must throw and log thejavax.ejb.EJBException .

However, the container should not throw thejavax.ejb.EJBException or java.rmi.Remo-
teException or if the container performs a transaction rollback because the instance has invoke
setRollbackOnly method on itsEJBContext object. In this case, the container must rollback th
transaction and pass the business method result or the application exception thrown by the b
method to the client.

Note that some implementations of the container may retry a failed transaction transparently to th
ent and enterprise bean code. Such a container would throw thejavax.ejb.EJBException or
java.rmi.RemoteException or after a number of unsuccessful tries.

14.3.11 Release of Resources

When the container discards an instance because of a system exception, the container should re
the resources held by the instance that were acquired through the resource factories declared
enterprise bean environment (See Subsection 16.7).

Note: While the container should release the connections to the resource managers that the in
acquired through the resource factories declared in the enterprise bean environment, the containe
not, in general, release “unmanaged” resources that the instance may have acquired through the
APIs. For example, if the instance has opened a TCP/IP connection, most container implement
will not be able to release the connection. The connection will be eventually released by the JVM
bage collector mechanism.

[80] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.NoSuchObject-
Exception is thrown to the client instead.

[81] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.RemoteExcep-
tion is thrown to the client instead.
 5/2/06 370

Client’s View of Exceptions Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

d in

rit-

e of the

n.

whether
enter-

t view
t is a

va RMI
er-
14.3.12 Support for Deprecated Use ofjava.rmi.RemoteException

The EJB 1.0 specification allowed the business methods,ejbCreate , ejbPostCreate ,
ejbFind<METHOD> , ejbRemove , and the container-invoked callbacks (i.e., the methods define
the EntityBean , SessionBean , andSessionSynchronization interfaces) implemented in
the enterprise bean class to use thejava.rmi.RemoteException to report non-application excep-
tions to the container.

This use of thejava.rmi.RemoteException was deprecated in EJB 1.1—enterprise beans w
ten for the EJB 1.1 specification should use thejavax.ejb.EJBException instead, and enterprise
beans written for the EJB 2.0 or later specification must use thejavax.ejb.EJBException
instead.

The EJB 1.1 and EJB 2.0 or later specifications require that a container support the deprecated us
java.rmi.RemoteException . The container should treat thejava.rmi.RemoteException
thrown by an enterprise bean method in the same way as it is specified for thejavax.ejb.EJBEx-
ception .

14.4 Client’s View of Exceptions

This section describes the client’s view of exceptions received from an enterprise bean invocatio

A client accesses an enterprise bean either through the enterprise bean’s business interface (
local or remote), through the enterprise bean’s remote home and remote interfaces, through the
prise bean’s local home and local interfaces, or through the enterprise bean’s web service clien
depending on whether the client is written to the EJB 3.0 API or earlier API and whether the clien
remote client, a local client, or a web service client.

The methods of the business interface typically do not throw thejava.rmi.RemoteException ,
regardless of whether the interface is a remote or local interface.

The remote home interface, the remote interface, and the web service endpoint interface are Ja
interfaces, and therefore thethrows clauses of all their methods (including those inherited from sup
interfaces) include the mandatoryjava.rmi.RemoteException. The throws clauses may
include an arbitrary number of application exceptions.

The local home and local interfaces are both Java local interfaces, and thethrows clauses of all their
methods (including those inherited from superinterfaces) must not include thejava.rmi.Remote-
Exception. Thethrows clauses may include an arbitrary number of application exceptions.
371 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release Client’s View of Exceptions

Sun Microsystems, Inc.

nt can
e EJB

rown
bean

ecified
plica-

inter-
plica-
fore

arca-

it is the
that

ceptions

om-
ystem

ean’s

been
14.4.1 Application Exception

14.4.1.1 Local and Remote Clients

If a client program receives an application exception from an enterprise bean invocation, the clie
continue calling the enterprise bean. An application exception does not result in the removal of th
object.

Although the container does not automatically mark for rollback a transaction because of a th
application exception, the transaction might have been marked for rollback by the enterprise
instance before it threw the application exception or the application exception may have been sp
to require the container to rollback the transaction. There are two ways to learn if a particular ap
tion exception results in transaction rollback or not:

• Statically. Programmers can check the documentation of the enterprise bean’s client view
face. The Bean Provider may have specified (although he or she is not required to) the ap
tion exceptions for which the enterprise bean marks the transaction for rollback be
throwing the exception.

• Dynamically. Clients that are enterprise beans with container-managed transaction dem
tion can use thegetRollbackOnly method of thejavax.ejb.EJBContext object to
learn if the current transaction has been marked for rollback; other clients may use theget-
Status method of thejavax.transaction.UserTransaction interface to obtain
the transaction status.

14.4.1.2 Web Service Clients

If a stateless session bean throws an application exception from one of its web service methods,
responsibility of the container to map the exception to the SOAP fault specified in the WSDL
describes the port type that the stateless session bean implements. For Java clients, the ex
received by the client are described by the mapping rules in [25].

14.4.2 java.rmi.RemoteException and javax.ejb.EJBException

As described above, a client receives thejavax.ejb.EJBException or the java.rmi.Remo-
teException as an indication of a failure to invoke an enterprise bean method or to properly c
plete its invocation. The exception can be thrown by the container or by the communication subs
between the client and the container.

If the client receives thejavax.ejb.EJBException or the java.rmi.RemoteException
exception from a method invocation, the client, in general, does not know if the enterprise b
method has been completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have
marked for rollback by the communication subsystem or target bean’s container.
 5/2/06 372

Client’s View of Exceptions Enterprise JavaBeans 3.0, Final Release Exception Handling

Sun Microsystems, Inc.

r the
e been
thod

xe-

n the
.

deal

k its
roll-
prise

other
was

atus to
enter-

rprise

ting by

the

been
nsac-
For example, the transaction would be marked for rollback if the underlying transaction service o
target bean’s container doubted the integrity of the data because the business method may hav
partially completed. Partial completion could happen, for example, when the target bean’s me
returned with aRuntimeException exception, or if the remote server crashed in the middle of e
cuting the business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, whe
communication subsystem on the client-side has not been able to send the request to the server

When a client executing in a transaction context receives anEJBException or a RemoteExcep-
tion from an enterprise bean invocation, the client may use either of the following strategies to
with the exception:

• Discontinue the transaction. If the client is the transaction originator, it may simply rollbac
transaction. If the client is not the transaction originator, it can mark the transaction for
back or perform an action that will cause a rollback. For example, if the client is an enter
bean, the enterprise bean may throw aRuntimeException which will cause the container
to rollback the transaction.

• Continue the transaction. The client may perform additional operations on the same or
enterprise beans, and eventually attempt to commit the transaction. If the transaction
marked for rollback at the time theEJBException or RemoteException was thrown to
the client, the commit will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction st
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an
prise bean with container-managed transaction demarcation can use theEJBContext.getRoll-
backOnly method to test if the transaction has been marked for rollback; a client that is an ente
bean with bean-managed transaction demarcation, and other client types, can use theUserTransac-
tion.getStatus method to obtain the status of the transaction.

Some implementations of EJB servers and containers may provide more detailed exception repor
throwing an appropriate subclass of thejavax.ejb.EJBException or java.rmi.RemoteEx-
ception to the client. The following subsections describe the several subclasses of
javax.ejb.EJBException and java.rmi.RemoteException that may be thrown by the
container to give the client more information.

14.4.2.1 javax.ejb.EJBTransactionRolledbackException,
javax.ejb.TransactionRolledbackLocalException, and
javax.transaction.TransactionRolledbackException

The javax.ejb.EJBTransactionRolledbackException and javax.ejb.Transac-
tionRolledbackLocalException are subclasses of thejavax.ejb.EJBException . The
javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

If a client receives one of these exceptions, the client knows for certain that the transaction has
marked for rollback. It would be fruitless for the client to continue the transaction because the tra
tion can never commit.
373 May 2, 2006 2:35 pm

Exception Handling Enterprise JavaBeans 3.0, Final Release System Administrator’s Responsibilities

Sun Microsystems, Inc.

at the

mplete

ly.

ot

ause

and
excep-
14.4.2.2 javax.ejb.EJBTransactionRequiredException,
javax.ejb.TransactionRequiredLocalException, and
javax.transaction.TransactionRequiredException

The javax.ejb.EJBTransactionRequiredException and javax.ejb.Transac-
tionRequiredLocalException are subclasses of thejavax.ejb.EJBException . The
javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

The javax.ejb.EJBTransactionRequiredException , javax.ejb.TransactionRe-
quiredLocalException , or javax.transaction.TransactionRequiredException
informs the client that the target enterprise bean must be invoked in a client’s transaction, and th
client invoked the enterprise bean without a transaction context.

This error usually indicates that the application was not properly formed.

14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and
java.rmi.NoSuchObjectException

The javax.ejb.NoSuchEJBException is a subclass of thejavax.ejb.EJBException. It
is thrown to the client of a session bean’s business interface if a local business method cannot co
because the EJB object no longer exists.

The javax.ejb.NoSuchObjectLocalException and thejava.rmi.NoSuchObjectEx-
ception apply to the business methods of the EJB 2.1 local and remote client views respective

• The javax.ejb.NoSuchObjectLocalException is a subclass of the
javax.ejb.EJBException. It is thrown to the client if a local business method cann
complete because the EJB object no longer exists.

• The java.rmi.NoSuchObjectException is a subclass of thejava.rmi.Remote-
Exception. It is thrown to the client if a remote business method cannot complete bec
the EJB object no longer exists.

14.5 System Administrator’s Responsibilities

The System Administrator is responsible for monitoring the log of the non-application exceptions
errors logged by the container, and for taking actions to correct the problems that caused these
tions and errors.
 5/2/06 374

Support for Distribution Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

JB 2.1
uire-
dition

Java™
es as
rent

te home

s to be
P as
Chapter 15 Support for Distributed Interoperability

This chapter describes the interoperability support for accessing an enterprise bean through the E
remote client view from clients distributed over a network, and the distributed interoperability req
ments for invocations on enterprise beans from remote clients that are Java Platform, Enterprise E
(Java EE) components.

15.1 Support for Distribution

The remote home and remote interfaces of an enterprise bean’s remote client view are defined as
RMI [6] interfaces. This allows the container to implement the remote home and remote interfac
distributed objects. A client using the remote home and remote interfaces can reside on a diffe
machine than the enterprise bean (location transparency), and the object references of the remo
and remote interfaces can be passed over the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise bean
legal RMI-IIOP types [10]. This makes it possible for EJB container implementors to use RMI-IIO
the object distribution protocol.
375 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Interoperability Overview

Sun Microsystems, Inc.

ates
me

deploy-
proto-

d to be
gh the
dress

Addi-

lustrate
15.1.1 Client-Side Objects in a Distributed Envir onment

When the RMI-IIOP protocol or similar distribution protocols are used, the remote client communic
with the enterprise bean usingstubsfor the server-side objects. The stubs implement the remote ho
and remote interfaces.

Figure 31 Location of EJB Client Stubs.

The communication stubs used on the client side are artifacts generated at the enterprise bean’s
ment time by the Container Provider’s tools. The stubs used on the client are specific to the wire
col used for the remote invocation.

15.2 Interoperability Overview

Session beans and entity beans that are deployed in one vendor’s server product may nee
accessed from Java EE client components that are deployed in another vendor’s product throu
remote client view. EJB defines a standard interoperability protocol based on CORBA/IIOP to ad
this need.

The interoperability protocols described here must be supported by compatible EJB products.
tional vendor-specific protocols may also be supported.

Figure 32 shows a heterogeneous environment that includes systems from several vendors to il
the interoperability enabled by EJB.

enterprise Bean

container address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container
 5/2/06 376

Interoperability Overview Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

, and

er to
n EJB

Pages
er pro-
d on a
Figure 32 Heterogeneous EJB Environment

The following sections in this chapter

• describe the goals for EJB invocation interoperability

• provide illustrative scenarios

• describe the interoperability requirements for remote invocations, transactions, naming
security.

15.2.1 Inter operability Goals

The goals of the interoperability requirements specified in this chapter are as follows:

• To allow clients in one application deployed in Java EE containers from one server provid
access services from session and entity beans in another application that is deployed in a
container from a different server provider. For example, web components (JavaServer
and servlets) that are deployed on a Java EE compliant web server provided by one serv
vider must be able to invoke the business methods of enterprise beans that are deploye
Java EE compliant EJB server from another server provider.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

JSP/
Servlet
client

Application
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP
377 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Interoperability Scenarios

Sun Microsystems, Inc.

evel-

pos-
rent
Java

, and
ndard

ava-EE
tions
nd

n in

echa-
riptive.
exactly

r more

s static

ime,
nter-

r types.
• To achieve interoperability without any new requirements on the Java EE application d
oper.

• To ensure out-of-the-box interoperability between compliant Java EE products. It must be
sible for an enterprise customer to install multiple Java EE server products from diffe
server providers (on potentially different operating systems), deploy applications in the
EE servers, and have the multiple applications interoperate.

• To leverage the interoperability work done by standards bodies (including the IETF, W3C
OMG) where possible, so that customers can work with industry standards and use sta
protocols to access enterprise beans.

This specification does not address interoperability issues between enterprise beans and non-J
components. The Java EE platform specification [12] and the JAX-RPC and JAX-WS specifica
[25], [32] describe requirements for interoperability with Internet clients (using HTTP and XML) a
interoperability with enterprise information systems (using the Connector architecture [15]).

Since the interoperability protocol described here is based on CORBA/IIOP, CORBA clients writte
Java, C++, or other languages can also invoke methods on enterprise beans.

This chapter subsumes the previous EJB1.1-to-CORBA mapping document [16].

15.3 Interoperability Scenarios

This section presents a number of interoperability scenarios that motivate the interoperability m
nisms described in later sections of this chapter. These scenarios are illustrative rather than presc
This section does not specify requirements for a Java EE product to support these scenarios in
the manner described here.

Java EE applications are multi-tier, web-enabled applications. Each application consists of one o
components, which are deployed in containers. The four types of containers are:

• EJB containers, which host enterprise beans.

• Web containers, which host JavaServer Pages (JSPs) and servlet components as well a
documents, including HTML pages.

• Application client containers, which host standalone applications.

• Applet containers, which host applets which may be downloaded from a web site. At this t
there is no requirement for an applet to be able to directly invoke the remote methods of e
prise beans.

The scenarios below describe interactions between components hosted in these various containe

15.3.1 Interactions Between Web Containers and EJB Containers for E-Commerce
 5/2/06 378

Interoperability Scenarios Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

ternet.

con-
a EE
e. The

ed in
criptor
rvice.

nts for
TTPS
book
e book
ip with

attacks.

enter-

mutual
ides to
in the

erprise
e EJB
ommits

desk-
loyed

nother
nfra-
s to be

n the
Home
he Sys-
e cli-
es the
Applications

This scenario occurs for business-to-business and business-to-consumer interactions over the In

Scenario 1:A customer wants to buy a book from an Internet bookstore. The bookstore’s web site
sists of a Java EE application containing JSPs that form the presentation layer, and another Jav
application containing enterprise beans that have the business logic and database access cod
JSPs and enterprise beans are deployed in containers from different vendors.

At deployment time:The enterprise beans are deployed, and their EJBHome objects are publish
the EJB server’s name service. The Deployer links the EJB reference in the JSP’s deployment des
to the URL of the enterprise bean’s EJBHome object, which can be looked up from the name se
The transaction attribute specified in the enterprise bean’s deployment descriptor isRequiresNew
for all business methods. Because the “checkout” JSP requires secure access to set up payme
purchases, the bookstore’s administrator configures the “checkout” JSP to require access over H
with only server authentication. Customer authentication is done using form-based login. The “
search” JSP is accessed over normal HTTP. Both JSPs talk with enterprise beans that access th
database. The web and EJB containers use the same customer realm and have a trust relationsh
each other. The network between the web and EJB servers is not guaranteed to be secure from

At runtime: The customer accesses the book search JSP using a browser. The JSP looks up the
prise bean’s EJBHome object in a name service, and callsfindBooks(...) with the search criteria
as parameters. The web container establishes a secure session with the EJB container with
authentication between the containers, and invokes the enterprise bean. The customer then dec
buy a book, and accesses the “checkout” JSP. The customer enters the necessary information
login form, which is used by the web server to authenticate the customer. The JSP invokes the ent
bean to update the book and customer databases. The customer’s principal is propagated to th
container and used for authorization checks. The enterprise bean completes the updates and c
the transaction. The JSP sends back a confirmation page to the customer.

15.3.2 Interactions Between Application Client Containers and EJB Containers Within
an Enterprise’s Intranet

Scenario 2.1:An enterprise has an expense accounting application used by employees from their
tops. The server-side consists of a Java EE application containing enterprise beans that are dep
on one vendor's Java EE product, which is hosted in a datacenter. The client side consists of a
Java EE application containing an application client deployed using another vendor's Java EE i
structure. The network between the application client and the EJB container is insecure and need
protected against spoofing and other attacks.

At deployment time:The enterprise beans are deployed and their EJBHome objects are published i
enterprise’s name service. The application clients are configured with the names of the EJB
objects. The Deployer maps employees to roles that are allowed access to the enterprise beans. T
tem Administrator configures the security settings of the application client and EJB container to us
ent and server authentication and message protection. The System Administrator also do
necessary client-side configuration to allow client authentication.
379 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Interoperability Scenarios

Sun Microsystems, Inc.

r may
tials.
ean’s
trans-
and

xpense
nvoked.
ethods.

infra-
er. At
nvoca-

ith a
from

prise's
nicate
payroll
cenario

se
ayroll

may
s
rs do
ainer.
s if the

s the
me

tabase
es the
loyee
. The
con-

. If an
estore
At runtime: The employee logs on using username and password. The application client containe
interact with the enterprise’s authentication service infrastructure to set up the employee’s creden
The client application does a remote invocation to the name server to look up the enterprise b
EJBHome object, and creates the enterprise beans. The application client container uses a secure
port protocol to interact with the name server and EJB server, which does mutual authentication
also guarantees the confidentiality and integrity of messages. The employee then enters the e
information and submits it. This causes remote business methods of the enterprise beans to be i
The EJB container performs authorization checks and, if they succeed, executes the business m

Scenario 2.2:This is the same as Scenario 2.1, except that there is no client-side authentication
structure set up by the System Administrator which can authenticate at the transport protocol lay
runtime the client container needs to send the user’s password to the server during the method i
tion to authenticate the employee.

15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet

Scenario 3:An enterprise has an expense accounting application which needs to communicate w
payroll application. The applications use enterprise beans and are deployed on Java EE servers
different vendors. The Java EE servers and naming/authentication services may be in the enter
datacenter with a physically secure private network between them, or they may need to commu
across the intranet, which may be less secure. The applications need to update accounts and
databases. The employee (client) accesses the expense accounting application as described in S
2.

At deployment time:The Deployer configures both applications with the appropriate databa
resources. The accounts application is configured with the name of the EJBHome object of the p
application. The payroll bean’s deployment descriptor specifies theRequiresNew transaction
attribute for all methods. The applications use the same principal-to-role mappings (e.g. the roles
be Employee , PayrollDept , AccountsDept). The Deployer of these two applications ha
administratively set up a trust relationship between the two EJB containers, so that the containe
not need to authenticate principals propagated on calls to enterprise beans from the other cont
The System Administrator also sets up the message protection parameters of the two container
network is not physically secure.

At runtime: An employee makes a request to the accounts application which requires it to acces
payroll application. The accounts application does a lookup of the payroll application’s EJBHo
object in the naming/directory service and creates enterprise beans. It updates the accounts da
and invokes a remote method of the payroll bean. The accounts bean’s container propagat
employee’s principal on the method call. The payroll bean’s container maps the propagated emp
principal to a role, does authorization checks, and sets up the payroll bean’s transaction context
container starts a new transaction, then the payroll bean updates the payroll database, and the
tainer commits the transaction. The accounts bean receives a status reply from the payroll bean
error occurs in the payroll bean, the accounts bean executes code to recover from the error and r
the databases to a consistent state.
 5/2/06 380

Overview of Interoperability Requirements Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

lica-
nd con-
hrough
sults

ccess
lm and

xpense
ation is
erating
reden-
tainer

denti-

rences

cribed

ction

.8):

hen-

r to
hen-

er to
5.8.
15.3.4 Intranet A pplication Interactions Between Web Containers and EJB Containers

Scenario 4:This is the same as scenario 2.1, except that instead of using a “fat-client” desktop app
tion to access the enterprise’s expense accounting application, employees use a web browser a
nect to a web server in the intranet that hosts JSPs. The JSPs gather input from the user (e.g., t
an HTML form), invoke enterprise beans that contain the actual business logic, and format the re
returned by the enterprise beans (using HTML).

At deployment time:The enterprise Deployer configures its expense accounting JSPs to require a
over HTTPS with mutual authentication. The web and EJB containers use the same customer rea
have a trust relationship with each other.

At run-time: The employee logs in to the client desktop, starts the browser, and accesses the e
accounting JSP. The browser establishes an HTTPS session with the web server. Client authentic
performed (for example) using the employee’s credentials which have been established by the op
system at login time (the browser interacts with the operating system to obtain the employee’s c
tials). The JSP looks up the enterprise bean’s EJBHome object in a name service. The web con
establishes a secure session with the EJB container with mutual authentication and integrity/confi
ality protection between the containers, and invokes methods on the enterprise beans.

15.4 Overview of Interoperability Requirements

The interoperability requirements used to support the above scenarios are:

1. Remote method invocation on an enterprise bean’s EJBObject and EJBHome object refe
(scenarios 1,2,3,4), described in section 15.5.

2. Name service lookup of the enterprise bean’s EJBHome object (scenarios 1,2,3,4), des
in section 15.7.

3. Integrity and confidentiality protection of messages (scenarios 1,2,3,4), described in se
15.8.

4. Authentication between an application client and EJB container (described in section 15

4.1 Mutual authentication at the transport protocol layer when there is client-side aut
tication infrastructure such as certificates (scenario 2.1).

4.2 Transfer of the user’s authentication data from application client to EJB containe
allow the EJB container to authenticate the client when there is no client-side aut
tication infrastructure (scenario 2.2).

5. Mutual authentication between two EJB containers or between a web and EJB contain
establish trust before principals are propagated (scenarios 1,3,4), described in section 1
381 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Remote Invocation Interoperability

Sun Microsystems, Inc.

eans
nship

ell as in

bject
ferent

oca-
P 1.2

cifica-

must
ble to
ectional
receives

support

ct and
up-

be fol-

ssages
s as
pping

forms
6. Propagation of the Internet or intranet user’s principal name for invocations on enterprise b
from web or EJB containers when the client and server containers have a trust relatio
(scenarios 1,3,4), described in section 15.8.

EJB, web, and application client containers must support the above requirements separately as w
combinations.

15.5 Remote Invocation Interoperability

This section describes the interoperability mechanisms that enable remote invocations on EJBO
and EJBHome object references when client containers and EJB containers are provided by dif
vendors. This is needed to satisfy interoperability requirement (1) in section 15.4.

All EJB, web, and application client containers must support the IIOP 1.2 protocol for remote inv
tions on EJBObject and EJBHome references. EJB containers must be capable of servicing IIO
based invocations on EJBObject and EJBHome objects. IIOP 1.2 is part of the CORBA 2.3.1 spe
tion [17] from the OMG[82]. Containers may additionally support vendor-specific protocols.

CORBA Interoperable Object References (IORs) for EJBObject and EJBHome object references
include the GIOP version number 1.2. The IIOP infrastructure in all Java EE containers must be a
accept fragmented GIOP messages, although sending fragmented messages is optional. Bidir
GIOP messages may optionally be supported by Java EE clients and servers: if a Java EE server
an IIOP message from a client which contains theBiDirIIOPServiceContext structure, it may
or may not use the same connection for sending requests back to the client.

Since Java applications use Unicode characters by default, Java EE containers are required to
the Unicode UTF16 code set for transmission of character and string data (in the IDLwchar and
wstring datatypes). Java EE containers may optionally support additional code sets. EJBObje
EJBHome IORs must have theTAG_CODE_SETStagged component which declares the codesets s
ported by the EJB container. IIOP messages which includewchar andwstring datatypes must have
the code sets service context field. The CORBA 2.3.1 requirements for code set support must
lowed by Java EE containers.

EJB containers are required to translate Java types to their on-the-wire representation in IIOP me
using the Java Language to IDL mapping specification [10] with the wire formats for IDL type
described in the GIOP specification in CORBA 2.3. The following subsections describe the ma
details for Java types.

[82] CORBA APIs and earlier versions of the IIOP protocol are already included in the J2SE 1.2, J2SE 1.3 and J2EE 1.2 plat
through JavaIDL and RMI-IIOP.
 5/2/06 382

Remote Invocation Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

e and
ically
Java

Is for
Home

ns are

es.
lues on
e meth-
types

ed to
the cli-

in the
L map-
15.5.1 Mapping Java Remote Interfaces to IDL

The Java Language to IDL Mapping specification [10] describes precisely how the remote hom
remote interfaces of a session bean or entity bean are mapped to IDL. This mapping to IDL is typ
implicit when Java RMI over IIOP is used to invoke enterprise beans. Java EE clients use only the
RMI APIs to invoke enterprise beans. The client container may use the CORBA portable Stub AP
the client-side stubs. EJB containers may create CORBA Tie objects for each EJBObject or EJB
object.

15.5.2 Mapping Value Objects to IDL

The Java interfaces that are passed by value during remote invocations on enterprise bea
javax.ejb.Handle , javax.ejb.HomeHandle , and javax.ejb.EJBMetaData . The
Enumeration or Collection objects returned by entity bean finder methods are value typ
There may also be application-specific value types that are passed as parameters or return va
enterprise bean invocations. In addition, several Java exception classes that are thrown by remot
ods also result in concrete IDL value types. All these value types are mapped to IDL abstract value
or abstract interfaces using the rules in the Java Language to IDL Mapping.

15.5.3 Mapping of System Exceptions

Java system exceptions, including thejava.rmi.RemoteException and its subclasses, may be
thrown by the EJB container. If the client’s invocation was made over IIOP, the EJB server is requir
map these exceptions to CORBA system exceptions and send them in the IIOP reply message to
ent, as specified in the following table

For EJB clients, the ORB’s unmarshaling machinery maps CORBA system exceptions received
IIOP reply message to the appropriate Java exception as specified in the Java Language to ID
ping. This results in the original Java exception being received by the client Java EE component.

System exception thrown by EJB
container

CORBA system exception
received by client ORB

javax.transaction.
TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.
TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.
InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN
383 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Remote Invocation Interoperability

Sun Microsystems, Inc.

ence to
voca-
ean’s
bject as
ds to be
rencing

ncing

con-
Object
n. Stub

refer-
how

embed-
halled
ure

o-
ainer
e such
vided by
e done,
r, or by
em to

Java EE
emen-
untime,
pecific
loader.
15.5.4 Obtaining Stub and Client View Classes

When a Java EE component (application client, JSP, servlet or enterprise bean) receives a refer
an EJBObject or EJBHome object through JNDI lookup or as a parameter or return value of an in
tion on an enterprise bean, an instance of an RMI-IIOP stub class (proxy) for the enterprise b
remote home or remote RMI interface needs to be created. When a component receives a value o
a parameter or return value of an enterprise bean invocation, an instance of the value class nee
created. The stub class, value class, and other client view classes must be available to the refe
container (the container hosting the component that receives the reference or value type).

The client view classes, including application value classes, must be packaged with the refere
component’s application, as described in Section 20.3.

Stubs for invoking on EJBHome and EJBObject references must be provided by the referencing
tainer, for example, by generating stub classes at deployment time for the EJBHome and EJB
interfaces of the referenced beans that are packaged with the referencing component’s applicatio
classes may or may not follow the standard RMI-IIOP portable stub architecture.

Containers may optionally support run-time downloading of stub and value classes needed by the
encing container. The CORBA 2.3.1 specification and the Java Language to IDL Mapping specify
stub and value type implementations are to be downloaded: using codebase URLs that are either
ded in the EJBObject or EJBHome’s IOR, or sent in the IIOP message service context, or mars
with the value type. The URLs for downloading may optionally include an HTTPS URL for sec
downloading.

15.5.5 System Value Classes

System value classes are serializable value classes implementing thejavax.ejb.Handle ,
javax.ejb.HomeHandle , javax.ejb.EJBMetaData , java.util.Enumeration ,
java.util.Collection , and java.util.Iterator interfaces. These value classes are pr
vided by the EJB container vendor. They must be provided in the form of a JAR file by the cont
hosting the referenced bean. For interoperability scenarios, if a referencing component would us
system value classes at runtime, the Deployer must ensure that these system value classes pro
the container hosting the referenced bean are available to the referencing component. This may b
for example, by including these system value classes in the classpath of the referencing containe
deploying the system value classes with the referencing component’s application by providing th
the deployment tool.

Implementations of these system value classes must be portable (they must use only J2SE and
APIs) so that they can be instantiated in another vendor’s container. If the system value class impl
tation needs to load application-specific classes (such as remote home or remote interfaces) at r
it must use the thread context class loader. The referencing container must make application-s
classes available to the system value class instance at runtime through the thread context class
 5/2/06 384

Remote Invocation Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

ble
s

JNDI

f

refer-

wrap

ut-
ed by
dor)
IIOP
riting

ith
legate
dle. If
tandard
must
after
e vari-

es
15.5.5.1 HandleDelegate SPI
The javax.ejb.spi.HandleDelegate service provider interface defines methods that ena
portable implementations ofHandle andHomeHandle that are instantiated in a different vendor’
container to serialize and deserialize EJBObject and EJBHome references. TheHandleDelegate
interface is not used by enterprise beans or Java EE application components directly.

EJB, web and application client containers must provide implementations of theHandleDelegate
interface. The HandleDelegate object must be accessible in the client Java EE component’s
namespace at the reserved name “java:comp/HandleDelegate ”. The HandleDelegate object is
not exported outside the container that provides it.

Portable implementations ofHandle andHomeHandle must look up the HandleDelegate object o
the container in which they are instantiated using JNDI at the name “java:comp/HandleDele-
gate ” and use the HandleDelegate object to serialize and deserialize EJBObject and EJBHome
ences as follows:

• Handle and HomeHandle implementation classes must definewriteObject andreadOb-
ject methods to control their serialization and deserialization. These methods must not
or substitute the stream objects that are passed to the HandleDelegate methods.

• The writeObject method of Handle implementations must callHandleDele-
gate.writeEJBObject with the Handle’s EJBObject reference and the serialization o
put stream object as parameters. The HandleDelegate implementation (which is provid
the client container in which the Handle was instantiated, potentially from a different ven
then writes the EJBObject to the output stream. If the output stream corresponds to an
message, the HandleDelegate must use the standard IIOP abstract interface format for w
the EJBObject reference.

• The readObject method of Handle implementations must callHandleDele-
gate.readEJBObject with the serialization input stream object as parameter, and w
the stream positioned at the location where the EJBObject can be read. The HandleDe
implementation then reads the EJBObject from the input stream and returns it to the Han
the input stream corresponds to an IIOP message, the HandleDelegate must use the s
abstract interface format for reading the EJBObject reference. The HandleDelegate
ensure that the EJBObject reference is capable of performing invocations immediately
deserialization. The Handle maintains a reference to the EJBObject as a transient instanc
able and returns it when the Java EE component callsHandle.getEJBObject .

• The writeObject and readObject methods of HomeHandle implementation class
must be implemented similarly, by usingHandleDelegate.writeEJBHome andHan-
dleDelegate.readEJBHome respectively.
385 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Transaction Interoperability

Sun Microsystems, Inc.

ure in
bility.
ents

ability

e invo-
s must

anism

sac-
IIOP

saction
con-

tainer
n-Java
e OTS

s
n. The
ject or

erver
egistra-
s enti-
15.6 Transaction Interoperability

Transaction interoperability between containers provided by different vendors is an optional feat
this version of the EJB specification. Vendors may choose to not implement transaction interopera
However, vendors who choose to implement transaction interoperability must follow the requirem
in sections 15.6.1 and 15.6.2, and vendors who choose not to implement transaction interoper
must follow the requirements in section 15.6.2.

15.6.1 Transaction Interoperability Requirements

A distributed transaction started by a web or EJB container must be able to propagate in a remot
cation to an enterprise bean in an EJB container provided by a different vendor, and the container
participate in the distributed two-phase commit protocol.

15.6.1.1 Transaction Context Wire Format

Transaction context propagation from client to EJB container uses the implicit propagation mech
described in the CORBA Object Transaction Service (OTS) v1.2 specification [11].

The transaction context format in IIOP messages is specified in theCosTransactions::Propa-
gationContext structure described in the OTS specification. EJB containers that support tran
tion interoperability are required to be capable of producing and consuming transaction contexts in
messages in the format described in the OTS specification. Web containers that support tran
interoperability are required to include client-side libraries which can produce the OTS transaction
text for sending over IIOP.

Note that it is not necessary for containers to include the Java mappings of the OTS APIs. A con
may implement the requirements in the OTS specification in any manner, for example using a no
OTS implementation, or an on-the-wire bridge between an existing transaction manager and th
protocol, or an OTS wrapper around an existing transaction manager.

The CosTransactions::PropagationContext structure must be included in IIOP message
sent by web or EJB containers when required by the rules described in the OTS 1.2 specificatio
target EJB container must process IIOP invocations based on the transaction policies of EJBOb
EJBHome references using the rules described in the OTS 1.2 specification [11].

15.6.1.2 Two-Phase Commit Protocol

The object interaction diagram in Figure 33 illustrates the interactions between the client and s
transaction managers for transaction context propagation, resource and synchronization object r
tion, and two-phase commit. This diagram is an example of the interactions between the variou
ties; it is not intended to be prescriptive.
 5/2/06 386

Transaction Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

OTS
agated
server

er
es per-
tion.
Figure 33 Transaction Context Propagation

Containers that perform transactional work within the scope of a transaction must register an
Resource object with the transaction coordinator whose object reference is included in the prop
transaction context (step 3), and may also register an OTS Synchronization object (step 2). If the
container does not register an OTS Synchronization object, it must still ensure that thebeforeCom-
pletion method of session beans andejbStore method of entity beans are called with the prop
transaction context. Containers must participate in the two-phase commit and recovery procedur
formed by the transaction coordinator / terminator (steps 6,7), as described by the OTS specifica

client
client’s
transaction
manager

server’s
transaction
managercontainer

EJB
container

IIOP request message with transaction context

register resource

EJB
instance

Resource

enlist resource

invoke bean

access resource

IIOP reply message

commit

commit

commit

before_completion

before_completion

prepare

prepare

register synchronization

register synchronization (optional)

ejbStore

flush state

Manager

sending request

received request

sending reply

received reply

1

2

3

4

5

6

7

387 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Transaction Interoperability

Sun Microsystems, Inc.

Ob-

entire
ontext
n con-
s trans-

e

rk

cular,
xtend
ess-
cep-
y the

OA)
er c
Compliant Java EE containers must not use nested transactions in interoperability scenarios.

15.6.1.3 Transactional Policies of Enterprise Bean References

The OTS1.2 specification describes theCosTransactions::OTSPolicy and CosTransac-
tions::InvocationPolicy structures that are encoded in IORs as tagged components. EJB
ject and EJBHome references must contain these tagged components[83] with policy values as described
below.

The transaction attributes of enterprise beans can be specified per method, while in OTS the
CORBA object has the same OTS transaction policy. The rules below ensure that the transaction c
will be propagated if any method of an enterprise bean needs to execute in the client’s transactio
text. However, in some cases there may be extra performance overhead of propagating the client’
action context even if it will not be used by the enterprise bean method.

EJBObject and EJBHome references may have the InvocationPolicy value as eitherCosTransac-
tions::SHARED or CosTransactions::EITHER [84].

All EJBObject and EJBHome references must have the OTSPolicy value asCosTransac-
tions::ADAPTS . This is necessary to allow clients to invoke methods of thejavax.ejb.EJBOb-
ject andjavax.ejb.EJBHome with or without a transaction.

The CosTransactions::Synchronization object registered by the EJB container with th
transaction coordinator should have the OTSPolicy valueCosTransactions::ADAPTS and Invo-
cationPolicy valueCosTransactions::SHARED to allow enterprise beans to do transactional wo
during thebeforeCompletion notification from the transaction coordinator.

15.6.1.4 Exception Handling Behavior

The exception handling behavior described in the OTS1.2 specification must be followed. In parti
if an application exception (an exception which is not a CORBA system exception and does not e
java.rmi.RemoteException) is returned by the server, the request is defined as being succ
ful; hence the client-side OTS library must not roll back the transaction. This allows application ex
tions to be propagated back to the client without rolling back the transaction, as required b
exception handling rules in Chapter 14.

15.6.2 Inter operating with Containers that do not Implement Transaction

[83] One way to include the tagged components in IORs is to create the object references using a Portable Object Adapter (P
which is initialized with the appropriate transaction policies. Note that POA APIs are not required to be supported by servon-
tainers.

[84] If the InvocationPolicy is not present in the IOR, it is interpreted by the client as if the policy value wasCosTransac-
tions::EITHER .
 5/2/06 388

Transaction Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

not sup-
lica-

client
B con-

tion to
terprise
trans-

global
ext

y if the
upport

col, it

ction
ates
agat-
er to
on to

nsac-

y
that it

5.6.1.3.
Inter operability

The requirements in this subsection are designed to ensure that when a Java EE container does
port transaction interoperability, the failure modes are well defined so that the integrity of an app
tion’s data is not compromised: at worst the transaction is rolled back. When a Java EE
component expects the client’s transaction to propagate to the enterprise bean but the client or EJ
tainer cannot satisfy this expectation, ajava.rmi.RemoteException or subclass is thrown,
which ensures that the client’s transaction will roll back.

In addition, the requirements below allow a container that does not support transaction propaga
interoperate with a container that does support transaction propagation in the cases where the en
bean method’s transaction attribute indicates that the method would not be executed in the client’s
action.

15.6.2.1 Client Container Requirements

If the client in another container invokes an enterprise bean’s method when there is no active
transaction associated with the client’s thread, the client container does not include a transaction cont
in the IIOP request message to the EJB server, i.e., there is noCosTransactions::Propaga-
tionContext structure in the IIOP request header.

The client application component expects a global transaction to be propagated to the server onl
client’s thread has an active global transaction. In this scenario, if the client container does not s
transaction interoperability, it has two options:

1. If the client container does not support transaction propagation or uses a non-OTS proto
must include the OTSCosTransactions::PropagationContext structure in the
IIOP request to the server (step 1 in the object interaction diagram above), with theCos-
Transactions::Coordinator andCosTransactions::Terminator object ref-
erences as null. The remaining fields in this “null transaction context,” such as the transa
identifier, are not interpreted and may have any value. The “null transaction context” indic
that there is a global client transaction active but the client container is not capable of prop
ing it to the server. The presence of this “null transaction context” allows the EJB contain
determine whether the Java EE client component expects the client’s global transacti
propagate to the server.

2. Client containers that use the OTS transaction context format but still do not support tra
tion interoperability with other vendor’s containers must reject theCoordina-
tor::register_resource call (step 3 in the object interaction diagram above) b
throwing a CORBA system exception if the server’s Resource object reference indicates
belongs to another vendor’s container.

15.6.2.2 EJB container requirements

All EJB containers (including those that do not support transaction propagation) must include theCos-
Transactions::OTSPolicy and optionally theCosTransactions::InvocationPolicy
tagged component in the IOR for EJBObject and EJBHome references as described in section 1
389 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Transaction Interoperability

Sun Microsystems, Inc.

, it must

the

must

sage,
eEx-

ger

st mes-

the

iner’s
15.6.2.2.1 Requirements for EJB Containers Supporting Transaction Interoperability

When an EJB container that supports transaction propagation receives the IIOP request message
behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow
behavior described in Section 13.6.

• If there is a valid, complete OTS transaction context in the IIOP message, the container
follow the behavior described in Section 13.6.

• If there is a null transaction context (as defined in section 15.6.2.1 above) in the IIOP mes
the container’s required behavior is described in the table below. The entry “throw Remot
ception” indicates that the EJB container must throw thejava.rmi.RemoteException
to the client after the“ received request” interaction with the server’s transaction mana
(after step 1 in the object interaction diagram above).

15.6.2.2.2 Requirements for EJB Containers not Supporting Transaction Interoperability

When an EJB container that does not support transaction interoperability receives the IIOP reque
sage, it must behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow
behavior described in Section 13.6.

• If there is a valid, complete OTS transaction context in the IIOP message, the conta
required behavior is described in the table below.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 13.6

Supports throw RemoteException

NotSupported follow Section 13.6

Never follow Section 13.6

Bean Managed follow Section 13.6
 5/2/06 390

Naming Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

e, the
y not

ability
TS
d cli-

r look-

aming
dule

spec-

Cos-
ecifica-
ndard
itec-
Cos-
L

ver’s
• If there is a null transaction context (as defined in section 15.6.2.1) in the IIOP messag
container’s required behavior is described in the table below. Note that the container ma
know whether the received transaction context in the IIOP message is valid or null.

EJB containers that accept the OTS transaction context format but still do not support interoper
with other vendors’ client containers must follow the column in the table above for “null or valid O
transaction context” if the transaction identity or the Coordinator object reference in the propagate
ent transaction context indicate that the client belongs to a different vendor’s container.

15.7 Naming Interoperability

This section describes the requirements for supporting interoperable access to naming services fo
ing up EJBHome object references (interoperability requirement two in section 15.4).

EJB containers are required to be able to publish EJBHome object references in a CORBA CosN
service [18]. The CosNaming service must implement the IDL interfaces in the CosNaming mo
defined in [18] and allow clients to invoke theresolve andlist operations over IIOP.

The CosNaming service must follow the requirements in the CORBA Interoperable Name Service
ification [19] for providing the host, port, and object key for its rootNamingContext object. The
CosNaming service must be able to service IIOP invocations on the rootNamingContext at the
advertised host, port, and object key.

Client containers (i.e., EJB, web, or application client containers) are required to include a JNDI
Naming service provider that uses the mechanisms defined in the Interoperable Name Service sp
tion to contact the server’s CosNaming service, and to resolve the EJBHome object using sta
CosNaming APIs. The JNDI CosNaming service provider may or may not use the JNDI SPI arch
ture. The JNDI CosNaming service provider must access the root NamingContext of the server’s
Naming service by creating an object reference from the UR
corbaloc:iiop:1.2@<host>:<port>/<objectkey> (where <host> , <port> , and
<objectkey> are the values corresponding to the root NamingContext advertised by the ser
CosNaming service), or by using an equivalent mechanism.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null or valid OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 13.6

Supports throw RemoteException

NotSupported follow Section 13.6

Never follow Section 13.6

Bean Managed follow Section 13.6
391 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Security Interoperability

Sun Microsystems, Inc.

ey of
.g. by

, the
rver’s

to the

that is
ient and

eady
vers.
ctory

cribed
root

, and

e beans

form-

cribed
d to be
certifi-
At deployment time, the Deployer of the client container should obtain the host, port and object k
the server’s CosNaming service and the CosNaming name of the server EJBHome object (e
browsing the server’s namespace) for each suchEJB annotation orejb-ref element in the client
component’s deployment descriptor. Theejb-ref-name (which is used by the client code in the
JNDI lookup call) should then be linked to the EJBHome object’s CosNaming name. At run-time
client component’s JNDI lookup call uses the CosNaming service provider, which contacts the se
CosNaming service, resolves the CosNaming name, and returns the EJBHome object reference
client component.

Since the EJBHome object’s name is scoped within the namespace of the CosNaming service
accessible at the provided host and port, it is not necessary to federate the namespaces of the cl
server containers.

The advantage of using CosNaming is better integration with the IIOP infrastructure that is alr
required for interoperability, as well as interoperability with non-Java-EE CORBA clients and ser
Since CosNaming stores only CORBA objects it is likely that vendors will use other enterprise dire
services for storing other resources.

Security of CosNaming service access is achieved using the security interoperability protocol des
in Section 15.8. The CosNaming service must support this protocol. Clients which construct the
NamingContext object reference from a URL should send an IIOPLocateRequest message to the
CosNaming service to obtain the complete IOR (with SSL information) of the root NamingContext
then initiate an SSL session with the CosNaming service, as determined by the client policy.

15.8 Security Interoperability

This section describes the interoperable mechanisms that support secure invocations on enterpris
in intranets. These mechanisms are based on the CORBA/IIOP protocol.

EJB containers are required to follow the protocol rules prescribed by the CSIv2 specification Con
ance Level 0.

15.8.1 Intr oduction

The goal of the secure invocation mechanisms is to support the interoperability requirements des
earlier in this chapter, as well as be capable of supporting security technologies that are expecte
widely deployed in enterprises, including Kerberos-based secret key mechanisms and X.509
cate-based public key mechanisms.
 5/2/06 392

Security Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

of the
n
ured
ans, an
diate
secu-

client
e user’s
(e.g.,
minis-
client
der-

rmedi-
roof of
atisfied
gated
while
prise
e over-

trust

of the
et EJB
target
y the
may
get EJB
nt.

 th

te cli-
The authentication identity (i.e. principal) associated with a Java EE component is usually that
user on whose behalf the component is executing[85]. The principal under which an enterprise bea
invocation is performed is either that of the bean’s caller or the run-as principal which was config
by the Deployer. When there is a chain of invocations across a web component and enterprise be
intermediate component may use the principal of the caller (the initiating client) or the interme
component may use its run-as principal to perform an invocation on the callee, depending on the
rity identity specified for the intermediate component in its deployment descriptor.

The security principal associated with a container depends on the type of container. Application
containers usually do not have a separate principal associated with them (they operate under th
principal). Web and EJB containers are typically associated with a security principal of their own
the operating system user for the container’s process) which may be configured by the System Ad
trator at deployment time. When the client is a web or EJB container, the difference between the
component’s principal and the client container’s principal is significant for interoperability consi
ations.

15.8.1.1 Trust Relationships Between Containers, Principal Propagation

When there is a chain of multiple invocations across web components and enterprise beans, inte
ate components may not have access to the authentication data of the initiating client to provide p
the client’s identity to the target. In such cases, the target’s authentication requirements can be s
if the target container trusts the intermediate container to vouch for the authenticity of the propa
principal. The call is made using the intermediate container’s principal and authentication data,
also carrying the propagated principal of the initiating client. The invocation on the target enter
bean is authorized and performed using the propagated principal. This procedure also avoids th
head associated with authentication of clients on every remote invocation in a chain.

EJB containers are required to provide the Deployer or Administrator with the tools to configure
relationships for interactions with intermediate web or EJB containers[86]. If a trust relationship is set
up, the containers are usually configured to perform mutual authentication, unless the security
network can be ensured by some physical means. If the network is physically secure, the targ
container may be configured to trust all client containers. After a trust relationship is set up, the
EJB container does not need to independently authenticate the initiating client principal sent b
intermediate container on invocations. Thus only the principal name of the initiating client (which
include a realm) needs to be propagated. After a trust relationship has been established, the tar
container must be able to accept invocations carrying only the principal name of the initiating clie

[85] When there are concurrent invocations on a component from multiple clients, a different principal may be associated withe
thread of execution for each invocation.

[86] One way to achieve this is to configure a “trusted container list” for each EJB container which contains the list of intermedia
ent containers that are trusted. If the list is empty, then the target EJB container does not have a trust relationship with any inter-
mediate container.

C S1 S2

application client
or web client

EJB or web
container

EJB container

(initiating client) (intermediate)
(target)
393 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Security Interoperability

Sun Microsystems, Inc.

sitive,
usted

or EJB
tainer,
princi-

lient’s
re the
ere the

) can:

C) in

ating

login
asso-
made

ation
ts pri-
the user
ilar to

rotec-
. The
. Since
er con-
B con-
For the current interoperability needs of Java EE, it is assumed that trust relationships are tran
such that if a target container trusts an intermediate container, it implicitly trusts all containers tr
by the intermediate container.

If no trust relationship has been set up between a target EJB container and an intermediate web
container, the target container must not accept principals propagated from that intermediate con
hence the target container needs to have access to and independently verify the initiating client
pal’s authentication data.

Web and EJB containers are required to support caller propagation mode (where the initiating c
principal is propagated down the chain of calls on enterprise beans) and run-as mode (whe
web/EJB component’s run-as identity is propagated). This is needed for scenarios 1, 3 and 4 wh
internet or intranet user’s principal needs to be propagated to the target EJB container.

15.8.1.2 Application Client Authentication

Application client containers that have authentication infrastructure (such as certificates, Kerberos

• authenticate the user by interacting with an authentication service (e.g. the Kerberos KD
the enterprise

• inherit an authentication context which was established at system login time from the oper
system process, or

• obtain the user’s certificate from a client-side store.

These may be achieved by plugging in a Java Authentication and Authorization Service (JAAS)
module for the particular authentication service. After authentication is completed, a credential is
ciated with the client’s thread of execution, which is used for all invocations on enterprise beans
from that thread.

If there is no authentication infrastructure installed in the client’s environment, or the authentic
infrastructure is not capable of authenticating at the transport protocol layer, the client may send i
vate credentials (e.g. password) over a secure connection to the EJB server, which authenticates
by interacting with an authentication service (e.g. a secure user/password database). This is sim
the basic authentication feature of HTTP.

15.8.2 Securing EJB Invocations

This subsection describes the interoperable protocol requirements for providing authentication, p
tion of integrity and confidentiality, and principal propagation for invocations on enterprise beans
invocation takes place over an enterprise’s intranet as described in the scenarios in section 15.3
EJB invocations use the IIOP protocol, we need to secure IIOP messages between client and serv
tainers. The client container may be any of the Java EE containers; the server container is an EJ
tainer.
 5/2/06 394

Security Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

ntain-
Final

con-
wing
ion 15.3.

Secu-
con-
.509
s and
f sup-
.

ecurity
iners
y the

d at the
n con-

ssion
data.
muni-
sport
The secure interoperability requirements for EJB 2.0 (and later) and other J2EE 1.3 (and later) co
ers are based on Conformance Level 0 of the Common Secure Interoperability version 2 (CSIv2)
Available specification [23], which was developed by the OMG. EJB, web, and application client
tainers must support all requirements of Conformance Level 0 of the CSIv2 specification. The follo
subsections describe how the CSIv2 features are used to realize the scenarios described in sect

15.8.2.1 Secure Transport Protocol

The Secure Sockets Layer (SSL 3.0) protocol [22] and the related IETF standard Transport Layer
rity (TLS 1.0) protocol [20] provide authentication and message protection (that is, integrity and/or
fidentiality) at the transport layer. The original SSL and TLS specifications supported only X
certificates for authenticating principals. Recently, Kerberos-based authentication mechanism
cipher suites have been defined for TLS (RFC 2712 [21]). Thus the TLS specification is capable o
porting the two main security technologies that are expected to be widely deployed in enterprises

EJB, web and application client containers are required to support both SSL 3.0 and TLS 1.0 as s
protocols for IIOP. This satisfies interoperability requirement 3 in section 15.4. Compliant conta
must be capable of using the following public key SSL/TLS ciphersuites based on policies set b
System Administrator:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA[87]

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Support for Kerberos ciphersuites is not specified.

When using IIOP over SSL, a secure channel between client and server containers is establishe
SSL layer. The SSL handshake layer handles authentication (either mutual or server-only) betwee
tainers, negotiation of cipher suite for bulk data encryption, and optionally provides a compre
method. The SSL record layer performs confidentiality and integrity protection on application
Since compliant Java EE products are already required to support SSL (HTTPS for Internet com
cation), the use of SSL/TLS provides a relatively easy route to interoperable security at the tran
layer.

[87] This ciphersuite is mandatory for compliant TLS implementations as specified in [20].
395 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Security Interoperability

Sun Microsystems, Inc.

e and
orted

efer-

arget
ation
isms.

Object
ttings.
ifica-

r unpro-

upport
hen an
ary to

is also
sed by

the
ction
n the
ficates
to S1
15.8.2.2 Security Information in IORs

Before initiating a secure connection to the EJB container, the client needs to know the hostnam
port number at which the server is listening for SSL connections, and the security protocols supp
or required by the server object. This information is obtained from the EJBObject or EJBHome r
ence’s IOR.

The CSIv2 specification [23] describes theTAG_CSI_SEC_MECH_LISTtagged component which is
included in the IORs of secured objects. This component contains a sequence ofCSIIOP::Com-
poundSecMech structures (in decreasing order of the server’s preference) that contain the t
object’s security information for transport layer and service context layer mechanisms. This inform
includes the server’s SSL/TLS port, its security principal and supported/required security mechan

EJB containers must be capable of inserting the CSIv2 tagged components into the IORs for EJB
and EJBHome references, based on the Deployer or System Administrator’s security policy se
Compliant EJB containers must follow the Conformance Level 0 rules described in the CSIv2 spec
tion for constructing these IORs.

EJB containers must also be capable of creating IORs that allow access to enterprise beans ove
tected IIOP, based on the security policies set by the Deployer or System Administrator.

15.8.2.3 Propagating Principals and Authentication Data in IIOP Messages

In scenarios where client authentication does not occur at the transport layer it is necessary to s
transfer of authentication data between two containers in the IIOP message service context. W
intermediate client container does not have authentication data for the initiating client, it is necess
support propagation of client principals in the IIOP message service context.

It is assumed that all information exchanged between client and server at the transport layer
available to the containers: e.g. the certificates used for authentication at the SSL layer may be u
the server container for authorization.

The following cases are required to be supported:

1. Application client invocations on enterprise beans with mutual authentication between
application client and EJB container (C and S1) at the SSL layer (scenario 2.1 in se
15.3.2, interoperability requirement 4.1 in section 15.4). For example, this is possible whe
enterprise has a Kerberos-based authentication infrastructure or when client-side certi
have been installed. In this case the security context of the IIOP message sent from C
should not contain any additional information.

C S1 S2

application client
or web client

EJB or web
container

EJB container

IIOP/SSLHTTP(S)
IIOP/SSL
 5/2/06 396

Security Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

n the
ction
client
insert-
con-
client,
nt on
r con-

hen-
ism is
then-

e cli-
rability
te the

secu-
rin-
or as a
cifica-

r C
C’s

not

ken

entica-
prin-

m the
SSL

lient
user-

n the

text:

the
2. Application client invocations on enterprise beans with server-only authentication betwee
application client and EJB container (C and S1) at the SSL layer (scenario 2.2 in se
15.3.2, interoperability requirement 4.2 in section 15.4). This usually happens when the
cannot authenticate in the transport. In this case, the client container must be capable of
ing into the IIOP message a CSIv2 security context with a client authentication token that
tains the client C’s authentication data. Once the EJB container S1 has authenticated the
it may or may not maintain state about the client, so subsequent invocations from the clie
the same network connection may need to be authenticated again. The client and serve
tainers must follow the Conformance Level 0 rules in the CSIv2 specification for client aut
tication. In particular, support for the GSSUP username-password authentication mechan
required. Support for other GSSAPI mechanisms (such as Kerberos) to perform client au
tication at the IIOP layer is optional.

3. Invocations from Web/EJB clients to enterprise beans with a trust relationship between th
ent container S1 and server container S2 (scenarios 1,3 and 4 in section 15.3.3, interope
requirements five and six in section 15.4). S2 does not need to independently authentica
initiating client C. In this case the client container S1 must insert into the IIOP message a
rity context with an identity token in the format described in the CSIv2 specification. The p
cipal may be propagated as an X.509 certificate chain or as a X.501 distinguished name
principal name encoded in the GSS exported name format, as described in the CSIv2 spe
tion. The identity propagated is determined as follows:

• If the client Web/EJB component is configured to use caller identity, and the calle
authenticated itself to S1, then the identity token contains the initiating client
identity.

• If the client component is configured to use caller identity, and the caller C did
authenticate itself to S1, then the identity token contains the anonymous type.

• If the client component is configured to use a run-as identity then the identity to
contains the run-as identity.

Java EE containers are required to support the stateless mode of propagating principal and auth
tion information defined in CSIv2 (where the server does not store any state for a particular client
cipal across invocations), and may optionally support the stateful mode.

The caller principal String provided byEJBContext.getCallerPrincipal().getName() is
defined as follows:

• For case one, the principal should be derived from the distinguished name obtained fro
first X.509 certificate in the client’s certificate chain that was provided to the server during
mutual authentication.

• For case two, the principal should be derived from the username obtained from the c
authentication token in the CSIv2 security context of the IIOP message. For the GSSUP
name-password mechanism, the principal should be derived from the username i
GSSUP::InitialContextToken structure.

• For case three, the principal depends on the identity token type in the CSIv2 security con

• If the type is X.509 certificate chain, then the principal should be derived from
distinguished name from the first certificate in the chain.
397 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Security Interoperability

Sun Microsystems, Inc.

tin-

cipal

then

t and
enter-

may
may be
).

the

ticated
ween
twork

mon
rver

nter-
nt to

ecurity
bean,
ise
or the
server.
pret-
• If the type is distinguished name, then the principal should be derived from the dis
guished name.

• If the type is principal name propagated as a GSS exported name, then the prin
should be derived from the mechanism-specific principal name.

• If the anonymous principal type was propagated or the identity token was absent,
EJBContext.getCallerPrincipal().getName() returns a product-spe-
cific unauthenticated principal name.

15.8.2.4 Security Configuration for Containers

Since the interoperability scenarios involve IIOP/SSL usage in intranets, it is assumed that clien
server container administrators cooperatively configure a consistent set of security policies for the
prise.

At product installation or application deployment time, client and server container administrators
optionally configure the container and SSL infrastructure as described below. These preferences
specified at any level of granularity (e.g. per host or per container process or per enterprise bean

• Configure the list of supported SSL cipher suites in preference order.

• For server containers, configure a list of trusted client container principals with whom
server has a trust relationship.

• Configure authentication preferences and requirements (e.g. if the server prefers authen
clients to anonymous clients). In particular, if a trust relationship has been configured bet
two servers, then mutual authentication should be required unless there is physical ne
security.

• If the client and server are using certificates for authentication, configure a trusted com
certificate authority for both client and server. If using Kerberos, configure the client and se
with the same KDC or cooperating KDCs.

• Configure a restricted list of trusted server principals that a client container is allowed to i
act with, to prevent the client’s private credentials such as password from being se
untrusted servers.

15.8.2.5 Runtime Behavior

Client containers determine whether to use SSL for an enterprise bean invocation by using the s
policies configured by the client administrator for interactions with the target host or enterprise
and thetarget_requires information in the CSIv2 tagged component in the target enterpr
bean’s IOR. If either the client configuration requires secure interactions with the enterprise bean,
enterprise bean requires a secure transport, the client should initiate an SSL connection to the
The client must follow the rules described in the CSIv2 specification Conformance Level 0 for inter
ing security information in IORs and including security context information in IIOP messages.
 5/2/06 398

Security Interoperability Enterprise JavaBeans 3.0, Final Release Support for Distributed Interoperability

Sun Microsystems, Inc.

figura-
data
l rules

an, the
is rec-
trans-

y be
When an EJB container receives an IIOP message, its behavior depends on deployment time con
tion, run-time information exchanged with the client at the SSL layer, and principal/authentication
contained in the IIOP message service context. EJB containers are required to follow the protoco
prescribed by the CSIv2 specification Conformance Level 0.

When the System Administrator changes the security policies associated with an enterprise be
IORs for EJB references should be updated. When the bean has existing clients holding IORs, it
ommended that the security policy change should be handled by the client and server containers
parently to the client application if the old security policy is compatible with the new one. This ma
done by using interoperable GIOP 1.2 forwarding mechanisms.
399 May 2, 2006 2:35 pm

Support for Distributed Interoperability Enterprise JavaBeans 3.0, Final Release Security Interoperability

Sun Microsystems, Inc.
 5/2/06 400

Overview Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

nd other
ssed in

siness

m the
ccess
xternal
tar-

s pro-
Chapter 16 Enterprise Bean Environment

This chapter specifies how enterprise beans declare dependencies on external resources a
objects in their environment, and how those items can be injected into enterprise beans or acce
the JNDI naming context.

16.1 Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s bu
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent fro
operational environment in which the application will be deployed. Most enterprise beans must a
resource managers and external information. The key issue is how enterprise beans can locate e
information without prior knowledge of how the external information is named and organized in the
get operational environment. The JNDI naming context and Java language metadata annotation
vide this capability.

The enterprise bean environment mechanism attempts to address both of the above issues.

This chapter is organized as follows.
401 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

terac-

n Pro-

terprise
nt for

ce of
e

sing a
r-

with a

source
s-
l entry
• Section 16.2 defines the general rules for the use of the JNDI naming context and its in
tion with Java language annotations that reference entries in the naming context.

• Section 16.3 defines the general responsibilities for each of the EJB roles, such as Bea
vider, Application Assembler, Deployer, and Container Provider.

• Section 16.4 defines the basic mechanisms and interfaces that specify and access the en
bean’s environment. The section illustrates the use of the enterprise bean’s environme
generic customization of the enterprise bean’s business logic.

• Section 16.5 defines the means for obtaining the business interface or home interfa
another enterprise bean using anEJB reference. An EJB reference is a special entry in th
enterprise bean’s environment.

• Section 16.6 defines the means for obtaining the web service interface using aweb service ref-
erence. A web service reference is a special entry in the enterprise bean’s environment.

• Section 16.7 defines the means for obtaining a resource manager connection factory u
resource manager connection factory reference. A resource manager connection factory refe
ence is a special entry in the enterprise bean’s environment.

• Section 16.8 defines the means for obtaining an administered object that is associated
resource (e.g., a CCIInteractionSpec) using a resource environment reference. A
resource environment reference is a special entry in the enterprise bean’s environment.

• Section 16.9 defines the means for obtaining a message destination associated with a re
using amessage destination reference. Message destination references allow the flow of me
sages within an application to be specified. A message destination reference is a specia
in the enterprise bean’s environment.

• Section 16.10 describes the means for obtaining an entity manager factory using apersistence
unit reference.

• Section 16.11 describes the means for obtaining an entity manager using apersistence context
reference.

• Section 16.12 describes the use by eligible enterprise beans of references to aUserTrans-
action object in the bean’s environment to start, commit, and rollback transactions.

• Section 16.13 describes the use of references to a CORBAORBobject in the enterprise bean’s
environment.

• Section 16.14 describes the means for obtaining the TimerService.

• Section 16.15 describes the means for obtaining a bean’s EJBContext object.
 5/2/06 402

Enterprise Bean’s Environment as a JNDI Naming ContextEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

bean’s
erprise

to the
ic and

ontext.

ment
bean

yment
in its

nter-
reate

ment
escrip-

thods

tances

s
n-
s

e bean
beans.
16.2 Enterprise Bean’s Environment as a JNDI Naming Context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise
business logic during deployment or assembly. The enterprise bean’s environment allows the ent
bean to be customized without the need to access or change the enterprise bean’s source code.

Annotations and deployment descriptors are the main vehicles for conveying access information
application assembler and deployer about beans’ requirements for customization of business log
access to external information.

The container implements the enterprise bean’s environment, and provides it as a JNDI naming c
The enterprise bean’s environment is used as follows:

1. The enterprise bean makes use of entries from the environment. Entries from the environ
may be injected by the container into the bean’s fields or methods, or the methods of the
may access the environment using the EJBContextlookup method or the JNDI interfaces.
The Bean Provider declares in Java language metadata annotations or in the deplo
descriptor all the environment entries that the enterprise bean expects to be provided
environment at runtime.

2. The container provides an implementation of the JNDI naming context that stores the e
prise bean environment. The container also provides the tools that allow the Deployer to c
and manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the container to create and initialize the environ
entries that are declared by means of the enterprise bean’s annotations or deployment d
tor. The Deployer can set and modify the values of the environment entries.

4. The container injects entries from the environment into the enterprise bean’s fields or me
as specified by the bean’s metadata annotations or the deployment descriptor.

5. The container makes the environment naming context available to the enterprise bean ins
at runtime. The enterprise bean’s instances can use the EJBContextlookup method or the
JNDI interfaces to obtain the values of the environment entries.

The container must make an enterprise bean’s environment available to any interceptor clas
and any JAX-WS message handler for the bean as well. The interceptor and web service ha
dler classes for an enterprise bean share that bean’s environment. Within the context of thi
chapter, the term “bean” should be construed as including a bean’s interceptor and handler
classes unless otherwise noted.

16.2.1 Sharing of Envir onment Entries

Each enterprise bean defines its own set of environment entries. All instances of an enterpris
share the same environment entries; the environment entries are not shared with other enterprise
Enterprise bean instances are not allowed to modify the bean’s environment at runtime.
403 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Enterprise Bean’s Environment as a JNDI

Sun Microsystems, Inc.

tiple
ployer

of

pe
.

ist in

ht be

ce of the
nection

ested
above.

ron-

nment

ding to

ion is
named

.

w the

eans
ple, a

sources
Compatibility Note: If an enterprise bean written to the EJB 2.1 API specification is deployed mul
times in the same container, each deployment results in the creation of a distinct home. The De
may set different values for the enterprise bean environment entries for each home.

In general, lookups of objects in the JNDIjava: namespace are required to return a new instance
the requested object every time. Exceptions are allowed for the following:

• The container knows the object is immutable (for example, objects of ty
java.lang.String), or knows that the application can’t change the state of the object

• The object is defined to be a singleton, such that only one instance of the object may ex
the JVM.

• The name used for the lookup is defined to return an instance of the object that mig
shared. The namejava:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other cases, a new instan
requested object must be returned on each lookup. Note that, in the case of resource adapter con
objects, it is the resource adapter’sManagedConnectionFactory implementation that is responsi-
ble for satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new instance of the requ
object is injected, or whether a shared instance is injected, is determined by the rules described

Terminology warning: The enterprise bean’s “environment” should not be confused with the “envi
ment properties” defined in the JNDI documentation.

16.2.2 Annotations for Envir onment Entries
A field or method of a bean class may be annotated to request that an entry from the bean’s enviro
be injected. Any of the types of resources or other environment entries[88] described in this chapter may
be injected. Injection may also be requested using entries in the deployment descriptor correspon
each of these resource types. The field or method may have any access qualifier (public , private ,
etc.) but must not bestatic .

• A field of the bean class may be the target of injection. The field must not befinal . By
default, the name of the field is combined with the name of the class in which the annotat
used and is used directly as the name in the bean’s naming context. For example, a field
myDatabase in the classMySessionBean in the packagecom.acme.example would
correspond to the JNDI namejava:comp/env/com.acme.example.MySession-
Bean/myDatabase . The annotation also allows the JNDI name to be specified explicitly

• Environment entries may also be injected into the bean through bean methods that follo
naming conventions for JavaBeans properties. The annotation is applied to theset method for
the property, which is the method that is called to inject the environment entry. The JavaB
property name (not the method name) is used as the default JNDI name. For exam

[88] The term “resource” is used generically in this chapter to refer to these other environment entries as resources as well. Re
in the non-generic sense are described in section 16.7.
 5/2/06 404

Enterprise Bean’s Environment as a JNDI Naming ContextEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

the
name

of the

at
e. By

fields

in the
use the

tion
cified.

class in
sources
ition
od. An
s, or it

sub-
and

isibility
ource.
always

yment
ithout

n and a
ay be
by an

iptor
t been

th the
method namedsetMyDatabase in the sameMySessionBean class would correspond to
the JNDI namejava:comp/env/com.example.MySessionBean/myDatabase .

• When a deployment descriptor entry is used to specify injection, the JNDI name and
instance variable name or property name are both specified explicitly. Note that the JNDI
is always relative to thejava:comp/env naming context.

Each resource may only be injected into a single field or method of the bean. Requesting injection
java:comp/env/com.example.MySessionBean/myDatabase resource into both the
setMyDatabase method and themyDatabase instance variable is an error. Note, however, th
either the field or the method could request injection of a resource of a different (non-default) nam
explicitly specifying the JNDI name of a resource, a single resource may be injected into multiple
or methods of multiple classes.

Annotations may also be applied to the bean class itself. These annotations declare an entry
bean’s environment, but do not cause the resource to be injected. Instead, the bean is expected to
EJBContextlookup method or the methods of the JNDI API to lookup the entry. When the annota
is applied to the bean class, the JNDI name and the environment entry type must be explicitly spe

Annotations may appear on the bean class, or on any superclass. A resource annotation on any
the inheritance hierarchy defines a resource needed by the bean. However, injection of such re
follows the Java language overriding rules for the visibility of fields and methods. A method defin
that overrides a method on a superclass defines the resource, if any, to be injected into that meth
overriding method may request injection of a different resource than is requested by the superclas
may request no injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a
class may still request injection. This allows, for example, a private field to be the target of injection
that field to be used in the implementation of the superclass, even though the subclass has no v
into that field and doesn’t know that the implementation of the superclass is using an injected res
Note that a declaration of a field in a subclass with the same name as a field in a superclass
causes the field in the superclass to be hidden.

16.2.3 Annotations and Deployment Descriptors
Environment entries may be declared by the use of annotations, without need for any deplo
descriptor entries. Environment entries may also be declared by deployment descriptor entries, w
need for any annotations. The same environment entry may be declared using both an annotatio
deployment descriptor entry. In this case, the information in the deployment descriptor entry m
used to override some of the information provided in the annotation. This approach may be used
Application Assembler to override information provided by the Bean Provider. Deployment descr
entries should not be used to request injection of a resource into a field or method that has no
designed for injection.

The following rules apply to how a deployment descriptor entry may override aResource annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used wi
annotation (either defaulted or provided explicitly).
405 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Responsibilities by EJB Role

Sun Microsystems, Inc.

ld or

od.

value

value

try.

n Sec-

ser-

n and
ecific

st injec-
ontext.
n
erride

t, or in

tadata
eter of
• The type specified in the deployment descriptor must be assignable to the type of the fie
property or the type specified in theResource annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property meth

• The res-sharing -scope element, if specified, overrides theshareable element of the
annotation. In general, the Application Assembler or Deployer should never change the
of this element, as doing so is likely to break the application.

• Theres-auth element, if specified, overrides theauthenticationType element of the
annotation. In general, the Application Assembler or Deployer should never change the
of this element, as doing so is likely to break the application.

Restrictions on the overriding of environment entry values depend on the type of environment en

The rules for how a deployment descriptor entry may override an EJB annotation are described i
tion 16.5. The rules for how a deployment descriptor entry may override aPersistenceUnit or
PersistenceContext annotation are described in Sections 16.10 and 16.11. The rules for web
vices references and how a deployment descriptor entry may override aWebServiceRef annotation
are included in the Web Services for Java EE specification [31].

16.3 Responsibilities by EJB Role

This section describes the responsibilities of the various EJB roles with regard to the specificatio
handling of environment entries. The sections that follow describe the responsibilities that are sp
to the different types of objects that may be stored in the naming context.

16.3.1 Bean Provider’ s Responsibilities
The Bean Provider may use Java language annotations or deployment descriptor entries to reque
tion of a resource from the naming context, or to declare entries that are needed in the naming c
The Bean Provider may also use the EJBContextlookup method or the JNDI APIs to access entries i
the naming context. Deployment descriptor entries may also be used by the Bean Provider to ov
information provided by annotations.

When using JNDI interfaces directly, an enterprise bean instance creates ajavax.nam-
ing.InitialContext object by using the constructor with no arguments, and looks up
the environment naming via theInitialContext under the namejava:comp/env .

The enterprise bean’s environment entries are stored directly in the environment naming contex
any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the me
annotation or deployment descriptor, or the type of the instance variable or setter method param
the method with which the metadata annotation is associated.
 5/2/06 406

Simple Environment Entries Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

Bean
er has
erride
oyment

e bean

by the
ies for

the

nter-

r-
ntries
r set
con-

ment

to their

s busi-
16.3.2 Application Assembler’s Responsibility
The Application Assembler is allowed to modify the values of the environment entries set by the
Provider, and is allowed to set the values of those environment entries for which the Bean Provid
not specified any initial values. The Application Assembler uses the deployment descriptor to ov
settings made by the Bean Provider, whether these were defined by the Bean Provider in the depl
descriptor or in the source code using annotations.

16.3.3 Deployer’s Responsibility
The Deployer must ensure that the values of all the environment entries declared by an enterpris
are created and/or set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set
Bean Provider and/or Application Assembler, and must set the values of those environment entr
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help
Deployer with this task.

16.3.4 Container Provider Responsibility
The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the e
prise bean’s environment entries.

• Implement thejava:comp/env environment naming context, and provide it to the ente
prise bean instances at runtime. The naming context must include all the environment e
declared by the Bean Provider, with their values supplied in the deployment descriptor o
by the Deployer. The environment naming context must allow the Deployer to create sub
texts if they are needed by an enterprise bean.

• Inject entries from the naming environment, as specified by annotations or by the deploy
descriptor.

• The container must ensure that the enterprise bean instances have only read access
environment variables. The container must throw thejavax.naming.OperationNot-
SupportedException from all the methods of thejavax.naming.Context interface
that modify the environment naming context and its subcontexts.

16.4 Simple Environment Entries

A simple environment entry is a configuration parameter used to customize an enterprise bean’
ness logic. The environment entry values may be one of the following Java types:String , Charac-
ter , Integer , Boolean , Double , Byte , Short , Long , andFloat .
407 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Simple Environment Entries

Sun Microsystems, Inc.

or her
s; the
tax for

s a
cribed
envi-
The

-

ion of

t entries

ions on

nt via
e

The following subsections describe the responsibilities of each EJB role.

16.4.1 Bean Provider’ s Responsibilities
This section describes the Bean Provider’s view of the bean’s environment, and defines his
responsibilities. The first subsection describes annotations for injecting simple environment entrie
second describes the API for accessing simple environment entries; and the third describes syn
declaring the environment entries in a deployment descriptor.

16.4.1.1 Injection of Simple Environment Entries Using Annotations
The Bean Provider uses theResource annotation to annotate a field or method of the bean class a
target for the injection of a simple environment entry. The name of the environment entry is as des
in Section 16.2.2; the type is as described in Section 16.4. Note that the container will unbox the
ronment entry as required to match it to a primitive type used for the injection field or method.
authenticationType andshareable elements of theResource annotation must not be spec
ified; simple environment entries are not shareable and do not require authentication.

The following code example illustrates how an enterprise bean uses annotations for the inject
environment entries.

@Stateless public class EmployeeServiceBean
implements EmployeeService {

...
// The maximum number of tax exemptions, configured by Deployer
@Resource int maxExemptions;

// The minimum number of tax exemptions, configured by Deployer
@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

...
// Use the environment entries to customize business logic.
if (numberOfExemptions > maxExemptions ||

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

}
}

16.4.1.2 Programming Interfaces for Accessing Simple Environment Entries

In addition to the use of injection as described above, an enterprise bean may access environmen
dynamically. This may be done by means of the EJBContextlookup method or by direct use of the
JNDI interfaces. The environment entries are declared by the Bean Provider by means of annotat
the bean class or in the deployment descriptor.

When the JNDI interfaces are used directly, the bean instance creates ajavax.naming.Initial-
Context object by using the constructor with no arguments, and looks up the naming environme
the InitialContext under the namejava:comp/env . The bean’s environmental entries ar
stored directly in the environment naming context, or its direct or indirect subcontexts.
 5/2/06 408

Simple Environment Entries Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

s when
ed are

bean’s
code or

The
ent

try
The following code example illustrates how an enterprise bean accesses its environment entrie
the JNDI APIs are used directly. In this example, the names under which the entries are access
defined by the deployment descriptor, as shown in the example of section 16.4.1.3.

@Stateless public class EmployeeServiceBean
implements EmployeeService {

...
public void setTaxInfo(int numberOfExemptions, ...)

throws InvalidNumberOfExemptionsException {
...

// Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer maxExemptions =

(Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer minExemptions =

(Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > maxExemptions ||

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The enterprise bean can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");
...

}
}

16.4.1.3 Declaration of Simple Environment Entries in the Deployment Descriptor

The Bean Provider must declare all the simple environment entries accessed from the enterprise
code. The simple environment entries are declared either using annotations in the bean class
using theenv-entry elements in the deployment descriptor.

Each env-entry deployment descriptor element describes a single environment entry.
env-entry element consists of an optional description of the environment entry, the environm
entry name relative to thejava:comp/env context, the expected Java type of the environment en
value (i.e., the type of the object returned from the EJBContext or JNDIlookup method), and an
optional environment entry value.
409 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Simple Environment Entries

Sun Microsystems, Inc.

ontains
nter-

t be a
An environment entry is scoped to the enterprise bean whose deployment descriptor element c
the givenenv-entry element. This means that the environment entry is inaccessible from other e
prise beans at runtime, and that other enterprise beans may defineenv-entry elements with the same
env-entry-name without causing a name conflict.

If the Bean Provider provides a value for an environment entry using theenv-entry-value ele-
ment, the value can be changed later by the Application Assembler or Deployer. The value mus
string that is valid for the constructor of the specified type that takes a singleString parameter, or for
java.lang.Character , a single character.
 5/2/06 410

Simple Environment Entries Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.
The following example is the declaration of environment entries used by theEmployeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/name1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>value1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>

</env-entry>
<env-entry>

<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
...

</session>
</enterprise-beans>
...
411 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Simple Environment Entries

Sun Microsystems, Inc.

need
ntries

de, as
Injection of environment entries may also be specified using the deployment descriptor, without
for Java language annotations. The following is an example of the declaration of environment e
corresponding to the example of section 16.4.1.1.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>

com.wombat.empl.EmployeeService/maxExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
<injection-target>

<injection-target-class>
com.wombat.empl.EmployeeServiceBean

</injection-target-class>
<injection-target-name>

maxExemptions
</injection-target-name>

</injection-target>
</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>

com.wombat.empl.EmployeeService/minExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>
<injection-target>

<injection-target-class>
com.wombat.empl.EmployeeServiceBean

</injection-target-class>
<injection-target-name>

minExemptions
</injection-target-name>

</injection-target>
</env-entry>
...

</session>
</enterprise-beans>
...

It is often convenient to declare a field as an injection target, but to specify a default value in the co
illustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4
 5/2/06 412

Simple Environment Entries Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ation

ent is
rce is

y the
ovider
tor to
ations.

erprise

by the
ies for

the

nter-

r-
ntries
r set
con-

nota-

to their
To support this case, the container must only inject a value for the environment entry if the applic
assembler or deployer has specified a value to override the default value. Theenv-entry-value
element in the deployment descriptor is optional when an injection target is specified. If the elem
not specified, no value will be injected. In addition, if the element is not specified, the named resou
not initialized in the naming context, and explicit lookups of the named resource will fail.

16.4.2 Application Assembler’s Responsibility
The Application Assembler is allowed to modify the values of the simple environment entries set b
Bean Provider, and is allowed to set the values of those environment entries for which the Bean Pr
has not specified any initial values. The Application Assembler may use the deployment descrip
override settings made by the Bean Provider, whether in the deployment descriptor or using annot

16.4.3 Deployer’s Responsibility
The Deployer must ensure that the values of all the simple environment entries declared by an ent
bean are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set
Bean Provider and/or Application Assembler, and must set the values of those environment entr
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help
Deployer with this task.

16.4.4 Container Provider Responsibility
The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the e
prise bean’s environment entries.

• Implement thejava:comp/env environment naming context, and provide it to the ente
prise bean instances at runtime. The naming context must include all the environment e
declared by the Bean Provider, with their values supplied in the deployment descriptor o
by the Deployer. The environment naming context must allow the Deployer to create sub
texts if they are needed by an enterprise bean.

• Inject entries from the naming environment into the bean instance, as specified by the an
tions on the bean class or by the deployment descriptor.

• The container must ensure that the enterprise bean instances have only read access
environment variables. The container must throw thejavax.naming.OperationNot-
SupportedException from all the methods of thejavax.naming.Context interface
that modify the environment naming context and its subcontexts.
413 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release EJB References

Sun Microsystems, Inc.

n Pro-
called

. The
et oper-

red in
-jar file
at the
e bean.
e bean

s. The
PI for

deploy-

ean
usiness

n.

r
ame

nd
.

16.5 EJB References

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to the business interfaces or homes of other enterprise beans using “logical” names
EJB references. The EJB references are special entries in the enterprise bean’s environment
Deployer binds the EJB references to the enterprise bean business interfaces or homes in the targ
ational environment, as appropriate.

The deployment descriptor also allows the Application Assembler to link an EJB reference decla
one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb
in the same Java EE application unit. The link is an instruction to the tools used by the Deployer th
EJB reference should be bound to the business interface or home of the specified target enterpris
This linking can also be specified by the Bean Provider using annotations in the source code of th
class.

16.5.1 Bean Provider’ s Responsibilities
This section describes the Bean Provider’s view and responsibilities with respect to EJB reference
first subsection describes annotations for injecting EJB references; the second describes the A
accessing EJB references; and the third describes syntax for declaring the EJB references in a
ment descriptor.

16.5.1.1 Injection of EJB References
The Bean Provider uses theEJB annotation to annotate a field or setter property method of the b
class as a target for the injection of an EJB reference. The reference may be to a session bean’s b
interface or to the local home interface or remote home interface of a session bean or entity bea

The following example illustrates how an enterprise bean uses theEJB annotation to reference anothe
enterprise bean. The enterprise bean reference will have the n
java:comp/env/com.acme.example.ExampleBean/myCart in the referencing bean’s
naming context, whereExampleBean is the name of the class of the referencing bean a
com.acme.example its package. The target of the reference must be resolved by the Deployer

package com.acme.example;

@Stateless public class ExampleBean implements Example {
...
@EJB private ShoppingCart myCart;
...

}

 5/2/06 414

EJB References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

uld

of other

6.5.1.3

rprise
e
by

enter-
The following example illustrates use of all portable elements of theEJB annotation. In this case, the
enterprise bean reference would have the namejava:comp/env/ejb/shopping-cart in the
referencing bean’s naming context. This reference is linked to a bean namedcart1 .

@EJB(
name=”ejb/shopping-cart”,
beanInterface=ShoppingCart.class,
beanName=”cart1”,
description=”The shopping cart for this application”

)
private ShoppingCart myCart;

If the ShoppingCart bean were instead written to the EJB 2.1 client view, the EJB reference wo
be to the bean’s home interface. For example:

@EJB(
name=”ejb/shopping-cart”,
beanInterface=ShoppingCartHome.class,
beanName=”cart1”,
description=”The shopping cart for this application”

)
private ShoppingCartHome myCartHome;

16.5.1.2 EJB Reference Programming Interfaces

The Bean Provider may use EJB references to locate the business interfaces or home interfaces
enterprise beans as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how EJB references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all references to other ente
beans be organized in theejb subcontext of the bean’s environment (i.e., in th
java:comp/env/ejb JNDI context). Note that enterprise bean references declared
means of annotations will not, by default, be in any subcontext.

• Look up the business interface or home interface of the referenced enterprise bean in the
prise bean’s environment using the EJBContextlookup method or the JNDI API.
415 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release EJB References

Sun Microsystems, Inc.

remote

i-
ther

ust not
nces
e

ed by
JB ref-

cing

mponent
ssed
The following example illustrates how an enterprise bean uses an EJB reference to locate the
home interface of another enterprise bean using the JNDI APIs.

@EJB(name=”ejb/EmplRecord”, beanInterface=EmployeeRecordHome.class)
@Stateless public class EmployeeServiceBean

implements EmployeeService {

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

...
}

}

In the example, the Bean Provider of theEmployeeServiceBean enterprise bean assigned the env
ronment entryejb/EmplRecord as the EJB reference name to refer to the remote home of ano
enterprise bean.

16.5.1.3 Declaration of EJB References in Deployment Descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider m
use aenv-entry element to declare it. Instead, the Bean Provider must declare all the EJB refere
using theejb-ref and ejb-local-ref elements of the deployment descriptor. This allows th
ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the EJB references us
the enterprise bean. Deployment descriptor entries may also be used to specify injection of an E
erence into a bean.

Eachejb-ref or ejb-local-ref element describes the interface requirements that the referen
enterprise bean has for the referenced enterprise bean. Theejb-ref element is used for referencing
an enterprise bean that is accessed through its remote business interface or remote home and co
interfaces. Theejb-local-ref element is used for referencing an enterprise bean that is acce
through its local business interface or local home and component interfaces.

Theejb-ref element contains thedescription , ejb-ref-name , ejb-ref-type , home, and
remote elements.

The ejb-local-ref element contains thedescription , ejb-ref-name , ejb-ref-type ,
local-home , andlocal elements.
 5/2/06 416

EJB References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

entry
l
either

JB 2.1
.1

ing on

nent
.

rprise
The ejb-ref-name element specifies the EJB reference name: its value is the environment
name used in the enterprise bean code. Theejb-ref-name must be specified. The optiona
ejb-ref-type element specifies the expected type of the enterprise bean: its value must be
Entity or Session . The home and remote or local-home and local elements specify the
expected Java types of the referenced enterprise bean’s interface(s). If the reference is to an E
remote client view interface, thehome element is required. Likewise, if the reference is to an EJB 2
local client view interface, thelocal-home element is required. Theremote element of the
ejb-ref element refers to either the business interface type or the component interface, depend
whether the reference is to a bean’s EJB 3.0 or EJB 2.1 remote client view. Likewise, thelocal ele-
ment of theejb-local-ref element refers to either the business interface type or the compo
interface, depending on whether the reference is to a bean’s EJB 3.0 or EJB 2.1 local client view

An EJB reference is scoped to the enterprise bean whose declaration contains theejb-ref or
ejb-local-ref element. This means that the EJB reference is not accessible to other ente
beans at runtime, and that other enterprise beans may defineejb-ref and/orejb-local-ref ele-
ments with the sameejb-ref-name without causing a name conflict.
417 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release EJB References

Sun Microsystems, Inc.

n

meta-
The following example illustrates the declaration of EJB references in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<ejb-ref>

<description>
This is a reference to an EJB 2.1 entity bean that
encapsulates access to employee records.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-local-ref>
<description>

This is a reference to the local business interface
of an EJB 3.0 session bean that provides a payroll
service.

</description>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<local>com.aardvark.payroll.Payroll</local>

</ejb-local-ref>

<ejb-local-ref>
<description>

This is a reference to the local business interface
of an EJB 3.0 session bean that provides a pension
plan service.

</description>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<local>com.wombat.empl.PensionPlan</local>

</ejb-local-ref>
...

</session>
...

</enterprise-beans>
...

16.5.2 Application Assembler’s Responsibilities

The Application Assembler can use theejb-link element in the deployment descriptor to link a
EJB reference to a target enterprise bean.

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optionalejb-link element of theejb-ref or
ejb-local-ref element of the referencing enterprise bean. The value of theejb-link
element is the name of the target enterprise bean. (This is the bean name as defined by
data annotation (or default) in the bean class or in theejb-name element of the target enter-
 5/2/06 418

EJB References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ication

in an
the

bler
n and

with
ange

e with
e indi-
and
inter-
prise bean.) The target enterprise bean can be in any ejb-jar file in the same Java EE appl
as the referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names with
entire Java EE application, the Application Assembler may use the following syntax in
ejb-link element of the referencing application component. The Application Assem
specifies the path name of the ejb-jar file containing the referenced enterprise bea
appends the ejb-name of the target bean separated from the path name by# . The path name is
relative to the referencing application component jar file. In this manner, multiple beans
the same ejb-name may be uniquely identified when the Application Assembler cannot ch
ejb-names.[89]

• The Application Assembler must ensure that the target enterprise bean is type-compatibl
the declared EJB reference. This means that the target enterprise bean must be of the typ
cated in theejb-ref-type element, if present, and that the business interface or home
component interfaces of the target enterprise bean must be Java type-compatible with the
faces declared in the EJB reference.

The following illustrates anejb-link in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>
...

</session>
...

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...

</enterprise-beans>
...

The Application Assembler uses theejb-link element to indicate that the EJB referenceEmpl-
Record declared in theEmployeeService enterprise bean has been linked to theEmploy-
eeRecord enterprise bean.

[89] The bean provider may also use this syntax in thebeanName element of theEJB annotation.
419 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release EJB References

Sun Microsystems, Inc.

ce
rent

ce
rent
plica-

th the

od.

s inter-
loyer
The following example illustrates using theejb-link element to indicate an enterprise bean referen
to the ProductEJB enterprise bean that is in the same Java EE application unit but in a diffe
ejb-jar file.

<entity>
...
<ejb-name>OrderEJB</ejb-name>
<ejb-class>com.wombat.orders.OrderBean</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.orders.ProductHome</home>
<remote>com.acme.orders.Product</remote>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>
...

</entity>

The following example illustrates using theejb-link element to indicate an enterprise bean referen
to theShoppingCart enterprise bean that is in the same Java EE application unit but in a diffe
ejb-jar file. The reference was originally declared in the bean’s code using an annotation. The Ap
tion Assembler provides only the link to the bean.

...
<ejb-ref>

<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<ejb-link>../products/product.jar#ShoppingCart</ejb-link>

</ejb-ref>

16.5.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override anEJB annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used wi
annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor via theremote , local , remote-home , or
local-home element and any bean referenced by theejb-link element must be assign-
able to the type of the field or property or the type specified by thebeanInterface element
of theEJB annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property meth

16.5.3 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the busines
faces or homes of enterprise beans that exist in the operational environment. The Dep
 5/2/06 420

Web Service References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

al

types
e type

erprise
inter-

he
rprise

tasks
ovider

d tar-

EJB

refer-
e refer-

Web

ized in
may use, for example, the JNDILinkRef mechanism to create a symbolic link to the actu
JNDI name of the target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible with the
declared for the EJB reference. This means that the target enterprise bean must be of th
indicated by the use of theEJB annotation, by theejb-ref-type element (if specified),
and that the business interface and/or home and component interfaces of the target ent
bean must be Java type-compatible with the interface type of the injection target or the
face types declared in the EJB reference.

• If an EJB annotation includes thebeanName element or the reference declaration includes t
ejb-link element, the Deployer should bind the enterprise bean reference to the ente
bean specified as the target.

16.5.4 Container Provider’ s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container Pr
must be able to process the information supplied in theejb-ref andejb-local-ref elements in
the deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in theejb-link elements
by binding an EJB reference to the business interface or the home interface of the specifie
get bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an
reference by binding it to a specified compatible target bean.

16.6 Web Service References

Web service references allow the Bean Provider to refer to external web services. The web service
ences are special entries in the enterprise bean’s environment. The Deployer binds the web servic
ences to the web service classes or interfaces in the target operational environment.

The specification of web service references and their usage is defined in the Java API for XML
Services (JAX-WS) [32] and Web Services for Java EE specifications [31].

A web service reference is scoped to the enterprise bean whose definition contains theWebService-
Ref annotation or whose deployment descriptor declaration contains theservice-ref element. The
EJB specification recommends, but does not require, that all references to web services be organ
the service subcontext of the bean’s environment (i.e., in thejava:comp/env/service JNDI
context).
421 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.

ce man-

a

low the

in the
rences
e these
onnec-

nnec-

or her
anager
n refer-
es in a

ion
ibed in

source
16.7 Resource Manager Connection Factory References

A resource manager connection factory is an object that is used to create connections to a resour
ager. For example, an object that implements thejavax.sql.DataSource interface is a resource
manager connection factory forjava.sql.Connection objects that implement connections to
database management system.

This section describes the metadata annotations and deployment descriptor elements that al
enterprise bean code to refer to resource factories using logical names calledresource manager connec-
tion factory references. The resource manager connection factory references are special entries
enterprise bean’s environment. The Deployer binds the resource manager connection factory refe
to the actual resource manager connection factories that are configured in the container. Becaus
resource manager connection factories allow the container to affect resource management, the c
tions acquired through the resource manager connection factory references are calledmanaged
resources(e.g., these resource manager connection factories allow the container to implement co
tion pooling and automatic enlistment of the connection with a transaction).

16.7.1 Bean Provider’ s Responsibilities
This subsection describes the Bean Provider’s view of locating resource factories and defines his
responsibilities. The first subsection describes annotations for injecting references to resource m
connection factories; the second describes the API for accessing resource manager connectio
ences; and the third describes syntax for declaring the resource manager connection referenc
deployment descriptor.

16.7.1.1 Injection of Resource Manager Connection Factory References
A field or a method of an enterprise bean may be annotated with theResource annotation. The name
and type of the factory are as described above in Section 16.2.2. TheauthenticationType and
shareable elements of theResource annotation may be used to control the type of authenticat
desired for the resource and the shareability of connections acquired from the factory, as descr
the following sections.

The following code example illustrates how an enterprise bean uses annotations to declare re
manager connection factory references.

//The employee database.
@Resource javax.sql.DataSource employeeAppDB;
...
public void changePhoneNumber(...) {

...
// Invoke factory to obtain a resource. The security
// principal for the resource is not given, and
// therefore it will be configured by the Deployer.
java.sql.Connection con = employeeAppDB.getConnection();
...

}

 5/2/06 422

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

tions to

n fac-
ection

ection
ferent
rences
-
ht
n
fer-

ment

nnec-
btain

anager
terprise
rovider

are not

he con-

the

. In
od that

nvokes
ation

hes is
16.7.1.2 Programming Interfaces for Resource Manager Connection Factory References

The Bean Provider must use resource manager connection factory references to obtain connec
resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connectio
tory reference. (See subsection 16.7.1.3 for information on how resource manager conn
factory references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource manager conn
factory references be organized in the subcontexts of the bean’s environment, using a dif
subcontext for each resource manager type. For example, all JDBC™ DataSource refe
might be declared in thejava:comp/env/jdbc subcontext, and all JMS connection facto
ries in thejava:comp/env/jms subcontext. Also, all JavaMail connection factories mig
be declared in thejava:comp/env/mail subcontext and all URL connection factories i
thejava:comp/env/url subcontext. Note that resource manager connection factory re
ences declared via annotations will not, by default, appear in any subcontext.

• Lookup the resource manager connection factory object in the enterprise bean’s environ
using the EJBContextlookup method or using the JNDI API.

• Invoke the appropriate method on the resource manager connection factory to obtain a co
tion to the resource. The factory method is specific to the resource type. It is possible to o
multiple connections by calling the factory object multiple times.

The Bean Provider can control the shareability of the connections acquired from the resource m
connection factory. By default, connections to a resource manager are shareable across other en
beans in the application that use the same resource in the same transaction context. The Bean P
can specify that connections obtained from a resource manager connection factory reference
shareable by specifying the value of theshareable annotation element tofalse or the
res-sharing-scope deployment descriptor element to beUnshareable . The sharing of connec-
tions to a resource manager allows the container to optimize the use of connections and enables t
tainer’s use of local transaction optimizations.

The Bean Provider has two choices with respect to dealing with associating a principal with
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information
this case, the enterprise bean code invokes a resource manager connection factory meth
has no security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean i
the appropriate resource manager connection factory method that takes the sign-on inform
as method parameters.

The Bean Provider uses theauthenticationType annotation element or theres-auth deploy-
ment descriptor element to indicate which of the two resource manager authentication approac
used.
423 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.

ation)

used

t

We expect that the first form (i.e., letting the Deployer set up the resource manager sign-on inform
will be the approach used by most enterprise beans.

The following code sample illustrates obtaining a JDBC connection when the EJBContextlookup
method is used.

@Resource(name=”jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class EmployeeServiceBean

implements EmployeeService {
@Resource SessionContext ctx;

public void changePhoneNumber(...) {
...
// use context lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

ctx.lookup("jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

The following code sample illustrates obtaining a JDBC connection when the JNDI APIs are
directly.

@Resource(name=”jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class EmployeeServiceBean

implements EmployeeService {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

16.7.1.3 Declaration of Resource Manager Connection Factory References in Deploymen
 5/2/06 424

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

nviron-

anager

man-
ay also

. The

ean’s

enter-
e

atically,
n sup-
of the

s
nce are

laration
efer-
y define

n fac-

urce.
Descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s e
ment, the Bean Provider must not use anenv-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the resource m
connection factory references in the deployment descriptor using theresource-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the resource
ager connection factory references used by an enterprise bean. Deployment descriptor entries m
be used to specify injection of a resource manager connection factor reference into a bean.

Eachresource-ref element describes a single resource manager connection factory reference
resource-ref element consists of thedescription element; the mandatoryres-ref-name
element ; and the optionalres-type , res-auth and res-sharing-scope elements. The
res-ref-name element contains the name of the environment entry used in the enterprise b
code. The name of the environment entry is relative to thejava:comp/env context (e.g., the name
should bejdbc/EmployeeAppDB rather thanjava:comp/env/jdbc/EmployeeAppDB). The
res-type element contains the Java type of the resource manager connection factory that the
prise bean code expects. Theres-type element is optional if an injection target is specified for th
resource; in this case, theres-type defaults to the type of the injection target. Theres-auth ele-
ment indicates whether the enterprise bean code performs resource manager sign-on programm
or whether the container signs on to the resource manager using the principal mapping informatio
plied by the Deployer. The Bean Provider indicates the sign-on responsibility by setting the value
res-auth element toApplication or Container . If the res-auth element is not specified,
Container sign-on is assumed. Theres-sharing-scope element indicates whether connection
to the resource manager obtained through the given resource manager connection factory refere
to be shared or whether connections are unshareable. The value of theres-sharing-scope ele-
ment isShareable or Unshareable . If the res-sharing-scope element is not specified, con-
nections are assumed to be shareable.

A resource manager connection factory reference is scoped to the enterprise bean whose dec
contains theresource-ref element. This means that the resource manager connection factory r
ence is not accessible from other enterprise beans at runtime, and that other enterprise beans ma
resource-ref elements with the sameres-ref-name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connectio
tory.

Note that the indicated type is the Java type of the resource factory, not the Java type of the reso
425 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.

by the

refer-

y

The following example is the declaration of resource manager connection factory references used
EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<resource-ref>

<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...

The following example illustrates the declaration of JMS resource manager connection factory
ences.

...
<enterprise-beans>

<session>
...
<resource-ref>

<description>
A queue connection factory used by the
MySession enterprise bean to send
notifications.

</description>
<res-ref-name>jms/qConnFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...

16.7.1.4 Standard Resource Manager Connection Factory Types

The Bean Provider must use thejavax.sql.DataSource resource manager connection factor
type for obtaining JDBC connections, and thejavax.jms.ConnectionFactory ,
javax.jms.QueueConnectionFactory , or javax.jms.TopicConnectionFactory for
obtaining JMS connections.
 5/2/06 426

Resource Manager Connection Factory ReferencesEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

e
y

the
e
nces

on to

s to the

rence

on fac-
JNDI

an-
atible

ening
, and is

rce
ger; it

t the
ager,
anner
cifica-
The Bean Provider must use thejavax.mail.Session resource manager connection factory typ
for obtaining JavaMail connections, and thejava.net.URL resource manager connection factor
type for obtaining URL connections.

It is recommended that the Bean Provider names JDBC data sources in thejava:comp/env/jdbc
subcontext, and JMS connection factories in thejava:comp/env/jms subcontext. It is also recom-
mended that the Bean Provider name all JavaMail connection factories in
java:comp/env/mail subcontext, and all URL connection factories in th
java:comp/env/url subcontext. Note that resource manager connection factory refere
declared via annotations will not, by default, appear in any subcontext.

The Connector architecture [15] allows an enterprise bean to use the API described in this secti
obtain resource objects that provide access to additional back-end systems.

16.7.2 Deployer’s Responsibility
The Deployer uses deployment tools to bind the resource manager connection factory reference
actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory refe
declared in the metadata annotations or deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager connecti
tory that exists in the operational environment. The Deployer may use, for example, the
LinkRef mechanism to create a symbolic link to the actual JNDI name of the resource m
ager connection factory. The resource manager connection factory type must be comp
with the type declared in the source code or in theres-type element.

• Provide any additional configuration information that the resource manager needs for op
and managing the resource. The configuration mechanism is resource-manager specific
beyond the scope of this specification.

• If the value of theResource annotationauthenticationType element isAuthenti-
cationType.CONTAINER or the deployment descriptorres-auth element isCon-
tainer , the Deployer is responsible for configuring the sign-on information for the resou
manager. This is performed in a manner specific to the EJB container and resource mana
is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used a
enterprise beans application level to the security domain and principal realm of the resource man
the Deployer or System Administrator must define the mapping. The mapping is performed in a m
specific to the EJB container and resource manager; it is beyond the scope of the current EJB spe
tion.

16.7.3 Container Provider Responsibility
The EJB Container Provider is responsible for the following:
427 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Resource Manager Connection Factory Refer-

Sun Microsystems, Inc.

pre-

r the

ger’s

ec-
c-

ce

quire-

gn-on

nager
able to
to the

of a
ntainer
rop-
n.

wing

er for

e man-
erprise

ction fac-
• Provide the deployment tools that allow the Deployer to perform the tasks described in the
vious subsection.

• Provide the implementation of the resource manager connection factory classes fo
resource managers that are configured with the EJB container.

• If the Bean Provider sets theauthenticationType element of theResource annotation
to AuthenticationType.APPLICATION or the res-auth deployment descriptor
entry for a resource manager connection factory reference toApplication , the container
must allow the bean to perform explicit programmatic sign-on using the resource mana
API.

• If the Bean Provider sets theshareable element of theResource annotation tofalse or
sets theres-sharing-scope deployment descriptor entry for a resource manager conn
tion factory reference toUnshareable , the container must not attempt to share the conne
tions obtained from the resource manager connection factoryreference[90]. If the Bean
Provider sets theres-sharing-scope of a resource manager connection factory referen
to Shareable or does not specifyres-sharing-scope , the container must share the
connections obtained from the resource manager connection factory according to the re
ments defined in [12].

• The container must provide tools that allow the Deployer to set up resource manager si
information for the resource manager references whose annotation elementauthentica-
tionType is set toAuthenticationType.CONTAINER or whoseres-auth deploy-
ment descriptor element element is set toContainer . The minimum requirement is that the
Deployer must be able to specify the user/password information for each resource ma
connection factory reference declared by the enterprise bean, and the container must be
use the user/password combination for user authentication when obtaining a connection
resource by invoking the resource manager connection factory.

Although not required by the EJB specification, we expect that containers will support some form
single sign-on mechanism that spans the application server and the resource managers. The co
will allow the Deployer to set up the resource managers such that the EJB caller principal can be p
agated (directly or through principal mapping) to a resource manager, if required by the applicatio

While not required by the EJB specification, most EJB container providers also provide the follo
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manag
the EJB server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwis
age the use of resources by the container. The pooling must be transparent to the ent
beans.

[90] Connections obtained from the same resource manager connection factory through a different resource manager conne
tory reference may be shareable.
 5/2/06 428

Resource Environment References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

n Pro-

nds the

envi-

are as

do not
er-
in
simple

that are

6.8.1.3
ment

refer-
ource
16.7.4 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

16.8 Resource Environment References

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to administered objects that are associated with resources (e.g., a Connector CCIInter-
actionSpec instance) by using “logical” names calledresource environment references. Resource
environment references are special entries in the enterprise bean’s environment. The Deployer bi
resource environment references to administered objects in the target operational environment.

16.8.1 Bean Provider’ s Responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to resource
ronment references.

16.8.1.1 Injection of Resource Environment References
A field or a method of a bean may be annotated with theResource annotation to request injection of a
resource environment reference. The name and type of the resource environment reference
described in Section 16.2.2. TheauthenticationType and shareable elements of the
Resource annotation must not be specified; resource environment entries are not shareable and
require authentication. The use of theResource annotation to declare a resource environment ref
ence differs from the use of theResource annotation to declare simple environment references only
that the type of a resource environment reference is not one of the Java language types used for
environment references.

16.8.1.2 Resource Environment Reference Programming Interfaces

The Bean Provider must use resource environment references to locate administered objects
associated with resources, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how resource environment references are declared in the deploy
descriptor.)

• The EJB specification recommends, but does not require, that all resource environment
ences be organized in the appropriate subcontext of the bean’s environment for the res
429 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Resource Environment References

Sun Microsystems, Inc.

t, by

ntext

e Bean
all
bean’s
e
bean.

refer-

bean

the

: its
nment

ins the
ssible

und to
, for
of

d for
e indi-
type. Note that the resource environment references declared via annotations will no
default, appear in any subcontext.

• Look up the administered object in the enterprise bean’s environment using the EJBCo
lookup method or the JNDI API.

16.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the enterprise bean’s environment, th
Provider must not use aenv-entry element to declare it. Instead, the Bean Provider must declare
references to administered objects associated with resources using either annotations in the
source code or theresource-env-ref elements of the deployment descriptor. This allows th
ejb-jar consumer to discover all the resource environment references used by the enterprise
Deployment descriptor entries may also be used to specify injection of a resource environment
ence into a bean.

Eachresource-env-ref element describes the requirements that the referencing enterprise
has for the referenced administered object. Theresource-env-ref element contains optional
description and resource-env-ref-type elements, and the mandatory
resource-env-ref-name element. Theresource-env-ref-type element is optional if an
injection target is specified for the resource environment reference; in this case
resource-env-ref-type defaults to the type of the injection target.

The resource-env-ref-name element specifies the resource environment reference name
value is the environment entry name used in the enterprise bean code. The name of the enviro
entry is relative to thejava:comp/env context. Theresource-env-ref-type element speci-
fies the expected type of the referenced object.

A resource environment reference is scoped to the enterprise bean whose declaration conta
resource-env-ref element. This means that the resource environment reference is not acce
to other enterprise beans at runtime, and that other enterprise beans may defineresource-env-ref
elements with the sameresource-env-ref-name without causing a name conflict.

16.8.2 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bo
administered objects that exist in the operational environment. The Deployer may use
example, the JNDILinkRef mechanism to create a symbolic link to the actual JNDI name
the target object.

• The Deployer must ensure that the target object is type-compatible with the type declare
the resource environment reference. This means that the target object must be of the typ
cated in theResource annotation or theresource-env-ref-type element.
 5/2/06 430

Message Destination References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

tasks
ovider
and

ment
ecified

n Pro-

nt. The
e target

estina-

are as

not
hether

cribed in
le mes-
ce, con-

may be
essage
n
ume
16.8.3 Container Provider’ s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container Pr
must be able to process the information supplied in the class file annotations
resource-env-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource environ
references, and allow him or her to resolve a resource environment reference by binding it to a sp
compatible target object in the environment.

16.9 Message Destination References

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to message destination objects by using “logical” names calledmessage destination refer-
ences. Message destination references are special entries in the enterprise bean’s environme
Deployer binds the message destination references to administered message destinations in th
operational environment.

16.9.1 Bean Provider’ s Responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to message d
tion references.

16.9.1.1 Injection of Message Destination References
A field or a method of a bean may be annotated with theResource annotation to request injection of a
message destination reference. The name and type of the resource environment reference
described in Section 16.2.2. TheauthenticationType and shareable elements of the
Resource annotation must not be specified.

Note that when using theResource annotation to declare a message destination reference it is
possible to link the reference to other references to the same message destination, or to specify w
the destination is used to produce or consume messages. The deployment descriptor entries des
Section 16.9.1.3 provide a way to associate multiple message destination references with a sing
sage destination and to specify whether each message destination reference is used to produ
sume, or both produce and consume messsages, so that the entire message flow of an application
specified. The Application Assembler may use these message destination links to link together m
destination references that have been declared using theResource annotation. A message destinatio
reference declared via theResource annotation is assumed to be used to both produce and cons
messages; this default may be overridden using a deployment descriptor entry.

The following example illustrates how an enterprise bean uses theResource annotation to request
injection of a message destination reference.

@Resource javax.jms.Queue stockQueue;
431 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Message Destination References

Sun Microsystems, Inc.

ows.

6.9.1.3
scrip-

refer-
saging

in any

o locate

vi-
ueue.
16.9.1.2 Message Destination Reference Programming Interfaces

The Bean Provider uses message destination references to locate message destinations, as foll

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how message destination references are declared in the deployment de
tor.)

• The EJB specification recommends, but does not require, that all message destination
ences be organized in the appropriate subcontext of the bean’s environment for the mes
resource type (e.g. in thejava:comp/env/jms JNDI context for JMS Destinations). Note
that message destination references declared via annotations will not, by default, appear
subcontext.

• Look up the destination in the enterprise bean’s environment using the EJBContextlookup
method or the JNDI APIs.

The following example illustrates how an enterprise bean uses a message destination reference t
a JMS Destination.

@Resource(name=”jms/StockQueue”, type=javax.jms.Queue)
@Stateless public class StockServiceBean implements StockService {

@Resource SessionContext ctx;

public void processStockInfo(...) {
...
// Look up the JMS StockQueue in the environment.
Object result = ctx.lookup("jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

}
}

In the example, the Bean Provider of theStockServiceBean enterprise bean has assigned the en
ronment entryjms/StockQueue as the message destination reference name to refer to a JMS q
 5/2/06 432

Message Destination References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

e Bean
lare
e
jar
loyment
a bean.

ter-

nce
e mes-

e

in the

ence;
e
mes-

e
cces-
define
If the JNDI APIs were used directly, the example would be as follows.

@Resource(name=”jms/StockQueue”, type=javax.jms.Queue)
@Stateless public class StockServiceBean implements StockService {

public void processStockInfo(...) {
...
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.
Object result = initCtx.lookup(

"java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;
...

}
}

16.9.1.3 Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the enterprise bean’s environment, th
Provider must not use aenv-entry element to declare it. Instead, the Bean Provider should dec
all references to message destinations using either theResource annotation in the bean’s code or th
the message-destination-ref elements of the deployment descriptor. This allows the ejb-
consumer to discover all the message destination references used by the enterprise bean. Dep
descriptor entries may also be used to specify injection of a message destination reference into

Eachmessage-destination-ref element describes the requirements that the referencing en
prise bean has for the referenced destination. Themessage-destination-ref element contains
optional description , message-destination-type , and message-destina-
tion-usage elements, and the mandatorymessage-destination-ref-name element.

The message-destination-ref-name element specifies the message destination refere
name: its value is the environment entry name used in the enterprise bean code. The name of th
sage destination reference is relative to thejava:comp/env context (e.g., the name should b
jms/StockQueue rather thanjava:comp/env/jms/StockQueue). Themessage-desti-
nation-type element specifies the expected type of the referenced destination. For example,
case of a JMS Destination, its value might bejavax.jms.Queue . The message-destina-
tion-type element is optional if an injection target is specified for the message destination refer
in this case themessage-destination-type defaults to the type of the injection target. Th
message-destination-usage element specifies whether messages are consumed from the
sage destination, produced for the destination, or both. If themessage-destination-usage ele-
ment is not specified, messages are assumed to be both consumed and produced.

A message destination reference is scoped to the enterprise bean whose declaration contains thmes-
sage-destination-ref element. This means that the message destination reference is not a
sible to other enterprise beans at runtime, and that other enterprise beans may
message-destination-ref elements with the samemessage-destination-ref-name
without causing a name conflict.
433 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Message Destination References

Sun Microsystems, Inc.

yment

ations
sages

-

lows:

nk it

ation

ges to

n, the

ler
The following example illustrates the declaration of message destination references in the deplo
descriptor.

...
<message-destination-ref>

<description>
This is a reference to a JMS queue used in processing Stock info
</description>
<message-destination-ref-name>

jms/StockInfo
</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces<
/message-destination-usage>

</message-destination-ref>
...

16.9.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common logical destin
specified in the deployment descriptor, the Application Assembler can specify the flow of mes
within an application. The Application Assembler uses themessage-destination element, the
message-destination-link element of themessage-destination-ref element, and the
message-destination-link element of themessage-driven element to link message desti
nation references to a common logical destination.

The Application Assembler specifies the link between message consumers and producers as fol

• The Application Assembler uses themessage-destination element to specify a logical
message destination within the application. Themessage-destination element defines a
message-destination-name , which is used for the purpose of linking.

• The Application Assembler uses themessage-destination-link element of themes-
sage-destination-ref element of an enterprise bean that produces messages to li
to the target destination. The value of themessage-destination-link element is the
name of the target destination, as defined in themessage-destination-name element of
the message-destination element. Themessage-destination element can be in
any module in the same Java EE application as the referencing component. The Applic
Assembler uses themessage-destination-usage element of themessage-desti-
nation-ref element to indicate that the referencing enterprise bean produces messa
the referenced destination.

• If the consumer of messages from the common destination is a message-driven bea
Application Assembler uses themessage-destination-link element of themes-
sage-driven element to reference the logical destination. If the Application Assemb
links a message-driven bean to its source destination, he or she should use themes-
sage-destination-type element of themessage-driven element to specify the
expected destination type.
 5/2/06 434

Message Destination References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

es the

latter

es-

re Java

li-
ssage

-
m-

e

sum-
patible
• If an enterprise bean is otherwise a message consumer, the Application Assembler us
message-destination-link element of themessage-destination-ref element
of the enterprise bean that consumes messages to link to the common destination. In the
case, the Application Assembler uses themessage-destination-usage element of the
message-destination-ref element to indicate that the enterprise bean consumes m
sages from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an enti
EE application, the Application Assembler may use the following syntax in themes-
sage-destination-link element of the referencing application component. The App
cation Assembler specifies the path name of the ejb-jar file containing the referenced me
destination and appends themessage-destination-name of the target destination sepa
rated from the path name by# . The path name is relative to the referencing application co
ponent jar file. In this manner, multiple destinations with the sam
message-destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure that the con
ers and producers for the destination require a message destination of the same or com
type, as determined by the messaging system.
435 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Message Destination References

Sun Microsystems, Inc.

iptor.

en
The following example illustrates the use of message destination linking in the deployment descr

...
<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<message-destination-ref>

<message-destination-ref-name>
jms/EmployeeReimbursements

</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces
</message-destination-usage>
<message-destination-link>

ExpenseProcessingQueue
</message-destination-link>

</message-destination-ref>
</session>
...

<message-driven>
<ejb-name>ExpenseProcessing</ejb-name>
<ejb-class>com.wombat.empl.ExpenseProcessingBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
...
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-link>

ExpenseProcessingQueue
</message-destination-link>
...

</message-driven>
...

</enterprise-beans>
...
<assembly-descriptor>

...
<message-destination>

<message-destination-name>
ExpenseProcessingQueue

</message-destination-name>
</message-destination>
...

</assembly-descriptor>

The Application Assembler uses themessage-destination-link element to indicate that the
message destination referenceEmployeeReimbursement declared in theEmployeeService
enterprise bean is linked to theExpenseProcessing message-driven bean by means of the comm
destinationExpenseProcessingQueue .
 5/2/06 436

Message Destination References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

-

und to
xam-
the

d for

sem-

tasks
ovider

ducers
y unre-
ference
The following example illustrates using themessage-destination-link element to indicate an
enterprise bean reference to theExpenseProcessingQueue that is in the same Java EE applica
tion unit but in a different ejb-jar file.

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
...
<message-destination-ref>

<message-destination-ref-name>
jms/EmployeeReimbursements

</message-destination-ref-name>
<message-destination-type>

javax.jms.Queue
</message-destination-type>
<message-destination-usage>

Produces
</message-destination-usage>
<message-destination-link>

finance.jar#ExpenseProcessingQueue
</message-destination-link>

</message-destination-ref>
</session>

16.9.3 Deployer’s Responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references are bo
destination objects that exist in the operational environment. The Deployer may use, for e
ple, the JNDILinkRef mechanism to create a symbolic link to the actual JNDI name of
target object.

• The Deployer must ensure that the target object is type-compatible with the type declare
the message destination reference.

• The Deployer must observe the message destination links specified by the Application As
bler.

16.9.4 Container Provider’ s Responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container Pr
must be able to process the information supplied in themessage-destination-ref andmes-
sage-destination-link elements in the deployment descriptor.

The tools must be able to inform the Deployer of the message flow between consumers and pro
sharing common message destinations. The tools must also be able to inform the Deployer of an
solved message destination references, and allow him or her to resolve a message destination re
by binding it to a specified compatible target object in the environment.
437 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Persistence Unit References

Sun Microsystems, Inc.

low the
l name
ean’s
at are

s

ersis-
jecting
access-
tax for

ersis-

istence

actories

. (See
in the

ces be
.

ment
16.10 Persistence Unit References

This section describes the metadata annotations and deployment descriptor elements that al
enterprise bean code to refer to the entity manager factory for a persistence unit using a logica
called apersistence unit reference. Persistence unit references are special entries in the enterprise b
environment. The Deployer binds the persistence unit references to entity manager factories th
configured in accordance with thepersistence.xml specification for the persistence unit, a
described in the document “Java Persistence API” of this specification [2].

16.10.1 Bean Provider’ s Responsibilities
This subsection describes the Bean Provider’s view of locating the entity manager factory for a p
tence unit and defines his or her responsibilities. The first subsection describes annotations for in
references to an entity manager factory for a persistence unit; the second describes the API for
ing an entity manager factory using a persistence unit reference; and the third describes syn
declaring persistence unit references in a deployment descriptor.

16.10.1.1 Injection of Persistence Unit References
A field or a method of an enterprise bean may be annotated with thePersistenceUnit annotation.
Thename element specifies the name under which the entity manager factory for the referenced p
tence unit may be located in the JNDI naming context. The optionalunitName element specifies the
name of the persistence unit as declared in thepersistence.xml file that defines the persistence
unit.

The following code example illustrates how an enterprise bean uses annotations to declare pers
unit references.

@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

16.10.1.2 Programming Interfaces for Persistence Unit References

The Bean Provider must use persistence unit references to obtain references to entity manager f
as follows.

• Assign an entry in the enterprise bean’s environment to the persistence unit reference
subsection 16.10.1.3 for information on how persistence unit references are declared
deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence unit referen
organized in thejava:comp/env/persistence subcontexts of the bean’s environment

• Lookup the entity manager factory for the persistence unit in the enterprise bean’s environ
using the EJBContextlookup method or using the JNDI API.
 5/2/06 438

Persistence Unit References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ntext

used

n Pro-

unit ref-

ences
n of a
The following code sample illustrates obtaining an entity manager factory when the EJBCo
lookup method is used.

@PersistenceUnit(name=”persistence/InventoryAppDB”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

@Resource SessionContext ctx;

public void updateInventory(...) {
...
// use context lookup to obtain entity manager factory
EntityManagerFactory emf = (EntityManagerFactory)

ctx.lookup("persistence/InventoryAppDB");

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();
...

}
}

The following code sample illustrates obtaining an entity manager factory when the JNDI APIs are
directly.

@PersistenceUnit(name=”persistence/InventoryAppDB”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

EJBContext ejbContext;
...
public void updateInventory(...) {

...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain entity manager factory
EntityManagerFactory emf = (EntityManagerFactory)

initCtx.lookup("java:comp/env/persistence/InventoryAp-
pDB");

// use factory to obtain application-managed entity manager
EntityManager em = emf.createEntityManager();
...

}
}

16.10.1.3 Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the enterprise bean’s environment, the Bea
vider must not use anenv-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence
erences in the deployment descriptor using thepersistence-unit-ref elements. This allows the
ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence unit refer
used by an enterprise bean. Deployment descriptor entries may also be used to specify injectio
persistence unit reference into a bean.
439 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Persistence Unit References

Sun Microsystems, Inc.

the

in

vider)
-
ava EE
stence

with
not be
Eachpersistence-unit-ref element describes a single entity manager factory reference for
persistence unit. Thepersistence-unit-ref element consists of the optionaldescription
andpersistence-unit-name elements, and the mandatorypersistence-unit-ref-name
element.

Thepersistence-unit-ref-name element contains the name of the environment entry used
the enterprise bean’s code. The name of the environment entry is relative to thejava:comp/env con-
text (e.g., the name should bepersistence/InventoryAppDB rather than
java:comp/env/persistence/InventoryAppDB). The optional persis-
tence-unit-name element is the name of the persistence unit, as specified in thepersis-
tence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by theInventoryMan-
ager enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-unit-ref>

<description>
Persistence unit for the inventory management
application.

</description>
<persistence-unit-ref-name>

persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>

InventoryManagement
</persistence-unit-name>

</persistence-unit-ref>
...

</session>
</enterprise-beans>
...

16.10.2 Application Assembler’s Responsibilities

The Application Assembler can use thepersistence-unit-name element in the deployment
descriptor to specify a reference to a persistence unit. The Application Assembler (or Bean Pro
may use the following syntax in thepersistence-unit-name element of the referencing applica
tion component to avoid the need to rename persistence units to have unique names within a J
application. The Application Assembler specifies the path name of the root of the referenced persi
unit and appends the name of the persistence unit separated from the path name by# . The path name is
relative to the referencing application component jar file. In this manner, multiple persistence units
the same persistence unit name may be uniquely identified when persistence unit names can
changed.
 5/2/06 440

Persistence Unit References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

t

th the

ified,

od.

anager

meta-
For example,

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-unit-ref>

<description>
Persistence unit for the inventory management
application.

</description>
<persistence-unit-ref-name>

persistence/InventoryAppDB
</persistence-unit-ref-name>
<persistence-unit-name>

../lib/inventory.jar#InventoryManagement
</persistence-unit-name>

</persistence-unit-ref>
...

</session>
</enterprise-beans>
...

The Application Assembler uses thepersistence-unit-name element to link the persistence uni
nameInventoryManagement declared in theInventoryManagerBean to the persistence unit
namedInventoryManagement defined ininventory.jar .

16.10.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override aPersistenceUnit
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used wi
annotation (either defaulted or provided explicitly).

• Thepersistence-unit-name overrides theunitName element of the annotation. The
Application Assembler or Deployer should exercise caution in changing this value, if spec
as doing so is likely to break the application.

• The injection target, if specified, must name exactly the annotated field or property meth

16.10.3 Deployer’s Responsibility
The Deployer uses deployment tools to bind a persistence unit reference to the actual entity m
factory configured for the persistence in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the
data annotations or deployment descriptor:
441 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Persistence Context References

Sun Microsystems, Inc.

tence
JNDI
ager

refer-

for

pre-

ts that
tory
ith a

low the
context
e-
rences
ured in
• Bind the persistence unit reference to an entity manager factory configured for the persis
unit that exists in the operational environment. The Deployer may use, for example, the
LinkRef mechanism to create a symbolic link to the actual JNDI name of the entity man
factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit
ence to the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs
managing the persistence unit, as described in [2].

16.10.4 Container Provider Responsibility
The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
vious subsection.

• Provide the implementation of the entity manager factory classes for the persistence uni
are configured with the EJB container. The implementation of the entity manager fac
classes may be provided by the container directly or by the container in conjunction w
third-party persistence provider, as described in [2].

16.10.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

16.11 Persistence Context References

This section describes the metadata annotations and deployment descriptor elements that al
enterprise bean code to refer to a container-managed entity manager of a specified persistence
type using a logical name called apersistence context reference. Persistence context references are sp
cial entries in the enterprise bean’s environment. The Deployer binds the persistence context refe
to container-managed entity managers for persistence contexts of the specified type and config
accordance with their persistence unit, as described in the document “Java Persistence API” of this
specification [2].
 5/2/06 442

Persistence Context References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

rs and
ces to
to con-
es in a

or the

ded
context
xts can

istence

anaged

. (See
in the

rences
-

bean’s
16.11.1 Bean Provider’ s Responsibilities
This subsection describes the Bean Provider’s view of locating container-managed entity manage
defines his or her responsibilities. The first subsection describes annotations for injecting referen
container-managed entity managers; the second describes the API for accessing references
tainer-managed entity managers; and the third describes syntax for declaring these referenc
deployment descriptor.

16.11.1.1 Injection of Persistence Context References
A field or a method of an enterprise bean may be annotated with thePersistenceContext annota-
tion. Thename element specifies the name under which a container-managed entity manager f
referenced persistence unit may be located in the JNDI naming context. The optionalunitName ele-
ment specifies the name of the persistence unit as declared in thepersistence.xml file that defines
the persistence unit. The optionaltype element specifies whether a transaction-scoped or exten
persistence context is to be used. If the type is not specified, a transaction-scoped persistence
will be used. References to container-managed entity managers with extended persistence conte
only be injected into stateful session beans. The optionalproperties element specifies configuration
properties to be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an enterprise bean uses annotations to declare pers
context references.

@PersistenceContext(type=EXTENDED)
EntityManager em;

16.11.1.2 Programming Interfaces for Persistence Context References

The Bean Provider must use persistence context references to obtain references to a container-m
entity manager configured for a persistence unit as follows:

• Assign an entry in the enterprise bean’s environment to the persistence context reference
subsection 16.11.1.3 for information on how persistence context references are declared
deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence context refe
be organized in thejava:comp/env/persistence subcontexts of the bean’s environ
ment.

• Lookup the container-managed entity manager for the persistence unit in the enterprise
environment using the EJBContextlookup method or using the JNDI API.
443 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Persistence Context References

Sun Microsystems, Inc.

n the

used

an Pro-

context

ence
to spec-
The following code sample illustrates obtaining an entity manager for a persistence context whe
EJBContextlookup method is used.

@PersistenceContext(name=”persistence/InventoryAppMgr”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

@Resource SessionContext ctx;

public void updateInventory(...) {
...
// use context lookup to obtain container-managed entity

manager
EntityManager em =(EntityManager)

ctx.lookup("persistence/InventoryAppMgr");
...

}
}

The following code sample illustrates obtaining an entity manager when the JNDI APIs are
directly.

@PersistenceContext(name=”persistence/InventoryAppMgr”)
@Stateless
public class InventoryManagerBean implements InventoryManager {

EJBContext ejbContext;

public void updateInventory(...) {
...
// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain container-managed entity
manager

EntityManager em = (EntityManager)
initCtx.lookup("java:comp/env/persistence/InventoryApp-

Mgr");
...

}
}

16.11.1.3 Declaration of Persistence Context References in Deployment Descriptor

Although a persistence context reference is an entry in the enterprise bean’s environment, the Be
vider must not use anenv-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence
references in the deployment descriptor using thepersistence-context-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persist
context references used by an enterprise bean. Deployment descriptor entries may also be used
ify injection of a persistence context reference into a bean.
 5/2/06 444

Persistence Context References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ger

try
the

rsis-
Eachpersistence-context-ref element describes a single container-managed entity mana
reference. Thepersistence-context-ref element consists of the optionaldescription ,
persistence-unit-name , persistence-context-type and persistence-prop-
erty elements, and the mandatorypersistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment en
used in the enterprise bean’s code. The name of the environment entry is relative to
java:comp/env context (e.g., the name should bepersistence/InventoryAppMgr rather
than java:comp/env/persistence/InventoryAppMgr). The persis-
tence-unit-name element is the name of the persistence unit, as specified in thepersis-
tence.xml file for the persistence unit. Thepersistence-context-type element specifies
whether a transaction-scoped or extended persistence context is to be used. Its value is eitherTrans-
action or Extended . If the persistence context type is not specified, a transaction-scoped pe
tence context will be used. The optionalpersistence-property elements specify configuration
properties that are passed to the persistence provider when the entity manager is created.

The following example is the declaration of a persistence context reference used by theInventory-
Manager enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-context-ref>

<description>
Persistence context for the inventory management
application.

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

InventoryManagement
</persistence-unit-name>

</persistence-context-ref>
...

</session>
</enterprise-beans>
...
445 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release Persistence Context References

Sun Microsystems, Inc.

0.2. In
ntified

t

th the

ified,

f this
16.11.2 Application Assembler’s Responsibilities

The Application Assembler can use thepersistence-unit-name element in the deployment
descriptor to specify a reference to a persistence unit using the syntax described in section 16.1
this manner, multiple persistence units with the same persistence unit name may be uniquely ide
when persistence unit names cannot be changed.

For example,

...
<enterprise-beans>

<session>
...
<ejb-name>InventoryManagerBean</ejb-name>
<ejb-class>

com.wombat.empl.InventoryManagerBean
</ejb-class>
...
<persistence-context-ref>

<description>
Persistence context for the inventory management
application.

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

../lib/inventory.jar#InventoryManagement
</persistence-unit-name>

</persistence-context-ref>
...

</session>
</enterprise-beans>
...

The Application Assembler uses thepersistence-unit-name element to link the persistence uni
nameInventoryManagement declared in theInventoryManagerBean to the persistence unit
namedInventoryManagement defined ininventory.jar .

16.11.2.1 Overriding Rules

The following rules apply to how a deployment descriptor entry may override aPersistenceCon-
text annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used wi
annotation (either defaulted or provided explicitly).

• Thepersistence-unit-name overrides theunitName element of the annotation. The
Application Assembler or Deployer should exercise caution in changing this value, if spec
as doing so is likely to break the application.

• Thepersistence-context-type , if specified, overrides thetype element of the anno-
tation. In general, the Application Assembler or Deployer should never change the value o
element, as doing so is likely to break the application.
 5/2/06 446

Persistence Context References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ified
id-

od.

anaged
unit in

in the

istence

he

xt ref-

cre-

pre-

e con-
irec-
d in
• Any persistence-property elements are added to those specified by thePersis-
tenceContext annotation. If the name of a specified property is the same as one spec
by thePersistenceContext annotation, the value specified in the annotation is overr
den.

• The injection target, if specified, must name exactly the annotated field or property meth

16.11.3 Deployer’s Responsibility
The Deployer uses deployment tools to bind a persistence context reference to the container-m
entity manager for the persistence context of the specified type and configured for the persistence
the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared
metadata annotations or deployment descriptor:

• Bind the persistence context reference to a container-managed entity manager for a pers
context of the specified type and configured for the persistence unit as specified in theper-
sistence.xml file for the persistence unit that exists in the operational environment. T
Deployer may use, for example, the JNDILinkRef mechanism to create a symbolic link to
the actual JNDI name of the entity manager.

• If the persistence unit name is specified, the Deployer should bind the persistence conte
erence to an entity manager for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
ating such an entity manager and for managing the persistence unit, as described in [2].

16.11.4 Container Provider Responsibility
The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
vious subsection.

• Provide the implementation of the entity manager classes for the persistence units that ar
figured with the EJB container. This implementation may be provided by the container d
tory or by the container in conjunction with a third-party persistence provider, as describe
[2].

16.11.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.
447 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release UserTransaction Interface

Sun Microsystems, Inc.

re
saction

t

at
16.12 UserTransaction Interface

The container must make theUserTransaction interface available to the enterprise beans that a
allowed to use this interface (only session and message-driven beans with bean-managed tran
demarcation are allowed to use this interface) either through injection using theResource annotation
or in JNDI under the namejava:comp/UserTransaction , in addition to through the EJBContex
interface. TheauthenticationType and shareable elements of theResource annotation
must not be specified.

The container must not make theUserTransaction interface available to the enterprise beans th
are not allowed to use this interface. The container should throwjavax.naming.NameNotFoun-
dException if an instance of an enterprise bean that is not allowed to use theUserTransaction
interface attempts to look up the interface in JNDI using the JNDI APIs.

The following example illustrates how an enterprise bean acquires and uses aUserTransaction
object via injection.

@Resource UserTransaction tx;
...
public void updateData(...) {

...
// Start a transaction.
tx.begin();
...
// Perform transactional operations on data.
...
// Commit the transaction.
tx.commit();
...

}

The following code example

public MySessionBean implements SessionBean {
...
public someMethod()
{

...
Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(

“java:comp/UserTransaction”);
utx.begin();
...
utx.commit();

}
...

}

 5/2/06 448

ORB References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ame
specify

nd an
is functionally equivalent to

public MySessionBean implements SessionBean {
...
SessionContext ctx;
...
public someMethod()
{

UserTransaction utx = ctx.getUserTransaction();
utx.begin();
...
utx.commit();

}
...

}

A UserTransaction object reference may also be declared in a deployment descriptor in the s
way as a resource environment reference. Such a deployment descriptor entry may be used to
injection of aUserTransaction object.

16.12.1 Bean Provider’ s Responsibility
The Bean Provider is responsible for requesting injection of aUserTransaction object using a
Resource annotation or for using the defined name to lookup theUserTransaction object.

16.12.2 Container Provider’ s Responsibility

The Container Provider is responsible for providing an appropriateUserTransaction object as
required by this specification.

16.13 ORB References

Enterprise beans that need to make use of the CORBA ORB to perform certain operations can fi
appropriate object implementing the ORB interface by requesting injection of anORBobject or by look-
ing up the JNDI namejava:comp/ORB . Any such reference to anORBobject is only valid within the
bean instance that performed the lookup.

The following example illustrates how an application component acquires and uses anORBobject via
injection.

@Resource ORB orb;

public void method(...) {
...
// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references(“RootPOA”);
...

}

449 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release TimerService References

Sun Microsystems, Inc.

sing a

e man-
jection

.
riptor

by

-

e

The following example illustrates how an enterprise bean acquires and uses an ORB object u
JNDI lookup.

@Resource ORB orb;

public void method(...) {
...
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the ORB object.
ORB orb = (ORB)initCtx.lookup(“java:comp/ORB”);

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references(“RootPOA”);
...

}

An ORBreference may also be declared in a deployment descriptor in the same way as a resourc
ager connection factory reference. Such a deployment descriptor entry may be used to specify in
of anORB object.

TheORBinstance available under the JNDI namejava:comp/ORB may always be a shared instance
By default, theORBinstance injected into an enterprise bean or declared via a deployment desc
entry may also be a shared instance. However, the application may set theshareable element of the
Resource annotation tofalse , or may set theres-sharing-scope element in the deployment
descriptor toUnshareable , to request a non-sharedORB instance.

16.13.1 Bean Provider’ s Responsibility

The Bean Provider is responsible for requesting injection of theORBobject using theResource anno-
tation, or using the defined name to look up theORBobject. If the shareable element of the
Resource annotation is set tofalse , the ORB object injected will not be the shared instance used
other components in the application but instead will be a privateORBinstance used only by the given
component.

16.13.2 Container Provider’ s Responsibility

The Container Provider is responsible for providing an appropriateORBobject as required by this spec
ification.

16.14 TimerService References

The container must make theTimerService interface available either through injection using th
Resource annotation or in JNDI under the namejava:comp/TimerService , in addition to
through the EJBContext interface. TheauthenticationType and shareable elements of the
Resource annotation must not be specified.
 5/2/06 450

EJBContext References Enterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

way
y injec-

-

ay as a
tion of

stance

esting
Ses-

xt inter-
A TimerService object reference may also be declared in a deployment descriptor in the same
as a resource environment reference. Such a deployment descriptor entry may be used to specif
tion of aTimerService object.

16.14.1 Bean Provider’ s Responsibility
The Bean Provider is responsible for requesting injection of aTimerService object using a
Resource annotation, or using the defined name to lookup theTimerService object.

16.14.2 Container Provider’ s Responsibility

The Container Provider is responsible for providing an appropriateTimerService object as required
by this specification.

16.15 EJBContext References

The container must make a component’sEJBContext interface available either through injection
using theResource annotation or in JNDI under the namejava:comp/EJBContext . The
authenticationType andshareable elements of theResource annotation must not be spec
ified.

An EJBContext object reference may also be declared in a deployment descriptor in the same w
resource environment reference. Such a deployment descriptor entry may be used to specify injec
anEJBContext object.

16.15.1 Bean Provider’ s Responsibility
The Bean Provider is responsible for requesting injection of anEJBContext object using a
Resource annotation or using the defined name to lookup theEJBContext object.

EJBContext objects accessed through the naming environment are only valid within the bean in
that performed the lookup.

16.15.2 Container Provider’ s Responsibility

The Container Provider is responsible for providing an appropriateEJBContext object to the refer-
encing component. The object returned must be of the appropriate specific type for the bean requ
injection or performing the lookup—that is, the container provider must return an instance of the
sionContext interface to referencing session beans and an instance of the MessageDrivenConte
face to message-driven beans.
451 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release DeprecatedEJBContext.getEnvironment

Sun Microsystems, Inc.

envi-
eEx-

ment
imple-

ould

e

16.16 Deprecated EJBContext.getEnvironment Method

The environment naming contextintroduced in EJB 1.1 replaced the EJB 1.0 concept ofenvironment
properties.

An EJB 1.1 or later compliant container is not required to implement support for the EJB 1.0 style
ronment properties. If the container does not implement the functionality, it should throw a Runtim
ception (or subclass thereof) from theEJBContext.getEnvironment method.

If an EJB 1.1 or later compliant container chooses to provide support for the EJB 1.0 style environ
properties (so that it can support enterprise beans written to the EJB 1.0 specification), it should
ment the support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they sh
place the definitions of the environment properties into theejb10-properties subcontext of the
environment naming context. Theenv-entry elements should be defined as follows: th
env-entry-name element contains the name of the environment property, theenv-entry-type
must be java.lang.String , and the optionalenv-entry-value contains the environment
property value.

For example, an EJB 1.0 enterprise bean with two environment propertiesfoo andbar , should declare
the followingenv-entry elements in its EJB 1.1 format deployment descriptor.

...
<env-entry>

env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>
<env-entry>

<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bar value</env-entry-value>

</env-entry>
...

The container should provide the entries declared in theejb10-properties subcontext to the
instances as ajava.util.Properties object that the instances obtain by invoking theEJBCon-
text.getEnvironment method.
 5/2/06 452

Deprecated EJBContext.getEnvironment MethodEnterprise JavaBeans 3.0, Final Release Enterprise Bean Environment

Sun Microsystems, Inc.

ample.
The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following ex

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
ctx = sc;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = env.getProperty("foo");
String barValue = env.getProperty("bar");

}
...

}

453 May 2, 2006 2:35 pm

Enterprise Bean Environment Enterprise JavaBeans 3.0, Final Release DeprecatedEJBContext.getEnvironment

Sun Microsystems, Inc.
 5/2/06 454

Overview Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

ppli-
ro-

stem

e dif-
Chapter 17 Security Management

This chapter defines the EJB architecture’s support for security management.

17.1 Overview

We set the following goals for the security management in the EJB architecture:

• Lessen the burden of the application developer (i.e. the Bean Provider) for securing the a
cation by allowing greater coverage from more qualified EJB roles. The EJB Container P
vider provides the implementation of the security infrastructure; the Deployer and Sy
Administrator define the security policies.

• Allow the security policies to be set by the Application Assembler or Deployer.

• Allow the enterprise bean applications to be portable across multiple EJB servers that us
ferent security mechanisms.
455 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Overview

Sun Microsystems, Inc.

without
e enter-
yer to

tional

ld be
r
f users
define

sions
up of

/or web
beans
mall

po-
ipal
ompo-
an may

ether

to the
s the

her the
ean’s

can
peci-

r the
t
t

ill be
t or
The EJB architecture encourages the Bean Provider to implement the enterprise bean class
hard-coding the security policies and mechanisms into the business methods. In most cases, th
prise bean’s business methods should not contain any security-related logic. This allows the Deplo
configure the security policies for the application in a way that is most appropriate for the opera
environment of the enterprise.

To make the Deployer’s task easier, the Bean Provider or the Application Assembler (which cou
the same party as the Bean Provider) may definesecurity rolesfor an application composed of one o
more enterprise beans. A security role is a semantic grouping of permissions that a given type o
of the application must have in order to successfully use the application. The Bean Provider can
declaratively using metadata annotations or the deployment descriptor themethod permissionsfor each
security role. The Applications Assembler can define, augment, or override the method permis
using the deployment descriptor. A method permission is a permission to invoke a specified gro
methods of an enterprise bean’s business interface, home interface, component interface, and
service endpoint. The security roles defined present a simplified security view of the enterprise
application to the Deployer—the Deployer’s view of the application’s security requirements is the s
set of security roles rather than a large number of individual methods.

The security principal under which a method invocation is performed is typically that of the com
nent’s caller. By specifying a run-as identity, however, it is possible to specify that a different princ
be substituted for the execution of the methods of the bean’s business interface, home interface, c
nent interface, and/or web service endpoint and any methods of other enterprise beans that the be
call.

This determines whether the caller principal is propagated from the caller to the callee—that is, wh
the called enterprise bean will see the same returned value of theEJBContext.getCallerPrin-
cipal as the calling enterprise bean—or whether a security principal that has been assigned
specified security role will be used for the execution of the bean’s methods and will be visible a
caller principal in the bean’s callee.

The Bean Provider can use metadata annotations or the deployment descriptor to specify whet
caller’s security identity or a run-as security identity should be used for the execution of the b
methods.

• By default, the caller principal will be propagated as the caller identity. The Bean Provider
use theRunAs annotation to specify that a security principal that has been assigned to a s
fied security role be used instead. See Section 17.3.4.

• If the deployment descriptor is used to specify the security principal, the Bean Provider o
Application Assembler can use thesecurity-identity deployment descriptor elemen
to specify the security identity. If thesecurity-identity deployment descriptor elemen
is not specified and if a run-as identity has not been specified by the use of theRunAs annota-
tion or if use-caller-identity is specified as the value of thesecurity-identity
element, the caller principal is propagated from the caller to the callee. If therun-as element
is specified, a security principal that has been assigned to the specified security role w
used. The Application Assembler is permitted to override a security identity value se
defaulted by the Bean Provider.
 5/2/06 456

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

n the
ation
cified.
of the
ing for

the
invoke
autho-
s, are

tools
y dur-

simple
usiness

urity

y, and
or the

usiness
rfaces

-
vider
ment

r secu-
The Deployer is responsible for assigning principals, or groups of principals, which are defined i
target operational environment, to the security roles defined by the Bean Provider or Applic
Assembler. The Deployer is also responsible for assigning principals for the run-as identities spe
The Deployer is further responsible for configuring other aspects of the security management
enterprise beans, such as principal mapping for inter-enterprise bean calls, and principal mapp
resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with
client call has been assigned by the Deployer to have at least one security role that is allowed to
the business method or if the Bean Provider or Application Assembler has specified that security
rization is not to be checked for the method (i.e., that all roles, including any unauthenticated role
permitted). See Section 17.3.2.

The Container Provider is responsible for enforcing the security policies at runtime, providing the
for managing security at runtime, and providing the tools used by the Deployer to manage securit
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a
programmatic interface that the Bean Provider may use to access the security context from the b
methods.

The following sections define the responsibilities of the individual EJB roles with respect to sec
management.

17.2 Bean Provider’s Responsibilities

This section defines the Bean Provider’s perspective of the EJB architecture support for securit
defines his or her responsibilities. In addition, the Bean Provider may define the security roles f
application, as defined in Section 17.3.

17.2.1 Invocation of Other Enterprise Beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s b
interface or home or component interface. The EJB architecture provides no programmatic inte
for the invoking enterprise bean to control the principal passed to the invoked enterprise bean.

The management of caller principals passed oninter-enterprisebean invocations (i.e. principal delega
tion) is set up by the Deployer and System Administrator in a container-specific way. The Bean Pro
and Application Assembler should describe all the requirements for the caller’s principal manage
of inter-enterprise bean invocations as part of the description.

17.2.2 Resource Access
Section 16.7 defines the protocol for accessing resource managers, including the requirements fo
rity management.
457 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

meth-
derly-

uch as
hould

ies in
mecha-

y secu-
riate

trans-
uld be
access

that
enter-
17.2.3 Access of Underlying OS Resources
The EJB architecture does not define the operating system principal under which enterprise bean
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the un
ing OS resources, such as files. (See Subsection 17.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers s
relational databases rather than in resources at the operating system levels. Therefore, this rule s
not affect the portability of most enterprise beans.

17.2.4 Programming Style Recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security polic
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security
nisms provided by the EJB container.

The Bean Provider can use metadata annotations and/or the deployment descriptor to conve
rity-related information to the Deployer. The information helps the Deployer to set up the approp
security policy for the enterprise bean application.

17.2.5 Programmatic Access to Caller’s Security Context

Note: In general, security management should be enforced by the container in a manner that is
parent to the enterprise beans’ business methods. The security API described in this section sho
used only in the less frequent situations in which the enterprise bean business methods need to
the security context information.

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods
were defined in EJB 1.0) that allow the Bean Provider to access security information about the
prise bean’s caller.

public interface javax.ejb.EJBContext {
...

//
// The following two methods allow the EJB class
// to access security information.
//
java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

//
// The following two EJB 1.0 methods are deprecated.
//
java.security.Identity getCallerIdentity();
boolean isCallerInRole(java.security.Identity role);

...

}

 5/2/06 458

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

Table 3
en no

as fol-

row a

that

row a

in
orma-

in the

,

The Bean Provider can invoke thegetCallerPrincipal andisCallerInRole methods only in
the enterprise bean’s business methods as specified in Table 1 on page 79, Table 2 on page 88,
on page 117, Table 4 on page 197, and Table 10 on page 269. If they are otherwise invoked wh
security context exists, they should throw thejava.lang.IllegalStateException runtime
exception.

ThegetCallerIdentity() andisCallerInRole(Identity role) methods were depre-
cated in EJB 1.1. The Bean Provider must use thegetCallerPrincipal() and isCallerIn-
Role(String roleName) methods for new enterprise beans.

An EJB 1.1 or later compliant container may choose to implement the two deprecated methods
lows.

• A container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the getCallerI-
dentity method.

• A container that wants to provide support for thegetCallerIdentity method should
return an instance of a subclass of thejava.security.Identity abstract class from the
method. ThegetName method invoked on the returned object must return the same value
getCallerPrincipal().getName() would return.

• A container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the isCallerIn-
Role(Identity identity) method.

• A container that wants to implement theisCallerInRole(Identity identity)
method should implement it as follows:

public isCallerInRole(Identity identity) {
return isCallerInRole(identity.getName());

}

17.2.5.1 Use of getCallerPrincipal

The purpose of thegetCallerPrincipal method is to allow the enterprise bean methods to obta
the current caller principal’s name. The methods might, for example, use the name as a key to inf
tion in a database.

An enterprise bean can invoke thegetCallerPrincipal method to obtain ajava.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obta
distinguished name of the caller principal using thegetName method of the java.secu-
rity.Principal interface. If the security identity has not been established,getCallerPrinci-
pal returns the container’s representation of the unauthenticated identity.

Note thatgetCallerPrincipal returns the principal that represents the caller of the
enterprise bean, not the principal that corresponds to the run-as security identity for the bean
if any.
459 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

. The
aller
ay be

then-
ise’s
per-
t

cipal
ation.

uses it
as
cation
The meaning of thecurrent caller, the Java class that implements thejava.security.Principal
interface, and the realm of the principals returned by thegetCallerPrincipal method depend on
the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains
security infrastructure may perform one or more mapping of principals on the path from an EJB c
to the EJB object. For example, an employee accessing his or her company over the Internet m
identified by a userid and password (basic authentication), and the security infrastructure may au
ticate the principal and then map the principal to a Kerberos principal that is used on the enterpr
intranet before delivering the method invocation to the EJB object. If the security infrastructure
forms principal mapping, thegetCallerPrincipal method returns the principal that is the resul
of the mapping, not the original caller principal. (In the previous example,getCallerPrincipal
would return the Kerberos principal.) The management of the security infrastructure, such as prin
mapping, is performed by the System Administrator role; it is beyond the scope of the EJB specific

The following code sample illustrates the use of thegetCallerPrincipal() method.

@Stateless public class EmployeeServiceBean
implements EmployeeService{

@Resource SessionContext ctx;
@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {
...

// obtain the caller principal.
callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.
callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord
EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number
myEmployeeRecord.setPhoneNumber(...);

...
}

}

In the previous example, the enterprise bean obtains the principal name of the current caller and
as the primary key to locate anEmployeeRecord entity. This example assumes that application h
been deployed such that the current caller principal contains the primary key used for the identifi
of employees (e.g., employee number).
 5/2/06 460

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

scrip-
might

s
plica-
xist in

ed in
ves

loyer
pplica-
ed to
17.2.5.2 Use of isCallerInRole

The main purpose of theisCallerInRole(String roleName) method is to allow the Bean Pro-
vider to code the security checks that cannot be easily defined declaratively in the deployment de
tor using method permissions. Such a check might impose a role-based limit on a request, or it
depend on information stored in the database.

The enterprise bean code can use theisCallerInRole method to test whether the current caller ha
been assigned to a given security role. Security roles are defined by the Bean Provider or the Ap
tion Assembler (see Subsection 17.3.1), and are assigned to principals or principal groups that e
the operational environment by the Deployer.

Note thatisCallerInRole(String roleName) tests the principal that represents the
caller of the enterprise bean, not the principal that corresponds to the run-as security identity
for the bean, if any.

The following code sample illustrates the use of theisCallerInRole(String roleName)
method.

@Stateless public class PayrollBean implements Payroll {
@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Code

The Bean Provider is responsible for using theDeclareRoles annotation or thesecu-
rity-role-ref elements of the deployment descriptor to declare all the security role names us
the enterprise bean code. TheDeclareRoles annotation is specified on a bean class, where it ser
to declare roles that may be tested by callingisCallerInRole from within the methods of the anno-
tated class. Declaring the security roles allows the Bean Provider, Application Assembler, or Dep
to link these security role names used in the code to the security roles defined for an assembled a
tion. In the absence of this linking step, any security role name as used in the code will be assum
correspond to a security role of the same name.
461 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

alue.

an

in the

e

The Bean Provider declares the security roles referenced in the code using theDeclareRoles meta-
data annotation. When declaring the name of a role used as a parameter to theisCallerIn-
Role(String roleName) method, the declared name must be the same as the parameter v
The Bean Provider may optionally provide a description of the named security roles in thedescrip-
tion element of theDeclareRoles annotation.

In the following example, theDeclareRoles annotation is used to indicate that the enterprise be
AardvarkPayroll makes the security check usingisCallerInRole("payroll") in its busi-
ness method.

@DeclareRoles(“payroll”)
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

If the DeclareRoles annotation is not used, the Bean Provider must use thesecu-
rity-role-ref elements of the deployment descriptor to declare the security roles referenced
code. Thesecurity-role-ref elements are defined as follows:

• Declare the name of the security role using therole-name element. The name must be th
security role name that is used as a parameter to theisCallerInRole(String role-
Name) method.

• Optionally provide a description of the security role in thedescription element.
 5/2/06 462

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

red in

onent
tor

nked to
not

ole of
ecurity

vider)
rity
The following example illustrates how an enterprise bean’s references to security roles are decla
the deployment descriptor.

...
<enterprise-beans>

...
<session>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.

</description>
<role-name>payroll</role-name>

</security-role-ref>
...

</session>
...

</enterprise-beans>
...

The deployment descriptor above indicates that the enterprise beanAardvarkPayroll makes the
security check usingisCallerInRole("payroll") in its business method.

A security role reference, including the name defined by the reference, is scoped to the comp
whose bean class contains theDeclareRoles metadata annotation or whose deployment descrip
element contains thesecurity-role-ref deployment descriptor element.

The Bean Provider (or Application Assembler) may also use thesecurity-role-ref elements for
those references that were declared in annotations and which the Bean Provider wishes to have li
a security-role whose name differs from the reference value. If a security role reference is
linked to a security role in this way, the container must map the reference name to the security r
the same name. See section 17.3.3 for a description of how security role references are linked to s
roles.

17.3 Responsibilities of the Bean Provider and/or Application
Assembler

The Bean Provider and Application Assembler (which could be the same party as the Bean Pro
may define asecurity viewof the enterprise beans contained in the ejb-jar file. Providing the secu
view is optional for the Bean Provider and Application Assembler.
463 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.

s job.
appli-
what
e Bean

the

-
ication.

’ busi-

of an
cepts

ation,
to the

meta-
ssigns
eb ser-

viron-

ment to

al
ecurity

plica-
in the
cu-

s
The main reason for providing the security view of the enterprise beans is to simplify the Deployer’
In the absence of a security view of an application, the Deployer needs detailed knowledge of the
cation in order to deploy the application securely. For example, the Deployer would have to know
each business method does to determine which users can call it. The security view defined by th
Provider or Application Assembler presents a more consolidated view to the Deployer, allowing
Deployer to be less familiar with the application.

The security view consists of a set ofsecurity roles. A security role is a semantic grouping of permis
sions that a given type of users of an application must have in order to successfully use the appl

The Bean Provider or Application Assembler definesmethod permissionsfor each security role. A
method permission is a permission to invoke a specified group of methods of the enterprise beans
ness interface, home interface, component interface, and/or web service endpoint.

It is important to keep in mind that the security roles are used to define the logical security view
application. They should not be confused with the user groups, users, principals, and other con
that exist in the target enterprise’s operational environment.

In special cases, a qualified Deployer may change the definition of the security roles for an applic
or completely ignore them and secure the application using a different mechanism that is specific
operational environment.

17.3.1 Security Roles
The Bean Provider or Application Assembler can define one or more security roles in the bean’s
data annotations or deployment descriptor. The Bean Provider or Application Assembler then a
groups of methods of the enterprise beans’ business, home, and component interfaces, and/or w
vice endpoints to the security roles to define the security view of the application.

Because the Bean Provider and Application Assembler do not, in general, know the security en
ment of the operational environment, the security roles are meant to belogical roles (or actors), each
representing a type of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environ
the security roles defined by the Bean Provider and Application Assembler.

Defining the security roles in the metadata annotations and/or deployment descriptor is option[91].
Their omission means that the Bean Provider and Application Assembler chose not to pass any s
deployment related instructions to the Deployer.

If Java language metadata annotations are used, the Bean Provider uses theDeclareRoles and
RolesAllowed annotations to define the security roles. The set of security roles used by the ap
tion is taken to be the aggregation of the security roles defined by the security role names used
DeclareRoles andRolesAllowed annotations. The Bean Provider may augment the set of se
rity roles defined for the application by annotations in this way by means of thesecurity-role
deployment descriptor element.

[91] If the Bean Provider and Application Assembler do not define security roles, the Deployer will have to define security roleat
deployment time.
 5/2/06 464

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

s the
If the deployment descriptor is used, the The Bean Provider and/or Application Assembler use
security-role deployment descriptor element as follows:

• Define each security role using asecurity-role element.

• Use therole-name element to define the name of the security role.

• Optionally, use thedescription element to provide a description of a security role.

The following example illustrates security roles definition in a deployment descriptor.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>
...

</assembly-descriptor>
465 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.

beans
rfaces,

ethods
of ses-

lan-

usiness

is-
the

to

issions

s

e

17.3.2 Method Permissions

If the Bean Provider and/or Application Assembler have defined security roles for the enterprise
in the ejb-jar file, they can also specify the methods of the business, home, and component inte
and/or web service endpoints that each security role is allowed to invoke.

Metadata annotations and/or the deployment descriptor can be used for this purpose.

Method permissions are defined as a binary relation from the set of security roles to the set of m
of the business interfaces, home interfaces, component interfaces, and/or web service endpoints
sion and entity beans, including all their superinterfaces (including the methods of theEJBHomeand
EJBObject interfaces and/orEJBLocalHome and EJBLocalObject interfaces). The method
permissions relation includes the pair (R, M) if and only if the security roleR is allowed to invoke the
methodM.

17.3.2.1 Specification of Method Permissions with Metadata Annotations
The following is the description of the rules for the specification of method permissions using Java
guage metadata annotations.

The method permissions for the methods of a bean class may be specified on the class, the b
methods of the class, or both.

The RolesAllowed , PermitAll , andDenyAll annotations are used to specify method perm
sions. The value of theRolesAllowed annotation is a list of security role names to be mapped to
security roles that are permitted to execute the specified method(s). ThePermitAll annotation speci-
fies that all security roles are permitted to execute the specified method(s). TheDenyAll annotation
specifies that no security roles are permitted to execute the specified method(s).

Specifying theRolesAllowed or PermitAll annotation on the bean class means that it applies
all applicable business methods of the class.

Method permissions may be specified on a method of the bean class to override the method perm
value specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

• A method permissions value specified on a superclassS applies to the business method
defined byS.

• A method permissions value may be specified on a business methodM defined by classS to
override for methodM the method permissions value explicitly or implicitly specified on th
classS.

• If a methodM of classSoverrides a business method defined by a superclass ofS, the method
permissions value ofM is determined by the above rules as applied to classS.
 5/2/06 466

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

to spec-
ethod

values

nota-
s been
s will

yment

list
eth-

efined
Example:

@RolesAllowed(“admin”)
public class SomeClass {

public void aMethod () {...}
public void bMethod () {...}
...

}

@Stateless public class MyBean implements A extends SomeClass {

@RolesAllowed(“HR”)
public void aMethod () {...}

public void cMethod () {...}
 ...
}

AssumingaMethod , bMethod , cMethod are methods of business interfaceA, the method permis-
sions values of methodsaMethod and bMethod are RolesAllowed(“HR”) and RolesAl-
lowed(“admin”) respectively. The method permissions for methodcMethod have not been
specified (see Sections 17.3.2.2 and 17.3.2.3) .

17.3.2.2 Specification of Method Permissions in the Deployment Descriptor

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations
ify the method permissions (or as a means to supplement or override metadata annotations for m
permission values). The application assembler is permitted to override the method permission
using the bean’s deployment descriptor.

Any values explicitly specified in the deployment descriptor override any values specified in an
tions. If a value for a method has not be specified in the deployment descriptor, and a value ha
specified for that method by means of the use of annotations, the value specified in annotation
apply. The granularity of overriding is on the per-method basis.

The Bean Provider or Application Assembler defines the method permissions relation in the deplo
descriptor using themethod-permission elements as follows.

• Eachmethod-permission element includes a list of one or more security roles and a
of one or more methods. All the listed security roles are allowed to invoke all the listed m
ods. Each security role in the list is identified by therole-name element, and each method
(or a set of methods, as described below) is identified by themethod element. An optional
description can be associated with amethod-permission element using thedescrip-
tion element.

• The method permissions relation is defined as the union of all the method permissions d
in the individualmethod-permission elements.

• A security role or a method may appear in multiplemethod-permission elements.
467 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.

ne or
ation

e

. The
method

-
to the

, and/or

nent

inter-
thods
The Bean Provider or Application Assembler can indicate that all roles are permitted to execute o
more specified methods (i.e., the methods should not be “checked” for authorization prior to invoc
by the container). Theunchecked element is used instead of a role name in themethod-permis-
sion element to indicate that all roles are permitted.

If the method permission relation specifies both theunchecked element for a given method and on
or more security roles, all roles are permitted for the specified methods.

Theexclude-list element can be used to indicate the set of methods that should not be called
Deployer should configure the enterprise bean’s security such that no access is permitted to any
contained in theexclude-list .

If a given method is specified both in theexclude-list element and in the method permission rela
tion, the Deployer should configure the enterprise bean’s security such that no access is permitted
method.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s business , home, and component interface
web service endpoint. There are three legal styles for composing themethod element:

Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used for referring to all of the methods of the business, home, and compo
interfaces, and web service endpoint of a specified enterprise bean.

Style 2:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of the business, home, or component
face, or web service endpoint of the specified enterprise bean. If there are multiple me
with the same overloaded name, this style refers to all of the overloaded methods.

Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>
 5/2/06 468

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

aded
r com-
over-

ame
, and/or

local
. Like-
t inter-
This style is used to refer to a specified method within a set of methods with an overlo
name. The method must be defined in the specified enterprise bean’s business, home, o
ponent interface, or web service endpoint. If there are multiple methods with the same
loaded name, however, this style refers to all of the overloaded methods.

The optionalmethod-intf element can be used to differentiate between methods with the s
name and signature that are multiply defined across the business, component, or home interfaces
web service endpoint. If the same method is a method of both the local business interface and
component interface, the same method permission values apply to the method for both interfaces
wise, if the same method is a method of both the remote business interface and remote componen
face, the same method permission values apply to the method for both interfaces.
469 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.

ploy-
The following example illustrates how security roles are assigned method permissions in the de
ment descriptor:

...
<method-permission>

<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
...
 5/2/06 470

Responsibilities of the Bean Provider and/or Application AssemblerEnterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

is-
them
s, those

roles
ked

ed

d in

med
17.3.2.3 Unspecified Method Permissions

It is possible that some methods are not assigned to any security roles nor annotated asDenyAll or
contained in theexclude-list element. In this case, the Deployer should assign method perm
sions for all of the unspecified methods, either by assigning them to security roles, or by marking
as unchecked. If the Deployer does not assigned method permissions to the unspecified method
methods must be treated by the container asunchecked .

17.3.3 Linking Security Role References to Security Roles

The security role references used in the components of the application are linked to the security
defined for the application. In the absence of any explicit linking, a security role reference will be lin
to a security role having the same name.

The Application Assembler may explicitly link all the security role references declared in theDeclar-
eRoles annotation orsecurity-role-ref elements for a component to the security roles defin
by the use of annotations (see section 17.3.1) and/or in thesecurity-role elements.

The Application Assembler links each security role reference to a security role using therole-link
element. The value of therole-link element must be the name of one of the security roles define
a security-role element or by means of theDeclareRoles annotations orRolesAllowed
annotations (as described in section 17.3.1), but need not be specified when therole-name used in
the code is the same as the name of thesecurity-role (to be linked).

The following deployment descriptor example shows how to link the security role reference na
payroll to the security role namedpayroll-department .

...
<enterprise-beans>

...
<session>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.
The role has been linked to the
payroll-department role.

</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
...

</session>
...

</enterprise-beans>
...
471 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Responsibilities of the Bean Provider and/or

Sun Microsystems, Inc.

ntity
s iden-

tor is

lue of

bler.
pass

secu-

m-
rise
that is,
service
method

hich
identity

viron-

in the

as the
cipal

n of

cted
17.3.4 Specification of Security Identities in the Deployment Descriptor
The Bean Provider or Application Assembler typically specifies whether the caller’s security ide
should be used for the execution of the methods of an enterprise bean or whether a specific run-a
tity should be used.

By default the caller’s security identity is used. The Bean Provider can use theRunAs metadata annota-
tion to specify a run-as identity for the execution of the bean’s methods. If the deployment descrip
used, the Bean Provider or the Application Assembler can use thesecurity-identity deployment
descriptor element for this purpose or to override a security identity specified in metadata. The va
thesecurity-identity element is eitheruse-caller-identity or run-as .

Defining the security identities in the deployment descriptor is optional for the Application Assem
Their omission in the deployment descriptor means that the Application Assembler chose not to
any instructions related to security identities to the Deployer in the deployment descriptor.

If a run-as security identity is not specified by the Deployer, the container should use the caller’s
rity identity for the execution of the bean’s methods.

17.3.4.1 Run-as
The Bean Provider can use theRunAs metadata annotation or the Bean Provider or Application Asse
bler can use therun-as deployment descriptor element to define a run-as identity for an enterp
bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a whole,
to all methods of the enterprise bean’s business, home, and component interfaces, and/or web
endpoint; to the message listener methods of a message-driven bean; and to the timeout callback
of an enterprise bean; and all internal methods of the bean that they might in turn call.

Establishing a run-as identity for an enterprise bean does not affect the identities of its callers, w
are the identities tested for permission to access the methods of the enterprise bean. The run-as
establishes the identity the enterprise bean will use when it makes calls.

Because the Bean Provider and Application Assembler do not, in general, know the security en
ment of the operational environment, the run-as identity is designated by alogical role-name, which
corresponds to one of the security roles defined by the Bean Provider or Application Assembler
metadata annotations or deployment descriptor.

The Deployer then assigns a security principal defined in the operational environment to be used
principal for the run-as identity. The security principal assigned by the Deployer should be a prin
that has been assigned to the security role specified byRunAs annotation or by therole-name ele-
ment of therun-as deployment descriptor element.

The Bean Provider and/or Application Assembler is responsible for the following in the specificatio
run-as identities:

• Use theRunAs metadata annotation orrole-name element of therun-as deployment
descriptor element to define the name of the security role.

• Optionally, use the description element to provide a description of the principal that is expe
to be bound to the run-as identity in terms of its security role.
 5/2/06 472

Deployer’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

been
with

view
nota-
ed by
curity

plica-
crip-

bean

the
exam-
The following example illustrates the definition of a run-as identity using metadata annotations.

@RunAs(“admin”)
@Stateless public class EmployeeServiceBean

implements EmployeeService{
...

}

Using the deployment descriptor, this can be specified as follows.

...
<enterprise-beans>

...
<session>

<ejb-name>EmployeeService</ejb-name>
...
<security-identity>

<run-as>
<role-name>admin</role-name>

</run-as>
</security-identity>
...

</session>
...

</enterprise-beans>
...

17.4 Deployer’s Responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has
deployed in the target operational environment. This section defines the Deployer’s responsibility
respect to EJB security management.

The Deployer uses deployment tools provided by the EJB Container Provider to read the security
of the application supplied by the Bean Provider and/or Application Assembler in the metadata an
tions and/or deployment descriptor. The Deployer’s job is to map the security view that was specifi
the Bean Provider and/or Application Assembler to the mechanisms and policies used by the se
domain in the target operational environment. The output of the Deployer’s work includes an ap
tion security policy descriptor that is specific to the operational environment. The format of this des
tor and the information stored in the descriptor are specific to the EJB container.

The following subsections describe the security related tasks performed by the Deployer.

17.4.1 Security Domain and Principal Realm Assignment
The Deployer is responsible for assigning the security domain and principal realm to an enterprise
application.

Multiple principal realms within the same security domain may exist, for example, to separate
realms of employees, trading partners, and customers. Multiple security domains may exist, for
ple, in application hosting scenarios.
473 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release Deployer’s Responsibilities

Sun Microsystems, Inc.

roups)
of the

—the
y role
3

role

cture.
ment
iron-
e user
on a
ame,
ed by
ps to

The
bler

loy-

.g.,
pa-
-chain

a par-
cipal is
e run-as
tion of

in sub-
17.4.2 Assignment of Security Roles
The Deployer assigns principals and/or groups of principals (such as individual users or user g
used for managing security in the operational environment to the security roles defined by means
DeclareRoles andRolesAllowed metadata annotations and/orsecurity-role elements of
the deployment descriptor.

The Deployer does not assign principals and/or principal groups to the security role references
principals and/or principals groups assigned to a security role apply also to all the linked securit
references. For example, the Deployer of theAardvarkPayroll enterprise bean in subsection 17.3.
would assign principals and/or principal groups to the security-rolepayroll-department , and the
assigned principals and/or principal groups would be implicitly assigned also to the linked security
payroll .

The EJB architecture does not specify how an enterprise should implement its security archite
Therefore, the process of assigning the logical security roles defined in the application’s deploy
descriptor to the operational environment’s security concepts is specific to that operational env
ment. Typically, the deployment process consists of assigning to each security role one or mor
groups (or individual users) defined in the operational environment. This assignment is done
per-application basis. (That is, if multiple independent ejb-jar files use the same security role n
each may be assigned differently.) If the deployer does not assign the logical security roles defin
the application to groups in the operational environment, it must be assumed that a logical role ma
a principal or principal group of the same name.

17.4.3 Principal Delegation
The Deployer is responsible for configuring the principal delegation for inter-component calls.
Deployer must follow any instructions supplied by the Bean Provider and/or Application Assem
(for example, provided in theRunAs metadata annotations, therun-as elements of the deployment
descriptor, in thedescription elements of the annotations or deployment descriptor, or in a dep
ment manual).

If the security identity is defaulted, or it is explicitly specified that the caller identity be used (e
use-caller-identity deployment descriptor element is specified), the caller principal is pro
gated from one component to another (i.e., the caller principal of the first enterprise bean in a call
is passed to the enterprise beans down the chain).

If the Bean Provider or Application Assembler specifies that a run-as identity be used on behalf of
ticular enterprise bean, the Deployer must configure the enterprise beans such that the run-as prin
used as the caller principal on any calls that the enterprise bean makes to other beans, and that th
principal is propagated along the call-chain of those other beans (in the absence of the specifica
any further run-as elements).

17.4.4 Security Management of Resource Access

The Deployer’s responsibilities with respect to securing resource managers access are defined
section 16.7.2.
 5/2/06 474

EJB Client Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

er and
adapt

bler,
ider or
miss-
curity

put of

ontext
e EJB

rule
curity

com-
ecurity

secu-

hap-
uests

n use
17.4.5 General Notes on Deployment Descriptor Processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provid
Application Assembler merely as “hints” and may change the information whenever necessary to
the security policy to the operational environment.

Since providing the security information is optional for the Bean Provider and Application Assem
the Deployer is responsible for performing any tasks that have not been done by the Bean Prov
Application Assembler. (For example, if the definition of security roles and method permissions is
ing in the metadata annotations and in deployment descriptor, the Deployer must define the se
roles and method permissions for the application.) It is not required that the Deployer store the out
this activity in the standard ejb-jar file format.

17.5 EJB Client Responsibilities

This section defines the rules that the EJB client program must follow to ensure that the security c
passed on the client calls, and possibly imported by the enterprise bean, do not conflict with th
server’s capabilities for association between a security context and transactions.

These rules are:

• A transactional client cannot change its principal association within a transaction. This
ensures that all calls from the client within a transaction are performed with the same se
context.

• A session bean’s client must not change its principal association for the duration of the
munication with the session object. This rule ensures that the server can associate a s
identity with the session instance at instance creation time, and never have to change the
rity association during the session instance lifetime.

• If transactional requests within a single transaction arrive from multiple clients (this could
pen if there are intermediary objects or programs in the transaction call-chain), all req
within the same transaction must be associated with the same security context.

17.6 EJB Container Provider’s Responsibilities

This section describes the responsibilities of the EJB Container and Server Provider.

17.6.1 Deployment Tools
The EJB Container Provider is responsible for providing the deployment tools that the Deployer ca
to perform the tasks defined in Section 17.4.
475 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release EJB Container Provider’s Responsibilities

Sun Microsystems, Inc.

yment
h the
in the
policies

ntime

beans.
d does

ple, the
eros.

may be
e.

ulti-

r appli-
man-

ecurity
ust be

loyer
iner is
The deployment tools read the information from the beans’ metadata annotations and/or deplo
descriptor and present the information to the Deployer. The tools guide the Deployer throug
deployment process, and present him or her with choices for mapping the security information
metadata annotations and deployment descriptor to the security management mechanisms and
used in the target operational environment.

The deployment tools’ output is stored in an EJB container-specific manner, and is available at ru
to the EJB container.

17.6.2 Security Domain(s)
The EJB container provides a security domain and one or more principal realms to the enterprise
The EJB architecture does not specify how an EJB server should implement a security domain, an
not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB server. For exam
EJB server may store X509 certificates or it might use an external security provider such as Kerb

The EJB specification does not define the scope of the security domain. For example, the scope
defined by the boundaries of the application, EJB server, operating system, network, or enterpris

The EJB server can, but is not required to, provide support for multiple security domains, and/or m
ple principal realms.

The case of multiple domains on the same EJB server can happen when a large server is used fo
cation hosting. Each hosted application can have its own security domain to ensure security and
agement isolation between applications owned by multiple organizations.

17.6.3 Security Mechanisms
The EJB Container Provider must provide the security mechanisms necessary to enforce the s
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that m
implemented and supported by the EJB server.

The typical security functions provided by the EJB server include:

• Authentication of principals.

• Access authorization for EJB calls and resource manager access.

• Secure communication with remote clients (privacy, integrity, etc.).

17.6.4 Passing Principals on EJB Calls
The EJB Container Provider is responsible for providing the deployment tools that allow the Dep
to configure the principal delegation for calls from one enterprise bean to another. The EJB conta
responsible for performing the principal delegation as specified by the Deployer.
 5/2/06 476

EJB Container Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

ingle
nter-

used
t meth-

rprise

the
r mess-

69. The
ces are
con-

t never

ers as

tiple
r Pro-
ed by

nter-

sup-
ple-
n can
al the
rent
The EJB container must be capable of allowing the Deployer to specify that, for all calls from a s
application within a single Java EE product, the caller principal is propagated on calls from one e
prise bean to another (i.e., the multiple beans in the call chain will see the same return value fromget-
CallerPrincipal).

This requirement is necessary for applications that need a consistent return value ofgetCaller-
Principal across a chain of calls between enterprise beans.

The EJB container must be capable of allowing the Deployer to specify that a run-as principal be
for the execution of the business, home, and component interfaces, and/or web service endpoin
ods of a session or entity bean, or for the message listener methods of a message-driven bean.

17.6.5 Security Methods in javax.ejb.EJBContext
The EJB container must provide access to the caller’s security context information from the ente
beans’ instances via thegetCallerPrincipal() and isCallerInRole(String role-
Name) methods. The EJB container must provide the caller’s security context information during
execution of a business method invoked via the enterprise bean’s business, home, component, o
sage listener interface, web service endpoint, and/orTimedObject interface, as defined in Table 1 on
page 79, Table 2 on page 88, Table 3 on page 117, Table 4 on page 197, and Table 10 on page 2
container must ensure that all enterprise bean method invocations received through these interfa
associated with some principal. If the security identity of the caller has not been established, the
tainer returns the container’s representation of the unauthenticated identity. The container mus
return a null from thegetCallerPrincipal method.

17.6.6 Secure Access to Resource Managers
The EJB Container Provider is responsible for providing secure access to resource manag
described in Subsection 16.7.3.

17.6.7 Principal Mapping
If the application requires that its clients are deployed in a different security domain, or if mul
applications deployed across multiple security domains need to interoperate, the EJB Containe
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are us
the System Administrator to configure the security for the application’s environment.

17.6.8 System Principal
The EJB specification does not define the “system” principal under which the JVM running an e
prise bean’s method executes.

Leaving the principal undefined makes it easier for the EJB container vendors to provide runtime
port for EJB on top of their existing server infrastructures. For example, while one EJB container im
mentation can execute all instances of all enterprise beans in a single JVM, another implementatio
use a separate JVM per ejb-jar per client. Some EJB containers may make the system princip
same as the application-level principal. Others may use different principals, potentially from diffe
principal realms and even security domains.
477 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release EJB Container Provider’s Responsibilities

Sun Microsystems, Inc.

mple-
tainer

chanism.

d the
load
g sys-

fined
fied

t be
to a

other
enter-
se bean
and/or

stance
ludes
ntext
source
that the
archi-

s.

ans or
r.
17.6.9 Runtime Security Enforcement
The EJB container is responsible for enforcing the security policies defined by the Deployer. The i
mentation of the enforcement mechanism is EJB container implementation-specific. The EJB con
may, but does not have to, use the Java programming language security as the enforcement me

For example, to isolate multiple executing enterprise bean instances, the EJB container can loa
multiple instances into the same JVM and isolate them via using multiple class loaders, or it can
each instance into its own JVM and rely on the address space protection provided by the operatin
tem.

The general security enforcement requirements for the EJB container follow:

• The EJB container must provide enforcement of the client access control per the policy de
by the Deployer. A caller is allowed to invoke a method if, and only if, the method is speci
as PermitAll or the caller is assignedat least oneof the security roles that includes the
method in its method permissions definition. (That is, it is not meant that the caller mus
assignedall the roles associated with the method.) If the container denies a client access
business method, the container should throw thejavax.ejb.EJBAccessException [92].
If the EJB 2.1 client view is used, the container must throw thejava.rmi.RemoteExcep-
tion (or its subclass, thejava.rmi.AccessException) to the client if the client is a
remote client, or the javax.ejb.EJBException (or its subclass, the
javax.ejb.AccessLocalException) if the client is a local client.

• The EJB container must isolate an enterprise bean instance from other instances and
application components running on the server. The EJB container must ensure that other
prise bean instances and other application components are allowed to access an enterpri
only via the enterprise bean’s business interface, component interface, home interface,
web service endpoint.

• The EJB container must isolate an enterprise bean instance at runtime such that the in
does not gain unauthorized access to privileged system information. Such information inc
the internal implementation classes of the container, the various runtime state and co
maintained by the container, object references of other enterprise bean instances, or re
managers used by other enterprise bean instances. The EJB container must ensure
interactions between the enterprise beans and the container are only through the EJB
tected interfaces.

• The EJB container must ensure the security of the persistent state of the enterprise bean

• The EJB container must manage the mapping of principals on calls to other enterprise be
on access to resource managers according to the security policy defined by the Deploye

[92] If the business interface is a remote business interface that extendsjava.rmi.Remote , thejava.rmi.AccessExcep-
tion is thrown to the client instead.
 5/2/06 478

System Administrator’s Responsibilities Enterprise JavaBeans 3.0, Final Release Security Management

Sun Microsystems, Inc.

ultiple

typi-
JB

some
ployer

inis-

r to a

tor is
rprise

an-

ployment
• The container must allow the same enterprise bean to be deployed independently m
times, each time with a different security policy[93]. The container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.

17.6.10 Audit Trail
The EJB container may provide a security audit trail mechanism. A security audit trail mechanism
cally logs alljava.security.Exceptions . It also logs all denials of access to EJB servers, E
container, EJB component interfaces, EJB home interfaces, and EJB web service endpoints.

17.7 System Administrator’s Responsibilities

This section defines the security-related responsibilities of the System Administrator. Note that
responsibilities may be carried out by the Deployer instead, or may require cooperation of the De
and the System Administrator.

17.7.1 Security Domain Administration
The System Administrator is responsible for the administration of principals. Security domain adm
tration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a use
user group, removing a user from a user group, and removing or freezing a user account.

17.7.2 Principal Mapping
If the client is in a different security domain than the target enterprise bean, the System Administra
responsible for mapping the principals used by the client to the principals defined for the ente
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

17.7.3 Audit Trail Review
If the EJB container provides an audit trail facility, the System Administrator is responsible for its m
agement.

[93] For example, the enterprise bean may be installed each time using a different bean name (as specified by means of the de
descriptor).
479 May 2, 2006 2:35 pm

Security Management Enterprise JavaBeans 3.0, Final Release System Administrator’s Responsibilities

Sun Microsystems, Inc.
 5/2/06 480

Overview Enterprise JavaBeans 3.0, Final Release Timer Service

Sun Microsystems, Inc.

con-
cks to

ns that
intrinsic

to be
service
ecific

vice by
Chapter 18 Timer Service

This chapter defines the EJB container-managed timer service. The EJB timer service is a
tainer-provided service that allows the Bean Provider to register enterprise beans for timer callba
occur at a specified time, after a specified elapsed time, or at specified intervals.

18.1 Overview

Enterprise applications that model workflow-type business processes are dependent on notificatio
certain temporal events have occurred in order to manage the semantic state transitions that are
to the business processes that they model.

The EJB Timer Service is a container-managed service that provides methods to allow callbacks
scheduled for time-based events. The container provides a reliable and transactional notification
for timed events. Timer notifications may be scheduled to occur at a specific time, after a sp
elapsed duration, or at specific recurring intervals.

The Timer Service is implemented by the EJB container. An enterprise bean accesses this ser
means of dependency injection, through theEJBContext interface, or through lookup in the JNDI
namespace.
481 May 2, 2006 2:35 pm

Timer Service Enterprise JavaBeans 3.0, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.

mod-

e

s.

red for
ecified
as for

e timer
d with

y beans.

eout
-driven

hod of
eout

pically

con-
terprise
The EJB Timer Service is a coarse-grained timer notification service that is designed for use in the
eling of application-level processes. It is not intended for the modeling of real-time events.

While timer durations are expressed in millisecond units, this is because the millisecond is th
unit of time granularity used by the APIs of the Java SE platform. It is expected that most timed
events will correspond to hours, days, or longer periods of time.

The following sections describe the Timer Service with respect to the various individual EJB role

18.2 Bean Provider’s View of the Timer Service

The EJB Timer Service is a container-provided service that allows enterprise beans to be registe
timer callback methods to occur at a specified time, after a specified elapsed time, or after sp
intervals. The timer service provides methods for the creation and cancellation of timers, as well
locating the timers that are associated with a bean.

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that uses th
service must provide a timeout callback method. This method may be a method that is annotate
the Timeout annotation, or the bean may implement thejavax.ejb.TimedObject interface.
Thejavax.ejb.TimedObject interface has a single method, the timer callback methodejbTim-
eout . Timers can be created for stateless session beans, message-driven beans, and 2.1 entit
Timers cannot be created for stateful session beans[94] or EJB 3.0 entities.

A timer that is created for a 2.1 entity bean is associated with the entity bean’s identity. The tim
callback method invocation for a timer that is created for a stateless session bean or a message
bean may be called on any bean instance in the pooled state.

When the time specified at timer creation elapses, the container invokes the timeout callback met
the bean. A timer may be cancelled by a bean before its expiration. If a timer is cancelled, the tim
callback method is not called[95]. A timer is cancelled by calling itscancel method.

Invocations of the methods to create and cancel timers and of the timeout callback method are ty
made within a transaction.

The timer service is intended for the modelling of long-lived business processes. Timers survive
tainer crashes, server shutdown, and the activation/passivation and load/store cycles of the en
beans that are registered with them.

[94] This functionality may be added in a future release of this specification.

[95] In the event of race conditions, extraneous calls to the timeout callback method may occur.
 5/2/06 482

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.0, Final Release Timer Service

Sun Microsystems, Inc.

timer.
erms

ignifi-
h the

n the

to
ent

bean,
.

lbacks

 be
18.2.1 The Timer Service Interface
The Timer Service is accessed via dependency injection, through thegetTimerService method of
the EJBContext interface, or through lookup in the JNDI namespace. TheTimerService inter-
face has the following methods:

public interface javax.ejb.TimerService {

public Timer createTimer(long duration,
java.io.Serializable info);

public Timer createTimer(long initialDuration,
long intervalDuration, java.io.Serializable info);

public Timer createTimer(java.util.Date expiration,
java.io.Serializable info);

public Timer createTimer(java.util.Date initialExpiration,
long intervalDuration, java.io.Serializable info);

public Collection getTimers();

}

The timer creation methods allow a timer to be created as a single-event timer or as an interval
The timer expiration (initial expiration in the case of an interval timer) may be expressed either in t
of a duration or as an absolute time.

The bean may pass some client-specific information at timer creation to help it recognize the s
cance of the timer’s expiration. This information is stored by the timer service and available throug
timer. The information object must be serializable.[96]

The timer duration is expressed in terms of milliseconds. The timer service begins counting dow
timer duration upon timer creation.

The createTimer methods return aTimer object that allows the bean to cancel the timer or
obtain information about the timer prior to its cancellation and/or expiration (if it is a single-ev
timer).

ThegetTimers method returns the active timers associated with the bean. For an EJB 2.1 entity
the result ofgetTimers is a collection of those timers that are associated with the bean’s identity

18.2.2 Timeout Callbacks
The enterprise bean class of a bean that is to be registered with the timer service for timer cal
must provide a timeout callback method.

[96] There is currently no way to set the information object other than through the createTimer method. An API to do this may
added in a future release of this specification.
483 May 2, 2006 2:35 pm

Timer Service Enterprise JavaBeans 3.0, Final Release Bean Provider’s View of the Timer Service

Sun Microsystems, Inc.

-

ut

ch)

after
as reg-
lies to
. The

he
ignifi-

s
l-
-

f
ll-

rom the
for the

y con-
e

e
the
This method may be a method annotated with theTimeout annotation (or a method specified as a tim
eout method in the deployment descriptor) or the bean may implement thejavax.ejb.TimedOb-
ject interface. This interface has a single method,ejbTimeout . If the bean implements the
TimedObject interface, theTimeout annotation ortimeout-method deployment descriptor
element can only be used to specify theejbTimeout method. A bean can have at most one timeo
method.[97]

public interface javax.ejb.TimedObject {
public void ejbTimeout(Timer timer);

}

Any method annotated as aTimeout method (or designated in the deployment descriptor as su
must have the signature below, where <METHOD> designates the method name[98]. A Timeout
method can have public, private, protected, or package level access. ATimeout method must not be
declared asfinal or static .

void <METHOD>(Timer timer)

Timeout callback methods must not throw application exceptions.

When the timer expires (i.e., after the number of milliseconds specified at its creation expires or
the absolute time specified has passed), the container calls the timeout method of the bean that w
istered for the timer. The timeout method contains the business logic that the Bean Provider supp
handle the timeout event. The container calls the timeout method with the timer that has expired
Bean Provider can use thegetInfo method to retrieve the information that was supplied when t
timer was created. This information may be useful in enabling the timed object to recognize the s
cance of the timer expiration.

The container interleaves calls to the timeout callback method with the calls to the busines
methods and the life cycle callback methods of the bean. The time at which the timeout cal
back method is called may therefore not correspond exactly to the time specified at timer cre
ation. If multiple timers have been created for a bean and will expire at approximately the
same times, the Bean Provider must be prepared to handle timeout callbacks that are out o
sequence. The Bean Provider must be prepared to handle extraneous calls to the timeout ca
back method in the event that a timer expiration is outstanding when a call to the cancellation
method has been made.

In general, the timeout callback method can perform the same operations as business methods f
component interface or methods from the message listener interface. See Tables 2, 3, 4, and 10
specification of the operations that may be performed by the timeout callback method.

Since the timeout callback method is an internal method of the bean class, it has no client securit
text. WhengetCallerPrincipal is called from within the timeout callback method, it returns th
container’s representation of the unauthenticated identity.

[97] This method may be specified on the bean class or on a superclass. If theTimeout annotation is used or the bean implements th
TimedObject interface, thetimeout-method deployment descriptor element, if specified, can only be used to refer to
same method.

[98] If the bean implements theTimedObject interface, theTimeout annotation may optionally be applied to theejbTimeout
method.
 5/2/06 484

Bean Provider’s View of the Timer Service Enterprise JavaBeans 3.0, Final Release Timer Service

Sun Microsystems, Inc.

f the
ht

thod
n of the
on of

a-

er
through

n

s then
If the timed object needs to make use of the identity of the timer to recognize the significance o
timer expiration, it may use theequals method to compare it with any other timer references it mig
have outstanding.

If the timer is a single-action timer, the container removes the timer after the timeout callback me
has been successfully invoked (e.g., when the transaction that has been started for the invocatio
timeout callback method commits). If the bean invokes a method on the timer after the terminati
the timeout callback method, theNoSuchObjectLocalException is thrown.

18.2.3 The Timer and TimerHandle Interfaces
The javax.ejb.Timer interface allows the Bean Provider to cancel a timer and to obtain inform
tion about the timer.

The javax.ejb.TimerHandle interface allows the Bean Provider to obtain a serializable tim
handle that may be persisted. Since timers are local objects, a TimerHandle must not be passed
a bean’s remote business interface, remote interface or web service interface.

The methods of these interfaces are as follows:

public interface javax.ejb.Timer {

public void cancel();

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public javax.ejb.TimerHandle getHandle();

public java.io.Serializable getInfo();
}

public interface javax.ejb.TimerHandle extends java.io.Serializable {

public javax.ejb.Timer getTimer();

}

18.2.4 Timer Identity

The Bean Provider cannot rely on the== operator to compare timers for “object equality”. The Bea
Provider must use theTimer.equals(Object obj) method.

18.2.5 Transactions
An enterprise bean typically creates a timer within the scope of a transaction. If the transaction i
rolled back, the timer creation is rolled back.
485 May 2, 2006 2:35 pm

Timer Service Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

, the

ion

ethod.
s super-

e han-

usiness

rvice.
An enterprise bean typically cancels a timer within a transaction. If the transaction is rolled back
container rescinds the timer cancellation.

The timeout callback method is typically has transaction attributeREQUIREDor REQUIRES_NEW
(Required or RequiresNew if the deployment descriptor is used to specify the transact
attribute) . If the transaction is rolled back, the container retries the timeout.

Note that the container must start a new transaction if theREQUIRED(Required) transac-
tion attribute is used. This transaction attribute value is allowed so that specification of a
transaction attribute for the timeout callback method can be defaulted.

18.3 Bean Provider’s Responsibilities

This section defines the Bean Provider’s responsibilities.

18.3.1 Enterprise Bean Class

An enterprise bean that is to be registered with the Timer Service must have a timeout callback m
The enterprise bean class may have superclasses and/or superinterfaces. If the bean class ha
classes, the timeout method may be defined in the bean class, or in any of its superclasses.

18.3.2 TimerHandle
Since theTimerHandle interface extendsjava.io.Serializable , a client may serialize the
handle. The serialized handle may be used later to obtain a reference to the timer identified by th
dle. A TimerHandle is intended to be storable in persistent storage.

A TimerHandle must not be passed as an argument or result of an enterprise bean’s remote b
interface, remote interface, or web service method.

18.4 Container’s Responsibilities

This section describes the responsibilities of the Container Provider to support the EJB Timer Se

18.4.1 TimerService, Timer, and TimerHandle Interfaces

The container must provide the implementation of theTimerService , Timer , andTimerHandle
interfaces.

Timer instances must not be serializable.

The container must implement a timer handle to be usable over the lifetime of the timer.
 5/2/06 486

Container’s Responsibilities Enterprise JavaBeans 3.0, Final Release Timer Service

Sun Microsystems, Inc.

speci-
timer

pired

If the

ust call
ack

od is
tainer

oked.
r the

expired
to be
e the

exist.

e the
ould
in the
The container must provide suitable implementations of theTimer equals(Object obj) and
hashCode() methods.

18.4.2 Timer Expiration and T imeout Callback Method

The container must call the timeout callback method after the timed duration or the absolute time
fication in the timer creation method has passed. The timer service must begin to count down the
duration upon timer creation. The container must call the timeout callback method with the ex
Timer.

If container-managed transaction demarcation is used and theREQUIREDor REQUIRES_NEWtrans-
action attribute is specified or defaulted (Required or RequiresNew if the deployment descriptor is
used), the container must begin a new transaction prior to invoking the timeout callback method.
transaction fails or is rolled back, the container must retry the timeout at least once.

If a timer for an EJB 2.1 entity bean expires, and the bean has been passivated, the container m
theejbActivate andejbLoad methods on the entity bean class before calling the timeout callb
method, as described in Sections 8.5.3 and 10.1.4.2.

If the timer is a single-event timer, the container must cause the timer to no longer exist. If a meth
subsequently invoked on the timer after the completion of the timeout callback method, the con
must throw thejavax.ejb.NoSuchObjectLocalException .

If the Bean Provider invokes thesetRollbackOnly method from within the timeout callback
method, the container must rollback the transaction in which the timeout callback method is inv
This has the effect of rescinding the timer expiration. The container must retry the timeout afte
transaction rollback.

Timers are persistent objects. In the event of a container crash, any single-event timers that have
during the intervening time before container restart must cause the timeout callback method
invoked upon restart. Any interval timers that have expired during the intervening time must caus
timeout callback method to be invoked at least once upon restart.

18.4.3 Timer Cancellation

When a timer’scancel method has been called, the container must cause the timer to no longer
If a method is subsequently invoked on the timer, the container must throw thejavax.ejb.NoSu-
chObjectLocalException .

If the transaction in which the timer cancellation occurs is rolled back, the container must restor
duration of the timer to the duration it would have had if it had not been cancelled. If the timer w
have expired by the time that the transaction failed, the failure of the transaction should result
expired timer providing an expiration notification after the transaction rolls back.

18.4.4 Entity Bean Removal

If an entity bean is removed, the container must remove the timers for that bean.
487 May 2, 2006 2:35 pm

Timer Service Enterprise JavaBeans 3.0, Final Release Container’s Responsibilities

Sun Microsystems, Inc.
 5/2/06 488

Overview Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

es an
n the
tion.

e EJB
ns are

r. This
ssem-

y does
bler
enter-

ined in
Chapter 19 Deployment Descriptor

This chapter defines the deployment descriptor that is part of the ejb-jar file. Section 19.1 provid
overview of the deployment descriptor. Sections 19.2 through 19.4 describe the information i
deployment descriptor from the perspective of the EJB roles responsible for providing the informa
Section 19.5 defines the deployment descriptor’s XML Schema elements that are specific to th
architecture. The XML Schema elements that are common to the Java EE Platform specificatio
provided in [12].

19.1 Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consume
contract covers both the passing of enterprise beans from the Bean Provider to the Application A
bler, and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typicall
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
contains one or more enterprise beans, plus application assembly information describing how the
prise beans are combined into a single application deployment unit.

The Java EE specification defines how enterprise beans and other application components conta
multiple ejb-jar files can be assembled into an application.
489 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

ectly

n
ructural
eta-
ation
tion.

r-
unit.
ent

be
r the

tural
ns or

ar

file.
ployer
me in
ata
bean

y
meth-

nd
using

alified
The role of the deployment descriptor is to capture declarative information that is not included dir
in the enterprise beans’ code and that is intended for the consumer of the ejb-jar file.

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structural information. Structural information describes the structure of a
enterprise bean and declares an enterprise bean’s external dependencies. Providing st
information for the ejb-jar file producer. Structural information may be provided using m
data annotations in the beans’ code or in the deployment descriptor. The structural inform
cannot, in general, be changed because doing so could break the enterprise bean’s func

• Application assembly information. Application assembly information describes how the ente
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment
Providing assembly information—whether in metadata annotations or in the deploym
descriptor—is optional for the ejb-jar file producer. Assembly level information can
changed without breaking the enterprise bean’s function, although doing so may alte
behavior of an assembled application.

19.2 Bean Provider’s Responsibilities

The Bean Provider is responsible for providing in the deployment descriptor the following struc
information for each enterprise bean if this information has not be provided in metadata annotatio
is to be defaulted.

The Bean Provider uses theenterprise-beans element to list all the enterprise beans in the ejb-j
file.

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name. A logical name is assigned to each enterprise bean in the ejb-jar
There is no architected relationship between this name and the JNDI name that the De
will assign to the enterprise bean. The Bean Provider can specify the enterprise bean’s na
the ejb-name element. If the enterprise bean’s name is not explicitly specified in metad
annotations or in the deployment descriptor, it defaults to the unqualified name of the
class.

• Enterprise bean’s class. If the bean class has not been annotated with theStateless ,
Stateful , or Message-driven annotation, the Bean Provider must use theejb-class
element of thesession or message-driven deployment descriptor element to specif
the fully-qualified name of the Java class that implements the enterprise bean’s business
ods. The Bean Provider specifies the enterprise bean’s class name in theejb-class element.
The Bean Provider must use this element for an EJB 2.1 and earlier entity bean.

• Enterprise bean’s local business interface. If the bean class has a local business interface a
neither implements the business interface nor specifies it as a local business interface
metadata annotations on the bean class, the Bean Provider must specify the fully-qu
name of the enterprise bean’s local business interface in thebusiness-local element.
 5/2/06 490

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

er-
tadata
of the

nd
n Pro-

ce in

ote
r must

the
rovider

the

me
pecify

d-
e bean
b ser-

iven.

used

oy-
s that

n is

ean

l or

or by
• Enterprise bean’s remote business interface. If the bean class has a remote business int
face and neither implements nor specifies it as a remote business interface using me
annotations on the bean class, the Bean Provider must specify the fully-qualified name
enterprise bean’s remote business interface in thebusiness-remote element.

• Enterprise bean’s remote home interface. If the bean class has a remote home interface, a
the remote home interface has not been specified using metadata annotations, the Bea
vider must specify the fully-qualified name of the enterprise bean’s remote home interfa
thehome element.

• Enterprise bean’s remote interface. If the bean class has a remote interface, and the rem
home interface has not been specified using metadata annotations, the Bean Provide
specify the fully-qualified name of the enterprise bean’s remote interface in theremote ele-
ment.

• Enterprise bean’s local home interface. If the bean class has a local home interface, and
local home interface has not been specified using metadata annotations, the Bean P
must specify the fully-qualified name of the enterprise bean’s local home interfacein
local-home element.

• Enterprise bean’s local interface. If the bean class has a local interface, and the local ho
interface has not been specified using metadata annotations, the Bean Provider must s
the fully-qualified name of the enterprise bean’s local interface in thelocal element.

• Enterprise bean’s web service endpoint interface.If the bean class has a web service en
point interface, and the interface has not been specified using metadata annotations on th
class, the Bean Provider must specify the fully-qualified name of the enterprise bean’s we
vice endpoint interface, in theservice-endpoint element. This element may only be
used for stateless session beans.

• Enterprise bean’s type. The enterprise bean types are: session, entity, and message-dr
The Bean Provider must use the appropriatesession , entity , or message-driven ele-
ment to declare the enterprise bean’s structural information if annotations have not been
for this purpose. If the bean’s type has been specified by means of theStateless , State-
ful , or MessageDriven annotation, its type cannot be overridden by means of the depl
ment descriptor. The bean’s type (and its session type), if specified must be the same a
specified in annotations.

• Re-entrancy indication. The Bean Provider must specify whether an EJB 2.1 entity bea
re-entrant or not. Session beans and message-driven beans are never re-entrant.

• Session bean’s state management type. If the enterprise bean is a session bean and the b
class has not been annotated with theStateful or Stateless annotation, the Bean Pro-
vider must use thesession-type element to declare whether the session bean is statefu
stateless.

• Session or message-driven bean’s transaction demarcation type. If the enterprise bean is a
session bean or message-driven bean, the Bean Provider may use thetransaction-type
element to declare whether transaction demarcation is performed by the enterprise bean
the container. If the neither theTransactionType annotation is used nor thetransac-
491 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

sac-

he
e

an
the

-

ed
the

-
-

ed

ent
section

y
defined

ref-
t been

the
a anno-

o the
annota-
tion-type deployment descriptor element, the bean will have container managed tran
tion demarcation.

• Entity bean’s persistence management. If the enterprise bean is an EJB 2.1 entity bean, t
Bean Provider must use thepersistence-type element to declare whether persistenc
management is performed by the enterprise bean or by the container.

• Entity bean’s primary key class. If the enterprise bean is an EJB 2.1 entity bean, the Be
Provider specifies the fully-qualified name of the entity bean’s primary key class in
prim-key-class element. The Bean Providermustspecify the primary key class for an
entity with bean-managed persistence.

• Entity bean’s abstract schema name.If the enterprise bean is an entity bean with con
tainer-managed persistence andcmp-version 2.x , the Bean Provider must specify the
abstract schema name of the entity bean using theabstract-schema-name element.

• Container-managed fields. If the enterprise bean is an entity bean with container-manag
persistence, the Bean Provider must specify the container-managed fields using
cmp-field elements.

• Container-managed relationships. If the enterprise bean is an entity bean with con
tainer-managed persistence andcmp-version 2.x , the Bean Provider must specify the con
tainer-managed relationships of the entity bean using therelationships element.

• Finder and select queries.If the enterprise bean is an entity bean with container-manag
persistence andcmp-version 2.x , the Bean Provider must use thequery element to spec-
ify any EJB QL finder or select query for the entity bean other than a query for thefindByP-
rimaryKey method.

• Environment entries. The Bean Provider must declare any enterprise bean’s environm
entries that have not been defined by means of metadata annotations, as specified in Sub
16.3.1.

• Resource manager connection factory references. The Bean Provider must declare an
enterprise bean’s resource manager connection factory references that have not been
by means of metadata annotations, as specified in Subsection 16.7.1.

• Resource environment references. The Bean Provider must declare any enterprise bean’s
erences to administered objects that are associated with resources and that have no
defined by means of metadata annotations, as specified in Subsection 16.8.1.

• EJB references. The Bean Provider must declare any enterprise bean’s references to
remote homes of other enterprise beans that have not been defined by means of metadat
tations, as specified in Subsection 16.5.1.

• EJB local references. The Bean Provider must declare any enterprise bean’s references t
local homes of other enterprise beans that have not been defined by means of metadata
tions, as specified in Subsection 16.5.1.
 5/2/06 492

Application Assembler’s Responsibility Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

s to
speci-

ces
ns of

fer-
ans of

fer-
tions, as

s to
ified in

oper-
ean

nd its
5].

-
signed

have

nition
ion.
XML

cation
tput is
to a

put
ation
• Web service references. The Bean Provider must declare any enterprise bean’s reference
web service interfaces that have not been defined by means of metadata annotations, as
fied in Subsection 16.6.

• Persistence unit references. The Bean Provider must declare any enterprise bean’s referen
to an entity manager factory for a persistence unit that have not been defined by mea
metadata annotations, as specified in Subsection 16.10.

• Persistence context references. The Bean Provider must declare any enterprise bean’s re
ences to an entity manager for a persistence context that have not been defined by me
metadata annotations, as specified in Subsection 16.11.

• Message destination references. The Bean Provider must declare any enterprise bean’s re
ences to message destinations that have not been defined by means of metadata annota
specified in Subsection 16.9.1.

• Security role references. The Bean Provider must declare any enterprise bean’s reference
security roles that have not been defined by means of metadata annotations, as spec
Subsection 17.2.5.3.

• Message-driven bean’s configuration properties.The Bean Provider may provide input to
the Deployer as to how a message-driven bean should be configured upon activation in its
ational environment. Activation configuration properties for a JMS message-driven b
include information about a bean’s intended destination type, its message selector, a
acknowledgement mode. Other bean types may make use of different properties. See [1

• Message-driven bean’s destination.The Bean Provider may provide advice to the Applica
tion Assembler as to the destination type to which a message-driven bean should be as
when linking message destinations

• Interceptors. The Bean Provider must declare any interceptor classes and methods that
not been declared by means of metadata annotations.

The deployment descriptor produced by the Bean Provider must conform to the XML Schema defi
in Section 19.5 or to the XML Schema or DTD definition from a previous version of this specificat
The content of the deployment descriptor must conform to the semantics rules specified in the
Schema or DTD comments and elsewhere in this specification.

19.3 Application Assembler’s Responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Appli
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the ou
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files in
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each out
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled applic
that is intended for another Application Assembler.
493 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Application Assembler’s Responsibility

Sun Microsystems, Inc.

case,
sec-

Pro-

or

ew

r
tion

t

or the

e

of

ame
fy all

19.2

em-

e
ication

nced
em-
The Bean Provider and Application Assembler may be the same person or organization. In such a
the person or organization performs the responsibilities described both in this and the previous
tions.

The Application Assembler may modify the following information that was specified by the Bean
vider:

• Values of environment entries. The Application Assembler may change existing and/
define new values of environment properties.

• Description fields. The Application Assembler may change existing or create n
description elements.

• Relationship names for EJB 2.x entity beans.If multiple ejb-jar files use the same names fo
relationships and are merged into a single ejb-jar file, it is the responsibility of the Applica
Assembler to modify the relationship names defined in theejb-relation-name elements.

• Message-driven bean message selector. The Application Assembler may further restrict, bu
not replace, the value of themessageSelector activation-config-property ele-
ment of a JMS message-driven bean—whether this was defined in metadata annotations
deployment descriptor.

In general, the Application Assembler should never modify any of the following.

• Enterprise bean’s abstract schema name. The Application Assembler should not change th
enterprise bean’s name defined in theabstract-schema-name element since EJB QL
queries may depend on the content of this element.

• Relationship role source element. The Application Assembler should not change the value
anejb-name element in therelationship-role-source element.

If any of these elements must be modified by the Application Assembler in order to resolve n
clashes during the merging two ejb-jar files into one, the Application Assembler must also modi
ejb-ql query strings that depend on the value of the modified element(s).

The Application Assembler must not, in general, modify any other information listed in Section
that was provided in the input ejb-jar file.

The Application Assembler may, but is not required to, specify any of the following application ass
bly information:

• Binding of enterprise bean references. The Application Assembler may link an enterpris
bean reference to another enterprise bean in the ejb-jar file or in the same Java EE appl
unit. The Application Assembler creates the link by adding theejb-link element to the ref-
erencing bean. The Application Assembler uses theejb-name of the referenced bean for the
link. If there are multiple enterprise beans with the sameejb-name , the Application Assem-
bler uses the path name specifying the location of the ejb-jar file that contains the refere
component. The path name is relative to the referencing ejb-jar file. The Application Ass
bler appends theejb-name of the referenced bean to the path name separated by#. This
allows multiple beans with the same name to be uniquely identified.
 5/2/06 494

Application Assembler’s Responsibility Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

e
r file or
g the

cu-
he

od
inter-

erprise

ions
scrip-

e
ces
these

n-
ecific
urity
ment

ion
, web
n-
-driven

cep-
ploy-

wed
ppen

nition
The
hema
• Linking of message destination references. The Application Assembler may link messag
consumers and producers through common message destinations specified in the ejb-ja
in the same Java EE application unit. The Application Assembler creates the link by addin
message-destination-link element to the referencing bean.

• Security roles. The Application Assembler may define one or more security roles. The se
rity roles define therecommendedsecurity roles for the clients of the enterprise beans. T
Application Assembler defines the security roles using thesecurity-role elements.

• Method permissions. The Application Assembler may define method permissions. Meth
permission is a binary relation between the security roles and the methods of the business
faces, home interfaces, component interfaces, and/or web service endpoints of the ent
beans. The Application Assembler defines method permissions using themethod-permis-
sion elements. The Application Assembler may augment or ovrride method permiss
defined by the Bean Provider—whether in metadata annotations or in the deployment de
tor.

• Linking of security role references. If the Application Assembler defines security roles in th
deployment descriptor, the Application Assembler may link the security role referen
declared by the Bean Provider to the security roles. The Application Assembler defines
links using therole-link element.

• Security identity. The Application Assembler may specify whether the caller’s security ide
tity should be used for the execution of the methods of an enterprise bean or whether a sp
run-as security identity should be used. The Application Assembler may ovrride a sec
identity defined by the Bean Provider—whether in metadata annotations or in the deploy
descriptor

• Transaction attributes. The Application Assembler may define the value of the transact
attributes for the methods of the business interface, home interface, component interface
service endpoint, andTimedObject interface of the enterprise beans that require co
tainer-managed transaction demarcation. All entity beans and the session and message
beans declared by the Bean Provider as transaction-typeContainer require container-man-
aged transaction demarcation. The Application Assembler uses thecontainer-transac-
tion elements to declare the transaction attributes.

• Interceptors. The Application Assembler may override, augment, and/or reorder the inter
tor methods defined by the Bean Provider—whether in metadata annotations or in the de
ment descriptor.

If an input ejb-jar file contains application assembly information, the Application Assembler is allo
to change the application assembly information supplied in the input ejb-jar file. (This could ha
when the input ejb-jar file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider must conform to the XML Schema defi
in Section 19.5 or the XML Schema or DTD definition from a previous version of this specification.
content of the deployment descriptor must conform to the semantics rules specified in the XML Sc
or DTD comments and elsewhere in this specification.
495 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Container Provider’s Responsibilities

Sun Microsystems, Inc.

XML

ploy-
an be

in the
easily

eans,
19.4 Container Provider’s Responsibilities

The Container Provider provides tools that read and import the information contained in the
deployment descriptor.

All EJB 3.0 implementations must support EJB 2.1, EJB 2.0, and EJB 1.1 as well as EJB 3.0 de
ment descriptors. The definitions of the EJB 2.1, EJB 2.0, and EJB 1.1 deployment descriptors c
found in the Enterprise JavaBeans 2.1 specification [3].

19.5 Deployment Descriptor XML Schema

This section provides the XML Schema for the EJB 3.0 deployment descriptor. The comments
XML Schema specify additional requirements for the syntax and semantics that cannot be
expressed by the XML Schema mechanism.

The content of the XML elements is in general case sensitive (i.e., unless stated otherwise). This m
for example, that

<transaction-type>Container</transaction-type>

must be used, rather than:

<transaction-type>container</transaction-type>.
 5/2/06 496

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

the
All valid ejb-jar deployment descriptors must conform to the XML Schema definition below or to
DTD definition from a previous version of this specification.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://java.sun.com/xml/ns/javaee"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="3.0">
 <xsd:annotation>
 <xsd:documentation>
 @(#)ejb-jar_3_0.xsds1.51 02/23/06
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 Copyright 2003-2006 Sun Microsystems, Inc.
 4150 Network Circle
 Santa Clara, California 95054
 U.S.A
 All rights reserved.

 Sun Microsystems, Inc. has intellectual property rights
 relating to technology described in this document. In
 particular, and without limitation, these intellectual
 property rights may include one or more of the U.S. patents
 listed at http://www.sun.com/patents and one or more
 additional patents or pending patent applications in the
 U.S. and other countries.

 This document and the technology which it describes are
 distributed under licenses restricting their use, copying,
 distribution, and decompilation. No part of this document
 may be reproduced in any form by any means without prior
 written authorization of Sun and its licensors, if any.

 Third-party software, including font technology, is
 copyrighted and licensed from Sun suppliers.

 Sun, Sun Microsystems, the Sun logo, Solaris, Java, J2EE,
 JavaServer Pages, Enterprise JavaBeans and the Java Coffee
 Cup logo are trademarks or registered trademarks of Sun
 Microsystems, Inc. in the U.S. and other countries.

 Federal Acquisitions: Commercial Software - Government Users
 Subject to Standard License Terms and Conditions.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 This is the XML Schema for the EJB 3.0 deployment descriptor.
 The deployment descriptor must be named "META-INF/ejb-jar.xml" in
 the EJB's jar file. All EJB deployment descriptors must indicate
 the ejb-jar schema by using the Java EE namespace:

 http://java.sun.com/xml/ns/javaee
497 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 and by indicating the version of the schema by
 using the version element as shown below:

 <ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 ...
 </ejb-jar>

 The instance documents may indicate the published version of
 the schema using the xsi:schemaLocation attribute for the
 Java EE namespace with the following location:

 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 The following conventions apply to all Java EE
 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="javaee_5.xsd"/>

<!-- ** -->

 <xsd:element name="ejb-jar" type="javaee:ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 This is the root of the ejb-jar deployment descriptor.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:key name="ejb-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-name element contains the name of an enterprise
 bean. The name must be unique within the ejb-jar file.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:enterprise-beans/*"/>
 <xsd:field xpath="javaee:ejb-name"/>
 </xsd:key>
 5/2/06 498

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:keyref name="ejb-name-references"
 refer="javaee:ejb-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 relationship-role-source must be to a specific ejb-name
 defined within the scope of enterprise-beans element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector
xpath=".//javaee:ejb-relationship-role/javaee:relationship-role-source"/>
 <xsd:field
 xpath="javaee:ejb-name"/>
 </xsd:keyref>

 <xsd:key name="role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 A role-name-key is specified to allow the references
 from the security-role-refs.

 </xsd:documentation>
 </xsd:annotation>

<xsd:selector xpath="javaee:assembly-descriptor/javaee:security-role"/>
 <xsd:field xpath="javaee:role-name"/>
 </xsd:key>

 <xsd:keyref name="role-name-references"
 refer="javaee:role-name-key">
 <xsd:annotation>
 <xsd:documentation>

 The keyref indicates the references from
 security-role-ref to a specified role-name.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:enterprise-beans/*/javaee:secu-
rity-role-ref"/>
 <xsd:field xpath="javaee:role-link"/>
 </xsd:keyref>
 </xsd:element>

<!-- ** -->

 <xsd:complexType name="activation-config-propertyType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-propertyType contains a name/value
 configuration property pair for a message-driven bean.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="activation-config-property-name"
 type="javaee:xsdStringType">
 <xsd:annotation>
499 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:documentation>

 The activation-config-property-name element contains
 the name for an activation configuration property of
 a message-driven bean.

 For JMS message-driven beans, the following property
 names are recognized: acknowledgeMode,
 messageSelector, destinationType, subscriptionDurability

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="activation-config-property-value"
 type="javaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-config-property-value element
 contains the value for an activation configuration
 property of a message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="activation-configType">
 <xsd:annotation>
 <xsd:documentation>

 The activation-configType defines information about the
 expected configuration properties of the message-driven bean
 in its operational environment. This may include information
 about message acknowledgement, message selector, expected
 destination type, etc.

 The configuration information is expressed in terms of
 name/value configuration properties.

 The properties that are recognized for a particular
 message-driven bean are determined by the messaging type.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="activation-config-property"
 type="javaee:activation-config-propertyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="application-exceptionType">
 <xsd:annotation>
 5/2/06 500

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:documentation>

 The application-exceptionType declares an application
 exception. The declaration consists of:

 - the exception class. When the container receives
 an exception of this type, it is required to
 forward this exception as an applcation exception
 to the client regardless of whether it is a checked
 or unchecked exception.
 - an optional rollback element. If this element is
 set to true, the container must rollback the current
 transaction before forwarding the exception to the
 client. If not specified, it defaults to false.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="exception-class"
 type="javaee:fully-qualified-classType"/>
 <xsd:element name="rollback"
 type="javaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="around-invokeType">
 <xsd:annotation>
 <xsd:documentation>

 The around-invoke type specifies a method on a
 class to be called during the around invoke portion of an
 ejb invocation. Note that each class may have only one
 around invoke method and that the method may not be
 overloaded.

 If the class element is missing then
 the class defining the callback is assumed to be the
 interceptor class or component class in scope at the
 location in the descriptor in which the around invoke
 definition appears.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="class"
 type="javaee:fully-qualified-classType"
 minOccurs="0"/>
 <xsd:element name="method-name"
 type="javaee:java-identifierType"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="assembly-descriptorType">
 <xsd:annotation>
 <xsd:documentation>

 The assembly-descriptorType defines
 application-assembly information.

 The application-assembly information consists of the
501 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 following parts: the definition of security roles, the
 definition of method permissions, the definition of
 transaction attributes for enterprise beans with
 container-managed transaction demarcation, the definition
 of interceptor bindings, a list of
 methods to be excluded from being invoked, and a list of
 exception types that should be treated as application exceptions.

 All the parts are optional in the sense that they are
 omitted if the lists represented by them are empty.

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar file producer.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="security-role"
 type="javaee:security-roleType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method-permission"
 type="javaee:method-permissionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="container-transaction"
 type="javaee:container-transactionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-binding"
 type="javaee:interceptor-bindingType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="message-destination"
 type="javaee:message-destinationType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="exclude-list"
 type="javaee:exclude-listType"
 minOccurs="0"/>
 <xsd:element name="application-exception"
 type="javaee:application-exceptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-fieldType describes a container-managed field. The
 cmp-fieldType contains an optional description of the field,
 and the name of the field.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 5/2/06 502

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:element name="field-name"
 type="javaee:java-identifierType">
 <xsd:annotation>
 <xsd:documentation>

 The field-name element specifies the name of a
 container managed field.

 The name of the cmp-field of an entity bean with
 cmp-version 2.x must begin with a lowercase
 letter. This field is accessed by methods whose
 names consists of the name of the field specified by
 field-name in which the first letter is uppercased,
 prefixed by "get" or "set".

 The name of the cmp-field of an entity bean with
 cmp-version 1.x must denote a public field of the
 enterprise bean class or one of its superclasses.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmp-versionType">
 <xsd:annotation>
 <xsd:documentation>

 The cmp-versionType specifies the version of an entity bean
 with container-managed persistence. It is used by
 cmp-version elements.

 The value must be one of the two following:

 1.x
 2.x

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="1.x"/>
 <xsd:enumeration value="2.x"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-field-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-type element specifies the class of a
 collection-valued logical relationship field in the entity
 bean class. The value of an element using cmr-field-typeType
 must be either: java.util.Collection or java.util.Set.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
503 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:enumeration value="java.util.Collection"/>
 <xsd:enumeration value="java.util.Set"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="cmr-fieldType">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-fieldType describes the bean provider's view of
 a relationship. It consists of an optional description, and
 the name and the class type of a field in the source of a
 role of a relationship. The cmr-field-name element
 corresponds to the name used for the get and set accessor
 methods for the relationship. The cmr-field-type element is
 used only for collection-valued cmr-fields. It specifies the
 type of the collection that is used.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="cmr-field-name"
 type="javaee:string">
 <xsd:annotation>
 <xsd:documentation>

 The cmr-field-name element specifies the name of a
 logical relationship field in the entity bean
 class. The name of the cmr-field must begin with a
 lowercase letter. This field is accessed by methods
 whose names consist of the name of the field
 specified by cmr-field-name in which the first
 letter is uppercased, prefixed by "get" or "set".

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmr-field-type"
 type="javaee:cmr-field-typeType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="container-transactionType">
 <xsd:annotation>
 <xsd:documentation>

 The container-transactionType specifies how the container
 must manage transaction scopes for the enterprise bean's
 method invocations. It defines an optional description, a
 list of method elements, and a transaction attribute. The
 transaction attribute is to be applied to all the specified
 methods.

 </xsd:documentation>
 5/2/06 504

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 <xsd:element name="trans-attribute"
 type="javaee:trans-attributeType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The ejb-classType contains the fully-qualified name of the
 enterprise bean's class. It is used by ejb-class elements.

 Example:

 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:fully-qualified-classType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-jarType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-jarType defines the root element of the EJB
 deployment descriptor. It contains

 - an optional description of the ejb-jar file
 - an optional display name
 - an optional icon that contains a small and a large
 icon file name
 - structural information about all included
 enterprise beans that is not specified through
 annotations
 - structural information about interceptor classes
 - a descriptor for container managed relationships,
 if any.
 - an optional application-assembly descriptor
 - an optional name of an ejb-client-jar file for the
 ejb-jar.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
505 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:element name="enterprise-beans"
 type="javaee:enterprise-beansType"
 minOccurs="0"/>
 <xsd:element name="interceptors"
 type="javaee:interceptorsType"
 minOccurs="0"/>
 <xsd:element name="relationships"
 type="javaee:relationshipsType"
 minOccurs="0">
 <xsd:unique name="relationship-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name contains the name of a
 relation. The name must be unique within
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-relation"/>
 <xsd:field xpath="javaee:ejb-relation-name"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="assembly-descriptor"
 type="javaee:assembly-descriptorType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 Providing an assembly-descriptor in the deployment
 descriptor is optional for the ejb-jar file
 producer.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-client-jar"
 type="javaee:pathType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The optional ejb-client-jar element specifies a JAR
 file that contains the class files necessary for a
 client program to access the
 enterprise beans in the ejb-jar file.

 Example:

 <ejb-client-jar>employee_service_client.jar
 </ejb-client-jar>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="version"
 type="javaee:dewey-versionType"
 fixed="3.0"
 use="required">
 <xsd:annotation>
 <xsd:documentation>

 The version specifies the version of the
 5/2/06 506

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 EJB specification that the instance document must
 comply with. This information enables deployment tools
 to validate a particular EJB Deployment
 Descriptor with respect to a specific version of the EJB
 schema.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="metadata-complete" type="xsd:boolean">
 <xsd:annotation>
 <xsd:documentation>

 The metadata-complete attribute defines whether this
 deployment descriptor and other related deployment
 descriptors for this module (e.g., web service
 descriptors) are complete, or whether the class
 files available to this module and packaged with
 this application should be examined for annotations
 that specify deployment information.

 If metadata-complete is set to "true", the deployment
 tool must ignore any annotations that specify deployment
 information, which might be present in the class files
 of the application.

 If metadata-complete is not specified or is set to
 "false", the deployment tool must examine the class
 files of the application for annotations, as
 specified by the specifications.

 </xsd:documentation>
 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-nameType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The ejb-nameType specifies an enterprise bean's name. It is
 used by ejb-name elements. This name is assigned by the
 ejb-jar file producer to name the enterprise bean in the
 ejb-jar file's deployment descriptor. The name must be
 unique among the names of the enterprise beans in the same
 ejb-jar file.

 There is no architected relationship between the used
 ejb-name in the deployment descriptor and the JNDI name that
 the Deployer will assign to the enterprise bean's home.

 The name for an entity bean must conform to the lexical
 rules for an NMTOKEN.

 Example:

 <ejb-name>EmployeeService</ejb-name>

]]>
 </xsd:documentation>
507 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:xsdNMTOKENType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-relationType">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationType describes a relationship between two
 entity beans with container-managed persistence. It is used
 by ejb-relation elements. It contains a description; an
 optional ejb-relation-name element; and exactly two
 relationship role declarations, defined by the
 ejb-relationship-role elements. The name of the
 relationship, if specified, is unique within the ejb-jar
 file.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation-name"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relation-name element provides a unique name
 within the ejb-jar file for a relationship.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-relationship-role"
 type="javaee:ejb-relationship-roleType"/>
 <xsd:element name="ejb-relationship-role"
 type="javaee:ejb-relationship-roleType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-relationship-roleType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The ejb-relationship-roleType describes a role within a
 relationship. There are two roles in each relationship.

 The ejb-relationship-roleType contains an optional
 description; an optional name for the relationship role; a
 specification of the multiplicity of the role; an optional
 specification of cascade-delete functionality for the role;
 the role source; and a declaration of the cmr-field, if any,
 by means of which the other side of the relationship is
 accessed from the perspective of the role source.
 5/2/06 508

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 The multiplicity and role-source element are mandatory.

 The relationship-role-source element designates an entity
 bean by means of an ejb-name element. For bidirectional
 relationships, both roles of a relationship must declare a
 relationship-role-source element that specifies a cmr-field
 in terms of which the relationship is accessed. The lack of
 a cmr-field element in an ejb-relationship-role specifies
 that the relationship is unidirectional in navigability and
 the entity bean that participates in the relationship is
 "not aware" of the relationship.

 Example:

 <ejb-relation>
 <ejb-relation-name>Product-LineItem</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>product-has-lineitems
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>ProductEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relationship-role-name"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name element defines a
 name for a role that is unique within an
 ejb-relation. Different relationships can use the
 same name for a role.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="multiplicity"
 type="javaee:multiplicityType"/>
 <xsd:element name="cascade-delete"
 type="javaee:emptyType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The cascade-delete element specifies that, within a
 particular relationship, the lifetime of one or more
 entity beans is dependent upon the lifetime of
 another entity bean. The cascade-delete element can
 only be specified for an ejb-relationship-role
 element contained in an ejb-relation element in
 which the other ejb-relationship-role
 element specifies a multiplicity of One.
509 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="relationship-role-source"
 type="javaee:relationship-role-sourceType"/>
 <xsd:element name="cmr-field"
 type="javaee:cmr-fieldType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="enterprise-beansType">
 <xsd:annotation>
 <xsd:documentation>

 The enterprise-beansType declares one or more enterprise
 beans. Each bean can be a session, entity or message-driven
 bean.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="session"
 type="javaee:session-beanType">
 <xsd:unique name="session-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="session-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="session-resource-env-ref-uniqueness">
 5/2/06 510

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>

 <xsd:unique name="session-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>

 <xsd:unique name="session-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 </xsd:unique>

 <xsd:unique name="session-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>

 <xsd:element name="entity"
 type="javaee:entity-beanType">
511 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:unique name="entity-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="entity-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="entity-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>

 <xsd:unique name="entity-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 5/2/06 512

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>

 <xsd:unique name="entity-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 </xsd:unique>

 <xsd:unique name="entity-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>

 <xsd:element name="message-driven"
 type="javaee:message-driven-beanType">
 <xsd:unique name="messaged-ejb-local-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of
 an EJB reference. The EJB reference is an entry in
 the component's environment and is relative to the
 java:comp/env context. The name must be unique within
 the component.

 It is recommended that name be prefixed with "ejb/".

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-local-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="messaged-ejb-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB
 reference. The EJB reference is an entry in the
 component's environment and is relative to the
 java:comp/env context. The name must be unique
 within the component.

 It is recommended that name is prefixed with "ejb/".
513 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:ejb-ref"/>
 <xsd:field xpath="javaee:ejb-ref-name"/>
 </xsd:unique>

 <xsd:unique name="messaged-resource-env-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The resource-env-ref-name element specifies the name
 of a resource environment reference; its value is
 the environment entry name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-env-ref"/>
 <xsd:field xpath="javaee:resource-env-ref-name"/>
 </xsd:unique>

 <xsd:unique name="messaged-message-destination-ref-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The message-destination-ref-name element specifies the name
 of a message destination reference; its value is
 the message destination reference name used in the component
 code. The name is a JNDI name relative to the
 java:comp/env context and must be unique within an
 component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:message-destination-ref"/>
 <xsd:field xpath="javaee:message-destination-ref-name"/>
 </xsd:unique>

 <xsd:unique name="messaged-res-ref-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The res-ref-name element specifies the name of a
 resource manager connection factory reference. The name
 is a JNDI name relative to the java:comp/env context.
 The name must be unique within an component.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="javaee:resource-ref"/>
 <xsd:field xpath="javaee:res-ref-name"/>
 </xsd:unique>

 <xsd:unique name="messaged-env-entry-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The env-entry-name element contains the name of a
 component's environment entry. The name is a JNDI
 name relative to the java:comp/env context. The
 name must be unique within an component.

 </xsd:documentation>
 5/2/06 514

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:annotation>
 <xsd:selector xpath="javaee:env-entry"/>
 <xsd:field xpath="javaee:env-entry-name"/>
 </xsd:unique>
 </xsd:element>

 </xsd:choice>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="entity-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The entity-beanType declares an entity bean. The declaration
 consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 - a unique name assigned to the enterprise bean
 in the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of the entity bean's remote home interface. This

element is not required to be supported by all implementations.
 Any use of this element is non-portable.
 - the names of the entity bean's remote home
 and remote interfaces, if any
 - the names of the entity bean's local home and local
 interfaces, if any
 - the entity bean's implementation class
 - the optional entity bean's persistence management type. If
 this element is not specified it is defaulted to Container.
 - the entity bean's primary key class name
 - an indication of the entity bean's reentrancy
 - an optional specification of the
 entity bean's cmp-version
 - an optional specification of the entity bean's
 abstract schema name
 - an optional list of container-managed fields
 - an optional specification of the primary key
 field
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's EJB
 references
 - an optional declaration of the bean's local
 EJB references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's
 resource manager connection factory references
 - an optional declaration of the bean's
 resource environment references
 - an optional declaration of the bean's message
 destination references
 - an optional set of query declarations
 for finder and select methods for an entity
515 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 bean with cmp-version 2.x.

 The optional abstract-schema-name element must be specified
 for an entity bean with container-managed persistence and
 cmp-version 2.x.

 The optional primkey-field may be present in the descriptor
 if the entity's persistence-type is Container.

 The optional cmp-version element may be present in the
 descriptor if the entity's persistence-type is Container. If
 the persistence-type is Container and the cmp-version
 element is not specified, its value defaults to 2.x.

 The optional home and remote elements must be specified if
 the entity bean cmp-version is 1.x.

 The optional home and remote elements must be specified if
 the entity bean has a remote home and remote interface.

 The optional local-home and local elements must be specified
 if the entity bean has a local home and local interface.

 Either both the local-home and the local elements or both
 the home and the remote elements must be specified.

 The optional query elements must be present if the
 persistence-type is Container and the cmp-version is 2.x and
 query methods other than findByPrimaryKey have been defined
 for the entity bean.

 The other elements that are optional are "optional" in the
 sense that they are omitted if the lists represented by them
 are empty.

 At least one cmp-field element must be present in the
 descriptor if the entity's persistence-type is Container and
 the cmp-version is 1.x, and none must not be present if the
 entity's persistence-type is Bean.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="javaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="javaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="javaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="javaee:localType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"/>
 <xsd:element name="persistence-type"
 type="javaee:persistence-typeType"/>
 5/2/06 516

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:element name="prim-key-class"
 type="javaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>

 The prim-key-class element contains the
 fully-qualified name of an
 entity bean's primary key class.

 If the definition of the primary key class is
 deferred to deployment time, the prim-key-class
 element should specify java.lang.Object.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="reentrant"
 type="javaee:true-falseType">
 <xsd:annotation>
 <xsd:documentation>

 The reentrant element specifies whether an entity
 bean is reentrant or not.

 The reentrant element must be one of the two
 following: true or false

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-version"
 type="javaee:cmp-versionType"
 minOccurs="0"/>
 <xsd:element name="abstract-schema-name"
 type="javaee:java-identifierType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The abstract-schema-name element specifies the name
 of the abstract schema type of an entity bean with
 cmp-version 2.x. It is used in EJB QL queries.

 For example, the abstract-schema-name for an entity
 bean whose local interface is
 com.acme.commerce.Order might be Order.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="cmp-field"
 type="javaee:cmp-fieldType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="primkey-field"
 type="javaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The primkey-field element is used to specify the
 name of the primary key field for an entity with
 container-managed persistence.

 The primkey-field must be one of the fields declared
 in the cmp-field element, and the type of the field
517 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 must be the same as the primary key type.

 The primkey-field element is not used if the primary
 key maps to multiple container-managed fields
 (i.e. the key is a compound key). In this case, the
 fields of the primary key class must be public, and
 their names must correspond to the field names of
 the entity bean class that comprise the key.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-role-ref"
 type="javaee:security-role-refType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0"/>
 <xsd:element name="query"
 type="javaee:queryType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="exclude-listType">
 <xsd:annotation>
 <xsd:documentation>

 The exclude-listType specifies one or more methods which
 the Assembler marks to be uncallable.

 If the method permission relation contains methods that are
 in the exclude list, the Deployer should consider those
 methods to be uncallable.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="init-methodType">
 <xsd:sequence>
 <xsd:element name="create-method"
 type="javaee:named-methodType"/>
 <xsd:element name="bean-method"
 type="javaee:named-methodType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>
 5/2/06 518

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
<!-- ** -->

 <xsd:complexType name="interceptor-bindingType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptor-bindingType element describes the binding of
 interceptor classes to beans within the ejb-jar.
 It consists of :

 - An optional description.
 - The name of an ejb within the ejb-jar or the wildcard value "*",
 which is used to define interceptors that are bound to all
 beans in the ejb-jar.
 - A list of interceptor classes that are bound to the contents of
 the ejb-name element or a specification of the total ordering
 over the interceptors defined for the given level and above.

- An optional exclude-default-interceptors element. If set to true,
 specifies that default interceptors are not to be applied to
 a bean-class and/or business method.
 - An optional exclude-class-interceptors element. If set to true,
 specifies that class interceptors are not to be applied to
 a business method.

- An optional set of method elements for describing the name/params
 of a method-level interceptor.

 Interceptors bound to all classes using the wildcard syntax
 "*" are default interceptors for the components in the ejb-jar.
 In addition, interceptors may be bound at the level of the bean
 class (class-level interceptors) or business methods (method-level
 interceptors).

The binding of interceptors to classes is additive. If interceptors
 are bound at the class-level and/or default-level as well as the
 method-level, both class-level and/or default-level as well as
 method-level will apply.

 There are four possible styles of the interceptor element syntax :

 1.
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 Specifying the ejb-name as the wildcard value "*" designates
 default interceptors (interceptors that apply to all session and
 message-driven beans contained in the ejb-jar).

 2.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 </interceptor-binding>

 This style is used to refer to interceptors associated with the
 specified enterprise bean(class-level interceptors).

 3.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 </method>
 </interceptor-binding>
519 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 This style is used to associate a method-level interceptor with
 the specified enterprise bean. If there are multiple methods
 with the same overloaded name, the element of this style refers
 to all the methods with the overloaded name. Method-level
 interceptors can only be associated with business methods of the
 bean class. Note that the wildcard value "*" cannot be used
 to specify method-level interceptors.

 4.
 <interceptor-binding>
 <ejb-name>EJBNAME</ejb-name>
 <interceptor-class>INTERCEPTOR</interceptor-class>
 <method>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-N</method-param>
 </method-params>
 </method>
 </interceptor-binding>

 This style is used to associate a method-level interceptor with
 the specified method of the specified enterprise bean. This
 style is used to refer to a single method within a set of methods
 with an overloaded name. The values PARAM-1 through PARAM-N
 are the fully-qualified Java types of the method's input parameters
 (if the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of square
 brackets (e.g. int[][]).

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:string"/>
 <xsd:choice>
 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-order"
 type="javaee:interceptor-orderType"
 minOccurs="1"/>
 </xsd:choice>
 <xsd:element name="exclude-default-interceptors"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="exclude-class-interceptors"
 type="javaee:true-falseType"
 minOccurs="0"/>
 <xsd:element name="method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->
 5/2/06 520

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:complexType name="interceptor-orderType">
 <xsd:annotation>
 <xsd:documentation>
 The interceptor-orderType element describes a total ordering
 of interceptor classes.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"
 minOccurs="1"
 maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="interceptorType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorType element declares information about a single
 interceptor class. It consists of :

 - An optional description.
 - The fully-qualified name of the interceptor class.
 - An optional list of around invoke methods declared on the
 interceptor class and/or its super-classes.
 - An optional list environment dependencies for the interceptor
 class and/or its super-classes.
 - An optional list of post-activate methods declared on the
 interceptor class and/or its super-classes.
 - An optional list of pre-passivate methods declared on the
 interceptor class and/or its super-classes.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor-class"
 type="javaee:fully-qualified-classType"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>
521 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
<!-- ** -->

 <xsd:complexType name="interceptorsType">
 <xsd:annotation>
 <xsd:documentation>

 The interceptorsType element declares one or more interceptor
 classes used by components within this ejb-jar. The declaration
 consists of :

 - An optional description.
 - One or more interceptor elements.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="interceptor"
 type="javaee:interceptorType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-driven-beanType">
 <xsd:annotation>
 <xsd:documentation>

 The message-driven element declares a message-driven
 bean. The declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name.
 - a name assigned to the enterprise bean in
 the deployment descriptor
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical
 jndi-name of destination from which this message-driven bean
 should consume. This element is not required to be supported

by all implementations. Any use of this element is non-portable.
 - the message-driven bean's implementation class
 - an optional declaration of the bean's messaging
 type
 - an optional declaration of the bean's timeout method.
 - the optional message-driven bean's transaction management
 type. If it is not defined, it is defaulted to Container.
 - an optional declaration of the bean's
 message-destination-type
 - an optional declaration of the bean's
 message-destination-link
 - an optional declaration of the message-driven bean's
 activation configuration properties
 - an optional list of the message-driven bean class and/or
 superclass around-invoke methods.
 - an optional declaration of the bean's environment
 entries
 - an optional declaration of the bean's EJB references
 - an optional declaration of the bean's local EJB
 references
 5/2/06 522

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 - an optional declaration of the bean's web service
 references
 - an optional declaration of the security
 identity to be used for the execution of the bean's
 methods
 - an optional declaration of the bean's
 resource manager connection factory
 references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="messaging-type"
 type="javaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The messaging-type element specifies the message
 listener interface of the message-driven bean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="timeout-method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="transaction-type"
 type="javaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="message-destination-type"
 type="javaee:message-destination-typeType"
 minOccurs="0"/>
 <xsd:element name="message-destination-link"
 type="javaee:message-destination-linkType"
 minOccurs="0"/>
 <xsd:element name="activation-config"
 type="javaee:activation-configType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
523 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-intfType">

 <xsd:annotation>
 <xsd:documentation>

 The method-intf element allows a method element to
 differentiate between the methods with the same name and
 signature that are multiply defined across the home and
 component interfaces (e.g, in both an enterprise bean's
 remote and local interfaces or in both an enterprise bean's
 home and remote interfaces, etc.); the component and web
 service endpoint interfaces, and so on. The Local applies to
 both local component interface and local business interface.
 Similarly, Remote applies to both remote component interface
 and the remote business interface.

 The method-intf element must be one of the following:

 Home
 Remote
 LocalHome
 Local
 ServiceEndpoint

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Home"/>
 <xsd:enumeration value="Remote"/>
 <xsd:enumeration value="LocalHome"/>
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="ServiceEndpoint"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-nameType">
 <xsd:annotation>
 <xsd:documentation>

 The method-nameType contains a name of an enterprise
 bean method or the asterisk (*) character. The asterisk is
 used when the element denotes all the methods of an
 enterprise bean's client view interfaces.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string"/>
 </xsd:simpleContent>
 </xsd:complexType>
 5/2/06 524

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
<!-- ** -->

 <xsd:complexType name="method-paramsType">
 <xsd:annotation>
 <xsd:documentation>

 The method-paramsType defines a list of the
 fully-qualified Java type names of the method parameters.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="method-param"
 type="javaee:java-typeType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The method-param element contains a primitive
 or a fully-qualified Java type name of a method
 parameter.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="method-permissionType">
 <xsd:annotation>
 <xsd:documentation>

 The method-permissionType specifies that one or more
 security roles are allowed to invoke one or more enterprise
 bean methods. The method-permissionType consists of an
 optional description, a list of security role names or an
 indicator to state that the method is unchecked for
 authorization, and a list of method elements.

 The security roles used in the method-permissionType
 must be defined in the security-role elements of the
 deployment descriptor, and the methods must be methods
 defined in the enterprise bean's business, home, component
 and/or web service endpoint interfaces.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="role-name"
 type="javaee:role-nameType"
 maxOccurs="unbounded"/>
 <xsd:element name="unchecked"
 type="javaee:emptyType">
 <xsd:annotation>
525 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <xsd:documentation>

 The unchecked element specifies that a method is
 not checked for authorization by the container
 prior to invocation of the method.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="method"
 type="javaee:methodType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="methodType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The methodType is used to denote a method of an enterprise
 bean's business, home, component, and/or web service endpoint
 interface, or, in the case of a message-driven bean, the
 bean's message listener method, or a set of such
 methods. The ejb-name element must be the name of one of the
 enterprise beans declared in the deployment descriptor; the
 optional method-intf element allows to distinguish between a
 method with the same signature that is multiply defined
 across the business, home, component, and/or web service
 endpoint nterfaces; the method-name element specifies the
 method name; and the optional method-params elements identify
 a single method among multiple methods with an overloaded
 method name.

 There are three possible styles of using methodType element
 within a method element:

 1.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>

 This style is used to refer to all the methods of the
 specified enterprise bean's business, home, component,
 and/or web service endpoint interfaces.

 2.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 </method>

 This style is used to refer to the specified method of
 the specified enterprise bean. If there are multiple
 methods with the same overloaded name, the element of
 this style refers to all the methods with the overloaded
 name.

 3.
 <method>
 <ejb-name>EJBNAME</ejb-name>
 5/2/06 526

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
 </method-params>
 </method>

 This style is used to refer to a single method within a
 set of methods with an overloaded name. PARAM-1 through
 PARAM-n are the fully-qualified Java types of the
 method's input parameters (if the method has no input
 arguments, the method-params element contains no
 method-param elements). Arrays are specified by the
 array element's type, followed by one or more pair of
 square brackets (e.g. int[][]). If there are multiple
 methods with the same overloaded name, this style refers
 to all of the overloaded methods.

 Examples:

 Style 1: The following method element refers to all the
 methods of the EmployeeService bean's business, home,
 component, and/or web service endpoint interfaces:

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>

 Style 2: The following method element refers to all the
 create methods of the EmployeeService bean's home
 interface(s).

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 </method>

 Style 3: The following method element refers to the
 create(String firstName, String LastName) method of the
 EmployeeService bean's home interface(s).

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The following example illustrates a Style 3 element with
 more complex parameter types. The method
 foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
 mypackage.MyClass[][] myclaar) would be specified as:

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>foobar</method-name>
 <method-params>
 <method-param>char</method-param>
 <method-param>int</method-param>
 <method-param>int[]</method-param>
 <method-param>mypackage.MyClass</method-param>
527 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 <method-param>mypackage.MyClass[][]</method-param>
 </method-params>
 </method>

 The optional method-intf element can be used when it becomes
 necessary to differentiate between a method that is multiply
 defined across the enterprise bean's business, home, component,
 and/or web service endpoint interfaces with the same name and
 signature. However, if the same method is a method of both the
 local business interface, and the local component interface,
 the same attribute applies to the method for both interfaces.
 Likewise, if the same method is a method of both the remote
 business interface and the remote component interface, the same
 attribute applies to the method for both interfaces.

 For example, the method element

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 can be used to differentiate the create(String, String)
 method defined in the remote interface from the
 create(String, String) method defined in the remote home
 interface, which would be defined as

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 and the create method that is defined in the local home
 interface which would be defined as

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>LocalHome</method-intf>
 <method-name>create</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>

 The method-intf element can be used with all three Styles
 of the method element usage. For example, the following
 method element example could be used to refer to all the
 methods of the EmployeeService bean's remote home interface
 and the remote business interface.

 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>*</method-name>
 </method>
 5/2/06 528

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 <xsd:element name="method-intf"
 type="javaee:method-intfType"
 minOccurs="0">
 </xsd:element>
 <xsd:element name="method-name"
 type="javaee:method-nameType"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="multiplicityType">
 <xsd:annotation>
 <xsd:documentation>

 The multiplicityType describes the multiplicity of the
 role that participates in a relation.

 The value must be one of the two following:

 One
 Many

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="One"/>
 <xsd:enumeration value="Many"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="named-methodType">
 <xsd:sequence>
 <xsd:element name="method-name"
 type="javaee:string"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="persistence-typeType">
 <xsd:annotation>
 <xsd:documentation>
529 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 The persistence-typeType specifies an entity bean's persistence
 management type.

 The persistence-type element must be one of the two following:

 Bean
 Container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="query-methodType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The query-method specifies the method for a finder or select
 query.

 The method-name element specifies the name of a finder or select
 method in the entity bean's implementation class.

 Each method-param must be defined for a query-method using the
 method-params element.

 It is used by the query-method element.

 Example:

 <query>
 <description>Method finds large orders</description>
 <query-method>
 <method-name>findLargeOrders</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(o) FROM Order o
 WHERE o.amount > 1000
 </ejb-ql>
 </query>

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="method-name"
 type="javaee:method-nameType"/>
 <xsd:element name="method-params"
 type="javaee:method-paramsType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->
 5/2/06 530

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:complexType name="queryType">
 <xsd:annotation>
 <xsd:documentation>

 The queryType defines a finder or select
 query. It contains
 - an optional description of the query
 - the specification of the finder or select
 method it is used by
 - an optional specification of the result type
 mapping, if the query is for a select method
 and entity objects are returned.
 - the EJB QL query string that defines the query.

 Queries that are expressible in EJB QL must use the ejb-ql
 element to specify the query. If a query is not expressible
 in EJB QL, the description element should be used to
 describe the semantics of the query and the ejb-ql element
 should be empty.

 The result-type-mapping is an optional element. It can only
 be present if the query-method specifies a select method
 that returns entity objects. The default value for the
 result-type-mapping element is "Local".

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType" minOccurs="0"/>
 <xsd:element name="query-method"
 type="javaee:query-methodType"/>
 <xsd:element name="result-type-mapping"
 type="javaee:result-type-mappingType"
 minOccurs="0"/>
 <xsd:element name="ejb-ql"
 type="javaee:xsdStringType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationship-role-sourceType">
 <xsd:annotation>
 <xsd:documentation>

 The relationship-role-sourceType designates the source of a
 role that participates in a relationship. A
 relationship-role-sourceType is used by
 relationship-role-source elements to uniquely identify an
 entity bean.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
531 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="relationshipsType">
 <xsd:annotation>
 <xsd:documentation>

 The relationshipsType describes the relationships in
 which entity beans with container-managed persistence
 participate. The relationshipsType contains an optional
 description; and a list of ejb-relation elements, which
 specify the container managed relationships.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="ejb-relation"
 type="javaee:ejb-relationType"
 maxOccurs="unbounded">

 <xsd:unique name="role-name-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-relationship-role-name contains the name of a
 relationship role. The name must be unique within
 a relationship, but can be reused in different
 relationships.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector
 xpath=".//javaee:ejb-relationship-role-name"/>
 <xsd:field
 xpath="."/>
 </xsd:unique>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remove-methodType">
 <xsd:sequence>
 <xsd:element name="bean-method"
 type="javaee:named-methodType"/>
 <xsd:element name="retain-if-exception"
 type="javaee:true-falseType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="result-type-mappingType">
 <xsd:annotation>
 <xsd:documentation>
 5/2/06 532

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 The result-type-mappingType is used in the query element to
 specify whether an abstract schema type returned by a query
 for a select method is to be mapped to an EJBLocalObject or
 EJBObject type.

 The value must be one of the following:

 Local
 Remote

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Local"/>
 <xsd:enumeration value="Remote"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-identityType">
 <xsd:annotation>
 <xsd:documentation>

 The security-identityType specifies whether the caller's
 security identity is to be used for the execution of the
 methods of the enterprise bean or whether a specific run-as
 identity is to be used. It contains an optional description
 and a specification of the security identity to be used.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"
 type="javaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="use-caller-identity"
 type="javaee:emptyType">
 <xsd:annotation>
 <xsd:documentation>

 The use-caller-identity element specifies that
 the caller's security identity be used as the
 security identity for the execution of the
 enterprise bean's methods.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="run-as"
 type="javaee:run-asType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-beanType">
 <xsd:annotation>
 <xsd:documentation>
533 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 The session-beanType declares an session bean. The
 declaration consists of:

 - an optional description
 - an optional display name
 - an optional icon element that contains a small and a large
 icon file name
 - a name assigned to the enterprise bean
 in the deployment description
 - an optional mapped-name element that can be used to provide
 vendor-specific deployment information such as the physical

jndi-name of the session bean's remote home/business interface.
 This element is not required to be supported by all
 implementations. Any use of this element is non-portable.
 - the names of all the remote or local business interfaces,
 if any
 - the names of the session bean's remote home and
 remote interfaces, if any
 - the names of the session bean's local home and
 local interfaces, if any
 - the name of the session bean's web service endpoint
 interface, if any
 - the session bean's implementation class
 - the session bean's state management type
 - an optional declaration of the session bean's timeout method.
 - the optional session bean's transaction management type.
 If it is not present, it is defaulted to Container.
 - an optional list of the session bean class and/or
 superclass around-invoke methods.
 - an optional declaration of the bean's
 environment entries
 - an optional declaration of the bean's EJB references
 - an optional declaration of the bean's local
 EJB references
 - an optional declaration of the bean's web
 service references
 - an optional declaration of the security role
 references
 - an optional declaration of the security identity
 to be used for the execution of the bean's methods
 - an optional declaration of the bean's resource
 manager connection factory references
 - an optional declaration of the bean's resource
 environment references.
 - an optional declaration of the bean's message
 destination references

 The elements that are optional are "optional" in the sense
 that they are omitted when if lists represented by them are
 empty.

 Either both the local-home and the local elements or both
 the home and the remote elements must be specified for the
 session bean.

 The service-endpoint element may only be specified if the
 bean is a stateless session bean.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:group ref="javaee:descriptionGroup"/>
 <xsd:element name="ejb-name"
 type="javaee:ejb-nameType"/>
 5/2/06 534

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 <xsd:element name="mapped-name"
 type="javaee:xsdStringType"
 minOccurs="0"/>
 <xsd:element name="home"
 type="javaee:homeType"
 minOccurs="0"/>
 <xsd:element name="remote"
 type="javaee:remoteType"
 minOccurs="0"/>
 <xsd:element name="local-home"
 type="javaee:local-homeType"
 minOccurs="0"/>
 <xsd:element name="local"
 type="javaee:localType"
 minOccurs="0"/>
 <xsd:element name="business-local"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="business-remote"
 type="javaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="service-endpoint"
 type="javaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The service-endpoint element contains the
 fully-qualified name of the enterprise bean's web
 service endpoint interface. The service-endpoint
 element may only be specified for a stateless
 session bean. The specified interface must be a
 valid JAX-RPC service endpoint interface.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ejb-class"
 type="javaee:ejb-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The ejb-class element specifies the fully qualified name
 of the bean class for this ejb. It is required unless
 there is a component-defining annotation for the same
 ejb-name.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="session-type"
 type="javaee:session-typeType"
 minOccurs="0"/>
 <xsd:element name="timeout-method"
 type="javaee:named-methodType"
 minOccurs="0"/>
 <xsd:element name="init-method"
 type="javaee:init-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
535 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 The init-method element specifies the mappings for
 EJB 2.x style create methods for an EJB 3.0 bean.
 This element can only be specified for stateful
 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="remove-method"
 type="javaee:remove-methodType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The remove-method element specifies the mappings for
 EJB 2.x style remove methods for an EJB 3.0 bean.
 This element can only be specified for stateful
 session beans.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="transaction-type"
 type="javaee:transaction-typeType"
 minOccurs="0"/>
 <xsd:element name="around-invoke"
 type="javaee:around-invokeType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>
 <xsd:element name="post-activate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="pre-passivate"
 type="javaee:lifecycle-callbackType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-role-ref"
 type="javaee:security-role-refType"
 minOccurs="0"
 maxOccurs="unbounded">
 </xsd:element>
 <xsd:element name="security-identity"
 type="javaee:security-identityType"
 minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The session-typeType describes whether the session bean is a
 stateful session or stateless session. It is used by
 session-type elements.

 The value must be one of the two following:

 Stateful
 Stateless
 5/2/06 536

Deployment Descriptor XML Schema Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Stateful"/>
 <xsd:enumeration value="Stateless"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="trans-attributeType">
 <xsd:annotation>
 <xsd:documentation>

 The trans-attributeType specifies how the container must
 manage the transaction boundaries when delegating a method
 invocation to an enterprise bean's business method.

 The value must be one of the following:

 NotSupported
 Supports
 Required
 RequiresNew
 Mandatory
 Never

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="NotSupported"/>
 <xsd:enumeration value="Supports"/>
 <xsd:enumeration value="Required"/>
 <xsd:enumeration value="RequiresNew"/>
 <xsd:enumeration value="Mandatory"/>
 <xsd:enumeration value="Never"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="transaction-typeType">
 <xsd:annotation>
 <xsd:documentation>

 The transaction-typeType specifies an enterprise bean's
 transaction management type.

 The transaction-type must be one of the two following:

 Bean
 Container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="javaee:string">
 <xsd:enumeration value="Bean"/>
 <xsd:enumeration value="Container"/>
 </xsd:restriction>
 </xsd:simpleContent>
537 May 2, 2006 2:35 pm

Deployment Descriptor Enterprise JavaBeans 3.0, Final Release Deployment Descriptor XML Schema

Sun Microsystems, Inc.
 </xsd:complexType>

</xsd:schema>
 5/2/06 538

Overview Enterprise JavaBeans 3.0, Final Release Ejb-jar File

Sun Microsystems, Inc.

at is
sembled

r, and

lly do
bler

terprise
into a
Chapter 20 Ejb-jar File

The ejb-jar file is the standard format for the packaging of enterprise beans. The ejb-jar file form
used to package un-assembled enterprise beans (the Bean Provider’s output), and to package as
applications (the Application Assembler’s output).

20.1 Overview

The ejb-jar file format is the contract between the Bean Provider and the Application Assemble
between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typica
not contain application assembly instructions. The ejb-jar file produced by an Application Assem
(which can be the same person or organization as the Bean Provider) contains one or more en
beans, plus application assembly information describing how the enterprise beans are combined
single application deployment unit.
539 May 2, 2006 2:35 pm

Ejb-jar File Enterprise JavaBeans 3.0, Final Release Deployment Descriptor

Sun Microsystems, Inc.

. The

bean

d com-

-Path
fer-
cing

asses
d/or web
ses and

rs, results,

ces in
ided in
y of the
h class
at runt-
20.2 Deployment Descriptor

The ejb-jar file must contain the deployment descriptor (if any) in the format defined in Chapter 19
deployment descriptor must be stored with the nameMETA-INF/ejb-jar.xml in the ejb-jar file.

20.3 Ejb-jar File Requirements

The ejb-jar file must contain, either by inclusion or by reference, the class files of each enterprise
as follows:

• The enterprise bean class.

• The enterprise bean business interfaces, web service endpoint interfaces, and home an
ponent interfaces.

• Interceptor classes.

• The primary key class if the bean is an entity bean.

We say that a jar file contains a second file “by reference” if the second file is named in the Class
attribute in the Manifest file of the referencing jar file or is contained (either by inclusion or by re
ence) in another jar file that is named in the Class-Path attribute in the Manifest file of the referen
jar file.

The ejb-jar file must also contain, either by inclusion or by reference, the class files for all the cl
and interfaces that each enterprise bean class and the home interfaces, component interfaces, an
service endpoints depend on, except Java EE and J2SE classes. This includes their superclas
superinterfaces, dependent classes, and the classes and interfaces used as method paramete
and exceptions.

The Application Assembler must not package the stubs of the EJBHome and EJBObject interfa
the ejb-jar file. This includes the stubs for the enterprise beans whose implementations are prov
the ejb-jar file as well as the referenced enterprise beans. Generating the stubs is the responsibilit
container. The stubs are typically generated by the Container Provider’s deployment tools for eac
that extends the EJBHome or EJBObject interfaces, or they may be generated by the container
ime.
 5/2/06 540

The Client View and the ejb-client JAR File Enterprise JavaBeans 3.0, Final Release Ejb-jar File

Sun Microsystems, Inc.

ponent
, such as
sults, and
s mem-
ample

con-
hat are
r to

nt JAR

onal
-
ive

rence
. If the

also
te the
in the
f the
cation

s are
pack-

, such

.g. an
efer-
words,
20.4 The Client View and the ejb-client JAR File

The client view of an enterprise bean is comprised of the business interfaces or home and com
interfaces of the referenced enterprise bean and other classes that these interfaces depend on
their superclasses and superinterfaces, the classes and interfaces used as method parameters, re
exceptions. The serializable application value classes, including the classes which may be used a
bers of a collection in a remote method call to an enterprise bean, are part of the client view. An ex
of an application value class might be anAddress class used as a parameter in a method call.

The ejb-jar file producer can create an ejb-client JAR file for the ejb-jar file. The ejb-client JAR file
tains all the class files that a client program needs to use the client view of the enterprise beans t
contained in the ejb-jar file. If this option is used, it is the responsibility of the Application Assemble
include all the classes necessary to comprise the client view of an enterprise bean in the ejb-clie
file.

The ejb-client JAR file is specified in the deployment descriptor of the ejb-jar file using the opti
ejb-client-jar element. The value of theejb-client-jar element is the path name specify
ing the location of the ejb-client JAR file in the containing Java EE Enterprise Application Arch
(.ear) file. The path name is relative to the location of the referencing ejb-jar file.

The EJB specification does not specify whether an ejb-jar file should include by copy or by refe
the classes that are in an ejb-client JAR file, but they must be included either one way or the other
by-copy approach is used, the producer simply includes all the class files in the ejb-client JAR file
in the ejb-jar file. If the by-reference approach is used, the ejb-jar file producer does not duplica
content of the ejb-client JAR file in the ejb-jar file, but instead uses a Manifest Class-Path entry
ejb-jar file to specify that the ejb-jar file depends on the ejb-client JAR at runtime. The use o
Class-Path entries in the JAR files is explained in the Java EE Platform, Enterprise Edition specifi
[12].

20.5 Requirements for Clients

The Application Assembler must construct the application to insure that the client view classe
available to the client at runtime. The client of an enterprise bean may be another enterprise bean
aged in the same ejb-jar or different ejb-jar file, or the client may be another Java EE component
as a web component.

When clients packaged in jar files refer to enterprise beans, the jar file that contains the client, e
ejb-jar file, should contain, either by inclusion or by reference, all the client view classes of the r
enced beans. The client view classes may have been packaged in an ejb-client JAR file. In other
the jar file that contains the client should contain one of the following:

• a reference to the ejb-client JAR file

• a reference to the ejb-jar file that contains the client view classes

• a copy of the client view classes
541 May 2, 2006 2:35 pm

Ejb-jar File Enterprise JavaBeans 3.0, Final Release Example

Sun Microsystems, Inc.

imple-

er of
vailable

es in a
classes

e

e to
The client may also require the use of system value classes (e.g., the serializable value classes
menting thejavax.ejb.Handle , javax.ejb.HomeHandle , javax.ejb.EJBMetaData ,
java.util.Enumeration , java.util.Collection , and java.util.Iterator inter-
faces) , although these are not packaged with the application. It is the responsibility of the provid
the container hosting the referenced beans to provide the system value classes and make them a
for use when the client is deployed. See Section 15.5.5, “System Value Classes”.

20.6 Example

In this example, the Bean Provider has chosen to package the enterprise bean client view class
separate jar file and to reference that jar file from the other jar files that need those classes. Those
are needed both byejb2.jar , packaged in the same application asejb1.jar , and byejb3.jar ,
packaged in a different application. Those classes are also needed byejb1.jar itself because they
define the remote interface of the enterprise beans inejb1.jar , and the Bean Provider has chosen th
by reference approach to making these classes available.

The deployment descriptor forejb1.jar names the client view jar file in theejb-client-jar
element. Becauseejb2.jar requires these client view classes, it includes a Class-Path referenc
ejb1_client.jar .

The Class-Path mechanism must be used by components inapp2.ear to reference the client view jar
file that corresponds to the enterprise beans packaged inejb1.jar of app1.ear . Those enterprise
beans are referenced by enterprise beans inejb3.jar . Note that the client view jar file must be
included directly in theapp2.ear file.

app1.ear:
META-INF/application.xml
ejb1.jar Class-Path: ejb1_client.jar

deployment descriptor contains:
<ejb-client-jar>ejb1_client.jar</ejb-client-jar>

ejb1_client.jar
ejb2.jar Class-Path: ejb1_client.jar

app2.ear:
META-INF/application.xml
ejb1_client.jar
ejb3.jar Class-Path: ejb1_client.jar
 5/2/06 542

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Runtime Environment

Sun Microsystems, Inc.

tainer
ortable

nction-
and to

ava 2
. The
Chapter 21 Runtime Environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB 3.0 con
must make available to the enterprise bean instances at runtime. These APIs can be used by p
enterprise beans because the APIs are guaranteed to be available in all EJB 3.0 containers.

The chapter also defines the restrictions that the EJB 3.0 Container Provider can impose on the fu
ality that it provides to the enterprise beans. These restrictions are necessary to enforce security
allow the container to properly manage the runtime environment.

21.1 Bean Provider’s Responsibilities

This section describes the view and responsibilities of the Bean Provider.

21.1.1 APIs Provided by Container
The EJB Provider can rely on the EJB 3.0 Container Provider to provide all components with the J
Platform Standard Edition, v5.0 (J2SE) APIs, as required by the Java EE 5.0 specification [12]
Java SE platform includes the following enterprise APIs:

• JDBC
543 May 2, 2006 2:35 pm

Runtime Environment Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

es are
• RMI-IIOP

• JNDI

• JAXP

• Java IDL

• JAAS

The Java EE platform also requires a number of optional packages. The following optional packag
required to be provided in EJB containers:

• EJB 3.0, including the Java Persistence API

• JTA 1.1

• JMS 1.1

• JavaMail 1.4 (for sending mail only)

• JAF 1.1[99]

• JAXR 1.0

• SAAJ 1.3

• JAX-RPC 1.1

• JAX-WS 2.0

• Connector 1.5

• Web Services 1.2

• JAXB 2.0

• Java EE Management 1.1

• JACC 1.1

• Web Services Metadata 2.0

• Common Annotations 1.0

• StAX 1.0

[99] See [12] for restrictions.
 5/2/06 544

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Runtime Environment

Sun Microsystems, Inc.

at the
ions
ainer’s
vide.

s is
ss be

rs may
across

ion of

buted

to a

play

to-

ponents

ket, or

es not
with

clared
ity rules
access

es in a
ty.
21.1.2 Programming Restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure th
enterprise bean isportableand can be deployed in any compliant EJB 3.0 container. The restrict
apply to the implementation of the business methods. Section 21.2, which describes the cont
view of these restrictions, defines the programming environment that all EJB containers must pro

• An enterprise bean must not use read/write static fields. Using read-only static field
allowed. Therefore, it is recommended that all static fields in the enterprise bean cla
declared asfinal .

This rule is required to ensure consistent runtime semantics because while some EJB containe
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances
multiple JVMs.

• An enterprise bean must not use thread synchronization primitives to synchronize execut
multiple instances.

This is for the same reason as above. Synchronization would not work if the EJB container distri
enterprise bean’s instances across multiple JVMs.

• An enterprise bean must not use the AWT functionality to attempt to output information
display, or to input information from a keyboard.

Most servers do not allow direct interaction between an application program and a keyboard/dis
attached to the server system.

• An enterprise bean must not use thejava.io package to attempt to access files and direc
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business com
should use a resource manager API, such as JDBC, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a soc
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it do
allow it to be a network server. Allowing the instance to become a network server would conflict
the basic function of the enterprise bean— to serve the EJB clients.

• The enterprise bean must not attempt to query a class to obtain information about the de
members that are not otherwise accessible to the enterprise bean because of the secur
of the Java language. The enterprise bean must not attempt to use the Reflection API to
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the class
manner that is normally disallowed by the Java programming language could compromise securi
545 May 2, 2006 2:35 pm

Runtime Environment Enterprise JavaBeans 3.0, Final Release Bean Provider’s Responsibilities

Sun Microsystems, Inc.

loader;
top the

ctions
envi-

cket, or

o use
ge the

attempt
enter-

reads

.

cular

le.

ould

ual rules

ction

ction

bjects
• The enterprise bean must not attempt to create a class loader; obtain the current class
set the context class loader; set security manager; create a new security manager; s
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB container. Allowing the enterprise bean to use these fun
could compromise security and decrease the container’s ability to properly manage the runtime
ronment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, So
the stream handler factory used by URL.

These networking functions are reserved for the EJB container. Allowing the enterprise bean t
these functions could compromise security and decrease the container’s ability to properly mana
runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not
to start, stop, suspend, or resume a thread, or to change a thread’s priority or name. The
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB container. Allowing the enterprise bean to manage th
would decrease the container’s ability to properly manage the runtime environment.

• The enterprise bean must not attempt to directly read or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly could compromise security

• The enterprise bean must not attempt to obtain the security policy information for a parti
code source.

Allowing the enterprise bean to access the security policy information would create a security ho

• The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB container. Allowing the enterprise bean to load native code w
create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the us
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to access or modify the security configuration o
(Policy, Security, Provider, Signer, and Identity).
 5/2/06 546

Container Provider’s Responsibility Enterprise JavaBeans 3.0, Final Release Runtime Environment

Sun Microsystems, Inc.

ctions

s of the

e

ntain-
defined
de to

nter-
ments; a
tion.

t runt-
These functions are reserved for the EJB container. Allowing the enterprise bean to use these fun
could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution feature
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to passthis as an argument or method result. Th
enterprise bean must pass the result ofSessionContext.getBusinessObject , Ses-
sionContext.getEJBObject , SessionContext.getEJBLocalObject , Enti-
tyContext.getEJBObject , orEntityContext.getEJBLocalObject instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB 3.0 co
ers, the Bean Provider should test the enterprise bean using a container with the security settings
in Table 24. The tables define the minimal functionality that a compliant EJB container must provi
the enterprise bean instances at runtime.

21.2 Container Provider’s Responsibility

This section defines the container’s responsibilities for providing the runtime environment to the e
prise bean instances. The requirements described here are considered to be the minimal require
container may choose to provide additional functionality that is not required by the EJB specifica

An EJB 3.0 container must make the following APIs available to the enterprise bean instances a
ime:

• Java 2 Platform, Standard Edition v5 (J2SE) APIs, which include the following APIs:

• JDBC

• RMI-IIOP

• JNDI

• JAXP

• Java IDL

• EJB 3.0 APIs, including the Java Persistence API

• JTA 1.1, theUserTransaction interface only

• JMS 1.1

• JavaMail 1.4, sending mail only

• JAF 1.1[100]

[100]See [12] for restrictions.
547 May 2, 2006 2:35 pm

Runtime Environment Enterprise JavaBeans 3.0, Final Release Container Provider’s Responsibility

Sun Microsystems, Inc.

con-

rprise
e con-
ity and
rfering
• JAXP 1.2

• JAXR 1.0

• JAX-RPC 1.1

• JAX-WS 2.0

• JAXB 2.0

• SAAJ 1.3

• Connector 1.5

• Web Services 1.2

• Web Services Metadata 2.0

• Common Annotations 1.0

• StAX 1.0

The following subsections describes the requirements in more detail.

21.2.1 Java 2 APIs Requirements

The container must provide the full set of Java 2 Platform, Standard Edition, v5 (J2SE) APIs. The
tainer is not allowed to subset the Java 2 platform APIs.

The EJB container is allowed to make certain Java 2 platform functionality unavailable to the ente
bean instances by using the Java 2 platform security policy mechanism. The primary reason for th
tainer to make certain functions unavailable to enterprise bean instances is to protect the secur
integrity of the EJB container environment, and to prevent the enterprise bean instances from inte
with the container’s functions.
 5/2/06 548

Container Provider’s Responsibility Enterprise JavaBeans 3.0, Final Release Runtime Environment

Sun Microsystems, Inc.

e able
ust be
n.

bean
rprise

EJB 3.0

f the
The following table defines the Java 2 platform security permissions that the EJB container must b
to grant to the enterprise bean instances at runtime. The term “grant” means that the container m
able to grant the permission, the term “deny” means that the container should deny the permissio

Some containers may allow the Deployer to grant more, or fewer, permissions to the enterprise
instances than specified in Table 24. Support for this is not required by the EJB specification. Ente
beans that rely on more or fewer permissions will not be portable across all EJB containers.

21.2.2 EJB 3.0 Requirements

The container must implement the EJB 3.0 interfaces as defined in this specification.

The container must implement the semantics of the metadata annotations that are supported by
as defined by this specification.

The container must implement (or provide through a third-party implementation) thejavax.per-
sistence interfaces and metadata annotations that are defined in the document“Java Persistence
API” [2] of this specification.

Table 24 Java 2 Platform Security Policy for a Standard EJB Container

Permission name EJB Container policy

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant “read”, “*”
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant “queuePrintJob”,
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant “connect”, “*” [Note A],
deny all other

Notes:

[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality o
Java IDL and RMI-IIOP packages that are part of the Java 2 platform.
549 May 2, 2006 2:35 pm

Runtime Environment Enterprise JavaBeans 3.0, Final Release Container Provider’s Responsibility

Sun Microsystems, Inc.

bean
nstance

esented
ust be

ation
e

rfaces,

rprise
hese
t for
21.2.3 JNDI Requirements

At the minimum, the EJB container must provide a JNDI API name space to the enterprise
instances. The EJB container must make the name space available to an instance when the i
invokes thejavax.naming.InitialContext default (no-arg) constructor.

The EJB container must make available at least the following objects in the name space:

• The business interfaces of other enterprise beans.

• The resource factories used by the enterprise beans.

• The entity managers and entity manager factories used by the enterprise beans.

• The web service interfaces used by the enterprise beans.

• The home interfaces of other enterprise beans.

• ORB objects

• UserTransaction objects

• EJBContext objects

• TimerService objects

The EJB specification does not require that all the enterprise beans deployed in a container be pr
with the same JNDI API name space. However, all the instances of the same enterprise bean m
presented with the same JNDI API name space.

21.2.4 JTA 1.1 Requirements

The EJB container must include the JTA 1.1 extension, and it must provide thejavax.transac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarc
through the javax.ejb.EJBContext interface, and also in JNDI under the nam
java:comp/UserTransaction , in the cases required by the EJB specification.

The other JTA interfaces are low-level transaction manager and resource manager integration inte
and are not intended for direct use by enterprise beans.

21.2.5 JDBC™ 3.0 Extension Requirements

The EJB container must include the JDBC 3.0 extension and provide its functionality to the ente
bean instances, with the exception of the low-level XA and connection pooling interfaces. T
low-level interfaces are intended for integration of a JDBC driver with an application server, no
direct use by enterprise beans.
 5/2/06 550

Container Provider’s Responsibility Enterprise JavaBeans 3.0, Final Release Runtime Environment

Sun Microsystems, Inc.

rprise
JMS

clude:

these

e con-

the

ms to

r-EJB
ing so
rprise

r pass-

pically
across

ing lan-
21.2.6 JMS 1.1 Requirements

The EJB container must include the JMS 1.1 extension and provide its functionality to the ente
bean instances, with the exception of the low-level interfaces that are intended for integration of a
provider with an application server, not for direct use by enterprise beans. These interfaces in
javax.jms.ServerSession , javax.jms.ServerSessionPool , javax.jms.Connec-
tionConsumer , and all thejavax.jms XA interfaces.

In addition, the following methods are for use by the container only. Enterprise beans must not call
methods: javax.jms.Session.setMessageListener , javax.jms.Session.getMes-
sageListener , javax.jms.Session.run , javax.jms.QueueConnection.create-
ConnectionConsumer ,
javax.jms.TopicConnection.createConnectionConsumer , javax.jms.TopicCo-
nnection.createDurableConnectionConsumer , javax.jms.Connection.create-
ConnectionConsumer ,
javax.jms.Connection.createDurableConnectionConsumer .

The following methods must not be called by enterprise beans because they may interfere with th
nection management by the container:javax.jms.Connection.setExceptionListener,
javax.jms.Connection.stop , javax.jms.Connection.setClientID .

Enterprise beans must not call thejavax.jms.MessageConsumer.setMessageListener or
javax.jms.MessageConsumer.getMessageListener method.

This specification recommends, but does not require, that the container throw
javax.jms.JMSException if enterprise beans call any of the methods listed in this section.

21.2.7 Ar gument Passing Semantics

An enterprise bean’s remote business interfaces and/or remote home and remote interfaces areremote
interfacesfor Java RMI. The container must ensure the semantics for passing arguments confor
Java RMI-IIOP. Non-remote objects must be passed by value.

Specifically, the EJB container is not allowed to pass non-remote objects by reference on inte
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics. Any local optimizations of remote interface calls must ensure the semantics fo
ing arguments conforms to Java RMI-IIOP.

An enterprise bean’s local business interfaces and/or local home and local interfaces arelocal Java
interfaces. The caller and callee enterprise beans that make use of these local interfaces are ty
collocated in the same JVM. The EJB container must ensure the semantics for passing arguments
these interfaces conforms to the standard argument passing semantics of the Java programm
guage.
551 May 2, 2006 2:35 pm

Runtime Environment Enterprise JavaBeans 3.0, Final Release Container Provider’s Responsibility

Sun Microsystems, Inc.

ce API
21.2.8 Other Requirements
The assertions contained in the Javadoc specification of the EJB interfaces and Java Persisten
interfaces are required functionality and must be implemented by compliant containers.
 5/2/06 552

Bean Provider’s Responsibilities Enterprise JavaBeans 3.0, Final Release Responsibilities of EJB Roles

Sun Microsystems, Inc.

essary
nt EJB

docu-

ormat
Chapter 22 Responsibilities of EJB Roles

This chapter provides the summary of the responsibilities of each EJB Role.

22.1 Bean Provider’s Responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is nec
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all complia
containers.

22.1.1 API Requirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this
ment.

22.1.2 Packaging Requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file in the f
described in Chapter 20.
553 May 2, 2006 2:35 pm

Responsibilities of EJB Roles Enterprise JavaBeans 3.0, Final Release Application Assembler’s Responsibilities

Sun Microsystems, Inc.

yer to
ls are

art of

docu-

r files

tail.

secu-
ing of

tor in
The deployment descriptor, if present, must conform to the requirements of Chapter 19.

22.2 Application Assembler’s Responsibilities

The requirements for the Application Assembler are in defined in Chapter 19 and Chapter 20.

22.3 EJB Container Provider’s Responsibilities

The EJB Container Provider is responsible for providing the deployment tools used by the Deplo
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment too
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts and its p
the contracts described in the document “Java Persistence API” of this specification [2], and for provid-
ing all the runtime services described in the individual chapters of this document.

22.4 Persistence Provider’s Responsibilities

The Persistence Provider is responsible for implementing its part of the contracts described in the
ment “Java Persistence API” of this specification [2].

22.5 Deployer’s Responsibilities

The Deployer uses the deployment tools provided by the EJB Container Provider to deploy ejb-ja
produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more de

22.6 System Administrator’s Responsibilities

The System Administrator is responsible for configuring the EJB container and server, setting up
rity management, integrating resource managers with the EJB container, and runtime monitor
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administra
more detail.
 5/2/06 554

Client Programmer’s Responsibilities Enterprise JavaBeans 3.0, Final Release Responsibilities of EJB Roles

Sun Microsystems, Inc.

s inter-
rfaces.
22.7 Client Programmer’s Responsibilities

The EJB client programmer writes applications that access enterprise beans via their busines
faces, via their web service client view, or via messages, or view their home and component inte
555 May 2, 2006 2:35 pm

Responsibilities of EJB Roles Enterprise JavaBeans 3.0, Final Release Client Programmer’s Responsibilities

Sun Microsystems, Inc.
 5/2/06 556

Client Programmer’s Responsibilities Enterprise JavaBeans 3.0, Final Release Related Documents

Sun Microsystems, Inc.
Chapter 23 Related Documents

[1] EnterpriseJavaBeans, version 3.0. EJB 3.0 Simplified API.http://java.sun.com/products/ejb.

[2] EnterpriseJavaBeans, version 3.0. Java Persistence API.http://java.sun.com/products/ejb.

[3] EnterpriseJavaBeans, version 2. (EJB 2.1).http://java.sun.com/products/ejb.

[4] JavaBeans.http://java.sun.com/beans.

[5] Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi.

[6] Java Remote Method Invocation (RMI).http://java.sun.com/products/rmi.

[7] Java Security.http://java.sun.com/security.

[8] Java Transaction API (JTA).http://java.sun.com/products/jta.

[9] Java Transaction Service (JTS).http://java.sun.com/products/jts.

[10] Java Language to IDL Mapping Specification.http://www.omg.org/cgi-bin/doc?ptc/00-01-06.

[11] CORBA Object Transaction Service v1.2.http://www.omg.org/cgi-bin/doc?ptc/2000-11-07.

[12] Java Platform, Enterprise Edition (Java EE), v5.http://jcp.org/en/jsr/detail?id=244.

[13] Java Message Service (JMS), v 1.1.http://java.sun.com/products/jms.

[14] Java API for XML Messaging (JAXM).

[15] Java 2 Enterprise Edition Connector Architecture, v1.5 .http://java.sun.com/j2ee/connector.
557 May 2, 2006 2:35 pm

Related Documents Enterprise JavaBeans 3.0, Final Release Client Programmer’s Responsibilities

Sun Microsystems, Inc.
[16] Enterprise JavaBeans to CORBA Mapping v1.1.http://java.sun.com/products/ejb/docs.html.

[17] CORBA 2.3.1 Specification.http://www.omg.org/cgi-bin/doc?formal/99-10-07.

[18] CORBA COSNaming Service.http://www.omg.org/cgi-bin/doc?formal/00-06-19.

[19] Interoperable Name Service FTF document.http://www.omg.org/cgi-bin/doc?ptc/00-08-07.

[20] RFC 2246: The TLS Protocol.ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[21] RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security.
ftp://ftp.isi.edu/in-notes/rfc2712.txt.

[22] The SSL Protocol Version 3.0.http://home.netscape.com/eng/ssl3/draft302.txt.

[23] Common Secure Interoperability Version 2 Final Available Specification.
http://www.omg.org/cgi-bin/doc?ptc/2001-06-17.

[24] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

[25] Java API for XML-based RPC (JAX-RPC) 2.0.http://jcp.org/en/jsr/detail?id=101.

[26] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[27] W3C: SOAP 1.1.http://www.w3.org/TR/SOAP/.

[28] The Java Virtual Machine Specification.

[29] JDBC 3.0 Specification.http://java.sun.com/products/jdbc.

[30] Web Services Metadata for the Java Platform.http://jcp.org/en/jsr/detail?id=181.

[31] Web Services for Java EE, Version 1.2.http://jcp.org/en/jsr/detail?id=109.

[32] Java API for XML Web Services (JAX-WS 2.0).http://jcp.org/en/jsr/detail?id=224.
 5/2/06 558

Public Draft Enterprise JavaBeans 3.0, Final Release Revision History

Sun Microsystems, Inc.

JB 3.0

to the
Appendix A Revision History

This appendix lists the significant changes that have been made during the development of the E
Specification.

A.1 Public Draft

Created document from the EJB 2.1 Final Release; removed illustrative material that was specific
EJB 2.1 and earlier specifications.

A.2 Proposed Final Draft

Merged callback listener functionality into interceptors.

Added support for multiple interceptor classes per bean.

Added support for method-level interceptors.

Added description of role of the Persistence Provider.

Removed support for annotations, dependency injection, interceptors for EJB 2.1 entity beans.
559 May 2, 2006 2:35 pm

Revision History Enterprise JavaBeans 3.0, Final Release Final Release

Sun Microsystems, Inc.

thods.

s inter-

Invo-

ce of a

isions

ization

tateful
to imple-

thods
tors.

and

ods to
Clarified that timers survive server shutdown.

Clarified passivation requirements if extended persistence context is used.

Updated Security chapter to reflect JSR-250 annotations.

Updated to reflect JAX-WS and Web Services for Java EE specifications.

Added getInvokedBusinessInterface method.

Clarified that web service message handlers are invoked before business method interceptor me

Clarified use of equals and hashCode for identity testing of references to session bean busines
faces.

Removed prohibitions against container vendors providing read-only entity beans.

Editorial sweep.

A.3 Final Release

Fixed bug in signature of InvocationContext.setParameters method.Clarified the semantics of the
cationContext methods setParameters and getParameters.

Added clarification that the same business interface cannot be both a remote and a local interfa
bean.

Updated statement regarding use of deployment descriptor to specify injection to conform to rev
in Java EE specification.

Clarified interaction between stateful session bean @Remove method and SessionSynchron
methods.

Clarified that the container invokes the PrePassivate callback methods of the interceptors for a s
session bean when the stateful session bean is passivated. Such interceptor classes do not need
ment the Serializable interface.

Clarified ordering rules when method-level interceptors are used. By default, AroundInvoke me
defined directly on the bean class and/or its superclasses are invoked after method-level intercep

Clarified rules for optional persistence-unit-name usage.

Dropped “-method” suffix from post-activate, pre-passivate, post-construct, pre-destroy,
around-invoke deployment descriptor elements.

Removed prohibition against use of Mandatory transaction attribute on web service entpoint meth
align with Web Services for Java EE spec [31].
 5/2/06 560

Final Release Enterprise JavaBeans 3.0, Final Release Revision History

Sun Microsystems, Inc.

those

beans
Clarified that activation configuration properties specified in deployment descriptor are additive to
specified in MessageDriven annotation.

Removed restriction that Timeout methods must be public.

Clarified the requirements for query language support for container-managed persistence entity
by providing the full definition of EJB QL as defined by the EJB 2.1 release.

Updated examples.
561 May 2, 2006 2:35 pm

Revision History Enterprise JavaBeans 3.0, Final Release Final Release

Sun Microsystems, Inc.
 5/2/06 562

	Chapter 1 Introduction
	1.1 Target Audience
	1.2 What is New in EJB 3.0
	1.3 EJB 3.0 Expert Group
	1.4 Organization of the Specification Documents
	1.5 Document Conventions

	Chapter 2 Overview
	2.1 Overall Goals
	2.2 EJB Roles
	2.2.1 Enterprise Bean Provider
	2.2.2 Application Assembler
	2.2.3 Deployer
	2.2.4 EJB Server Provider
	2.2.5 EJB Container Provider
	2.2.6 Persistence Provider
	2.2.7 System Administrator

	2.3 Enterprise Beans
	2.3.1 Characteristics of Enterprise Beans
	2.3.2 Flexible Model

	2.4 Session, Entity, and Message-Driven Objects
	2.4.1 Session Objects
	2.4.2 Message-Driven Objects
	2.4.3 Entity Objects

	2.5 Standard Mapping to CORBA Protocols
	2.6 Mapping to Web Service Protocols

	Chapter 3 Client View of a Session Bean
	3.1 Overview
	3.2 Local, Remote, and Web Service Client Views
	3.2.1 Remote Clients
	3.2.2 Local Clients
	3.2.3 Choosing Between a Local or Remote Client View
	3.2.4 Web Service Clients

	3.3 EJB Container
	3.4 Client View of Session Beans Written to the EJB 3.0 Simplified API
	3.4.1 Obtaining a Session Bean’s Business Interface
	3.4.2 Session Bean’s Business Interface
	3.4.3 Client View of Session Object’s Life Cycle
	3.4.4 Example of Obtaining and Using a Session Object
	3.4.5 Session Object Identity
	3.4.5.1 Stateful Session Beans
	3.4.5.2 Stateless Session Beans

	3.5 The Web Service Client View of a Stateless Session Bean
	3.5.1 JAX-WS Web Service Clients
	3.5.2 JAX-RPC Web Service Clients

	3.6 Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API
	3.6.1 Locating a Session Bean’s Home Interface
	3.6.2 Session Bean’s Remote Home Interface
	3.6.2.1 Creating a Session Object
	3.6.2.2 Removing a Session Object

	3.6.3 Session Bean’s Local Home Interface
	3.6.3.1 Creating a Session Object
	3.6.3.2 Removing a Session Object

	3.6.4 EJBObject and EJBLocalObject
	3.6.5 Object Identity
	3.6.6 Client view of Session Object’s Life Cycle
	3.6.6.1 References to Session Object Remote Interfaces
	3.6.6.2 References to Session Object Local Interfaces

	3.6.7 Creating and Using a Session Object
	3.6.8 Object Identity
	3.6.8.1 Stateful Session Beans
	3.6.8.2 Stateless Session Beans
	3.6.8.3 getPrimaryKey()

	3.6.9 Type Narrowing

	Chapter 4 Session Bean Component Contract
	4.1 Overview
	4.2 Conversational State of a Stateful Session Bean
	4.2.1 Instance Passivation and Conversational State
	4.2.2 The Effect of Transaction Rollback on Conversational State

	4.3 Protocol Between a Session Bean Instance and its Container
	4.3.1 Required Session Bean Metadata
	4.3.2 Dependency Injection
	4.3.3 The SessionContext Interface
	4.3.4 Session Bean Lifecycle Callback Interceptor Methods
	4.3.5 The Optional SessionBean Interface
	4.3.6 Use of the MessageContext Interface by Stateless Session Beans
	4.3.7 The Optional SessionSynchronization Interface for Stateful Session Beans
	4.3.8 Timeout Callbacks for Stateless Session Beans
	4.3.9 Business Method Delegation
	4.3.10 Session Bean Creation
	4.3.10.1 Stateful Session Beans
	4.3.10.2 Stateless Session Beans

	4.3.11 Stateful Session Bean Removal
	4.3.12 Business Method Interceptor Methods for Session Beans
	4.3.13 Serializing Session Bean Methods
	4.3.14 Transaction Context of Session Bean Methods

	4.4 Stateful Session Bean State Diagram
	4.4.1 Operations Allowed in the Methods of a Stateful Session Bean Class
	4.4.2 Dealing with Exceptions
	4.4.3 Missed PreDestroy Calls
	4.4.4 Restrictions for Transactions

	4.5 Stateless Session Beans
	4.5.1 Stateless Session Bean State Diagram
	4.5.2 Operations Allowed in the Methods of a Stateless Session Bean Class
	4.5.3 Dealing with Exceptions

	4.6 The Responsibilities of the Bean Provider
	4.6.1 Classes and Interfaces
	4.6.2 Session Bean Class
	4.6.3 Lifecycle Callback Interceptor Methods
	4.6.4 ejbCreate<METHOD> Methods
	4.6.5 Business Methods
	4.6.6 Session Bean’s Business Interface
	4.6.7 Session Bean’s Remote Interface
	4.6.8 Session Bean’s Remote Home Interface
	4.6.9 Session Bean’s Local Interface
	4.6.10 Session Bean’s Local Home Interface
	4.6.11 Session Bean’s Web Service Endpoint Interface

	4.7 The Responsibilities of the Container Provider
	4.7.1 Generation of Implementation Classes
	4.7.2 Generation of WSDL
	4.7.3 Session Business Interface Implementation Class
	4.7.4 Session EJBHome Class
	4.7.5 Session EJBObject Class
	4.7.6 Session EJBLocalHome Class
	4.7.7 Session EJBLocalObject Class
	4.7.8 Web Service Endpoint Implementation Class
	4.7.9 Handle Classes
	4.7.10 EJBMetaData Class
	4.7.11 Non-reentrant Instances
	4.7.12 Transaction Scoping, Security, Exceptions
	4.7.13 JAX-WS and JAX-RPC Message Handlers for Web Service Endpoints
	4.7.14 SessionContext

	Chapter 5 Message-Driven Bean Component Contract
	5.1 Overview
	5.2 Goals
	5.3 Client View of a Message-Driven Bean
	5.4 Protocol Between a Message-Driven Bean Instance and its Container
	5.4.1 Required MessageDrivenBean Metadata
	5.4.2 The Required Message Listener Interface
	5.4.3 Dependency Injection
	5.4.4 The MessageDrivenContext Interface
	5.4.5 Message-Driven Bean Lifecycle Callback Interceptor Methods
	5.4.6 The Optional MessageDrivenBean Interface
	5.4.7 Timeout Callbacks
	5.4.8 Message-Driven Bean Creation
	5.4.9 Message Listener Interceptor Methods for Message-Driven Beans
	5.4.10 Serializing Message-Driven Bean Methods
	5.4.11 Concurrency of Message Processing
	5.4.12 Transaction Context of Message-Driven Bean Methods
	5.4.13 Activation Configuration Properties
	5.4.14 Message Acknowledgment for JMS Message-Driven Beans
	5.4.15 Message Selectors for JMS Message-Driven Beans
	5.4.16 Association of a Message-Driven Bean with a Destination or Endpoint
	5.4.16.1 JMS Message-Driven Beans

	5.4.17 Dealing with Exceptions
	5.4.18 Missed PreDestroy Callbacks
	5.4.19 Replying to a JMS Message

	5.5 Message-Driven Bean State Diagram
	5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class

	5.6 The Responsibilities of the Bean Provider
	5.6.1 Classes and Interfaces
	5.6.2 Message-Driven Bean Class
	5.6.3 Message Listener Method
	5.6.4 Lifecycle Callback Interceptor Methods

	5.7 The Responsibilities of the Container Provider
	5.7.1 Generation of Implementation Classes
	5.7.2 Deployment of JMS Message-Driven Beans
	5.7.3 Request/Response Messaging Types
	5.7.4 Non-reentrant Instances
	5.7.5 Transaction Scoping, Security, Exceptions

	Chapter 6 Persistence
	Chapter 7 Client View of an EJB 2.1 Entity Bean
	7.1 Overview
	7.2 Remote Clients
	7.3 Local Clients
	7.4 EJB Container
	7.4.1 Locating an Entity Bean’s Home Interface
	7.4.2 What a Container Provides

	7.5 Entity Bean’s Remote Home Interface
	7.5.1 Create Methods
	7.5.2 Finder Methods
	7.5.3 Remove Methods
	7.5.4 Home Methods

	7.6 Entity Bean’s Local Home Interface
	7.6.1 Create Methods
	7.6.2 Finder Methods
	7.6.3 Remove Methods
	7.6.4 Home Methods

	7.7 Entity Object’s Life Cycle
	7.7.1 References to Entity Object Remote Interfaces
	7.7.2 References to Entity Object Local Interfaces

	7.8 Primary Key and Object Identity
	7.9 Entity Bean’s Remote Interface
	7.10 Entity Bean’s Local Interface
	7.11 Entity Bean’s Handle
	7.12 Entity Home Handles
	7.13 Type Narrowing of Object References

	Chapter 8 EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence
	8.1 Overview
	8.2 Container-Managed Entity Persistence and Data Independence
	8.3 The Entity Bean Provider’s View of Container-Managed Persistence
	8.3.1 The Entity Bean Provider’s Programming Contract
	8.3.2 The Entity Bean Provider’s View of Persistent Relationships
	8.3.3 Dependent Value Classes
	8.3.4 Remove Protocols
	8.3.4.1 Remove Methods
	8.3.4.2 Cascade-delete

	8.3.5 Identity of Entity Objects
	8.3.6 Semantics of Assignment for Relationships
	8.3.6.1 Use of the java.util.Collection API to Update Relationships
	8.3.6.2 Use of Set Accessor Methods to Update Relationships

	8.3.7 Assignment Rules for Relationships
	8.3.7.1 One-to-one Bidirectional Relationships
	8.3.7.2 One-to-one Unidirectional Relationships
	8.3.7.3 One-to-many Bidirectional Relationships
	8.3.7.4 One-to-many Unidirectional Relationships
	8.3.7.5 Many-to-one Unidirectional Relationships
	8.3.7.6 Many-to-many Bidirectional Relationships
	8.3.7.7 Many-to-many Unidirectional Relationships

	8.3.8 Collections Managed by the Container
	8.3.9 Non-persistent State
	8.3.10 The Relationship Between the Internal View and the Client View
	8.3.10.1 Restrictions on Remote Interfaces

	8.3.11 Mapping Data to a Persistent Store
	8.3.12 Example
	8.3.13 The Bean Provider’s View of the Deployment Descriptor

	8.4 The Entity Bean Component Contract
	8.4.1 Runtime Execution Model of Entity Beans
	8.4.2 Container Responsibilities
	8.4.2.1 Container-Managed Fields
	8.4.2.2 Container-Managed Relationships

	8.5 Instance Life Cycle Contract Between the Bean and the Container
	8.5.1 Instance Life Cycle
	8.5.2 Bean Provider’s Entity Bean Instance’s View
	8.5.3 Container’s View
	8.5.4 Read-only Entity Beans
	8.5.5 The EntityContext Interface
	8.5.6 Operations Allowed in the Methods of the Entity Bean Class
	8.5.7 Finder Methods
	8.5.7.1 Single-Object Finder Methods
	8.5.7.2 Multi-Object Finder Methods

	8.5.8 Select Methods
	8.5.8.1 Single-Object Select Methods
	8.5.8.2 Multi-Object Select Methods

	8.5.9 Timer Notifications
	8.5.10 Standard Application Exceptions for Entities
	8.5.10.1 CreateException
	8.5.10.2 DuplicateKeyException
	8.5.10.3 FinderException
	8.5.10.4 ObjectNotFoundException
	8.5.10.5 RemoveException

	8.5.11 Commit Options
	8.5.12 Concurrent Access from Multiple Transactions
	8.5.13 Non-reentrant and Re-entrant Instances

	8.6 Responsibilities of the Enterprise Bean Provider
	8.6.1 Classes and Interfaces
	8.6.2 Enterprise Bean Class
	8.6.3 Dependent Value Classes
	8.6.4 ejbCreate<METHOD> Methods
	8.6.5 ejbPostCreate<METHOD> Methods
	8.6.6 ejbHome<METHOD> Methods
	8.6.7 ejbSelect<METHOD> Methods
	8.6.8 Business Methods
	8.6.9 Entity Bean’s Remote Interface
	8.6.10 Entity Bean’s Remote Home Interface
	8.6.11 Entity Bean’s Local Interface
	8.6.12 Entity Bean’s Local Home Interface
	8.6.13 Entity Bean’s Primary Key Class
	8.6.14 Entity Bean’s Deployment Descriptor

	8.7 The Responsibilities of the Container Provider
	8.7.1 Generation of Implementation Classes
	8.7.2 Enterprise Bean Class
	8.7.3 ejbFind<METHOD> Methods
	8.7.4 ejbSelect<METHOD> Methods
	8.7.5 Entity EJBHome Class
	8.7.6 Entity EJBObject Class
	8.7.7 Entity EJBLocalHome Class
	8.7.8 Entity EJBLocalObject Class
	8.7.9 Handle Class
	8.7.10 Home Handle Class
	8.7.11 Metadata Class
	8.7.12 Instance’s Re-entrance
	8.7.13 Transaction Scoping, Security, Exceptions
	8.7.14 Implementation of Object References
	8.7.15 EntityContext

	8.8 Primary Keys
	8.8.1 Primary Key That Maps to a Single Field in the Entity Bean Class
	8.8.2 Primary Key That Maps to Multiple Fields in the Entity Bean Class
	8.8.3 Special Case: Unknown Primary Key Class

	Chapter 9 EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query Methods
	9.1 Overview
	9.2 EJB QL Definition
	9.2.1 Abstract Schema Types and Query Domains
	9.2.2 Query Methods
	9.2.3 Naming
	9.2.4 Examples
	9.2.5 The FROM Clause and Navigational Declarations
	9.2.5.1 Identifiers
	9.2.5.2 Identification Variables
	9.2.5.3 Range Variable Declarations
	9.2.5.4 Collection Member Declarations
	9.2.5.5 Example
	9.2.5.6 Path Expressions

	9.2.6 WHERE Clause and Conditional Expressions
	9.2.6.1 Literals
	9.2.6.2 Identification Variables
	9.2.6.3 Path Expressions
	9.2.6.4 Input Parameters
	9.2.6.5 Conditional Expression Composition
	9.2.6.6 Operators and Operator Precedence
	9.2.6.7 Between Expressions
	9.2.6.8 In Expressions
	9.2.6.9 Like Expressions
	9.2.6.10 Null Comparison Expressions
	9.2.6.11 Empty Collection Comparison Expressions
	9.2.6.12 Collection Member Expressions
	9.2.6.13 Functional Expressions

	9.2.7 SELECT Clause
	9.2.7.1 Null Values in the Query Result
	9.2.7.2 Aggregate Functions in the SELECT Clause
	9.2.7.3 Examples

	9.2.8 ORDER BY Clause
	9.2.9 Return Value Types
	9.2.10 Null Values
	9.2.11 Equality and Comparison Semantics
	9.2.12 Restrictions

	9.3 Examples
	9.3.1 Simple Queries
	9.3.2 Queries with Relationships
	9.3.3 Queries Using Input Parameters
	9.3.4 Queries for Select Methods
	9.3.5 EJB QL and SQL

	9.4 EJB QL BNF

	Chapter 10 EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence
	10.1 Overview of Bean-Managed Entity Persistence
	10.1.1 Entity Bean Provider’s View of Persistence
	10.1.2 Runtime Execution Model
	10.1.3 Instance Life Cycle
	10.1.4 The Entity Bean Component Contract
	10.1.4.1 Entity Bean Instance’s View
	10.1.4.2 Container’s View

	10.1.5 Read-only Entity Beans
	10.1.6 The EntityContext Interface
	10.1.7 Operations Allowed in the Methods of the Entity Bean Class
	10.1.8 Caching of Entity State and the ejbLoad and ejbStore Methods
	10.1.8.1 ejbLoad and ejbStore with the NotSupported Transaction Attribute

	10.1.9 Finder Method Return Type
	10.1.9.1 Single-Object Finder
	10.1.9.2 Multi-Object Finders

	10.1.10 Timer Notifications
	10.1.11 Standard Application Exceptions for Entities
	10.1.11.1 CreateException
	10.1.11.2 DuplicateKeyException
	10.1.11.3 FinderException
	10.1.11.4 ObjectNotFoundException
	10.1.11.5 RemoveException

	10.1.12 Commit Options
	10.1.13 Concurrent Access from Multiple Transactions
	10.1.14 Non-reentrant and Re-entrant Instances

	10.2 Responsibilities of the Enterprise Bean Provider
	10.2.1 Classes and Interfaces
	10.2.2 Enterprise Bean Class
	10.2.3 ejbCreate<METHOD> Methods
	10.2.4 ejbPostCreate<METHOD> Methods
	10.2.5 ejbFind Methods
	10.2.6 ejbHome<METHOD> Methods
	10.2.7 Business Methods
	10.2.8 Entity Bean’s Remote Interface
	10.2.9 Entity Bean’s Remote Home Interface
	10.2.10 Entity Bean’s Local Interface
	10.2.11 Entity Bean’s Local Home Interface
	10.2.12 Entity Bean’s Primary Key Class

	10.3 The Responsibilities of the Container Provider
	10.3.1 Generation of Implementation Classes
	10.3.2 Entity EJBHome Class
	10.3.3 Entity EJBObject Class
	10.3.4 Entity EJBLocalHome Class
	10.3.5 Entity EJBLocalObject Class
	10.3.6 Handle Class
	10.3.7 Home Handle Class
	10.3.8 Metadata Class
	10.3.9 Instance’s Re-entrance
	10.3.10 Transaction Scoping, Security, Exceptions
	10.3.11 Implementation of Object References
	10.3.12 EntityContext

	Chapter 11 EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence
	11.1 EJB 1.1 Entity Beans with Container-Managed Persistence
	11.1.1 Container-Managed Fields
	11.1.2 ejbCreate, ejbPostCreate
	11.1.3 ejbRemove
	11.1.4 ejbLoad
	11.1.5 ejbStore
	11.1.6 Finder Hethods
	11.1.7 Home Methods
	11.1.8 Create Methods
	11.1.9 Primary Key Type
	11.1.9.1 Primary Key that Maps to a Single Field in the Entity Bean Class
	11.1.9.2 Primary Key that Maps to Multiple Fields in the Entity Bean Class
	11.1.9.3 Special Case: Unknown Primary Key Class

	Chapter 12 Interceptors
	12.1 Overview
	12.2 Interceptor Life Cycle
	12.3 Business Method Interceptors
	12.3.1 Multiple Business Method Interceptor Methods
	12.3.2 Exceptions

	12.4 Interceptors for LifeCycle Event Callbacks
	12.4.1 Multiple Callback Interceptor Methods for a Life Cycle Callback Event
	12.4.2 Exceptions

	12.5 InvocationContext
	12.6 Default Interceptors
	12.7 Method-level Interceptors
	12.8 Specification of Interceptors in the Deployment Descriptor
	12.8.1 Specification of Interceptors
	12.8.2 Specification of the Binding of Interceptors to Beans
	12.8.2.1 Examples

	Chapter 13 Support for Transactions
	13.1 Overview
	13.1.1 Transactions
	13.1.2 Transaction Model
	13.1.3 Relationship to JTA and JTS

	13.2 Sample Scenarios
	13.2.1 Update of Multiple Databases
	13.2.2 Messages Sent or Received Over JMS Sessions and Update of Multiple Databases
	13.2.3 Update of Databases via Multiple EJB Servers
	13.2.4 Client-Managed Demarcation
	13.2.5 Container-Managed Demarcation

	13.3 Bean Provider’s Responsibilities
	13.3.1 Bean-Managed Versus Container-Managed Transaction Demarcation
	13.3.1.1 Non-Transactional Execution

	13.3.2 Isolation Levels
	13.3.3 Enterprise Beans Using Bean-Managed Transaction Demarcation
	13.3.3.1 getRollbackOnly and setRollbackOnly Methods

	13.3.4 Enterprise Beans Using Container-Managed Transaction Demarcation
	13.3.4.1 javax.ejb.SessionSynchronization Interface
	13.3.4.2 javax.ejb.EJBContext.setRollbackOnly Method
	13.3.4.3 javax.ejb.EJBContext.getRollbackOnly method

	13.3.5 Use of JMS APIs in Transactions
	13.3.6 Specification of a Bean’s Transaction Management Type
	13.3.7 Specification of the Transaction Attributes for a Bean’s Methods
	13.3.7.1 Specification of Transaction Attributes with Metadata Annotations
	13.3.7.2 Specification of Transaction Attributes in the Deployment Descriptor
	13.3.7.2.1 Use of the container-transaction element

	13.4 Application Assembler’s Responsibilities
	13.5 Deployer’s Responsibilities
	13.6 Container Provider Responsibilities
	13.6.1 Bean-Managed Transaction Demarcation
	13.6.2 Container-Managed Transaction Demarcation for Session and Entity Beans
	13.6.2.1 NOT_SUPPORTED
	13.6.2.2 REQUIRED
	13.6.2.3 SUPPORTS
	13.6.2.4 REQUIRES_NEW
	13.6.2.5 MANDATORY
	13.6.2.6 NEVER
	13.6.2.7 Transaction Attribute Summary
	13.6.2.8 Handling of setRollbackOnly Method
	13.6.2.9 Handling of getRollbackOnly Method
	13.6.2.10 Handling of getUserTransaction Method
	13.6.2.11 javax.ejb.SessionSynchronization Callbacks

	13.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans
	13.6.3.1 NOT_SUPPORTED
	13.6.3.2 REQUIRED
	13.6.3.3 Handling of setRollbackOnly Method
	13.6.3.4 Handling of getRollbackOnly Method
	13.6.3.5 Handling of getUserTransaction Method

	13.6.4 Local Transaction Optimization
	13.6.5 Handling of Methods that Run with “an unspecified transaction context”

	13.7 Access from Multiple Clients in the Same Transaction Context
	13.7.1 Transaction “Diamond” Scenario with an Entity Object
	13.7.2 Container Provider’s Responsibilities
	13.7.3 Bean Provider’s Responsibilities
	13.7.4 Application Assembler and Deployer’s Responsibilities
	13.7.5 Transaction Diamonds involving Session Objects

	Chapter 14 Exception Handling
	14.1 Overview and Concepts
	14.1.1 Application Exceptions
	14.1.2 Goals for Exception Handling

	14.2 Bean Provider’s Responsibilities
	14.2.1 Application Exceptions
	14.2.2 System Exceptions
	14.2.2.1 javax.ejb.NoSuchEntityException

	14.3 Container Provider Responsibilities
	14.3.1 Exceptions from a Session Bean’s Business Interface Methods
	14.3.2 Exceptions from Method Invoked via Session or Entity Bean’s 2.1 Client View or through Web...
	14.3.3 Exceptions from PostConstruct and PreDestroy Methods of a Stateless Session Bean with Web ...
	14.3.4 Exceptions from Message-Driven Bean Message Listener Methods
	14.3.5 Exceptions from PostConstruct and PreDestroy Methods of a Message-Driven Bean
	14.3.6 Exceptions from an Enterprise Bean’s Timeout Callback Method
	14.3.7 Exceptions from Other Container-invoked Callbacks
	14.3.8 javax.ejb.NoSuchEntityException
	14.3.9 Non-existing Stateful Session or Entity Object
	14.3.10 Exceptions from the Management of Container-Managed Transactions
	14.3.11 Release of Resources
	14.3.12 Support for Deprecated Use of java.rmi.RemoteException

	14.4 Client’s View of Exceptions
	14.4.1 Application Exception
	14.4.1.1 Local and Remote Clients
	14.4.1.2 Web Service Clients

	14.4.2 java.rmi.RemoteException and javax.ejb.EJBException
	14.4.2.1 javax.ejb.EJBTransactionRolledbackException, javax.ejb.TransactionRolledbackLocalExcepti...
	14.4.2.2 javax.ejb.EJBTransactionRequiredException, javax.ejb.TransactionRequiredLocalException, ...
	14.4.2.3 javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and java.rmi.NoSuchO...

	14.5 System Administrator’s Responsibilities

	Chapter 15 Support for Distributed Interoperability
	15.1 Support for Distribution
	15.1.1 Client-Side Objects in a Distributed Environment

	15.2 Interoperability Overview
	15.2.1 Interoperability Goals

	15.3 Interoperability Scenarios
	15.3.1 Interactions Between Web Containers and EJB Containers for E-Commerce Applications
	15.3.2 Interactions Between Application Client Containers and EJB Containers Within an Enterprise...
	15.3.3 Interactions Between Two EJB Containers in an Enterprise’s Intranet
	15.3.4 Intranet Application Interactions Between Web Containers and EJB Containers

	15.4 Overview of Interoperability Requirements
	15.5 Remote Invocation Interoperability
	15.5.1 Mapping Java Remote Interfaces to IDL
	15.5.2 Mapping Value Objects to IDL
	15.5.3 Mapping of System Exceptions
	15.5.4 Obtaining Stub and Client View Classes
	15.5.5 System Value Classes
	15.5.5.1 HandleDelegate SPI

	15.6 Transaction Interoperability
	15.6.1 Transaction Interoperability Requirements
	15.6.1.1 Transaction Context Wire Format
	15.6.1.2 Two-Phase Commit Protocol
	15.6.1.3 Transactional Policies of Enterprise Bean References
	15.6.1.4 Exception Handling Behavior

	15.6.2 Interoperating with Containers that do not Implement Transaction Interoperability
	15.6.2.1 Client Container Requirements
	15.6.2.2 EJB container requirements
	15.6.2.2.1 Requirements for EJB Containers Supporting Transaction Interoperability
	15.6.2.2.2 Requirements for EJB Containers not Supporting Transaction Interoperability

	15.7 Naming Interoperability
	15.8 Security Interoperability
	15.8.1 Introduction
	15.8.1.1 Trust Relationships Between Containers, Principal Propagation
	15.8.1.2 Application Client Authentication

	15.8.2 Securing EJB Invocations
	15.8.2.1 Secure Transport Protocol
	15.8.2.2 Security Information in IORs
	15.8.2.3 Propagating Principals and Authentication Data in IIOP Messages
	15.8.2.4 Security Configuration for Containers
	15.8.2.5 Runtime Behavior

	Chapter 16 Enterprise Bean Environment
	16.1 Overview
	16.2 Enterprise Bean’s Environment as a JNDI Naming Context
	16.2.1 Sharing of Environment Entries
	16.2.2 Annotations for Environment Entries
	16.2.3 Annotations and Deployment Descriptors

	16.3 Responsibilities by EJB Role
	16.3.1 Bean Provider’s Responsibilities
	16.3.2 Application Assembler’s Responsibility
	16.3.3 Deployer’s Responsibility
	16.3.4 Container Provider Responsibility

	16.4 Simple Environment Entries
	16.4.1 Bean Provider’s Responsibilities
	16.4.1.1 Injection of Simple Environment Entries Using Annotations
	16.4.1.2 Programming Interfaces for Accessing Simple Environment Entries
	16.4.1.3 Declaration of Simple Environment Entries in the Deployment Descriptor

	16.4.2 Application Assembler’s Responsibility
	16.4.3 Deployer’s Responsibility
	16.4.4 Container Provider Responsibility

	16.5 EJB References
	16.5.1 Bean Provider’s Responsibilities
	16.5.1.1 Injection of EJB References
	16.5.1.2 EJB Reference Programming Interfaces
	16.5.1.3 Declaration of EJB References in Deployment Descriptor

	16.5.2 Application Assembler’s Responsibilities
	16.5.2.1 Overriding Rules

	16.5.3 Deployer’s Responsibility
	16.5.4 Container Provider’s Responsibility

	16.6 Web Service References
	16.7 Resource Manager Connection Factory References
	16.7.1 Bean Provider’s Responsibilities
	16.7.1.1 Injection of Resource Manager Connection Factory References
	16.7.1.2 Programming Interfaces for Resource Manager Connection Factory References
	16.7.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	16.7.1.4 Standard Resource Manager Connection Factory Types

	16.7.2 Deployer’s Responsibility
	16.7.3 Container Provider Responsibility
	16.7.4 System Administrator’s Responsibility

	16.8 Resource Environment References
	16.8.1 Bean Provider’s Responsibilities
	16.8.1.1 Injection of Resource Environment References
	16.8.1.2 Resource Environment Reference Programming Interfaces
	16.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

	16.8.2 Deployer’s Responsibility
	16.8.3 Container Provider’s Responsibility

	16.9 Message Destination References
	16.9.1 Bean Provider’s Responsibilities
	16.9.1.1 Injection of Message Destination References
	16.9.1.2 Message Destination Reference Programming Interfaces
	16.9.1.3 Declaration of Message Destination References in Deployment Descriptor

	16.9.2 Application Assembler’s Responsibilities
	16.9.3 Deployer’s Responsibility
	16.9.4 Container Provider’s Responsibility

	16.10 Persistence Unit References
	16.10.1 Bean Provider’s Responsibilities
	16.10.1.1 Injection of Persistence Unit References
	16.10.1.2 Programming Interfaces for Persistence Unit References
	16.10.1.3 Declaration of Persistence Unit References in Deployment Descriptor

	16.10.2 Application Assembler’s Responsibilities
	16.10.2.1 Overriding Rules

	16.10.3 Deployer’s Responsibility
	16.10.4 Container Provider Responsibility
	16.10.5 System Administrator’s Responsibility

	16.11 Persistence Context References
	16.11.1 Bean Provider’s Responsibilities
	16.11.1.1 Injection of Persistence Context References
	16.11.1.2 Programming Interfaces for Persistence Context References
	16.11.1.3 Declaration of Persistence Context References in Deployment Descriptor

	16.11.2 Application Assembler’s Responsibilities
	16.11.2.1 Overriding Rules

	16.11.3 Deployer’s Responsibility
	16.11.4 Container Provider Responsibility
	16.11.5 System Administrator’s Responsibility

	16.12 UserTransaction Interface
	16.12.1 Bean Provider’s Responsibility
	16.12.2 Container Provider’s Responsibility

	16.13 ORB References
	16.13.1 Bean Provider’s Responsibility
	16.13.2 Container Provider’s Responsibility

	16.14 TimerService References
	16.14.1 Bean Provider’s Responsibility
	16.14.2 Container Provider’s Responsibility

	16.15 EJBContext References
	16.15.1 Bean Provider’s Responsibility
	16.15.2 Container Provider’s Responsibility

	16.16 Deprecated EJBContext.getEnvironment Method

	Chapter 17 Security Management
	17.1 Overview
	17.2 Bean Provider’s Responsibilities
	17.2.1 Invocation of Other Enterprise Beans
	17.2.2 Resource Access
	17.2.3 Access of Underlying OS Resources
	17.2.4 Programming Style Recommendations
	17.2.5 Programmatic Access to Caller’s Security Context
	17.2.5.1 Use of getCallerPrincipal
	17.2.5.2 Use of isCallerInRole
	17.2.5.3 Declaration of Security Roles Referenced from the Bean’s Code

	17.3 Responsibilities of the Bean Provider and/or Application Assembler
	17.3.1 Security Roles
	17.3.2 Method Permissions
	17.3.2.1 Specification of Method Permissions with Metadata Annotations
	17.3.2.2 Specification of Method Permissions in the Deployment Descriptor
	17.3.2.3 Unspecified Method Permissions

	17.3.3 Linking Security Role References to Security Roles
	17.3.4 Specification of Security Identities in the Deployment Descriptor
	17.3.4.1 Run-as

	17.4 Deployer’s Responsibilities
	17.4.1 Security Domain and Principal Realm Assignment
	17.4.2 Assignment of Security Roles
	17.4.3 Principal Delegation
	17.4.4 Security Management of Resource Access
	17.4.5 General Notes on Deployment Descriptor Processing

	17.5 EJB Client Responsibilities
	17.6 EJB Container Provider’s Responsibilities
	17.6.1 Deployment Tools
	17.6.2 Security Domain(s)
	17.6.3 Security Mechanisms
	17.6.4 Passing Principals on EJB Calls
	17.6.5 Security Methods in javax.ejb.EJBContext
	17.6.6 Secure Access to Resource Managers
	17.6.7 Principal Mapping
	17.6.8 System Principal
	17.6.9 Runtime Security Enforcement
	17.6.10 Audit Trail

	17.7 System Administrator’s Responsibilities
	17.7.1 Security Domain Administration
	17.7.2 Principal Mapping
	17.7.3 Audit Trail Review

	Chapter 18 Timer Service
	18.1 Overview
	18.2 Bean Provider’s View of the Timer Service
	18.2.1 The Timer Service Interface
	18.2.2 Timeout Callbacks
	18.2.3 The Timer and TimerHandle Interfaces
	18.2.4 Timer Identity
	18.2.5 Transactions

	18.3 Bean Provider’s Responsibilities
	18.3.1 Enterprise Bean Class
	18.3.2 TimerHandle

	18.4 Container’s Responsibilities
	18.4.1 TimerService, Timer, and TimerHandle Interfaces
	18.4.2 Timer Expiration and Timeout Callback Method
	18.4.3 Timer Cancellation
	18.4.4 Entity Bean Removal

	Chapter 19 Deployment Descriptor
	19.1 Overview
	19.2 Bean Provider’s Responsibilities
	19.3 Application Assembler’s Responsibility
	19.4 Container Provider’s Responsibilities
	19.5 Deployment Descriptor XML Schema

	Chapter 20 Ejb-jar File
	20.1 Overview
	20.2 Deployment Descriptor
	20.3 Ejb-jar File Requirements
	20.4 The Client View and the ejb-client JAR File
	20.5 Requirements for Clients
	20.6 Example

	Chapter 21 Runtime Environment
	21.1 Bean Provider’s Responsibilities
	21.1.1 APIs Provided by Container
	21.1.2 Programming Restrictions

	21.2 Container Provider’s Responsibility
	21.2.1 Java 2 APIs Requirements
	21.2.2 EJB 3.0 Requirements
	21.2.3 JNDI Requirements
	21.2.4 JTA 1.1 Requirements
	21.2.5 JDBC™ 3.0 Extension Requirements
	21.2.6 JMS 1.1 Requirements
	21.2.7 Argument Passing Semantics
	21.2.8 Other Requirements

	Chapter 22 Responsibilities of EJB Roles
	22.1 Bean Provider’s Responsibilities
	22.1.1 API Requirements
	22.1.2 Packaging Requirements

	22.2 Application Assembler’s Responsibilities
	22.3 EJB Container Provider’s Responsibilities
	22.4 Persistence Provider’s Responsibilities
	22.5 Deployer’s Responsibilities
	22.6 System Administrator’s Responsibilities
	22.7 Client Programmer’s Responsibilities

	Chapter 23 Related Documents
	Appendix A Revision History
	A.1 Public Draft
	A.2 Proposed Final Draft
	A.3 Final Release

