4 sun

microsystems

Sun Microsystems

JSR 220: Enterprise JavaBeaffsVersion 3.0

EJB 3.0 Simplified API

EJB 3.0 Expert Group

Specification Lead:
Linda DeMichiel, Sun Microsystems
Michael Keith, Oracle Corporation

Please send comments to: ejb3-spec-feedback@sun.com

Version 3.0, Final Release
May 2, 200

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

Specification: JSR-000220 Enterprise JavaBeans v.3.0 ("Specification")
Version: 3.0

Status: Final Release

Release: 8 May 2006

Copyright 2006 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. _License for Evaluation Purposes_. Sun hereby grants you a fully-paid, non-exclusive, non-transfer-
able, worldwide, limited license (without the right to sublicense), under Sun’s applicable intellectual
property rights to view, download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an implementation of the Spec-
ification, provided that such applications do not themselves implement any portion(s) of the Specifica-
tion, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that such ex-
cerpts do not in the aggregate constitute a significant portion of the Specification.

2. _License for the Distribution of Compliant Implementations_. Sun also grants you a perpetual, non-
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to
sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent
rights it may have covering the Specification to create and/or distribute an Independent Implementation
of the Specification that: (a) fully implements the Specification including all its required interfaces and
functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the Licensor
Name Space other than those required/authorized by the Specification or Specifications being imple-
mented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation™). In addition, the
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose (including, for example, modifying the Specification, other than to the
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or
interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted here-
under. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions_. You need not include limitations (a)-(c) from the previous paragraph or
any other particular "pass through" requirements in any license You grant concerning the use of your In-
dependent Implementation or products derived from it. However, except with respect to Independent Im-
plementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims con-
cerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses_.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that
would be infringed by all technically feasible implementations of the Specification, such license is con-
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights

2 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

which are or would be infringed by all technically feasible implementations of the Specification to de-
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph
2, whether or not their infringement can be avoided in a technically feasible manner when implementing
the Specification, such license shall terminate with respect to such claims if You initiate a claim against
Sunthatit has, in the course of performing its responsibilities as the Specification Lead, induced any oth-
er entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license granted under sub-
paragraph 2 above, where the infringement of such claims can be avoided in a technically feasible man-
ner when implementing the Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Sun that its making, having made, using, offering to sell, selling or importing a
Compliant Implementation infringes Your patent rights.

5. _Definitions_. For the purposes of this Agreement: "Independent Implementation” shall mean an im-
plementation of the Specification that neither derives from any of Sun’s source code or binary code ma-
terials nor, except with an appropriate and separate license from Sun, includes any of Sun’s source code
or binary code materials; "Licensor Name Space" shall mean the public class or interface declarations
whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming con-
vention adopted by Sun through the Java Community Process, or any recognized successors or replace-
ments thereof, and "Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User’s Guide provided by Sun which corresponds to the Specification and that was
available either (i) from Sun 120 days before the first release of Your Independent Implementation that
allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against
which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act
outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or im-
plement any portion of the Specification in any product. In addition, the Specification could include tech-
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

3 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government'’s rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sub-
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regula-

tions in other countries. Licensee agrees to comply strictly with all such laws and regulations and ac-
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other com-
munication between the parties relating to its subject matter during the term of this Agreement. No mod-
ification to this Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

Rev. April, 2006
Sun/Final/Full

4 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

Table of Contents

Chapter 1 T 1o [0 Tox i o] o 1R PP 9.
R R @ Y= 1= SRR 9
1.2 Goals Of thiS REIEASEuevieiiiiiiie ettt 9
1.3 EJB 3.0 EXPEIT GrOUP...euuuuuaaae ettt e e e e e e e e e e 10
1.4 Organization of the Specification DOCUMENLScccevvieiieieeeiieiiiireeeee e 10
1.5 DocUMENt CONVENLIONS ...cciiiiiiiiiieeiiiiiiee sttt e s sttt e e e sttt e e e s st ee e e s snnreeeessnneeeas 11
Chapter 2 Overview of the EJB 3.0 SImplified APl ... 13
2.1 Metadata Annotations and Deployment DeSCIPtOrS.......cccveeeveiiiciiivinieeeeeeenn, 14
2.1.1 Deployment DESCHPLOIS.uuuueeeieiiaaaaaeiaaiiiieieeee e e e e e e e e e eeeeaae s 14
2.2 Interoperability and Migration Between EJB 3.0 and EJB 2.1 and Earlier Clients and
Beansl14
Chapter 3 Enterprise Bean Class and Business Interface..........cccoccvviiee i 15
3.1 Enterprise BEan ClasS.......ccuuuiiiiiiiiiaa et 15
3.1.1 Requirements for the Enterprise Bean Class..........cccccvevvivieeeeinnneenn. 16
3.2 BUSINESS INTEITACES ...t e e e e e e e eee s 16
TR T < (oT=T o) (o) 1SR 17
R 141 (=] (ol=T o (o] £ P TSP PR PP 18
3.4.1 Lifecycle Callback Interceptor Methods..........ccccccveeiiiiiicciiiieeenenn. 19
3.4.2 Business Method Interceptor Methodscccceeviiiiie e, 19
3.4.3 INVOCAtIONCONIEXT ...vvveieiieee e et e e e e e 20
4.4 EXCEPUONS ...eiiiiiiiitee ettt ettt 21
3.5 HOME INTEITACES. .. .ueiiiiiieie et e e e e e e e e e e e annnes 21
Chapter 4 Stateless SeSSION BEANS.........ccoiiiiiiiiiii e 23........
4.1 Requirements for Stateless Session Beanscccoccvveeeiiiiiiie i 23
4.1.1 BUSINESS INTEITACE ..eoeeiiiiiiie ettt 23
4.1.2 HOME INLEITACEuuiiiiieiiiie e 23
4.1.3 BN ClASS .. uuuiiiiiiiiiiie ittt 24
4.1.4 Lifecycle Callbacks for Stateless Session Beanscccccceeeeveiiinnns 24
4.1.5 Dependency INJECLION.........uuuuiiiieieeei i 24
4.1.6 Interceptors for Stateless Session Beans.........cccccceveeeeeiviiiccivvvnennnnn. 24
4.1.6.1 EXAMPIE .eiiiiiiiiiie e 25
A O 1= AV = PSPPSR 26
4.3 Other REQUINEMENTScoii ettt e e e e e e e e e e e enneeeeees 26
Chapter 5 Stateful SESSION BEANScviiiiiiiiie ettt 27........
5.1 Requirements for Stateful SESSION BEANS........ccciviiiiiiiiiiiiiiiiiiieieee e 27
5.1.1 BUSINESS INtEIACEeviiiiiiiiiiee et 27

5 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

5.1.2 HOME INLEIfACE ...t e e e 27
5.1.3 BEAN ClaSS.....cic ittt ettt 27
5.1.4 Lifecycle Callbacks for Stateful Session Beans............ccccccvvveveeenn.. 28
5.1.4.1 Semantics of the Life Cycle Callback Methods for Stateful Session
Beans28
5.1.5 Dependency INJECHION..........cuiiiiiiiieeiiiiee ettt 28
5.1.6 Interceptors for Stateful Session Beans............cccvveeeeiiiieeiiiiiiiiiineee, 29
D17 EXAMPIE . 29
5.1.8 ClENE VIBW ..ottt e et e e e e e e e e e e e anaes 30
5.1.9 Stateful Session Bean Removal..............c.ccevviiiiiiiiiiiiiiiiieieeeeeee 30
5.1.9.1 EXAMPIE oot 30
5.2 Other REQUIFEMENTScoiiiiiiiiiiitee et e e e e e e e e e e e 31
Chapter 6 MESSAGE-DIIVEN BEANS......eiiiiiiiiiiie ittt sttt e e s e e e 33
6.1 Requirements for Message-Driven Beansccccvuviiiiiiiieeeeeiiiiiiiiieeeeeeen 33
6.1.1 BUSINESS INtEIMACE......ueiiiiiiee i 33
B.1.2 BeEaN ClaSScc ettt 33
6.1.3 Lifecycle Callbacks for Message-Driven Beansccccveeevnunneen. 34
6.1.4 Dependency INJECHION..........cuiiiiiiiiieiiieie e 34
6.1.5 Interceptors for Message-Driven Beans.ccccceevvviieeeeiniiieee e, 34
6.2 Other REQUIFEMENTSccoiiiiiiie ittt 34
Chapter 7 P OISISIENCE ... ettt ettt e et e e e e e e e eae e 35
Chapter 8 Enterprise Bean Context and ENVIFONMENTccooiiiiiiiiiiiiiieee e e e e e e e 37
8.1 Annotation of Context DePeNdenCIESccuuiiaaiiiiiiiiiiiiiiiiae e 37
8.1.1 Annotation of Instance Variablescccoeeiiiiiiii e, 38
8.1.2 Setter INJECLION ..ociieiiie e 39
8.1.3 Injection and LOOKUPeeviiiiiiiiiii it 39
S T B N | =1 @ 0] o1 = U RPRRR 40
Chapter 9 Compatibility and Migration..............eeeieeeoiiiiiiiiiiieeeee e e e e e e e snenes L. 4
9.1 Support for Existing APPlICAtIONSooiiiiiiiiiiieeee e 41
9.2 Interoperability of EJB 3.0 and Earlier Components...........cccccvvveveeeeeeeesiinnnns 41
9.2.1 Clients written to the EJB 2.X APIS......cccoviiiiiiiiiiiiiee e 41
9.2.2 Clients written to the new EJB 3.0 APl.....cccoiiiiiiiiiiieeeieee e, 42
9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs................. 42
9.2.4 Other Combinations of EJB 3.0 and Earlier APIS...........cccccevevinnnenn. 42
9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views............ccccovvvveeeeennn. 42
9.3.1 Stateless SeSSIoN BeaNS........c..uuviiiiiiiaiaiiiieeee e 43
9.3.2 Stateful SESSION BEANSuueiiiiiiieaiieiiiieieeee e 43
9.4 Combined Use of EJB 3.0 and EJB 2.1 APIsin a Bean Class 44

5/2/06 6

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

Chapter 10 Metadata ANNOLALIONSeeiiiiiiiiie e 45.......
10.1 Annotations to Specify Bean TYPEccccuriiiiiiiieeee et e e e 45
10.1.1 Stateless SesSSIoN BEaANS.........cccuiiiiiiieiieeee e 45
10.1.2 Stateful SESSION BEANSuuuiiiiiiiiieaaieee e 46
10.1.2.1 Init Annotation for Stateful Session Beans......................... 46
10.1.2.2 Remove Annotation for Stateful Session Beans................. 47
10.1.3 Message-driven BEANS.........cooiiiiiiiiiiiiiiie et a7
10.2 Annotations to Specify Local or Remote Interfaces..........ccccccceeiiiiiiiiiiieeenenn. a7
10.3 Annotations to Support EJB 2.1 and Earlier Client Viewcccccvvvvveeeeennn. 48
10.4 TransactioNManagemMENTuuuiiiiiiieeeeeiiiiiiiirieere e e e e e e e e s sssarrrrerereaaeeessessnnnnnes 48
10.5 Transaction ALLHDULESoooiiiiiiie e 49
10.6 Interceptors and LifeCycle Callbackscceeeiiiiiiiiiiiiiiii e 49
IO T T 4 T= o | SO PRPROTI 51
10.8 EXCEPLIONS ..ottt ettt e e e e e e e e ettt e e e e e e e e e e s e e nanbeereeeaaaaeeeaaaannns 51
10.9 Security and Method PermisSionsccooiiiiiiiiiiiiiiieiie e 51
10.9.1 Security Role REfEIENCES.......cccuviiiiieiieee e 51
10.9.2 MethOdPEerMISSIONSccciiiiiiiiieiiiiiie ettt 51
10.9.3 PerMItAllL...oeeiiiiiiiiiee e e 52
10.9.4 DENYAIL.....eeiiiieiiiiie ettt et e e e e e ne 52
10.9.5 RUNAS....oiiiiitiiee ettt e e et e e s st e e e s s nabee e e e s anbaeeeeean 52
10.10 EJB REIEIENCES. ...cci ittt e e e e e e e eee s 52
10.11 RESOUICE REFEIENCES ...oceiiiiiiieee ettt e e e e e e e e 53
Chapter 11 Related DOCUMENEScciiiieeii i ittt e e s e e e e e e e e e s s et e e e e eeeeeesesmnns 55.......
Appendix A REVISION HISTOMYeiiiiiiiiiii ettt e 51.
y N r- Ty Y T | A SRR 57
A2 EBArlY DIaft 2. 57
NG T ¥ o] Tl I -1 SO 58
A.4 Proposed FINal Draft........ccccccceieie i 58
AL FiNAI REICASEeeeiiiiieeeee e 59

7 5/2/06

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Final Release

5/2/06 8

Sun Microsystems Inc

Enterprise JavaBeans 3.0, Final Release

amers INtroduction

1.1 Overview

The EJB 3.0 release of the Enterprise JavaBeans architecture provides a new, simplified API for the
enterprise application developer. This API is targeted at ease of development and is a simplification of
the APIs defined by earlier versions of the EJB specification. The existing EJB 2.1 APIs remain avail-
able for use in applications that require them and components written to those APIs may be used in con-
junction with components written to the new EJB 3.0 APIs.

This document provides an overview of the EJB 3.0 simplified API.

1.2 Goals of this Release

The purpose of the EJB 3.0 release is to improve the EJB architecture by reducing its complexity from
the enterprise application developer’s point of view.

EJB 3.0 is focused on the following goals:

* Definition of the Java language metadata annotations that can be used to annotate EJB appli-
cations. These metadata annotations are targeted at simplifying the developer’s task, at reduc-
ing the number of program classes and interfaces the developer is required to implement, and
at eliminating the need for the developer to provide an EJB deployment descriptor.

* Specification of programmatic defaults, including for metadata, to reduce the need for the
developer to specify common, expected behaviors and requirements on the EJB container. A
“configuration by exception” approach is taken whenever possible.

* Encapsulation of environmental dependencies and JNDI access through the use of annota-
tions, dependency injection mechanisms, and simple lookup mechanisms.

* Simplification of the enterprise bean types.

* Elimination of the requirement for EJB component interfaces for session beans. The required
business interface for a session bean can be a plain Java interface rather than an EJBObject,
EJBLocalObject, or java.rmi.Remote interface.

* Elimination of the requirement for home interfaces for session beans.

» Simplification of entity persistence through the Java Persistence API. Support for light-weight
domain modeling, including inheritance and polymorphism.

9 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Introduction

1.3

Enterprise JavaBeans 3.0, Final Release EJB 3.0 Expert Group

* Elimination of all required interfaces for persistent entities [2].

* Specification of Java language metadata annotations and XML deployment descriptor ele-
ments for the object/relational mapping of persistent entities [2].

* A query language for Java Persistence that is an extension to EJB QL, with addition of projec-
tion, explicit inner and outer join operations, bulk update and delete, subqueries, and
group-by. Addition of a dynamic query capability and support for native SQL queries.

* An interceptor facility for session beans and message-driven beans.

* Reduction of the requirements for usage of checked exceptions.

* Elimination of the requirement for the implementation of callback interfaces.

EJB 3.0 Expert Group

1.4

The EJB 3.0 specification work is being conducted as part of JSR-220 under the Java Community Pro-
cess Program. This specification is the result of the collaborative work of the members of the EJB 3.0
Expert Group. These include the following present and former expert group members: Apache Software
Foundation: Jeremy Boynes; BEA: Seth White; Borland: Jishnu Mitra, Rafay Khawaja; E.piphany:
Karthik Kothandaraman,; Fujitsu-Siemens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson,
Randy Schnier; IONA: Conrad O’Dea,; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc
Fleury; Macromedia: Hemant Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle:
Michael Keith, Debu Panda, Olivier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit
Yalcinalp; SAS Institute: Rob Saccoccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun
Microsystems: Linda DeMichiel, Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi;
Tmax Soft: Woo Jin Kim; Versant: David Tinker; Xcalia: Eric Samson, Matthew Adams; Reza Beh-
forooz; Emmanuel Bernard; Wes Biggs; David Blevins; Scott Crawford; Geoff Hendrey; Oliver lhns;
Oliver Kamps; Richard Monson-Haefel; Dirk Reinshagen; Carl Rosenberger; Suneet Shah.

Organization of the Specification Documents

This specification is organized into the following three documents:
e EJB 3.0 Simplified API
* EJB Core Contracts and Requirements
* Java Persistence API

The current document provides an overview of the simplified API that is introduced by the Enterprise
JavaBeans 3.0 release.

5/2/06

10

Sun Microsystems Inc

Document Conventions Enterprise JavaBeans 3.0, Final Release Introduction

1.5

The documentJava Persistence APis the specification of the new API for the management of persis-
tence together with the full specification of the Java Persistence query language (a superset of EJB QL).
It provides the definition of the persistence API that is required to be supported under the Enterprise
JavaBeans 3.0 release as well as the definition of how the Java Persistence API is supported for use in
Java SE environments.

The documentEJB Core Contracts and Requireméntefines the contracts and requirements for the

use and implementation of Enterprise JavaBeans. These contracts include, by reference, those defined in
the “Java Persistence APocument.

Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

11 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Introduction Enterprise JavaBeans 3.0, Final Release Document Conventions

5/2/06 12

Sun Microsystems Inc

Document Conventions

Chapter 2

Enterprise JavaBeans 3.0, Final Release Overview of the EJB 3.0 Simplified API

Overview of the EJB 3.0 Simplified API

The EJB 3.0 release is focused on a simplification of the Enterprise JavaBeans architecture from the
developer’s point of view.

This simplification has several main aspects:

Simplification of the interface definition requirements for enterprise beans: elimination of
requirements for the specification of home and component interfaces in the EJB 3.0 program-
ming model.

Simplification of the contractual requirements between the bean provider and the container:
elimination of the requirements for enterprise beans to implemenatae.ejb.Enter-
priseBean interfaces.

Simplification of APIs for access to a bean's environment: definition of a dependency injection
facility and simpler look-up APIs.

Introduction of Java metadata annotations to be used as an alternative to deployment descrip-
tors.

Simplification of object persistence by the definition of a light-weight object/relational map-
ping facility based on the direct use of Java classes rather than persistent components.

13 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Overview of the EJB 3.0 Simplified API Enterprise JavaBeans 3.0, Final Release Metadata Annotations and Deployment

2.1

Metadata Annotations and Deployment Descriptors

2.1.1

One of the key enabling technologies introduced by J2SE 5.0 is the program annotation facility defined
by JSR-175 [10]. This facility allows developers to annotate program elements in Java programming
language source files to control the behavior and deployment of an application.

Metadata annotations are a key element in the simplification of the development of EJB 3.0 applica-
tions. Metadata annotations are used by the developer to specify expected requirements on container
behavior, to request the injection of services and resources, and to specify object/relational mappings.

Metadata annotations may be used as an alternative to the deployment descriptors that were required by
earlier versions of the Enterprise JavaBeans specification.

While this document is written in terms of the usage of metadata annotations, it is not required that
metadata annotations be used in an EJB 3.0 application. Developers who prefer the use of a deployment
descriptor as an alternative to metadata annotations may define one for this purpose. The EJB 3.0
deployment descriptor is defined in the document “EJB Core Contracts and Requirements” [1] of this
specification.

Deployment Descriptors

2.2

Deployment descriptors are defined by this specification as an alternative to metadata annotations or as
a mechanism for the overriding of metadata annotations—for example to permit the further customiza-
tion of an application for a particular development environment at a later stage of the development or
assembly work flow. Deployment descriptors may be “sparse”, unlike the full deployment descriptors
required by the EJB 2.1 specification. SE&B Core Contracts and Requirementd].

Although it is not anticipated as a typical use case, it is possible for the application developer to com-
bine the use of metadata annotations and deployment descriptors in the design of an application. When
such a combination is used, the rules for the use of deployment descriptors as an overriding mechanism

apply.

Interoperability and Migration Between EJB 3.0 and EJB
2.1 and Earlier Clients and Beans

A bean written to the EJB 3.0 APIs may be a client of components written to the EJB 2.1 and earlier
APIs, and vice versa. Chapter 9 “Compatibility and Migration” describes the mechanisms and APIs
that enable this.

Such combinations of clients and components written to different versions of the Enterprise JavaBeans
specification programming models may be useful in facilitating the migration of existing applications
incrementally to EJB 3.0, for adding new functionality to applications written to earlier versions of the
Enterprise JavaBeans specification, and for reuse of components and applications written to the earlier
EJB APIs.

5/2/06

14

Sun Microsystems Inc

Enterprise Bean Class Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Chapter 3

3.1

Enterprise Bean Class and Business
Interface

This chapter describes aspects of the EJB 3.0 programming model that are common across session bean
and message-driven bean component tﬂ}ées.

Enterprise Bean Class

In programming with the EJB 3.0 API, the developer typically uses the enterprise bean class as the pri-
mary programming artifact.

The bean developer defines the enterprise bean class and annotates it using the Java metadata annota-
tions defined by this and related specifications [7], [8], [9], [11]. Metadata annotations may be applied

to the bean class to specify semantics and requirements to the EJB container, to request container ser-
vices, and/or to provide structural and configuration information to the application deployer or the con-
tainer runtime. (See Chapter 10 “Metadata Annotations”).

(1]

The persistent entities defined in the documéiat/a Persistence APJ2] of this specification—unlike EJB 2.1 entity beans—are
not enterprise bean components. The contracts described in this specification document therefore do not apply to them.

15 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Business Interfaces

3.1.1 Requirements br the Enterprise Bean Class

3.2

The bean type of the enterprise bean class must be specified. The bean type is typically specified by
means of metadata annotations. Deployment descriptor elements may be used as an alternative.

Example

@Stateful public class CartBean implements ShoppingCart {
private float total,
private Vector productCodes;
public int someShoppingMethod(){...};

}

Business Interfaces

Under the EJB 3.0 API, the business interface of an enterprise bean is a plain Java interface, not an
EJBObject or EJBLocalObject interfadd.

Session beans and message-driven beans require a business interface. The business interface of a mes-
sage-driven bean is typically defined by the messaging type usedjggax,jms.MessageLis-

tener in the case of JMS). Business interfaces in the sense of this chapter are not defined for entity
beans.

The bean class may implement its business interfaEﬂ(A)bean class may have more than one busi-
ness interface. The following rules apply:

* If bean class implements a single interface, that interface is assumed to be the business inter-
face of the bean. This business interface will be a local interface unless the interface is desig-
nated as a remote business interface by use oR#raote annotation on the bean class or
interface or by means of the deployment descriptor.

* A bean class is permitted to have more than one interface. If a bean class has more than one
interface—excluding the interfaces listed below—any business interface of the bean class must
be explicitly designated as a business interface of the bean by meand.ofttie or Remote
annotation on the bean class or interface or by means of the deployment descriptor.

The following interfaces are excluded when determining whether the bean class has more than
one interface:java.io.Serializable ; java.io.Externalizable ; any of the
interfaces defined by thavax.ejp package.

e The [seilme business interface cannot be both a local and a remote business interface of the
bean*

[2]
K]

Usage of the earlier EJBObject and EJBLocalObject interface types continues to be supported under EJB 3.0. See Chapter

9 “Compatibility and Migration” .

While it is expected that the bean class will typically implement its business interface(s), if the bean class uses annotations on the
bean class or the deployment descriptor to designate its business interface(s), it is not required that the bean class also be specified
as implementing the interface(s). See the docuntei ‘Core Contracts and Requiremérjty.

5/2/06

16

Sun Microsystems Inc

Exceptions Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

* A business interface must not extejadax.ejb.EJBODbject or javax.ejb.EJBLo-
calObject

The metadata annotations to specify that a bean implements a web service and how the web
service is exposed to clients are defined by JSR-181, “Web Services Metadata for the Java
Platform.”[9]

Example

@Stateless @Remote
public class CalculatorBean implements Calculator {

public float add (int a, int b) {
return a + b;

public float subtract (int a, int b) {
return a - b;

}
}

public interface Calculator {
public float add (int a, int b);
public float subtract (int a, int b);

Example

/I Shopping Cart is the local business interface of the bean

@Stateful public class ShoppingCartBean implements ShoppingCart {

}

3.3 Exceptions

The methods of the business interface may declare arbitrary application exceptions. However, the meth-
ods of the business interface should not throwjéva.rmi.RemoteException , even if the inter-

face is a remote business interface, the bean class is annM#gb8ervice , or the method is
annotated a8VebMethod (see [9]). If problems are encountered at the protocol level, an EJBExcep-
tion which wraps the underlying RemoteException is thrown by the container. See the chapter “Excep-
tion Handing” in theEJB Core Contracts and Requiremedteument of this specification [1].

[4] Itis also an error if@Local and/or@Remoteis specified both on the bean class and on the referenced interface and the values
differ.

17 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Interceptors

3.4 Interceptors

An interceptor is a method that intercepts a business method invocation or a lifecycle callback event.
An interceptor method may be defined on the bean class or on an interceptor class associated with the
bean. An interceptor class is a class (distinct from the bean class itself) whose methods are invoked in
response to business method invocations and/or lifecycle events on the bean class. Interceptors may be
defined for session beans and message-driven beans. Business method interceptor methods may be
defined to apply to all business methods of the bean class or to specific business methods only.

Interceptor classes are denoted using Ititerceptors annotation on the bean class with which

they are associated or by means of the deployment descriptor. Default interceptors—interceptors that
apply to all session beans and message driven beans in the ejb-jar fle—may be defined by means of the
deployment descriptor.

Any number of interceptor classes may be defined for a bean class. If multiple interceptors are defined,
the order in which they are invoked is determined by the order in which they are specified. E(lee “
Core Contracts and Requiremeh}s

An interceptor class must have a public no-arg constructor.
Interceptors are stateless. The lifecycle of an interceptor instance is the same as that of the bean instance
with which it is associated. Dependency injection is performed when the interceptor instance is created,

using the naming context of the associated enterprise bean.

It is possible to carry state across multiple interceptor method invocations for a single interceptor
method invocation on a bean in the context data dfntiecationContext object.

Interceptors are statically configured by annotations or in the deployment descriptor.

The following rules apply to interceptors. The full set of requirements for interceptors is defined in the
document EJB Core Contracts and Requireméribthis specification.

* Business method interceptor method invocations occur within the same transaction and secu-
rity context as the business method for which they are invoked.

* Business method interceptor methods may throw runtime exceptions or application exceptions
that are allowed in the throws clause of the business method. Lifecycle callback interceptor
methods may throw runtime exceptions.

* Interceptors can invoke JNDI, JDBC, JMS, other enterprise beans, and the EntityManager. See
“EJB Core Contracts and Requireménfs], Tables 1, 2, 3. Interceptor methods share the
JNDI name space of the bean for which they are invoked.

* Dependency injection is supported for interceptor classes.

* Programming restrictions that apply to enterprise bean components to apply to interceptors as
well. See EJB Core Contracts and Requireménection 20.1.2 [1].]

5/2/06 18

Sun Microsystems Inc

Interceptors

3.4.1

Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Lifecycle Callback Interceptor Methods

3.4.2

A method may be designated as a lifecycle callback interceptor method to receive notification of life
cycle events for a session bean or message-driven bean. Lifecycle callback interceptor methods are
annotated with théostConstruct , PreDestroy , PostActivate , or PrePassivate anno-

tations or may be designated by means of the deployment descriptor.

Example

@Stateful public class ShoppingCartBean implements ShoppingCart {
private float total,
private Vector productCodes;
public int someShoppingMethod(){...};

@PreDestroy void endShoppingCart() {...};
}

An interceptor class may be used instead of callback methods defined directly on the bean class.

Lifecycle callback methods on the bean class or on the interceptor class are statically configured for a
bean class by use of metadata annotations or the deployment descriptor.

Lifecycle callback methods defined on a bean class have the following signature:

void <METHOD>()

Lifecycle callback methods defined on an interceptor class have the following signature:
void <METHOD>(InvocationContext)

Lifecycle callback interceptor methods can have public, private, protected, or package level access. A
lifecycle callback interceptor method must not be declardidias or static

The annotations used for lifecycle callback interceptor methods on the bean class and on the interceptor
class are the same. The same method may be annotated with more than one callback annotation, thus
serving for more than one callback.

Any subset or combination of lifecycle callback annotations may be specified on the bean class or on an
associated interceptor class. The same callback may not be specified more than once on a given class.

The requirements for lifecycle callback methods and interceptors are described further in the document
“EJB Core Contracts and Requireménibthis specification [1].

Business Method Inteceptor Methods

Business method interceptor methods may be defined for session bean business methods and the mes-
sage listener methods of message-driven beans. Business method interceptor methods are denoted by
the Aroundinvoke annotation oraround-invoke deployment descriptor element. Only one
Aroundinvoke method may be present on the bean class or on any given interceptor class. An
Aroundinvoke method must not be a business method.

19 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Interceptors

The business method invocation is intercepted byAtmindinvoke methods of the bean class and
interceptor classesAroundinvoke methods must always calhvocationContext.pro-

ceed() or neither the business method will be invoked nor any subsequent interéeptordin-
voke methods.

Aroundinvoke methods have the following signature:

public Object <METHOD>(InvocationContext) throws Exception

3.4.3 InvocationContext

The javax.interceptor.InvocationContext object provides the metadata that is required
for interceptor methods:

public interface InvocationContext {
public Object getTarget();
public Method getMethod();
public Object[] getParameters();
public void setParameters(Object[] params);
public java.util. Map<String, Object> getContextData();
public Object proceed() throws Exception;

}

The samdnvocationContext instance is passed to each interceptor method for a given business
method interception or lifecycle event. This allows an interceptor to save information in the context data
property of thelnvocationContext that can be subsequently retrieved in other interceptors as a
means to pass contextual data between interceptors. The contextual data is not shareable across business
method invocations or lifecycle event callbacks. If interceptors are invoked as a result of the invocation

on a web service endpoint, the map returnegétContextData will be the JAX-WS MessageCon-

text [13]. The lifecycle of thénvocationContext instance is otherwise unspecified.

The getTarget method returns the bean instance that is the target of the invocationgéthe

Method method returns the method of the bean class for which the interceptor was invoked. For
Aroundinvoke methods, this is the business method on the bean class; for lifecycle callback inter-
ceptor methodsgetMethod returns null. ThegetParameters method returns the parameters of

the business method invocation. sétParameters has been calledjetParameters returns the

values to which the parameters have been setsétRRarameters method modifies the parameters

used for the business method invocation. Modifying the parameter values does not affect the determina-
tion of the business method that is invoked on the bean class. The parameter types must match the types
for the business method, or the IllegalArgumentException is thrown.

The proceed method causes the invocation of the next interceptor method in the chain, or, when
called from the lasAroundinvoke interceptor method, the business method. pieeeed method
returns the result of that method invocation. If the business method retords, proceed returns

null . For lifecycle callback interceptor methods, if there is no callback method defined on the bean
class, the invocation gfroceed in the last interceptor method in the chain is a no-op, anldl is
returned.

5/2/06 20

Sun Microsystems Inc

Home Interfaces

Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

3.4.4 Exceptions
Aroundinvoke methods run in the same Java call stack as the bean business métkioda-
tionContext.proceed() will throw the same exception as any thrown in the business method

3.5

unless an interceptor further down the Java call stack has caught it and thrown a different exception.
Aroundinvoke developers should use try/catch/finally blocks aroundgieezeed() method to
handle any initialization and/or cleanup operations they want to invoke.

Aroundinvoke methods are allowed to catch and suppress business method exceptionad-

Invoke methods are allowed to throw runtime exceptions or any checked exceptions that the business
method allows within its throws clause. If @&roundinvoke method throws an exception before it

calls theproceed() = method, no otheAroundinvoke methods will be called. Since previous
Aroundinvoke methods are invoked in the same Java call stack, those methods may handle these
exceptions in catch/finally blocks around greceed() = method call.

Aroundinvoke methods can mark the transaction for rollback by throwing a runtime exception or by

calling the EJBContexsetRollbackOnly() method. Aroundinvoke methods may cause this
rollback before or afteinvocationContext.proceed() is called.

Home Interfaces

The requirement for Home interfaces has been eliminated.

Session beans are no longer required to have home interfaces. A client may acquire a reference to a ses-
sion bean through one of the mechanisms described in Chapter 8.

EJB 3.0 entities do not have home interfaces. A client may create an instance of an entity type by means
of the new operation. The entity instance may be persisted by means drtis/Manager APIs
defined in the Java Persistence APdocument [2].

21 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Home Interfaces

5/2/06 22

Sun Microsystems Inc

Requirements for Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Chapter 4

4.1

Stateless Session Beans

This chapter describes requirements that are specific to stateless session beans.

Requirements for Stateless Session Beans

4.1.1

Business Interface

4.1.2

The business interface of a session bean written to the EJB 3.0 APl is a plain Java interface, not an
EJBObject or EJBLocalObject interface.

In the case of a session bean that implements a web service, a web service interface is not required to be
defined. TheNebMethod annotations are used to identify the methods that are exposed as web service
operations. The session bean that serves as a web service endpoint is annotatedMeéthSbevice
annotation. These annotations for web services are defined by JSR-181 [9].

Home Interface

Stateless session beans do not need home interfaces. The client may acquire a reference to a stateless
session bean by means of one of the mechanisms described in Chapter 8.

23 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateless Session Beans

4.1.3 Bean Class

A stateless session bean must be annotated witBtdteless annotation or denoted in the deploy-
ment descriptor as a stateless session bean. The bean class need not implejanent.tjb.Ses-
sionBean interface.

4.1.4 Lifecycle Callbacks br Stateless Session Beans
The following lifecycle event callbacks are supported for stateless sessioftbeans

e PostConstruct

* PreDestroy

PostConstruct callbacks occur after any dependency injection has been performed by the container
and before the first business method invocation on the bean.

PostConstruct methods are invoked in an unspecified transaction context and security context.
PreDestroy callbacks occur at the time the bean instance is destroyed.

PreDestroy methods execute in an unspecified transaction and security context.

4.1.5 Dependency Injection

If a stateless session bean uses dependency injection mechanisms for the acquisition of references to
resources or other objects in its environment (see Chapter 8), the container injects these references
before any business methods or lifecycle callback interceptor methods are invoked on the bean instance.

4.1.6 Interceptors br Stateless Session Beans

TheAroundinvoke methods are supported for stateless session business method invocations. These
interceptor methods may be defined on the bean class or on a interceptor class and apply to the invoca-
tion of the business methods of the bean. See Section 3.4 “Interceptors” .

[5] PostActivate and PrePassivate callbacks, if specified, are ignored for stateless session beans.

5/2/06 24

Sun Microsystems Inc

Requirements for Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

4.1.6.1 Example

@Stateless

@Interceptors({
com.acme.AccountAudit.class,
com.acme.Metrics.class,
com.acme.CustomSecurity.class

)
public class AccountManagementBean implements AccountManagement {
public void createAccount(int accountNumber, AccountDetails
details) { ... }
public void deleteAccount(int accountNumber) { ... }
public void activateAccount(int accountNumber) { ... }
public void deactivateAccount(int accountNumber) { ... }

}

public class Metrics {
@Aroundinvoke
public Object profile(InvocationContext inv) throws Exception {
long time = System.currentTimeMillis();

try {
return inv.proceed();

} finally {
long endTime = time - System.currentTimeMillis();
System.out.printin(inv.getMethod() + " took " + endTime + "
milliseconds.");

}
}
}

public class AccountAudit {
@Aroundinvoke
public Object auditAccountOperation(InvocationContext inv) throws
Exception {
try {
Object result = inv.proceed();
Auditor.audit(inv.getMethod().getName(), inv.getParame-
ters()[0]);
return result;
} catch (Exception ex) {
Auditor.auditFailure(ex);
throw ex;
}
}
}

public class CustomSecurity {
@Resource EJBContext ctx;
@Aroundinvoke
public Object customSecurity(InvocationContext inv) throws Excep-
tion {
doCustomSecurityCheck(ctx.getCallerPrincipal());
return inv.proceed();

private void doCustomSecurityCheck(Principal caller) throws
SecurityException {...}
}

25 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Client View

4.2 Client View

The local or remote client of a session bean acquires a reference to a session bean business interface
through one of the dependency injection or lookup mechanisms described in Chapter 8.

4.3 Other Requirements

The full set of requirements that apply to stateless session beans are speciiéB iGore Contracts
and Requirements” [1]

5/2/06 26

Sun Microsystems Inc

Requirements for Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

Chapter 5

5.1

Stateful Session Beans

This chapter covers requirements that are specific to stateful session beans.

Requirements for Stateful Session Beans

5.1.1

Business Interface

5.1.2

The business interface of a session bean written to the EJB 3.0 APl is a plain Java interface, not an
EJBObject or EJBLocalObject interface.

Home Interface

5.1.3

Stateful session beans do not need home interfaces. The client may acquire a reference to a stateless ses-
sion bean by means of one of the mechanisms described in Chapter 8.

Bean Class

A stateful session bean must be annotated wittstladeful ~ annotation or denoted in the deployment
descriptor as a stateful session bean. The bean class need not implenjavetteib.Session-

27 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateful Session Beans
Bean interface or thgava.io.Serializable interface®!
A stateful session bean may implement 8essionSynchronization interface, as described in

5.1.4

“EJB Core Contracts and RequireménBhapter 4 [1].

Lifecycle Callbacks br Stateful Session Beans

5.14.1

5.1.5

Stateful session beans support callbacks for the following lifecycle events: construction, destruction,
activation, and passivation.

The lifecycle event callbacks are the following. They may be defined on the bean class or an interceptor
class for the bealf!

e PostConstruct
* PreDestroy
e PostActivate

¢ PrePassivate

Semantics of the Life Cycle Callback Methods for Stateful Session Beans
PostConstruct methods are invoked on the newly constructed instance, after any dependency injec-
tion has been performed by the container and before the first business method is invoked on the bean.
PostConstruct methods are invoked in an unspecified transaction and security context.

PreDestroy methods execute after any method annotated withRbmove annotation has com-
pleted.

PreDestroy methods are invoked in an unspecified transaction and security context.
The semantics dPrePassivate andPostActivate are the same as the EJB 2jbActivate

andejbPassivate callback methods. See Chapter 4 of theJB Core Contracts and Requireménts
document of this specification [1].

Dependency Injection

If a stateful session bean uses dependency injection mechanisms for the acquisition of references to
resources or other objects in its environment (see Chapter 8), the container injects these references
before any business methods or lifecycle callback interceptor methods are invoked on the bean instance.

(6]
(7]

The container must be able to handle the passivation of the bean instance even if the bean class does not implealemt the Seri
able interface. See the documeBIB Core Contracts and Requiremérjid, Chapter 4.

The callbacks PreConstruct, PostDestroy, PreActivate, and PostPassivate were not introduced because there did not seem to be use
cases that justified their introduction.

5/2/06

28

Sun Microsystems Inc

Requirements for Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

5.1.6 Inter ceptors Por Stateful Session Beans

5.1.7

Aroundinvoke methods are supported for stateful session business method invocations. These inter-
ceptor methods may be defined on the bean class or on a interceptor class and apply to the invocation of
the business methods of the bean.

For stateful session beans that implement $lessionSynchronization interface,afterBe-

gin occurs before anyAroundinvoke method invocation, antbeforeCompletion after all
AroundIinvoke invocations are finished.

Example

@ Stateful

public class AccountManagementBean implements AccountManagement {
@Resource SessionContext sessionContext;
Socket cs;

@PostConstruct
@PostActivate
public void initRemoteConnectionToAccountSystem() {
try {
cs = new Socket(DEST_HOST, DEST_PORT);
} catch (Exception ex) {
throw new EJBException("Could not allocate socket", ex);
}
}

@PreDestroy
@PrePassivate
public void closeRemoteConnectionToAccountSystem() {
try {
cs.close();
} catch (IOException ioEX) { // Ignore }
cs = null;

public OpResult createAccount(int accountNumber, AccountDetails
details) { ... }

public OpResult deleteAccount(int accountNumber) { ... }

public OpResult activateAccount(int accountNumber) { ... }

public OpResult deactivateAccount(int accountNumber) { ... }

@Remove
public void logOff() { ... }

@Aroundinvoke
public Object auditAccountOperation(InvocationContext inv) throws
Exception {
try {
Object result = inv.proceed();
if (OpResult)result == OpResult. SUCCESS) {
if (inv.getParameters()[0].length > 0) {
Auditor.audit(inv.getMethod().getName(),
inv.getParameters()[0], ..userlInfo.. etc.);

return result;

29 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateful Session Beans

5.1.8

} catch (Exception ex) {
Auditor.auditFailure(inv.getMethod(), inv.getParameters(),

ex);
throw ex;
}
}
}
Client View

5.1.9

The local or remote client of a session bean acquires a reference to the session bean business interface
through one of the dependency injection or lookup mechanisms described in Chapter 8.

When a stateful session bean is looked up or otherwise obtained through the explicit JNDI lookup
mechanisms, the container must provide a new stateful session bean instance, as required by the Java
Platform, Enterprise Edition specification (Section “Java Naming and Directory Interface (JNDI) Nam-

ing Context” [7]).

When stateful session bean is injected into a client context or is obtained by lookup, the container cre-
ates a new stateful session bean instance to which method invocations from the client are delegated.
This instance, however, is uninitialized from the client’s point of view, since as the client does not call
an explicit “create” method to obtain and initialize the bean.

The client typically initializes a stateful session bean through business methods defined as part of by the
bean'’s interface. The bean may provide one or more initialization methods for this purpose.

Stateful Session Bean Renval

The Remove annotation may be used to annotate a stateful session bean business method. Use of this
annotation will cause the container to remove the stateful session bean instance after the completion
(normal or abnormal) of the annotated method.

5.1.9.1 Example

@Stateful public class ShoppingCartBean implements ShoppingCart {

'b'rivate String customer;

public void startToShop(String customer) {
this.customer = customer;

public void addToCart(Item item) {

}
@Remove public void finishShopping() {

}

5/2/06

30

Sun Microsystems Inc

Other Requirements Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

5.2 Other Requirements

The full set of requirements that apply to stateful session beans are specifiedHrCore Contracts
and Requiremenitq1].

31 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Other Requirements

5/2/06 32

Sun Microsystems Inc

Requirements for Message-Driven Beans Enterprise JavaBeans 3.0, Final Release Message-Driven Beans

Message-Driven Beans

Chapter 6
This chapter describes requirements that are specific to message-driven beans.
6.1 Requirements for Message-Driven Beans

6.1.1 Business Interface
The business interface of a message-driven bean is the message-listener interface that is determined by
the messaging type in use for the bean. For example, in the case of JIMS, thigisthgns.Mes-
sagelListener interface.
The message-driven bean must implement the appropriate message listener interface for the messaging
type that the message-driven bean supports or must designate its message listener interface using the
MessageDriven annotation or the deployment descriptor.

6.1.2 Bean Class

A message driven bean must be annotated withMeesageDriven annotation or denoted in the
deployment descriptor as a message-driven bean. The bean class need not implement the
javax.ejb.MessageDrivenBean interface.

33 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Message-Driven Beans Enterprise JavaBeans 3.0, Final Release Other Requirements

6.1.3

Lifecycle Callbacks br Message-Drven Beans

6.1.4

The following lifecycle event callbacks are supported for message—driver{%zeans
* PostConstruct

* PreDestroy

PostConstruct callbacks occur before the first message listener method invocation on the bean.
This is at a point after which any dependency injection has been performed by the container.

PostConstruct callback methods execute in an unspecified transaction and security context.
PreDestroy callbacks occur at the time the bean is removed from the pool or destroyed.

PreDestroy callback methods execute in an unspecified transaction and security context.

Dependency Injection

6.1.5

If a message-driven bean uses dependency injection mechanisms for the acquisition of references to
resources or other objects in its environment (see Chapter 8), the container injects these references
before any business methods or lifecycle callback interceptor methods are invoked on the bean instance.

Inter ceptors or Message-Drven Beans.

6.2

The Aroundinvoke methods are supported for message-driven beans. These interceptor methods
may be defined on the bean class or on a interceptor class and apply to the handling of the bean’s mes-
sage listener method invocation.

Other Requirements

The full set of requirements that apply to message-driven beans are specifledBirCbre Contracts
and Requiremernitq1].

8

PostActivate and PrePassivate callbacks, if specified, are ignored for message-driven beans.

5/2/06

34

Sun Microsystems Inc

Other Requirements Enterprise JavaBeans 3.0, Final Release Persistence

smerr PErsIStence

The model for persistence and object/relational mapping has been considerably revised and enhanced in
the Enterprise JavaBeans 3.0 release.

An EJB 3.0 entity is a lightweight persistent domain object.
The contracts and requirements for entities defined by Enterprise JavaBeans 3.0 are specified in the doc-

ument ‘Java Persistence AP[2], which also contains the full specification of the Java Persistence
guery language and the metadata for object/relational mapping.

35 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Persistence Enterprise JavaBeans 3.0, Final Release Other Requirements

5/2/06 36

Sun Microsystems Inc

Annotation of Context Dependencies Enterprise JavaBeans 3.0, Final Release Enterprise Bean Context and Environment

Chapter 8

8.1

Enterprise Bean Context and Environment

The enterprise bean's context comprises its container context and its resource and environment context.
The bean may gain access to references to resources and other environment entries in its context by hav-
ing the container supply it with those references. In this case, bean instance variables or setter methods
are annotated as target for dependency injection.

Alternatively, thelookup method added to thgvax.ejb.EJBContext interface or the JNDI
APIs may be used to look up resources in the bean’s environment. (See Section 8.1.4.)

The same set of metadata annotations are used to express context dependencies for both these
approaches.

Annotation of Context Dependencies

A bean declares a dependency upon a resource or other entry in its environment context through a
dependency annotation.

A dependency annotation specifies the type of object or resource on which the bean is dependent, its
characteristics, and the name through which it is to be accessed.

37 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Context and Environment Enterprise JavaBeans 3.0, Final Release Annotation of Context Dependencies

The following are examples of dependency annotations:

@EJB(name="mySessionBean", beanInterface=MySessionlF.class)

@Resource(name="myDB", type=javax.sqgl.DataSource.class)

Dependency annotations may be attached to the bean class or to its instance variables or methods.
The amount of information that needs to be specified for a dependency annotation depends upon its
usage context and how much information can be inferred from that context. See the chapter “Enterprise
Bean Environment” in thEJB Core Contracts and Requiremedtgument of this specification [1].

The following sections discuss and illustrate the various approaches.

8.1.1 Annotation of Instance \ariables

The developer may annotate instance variables of the enterprise bean class to indicate dependencies
upon resources or other objects in the bean’s environment. The container automatically initializes these
annotated variables with the external references to the specified environment objects. This initialization
occurs before any business methods are invoked on the bean instance and after the time the the bean’s
EJBContext is set.

Example:

@Stateless public class MySessionBean implements MySession {

@Resource(name="myDB") //type is inferred from variable
public DataSource customerDB;

@EJB /Ireference name and type inferred from variable
public AddressHome addressHome;

public void myMethod1(String myString)
{
try

Connection conn = customerDB.getConnection();

catch (Exception ex)

=
}

public void myMethod2(String myString)

Address a = addressHome.create(myString);

}
}
When the resource type can be determined by the variable type, the annotation need not contain the type
of the object to be accessed. If the name for the resource reference in the bean’s environment is the same

5/2/06

38

Sun Microsystems Inc

Annotation of Context Dependencies Enterprise JavaBeans 3.0, Final Release Enterprise Bean Context and Environment

8.1.2

as the variable name, it does not need to be explicitly specified. See the chapter “Enterprise Bean Envi-
ronment” in theEJB Core Contracts and Requiremedégument of this specification [1].

Examples

@EJB public ShoppingCart myShoppingCart;
@Resource public DataSource myDB,;
@Resource public UserTransaction utx;

@Resource SessionContext ctx;

Setter Injection

8.1.3

Setter injection provides an alternative to the container’s initialization of variables described above.

When setter injection is to be used, the dependency annotations are applied to setter methods of the bean
class defined for that purpose.

Examples

@Resource(name="customerDB")

public void setDataSource(DataSource myDB) {
this.ds = myDB,;

}

@Resource // reference name is inferred from the property name
public void setCustomerDB(DataSource myDB) {
this.customerDB = myDB,;

}

@Resource

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

When the resource type can be determined by the parameter type, the annotation need not specify the
type of the object to be accessed. If the name of the resource is the same as the property nhame corre-
sponding to the setter method, it does not need to be explicitly specified.

A setter method that is annotated with tResource or other dependency annotation will be used by

the container for dependency injection. Such setter injection methods will be called by the container
before any business methods are invoked on the bean instance and after the bean’s EJBContext is set.

Injection and Lookup

Resources, references to components, and other objects that may be looked up in the INDI nhame space
may be injected by means of the injection mechanisms listed above.

References to injected objects are looked up name. These lookups are performed in the referencing

39 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Enterprise Bean Context and Environment Enterprise JavaBeans 3.0, Final Release Annotation of Context Dependencies

8.1.4

bean'gava:comp/env namespace as specified in the chapter “Enterprise Bean Environment” in the
EJB Core Contracts and RequiremedéEument of this specification [1].

EJBContext

The methodDbject lookup(String name) is added to thgavax.ejb.EJBContext inter-
face. This method can be used to lookup resources and other environment entries bound in the bean’s
JNDI environment naming context.

Injection of the bean’s EJBContext object may be obtained as described in sections 8.1.1 and 8.1.2
above.

5/2/06

40

Sun Microsystems Inc

Support for Existing Applications Enterprise JavaBeans 3.0, Final Release Compatibility and Migration

Chapter 9

9.1

Compatibility and Migration

This chapter addresses issues of compatibility and migration between EJB 3.0 and earlier components
and clients.

Support for Existing Applications

9.2

Existing EJB 2.1 and earlier applications must be supported to run unchanged in EJB 3.0 containers.
All EJB 3.0 implementations must support EJB 1.1, EJB 2.0, and EJB 2.1 deployment descriptors for
applications written to earlier versions of the Enterprise JavaBeans specification.

Interoperability of EJB 3.0 and Earlier Components

9.2.1

This release of Enterprise JavaBeans supports migration and interoperability among client and server
components written to different versions of the EJB APIs as described below.

Clients written to the EJB 2.x APIs

An enterprise bean that is written to the EJB 2.1 or earlier API release may be a client of components
written to EJB 3.0 API using the earlier EJB APIs when deployed in an EJB 3.0 container.

41 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Compatibility and Migration Enterprise JavaBeans 3.0, Final Release Adapting EJB 3.0 Session Beans to Earlier Cli-

Such an EJB 2.1 or earlier client component does not need to be rewritten or recompiled to be a client of
a component written to the EJB 3.0 API.

Such clients may access components written to the EJB 3.0 APIs and components written to the earlier
EJB APIs within the same transaction.

See Section 9.3 for a discussion of the mechanisms that are used to enable components written to the
EJB 3.0 API to be accessed and utilized by clients written to earlier versions of the EJB specification.

tions.

9.2.2 Clients written to the new EJB 3.0 API
A client written to the EJB 3.0 APl may be a client of a component written to the EJB 2.1 or earlier API.
Such clients may access components written to the EJB 3.0 APIs and components written to the earlier
EJB APIs within the same transaction.
Such clients access components written to the earlier EJB APIs using the EJB 2.1 client view home and
component interfaces. THheJB annotation (or theejb-ref and ejb-local-ref deployment
descriptor elements) may be used to specify the injection of home interfaces into components that are
clients of beans written to the earlier EJB client view. See Section 10.10.

9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs
EJB clients may access EJB 3.0 entities and/or the EntityManager toiether with EJB 2.x entity beans
together within the same transaction as well as within separate transE

9.2.4 Other Combinations of EJB 3.0 and Earlier APIs
The “EJB Core Contracts and Requiremérdscument [1] specifies how the new EJB 3.0 APIs may be
used together with the existing EJB APIs defined in [3] within a single component class. Such usage
may be helpful in facilitating incremental migration of existing applications to EJB 3.0.

9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views

Clients written to the EJB 2.1 and earlier client view depend upon the existence of a home and compo-
nent interface.

A session bean written to the EJB 3.0 APl may be adapted to such earlier preexisting client view inter-
faces.

The session bean designates the interfaces to be adapted by usitgntbeeHome and/orLocal-
Homemetadata annotations (or equivalent deployment descriptor elements).

[9]

In general, the same database data should not be accessed by both EJB 3.0 and EJB 2.x entities within the same application:
behavior is unspecified if data aliasing occurs.

5/2/06

42

Sun Microsystems Inc

Adapting EJB 3.0 Session Beans to Earlier Client ViewsEnterprise JavaBeans 3.0, Final Release Compatibility and Migration

931

When the client is deployed, the container classes that implement the EJB 2.1 home and remote inter-
faces (or local home and local interfaces) referenced by the client must provide the implementation of
the javax.ejb.EJBHome and javax.ejb.EJBObject interfaces (or the
javax.ejb.EJBLocalHome andjavax.ejb.EJBLocalObject interfaces) respectively.

In addition, the container implementation classes must implement the methods of the home and compo-
nent interfaces to apply to the EJB 3.0 component being referenced as described below.

Stateless Session Beans

9.3.2

The invocation of the homereate() = method must return the corresponding local or remote compo-
nent interface of the bean. This may or may not cause the creation of the bean instance, depending on
the container's implementation strategy. For example, the container may preallocate bean instances
(e.g., in a pooling strategy) or may defer the creation of the bean instance until the first invocation of a
business method on the bean class. When the bean instance is created, the container insekes the
SessionContext method (if any), performs any other dependency injection, and invokézabte

Construct lifecycle callback method(s) (if any), as specified iEJB Core Contracts and
Requirementq[1].

It is likewise implementation-dependent as to whether the invocation of the EJBHwonoye(Han-

dle) or EJBObject or EJBLocalObjeotmove() method causes the immediate removal of the bean
instance, depending on the container's implementation strategy. When the bean instance is removed, the
PreDestroy callback method (if any) is invoked, as specified in Section 4.1.4.

The invocations of the business methods of the component interface are delegated to the bean class.

Stateful Session Beans

The invocation of acreate<METHOD>() method causes construction of the bean instance, invoca-
tion of the PostConstruct callback (if any), and invocation of the matchithgit method, and
returns the corresponding local or remote component interface of the bean. The invocation of these
methods occurs in the same transaction and security context as the client's caligatéhe method.

The invocation of the EJBHomeemove(Handle) or EJBObject or EJBLocalObjecemove()
method causes the invocation of the PreDestroy callback method (if any) and removal of bean
instance, as described ifEJB Core Contracts and Requireménjfy.

The invocations of the business methods of the component interface are delegated to the bean class.

Thelnit annotation is used to specify the correspondence of a method on the bean class with a create
method of the adapted EJBHome and/or EJBLocalHome interface. The result type of simith an
method is required to beoid , and its parameter types must be exactly the same as those of the refer-
encedcreate<METHOD>() method.

43 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Compatibility and Migration Enterprise JavaBeans 3.0, Final Release Combined Use of EJB 3.0 and EJB 2.1 APIs in

9.4 Combined Use of EJB 3.0 and EJB 2.1 APIs in a Bean Class

This document describes the typical usage of annotations to specify the enterprise bean type and call-
back methods. It is permitted to combine the use of such annotations with the bean’s implementation of
one of thejavax.ejb.EnterpriseBean interfaces as such combination may be useful in facili-
tating migration to the EJB 3.0 simplified programming model.

In addition to the business interface described in Section 3.2, a session bean may define EJBHome,
EJBLocalHome, EJBObject, and/or EJBLocalObject interfaces in accordance with the rules of the EJB
2.1 specification. A deployment descriptor or metadata annotations may be used to associate the bean
class with these interfaces.

Requirements for the combined usage of EJB 3.0 and EJB 2.1 and earlier APIs within an enterprise
bean class are defined in the specification docuni&ls Core Contracts and Requiremehts

5/2/06

44

Sun Microsystems Inc

Annotations to Specify Bean Type Enterprise JavaBeans 3.0, Final Release Metadata Annotations

aaero Metadata Annotations

This chapter defines the metadata annotations introduced by this specification.
These annotations are in flawax.ejb package except where otherwise indicated.

Annotations related to persistence are defined in the docuriawa ‘Persistence APJ2] of this speci-
fication.

Annotations related to resource injection and security are defined irCtvarhon Annotations for the
Java Platforni specification [8], and are summarized here for reference.

10.1 Annotations to Specify Bean Type

10.1.1 Stateless Session Beans

The Stateless annotation specifies that the enterprise bean is a stateless session bestatd-he
less annotation is applied to the bean class.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateless {

45 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Annotations to Specify Bean Type

10.1.2.1

10.1.2

String name() default ";
String mappedName() default ™;
String description() default ™;

}

The name annotation element defaults to the unqualified nhame of the bean class. The name—whether
explicitly specified or defaulted—must be unique within the ejb-jar.

The mappedName element is a product-specific name that the session bean should be mapped to.
Applications that use mapped names may not be portable.

Stateful Session Beans

TheStateful annotation specifies that the enterprise bean is a stateful session be&taftifiel
annotation is applied to the bean class.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateful {
String name() default ";
String mappedName() default ™;
String description() default "™;

The name annotation element defaults to the unqualified name of the bean class. The name—whether
explicitly specified or defaulted—must be unique within the ejb-jar.

The mappedNameelement is a product-specific name that the session bean should be mapped to.
Applications that use mapped names may not be portable.

Init Annotation for Stateful Session Beans

Thelnit annotation is used to specify the correspondence of a method on the bean classresth a
ate<METHOD>method for an adapted EJB 2.1 EJBHome and/or EJBLocalHome client view. The
result type of such amit method is required to beoid , and its parameter types must be exactly the
same as those of the referencesate<METHOD> method(s).

@Target(METHOD) @Retention(RUNTIME)
public @interface Init{
String value() default ";

Thevalue element must be specified when thé annotation is used in association with an adapted
home interface of a stateful session bean that has more tharreste<METHOD> method. It speci-
fies the name of the correspondorgate<METHOD> method of the adapted home.

Thelnit method is only required to be specified for stateful session beans that proRielmate-
Homeor LocalHome interface. The name of the adapteéate<METHOD> method of the Home or
LocalHome interface must be specified if there is any ambiguity.

5/2/06

46

Sun Microsystems Inc

Annotations to Specify Local or Remote InterfacesEnterprise JavaBeans 3.0, Final Release Metadata Annotations

10.1.2.2 Remove Annotation for Stateful Session Beans

10.1.3

The Remove annotation is used to denote a remove method of a stateful session bean. Completion of
this method causes the container to destroy the stateful session bean, first invoking the ledess

troy method, if any. TheetainlfException element allows the removal to be prevented if the
method terminates abnormally with an application exception.

@Target(METHOD) @Retention(RUNTIME)
public @interface Remove{

boolean retainlfException() default false;
}

Message-driven Beans

10.2

The MessageDriven annotation specifies that the enterprise bean is a message-driven bean. This
annotation is applied to the bean class.

The name annotation element defaults to the unqualified hame of the bean class. The name—whether
explicitly specified or defaulted—must be unique within the ejb-jar.

The messagelListenerinterface element specifies the message listener interface of the bean. It
must be specified if the bean class does not implement its message listener interface or implements
more than one interface other thiava.io.Serializable , java.io.Externalizable , or

any of the interfaces defined by fagax.ejp package.

ThemappedNameelement is a product-specific name that the message-driven bean should be mapped
to. Applications that use mapped names may not be portable.

@Target(TYPE) @Retention(RUNTIME)

public @interface MessageDriven {
String name() default "";
Class messagelListenerinterface() default Object.class;
ActivationConfigProperty[] activationConfig() default {};
String mappedName() default ";
String description() default ";

}

@Target({}) @Retention(RUNTIME)

public @interface ActivationConfigProperty {
String propertyName();
String propertyValue();

Annotations to Specify Local or Remote Interfaces

TheRemote andLocal annotations apply only to session beans and their interfaces.

The Remote annotation is applied to the session bean class or remote business interface to designate a
remote interface of the bean.

47 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release = Annotations to Support EJB 2.1 and Earlier

10.3

The Local annotation is applied to the session bean class or local business interface to designate a
local interface of the bean.

Use of theLocal annotation is only required when the bean class does not implement only a single
interface other than any of the followingava.io.Serializable ; java.io.Externaliz-
able ; any of the interfaces definedjavax.ejb

The value element is specified only when the annotation is applied to the bean class. It is only
required to be specified if the bean class implements more than one interface (excluding
java.io.Serializable , java.io.Externalizable , and any of the interfaces defined by
thejavax.ejp package).

@Target(TYPE) @Retention(RUNTIME)
public @interface Remote {
Class[] value() default {}; // list of remote business interfaces

@Target(TYPE) @Retention(RUNTIME)
public @interface Local {
Class[] value() default {}; // list of local business interfaces

Annotations to Support EJB 2.1 and Earlier Client View

10.4

TheRemoteHome andLocalHome annotations may be applied to session beans only.

These annotations are intended for use with EJB 3.0 session beans that provide an adapted EJB 2.1
component view. They may also be used with beans that have been written to the EJB 2.1 APIs.

@Target(TYPE) @Retention(RUNTIME)
public @interface RemoteHome {
Class value(); // home interface

}
@Target(TYPE) @Retention(RUNTIME)

public @interface LocalHome {
Class value(); // local home interface

TransactionManagement

The TransactionManagement annotation specifies the transaction management demarcation type

of a session bean or message-driven bean. [TthasactionManagement annotation is not spec-

ified for a session bean or message-driven bean, the bean is assumed to have container managed transac-
tion demarcation.

@Target(TYPE) @Retention(RUNTIME)
public @interface TransactionManagement {
TransactionManagementType value()
default TransactionManagementType.CONTAINER;

5/2/06

48

Sun Microsystems Inc

Transaction Attributes Enterprise JavaBeans 3.0, Final Release Metadata Annotations
}
The enumTransactionManagementType is used to specify whether container-managed or

10.5

bean-managed transaction management is used.

public enum TransactionManagementType {
CONTAINER,
BEAN

}

Transaction Attributes

10.6

The TransactionAttribute annotation specifies whether the container is to invoke a business
method within a transaction context. The semantics of transaction attributes are defined in the chapter
“Support for Transactions” of theEJB Core Contracts and Requiremén®cument of this specifica-

tion [1].

The TransactionAttribute annotation can only be specified if container managed transaction
demarcation is used. The annotation can be specified on the bean class and/or it can be specified on
methods of the class that are methods of the business interface. SpecifyiigatisactionAt-

tribute annotation on the bean class means that it applies to all applicable business interface meth-
ods of the class. Specifying the annotation on a method applies it to that method only. If the annotation
is applied at both the class and the method level, the method value overrides if the two disagree.

The values of th@ransactionAttribute annotation are defined by the endiransaction-
AttributeType
If a TransactionAttribute annotation is not specified, and the bean uses container managed

transaction demarcation, the semantics oREQUIREDransaction attribute are assumed.

public enum TransactionAttributeType {
MANDATORY,
REQUIRED,
REQUIRES_NEW,
SUPPORTS,
NOT_SUPPORTED,
NEVER

}

@Target{METHOD, TYPE}) @Retention(RUNTIME)
public @interface TransactionAttribute {
TransactionAttributeType value()
default TransactionAttributeType.REQUIRED;
}

Interceptors and LifeCycle Callbacks

Thejavax.interceptor.Interceptors annotation is used to designate one or more intercep-

49 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Interceptors and LifeCycle Callbacks

tor classes associated with a bean. Triterceptors annotation is applied to the bean class or to a
business method of the bean.

package javax.interceptor;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface Interceptors {

Class[] value();

Thejavax.interceptor.Aroundinvoke annotation is used to designate an interceptor method.

package javax.interceptor;
@Target({METHOD}) @Retention(RUNTIME)
public @interface Aroundinvoke {}

The javax.interceptor.ExcludeDefaultinterceptors annotation, when applied to a
bean class, excludes the invocation of default interceptors for all business methods of the bean. When
applied to a business method, it excludes the invocation of default interceptors for that method.

package javax.interceptor;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface ExcludeDefaultinterceptors {}

The javax.interceptor.ExcludeClassinterceptors annotation excludes the invocation
of class-level interceptors (but not default interceptors) for the given method.

package javax.interceptor;
@Target({METHOD}) @Retention(RUNTIME)
public @interface ExcludeClassinterceptors {}

The javax.annotation.PostConstruct , javax.annotation.PreDestroy , and the
javax.ejb.PostActivate and javax.ejb.PrePassivate annotations designate lifecy-
cle callback methods.

package javax.annotation;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PostConstruct {}

package javax.annotation;
@Target{METHOD}) @Retention(RUNTIME)
public @interface PreDestroy {}

package javax.ejb;
@Target({METHODY}) @Retention(RUNTIME)
public @interface PostActivate {}

package javax.ejb;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePassivate {}

5/2/06

50

Sun Microsystems Inc

Timeout

10.7

Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Timeout

10.8

TheTimeout annotation is used to denote the timeout method of an enterprise bean.

@Target{METHODY}) @Retention(RUNTIME)
public @interface Timeout {}

Exceptions

10.9

The ApplicationException annotation is applied to an exception to denote that it is an applica-
tion exception and should be reported to the client directly (i.e., unwrappedAfdplecationEx-

ception annotation may be applied to both checked and unchecked exceptionsoliiiaek

element is used to indicate whether the container must cause the transaction to rollback when the excep-
tion is thrown.

@Target(TYPE) @Retention(RUNTIME)

public @interface ApplicationException {
boolean rollback() default false;

}

Security and Method Permissions

109.1

The following security-related annotations are in the pacljagex.annotation.security
They are defined by [8], and are presented here for reference.

Security Role Refeences

10.9.2

The DeclareRoles annotation is used to declare the references to security roles in the enterprise
bean code.

package javax.annotation.security;
@Target({TYPE}) @Retention(RUNTIME)
public @interface DeclareRoles {

String[] value();

MethodPermissions

TheRolesAllowed annotation specifies the security roles that are allowed to invoke the methods of
the bean. The value of tiRolesAllowed annotation is a list of security role names.

This annotation can be specified on the bean class and/or it can be specified on methods of the class that
are methods of the business interface. SpecifyingRbkesAllowed annotation on the bean class
means that it applies to all applicable interface methods of the class. Specifying the annotation on a
method applies it to that method only. If the annotation is applied at both the class and the method level,

51 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release EJB References

10.9.3

the method value overrides if the two disagree. If BFemitAll annotation is applied to the bean
class, androlesAllowed is specified on an individual method, the value of BaesAllowed
annotation overrides for the given method.

package javax.annotation.security;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface RolesAllowed {

String[] value();

}

PermitAll

1094

The PermitAll annotation specifies that all security roles are allowed to invoke the specified
method(s)—i.e., that the specified method(s) are “unchecked”. This annotation can be specified on the
bean class and/or it can be specified on the business methods of the class. Specifyargniball

annotation on the bean class means that it applies to all applicable business methods of the class. Speci-
fying the annotation on a method applies it to that method only, overriding any class-level setting for the
particular method.

package javax.annotation.security;
@Target ({TYPE, METHOD}) @Retention(RUNTIME)
public @interface PermitAll {}

DenvyAll

10.95

TheDenyAll annotation specifies that no security roles are allowed to invoke the specified method—
i.e. that the specified method is to be excluded from execution.

package javax.annotation.security;
@Target (METHOD) @Retention(RUNTIME)
public @interface DenyAll {}

RunAs

10.10

The RunAs annotation is used to specify the bean’s run-as property. This annotation is applied to the
bean class. Its value is the name of a security role.

package javax.annotation.security;
@Target(TYPE) @Retention(RUNTIME)
public @interface RunAs {

String value();

EJB References

The EJB annotation denotes a reference to an EJB business interface or home interface.

5/2/06

52

Sun Microsystems Inc

Resource References Enterprise JavaBeans 3.0, Final Release Metadata Annotations

10.11

Thename element refers to the name by which the resource is to be looked up in the environment. The
beaninterface element is the referenced interface type—either the business interface or home
interface.

ThebeanName element references the value of theme element of theStateful ~ or Stateless

annotation, whether defaulted or explicit, @b-name element, if the deployment descriptor was

used to define the name of the bean). BeanName element allows disambiguation if multiple ses-

sion beans in the ejb-jar implement the same interface. In order to reference a bean in another ejb-jar file
in the same application, the beanName may be composed of a path name specifying the ejb-jar contain-
ing the referenced bean with the bean name of the target bean appended and separated from the path
name by#. The path name is relative to the jar file containing the component that is referencing the tar-
get bean.

The mappedNameelement is a product-specific name that the bean reference should be mapped to.
Applications that use mapped names may not be portable.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {

String name() default "";

Class beanlnterface() default Object.class;

String beanName() default "";

String mappedName() default ";

String description() default "™;

}

@Target(TYPE) @Retention(RUNTIME)
public @interface EJBs {
EJBJ] value();

Resource References

The Resource andResources annotations are in the packageax.annotation . They are
defined by [8], and are presented here for reference.

TheResource annotation is used to express a dependency on an external resource in the bean’s envi-
ronment. Thename property refers to the name by which the resource is to be known in the environ-
ment; the type is the resource manager connection factory typauthenticationType element
specifies whether the container or bean is to perform authenticatiorshBineable element refers to

the sharability of resource manager connections.mappedNameelement is a product-specific name

that the resource should be mapped to. Applications that use mapped names may not be portable.

package javax.annotation;
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface Resource {
public enum AuthenticationType {
CONTAINER,
APPLICATION

String name() default ";
Class type() default Object.class;

53 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Resource References

AuthenticationType authenticationType()
default AuthenticationType.CONTAINER;

boolean shareable() default true;

String mappedName() default ";

String description() default ™;

package javax.annotation;

@Target(TYPE) @Retention(RUNTIME)

public @interface Resources {
Resource][] value();

}

5/2/06 54

Sun Microsystems Inc

Resource References Enterprise JavaBeans 3.0, Final Release Related Documents

awer s REIAted Documents

[1] Enterprise JavaBeans, v 3.0. EJB Core Contracts and Requirements.

[2] Enterprise JavaBeans, v 3.0. Java Persistenceh&p¥/java.sun.com/products/ejb
[3] Enterprise JavaBeans, v 2http://java.sun.com/products/ejb

[4] Java Naming and Directory Interface (JNDiftp://java.sun.com/products/jndi
[5] Java Remote Method Invocation (RMi}tp://java.sun.com/products/rmi.

[6] Java Transaction API (JTA)ttp://java.sun.com/products/jta

[7] Java Platform, Enterprise Edition (Java EE), kit§p://java.sun.com/javaee

[8] JSR-250: Common Annotations for the Java Platfdrtp://jcp.org/en/jsr/detail ?id=250
[9] JSR-181: Web Services Metadata for the Java Platfuttpi/jcp.org/en/jsr/detail ?id=181.

[10] JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail ?id=175

[11] Web Services for Java EE, v 1.2.
[12] Java Message Service (JMS), v http://java.sun.com/products/jms
[13] Java API for XML Web Services (JAX-WS 2.0)tp://jcp.org/en/jsr/detail?id=224.

55 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Related Documents Enterprise JavaBeans 3.0, Final Release Resource References

5/2/06 56

Sun Microsystems Inc

Early Draft 1 Enterprise JavaBeans 3.0, Final Release Revision History

Appendix A ReViSion History

This appendix lists the significant changes that have been made during the development of the EJB 3.0
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Early Draft 1 document into two documents, this document Baiistence API[2].
Added Overview chapter.

Moved discussion of items related to combined use of EJB 3.0 annotations and other new features with
EJB 2.1 style components to separate chapter.

Added support for annotated callbacks and callback listener classes.

Added support for interceptors for session beans and message-driven beans.

57 May 2, 2006 1:57 pm

Sun Microsystems Inc.

Revision History

A3

Enterprise JavaBeans 3.0, Final Release Public Draft

Removed UniversalContext.
Added annotations for interceptors and callbacks.

Added chapter specifying the required support for the interoperability of components written to differ-
ent versions of the EJB specification.

Added clarifications about relationships between metadata annotations and the deployment descriptor.

Separated out TransactionManagementType from Stateless, Stateful, and MessageDriven annotations as
a separate annotation.

Renamed REQUIRESNEW as REQUIRES_NEW, NOTSUPPORTED as NOT_SUPPORTED.
Added Related Documents section.

Updated numerous examples.

Public Draft

A4

Added ApplicationException annotation.
Clarified meaning of interceptor proceed() method.

Removed requirements for support of generated interfaces. Generation of interfaces may be supported
by tools.

Added annotations for specification of local and remote interfaces.

Clarified that stateful session beans are not required to implement Serializable.
Updates to security and resource annotations.

Added support for dependency injection for interceptor classes.

Miscellaneous updates to refle&IB Core Contracts and Requiremértscument.

Proposed Final Draft

Removed Interceptor annotation, since only Interceptors is needed.
Added support for method-level interceptors and default interceptors.
Merged lifecycle callbacks with interceptors.

Updated to reflect changes in JSR 250.

5/2/06

58

Sun Microsystems Inc

Final Release

Enterprise JavaBeans 3.0, Final Release Revision History

A.5 Final Release

Fixed bug in Interceptors annotation (METHOD should have been included in Target list).
Fixed bug in signature of InvocationContext.setParameters method.

Added clarification that the same business interface cannot be both a remote and a local interface of the
bean.

Clarified the semantics of the InvocationContext methods setParameters and getParameters.
Corrected inconsistent default value in Init annotation.

Fixed typo in MessageDriven annotation.

Added missing @Target({}) @Retention(RUNTIME) to ActivationConfigProperty definition.
Allowed # syntax to be used with beanName in EJB annotation.

Clarified that name element of Stateless, Stateful, and MessageDriven annotation (whether explicitly
specified or defaulted) must be unique within the ejb-jar

Moved InvocationContext interface and Interceptors, Aroundinvoke, ExcludeDefaultinterceptors, and
ExcludeClassinterceptors to javax.interceptor package. Renamed InvocationContext.getBean method as
Invocation.getTarget When interceptors are invoked as a result of an invocation on a web service end-
point, the InvocationContext.getContextData returns the JAX-WS MessageContext.

Query language references updated to refer to Java Persistence query language.

59 May 2, 2006 1:57 pm

	Chapter 1 Introduction
	1.1 Overview
	1.2 Goals of this Release
	1.3 EJB 3.0 Expert Group
	1.4 Organization of the Specification Documents
	1.5 Document Conventions

	Chapter 2 Overview of the EJB 3.0 Simplified API
	2.1 Metadata Annotations and Deployment Descriptors
	2.1.1 Deployment Descriptors

	2.2 Interoperability and Migration Between EJB 3.0 and EJB 2.1 and Earlier Clients and Beans

	Chapter 3 Enterprise Bean Class and Business Interface
	3.1 Enterprise Bean Class
	3.1.1 Requirements for the Enterprise Bean Class

	3.2 Business Interfaces
	3.3 Exceptions
	3.4 Interceptors
	3.4.1 Lifecycle Callback Interceptor Methods
	3.4.2 Business Method Interceptor Methods
	3.4.3 InvocationContext
	3.4.4 Exceptions

	3.5 Home Interfaces

	Chapter 4 Stateless Session Beans
	4.1 Requirements for Stateless Session Beans
	4.1.1 Business Interface
	4.1.2 Home Interface
	4.1.3 Bean Class
	4.1.4 Lifecycle Callbacks for Stateless Session Beans
	4.1.5 Dependency Injection
	4.1.6 Interceptors for Stateless Session Beans
	4.1.6.1 Example

	4.2 Client View
	4.3 Other Requirements

	Chapter 5 Stateful Session Beans
	5.1 Requirements for Stateful Session Beans
	5.1.1 Business Interface
	5.1.2 Home Interface
	5.1.3 Bean Class
	5.1.4 Lifecycle Callbacks for Stateful Session Beans
	5.1.4.1 Semantics of the Life Cycle Callback Methods for Stateful Session Beans

	5.1.5 Dependency Injection
	5.1.6 Interceptors for Stateful Session Beans
	5.1.7 Example
	5.1.8 Client View
	5.1.9 Stateful Session Bean Removal
	5.1.9.1 Example

	5.2 Other Requirements

	Chapter 6 Message-Driven Beans
	6.1 Requirements for Message-Driven Beans
	6.1.1 Business Interface
	6.1.2 Bean Class
	6.1.3 Lifecycle Callbacks for Message-Driven Beans
	6.1.4 Dependency Injection
	6.1.5 Interceptors for Message-Driven Beans.

	6.2 Other Requirements

	Chapter 7 Persistence
	Chapter 8 Enterprise Bean Context and Environment
	8.1 Annotation of Context Dependencies
	8.1.1 Annotation of Instance Variables
	8.1.2 Setter Injection
	8.1.3 Injection and Lookup
	8.1.4 EJBContext

	Chapter 9 Compatibility and Migration
	9.1 Support for Existing Applications
	9.2 Interoperability of EJB 3.0 and Earlier Components
	9.2.1 Clients written to the EJB 2.x APIs
	9.2.2 Clients written to the new EJB 3.0 API
	9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs
	9.2.4 Other Combinations of EJB 3.0 and Earlier APIs

	9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views
	9.3.1 Stateless Session Beans
	9.3.2 Stateful Session Beans

	9.4 Combined Use of EJB 3.0 and EJB 2.1 APIs in a Bean Class

	Chapter 10 Metadata Annotations
	10.1 Annotations to Specify Bean Type
	10.1.1 Stateless Session Beans
	10.1.2 Stateful Session Beans
	10.1.2.1 Init Annotation for Stateful Session Beans
	10.1.2.2 Remove Annotation for Stateful Session Beans

	10.1.3 Message-driven Beans

	10.2 Annotations to Specify Local or Remote Interfaces
	10.3 Annotations to Support EJB 2.1 and Earlier Client View
	10.4 TransactionManagement
	10.5 Transaction Attributes
	10.6 Interceptors and LifeCycle Callbacks
	10.7 Timeout
	10.8 Exceptions
	10.9 Security and Method Permissions
	10.9.1 Security Role References
	10.9.2 MethodPermissions
	10.9.3 PermitAll
	10.9.4 DenyAll
	10.9.5 RunAs

	10.10 EJB References
	10.11 Resource References

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Public Draft
	A.4 Proposed Final Draft
	A.5 Final Release

