

2

What is CDI?

• Dependency injection
> Builds on @Inject API

• Context/scope management
• Works with multiple bean types
• Includes ELResolver

New API in Java EE 6

3

Dependency Injection Basics (1)

• Injection point lists
> zero or more qualifiers
> a type

 @Inject @LoggedIn User user;
• The “what”: a User
• “Which one?”: the LoggedIn one
• Not string-based!

Clients

4

Dependency Injection Basics (2)

• Field-, method- or constructor-
injection

• Separate from @Resource but
the two can coexist

• @PostConstruct works as
usual

Other aspects

5

Sample CDI Client Code (1)

Field and method injection

public class CheckoutHandler {

 @Inject @LoggedIn User user;

 @Inject PaymentProcessor processor;

 @Inject void setShoppingCart(@Default Cart cart) {
 …
 }

}

6

Sample CDI Client Code (2)

Constructor injection

public class CheckoutHandler {

 @Inject
 CheckoutHandler(@LoggedIn User user,
 PaymentProcessor processor,
 @Default Cart cart) {
 ...
 }

}

7

Sample CDI Client Code (3)

Multiple qualifiers and qualifiers with arguments

public class CheckoutHandler {

 @Inject
 CheckoutHandler(@LoggedIn User user,
 @Reliable
 @PayBy(CREDIT_CARD)
 PaymentProcessor processor,
 @Default Cart cart) {
 ...
 }

}

8

Declaring Qualifiers

• Write your own annotation
types and annotate them with
@Qualifier

• E.g.
 @Qualifier
 @Retention(RUNTIME)
 @Target({FIELD,TYPE})
 public @interface Red {}

With a meta-annotation

9

Managed Beans

• Anything injected is a “bean”
> EJB session beans
> Plain classes with

@ManagedBean
> Any class CDI can discover

in a module

Unified Component Model

10

Sample CDI Bean (1)

A managed bean

@Reliable
@PayBy(CREDIT_CARD)
@ManagedBean
public class ReliableCreditCardPaymentProcessor
implements PaymentProcessor {

 void pay(Amount amount) throws PaymentException {
 ...
 }
}

11

Sample CDI Bean (2)

An EJB session bean

@Reliable
@PayBy(CREDIT_CARD)
@ManagedBean
@Stateless
public class ReliableCreditCardPaymentProcessor
implements PaymentProcessor {

 void pay(Amount amount) throws PaymentException {
 ...
 }
}

12

Configuration

• CDI discovers bean in all
modules in which CDI is
enabled

• Beans are automatically
selected for injection

• Possible to enable groups of
bean selectively via a
descriptor

There is none!

13

Scopes

• Beans can be declared in a
scope

• The CDI runtime will make sure
the right bean is created at the
right time

• Clients do NOT have to be
scope-aware

Automatic context management

14

Sample CDI Bean (3)

A request-scoped managed bean

@Reliable
@PayBy(CREDIT_CARD)
@RequestScoped
@ManagedBean
public class ReliableCreditCardPaymentProcessor
implements PaymentProcessor {

 void pay(Amount amount) throws PaymentException {
 ...
 }
}

15

Built-in Scopes

• Everywhere:
> @ApplicationScoped
> @RequestScoped

• In a web app: @SessionScoped
• With JSF:

> @ConversationScoped
• Pseudo-scope: @Dependent

General definitions specialized for different modules

16

Decoupling

• Clients only declare
dependencies via injection
points

• Bean selection is done by CDI
• No client knowledge of scope

required
• CDI does proxying

transparently when needed

Clients completely decoupled from beans

17

Named Beans

• Beans give themselves a name
with @Named(“cart”)

• Then refer to it from a JSF or
JSP page using the EL:

 <h:commandButton
 value=”Checkout”
 action=“#{cart.checkout}”/>

Built-in support for the Unified EL

18

Events

• Annotation-based event model
• A bean @Observes an event

 void onLogin(@Observes
 LoginEvent event) { … }
• Another bean fires an event

using the Event.fire(T event)
method

Even more decoupling!

19

Built for the Future

• Extensions can
programmatically define new
beans, injection points,
qualifier types, events, event
observers...

• Makes it easy to integrate
any third-party framework
> Just model it as “beans”!

Powerful SPI enables portable extensions

20

Much More...

• Producer methods and fields
• Bridging Java EE resources
• Alternatives
• Interceptors
• Decorators
• Stereotypes

CDI

21

Resources
Java EE 6 and GlassFish v3

Java EE 6

• Java EE 6 Home
java.sun.com/javaee

• Java EE 6 Downloads
java.sun.com/javaee/downloads

• Upcoming Training
java.sun.com/javaee/support/training

• Sun GlassFish Enterprise
Server v3 Home

www.sun.com/glassfishv3

• Community Page
glassfish.org

• The Aquarium Blog
blogs.sun.com/theaquarium

• White Papers/Webinars
http://www.sun.com/glassfish/resources

GlassFish

