
Abstract
This is the proposed final release of the JavaHelp APIs proposed in JSR-097.

There is a change history in section Appendix E on page 109 .

JavaHelp 2.0
Specification
Final Release

Editor: Roger Brinkley (roger.brinkley@sun.com)

March 13, 2003
Public Review

Copyright © 20001Sun Microsystems, Inc.

Java Software

Sun Microsystems Inc. 2 JavaHelp V2.0 Specification

Sun Microsystems, Inc.

Copyright 2003 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303 U.S.A.

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, non-
transferable, worldwide, limited license (without the right to sublicense) under SUN’s
intellectual property rights that are essential to practice the JavaHelp 2.0 Specification
“Specification”) to use the Specification for internal evaluation purposes only. Other
than this limited license, you acquire no right, title or interest in or to the Specification
and you shall have no right to use the Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95)
and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABIL-
ITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JavaHelp, JDK, Java, Hot-
Java, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, Open-
Windows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Net-
work Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Net-
work Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and
Visual Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IM-
PROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Java Software

 . . .

 . 12

 .
Table of Contents

1 Introduction . 6

1.1 Status of this Specification . 6

1.2 Change in format . 6

1.3 How to read this Specification . 6

1.4 Related Documents . 7

1.5 Further Reading . 7

1.5.1 JavaHelp Software Mailing Lists .7

1.6 Your Feedback . 7

2 Overview . 9

2.1 Introduction . 9

2.2 Features . 9

2.3 Supported Platforms . 10

2.4 The Specification . 10

2.4.1 API Structure . 10

2.5 Main Concepts . 11

2.5.1 HelpSet . 11

2.5.1.1 HelpSet File 11

2.5.1.2 Help Views and Help Navigators 11

2.5.1.2.1 Standard Help Views and Help Navigators .

2.5.1.3 Map File 12

2.5.1.4 Content files 12

2.5.2 HelpBroker . 12

2.5.3 URL Protocols . 13

2.5.4 Search . 13

2.5.5 Merging . 13

2.5.6 Extensibility . 13

2.5.7 Updating Help Information .. 14

2.5.8 File Formats . 14

2.6 An Example . 14

3 File Formats . 16

3.1 Overview . 16

3.2 HelpSet File . 17

3.2.1 Format . 17
Sun Microsystems Inc. 1 JavaHelp V2.0 Specification

Java Software

 . .

.

. . .

 .

. .
3.2.2 Processing Instructions . 18

3.2.3 HelpSet properties . 18

3.2.4 ID Map Section . 18

3.2.4.1 Map Example 18

3.2.5 Navigational Views Section .19

3.2.5.1 View Example 19

3.2.6 SubHelpSet Section 20

3.2.7 Presentation Section . 21

3.2.7.1 Presentation Example 22

3.2.8 Implementation Section . 23

3.2.8.1 Implementation examples 23

3.3 Map Files . 24

3.4 Table of Contents . 24

3.4.1 Table of Contents Example . 26

3.5 Index . 27

3.5.1 Index Example . 27

3.6 Glossary . 28

3.6.1 Glossary Example . 28

3.7 Favorites . 28

3.7.1 Favorites Example . 29

3.8 Help Content . 30

3.9 Search Database . 30

4 Localization . 31

4.1 A Network Environment . 31

4.2 Localized Documents . 31

4.3 Full Text Search . 31

4.4 More Details . 31

5 JavaHelpTM 1.0 - Customization . 32

5.1 Introduction . 32

5.2 Help Broker . 32

5.3 Content Viewers . 32

5.4 NavigatorView and JHelpNavigator .. 32

5.4.1 View-Specific Knowledge . 33

5.4.2 Different Formats . 33

5.4.3 Different Presentations . 33
Sun Microsystems Inc. 2 JavaHelp V2.0 Specification

Java Software

 . . 33

. .

 .

.

 .

 . . . 4

 . .

 . 45

. . 45

 . . 47
5.4.4 Two Examples of Custom Views .

5.5 Search Engines . 34

5.6 Key-Data Map . 35

5.7 Using new URL protocols . 35

6 JavaHelpTM 1.0 - JavaBeans Help data . . . 36

6.1 Introduction . 36

6.2 Help Information . 36

6.3 Mechanism . 37

6.4 An Example: . 37

6.4.1 Manifest and JAR File . 37

6.4.2 The HelpSet File . 37

6.4.3 The Help Map . 38

6.5 An Alternative Arrangement . 38

6.5.1 Manifest and JAR file . 38

6.5.2 The HelpSet File . 38

6.5.3 The Help Map . 39

7 Server Based JavaHelp . 40

7.1 Java Server Pages . 40

7.2 Server Based JavaHelp Architecture .. . 40

7.3 JavaHelp Server Components 41

7.3.1 JavaHelp Server Bean . 41

7.3.1.1 Usage 41

7.3.2 JavaHelp JSP Tag Extensions .2

7.3.2.1 Validate Usage 44

7.3.3 Navigator Scripting Variables .44

7.3.3.1 Navigator Variables 44

7.3.3.1.1 Navigator Variable Usage .

7.3.3.2 tocItem Variables 45

7.3.3.2.1 tocItem Usage .

7.3.3.3 indexItem Variables 46

7.3.3.4 indexItem Usage 46

7.3.3.5 searchItem Variables 46

7.3.3.5.1 SearchItem Usage .

8 Presentation of Help Content . 48

8.1 Introduction . 48
Sun Microsystems Inc. 3 JavaHelp V2.0 Specification

Java Software

 .

 . 50

. . 50

 . . 52

. . 53

 . . 5

. . . 56

. .

. . 6

 . . 64

 .

 . . 6
8.2 Presentation Class . 48

8.2.1 Presentation Extensions . 49

8.2.1.1 Popup 49

8.2.1.2 Window Presentations 49

8.2.1.2.1 Main Window .

8.2.1.2.2 Secondary Window .

8.3 Help Author Presentation Control . 50

8.4 Activating Help in Presentations . 50

8.4.1 Field-level Context-sensitive Help .

8.4.2 Window Level Context-Sensitive Help .

8.4.3 User initiated context-sensitive help .5

8.4.4 System initiated context-sensitive help .

8.4.5 Navigator . 58

8.4.6 Viewer . 59

9 Toolbar . 62

9.1 HelpAction Interface . 62

9.2 AbstractHelpAction Class . 62

9.3 HelpAction Extensions . 62

9.4 Supplied AWT/Swing HelpActions . 63

10 Context Sensitive Help . 64

10.1 Context-Sensitive Help . 64

10.1.1 Defining the ID-URL map . 4

10.1.2 Assigning an ID to Each Visual Object .

10.1.3 Enabling a Help Action . 65

10.1.4 Dynamic ID Assignment .6

10.1.4.1 Example Usage 67

10.2 Help Support for JDialogs . 67

11 Content Search . 68

11.1 Search API . 68

11.2 Search Database Creation . 68

11.2.1 Stopwords . 68

11.2.2 ConfigFile Directives . 69

11.3 Search Database Use . 69

12 Merge . 70

12.1 Introduction . 70
Sun Microsystems Inc. 4 JavaHelp V2.0 Specification

Java Software

 . .

. . . 73

. .

 . . 76

 . .

. . . 7

.

.
12.2 Merging Rules . 70

12.3 The API . 71

12.4 Merging TOCs . 71

12.5 Merging Indices . 72

12.6 Merging Glossaries . 72

12.7 Merging Favorites . 72

12.8 Merging Full-Text Search Databases .. 72

12.9 Overriding Mergetype . 72

12.10 Examples . 73

12.10.1 Example: Append Merge .

12.10.2 Example: Sort Merge . . 74

12.10.3 Example: Unite-Append Merge .

13 JavaHelp Class Structure . 78

13.1 Packages . 78

13.2 API Structure . 78

13.2.1 Basic Content Presentation .. 79

13.2.2 Detailed Control and Access . 9

13.2.3 Extensibility . 79

13.2.4 Swing components . . . 80

13.2.5 Context Sensitive Help . 81

13.2.6 Search . 81
Sun Microsystems Inc. 5 JavaHelp V2.0 Specification

Java Software
1 Introduction

JavaHelpTM is an online help system specifically tailored to the Java platform. Java-
Help consists of a fully featured, highly extensible specification and an implementa-
tion of that specification written entirely in the Java language.

JavaHelp enables Java developers to provide online help for:

• Applications (both network and stand-alone)

• Server based applications

• Applets

• JavaBean components

• Desktops

• HTML pages

1.1 Status of this Specification
This document describe the JavaHelp 2.0 specification.

We follow the Java Community Process for the development and revision of Java tech-
nology specifications. The JCP is an open and inclusive process that produces high-
quality specifications in “Internet-time”. Through this process the critical feedback
from all reviewers helps us transform early specifications into a high quality final
specifications that satisfied the needs of the user community. The release of this draft
specification is part of this process.

When JavaHelp V1.0 Specification was released we expected the specification to con-
tinue to be extended in future updates. This is a major update to the JavaHelp V1.0
Specification.

1.2 Change in format
The JavaHelp V1.0 Specification was written and maintained in HTML. For mainte-
nance and ease in creating PDF versions of this Specification we have chosen to devel-
op this version of the specification in Frame. Additionally we have changed the format
to be more consistent with a variety of JSR that have been posted. During the conver-
sion from the previous format to the new format every effort was made to preserve
the content of the JavaHelp V1.0 Specification. Minor changes were made to improve
the readability and accuracy of the document. In all cases the original intent of the V1.0
Specification was maintained.

1.3 How to read this Specification
There are two parts of the documents. The first set is the actual specification that de-
scribes the JavaHelp API and its use. Also included are several related sections that,
while not technically part of the specification, help in understanding it. These docu-
ments describe aspects of Sun’s reference implementation.
Sun Microsystems Inc. 6 JavaHelp V2.0 Specification

http://jcp.org

Java Software
We suggest that you begin by reading the specification overview section 2 on page 9.
In order to make the JavaHelp system features more concrete and easy to understand,
a number of scenarios are explained in section Apendix A on page 82. These scenarios
describe some of the different ways the JavaHelp system can be used in Java applica-
tions.

You may want to complement your reading of this specification by exploring the Jav-
aHelp System 2.0 Reference Implementation section Appendix B on page 104 which
corresponds to this specification. This reference implementation also supports some
features that are useful for online documentation systems but that we have judged to
not be appropriate for inclusion in the specification at this time. The release also in-
cludes examples of documentation and applications that use this specification.

1.4 Related Documents
• JavaHelp 2.0 - Scenarios

• JavaHelp System 2.0 Reference Implementation

• JavaHelp 2.0 - Relaxation Searching

1.5 Further Reading
Up-to-date public information on JavaHelp technology, including our latest presenta-
tions at public forums, is available at our home page at http://java.sun.com/prod-
ucts/javahelp.

Further information on Java technology can be found at Sun’s Java web site at http:/
/java.sun.com.

1.5.1 JavaHelp Software Mailing Lists

JAVAHELP-INTEREST: We maintain a mailing list as a JavaHelp community re-
source where interested parties can post and exchange information and inquiries
about JavaHelp in a public forum. Subscribers to this list can receive inquiries either
as they are posted or in regular digest versions.

To subscribe, send mail to listserv@javasoft.com. In the body of the message type SUB-
SCRIBE JAVAHELP-INTEREST

To view archives, select advanced subscription features, or to unsubscribe: http://ar-
chives.java.sun.com/archives/javahelp-interest.html

JAVAHELP_INFO: We maintain a mailing list for occasional information about Jav-
aHelp software updates and events from the JavaHelp team. To subscribe, send mail
to listserv@javasoft.com. In the body of the message type SUBSCRIBE JAVAHELP-
INFO

1.6 Your Feedback
We encourage your feedback at

jsr-97-comments@sun.com.
Sun Microsystems Inc. 7 JavaHelp V2.0 Specification

http://java.sun.com/products/javahelp
http://java.sun.com/products/javahelp
http://java.sun.com
http://java.sun.com
http://archives.java.sun.com/archives/javahelp-interest.html
http://archives.java.sun.com/archives/javahelp-interest.html
mailto:jsr-97-comments@sun.com

Java Software
We thank you for your help in making this, and future specifications, meet your
needs!
Sun Microsystems Inc. 8 JavaHelp V2.0 Specification

Java Software
2 Overview

2.1 Introduction
This section is an overview of the JavaHelp specification.

2.2 Features
The main features of JavaHelp are:

Help Viewer The standard JavaHelp viewer consists of a toolbar and two
panes:

Content pane
Displays help topics formatted using
HTML.

Navigation pane
A tabbed interface that allows users to
switch between the table of contents, index,
and full text search displays.

Table of contents XML-based. Collapsible/expandable display of topics in the
help system. Supports unlimited levels and merging of mul-
tiple TOCs.

Index XML-based. Supports merging of multiple indexes.

Glossary XML-based. Based on index file format. Used for short tech-
nical descriptions

Favorites XML-based. Collapsible/expandable display of user’s favor-
ite topics.

Full text search The full text of the content is searchable. Different engines
can be used.

Compression and
encapsulation

Encapsulation and compression are optional. Uses the stan-
dard Java JAR format to encapsulate the entire help system
into a single, optionally compressed file.

Embedded help
windows

Help windows (individually or in combination) can be
embedded directly into application interfaces.

Customization JavaHelp is designed to permit great flexibility in customiz-
ing both the user interface and functionality.
Sun Microsystems Inc. 9 JavaHelp V2.0 Specification

Java Software
The JavaHelp System 2.0 Reference Implementation section Appendix B on page 104
adds the following to this list:

2.3 Supported Platforms
JavaHelp 2.0 is an Optional Package for the Java 2 platform.

2.4 The Specification
The JavaHelp specification has two main parts:

2.4.1 API Structure

The classes and methods in JavaHelp 1.0 can be partitioned depending on the tasks so
that clients of the API need only use as much as they need. The following are the most
useful collections:

Flexible Search
Engine

The full text of the content can be searched with a flexible
search engine that supports multi-word queries.

Popups and Active
Content

PopUps can be obtained by embedding lightweight Java
components in HMTL pages. Active content (e.g. a button
that when pressed can act on the application) can be imple-
mented using the same mechanism.

API The interface between the application and the help system

File formats Formats of the files that are part of the help system (HelpSet,
table-of-contents, map, index, search database)

HelpSet access A number of classes provide complete access to a HelpSet
collection. This includes classes to control the navigation of
online content (NavigatorView), the mapping of identifiers to
content files (Map) and access to HelpSet attributes including
the ability to locate, create and merge HelpSets (HelpSet).

Basic Content Pre-
sentation

A set of classes that provide a generic presentation model for
a given platform. A HelpBroker is used to present a HelpSet
to the user using the default HelpBroker. Context sensitive
help is available through CSH when coupled with a HelpBro-

ker .

Swing Classes JavaHelp 1.0 defines Java Foundation Class components for
Navigators, Content Viewer and Help Viewer which can be
embedded into an Application if desired. Custom Naviga-
tors are also presented to the API as JFC components.
Sun Microsystems Inc. 10 JavaHelp V2.0 Specification

http://java.sun.com/java2

Java Software
2.5 Main Concepts
This section describes the fundamental concepts in the specification. More details are
available in other parts of this specification and in the javadoc comments of the class-
es.

2.5.1 HelpSet

A HelpSet is a collection of help content files section 2.5.1.4 on page 12 (topics), navi-
gational views section 3.2.5 on page 19, and map section 2.5.1.3 on page
12information. A HelpSet can contain other HelpSets which are merged section 2.5.5
on page 13 together.

2.5.1.1 HelpSet File

The HelpSet file section 3.2 on page 17 describes a HelpSet and contains:

• Title and other global information

• Map section 3.3 on page 24 information that associates topic IDs with topic files

• One or more navigational views on the content

2.5.1.2 Help Views and Help Navigators

JavaHelp provides “context views” for navigating through content information; for
example, most HelpSets will have a view displaying a Table of Contents. A view has
a name, a NavigatorView Class identifying its behavior, some information (e.g. URLs,
arguments) used by the instance, and a JHelpNavigator which is a GUI component that
presents the view to the user. Navigational views are visible to the JavaHelp APIs and
the client can request to make a specific view active.

The view's class defines what data it reads, its format, how it will be presented visu-
ally, and it also defines the merging rulessection 12.2 on page 70. A view is a subclass
of NavigatorView section 5.4 on page 32. The createNavigator() method of a view re-
turns a component that is used to graphically present the view; for the standard views
section 2.5.1.2.1 on page 11 this component is a Swing component section 13.2.4 on
page 80, specifically, a subclass of JHelpNavigator.

Any JavaHelp implementation must support the standard NavigatorView classes, but
a HelpSet may include views with other classes, as long as they are available (techni-
cally, as long as their definitions are available to the ClassLoader instance of the
HelpSet). In many cases this means they are either in the implementation of JavaHelp,
in the CLASSPATH, or they are listed in the ARCHIVE attribute of an APPLET.

Full-Text Search The classes in the javax.help.search package provide a
simple API for full-text search that can also be used indepen-
dently of help applications.

JSP Tag Extensions A set of classes to provide access to HelpSet collections
through Java Server Pages.
Sun Microsystems Inc. 11 JavaHelp V2.0 Specification

Java Software
2.5.1.2.1 Standard Help Views and Help Navigators

All JavaHelp implementations must provide the following classes:

The formats used by the TOC, Index, Glossary and Favorites Navigators are described
in section 3 on page 16. The Search Navigator interacts with its data through a search-
engine that extends the SearchEngine class ; one of the Search View arguments is the
class name of the search engine, the rest of the data is passed directly to the search en-
gine.

2.5.1.3 Map File

Applications (or navigational data) do not usually directly reference content files, in-
stead they usually reference them through string identifiers (IDs). This use of IDs in-
sulates content development from application development. Identifiers are mapped
to content files in a mapfile . Multiple map files can be combined within a HelpSet,
but an identifier must be unique within a HelpSet in the resulting combined map.

2.5.1.4 Content files

Help information (topics) is described through a collection of URLs. These URLs may
be files, may be within a JAR file, or they may be generated dynamically by the server.

Content information is presented depending on its (MIME) type. JavaHelp system im-
plementations are required to provide viewers for HTML3.2 content, but there is a
registration mechanism in JHelpContentViewer that is built upon the corresponding
mechanism in JEditorPane in the Swing package.

2.5.2 HelpBroker

A Help Broker object is the abstraction of the presentation to a HelpSet. An application
can use a HelpBroker object to interact programmatically with the presentation of in-

javax.help.TOCView
javax.help.JHelpTOCNavigator

NavigatorView and JHelpNavigator for parsing
and presenting Table of Contents data.

javax.help.IndexView
javax.help.JHelpIndexNaviga-
tor

The NavigatorView and JHelpNavigator for
parsing and presenting Index data.

javax.help.GlossaryView
javax.help.JHelpGlossaryNavi-
gator

NavigatorView and JHelpNavigator for parsing
and presenting Glossary data.

javax.help.FavoritesView
javax.help.JHelpFavoritesNavi-
gator

NavigatorView and JHelpNavigator for parsing
and presenting Favorites data.

javax.help.SearchView
javax.help.JHelpSearchNaviga-
tor

The NavigatorView and JHelpNavigator for
interacting with a search engine using the
javax.help.search.* classes.
Sun Microsystems Inc. 12 JavaHelp V2.0 Specification

Java Software
formation. The default HelpBroker implementation uses a Swing JFrame, but other
implementations are possible (for example, embedding help objects).

2.5.3 URL Protocols

JavaHelp authors can use a number of protocols in the URLs when they are used in
the HelpSet file and map files. The specific protocols available depend on the under-
lying platform. For example, JDK1.1 provides file: , http: , ftp: , while Java 2 adds the
jar: protocol which provides access to files within a JAR file. Specific implementations
may support additional URL formats.

2.5.4 Search

JavaHelp contains a simple search API in the package javax.help.search. This package
provides creation and access to the search databases used by JavaHelp. Different
search engines will be identified as subclasses of javax.help.search.SearchEngine. The
search engine included in the JavaHelp reference implementation is com.sun.ja-

va.help.search.DefaultSearchEngine .

2.5.5 Merging

In simple applications, the help data may be described in a single HelpSet file. Other
situations are best described as a collection of HelpSets, for example:

• An application can merge help information available locally on a user’s disk,
with information on a web site

• Product suites can merge help information when constituent applications are
installed

• HelpSets from an application’s constituent Beans section 6 on page 36can be
merged for a unified presentation

JavaHelp 1.0 provides a basic mechanism for merging the contents of several
HelpSets, the resulting HelpSet merges the map information and the navigational
views. See section 12 on page 70 for additional information.

2.5.6 Extensibility

The JavaHelp system is designed so it can be extended in several dimensions:

• The JHelpContentViewer registration mechanism can be used to provide new
content viewers

• The HelpBroker registration mechanism can be used to provide new default
HelpBroker

• The NavigatorView and JHelpNavigator mechanisms can be used to provide
new file formats, or new presentations

• The javax.help.search classes can be used to replace search engines.

For more details see section 5 on page 32.
Sun Microsystems Inc. 13 JavaHelp V2.0 Specification

Java Software
2.5.7 Updating Help Information

It is often important to be able to update a product’s online help after it has been re-
leased. The JavaHelp system supports this in several ways--it is possible to entirely re-
place the information (if in a JAR), or replace parts of it (if spread over multiple files).

Because you can refer to multiple maps in the HelpSet file, the JavaHelp system pro-
vides additional flexibility in this update process. The HelpSet file can extend these
maps, making it possible to modify the mapping without modifying any existing map
files (which may be inside a JAR file). Finally, since the URL protocols support remote
access, if the application is running in a connected environment, it is possible to keep
some information remotely.

2.5.8 File Formats

The JavaHelp system specifies the following file formats:

• HelpSet encapsulation and compression using JAR files

• HTML topic files

• HelpSet file

• Map files

• Standard navigation view formats (TOC, index, search)

More information is available in the section 3 on page 16.

2.6 An Example
The following is an example of a HelpSet file.

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <!DOCTYPE helpset
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">

 <helpset version="1.0">

<!-- the title for the helpset -->
<title>An Example</title>

<!-- maps -->
<maps>
 <homeID>top</homeID>
 <mapref location="jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TheMap.map" />
</maps>

<!-- A TOC view -->
<view>
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/TOC.xml</data>
</view>

<!-- Another TOC view; note that it has a different name -->
<view>
 <name>LocalTOC</name>
 <label>Appendix One</label>
Sun Microsystems Inc. 14 JavaHelp V2.0 Specification

Java Software
 <type>javax.help.TOCView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/LocalTOC.xml</data>
</view>

<!-- An Index view -->
<view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/Index.xml</data>
</view>

<!-- A Search view; note the engine attribute -->
<view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.SearchEngine">

 jar:file:/c:/Program Files/JWS3.0/JWS3.0.jar!/SearchData
 </data>
</view>

 </helpset>

The HelpSet file starts a DOCTYPE identifying the DTD for the file. The DTD is ver-
sioned to allow for future changes. Next follows the title of the HelpSet.

The next section provides information about ID->content file mapping. An ID is given
indicating what information within the HelpSet to show by default. Next a mapref tag
indicates where to locate the map. In our case the mapfile is contained within a JAR
file on the local disk.

The next five sections of the HelpSet file provide information about different views of
the content information. The first view, “TOC”, is in a local disk. The next section is a
different Table of Contents view, (“LocalTOC”), that uses the same information as the
first view, while the next section is an index on the local disk. The next section defines
search information and the last two section define a Glossary view and Favorites view.
Sun Microsystems Inc. 15 JavaHelp V2.0 Specification

Java Software
3 File Formats

3.1 Overview
The JavaHelp system defines the file formats for the meta data files: HelpSet file, Map
file, and the data for the standard TOC and Index views. The file formats used in Jav-
aHelp are based on industry standards:

• The HelpSet (help content and meta information) is encapsulated and
compressed using the JAR (Java Archive) format.

• Map, table of contents and index file models are described in XML.

• The HelpSet file is based on the Extended Markup Language (XML) as defined
by the World Wide Web Consortium (http://w3c.org/XML/).

• Localization is done following the I18N Java conventions.

JavaHelp provides for an extensible set of navigational types, but predefines a few
types. The standard types are:

• javax.help.TOCView for the Table of Contents.

• javax.help.IndexView for the Index.

• javax.help.SearchView for the Search.

• javax.help.GlossaryView for the Glossary.

• javax.help.FavoritesView for the Favorites

The typical files involved in a HelpSet are:

• HelpSet file: Identifies the map, and navigational views (e.g. TOCs, indexes
and search database files).

• Map file(s): Defines the map that associates topic IDs used by the application to
refer to HTML topic files.

• Table of contents: Defines the table of contents entries, their structure, and the
IDs to which they map

• Index: Defines the index entries and the IDs to which they map

• Glossary: Defines the glossary entries and the IDs to which they map

• Search Database: The search database searched by the search engine. The
default search database is created using the JavaHelp system jhindexer

command.

• Content: The HTML topic files that provide information to help users

Document Type Definitions (DTDs) for HelpSet, Map, TOC View data, Index View
data, Glossary View data and Favorites View data are included in this specification
and can be used for validation. In each of these cases, the valid documents are those
valid XML documents in conformance with the DTD except that the DOCTYPE sec-
tion must not have any inner DTD subset (this is the same restriction used in the W3C
SMIL recommended specification).
Sun Microsystems Inc. 16 JavaHelp V2.0 Specification

Java Software
JAR is used to encapsulate and compress a HelpSet into a single file. Encapsulation
and compression are not required, but recommended in most production environ-
ments.

3.2 HelpSet File
The HelpSet file is localized following the same naming conventions used with Re-
sourceBundle see section 4 on page 31. Once a HelpSet file for a given locale has been
found, no additional localization searches are needed, which is very important in a
networked environment.

3.2.1 Format

HelpSet files are encoded in an XML-based syntax; The DTD is dtd/helpset_2_0.dtd.
The top level tag is <helpset> . A version attribute is optional, when present its value
must be "1.0" or “2.0”.

The HelpSet file is organized into sections within the <helpset> tag. There is a section
for ID maps, sections for the navigational views, and a final section for subhelpsets.
The general outline of a HelpSet file is:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">

<helpset version="2.0">

<!-- Global properties -->
<title>My Title</title>

<!-- maps section -->
<maps>
 <homeID>my homeID</homeID>
 <mapref location="url"/>
</maps>

<!-- Zero or more View sections -->
<view>
 <name>TOC</name>
 <type>javax.help.TOCView></type>
 <data>TOC.xml</data>
</view>

<!-- Optional subHelpSet section >
 <subhelpset location="file:/c:/Foobar/HelpSet1.hs"/>
</helpset>

Tag Description Allowed
In Body Attributes

helpset Helpset defini-
tion

top-level none xml:lang =”lang”
Language for this item

version =”1.0”|”2.0”
version
Sun Microsystems Inc. 17 JavaHelp V2.0 Specification

Java Software
Whenever a relative URL specification appears in a HelpSet, it is to be interpreted rel-
ative to the URL of the HelpSet (note that the constructor for a HelpSet takes a URL).

3.2.2 Processing Instructions

The reference implementation ignores the Processing Instructions.

3.2.3 HelpSet properties

A HelpSet has a title that is used mostly in the presentation.

3.2.4 ID Map Section

The second section of a HelpSet file contains information on the mapping of IDs to
URLs used for context sensitive help. The homeId tag provides the default entry to
present when a HelpSet is first shown. The mapref tag provides a reference to a map
file.

Finally, an ID Map section corresponding to a Bean will want to include a topic ID cor-
responding to the BeanInfo.getHelpId(). If there is a single Bean for this HelpSet file,
the value of <homeID> could be used. If several Beans share the HelpSet file, several
topic IDs are needed

3.2.4.1 Map Example

The following is an example of a map definition in a HelpSet file:

<map>
 <mapref>Map.jhm</mapref>
 <mapref>jar:http://www.sun.com/devpro/JWS3.0Encyclopedia.jar!/Map.jhm</mapref>
</map>

Tag Description Allowed
In Body Attributes

title Title of the
HelpSet

helpset Actual title none

Tag Description Allowed
In Body Attributes

maps Map definition helpset empty none

homeID Default ID of
the HelpSet

maps ID string none

mapref URL to map maps data location
relative to
HelpSet

none
Sun Microsystems Inc. 18 JavaHelp V2.0 Specification

Java Software
3.2.5 Navigational Views Section

The largest sections of a HelpSet file describe the navigational views, which include
tables of contents, indices, glossary, favorites, and search. There are three mandatory
tags for each view: <label> , <name>, and <type> . Additionally, most views will define
<data> .

The language specified in the xml:lang attribute of name must not be different that of
the view, if that was given explicitly.

3.2.5.1 View Example

The following is an example of a view section in a HelpSet file:

<view mergetype=”javax.help.UniteAppendMerge>
 <name>TOC</name>
 <label>Table of Contents</name>
 <type>javax.help.TOCView</type>
 <data>toc.xml</data>
</view>

Tag Description Allowed
In Body Attributes

view View definition helpset none xml:lang =”lang”
Language for
this item

mergetype =”type”
name of a
Merge class

name a name identify-
ing the view

view a name identi-
fying the view

none

label a label to show
in the presenta-
tion

view text for the
label

none

image image to show
in the presenta-
tion

view id of the
image

none

type a subclass of
NavigatorView

view name of class none

data URL spec view text of spec engine=”string”
a class
implementing
Search Engine
Sun Microsystems Inc. 19 JavaHelp V2.0 Specification

Java Software
3.2.6 SubHelpSet Section

A HelpSet file can statically include other HelpSets using the <subhelpset> tag. The
HelpSets indicated using this tag are merged automatically into the HelpSet where the
tag is included. If the URL spec refers to a non-existing file, the subhelpset tag is silent-
ly ignored; this permits an enclosing HelpSet to refer to subhelpsets that may or not
be installed. More details about merging can be found insection 12 on page 70.

Tag Description Allowed
In Body Attributes

subhelpset Static sub-
HelpSet to
merge

helpset empty location=”string”
URL spec
Sun Microsystems Inc. 20 JavaHelp V2.0 Specification

Java Software
3.2.7 Presentation Section

The presentation section defines the presentations of help information that can be con-
trolled by the help author. There is only one mandatory tag for each presentation:
<name>.

Tag Description Allowed
In Body Attributes

presenta-
tion

Presentation
definition

helpset none xml:lang =”lang”
Language
for this item

default =”true|false”
Default
presentation
for this
helpset; the
default is
false

display-
views =”true|false”

Display the
navigational
views of this
helpset; the
default is
true

displayviewim-
ages =”true|false”

Display the
navigational
views of this
helpset; the
default is
true

name a name identify-
ing the presen-
tation

presenta-
tion

a name identify-
ing the presen-
tation

none
Sun Microsystems Inc. 21 JavaHelp V2.0 Specification

Java Software
For additional information on presentations see section 8.2 on page 48 .

3.2.7.1 Presentation Example

The following is an example of a presentation section in a HelpSet file:

<presentation default=true>
 <name >main window</name>
 <size width=400 height=400 />
 <location x=200 y=200 />
 <title>Project X Help</title>
 <toolbar>
 <helpAction>javax.help.BackAction</helpAction>
 <helpAction>javax.help.ForwardAction</helpAction>

size the size of pre-
sentation

presenta-
tion

none width =”xxx”
Desired
width in
pixels

height =”xxx”
Desired
height in
pixels

location the location of
the presentation

presenta-
tion

none x=”xxx”
the x
coordinate

y=”xxx”
the y
coordinate

title the title of the
presentation

presenta-
tion

title none

image image of the
presentation

presenta-
tion

id of the image none

toolbar indicates a tool-
bar is to be
included

presenta-
tion

none none

helpaction an individual
help action.

toolbar class name of
the HelpAc-
tion. Must be of
type
javax.help.Hel-
pAction

image=”string”
destination
ID

Tag Description Allowed
In Body Attributes
Sun Microsystems Inc. 22 JavaHelp V2.0 Specification

Java Software
 </toolbar>
</presenation>

This example would be used as the default presentation. The size would be 400,400 at
the location 200,200. Since this is a main window the title of the window would be
“Project X Help” and the toolbar would contain the back and forward buttons.

Another example of a presentation used for secondary windows follows:

<presentation default=true>
 <name>secondary window</name>
 <size width=200 height=200 />
</presenation>

In this example the only attribute set is the size of 200,200. Otherwise the implemen-
tation defaults are used.

3.2.8 Implementation Section

The implementation section creates a per HelpSet registry to provide key data map-
ping to define the HelpBroker class to use in the HelpSet.createHelpBroker method
and to determine the content viewer to use for a given MIME type. For more informa-
tion on setting these attributes programatically see section 5.6 on page 35.

3.2.8.1 Implementation examples

The following is an example of a implementation section in a HelpSet file:

<impl>
<helpsetregistry helpbrokerclass=”javax.help.DefaultHelpBroker” />
<viewerregistry viewertype=”text/html” viewerclass=”com.sun.java.help.impl.CustomKit” />
<viewerregistry viewertype=”text/xml” viewerclass=”com.sun.java.help.impl.CustomXMLKit” />

</impl>

Tag Description Allowed
In Body Attributes

impl Implementa-
tion definition

helpset none none

helpsetregistry Registers the
default Help-
Broker class

impl none helpbrokerclass =”class”
(required) class
name, must
implement
HelpBroker

viewerregistry Registers a
viewer class for
given mime
type

impl none viewertype =”mime/type”
(required)mime
type

viewerclass =”class”
(required) class
name
Sun Microsystems Inc. 23 JavaHelp V2.0 Specification

Java Software
3.3 Map Files
Each map file provides a mapping of topic IDs to URLs. Map files are encoded in an
XML-based syntax; The DTD is dtd/map_2_0.dtd. The top level tag is <map>. A ver-
sion attribute is optional, when present its value must be "1.0" or “2.0”.

The main tag is mapID relating a topic ID and a URL specification. Relative URL spec-
ifications are to be resolved against the absolute URL for the map file.

A Map can contain only the following two tags:

The following is an example of a simple map file:</p>

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 2.0//EN"
 "http://java.sun.com/products/javahelp/map_2_0.dtd">
<map version="2.0">
 <mapID target="intro" url="hol/hol.html" />
 <mapID target="halloween" url="hol/hall.html" />

<mapID target="jackolantern" url="hol/jacko.html" />
 <mapID target="mluther" url="hol/luther.html" />
 <mapID target="reformation" url="hol/inforefo.html" />
</map>

Note that the IDs should be unique within the HelpSet (although they may also ap-
pear in a subhelpset of this HelpSet).

3.4 Table of Contents
JavaHelp1.0 specifies one table of contents navigator view: javax.help.TOCView . This
navigational view models a table of contents. TOC files are encoded in an XML-based
syntax; The DTD is dtd/toc_2_0.dtd. The top level tag is <toc> . A version attribute is

Tag Description Allowed
In Body Attributes

map A Map top-level empt
y

xml:lang =”lang”
Language for this item

version =”1.0”|”2.0”
 version

mapID An individual
map entry

empty map xml:lang =”lang”
Language for this item

target=”string”
ID

url=”string”
URL spec
Sun Microsystems Inc. 24 JavaHelp V2.0 Specification

Java Software
optional, when present its value must be "1.0" or “2.0”. The categoryopenimage, cate-
goryclosedimage and topicimage are optional. If the categoryclosedimage is defined
and the categoryopenimage is not defined, the categoryopenimage will be set to the
categoryclosedimage.

A TOC can contain only the following two tags:

Tag Description Allowed
In Body Attributes

toc Table of con-
tents

top-level empty xml:lang =”lang”
Language for this item

version =”1.0”|”2.0”
version

categoryopenimage =”string”
category open image ID

categoryclosedimage =”string”
category closed image
ID

topicimage =”string”
topic image ID
Sun Microsystems Inc. 25 JavaHelp V2.0 Specification

Java Software
3.4.1 Table of Contents Example

The following is an example of a table of contents view in the view section:

<view mergetype=”javax.help.UniteAppendMerge”>
 <name>TOC</name>
 <label>Table of Contents</name>
 <type>javax.help.TOCView</type>
 <data>toc.xml</data>
</view>

The following is an example of a table of contents file:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE toc
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"
 "http://java.sun.com/products/javahelp/toc_1_0.dtd">

<toc version="1.0" categoryopenimage=”chapter” topicimage=”topic”>
 <tocitem text=”Introducing JavaHelp”>
 <tocitem text=”JavaHelp API” target="api" image="image/document.gif"/>
 <tocitem text=”JavaHelp platforms” target="platform" image="image/document.gif"

presentationtype=”javax.help.SecondaryWindow” presentationname=”mainSecondary”/>
 </tocitem>
</toc>

tocitem Table of con-
tents item. Tags
can be nested to
create hierarchi-
cal entries

toc, toc-
item

empty xml:lang =”lang”
language for this item

text=”string”
display text - required

image=”string”
image ID

target=”string”
destination ID

mergetype=”string”
name of Merge class

expand=true|false
expand the tocitem and
sub tocitems on initial
display

presentationtype= ”string”
name of presentation
class; a subclass of
javax.help.Presenation

presentationname= ”string”
name of presentation

Tag Description Allowed
In Body Attributes
Sun Microsystems Inc. 26 JavaHelp V2.0 Specification

Java Software
3.5 Index
JavaHelp1.0 specifies one index navigator view: javax.help.IndexView . This naviga-
tional view models an index. Index files are encoded in an XML-based syntax; The
DTD is dtd/index_2_0.dtd. The top level tag is <index> . A version attribute is option-
al, when present its value must be "1.0" or “2.0”.

An index can contain the following two tags:

3.5.1 Index Example

The following is an example of a index view in the view section:

<view mergetype=”javax.help.SortMerge”>
 <name>index</name>
 <label>Index</name>
 <type>javax.help.IndexView</type>
 <data>index.xml</data>

Tag Description Allowed
In Body Attributes

index Index top-level empty xml:lang =”lang”
Language for this item

version =”1.0”|”2.0”
(optional) version

index-
item

Index item.
indexitem tags
can be nested to
create hierarchi-
cal entries

index,
indexitem

empty xml:lang =”lang”
Language for this item

text=”string”
display text - required

target=”string”
destination ID

mergetype=”string”
name of Merge class

expand=true|false
expand the tocitem and
sub tocitems on initial
display

presentationtype= ”string”
name of presentation
class; a subclass of
javax.help.Presenation

presentationname= ”string”
name of presentation
Sun Microsystems Inc. 27 JavaHelp V2.0 Specification

Java Software
</view>

The following is an example of an index file:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="1.0">
 <indexitem text=”Java Applets”>
 <indexitem text=”Overview” target="applet_over"
 presentationtype=”javax.help.SecondaryWindow presentationname=”mainsw”>
 <indexitem text=”Usage”>
 <indexitem text=”Inserting an applet in a content page” target="applet_insert">
 <indexitem text=”Editing an applet in a content page” target="applet_editing">
 </indexitem>
 </indexitem>
</index>

3.6 Glossary
JavaHelp1.0 specifies one glossary navigator view: javax.help.GlossaryView . This
navigational view models a glossary and is an extension of the javax.help.IndexView

section 3.5 on page 27. It uses the index file encoding.

3.6.1 Glossary Example

The following is an example of a glossary view in the view section:

<view mergetype=”javax.help.SortMerge”>
 <name>glossary</name>
 <label>Glossary</name>
 <type>javax.help.GlossaryView</type>
 <data>glossary.xml</data>

</view>

The following is an example of an index file used in a glossary:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="2.0">
 <indexitem text=”applet” target="applet_def"/>
 <indexitem text=”application” target=”application_def”/>
 <indexitem text=”application server” target=”appServer_def”/>
 <indexitem text=”AWT” target="awt_def"/>
 <indexitem text=”beans” target="bean_def"/>
</index>

3.7 Favorites
JavaHelp1.0 specifies one favorites navigator view: javax.help.FavoritesView . This
navigational view models a users favorites. Unlike other navigational views which
store the view’s meta-data within the HelpSet, favorites are stored in the user’s direc-
tory in the file <user.home>/.JavaHelp/Favorites.xml . Favorite files are encoded in
an XML-based syntax; The DTD is dtd/favorites_2_0.dtd. The top level tag is <favor-

ites> . A version attribute is optional, when present its value must be “2.0”.

A favorites can contain the following two tags:
Sun Microsystems Inc. 28 JavaHelp V2.0 Specification

Java Software
3.7.1 Favorites Example

The following is an example of a favorites view in the view section:

<view>
 <name>favorites</name>
 <label>Favorites</name>
 <type>javax.help.FavoritesView</type>

</view>

• Favorites do not require a view data definition. Additionally mergetype is ignored.

The following is an example of an favorites file:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE favorites
 PUBLIC “-//Sun Microsystems Inc.//DTD JavaHelp Favorites Version 2.0//EN”
 “http://java.sun.com/products/javahelp/favorites_2_0.dtd”>

<favorites version=”1.0”>
 <favoriteitem text=”Love Holidays” >
 <favoriteitem text=”On Love” target=”onlove” hstitle=”History of the Holidays”/>
 <favoriteitem text=”Valentines” target=”valentine” hstitle=”History of the Holidays”/>
 </favoriteitem>
 <favoriteitem text=”Numbers” >
 <favoriteitem text=”Zero” target=”0” hstitle=”Master”/>

Tag Description Allowed
In Body Attributes

favor-
ites

User favorites top-level empty xml:lang =”lang”
Language for this item

version =”2.0”
(optional) version

favor-
iteitem

Favorites item.
favoriteitem

tags can be
nested to create
hierarchical
entries

favor-
ites,
favor-
iteitem

text to
show
in the
pre-
senta-
tion

xml:lang =”lang”
Language for this item

target=”string”
destination ID

url=”string”
URL specification

hstitle=”string”
title of HelpSet

presentationtype= ”string”
name of presentation class;
a subclass of
javax.help.Presenation

presentationname= ”string”
name of presentation
Sun Microsystems Inc. 29 JavaHelp V2.0 Specification

Java Software
<favoriteitem text=”Zero - note “ url=”file:/usr/test/hs/Zeronote.html” hstitle=”Master”/>
 </favoriteitem>
</favorites>

3.8 Help Content
JavaHelp displays help topic files formatted using HTML. Links are resolved using
the URL protocols supported by the underlying platform. Lightweight JComponents
can be added to topic pages using the <OBJECT> tag.

3.9 Search Database
JavaHelp1.0 specifies one search navigator view: javax.help.SearchView . This navi-
gational view models a search interacting with a search database though objects that
implement the javax.help.search package. The view has an <engine> tag that is the
name of a class that is a subclass of SearchEngine . That class is responsible for inter-
preting the search database that is described by the URL in <data> .
Sun Microsystems Inc. 30 JavaHelp V2.0 Specification

Java Software
4 Localization

4.1 A Network Environment
JavaHelp follows the standard localization conventions used for ResourceBundle.get-
Bundle(). In a networked environment, each such query may require a number of re-
quests across a network to determine the desired bundle for a given Locale. JavaHelp
is designed so that only one such search is required to locate the HelpSet file. All other
information is obtained by simple requests that start from this file.

Although the HelpSet file is localized following the same naming and lookup conven-
tions as with Java Property Resource Bundle, for technical reasons they are not prop-
erty files. Instead, the method HelptSet.getHelpSet() is used.

An invocation of HelpSet.getHelpSet(name, locale) invokes HelpUtilities.getLo-

calizedResource() . HelpUtitities.getLocalizedResource() eventually calls into
ClassLoader.getResource() with resource names that are based on the name passed
and on the Desired locale and the Default locale.

If the first argument to getHelpSet() is "name", the search is conducted in the order
shown below (from most specific to least specific). The extension is fixed to be ".hs ":

 name_ language _country _variant .hs
 name_ language _country .hs
 name_ language
 name
 name_ defaultlanguage _defaultcountry _defaultvariant
 name_ defaultlanguage _defaultcountry
 name_ defaultlanguage

This search order is the one used for ResourceBundle , where it is not exposed. It is cap-
tured and exposed in HelpUtilities.getCandidates() .

4.2 Localized Documents
The HTML viewers are required to support localization as specified by the W3C
HTML 4.0 standard.

4.3 Full Text Search
Java uses Unicode internally and it is well suited to internationalization and localiza-
tion. One specific requirement is that the search code be able to deal with documents
that are written in both English and another language. This combination occurs often
when some documents have been translated but others have not.

4.4 More Details
The "Localizing Help Information" section of the JavaHelp User's Guide describes the
localization process in detail.
Sun Microsystems Inc. 31 JavaHelp V2.0 Specification

http://www.javasoft.com/products/jdk/preview/docs/api/java.util.ResourceBundle.html
http://www.javasoft.com/products/jdk/preview/docs/api/java.util.ResourceBundle.html
http://www.javasoft.com/products/jdk/preview/docs/api/java.util.PropertyResourceBundle.html

Java Software
5 JavaHelpTM 1.0 - Customization

5.1 Introduction
There are several mechanisms for customizing JavaHelp:

• Defining a different default HelpBroker

• Associating alternate content viewers with MIME types

• Using non-standard NavigatorView or JHelpNavigator

• Choosing SearchEngine

• Exploiting the URL protocols

5.2 Help Broker
A HelpBroker provides abstraction of the presentation details of a HelpSet. There are
two ways of obtaining a HelpBroker: through an explicit instantiation of DefaultHelp-
Broker, or by invoking the createHelpBroker() method on a HelpSet instance. The de-
fault HelpBroker returned by the createHelpBroker() call is implementation
dependent--the reference implementation returns DefaultHelpBroker .

Constructors of HelpBroker s take a HelpSet instance as an argument; DefaultHelpBro-

ker uses a JHelp for its presentation, adding to it all the HelpNavigator s that were re-
quested in the HelpSet file and arranging them so they all share the same
HelpSetModel .

A JavaHelp system implementation may choose not to create a DefaultHelpBroker as
the default HelpBroker for any of several reasons, for example to maintain a consistent
presentation. Thus, it is often best to use createHelpBroker() to obtain the HelpBro-

ker .

5.3 Content Viewers
The JavaHelp reference implementation uses JEditorPane to present the HTML con-
tent of a given URL. This class supports a registration mechanism by which you can
add viewers for given MIME types. This mechanism is exported through the JHelp-
ContentViewer JavaHelp class and can be used to display additional MIME types, or
to change the presentation of a given type from the default presentation. The mapping
can be changed globally or on a per-HelpSet instance.For additional information, see
section 5.6 on page 35 below.

5.4 NavigatorView and JHelpNavigator
The NavigatorView class defines a NavigatorView type and provides access to the in-
formation in a <view> tag in a HelpSet file. A NavigatorView also provides a JHelp-

Navigator through its create method. JHelpNavigator is the Swing class used in the
JavaHelp system to capture the presentation of a NavigatorView. A JHelpNavigator

can be created directly, but more commonly it is created implicitly through the cre-

ate() method in a NavigatorView.
Sun Microsystems Inc. 32 JavaHelp V2.0 Specification

Java Software
5.4.1 View-Specific Knowledge

Specific NavigatorView may have additional methods and fields that encode specific
information on the view type. For instance, both TOCView and IndexView provide a
parse method that can be used to parse a URL that conforms to the file format. These
methods use a Factory class to provide access for customizing the result of the pars-
ing.

The separation of view data and its presentation means that it is possible to access the
view data without having to actually create the presentation. It also means that it is
easy to modify the presentation without having to duplicate some data-specific infor-
mation; for example, by reusing the parsing methods.

5.4.2 Different Formats

The Help Navigator mechanism can also be used to provide access to meta-data that
is in a "foreign" or "legacy" format. This might enable an application to access informa-
tion from legacy applications or an alternate meta-data format such sitemap, or meta-
data from the Library of Congress, or other library system. This may be done by cre-
ating a new NavigatorView that can parse the "foreign" format but that reuses the pre-
sentation from the JavaHelp JHelpNavigator .

A variation of this last case, the data is not stored anywhere but it is created dynami-
cally. This is easily accomplished by subclassing TOCView (for instance) and redefin-
ing the method getDataAsTree() to return the data whenever invoked.

5.4.3 Different Presentations

A JHelpNavigator selects its presentation through the standard Swing method ge-

tUIClassID() to indicate its ComponentUI class. A new JHelpNavigator that is not ca-
pable or willing to reuse an existing ComponentUI needs to return an appropriate
class value in getUIClassID() . If appropriate, this ComponentUI may be a subclass of
the standard ComponentUI classes (BasicTOCNavigatorUI.java , BasicIndexNaviga-

torUI.java and BasicSearchNavigatorUI.java) with some methods redefined. A use-
ful method to redefine is setCellRenderer which permits to change the presentation
details of the Tree in both TOC and Index presentations.

5.4.4 Two Examples of Custom Views

The five standard Views included in JavaHelp 1.0 (TOCView, IndexView, Glossary-
View, FavoritesView and SearchView) cover most online documentation needs, but
there are other situations where one might want to have custom views and navigators.
As a first example, the Java Tutorial could be used to illustrate the concept of a Help
Navigator. The Java Tutorial is an online document that describes the Java Platform.
The tutorial is organized into trails: groups of lessons on a particular subject. A version
of the tutorial could take advantage of a NavigatorView that supported the notion of
a trail. Such a view could remember the position within the trail, quickly reference ex-
amples within the trail, and navigate to other trails.
Sun Microsystems Inc. 33 JavaHelp V2.0 Specification

Java Software
Another example is an API class viewer. Such a viewer was created for demonstration
purposes and is included in the reference implementation. This NavigatorView uses
information collected from source files that are annotated using the javadoc system.
The traditional data generated by javadoc is produced as HTML files. Static HTML in-
dexes and trees are used to provide navigational information. The result is useful but
it is difficult to effectively navigate. The classviewer NavigatorView is customized to
dynamically display this information. A picture of the presentation is shown next:

In this example there are three navigational views: TOC, Index, and Search. Index is
an index of all the methods, classes, and packages, and Search provides a full-text
search of all the javadoc information. The TOC view uses the new classview Naviga-
torView. When a class is selected in the top pane of the navigator, the JHelpNavigator

determines if it has already loaded the metadata for that class. If not, it presents the
fields, constructors and methods in the bottom pane. When a method is selected, the
appropriate content file is presented in the JavaHelp system TOC pane. In this partic-
ular prototype, the information presented is only that of the selected class but the nav-
igator could easily provide access to inherited information too.

For this example, we use the new Doclet facility in JDK1.2 to generate the desired
metadata.

5.5 Search Engines
The standard NavigatorView and JHelpNavigator search classes (javax.help.Search-

View and javax.help.JHelpSearchNavigator) provide an interaction with search en-
gines via the classes in the javax.help.search package. SearchView views may have
Sun Microsystems Inc. 34 JavaHelp V2.0 Specification

Java Software
an optional <engine> attribute of their data tag indicating the specific jav-

ax.help.search.SearchEngine subclass to use to perform searches. The default is
com.sun.java.help.search.DefaultSearchEngine , which is the search engine includ-
ed in the reference implementation.

The same view and presentation can be used with other search engines following the
same protocol, by naming the SearchEngine class in the <engine> attribute and mak-
ing the class available.

Different view and or presentations of search can be provided using the standard cus-
tomization mechanisms for this. These may, or not, reuse the default search engine.

5.6 Key-Data Map
HelpSet provides a simple registry mechanism that provides per-instance or global
key-data mapping. The mechanism can be accessed via the setKeyData , setDefault-

KeyData and getKeyData methods. This mechanism is used by the JHelpContentViewer

to determine the EditorKit to use for a given MIME type, and also to determine the
HelpBroker to use in the HelpSet.createHelpBroker() method.

The per-HelpSet registry will be instantiated from the contents of the <impl> section
of the HelpSet file in the 1.0 version of the JavaHelp system.

5.7 Using new URL protocols
Another mechanism for extending JavaHelp is by providing new protocols that can,
for example, provide SGML -> HTTP translation. This is very easy to do in a Java ap-
plication by defining a few simple URL classes.
Sun Microsystems Inc. 35 JavaHelp V2.0 Specification

Java Software
6 JavaHelpTM 1.0 - JavaBeans Help data

6.1 Introduction
There are different types of help information associated with JavaBeans components.

• Help information about the JavaBeans component to use by a "container"

• Help information used by the JavaBeans component itself (for example, a
popup)

• Help information to be attached to a JavaBeans component instance

In the first case, information is associated with the presence of the JavaBeans compo-
nent in its container. For example, this is what happens when a JavaBeans component
is added to a Builder tool palette, or when a new JavaBeans component plug-in is
dropped into JMAPI.

The second case occurs at runtime within a JavaBeans component. For example, the
JavaBeans component is a complex plug-in. While in a popup window for that plug-
in, we want to display the help information in a form that is consistent with whatever
display presentation the container uses for help information.

The third case occurs when a JavaBeans component is instantiated into a container
and it is given some semantics by customizing it and by attaching to events and ac-
tions. In this case we want an easy mechanism to assign help data that describes the
semantics so that a gesture can retrieve that help data.

The mechanisms described in the following section pertain to the first two cases. The
third situation is covered by the mechanisms for context-sensitive help and other,
more ad hoc, mechanisms.

6.2 Help Information
The needs of the two cases described above require the association and retrieval of
two pieces of information per JavaBeans component:

• helpSetName : the name of a HelpSet that contains help information

• helpID : a home ID within that HelpSet to use to present data

Having two different pieces of information (cf. having the HelpID be a fixed value)
provides for additional packaging flexibility and leads to a nice default convention,
and useful default values are important to keep within the JavaBeans design philoso-
phy. The default for this information depends on whether the name of the JavaBeans
component is in the unnamed package or not:

Name is of the form OurButton:

• helpSetName : add a Help.hs to name: OurButtonHelp.hs

• helpID : add ".topID" to name: OurButton.topID

If the name is of the form sunw.demo.buttons.OurButton:
Sun Microsystems Inc. 36 JavaHelp V2.0 Specification

Java Software
• helpSetName : drop the shortname, replace '.' with '/' and add a '/Help.hs':
sunw/demo/buttons/Help.hs.

• helpID : add ".topID" to name: sunw.demo.buttons.OurButton.topID:

6.3 Mechanism
The proposed mechanism is to use two optional String-valued BeanInfo attributes
with the names suggested above: "helpSetName", and "helpID". This mechanism is rel-
atively simple, does not require the JavaBeans component to be initialized, and it is
consistent with other uses of BeanInfo attributes (e.g. Swing's use for container infor-
mation).

To simplify following the default rules described above, we add two methods to a Ja-
vaHelp class that take a Class object and return the desired Strings after consulting the
appropriate methods.

6.4 An Example:
Below is the buttons example from the BDK, modified to provide Help information.
This example uses the default values for HelpSetName and HelpId:

6.4.1 Manifest and JAR File

The manifest file just changes to include the Help files; it would look like:

 // Beans, Implementation Classes, and Gif images are as before

 // the HelpSet file
 Name: sunw/demo/buttons/Help.hs

 // The Map file
 Name: sunw/demo/buttons/help/Map.html

 // Actual html data - in this case all in one file
 Name: sunw/demo/buttons/help/Buttons.html

 // View data
 Name: sunw/demo/buttons/help/toc.xml

 Name: sunw/demo/buttons/help/index.xml

 Name: sunw/demo/buttons/help/search.dat

6.4.2 The HelpSet File

All the HelpSet files are the same. The HelpSet file is quite simple (see section 6.4.2 on
page 37 for details on the classes view).

 # ...

 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help/Map.html</data>
 </map>
Sun Microsystems Inc. 37 JavaHelp V2.0 Specification

Java Software
 # data views
 <view>
 <name>TOC</name>
 <label>Table of Contents</label>

<type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help/toc.xml</data>
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help/index.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help/search.dat</data>
 </view>

6.4.3 The Help Map

In this simple example, the Map just handles the top IDs, plus a global introduction to
the buttons package.

 sunw.demo.buttons.topId="!/sunw/demo/buttons/help/Buttons.html#Top"
 sunw.demo.buttons.OurButton.topId="!/sunw/demo/buttons/help/Buttons.html#OurButton"
 sunw.demo.buttons.ExplicitButton.topId="!/sunw/demo/buttons/help/

Buttons.html#ExplicitButton"
 sunw.demo.buttons.OrangeButton.topId="!/sunw/demo/buttons/help/Buttons.html#OrangeButton"
 sunw.demo.buttons.BlueButton.topId="!/sunw/demo/buttons/help/Buttons.html#BlueButton"

6.5 An Alternative Arrangement
A alternative arrangement would have been to place all the help data in a single nest-
ed JAR file. For example:

6.5.1 Manifest and JAR file

// The Beans, Implementation Classes and Gifs as before
// The Help data
Name: sunw/demo/buttons/Help.hs
// The rest of the Help data
Name: sunw/demo/buttons/help.jar

6.5.2 The HelpSet File

The Help file has to change a bit:

 # no property requests
 # map URL
 <homeID>sunw.demo.buttons.topId</homeID>
 <map>
 <data>!/sunw/demo/buttons/help.jar!/Map.html</data>
 </map>
 # data views
 <view>
 <name>TOC</name>
Sun Microsystems Inc. 38 JavaHelp V2.0 Specification

Java Software
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>!/sunw/demo/buttons/help.jar!/toc.xml</data>
 </view>
 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>!/sunw/demo/buttons/help.jar!/index.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <engine>com.sun.java.help.search.DefaultSearchEngine</engine>
 <data>!/sunw/demo/buttons/help.jar!/search.dat</data>
 </view>

6.5.3 The Help Map

In this example, we can choose to use exactly the same Help map as what we used in
the previous arrangement.
Sun Microsystems Inc. 39 JavaHelp V2.0 Specification

Java Software
7 Server Based JavaHelp

Server based applications have the same need for online help as client based applica-
tions. The JavaHelp V1.0 API provided a good foundation for developing online help
for server based applications. However, the specification was not complete in defining

a standard for a JavaHelp bean and Java Server Pages TM(JSP) tag library for accessing
HelpSet data. This section defines the new standards in JavaHelp for server based ap-
plications.

7.1 Java Server Pages
JSP allows web developers to develop content-rich, dynamic pages rapidly and easily.
JSP uses XML-like tags to encapsulate the logic that generates web content. JSP pages
separate the page logic from its design and display, which prevents the overlapping
of roles between web designers and programmers. Designers design the web pages
and programmers add the logic and code to them. For more information and useful
tutorials on JavaServer Pages technology, see JavaServer Pages Dynamically Generat-
ed Web Content.

7.2 Server Based JavaHelp Architecture
By combining the JavaHelp API with new JavaHelp JSP tag libraries web developers
will be able to provide help for server based applications. The diagram below illus-
trates the architecture.

A browser initiates a JSP request. Examples of a JSP request are displaying the help
content in HelpSet, the navigators, or the data for a given navigator. Typically the JSP
request will contain JavaBeans as well as JSP tag extensions. The JavaServer turns the
request into a Java Servlet. The servlet access the appropriate information from the
HelpSet using the classes in JavaHelp library (jh.jar) and JavaHelp tag library
(jhtags.jar) and returns HTML and possibly JavaScript or DHTML to the browser.

Browser

Java Server

jh.jar

HelpSet

HTML
&

JavaScript

JSP
request
Sun Microsystems Inc. 40 JavaHelp V2.0 Specification

Java Software
7.3 JavaHelp Server Components
Access to HelpSet data on a server is accomplished through a combination of Java-
Help specific Java Beans and JSP tag extensions. This section defines the standard Ja-
vaHelp JavaBeans and JSP tag extensions and scripting variables

7.3.1 JavaHelp Server Bean

ServeletHelpBroker is the Java Bean that stores help state information such as the
HelpSet in use, the currentID, the current navigator and other pieces of help informa-
tion. While it implements the javax.help.HelpBroker interface some of the methods
are either not implemented or throw UnsupportedOperationExceptions if called. The
list of methods not implemented are listed below.

One new method is added to ServletHelpBroker

7.3.1.1 Usage

The ServletHelpBroker is used in the JSP request with a session scope. As such it
would remain in existence for the duration of a session.

<jsp:useBean id=”helpBroker” class=”ServletHelpBroker” scope=”session” />

The ServletHelpBroker methods can be called either within tag libraries as illustrated
below.

<jh:validate helpBroker=”<%= helpBroker %>” />

or directly in the JSP as illustrated below

Method Result

initPresentation() No Operation

setDisplayed(boolean) Ignored

boolean isDisplayed() Always returns true

enableHelpKey(Component,

String id, HelpSet
No Operation

enableHelp(Component|MenuItem,

 String id, HelpSet
No Operation

enableHelpOnButton(Component|

 MenuItem,

 String id,

 HelpSet

No Operation

Method Definition

NavigatorView getCurrentNaviga-
torView()

Returns the current navigator as a Navigator-
View
Sun Microsystems Inc. 41 JavaHelp V2.0 Specification

Java Software
<FRAME SRC=”<jsp:getPorperty name=”helpBroker” property=”currentURL” />” NAME=”contentsFrame”
SCROLLING=”AUTO”>

7.3.2 JavaHelp JSP Tag Extensions

While it would be possible to retrieve all the HelpSet information required for display-
ing online help or documentation using Java Beans and JSP scriptlets, a standard set
of tag extensions in the JavaHelp tag library enables application functionality to be in-
voked without the appearance of programming. The JavaHelp tag library is a com-
mon set of building blocks that

• conceals the complexity of access to HelpSet data

• introduces new scripting variable into a page

• handles iterations without the next for scriptlets

The JavaHelp tags are define below:

Tag Tag Class
TEI Class Description Attributes

validate ValidateTag Validate a helpBroker
with the various
parameters. Allows
for easy setup of a
helpBroker with a
new HelpSet. Also
provides for merging
HelpSets and the set-
ting of the currentID

helpbroker
required

HelpBroker object

setInvalidURL
not required

String representing the URL for
Invalid HelpSet message.

helpSetName
not required

String representing the URL for the
HelpSet name

currentID
not required

String id of desired currentID

merge
not required

boolean value - if true then merge
HelpSet into current HelpSet if one
exists, otherwise do not merge
helpset
Sun Microsystems Inc. 42 JavaHelp V2.0 Specification

Java Software
navigators NavigatorsTag
NavigatorsTEI

Returns Navigator-
View information for a
given HelpBroker

helpbroker
required

HelpBroker object

currentNav
not required

String name of the current navigator

tocItem TOCItemTag
TOCItemTEI

Provided with a TOC-
View, returns TOC-
Item information

tocView
required

TOCView object

helpbroker
required

HelpBroker object

baseID
not required

determined by expression

String text for the base identification
of the TOCItem

indexItem IndexItemTag
IndexItemTEI

Provided with a
IndexView, returns
IndexItem informata-
tion

IndexView
required

determined by expression

IndexView object

helpbroker
required

HelpBroker object

baseID
not required

String text for the base identification
of the TOCItem

Tag Tag Class
TEI Class Description Attributes
Sun Microsystems Inc. 43 JavaHelp V2.0 Specification

Java Software
 Unless otherwise specified all attributes values are determined by expression. Also
with the exception of validate the body of all tags are JSP.

7.3.2.1 Validate Usage

The validate tag is designed to used once within a jsp as illustrated

<jh:validate helpBroker="<%= helpBroker %>" />

This verifies that a valid HelpBroker exists and then loads the HelpSet that has either
been defined in validate using the helpSetName argument or as an HTTP POST re-
quest.

7.3.3 Navigator Scripting Variables

The navigator, tocItem, indexItem and searchItem tag extensions introduce a pre-
defined set of scripting variables into a page. This allows the calling JSP to control the
presentation without performing the processing involved in determining the content.

Unless otherwise specified all scripting variables in JavaHelp create a new variable
and the scope is set to NESTED. NESTED variables are available to the calling JSP only
within the body of the defining tag.

7.3.3.1 Navigator Variables

The navigator variable are defined in the table below.

searchItem SearchItemTag
SearchItemTEI

Provided with a
SearchView, returns
SearchItem informata-
tion

searchView
required

SearchView object

helpbroker
required

HelpBroker object

baseID
not required

String text for the base identification
of the SearchItem

Variable Data Type Description

classname java.lang.String Name of the NavigatorView class

name java.lang.String Name of the View as defined in the HelpSet

tip java.lang.String Tooltip text for the View

Tag Tag Class
TEI Class Description Attributes
Sun Microsystems Inc. 44 JavaHelp V2.0 Specification

Java Software
7.3.3.1.1 Navigator Variable Usage

The navigator tag is useful to return information about the current navigator. In the
illustration below the navigator tag is used to determine the navigators that are used
in the HelpSet and sets an HTML IMG tag based on the navigator name.

<jh:navigators helpBroker="<%= helpBroker %>" >
<A HREF="navigator.jsp?nav=<%= name %>">
<IMG src="<%= iconURL!=""? iconURL : "images/" + className +".gif" %>" Alt="<%= tip %>"

BORDER=0>
</jh:navigators>

7.3.3.2 tocItem Variables

The tocItem variable are defined in the table below.

7.3.3.2.1 tocItem Usage

The tocItem tag returns information about the tocItems defined in a TOCView. In the
illustration below the TOCView returns tocItems scripting variables that are added to
a javascript tag addNode.

<% TOCView curNav = (TOCView)helpBroker.getCurrentNavigatorView(); %>
<jh:tocItem tocView="<%= curNav %>" helpBroker="<%= helpBroker %>" >

iconURL java.lang.String URL for the icon if set with the imageID attributed
in the HelpSet

isCurrentNav java.lang.Boolen True if current navigator; false otherwise

Variable Data Type Description

name java.lang.String tocItem text as defined in the name attribute

target java.lang.String tocItem target as defined in the target attribute

parent java.lang.String hex value identifying parent node

parentID java.lang.String String identification identifying parent node

node java.lang.String hex value identifying this node

nodeID java.lang.String String identifying this node

iconURL java.lang.String URL for the icon if set with the imageID attributed
in the tocItem or the defaults imageIDs in the toc

iconOpenURL java.lang.String URL for the open icon if set with the imageID
attributed in the tocItem or the default imageIDs in
the toc

contentURL java.lang.String URL for the content represent by this item

Variable Data Type Description
Sun Microsystems Inc. 45 JavaHelp V2.0 Specification

Java Software
addNode("<%= name %>","<%= iconURL!=""?iconURL:"null" %>","","-1","<%=
contentURL!=""?contentURL:"null" %>","<%= target %>","<%= nodeID %>","<%= parentID %>");

</jh:tocItem>

7.3.3.3 indexItem Variables

The indexItem variable are defined in the table below.

7.3.3.4 indexItem Usage

The itemItem tag returns information about the indexItems defined in a IndexView.
In the illustration below the IndexView returns indexItems scripting variables that are
added to a javascript tag addNode.

<% IndexView curNav = (IndexView)helpBroker.getCurrentNavigatorView(); %>
<jh:indexItem indexView="<%= curNav %>" helpBroker="<%= helpBroker %>" >
addNode("<%= name %>","null","","-1","<%= contentURL!=""?contentURL:"null" %>","<%= helpID

%>","<%= nodeID %>","<%= parentID %>");
</jh:indexItem>

7.3.3.5 searchItem Variables

The searchtem variable are defined in the table below.

Variable Data Type Description

name java.lang.String indexItem text as defined in the name attribute

target java.lang.String indexItem target as defined in the target attribute

parent java.lang.String hex value identifying parent node

parentID java.lang.String String identification identifying parent node

node java.lang.String hex value identifying this node

nodeID java.lang.String String identifying this node

contentURL java.lang.String URL for the content represent by this item

Variable Data Type Description

name java.lang.String Unique name of the searchItem

helpID java.lang.String Id associated with this searchItem

confidence java.lang.String The quality of the hits as returned the search engine

hits java.lang.String number of hits

contentURL java.lang.String URL for the content represent by this item

hitBoundries java.lang.String A list of boundaries. Returns in the format of {begin,
end},...
Sun Microsystems Inc. 46 JavaHelp V2.0 Specification

Java Software
7.3.3.5.1 SearchItem Usage

The searchItem tag returns information about the searchItems defined in a Search-
View. In the illustration below the SearchView returns searchItems scripting variables
that are added to a javascript tag addNode.

<jh:searchItem searchView="<%= curNav %>" helpBroker="<%= helpBroker %>" query="<%= query %>" >
addNode("<%= name %>","<%= confidence %>","<%= hits %>","<%= contentURL %>","<%= helpID %>");
</jh:searchItem>
Sun Microsystems Inc. 47 JavaHelp V2.0 Specification

Java Software
8 Presentation of Help Content

8.1 Introduction
In V1.0 help content could only be presented in a single presentation method as de-
fined within the HelpBroker. In the reference implementation this was a tri-paned
main window. While the components to provide other presentations were present in
V1.0, the six invocation mechanisms (see section A.2 on page 82) for activating help
limited the display to a single presentation.

V2.0 improves this functionality by allowing multiple forms of help content presenta-
tion. Supported presentations will now include the tri-paned main window, named
secondary windows and popups. Additionally, reference implementations and end
users have the capability of providing additional presentation forms.

8.2 Presentation Class
Greater flexibility in the presentation of help content is provided in the new Presen-

tation class. This abstract class provides developers with a generic interface for the
development of alternative presentations. Each implementation of Presentation will
need to override the static method getPresentation according to it’s own needs. For
instance Popup would create a single object whereas SecondaryWindow would look for
an existing secondary window that matched the parameters before creating a new
SecondaryWindow object.

The key to Personation is the generic methods that are required for all presentations.

Method Description

getPresentation(hs, name) Static method to return a Presentation for the
given type. By default Presentation will
return null and concrete class extending Pre-
sentation should override this method with
their own implementation.

setHelpSetPresentation

(HelpSet.Presentation)
Set the Presentation attributes from a named
presentation in the HelpSet.

get/setCurrentID(ID)

setCurrentID(stringId)
Get/set the current ID for the presentation.

get/setCurrentURL(URL) Get/set the current URL for the presentation.

get/setFont(Font) Get/set the Font for the presentation.

get/setLocale(Locale) Get/set the Locale for the presentation.

get/setHelpSet(HelpSet) Get/set the HelpSet for the presentation.
Sun Microsystems Inc. 48 JavaHelp V2.0 Specification

Java Software
8.2.1 Presentation Extensions

The specification calls for all implementation to provide four extensions of the Presen-

tation class. One of the extensions is an abstract class for window presentations

8.2.1.1 Popup

Popup is a direct implementation of Presentation . A Popup contain only a content
viewer. It is intended to provide immediate help and then allow the user to continue
working. Once a popup loses focus, it is destroyed.

8.2.1.2 Window Presentations

Window presentations require additional controls than what is provided in Presen-

tation . An abstract class WindowPresentation provides additional methods generic
for window based presentations.

is/setDisplayed(boolean) is/set the presentation displayed.

get/setSize(Deminsion) Get/set the size for the presentation.

Name Description

get/setLocation(Point) Get/set the location of the presentation.

get/setTitle(String) Get/set the title for the presentation.

get/setCurrentView(stringView) Get/set the current navigational view for the
presentation.

is/setViewDisplayed (boolean) Is/set the navigation views to be displayed
in the presentation.

is/setDestroyedOnExit(boolean) Is/set the window to be destroyed on exit.

get/setActivationWindow(Window)

setActivationObject(Object)
Get/set the current activation Window for
the presentation. Optionally a method is pro-
vided to do this from an Object

is/SetTitleFromDocument

(boolean)
Determines if the title is set from the dis-
played Document. This is generally usefull
for presentations such as SecondaryWin-
dows.

is/SetToolbarDisplay(boolean) Determines if the toolbar is displayed

getHelpSetPresention() Returns the HelpSet.Presentation if one was
set.

createHelpWindow() Creates the help window used in the Presen-
tation.
Sun Microsystems Inc. 49 JavaHelp V2.0 Specification

Java Software
Additionally the WindowPresentation will maintain a static list of WindowPresenta-

tion s. These are accessed through the protected method get/putWindowPresenta-
tion.

8.2.1.2.1 Main Window

The MainWindow is the main presentation for the JavaHelp system. By default it is a tri-
paned fully decorated window consisting of a tool bar, navigator pane, and help con-
tent viewer. By default the object is not destroyed when the window is closed.

8.2.1.2.2 Secondary Window

A SecondaryWindow is similar to the MainWindow in that it is a fully decorated window.
By default it only contains a help content viewer though could optionally include a
toolbar and/or navigators. Unlike the main window it is destroyed by default on clos-
ing. Additionally, secondary windows have a name associated with them. Use of a
named secondary window will cause the current contents to be replaced if a named
window is visible.

8.3 Help Author Presentation Control
The help author can override any of the presentations attributes in the HelpSet file.
For more information on overriding presentation attribute defaults see section 3.2.7 on
page 21.

8.4 Activating Help in Presentations
There are six invocation mechanism for activating help:

• Field-level context-sensitive help

• Window-level context-sensitive help

• User initiated context-sensitive help

• System initiated context-sensitive help

• Navigator

• Viewer

For more information on invocation mechanism see section A.2 on page 82.

V1.0 was limited to the presentation of HelpBroker (generally a tri-pane window).
Each of the invocation mechanism have been extended to allow presentations in one
of the standard or custom Presentation s. The new methods or file formats are inBold.

destroy() Destroy this object and any subobjects it cre-
ated.

Method or File Format Invocation Mecha-
nism
Sun Microsystems Inc. 50 JavaHelp V2.0 Specification

Java Software
CSH.DisplayHelpAfterTracking(HelpBroker)

CSH.DisplayHelpAfterTracking(

 HelpSet,

 StringPresentation,

 StringPrentationName)

Field-level CSH

CSH.DisplayHelpFromFocus(HelpBroker)

CSH.DisplayHelpFromFocus(

 HelpSet,

 String presentation,

 String presentationName)

HelpBroker.enableHelpKey(MenuItem,

 String id,

 HelpSet)

HelpBroker.enableHelpKey(Component,

 String id,

 HelpSet)

HelpBroker.enableHelpKey(Object,

 String id,

 HelpSet,

 String presentation,

 String presentationName)

Window-level CSH

CSH.DisplayHelpFromSource(HelpBroker)

CSH.DisplayHelpFromSource(HelpSet,

 String presentation,

 String presentationName)

HelpBroker.enableHelpOnButton(MenuItem

 String id,

 HelpSet)

HelpBroker.enableHelpOnButton(Component,

 String id,

 HelpSet)

HelpBroker.enableHelpOnButton(Object,

 String id,

 HelpSet,

 String presentation,

 String presenationName)

User Initiated CSH
Sun Microsystems Inc. 51 JavaHelp V2.0 Specification

Java Software
8.4.1 Field-level Context-sensitive Help

No changes to existing code are required to display field-level context-sensitive help
in the MainWindow . The following invocation would display the field-level help in a
main window.

JToolBar toolbar=new JToolBar();
...

helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHB));

HelpBroker.setCurrentID(String id)

Presentation.setCurrentID(String id)

HelpBroker.showID(String id,

 String presentation,

 String presentationName)

HelpBroker.setCurrentID(ID)

Presentation.setCurrentID(String id)

HelpBroker.showID(ID,

 String presenation,

 String presentationName)

System Initiated CSH

TOCItem(target=”id”)

TOCItem(target=”id”

 presentation=”presentation_class”

 presentationName=”presentation_name”)

IndexItem(target=”id”)

IndexItem(target=”id”

 presentation=”presentation_class”

 presentationName=”presentation_name”)

Navigator

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

?

?

View in a Main Window
Sun Microsystems Inc. 52 JavaHelp V2.0 Specification

Java Software
The following invocation would display the field-level help in a popup as illustrated.

JToolBar toolbar=new JToolBar();
...
helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHS,

 "javax.help.Popup",
null));

The following invocation would display the field-level help in a secondary window
as illustrated.

JToolBar toolbar=new JToolBar();
...
helpbutton = addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(new CSH.DisplayHelpAfterTracking(mainHS,

 "javax.help.SecondaryWindow",
 “mainSW”));

8.4.2 Window Level Context-Sensitive Help

No changes to existing code are required to display window-level context-sensitive
help in the MainWindow . The following invocation would display the window-level
help in a main window.

x

Name:

Address:

City

?

?

View in a Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

x

Name:

Address:

City

?

?

View in a Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 53 JavaHelp V2.0 Specification

Java Software
JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
rootpane = frame.getRootPane();
mainHelpBroker.enableHelpKey(rootpane, “top”, null);

The following invocation would display the window-level help in a popup as illus-
trated.

JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
rootpane = frame.getRootPane();
mainHelpBroker.enableHelpKey(rootpane, “top”, null, “javax.help.Popup”, null);

The following invocation would display the window-level help in a secondary win-
dow as illustrated.

JTextArea newText = new JTextArea();
hb.enableHelp(newText, “debug.overview”, hs);

...
rootpane = frame.getRootPane();

x

Name:

Address:

City

View in a Main Window

F1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

x

Name:

Address:

City

View in a PopupF1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 54 JavaHelp V2.0 Specification

Java Software
mainHelpBroker.enableHelpHey(rootpane, “top”, hs, “javax.help.SecondaryWindow”, “mainSW”);

8.4.3 User initiated context-sensitive help

No changes to existing code are required to display user initiated context-sensitive
help in the MainWindow . The following invocation would display the user initiated help
in a main window.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null);

The following invocation would display the user initiated help in a popup as illustrat-
ed.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null,

x

Name:

Address:

City

View in a Secondary Window

F1

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

Help

View in a Main Window
Sun Microsystems Inc. 55 JavaHelp V2.0 Specification

Java Software
 “javax.help.Popup”, null);

The following invocation would display the user initiated help in a secondary win-
dow as illustrated.

JButton helpbutton = new JButton(“Help”);
mainHelpBroker.enableHelpOnButton(helpbutton, “browse.strings”, null,

 “javax.help.SecondaryWindow”, “mainSW”);

8.4.4 System initiated context-sensitive help

No changes to existing code are required to display system initiated context-sensitive
help in the MainWindow . The following invocation would display the system-initiated
help in a main window.

mainHelpBroker.setCurrentID(helpID);

x

Name:

Address:

City

View in a Popup

Help

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

x

Name:

Address:

City

View in a Secondary Window

Help

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 56 JavaHelp V2.0 Specification

Java Software
The following invocation would display the system initiated help in a popup as illus-
trated.

Popup popup = (Popup)Popup.getPresentation(mainHS, null);
popup.setInvoker(component);
popup.setCurrentID(helpID);
popup.setDisplayed(true);

The following invocation would display the system initiated help in a secondary win-
dow as illustrated.

mainHelpBroker.showID(helpID, “javax.help.SecondaryWindow”, “main”);

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

x

Name:

Address:

City

View in a Main Window

x

Name:

Address:

City

View in a Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 57 JavaHelp V2.0 Specification

Java Software
8.4.5 Navigator

No changes to exist code are required to display an item in the main window. Select-
ing an item in the navigator would cause the content pane to be updated as illustrated.

The following tocitem would display the presentation in a popup window:

<tocitem target="platform" image="image document.gif” presentation=”javax.help.Popup”>
 JavaHelp platforms
</tocitem>

x

Name:

Address:

City

View in a Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Main Window
Sun Microsystems Inc. 58 JavaHelp V2.0 Specification

Java Software
Similarly, the following example would display the presentation in a secondary win-
dow.

<tocitem target="platform" image="image document.gif”
presentationtype=”javax.help.SecondaryWindow” presentation=”mainSW”>

 JavaHelp platforms
</tocitem>

8.4.6 Viewer

Activation of help content from a viewer was not specified in the V1.0 specification
but was supported in the reference implementation with through lightweight-compo-

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

View in Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 59 JavaHelp V2.0 Specification

Java Software
nents. The content viewer could display help in the viewer, a named secondary win-
dow or a popup as illustrated.

The following illustrates the content being displayed in a viewer. It uses the standard
<a href> in HTML:

Browsing Source

The following illustrates the content being displayed in a popup. It uses the object tag
from the reference implementation.

<OBJECT CLASSID="java:com.sun.java.help.impl.JHSecondaryViewer">
<param name="content" value="popup_gloss.html">
<param name="viewerActivator" value="javax.help.LinkLabel">
<param name="viewerStyle" value="javax.help.Popup">
<param name="viewerSize" value="400,250">
<param name="text" value="popup windows">
<param name="textColor" value="blue">
<param name="viewerName" value="glossary">
</OBJECT>

The following illustrates the content being displayed in a popup. It uses the object tag
from the reference implementation.

<object CLASSID="java:com.sun.java.help.impl.JHSecondaryViewer">

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Main window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

View in Popup

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 60 JavaHelp V2.0 Specification

Java Software
<param name="content" value="demo.html">
<param name="viewerName" value="demo">
<param name="viewerLocation" value="500,220">
<param name="viewerSize" value="500,500">
</object>

No changes to the specification will be made to support displays to named secondary
windows, popups or custom presentations.

View in Secondary Window

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 61 JavaHelp V2.0 Specification

Java Software
9 Toolbar

A supplement of controlling presentations (see section 3.2.7 on page 21) is the ability
to define or customize the toolbar in a JHelp component. In order to accommodate the
new HelpAction in the HelpSet-Presentation section of a HelpSet file a new HelpAc-
tion class has been added.

• HelpActions could be used in Menus, however, they are not part of the reference
implementation and are not specified in the HelpSet.

9.1 HelpAction Interface
The HelpAction interface defines common behaviors for help actions. One use of help
actions would be the handling of common behavior for buttons included in a JHelp

component’s toolbar.

9.2 AbstractHelpAction Class
The AbstractHelpAction class is a default implementation of the HelpAction interface.

The constructor takes two argument: control and name. The control is an object that
would exhibit some type of control of the action. In the reference implementation the
control object would be the JHelp component.

9.3 HelpAction Extensions
Extensions of the AbstractHelpAction class are required set the help action name, im-
plement an appropriate event listener and return an appropriate image. The name is
used to provide locale specific tooltip for the button. It is possible for an extension to
set the name internally in the extension’s constructor.

Extensions must implement an appropriate event listeners based on the implementa-
tion GUI and action. For instance, the reference implementation GUI is AWT or Swing
the event listeners would be an AWT event listener. A button implementing an Ac-

Method Description

get/putValue(String key,

 Object value)
Get/set on of the object’s properties using
the associated Key.

is/setEnabled(boolean) is/set the HelpAction enabled.

get/setControl(Object) Get/set the control Object for the HelpAc-
tion.

Constructor Description

AbstractHelpAction(Object control,

 String name)
Creates an AbstractHelpAction
Sun Microsystems Inc. 62 JavaHelp V2.0 Specification

Java Software
tionListener would implement the method public void actionPerformed(Action-

Event e) . Similarly a button implementing a MouseListener would implement the
MouseListener methods. The implementation then determines the type of listener to
add by inspecting the class for a given EventListeners.

Additionally extensions must implement a method to retrieve implementation GUI
specific image if no imageID has been set. For instance, in the reference implementa-
tion is Swing based so an appropriate image would be javax.swing.ImageIcon and
the appropriate method would be getImageIcon() .

9.4 Supplied AWT/Swing HelpActions
A set of default HelpActions are included in the specification. This extensions are part
of AWT/Swing part of the specification and are specific to the AWT/Swing GUI.

Valid properties Awt/Swing HelpActions for the method get/putValue include icon

for image used in the button, tooltip for the tooltip text, access for accessiblity name.

Name Description

BackAction An action to move to the previous page in the
content viewer.

ForwardAction An action to move to the next page in the
content viewer.

PrintAction An action to print.

PrintSetupAction An action to print through the print setup.

HomeAction An action to load the HomeID in the content
viewer.

ReloadAction An action to reload the current document in
the content viewer.

SeparatorAction An non-action that creates a separator
between the actions.
Sun Microsystems Inc. 63 JavaHelp V2.0 Specification

Java Software
10 Context Sensitive Help

10.1 Context-Sensitive Help
Context-sensitive help in the JavaHelp system is organized around the notion of the
ID-URL map referred by the <map> section of a HelpSet file. The key concept is that of
the Map.ID which is comprised of a String/HelpSet instance pair. The String is intend-
ed to be unique within the local map of the HelpSet. This is very important when con-
sidering HelpSet merging, otherwise IDs would be required to be unique over all
HelpSets that might ever be merged.

There are three parts involved in assigning Context Sensitive Help to an application:

1. Define the appropriate String ID-URL map,

2. Assign an ID to each desired visual object,

3. Enable some user action to activate the help.

10.1.1 Defining the ID-URL map

The Map interface provides a means for associating IDs (HelpSet.string) with URLs.
One such map is constructed from one or more map files that provide a simpler
"String ID" to URL mapping, with the HelpSet being given either explicitly or implic-
itly.

JavaHelp has two classes that implement the Map interface: FlatMap and TryMap. A
FlatMap does not support nesting of other maps into it, while a TryMap does. A Flat-
Map is a simple implementation while TryMap should support inverse lookups (for
example, getIDFromURL) more efficiently. The implementation of TryMap JavaHelp 1.0
is not particularly efficient.

Both FlatMap and TryMap have public constructors. The constructor for FlatMap takes
two arguments: the first one provides a URL to a property file providing a list of String
and URL pairs; the second argument is a HelpSet. The HelpSet is used together with
each String-URL pair to create the actual Map.ID objects that comprise the FlatMap . The
constructor for TryMap has no arguments: the Map is created empty and other Maps are
added (or removed) from it.

The Mapinterface can also be implemented by some custom class. One such class could
be used to, for example, programatically generate the map.

10.1.2 Assigning an ID to Each Visual Object

The next step is to assign to each desired GUI object an ID that will lead to the desired
help topic. There are two mechanisms involved: an explicit ID, either a plain String, or
a Map.ID , is assigned to the GUI object; and there is a rule that is used to infer the
Map.ID for an GUI object based on its container hierachy.

The two basic methods to assign IDs are setHelpIDString(Component, String) and set-
HelpSet(Component, String). If both are applied to a Component, then a Map.ID is as-
signed to that Component. If only setHelpIDString() is applied, then the HelpSet
Sun Microsystems Inc. 64 JavaHelp V2.0 Specification

Java Software
instance is obtained implicitly, as indicated later. A method overload is provide for
MenuItem objects.

These methods take a Component as an argument. The implementation may vary de-
pending on whether the argument is a JComponent or a plain AWT Component.

The methods getHelpIDString(Component) and getHelpSet(Component) recursively
traverse up the container hierachy of the component trying to locate a Component that
has been assigned a String ID. When found, the methods return the appropriate value.
As before there is also an overloaded method for MenuItem .

10.1.3 Enabling a Help Action

The final step is to enable for some action to trigger the presentation of the help data.
CSH currently provides several ActionListener classes that can be used:

In addition, HelpBroker also provides some convenience methods that interact with
these ActionListeners:

Name Description

DisplayHelpFromFocus() Locate the Component currently owning the
focus, then find the ID assigned to it and present it
on the HelpBroker. This is to be used by "Help"
keys.

DisplayHelpAfterTracking() Start tracking events until a mouse event is used
to select a Component, then find the ID assigned
and present it. This is to be used by a "What's this"
type of interface.

DisplayHelpFromSource() Find the ID assigned to the source of the action
event and present it.

Name Description

enableHelpKey(root, stringID,

 helpSet)

Set the ID and helpset of root which will act
as the default help to present, then register an
appropriate ActionListener to be activated
via the "Help" key. DefaultHelpBroker uses
CSH.DisplayHelpFromFocus as the ActionLis-
tener.

enableHelp(Component, stringId,

 helpSet)

Set the ID and HelpSet to the component.
This information is usually recovered either
using the "Help" key or through the Display-

HelpAfterTracking class.
Sun Microsystems Inc. 65 JavaHelp V2.0 Specification

Java Software
Since these methods are from a specific HelpBroker, if a HelpSet is not associated with
the GUI object then the HelpSet of the HelpBroker will be used automatically.

10.1.4 Dynamic ID Assignment

For certain objects having a single ID per object is not sufficient. There needs to be a
way to programatically determine the ID based on cursor position, selection, or some
other mechanism inherent to the object. For example a Canvas might determine the ID
based on the object currently selected on the canvas or alternatively from the mouse
cursor position.

The following APIs have been added to CSH to support dynamic ID assignment:

Additionally a new interface has been defined in CSH.Manager:

enableHelpOnButton(Component,

 stringId,

 helpSet)

Set the ID and HelpSet to the component,
which must be a "Button". When the button is
"pressed" the Help information given in the
arguments will be presented.

Name Description

addManager(CSHManager) Registers the specified manager to handle
dynamic CSH.

addManager(index, CSHManager) Registers the specified manager to handle
dynamic CSH at the specified position in the
list of managers.

getManager(index) Returns the manager at the specified position
in list of managers.

getManagerCount() Returns the number of managers registered.

getManagers() Returns array of managers registered.

removeAllManagers() Remove all of the dynamic CSH managers.

removeManager(CSH.Manager) Remove the specified manager from the list of
managers.

removeManager(index) Remove the manager at the specified position
in the list of managers.

Name Description

getHelpSet(Object, AWTEvent) Returns String representing the MAP.ID of the
object based on the AWTEvent
Sun Microsystems Inc. 66 JavaHelp V2.0 Specification

Java Software
Instances of the CSHManager work as filters. CSH.getHelpIDString(comp) and
CSH.getHelpSet(comp) are required call each registered CSH.Manager’s getHelpID-
String or getHelpSet methods. If the CSHManager doesn’t want to handle the compo-
nent it returns null. If no CSHManager provides a HelpSet or HelpIDString for the
component the CSH methods would use the static HelpSet and HelpIDString (see sec-
tion 10.1.2 on page 64 for more details on static HelpSet and HelpIDString). As with
statically defined HelpSet and HelpIDString a failure in request for HelpSet and
HelpIDString is propagated to the component’s parent.

10.1.4.1 Example Usage

An example usage for components with dynamically assigned HelpSet or dynamical-
ly generated HelpIDString is below:

class MyCSHManager implements CSHManager {
HelpSet hs;
JEditorPane editor;
MyCSHManager(JEdtiorPane editor, HelpSet hs) }

this.editor = editor;
this.hs = hs;

}
public HelpSet getHelpSet(Object comp) {

if (comp == editor) {
return hs;

}
return null;

}
public String getHelpIDString(Object comp) {

if (comp == editor) {
return getHelpIDFromCaretPostion(editor);

}
return null;

}
}

The CSHManager is added to the CSH list of managers as follows:

CSH.AddCSHManager(new MyCSHManager(editor, hs));

10.2 Help Support for JDialogs
It is often useful to associate help information with dialog boxes using a Help button.
Ideally the standard javax.swing.JOptionPane would have direct support for
this but, due to timing constraints this was not possible. Expect full support for this
feature in a forthcoming version of Swing.

getHelpIDString(Object,
AWTEvent)

Returns the HelpSet of the object based on the
AWTEvent
Sun Microsystems Inc. 67 JavaHelp V2.0 Specification

Java Software
11 Content Search

11.1 Search API
JavaHelp provides full-text searching of help topics. Development of full-text search-
ing raised interesting questions, both in the implementation and in the specification.
For example, whether the search database is created before or during queries, and
how the format of the search database is specified.

The search API javax.help.search.* can be used to create and query the search data-
base. The default NavigatorView, SearchView knows how to interact with any sub-
class of SearchEngine. Similarly the search database can be created through the
IndexBuilder class.

One of the benefits of the javax.help.search API is that it enables the use of search
engines that require moderately complex database formats without the difficult and
constraining task of specifying these formats in full. One such search engine is the one
provided in Sun's reference implementation section Appendix B on page 104.

The intention of the javax.help.search package is to provide insulation between cli-
ent and customers of a full-text search database in the context of the javax.help pack-
age. It is important to emphasize that although the javax.help.search API is intended
to be of general applicability, it is not intended to be a replacement for more powerful
query mechanisms.

11.2 Search Database Creation
Search databases are created through instances of IndexBuilder . The parsing of each
file is specific to its MIME content; this is encoded in the notion of an IndexerKit. An
indexer kit provides a parse() method that knows how to parse the specific MIME
type and call back into the IndexBuilder instance to capture the information of this
source.

When capturing search information there are a number of parameters that you can
configure using a ConfigFile:

• Change the path names of the files as they are stored in the search database.
This is useful when you create the search database using paths to topic files that
are different from the paths the help system will later use to find them.

• Explicitly specify the names of the topic files you want indexed

• Specify your own list of stopwords

11.2.1 Stopwords

You can direct the JavaHelp system full-text search indexer to exclude certain words
from the database index--these words are called stopwords. The default stopwords are:

a all am an and any are as
at be but by can could did do
Sun Microsystems Inc. 68 JavaHelp V2.0 Specification

Java Software
does etc for from goes got had has
have he her him his how if in
is it let me more much must my
nor not now of off on or our
own see set shall she shouldso some
than that the them then there these this
those thoughto too us was way we
what when where which who why will would
yes yet you

11.2.2 ConfigFile Directives

A config file may contain the following directives

11.3 Search Database Use
The javax.help.search package is used in JavaHelp 1.0 by SearchView . This view ex-
pects an engine property that specifies the name of the subclass of jav-

ax.help.search.SearchEngine to use when making queries. The default value of this
property is com.sun.java.help.search.SearchEngine .

The steps involved in using the search engine from a SearchView are:

• A SearchView is instantiated, for example, when the default HelpBroker for the
HelpSet is created.

• When the first query is made, the engine property of the view is obtained to
determine what SearchEngine to instantiate. The data and other attributes are
passed to this instance.

• For a query, a SearchQuery instance is obtained, then the query is passed to it.

• Hits found are either obtained directly, or they are generated as events.

More details may be added in the next iteration of the specification.

Directive Description

IndexRemove path Remove a path that is a prefix to the given files

IndexPrepend path Prepend path to the names of the given files.

File filename Request that the filename be processed

StopWords word, word,
word...

Set the stopwords to the ones indicated

StopWordsFile filename StopWordsFile must contain a list of stopwords, one
stopword per line.
Sun Microsystems Inc. 69 JavaHelp V2.0 Specification

Java Software
12 Merge

12.1 Introduction
JavaHelp provides a mechanism for merging HelpSets. Constituent HelpSets can be
dynamically removed from the merged HelpSet, even while the merged HelpSet is
displayed. When HelpSets are merged there is always a master HelpSet into which
other HelpSets are merged.

In addition, a HelpSet file can use the <subhelpset> tag to statically include HelpSets
(see section 3.2.6 on page 20), this behavior is identical to add ing the subhelpset to the
enclosing HelpSet, except that if the subhelpset file does not exist, it is ignored.

Here are some examples where merging might be appropriate:

• An application suite may be comprised of a collection of constituent
applications. As constituent applications are purchased and installed, their
help information can be merged with help information from the other
applications in the suite.

• A Builder tool uses JavaBeans to construct programs. Each JavaBean provides
help information about its functionality. The help information of the
constituent JavaBeans can be listed in the TOC, in the index, and be accessible
to searches.

• When JavaBeans are used to dynamically extend the functionality of an
application (sometimes this functionality is described as plug-in) the JavaBeans
contain help information that conforms to the nature of the application. This
help information can be meaningfully merged before being presented to the
user.

12.2 Merging Rules
The default merging rules depend on the view mergetype (see section 3.2.5 on page
19). There are four mergetypes in JavaHelp:

javax.help.SortMege Collate with the existing view data according
to HelpSet’s locale collation rules.

javax.help.Append Add to the end of the existing view data.

javax.help.Unite-AppendMerge Unite any elements, including sub-elements, at
the same level in the merged HelpSet to ele-
ments, including sub-elements, with the same
name in the initial HelpSet. Append remaining
elements in the merged HelpSet at the end of
the initial HelpSet. Add to the end of the exist-
ing view data.

javax.help.NoMerge No merging is done. Only valid on a View.
Sun Microsystems Inc. 70 JavaHelp V2.0 Specification

Java Software
Each view type will determine it own default merging type and will specify which, if
any, of the merging rules it will support. A view type may provide no support for
merging.

12.3 The API
The basic API comprises the HelpSet.add(HelpSet) method, and its corresponding
HelpSet.remove(HelpSet) method. These methods fire HelpSetEvent events to the
HelpSetListeners that have registered interest in them. This is how the ComponentUIs
for TOC, Index, and Search views are notified of these changes and react to them.

When a HelpSet A is added to a HelpSet B, all the views in A are compared to the
views in B; if a view in A has a name that is the same as another view in B, then it is
considered for merging into B, otherwise it is not.

When considering merging a view Va into a Vb the following happens:

• The navigator Nb of Va is obtained.

• Nb.canMerge(Va) is invoked to determine if the views

• can be merged.

• If then can be merged, then Nb.merge(Va) is invoked.

If later the HelpSet A is removed from HelpSet B:

• Nb.remove(Va) will be invoked.

The merging of the view data API comprises the abstract class Merge, consisting of a
Merge(NavigatorView, NavigatorView) constructor and Merge.process-
Merge(TreeNode) method, MergeDefaultFactory.getMerge(NavigatorView, Naviga-
torView), and a set of merge utilties in MergeUtilities. Each mergetype (see section
12.2 on page 70) will implement a concrete class extending Merge.

When the Nb.merge(Va) is invokedMergeDefaultFactory.getMerge is invoked return-
ing a Merge object. Invoking Merge.processMerge on the toplevel node will merge the
data of the slave into the master. Merge.processMerge can recursively called to sup-
port changes of mergetypes on each data item. The master view data viewtype will su-
percede the viewtype settings in a slave in the event of a conflict.

12.4 Merging TOCs
TOCView and JHelpTOCNavigator implement a merging rule that allows any TOCView
with the same name to be merged. The resulting presentation adds the new TOC data
as the last subtree of the top level of the original TOC.

A TOCView may have no <data> tag; such a view shows as an empty tree. This is use-
ful for what is sometimes called "dataless" master views into which other views can
merge.
Sun Microsystems Inc. 71 JavaHelp V2.0 Specification

Java Software
The default merge type for a TOCView is append. This will provide backward com-
patible support for V1.0 implementations. TOCView supports sort, append, and
unite-append merge types.

12.5 Merging Indices
IndexView and JHelpIndexNavigator implement a merging rule that allows any In-
dexView with the same name to be merged. The resulting presentation adds the new
index data as the last subtree of the top level of the original index. No attempt to sort
the data is provided in the standard types.

An IndexView may have no <data> tag; such a view shows as an empty tree. This is
useful for what is sometimes called "dataless" master views into which other views
can merge.

The default merge type for IndexView is append. This will provide backward compat-
ible support for V1.0 implementations. IndexView supports sort, append, and unite-
append merge types.0

12.6 Merging Glossaries
The merging rule for Glossaries are the same as those of Indices section 12.5 on page
72.

12.7 Merging Favorites
The default merge type for FavoritiesView is none as favorites are stored in a single
file in the user’s directory.

12.8 Merging Full-Text Search Databases
SearchView and JHelpSearchNavigator implement a merging rule that allows any
SearchView with the same name to be merged. The resulting presentation adds the
SearchEngine from the new view to the previous list--query results from all the
SearchEngine s are collated and presented together.

A SearchView may have no <data> tag; such a view produces no matches against any
queries.

The default merge type for a SearchView is sort. This will provide backward compat-
ible support for V1.0 implementations. Append and unite-append merge types are not
supported in SearchView.

12.9 Overriding Mergetype
The view mergetype can be overridden with the mergetype attribute on elements of
certain view types. Both Table of Contents and Index support overriding the default
mergetype by setting the mergetype attribute on <tocitem>, or <indexitem> tags.
Sun Microsystems Inc. 72 JavaHelp V2.0 Specification

Java Software
If the view supports nesting of elements, the override applys to nested elements as
well. If duplicate entries exist in both views, the mergetype specified in the first view
will override the second view.

12.10 Examples
The following examples illustrate how the various merge types work

12.10.1 Example: Append Merge

Append merge appends the second view data to the first view. It places a title deter-
mined from the view’s HelpSet <title> tag as the top level entry and indents the view’s
data under that title.

Append is useful when the desired result is to combine two views together into one
presentation, but still maintain the overall hierarchy of each view. Unlike sort, dupli-
cate entries are retained.

JWS TOC

Tutorial and Examples
Introducing the Java WorkShop
Tutorial One: Creating the Blink Project
Tutorial Two: Editing Project Attributes
Tutorial Three: Fixing Errors in Source Code

JavaBeans
Beans In Java WorkShop
Tips on Using Beans Effectively

Visual Java GUI Builder
GUI Builder Palette
Laying Out the Interface

The Help Viewer
Overview
Menus Descriptions
Shortcut Keys
Searching for Topics

The Web Browser
Overview
Using the Web Browser

JS TOC

Java Studio Windows
 Main window
 Design Window
 GUI Window
Java Studio Designs
 Creating a Design
 Adjusting the Layout of a Design
 Debugging a Design
 Saving and Loading a Design
 Generating a Packaged Design
 Printing a Design
The Help Viewer
Sun Microsystems Inc. 73 JavaHelp V2.0 Specification

Java Software
 Overview
 Menus Descriptions
 Shortcut Keys
 Searching for Topics

Merged result using append

The output using append is as follows:

Tutorial and Examples
Introducing the Java WorkShop
Tutorial One: Creating the Blink Project
Tutorial Two: Editing Project Attributes
Tutorial Three: Fixing Errors in Source Code

JavaBeans
Beans In Java WorkShop
Tips on Using Beans Effectively

Visual Java GUI Builder
GUI Builder Palette
Laying Out the Interface

The Help Viewer
Overview
Menus Descriptions
Shortcut Keys
Searching for Topics

The Web Browser
Overview
Using the Web Browser

Java Studio Windows
 Main window
 Design Window
 GUI Window
Java Studio Designs
 Creating a Design
 Adjusting the Layout of a Design
 Debugging a Design
 Saving and Loading a Design
 Generating a Packaged Design
 Printing a Design
The Help Viewer
 Overview
 Menus Descriptions
 Shortcut Keys
 Searching for Topics

12.10.2 Example: Sort Merge

Sort merge collates at each level of the combined view according to the collation rules
of the HelpSet locale. Duplicate entries where the name and the id associated with the
entries are the same are ignored. The entry, "The Help Viewer" and all of its suben-
tries, is an example of how duplicate entries in separate views are handled.

If the entry’s name is the same as another entry at a given level but the id associated
with the entry is different, then both entries are printed with the HelpSet title (<title>)
Sun Microsystems Inc. 74 JavaHelp V2.0 Specification

Java Software
applied to the end of the name as a distinquishing characteristic. In the example below
the Edit and File Menu entries point to different ids. They have been distinquished
with a "(Java Workshop)" and a "(Java Studio)".

Sort merge is useful when you have information, such as an Index, that is collated. It
is not useful when you have information that is in a non collated hierarchical form,
such as a TOC.

JWS Index

Menus
 File Menu
 Edit Menu
 Build Menu
 Debug Menu
 Help Menu
Toolbars
 Main Toolbar
 Edit/Debug Toolbar

JS Index

Developer Resources
Examples
 Step-by-step Example
 List of Additional Examples
Menus
 File Menu
 Edit Menu
 View Menu
 Help Menu
Toolbars
 Main Toolbar
 Composition Toolbar

Merged result using sort

The output of the sort merge is a follows:

Developer Resources
Examples
 List of Additional Examples
 Step-by-step Example
Menus
 Build Menu
 Debug Menu
 Edit Menu (Java Workshop)
 Edit Menu (Java Studio)
 File Menu (Java Workshop)
 File Menu (Java Studio)
 Help Menu (Java Workshop)
 Help Menu (Java Studio)
Sun Microsystems Inc. 75 JavaHelp V2.0 Specification

Java Software
 View Menu
Toolbars
 Main Toolbar (Java Workshop)
 Main Toolbar (Java Studio)
 Edit/Debug Toolbar
 Composition Toolbar

12.10.3 Example: Unite-Append Merge

Unite-append preserves the hierarchy of the masterview. If the master view is a data
less view the hierarchy from the first view merged is preserved. At any level it merges
entries from the second view with the master view if the entry’s name is the same.

Entries that don’t have the same name are appended to the master view at their re-
spective levels. If the entry’s name is the same but the id is different both entries are
displayed and some sort of distinquishing characteristic is applied to the end of the
name.

Unite-append is useful to maintain the hierarchy of the master view. That master view
may be a "template" for merging the others against. Entries not found in the master
view are appended at the end. The hierachy of the second view is maintained subor-
dinate to the master view.

The animal TOC

Description
Habitat
Pictures

A Wombat

Description
 What’s a Wombat
Habitat
 Where a Wombat lives
Pictures
 Cute Wombats
Sounds
 Fierce Wombats

A Water Rat

Description
 What’s a Water Rat
Habitat
 Where a Water Rat lives
Pictures
 Water Rats
Sounds
 Singing Water Rats

Merged result using unite-append

Description
What’s a Wombat
Sun Microsystems Inc. 76 JavaHelp V2.0 Specification

Java Software
What’s a Water Rat
Habitat

Where a Wombat lives
Where a Water Rat lives

Pictures
Cute Wombats
Water Rats

Sounds
Fierce Wombats
Singing Water Rats
Sun Microsystems Inc. 77 JavaHelp V2.0 Specification

Java Software
13 JavaHelp Class Structure

13.1 Packages
JavaHelp V2.0 is a optional package for Java 2. The API is defined in the javax.help

package, with the exceptions of the search API classes, which are defined mainly in
the javax.help package, but other packages are also involved. The complete list is:

An implementation of the extension may also include some implementation classes
that are not intended to be used directly. The Reference Implementation also includes
additional classes of utility to Help authors.

13.2 API Structure
This section describes the general principles behind the API classes. More details are
available in the javadoc information on the classes. The reference implementation also
provides code fragments exemplifying the use of these classes.

As indicated in Overview.html, the API classes in javax.help are conceptually struc-
tured in several collections. The different collections are addressed to different tasks
and users. The boundaries between some of these collections are not sharp, but the
classification helps to reduce the number of concepts, and actions, needed to perform
simple tasks.

• Basic Content Presentation

• Complete Access to JavaHelp Functionality

• Swing classes

• Full-Text Search

• JSP tag extensions

Package Description

javax.help Main package

javax.help.event Event & Listener classes

javax.help.plaf Interface to the ComponentUI classes

javax.help.plaf.basic Basic look and feel; currently no specific PLAF classes are
needed

javax.help.resources Localization classes.

javax.help.tagext JSP tag extension classes.

javax.help.search search classes.
Sun Microsystems Inc. 78 JavaHelp V2.0 Specification

http://java.sun.com/java2

Java Software
13.2.1 Basic Content Presentation

Some applications only are interested in presenting some help information to the user,
minimizing the interaction between the help author and the application developer.
The basic actions to perform are:

• Locating a HelpSet, perhaps after localization;

• Reading that HelpSet, including any related data, like Map files, TOCs, Indices,
and Search database; and

• Visually presenting this HelpSet.

The abstraction of a HelpSet is javax.help.HelpSet, while the abstraction of its visual
presentation is javax.help.HelpBroker. A HelpBroker provides for some interaction
with the presentation regardless of the actual visual details; the default presentation
is DefaultHelpBroker . An application can provide on-line help using only these two
classes.

Sub-HelpSets listed in the HelpSet file using the <subhelpset> tag will be merged au-
tomatically before presenting them to the user.

These two classes (an ancillary classes, like Exception classes) do not have any depen-
dency on Swing for their definition, although DefaultHelpBroker depends on Swing
for its implementation.

13.2.2 Detailed Control and Access

The HelpBroker interface provides substantial control of the presentation of a HelpSet,
without leaking unwanted GUI details of the presentation. For example, this interface
can be used to interact with the two-pane default presentation of the reference imple-
mentation, as well as to interact with some presentation embedded within the appli-
cation. Additionally, since the HelpBroker does not use any Swing types or concepts,
it does not require Swing for its implementation. But some applications will want ac-
cess to such details as the map from ID to URLs. JavaHelp provides classes for this.

13.2.3 Extensibility

Content extensibility is described through a NavigatorView which provides access to
some context information plus a way of presenting this information. TOCView, Index-

View , GlossaryView , FavoritiesView and SearchView are standard views for Table Of
Contents, Index, and full-text search.

The standard views yield standard JHelpTOCNavigator , JHelpIndexNavigator , and
JHelpSearchNavigator Swing components. The standard views also provide access to
the content; this access uses subclasses of TreeItem .

New views can be added; for instance a new TOC presentation can be obtained by
subclassing TOCView and just changing the JHelpNavigator returned by it. Another
view may keep the same JHelpNavigator but use a format for the encoding of the view
data (perhaps even generating the data dynamically); this is done by redefining the
getDataAsTree method. The presentation of new Views can be derived from the stan-
dard ones by subclassing.
Sun Microsystems Inc. 79 JavaHelp V2.0 Specification

Java Software
13.2.4 Swing components

JavaHelp provides a collection of Swing components that are used to implement the
DefaultHelpBroker and can also be used directly, as in embedded help. The components
follow the standard MVC from Swing. There are two main models: HelpModel and
TextHelpModel .

HelpModel models changes to the location within a HelpSet; components that want to
respond to these changes should listen to events originating within the model - this is
how synchronized views work. The location within the model is represented by ob-
jects of type Map.ID ; these correspond to a String (an ID), and a HelpSet providing con-
text to that ID. A HelpSet needs to be explicitly given (in general) because of the ability
of merging HelpSets. TextModel provides additional information when the content is
textual. A TextModel can queried for the current highlights, which a client may present
visually. The DefaultHelpModel is the default model implementing both models.

JHelpContentViewer is the Swing component for the content, while context corre-
sponds to several subclasses of JHelpNavigator . JHelp is a common grouping of these
classes into synchronized views of content.

The basic structure of the Swing classes is shown in the next figure; for additional in-
formation about the Swing classes check the Swing Connection home page

A Swing control acts as the main interface to developers. All ComponentUI objects for
a particular look and feel are managed by a JFC object called UIManager . When a new
Swing component is created, it asks the current UIManager to create a ComponentUI ob-
ject. Vendors or developers can ship different ComponentUI's to suit their specific
needs.

A Swing control then delegates the tasks of rendering, sizing and performing input
and output operations to the ComponentUI . The ComponentUI's installUI and dein-

stallUI methods add behavior and structure to the raw Swing component by adding
listeners, setting the layout manager, and adding children.

The Swing model defines the component's non-view-specific state. The Swing compo-
nent communicates changes to the model and listens (through listeners) to the model
for changes. Finally, the model provides data to the ComponentUI for display.
Sun Microsystems Inc. 80 JavaHelp V2.0 Specification

Java Software
The ComponentUI objects in the JavaHelp Swing classes are currently fully defined in
terms of the other components, hence, there are only javax.help.plaf.basic classes,
and none of the other PLAF packages are needed.

13.2.5 Context Sensitive Help

JavaHelp supports a Map between identifiers and URLs. FlatMap and TryMap are two
implementations; sophisticated users can provide their own implementations to satis-
fy different requirements (for example, the map data may be generated dynamically).
The main class used to associate specific content with graphic objects is CSH.

13.2.6 Search

JavaHelp supports a standard full-text search view and navigator. The view interacts
with a search engine through the types in the javax.help.search package. The refer-
ence implementation provides a search engine implementing these interfaces but oth-
ers can also be used; the specific search engine used is part of the information given to
the search view. By doing this separation we provide the capability of full-text search-
ing while not imposing specific formats.

The search package has not conceptual dependencies on any other portions of Java-
Help, and it can be used independently. The reference implementation provides one
such implementation packaged in a JAR file that depends only on the basic platform.
Sun Microsystems Inc. 81 JavaHelp V2.0 Specification

Java Software
Apendix A
JavaHelp 2.0 - Scenarios

A.1 Introduction
This document contains a number of scenarios that illustrate ways the JavaHelp sys-
tem can be used to provide online help for different types of Java programs in a variety
of network environments. These scenarios attempt to illustrate the flexibility and ex-
tensibility of the JavaHelp system.

Scenarios are presented in four areas:

Code examples complementing these scenarios can be found in the JavaHelp System
2.0 Reference Implementation available at http://java.sun.com/products/javahelp.

A.2 Invocation Mechanisms
These scenarios describe the different ways the JavaHelp system can be invoked. It is
divided into two sections: Application Invocation and Internally Initiated Help

A.2.1 Application Invocation

These scenarios describe way of invoking the JavaHelp system within an application.

Invocation Mecha-
nisms

Scenarios that describe different ways that the Java-
Help system can be invoked from applications

Presentation Scenarios that describe different ways that the Java-
Help system can be used to present help information.
These scenarios also illustrate different methods for
deploying the JavaHelp system classes and help data.

Search Scenarios Scenarios that describe different ways that full-text
searches of JavaHelp system information can be imple-
mented

Packing Scenarios Scenarios that describe different ways that JavaHelp
system data can be encapsulated and compressed
using Java Archive (JAR) files

Merge Scenarios Scenarios that describe ways that JavaHelp system
data can be merged. You can use the merge functional-
ity to append TOC, index, and full-text search informa-
tion from one or more HelpSets to that of another
HelpSet.
Sun Microsystems Inc. 82 JavaHelp V2.0 Specification

Java Software
A.2.1.1 User Initiated Context Sensitive Help

The JavaHelp system is often invoked from an application when a user chooses an
item from a Help menu, clicks on a Help button in an application GUI, or uses one of
the context sensitive help gestures to request help on a GUI component.

The JavaHelp system provides a simple interface for requesting the creation of a help
presentation by requesting that a topic ID (identified by a string) be displayed. Topic
IDs are associated with URLs in the map file(s) mentioned in the HelpSet file.

For example, when coding a file chooser dialog box, a developer requests that the top-
ic ID fc.help be displayed when the Help button at the bottom of the dialog box is
clicked. In the HelpSet file (or in some cases the map file referred to in the HelpSet file)
the ID fc.help is defined to be a file named FileChooser.html using the following
syntax:

<mapID target="fc.help" url="FileChooser.html"/>

Separating the specification of actual file names from the program code, provides con-
tent authors the freedom to control the information that is associated with the topic ID.

A.2.1.2 Field-level Context-Sensitive Help

Field Level Context-sensitive help (sometimes included in the term What-is help) is help
information that describes graphical components in an application GUI. It is triggered
by gestures that activate context-sensitive help and then specify the component in
question. See section on page 63 for more details.

A.2.1.3 Window-level Context-Sensitive Help

Window-level help is help information that describes the correct graphic component
with focus, or an entire dialog in an application GUI. It is triggered by an operating
system specific keystoke, generally either “F1” or “Help” keys, that activate context-
sensitive help and specifies the component to get help on based on focus. See section
on page 63 for more details.

A.2.1.4 System Initiated Context-Sensitive Help

Recent products are exploring the notion of a Helper, or an Assistant, an example is
the assistant in MS's Office 97. A helper is a mechanism that reacts to state and state
transitions in applications and provides guidance and suggestions to the user. Such a
mechanism requires significant close interaction between the application and the in-
formation presented to the user.

A.2.2 Internally Initiated Help

These scenarios describe way of invoking help once inside the JavaHelp system.

A.2.2.1 Navigators

Each navigator provides a mechanism for changing the current topic displayed in the
content viewer. For instance the selecting of a TOC item in a TOCNavigator would
present the content tied to that TOCItem.
Sun Microsystems Inc. 83 JavaHelp V2.0 Specification

Java Software
A.2.2.2 View

The help content viewer also provides a mechanism for displaying additional content.
The new content can either replace the current content or display the new content in
a an alternative presenation format.

A.3 Presentation
The following scenarios illustrate different ways the JavaHelp system can be used to
present information. Each invocation mechanism is designed to allow presentations
in each of the following scenarios.

A.3.1 Main Window

The main window is the main presentation for the JavaHelp system. By default it is a
tri-paned fully decorated window consisting of a tool bar, navigator pane, and help
content viewer. Most reference implementation would keep the main-window resi-
dent in memory when the window is not visible.

A.3.2 Secondary Window

A secondary window is similar to the main window in that it is a fully decorated win-
dow. By default it only contains a help content viewer though could optionally in-
clude a toolbar and/or navigators. Unlike the main window it is destroyed by default
on closing. Additionally, secondary windows are named. If a named window is visi-
ble the current contents to be replaced.

Application
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 84 JavaHelp V2.0 Specification

Java Software
A.3.3 Popups

Popups contain only a content viewer. They are intended to provide immediate help
and then allow the user to continue working. Once a popup looses focus, it is de-
stroyed.

A.4 Deployment
The following scenarios illustrate different ways that the JavaHelp system can be used
to present and deploy Help information.

A.4.1 Information Kiosk

The "kiosk" scenario is one where documents are presented independent of an appli-
cation.

Application
JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Application

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.
Sun Microsystems Inc. 85 JavaHelp V2.0 Specification

Java Software
An example on the Solaris platform is AnswerBook -- a technology used to display all
of Sun's documentation online. All that is required is a help browser that can be
launched to present and navigate through the information.

In JDK1.2, a JAR file can indicate a containing Application class that will be invoked
automatically by the system (by passing it to a "java -jar" command).

A.4.2 Stand-Alone Application

The simplest scenario is one in which the Java application runs locally and accesses
help data installed on the same machine.

Launcher

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 86 JavaHelp V2.0 Specification

Java Software
The application requests the creation of a JavaHelp instance, loads the help data on it,
and then interacts with this instance, either by requesting the help information be pre-
sented and hidden, or by requesting a specific topic (identified by an ID) be presented.

Application

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 87 JavaHelp V2.0 Specification

Java Software
A.4.3 Network Application

When the help data is accessed across the network, the scenario is essentially the same
-- the location of the data is actually transparent.

A.4.4 Embedded Help

Information can also be presented embedded directly in application windows. The
JFC components that implement the JavaHelp specification are embedded directly

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Application

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 88 JavaHelp V2.0 Specification

Java Software
into the application frame. The application can create its own customized presenta-
tion, by using the JFC components from the reference implementation.

Embedded help is inherently application-specific since the application controls where
each of the presentation UI components are located. The JavaHelp reference imple-
mentation is organized so that most applications will be able to achieve their needs
very easily.

A.4.5 Component Help

Many current applications are composed of a collection of interacting components.
Examples range from large applications like Netscape navigator (with plugins) to ap-

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Application

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

JavaHelp

JavaHelp can be used in a wide variety of ways. This is one of those ways.

There are any number of other scenarios that can be used.

These scenarios can vary very very much. In this case the help window is embedded directly into the application.

These scenarios can vary very very much. In this case the help window is embedded directly into the application.
Sun Microsystems Inc. 89 JavaHelp V2.0 Specification

Java Software
plications where JavaBeans components are connected together using JavaScript or
Visual Basic.

The help information can be merged in different ways. For instance, the table-of-con-
tents, index, and full-text search information from each component may be displayed
one after the other to create a new, unified help system.

As HelpSets are loaded/unloaded into a JavaHelp instance, the information present-
ed needs to be updated. The JavaHelp system provides a flexible mechanism for merg-
ing this information.

A.4.6 A Help Server

In some cases, it may be necessary to separate the application from the process that
presents the help information. In this case the application process can make requests

Application

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Bean1 Help Data

Bean1

Bean2

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Bean2 Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 90 JavaHelp V2.0 Specification

Java Software
into a JavaHelp process (help server) through an RPC mechanism (the RPC may be
wrapped in a library and be invisible to the application developer).

The help server model is useful if the application is not written in Java and does not
include a JVM. It would also be useful for a suite of Java applications that can share a
common help server.

A.4.7 Web Pages and Applets

This scenario describes how the JavaHelp system is used from within web-based ap-
plications. In this case an applet or some other triggering entity (perhaps a JavaScript
event) on an HTML page creates a HelpSet object and then invokes HelpSet.create-

JavaHelp() .

This scenario can have a number of variations. Here are a five:

App 1
<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help
Server

RPC

App 2
RPC

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

App 2 Help Data

App 1 Help Data

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 91 JavaHelp V2.0 Specification

Java Software
• In one case, the browser platform contains a customized implementation of the
JavaHelp system. This implementation may have been delivered with the
browser, or it may have been downloaded by the client into the CLASSPATH.
The implementation may use the Swing HTML viewer, or, more likely, it may
use some the HTML viewer that comes with the Web Browser.

• Since the JavaHelp system is a Java "standard extension," it is possible that a
fully-conforming JDK browser may not have it in its CLASSPATH. In this case,
if the HTML page refers to the standard JavaHelp system implementation, the
standard extension machinery will automatically download the
implementation and execute it. Since our implementation is quite small, this
approach will often be practical. Browsers may choose to provide some way of
easily installing extensions downloaded through this mechanism.

HTML
Page

Applet

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

Web Browser

applet.jar

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 92 JavaHelp V2.0 Specification

Java Software
This situation is depicted in the next picture where, for variety sake, we have changed
the help presentation so the navigator is separate from the content.

The corresponding APPLET tag may look something like this:

<APPLET
 CODE=javax.help.HelpButton
 ARCHIVE="JavaHelpDefault1_0.jar"
>
<PARAM
 NAME=HelpSet
 VALUE=MyHelp.JAR>
</APPLET>

• In some cases, some client browsers may not have a fully-conforming Java
Virtual Machine. In that case we can use the Java Plug-in technology to request
a compliant Java Virtual Machine. The request may lead to a download request
if the virtual machine is not available locally; once installed later requests will

HTML
Page

Applet

Web Browser

JavaHelp

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

JavaHelp
JavaHelp can be used in a wide variety of ways. This is one of those ways.

There are any number of other scenarios that can be used.

They are described in other places in this documentation.

Bla blabla bla bla blaaaaa.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

applet.jar

jh.jar

network
Sun Microsystems Inc. 93 JavaHelp V2.0 Specification

http://java.sun.com/products/plugin

Java Software
proceed with no download step. Once the appropriate JVM has been started,
the situation is equivalent to the previous two steps. The following figure
illustrates this:

The JavaHelp system provides mechanisms for extending navigational views and
content display, the classes providing this can be downloaded automatically using the
standard classloader mechanisms of the Java platform (e.g. using ARCHIVE or
CLASSPATH).

HTML
Page

Applet

Web Browser

JavaHelp

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

applet.jar

Java Plug-in

network

jh.jar

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 94 JavaHelp V2.0 Specification

Java Software
• In the next scenario the client browser is used to launch a full-featured
application with a single click. In this case we can use the Java Web Start
technology. Java Web Start will download the application if it isn’t already
present on the user’s computer. The application is then activated. The
following figure illustrates this:

• In the final scenario the client browser will handle all of the display using
HTML or some combination of HTML, DHTML and/or JavaScript. In this
scenario the server is a Java Server supporting Java Server Pages (JSP). The
client browser submits a JSP request to the server. The server transforms the
JSPs into Java Servlets and accesses the HelpData on the server. Results are
returned to the client browser in the form of HTML, DHTML and/or
JavaScript. An illustration of this scenario can be found in section 7.2 on page
40.

HTML
Page

Web Browser

<HelpSet>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<TOC>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<Index>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Data

app.jar

network

jh.jar

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c

Java Web
Start

CacheApp
Sun Microsystems Inc. 95 JavaHelp V2.0 Specification

http://java.sun.com/products/javawebstart
http://java.sun.com/products/javawebstart

Java Software
A.5 Search Scenarios
The JavaHelp system supports an extensible full-text search mechanism using the ex-
tension framework (see section 2.5.6 on page 13) mechanism, plus a Search interface.
The JavaHelp1.0 specification requires all implementations to support some search
types and formats. This mechanism can be used to support a number of different
search scenarios:

A.5.1 Client-Side

In a client-side search, searching is done locally on the "client-side", but the search data
originates on the "server-side". This commonly occurs with web-based applications
(applets). The help data usually resides on the same server as the applet code. When
a search is initiated the search data is downloaded from the server, read into the

Client-Side The search database is downloaded from the server,
then searched on the client

Server-Side The search database and search engine are located on
the server

Stand-Alone The search database is included as part of the HelpSet
and the search occurs in the application
Sun Microsystems Inc. 96 JavaHelp V2.0 Specification

Java Software
browser's memory, and searched. The content files are downloaded only when they
are presented.

Time is required for the search database to be downloaded during the initial search.
Once downloaded the data can be kept in memory or in a temporary file on the client
machine. Once the database is downloaded, searches are quite fast.

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. Search engine loads database

3. User (or application) chooses a
“hit”

4. Content is loaded and displayed

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 97 JavaHelp V2.0 Specification

Java Software
A.5.2 Server-Side

In a server-side search, both the search data and the content files are located on the
server side; only the results of the search are downloaded to the client.

This is another option for applets. It permits developers to use a choice of commonly
available search engines and can provide quick start-up time (especially if the search
engine is started ahead of time). On the other hand, it requires additional administra-
tive work to get the search engine installed. Note that this approach works very well
with Java servlets.

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. JavaHelp requests search from
server

3. Server-side search engine
searches database and delivers
“hits” to application

4. User (or application) chooses a
“hit”

5. Content is loaded and displayed

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 98 JavaHelp V2.0 Specification

Java Software
A.5.3 Stand-Alone

In a stand-alone search, all of the components are local (search engine, search data-
base, help content). From an implementation point-of-view, the stand-alone search is
quite similar to the client-search except that there is no need to cache the search data
in memory or in local files.

Note that help content files can be accessed locally and/or across a network.

A.6 Packaging Scenarios
The following diagrams represent typical packaging scenarios. These scenarios are in-
tended to be exemplary and are not exhaustive.

The first picture represents a project in which the map file is packaged together with
most (all?) of the content files. The "!" syntax is used to specify the URLs relative to the

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<H1>
Introduction
<H2>
<P>
This product
is the result
of
<p>

<HI>
JavaHelp
</H1>
<P>
This topic intro-
duces the user to
a great product.
</P>

Help Content

Application

Search
Data

Search
Engine

JavaHelp

1. Search is initiated

2. Search engine loads database

3. Search engine searches
database and delivers “hits” to
application

4. User (or application) chooses a
“hit”

5. Content is loaded and displayed

network

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 99 JavaHelp V2.0 Specification

Java Software
JAR where the map is located. The HelpSet file is packaged outside of the JAR file, per-
haps to simplify updates later on.

Ajar.jar

<H1>
Introduction
</H1>
<P>
This topic introduces the user to
a great product.

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must insert

MyMap.jhm

File1.html

File2.html

..
.

HelpSet File

<maps>
 <mapref location=”jar:file:/c:Ajar.jar!/MyMap.jhm”/>
</maps>

..
.

..
.

<mapID target=”file1” url=”File1.html”/>
<mapID target=”file2” url=”File2.html”/>
Sun Microsystems Inc. 100 JavaHelp V2.0 Specification

Java Software
In the following scenario, the map file and the JAR file are in different locations. This
is probably not a common scenario, but is shown to illustrate packaging flexibility.

Ajar.jar

HelpSet File

<maps>
 <mapref location=”c:/app/help/MyMap.jhm”/>
</maps>

<H1>
Introduction
</H1>
<P>
This topic introduces
the user to

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must

MyMap.jhm

File1.html

File2.html

..
.

..
.

 <mapID target=”file1” url=”jar:file:/c:/app/help/Ajar.jar!/File1.html”/>
 <mapID target=”file2” url=”jar:file:/c:/app/help/Ajar.jar!/File2.html”/>

..
.

Sun Microsystems Inc. 101 JavaHelp V2.0 Specification

Java Software
In the final scenario, the HelpSet file is bundled in the JAR file with the rest of the Ja-
vaHelp system data.

The advantage of this arrangement is that all the URLs are relative to the base URL of
the HelpSet file, and that there is no need to mention the jar: protocol within any Jav-
aHelp system file. This JAR, when placed in a CLASSPATH, permits a JDK1.1 appli-
cation to refer to the HelpSet within the JAR file transparently. A similar situation
occurs with Applets, when the JAR file is listed in the ARCHIVE attribute.

A.7 Merge Scenarios
The JavaHelp system provides a mechanism for merging HelpSets. You can use the
merge functionality to append TOC, index, and full-text search information from one
or more HelpSets to that of another HelpSet.

..
.

<mapID target=”file1” url=”File1.html”/>
<mapID target=”file2” url=”File2.html”/>

Ajar.jar

MyMap.jhm

File1.html

File2.html

jar:file:/c:Ajar!/HelpSet.hs

<H1>
Introduction
</H1>
<P>
This topic introduces the user to
a great product.

<HI>
Getting Started
</H1>
<P>
In order to install this
 product you must insert

<maps>
 <mapref location=”MyMap.jhm”/>
</maps>HelpSet.hs
Sun Microsystems Inc. 102 JavaHelp V2.0 Specification

Java Software
An example of where this functionality might be useful is in an application suite. The
application suite may be comprised of a collection of constituent applications. As con-
stituent applications are purchased and installed, their help information can be
merged with help information from the other applications in the suite.

In the following scenario an application suite is comprised of three possible suite com-
ponents. The help data for each component in the suite is delivered as its own HelpSet.
The suite is shipped with a master HelpSet that lists the subcomponent HelpSets.
When the HelpSet object for the suite HelpSet file is created, each subcomponent
HelpSet file (specified by means of the <subhelpset> tag) is read to create HelpSet ob-
jects that are then merged into the containing HelpSet. Subcomponent HelpSet that
are not installed are ignored.

For more information about merging see section 12 on page 70 or "Merging HelpSets"
in the JavaHelp System User's Guide.

<helpset>

 <subhelpset location=”app1.hs”/>
 <subhelpset location=”app2.hs”/>
 <subhelpset location=”app3.hs”/>
 <subhelpset location=”app4.hs”/>
</helpset>

..
.

<HelpSe
t>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 3 Help Data

<HelpSe
t>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 2 Help Data

<HelpSe
t>
Intro-
duction

<TOC>
Intro-
duction
<H2>

<Index>
Intro-
duction
<H2>

<HI>
JavaHelp
</H1>

<P>
This

App 1 Help Data

Master HelpSet File
Merged Display

JavaHelp

JavaHelp can be used in a wide vari-
ety of ways. This is one of those
ways.

There are any number of other
scenarios that can be used.

They are described in other places in
this documentation.

Topic1
Subtopic1a
Subtopic1b

Topic2
Subtopic2a
Subtopic2b
Subtopic2c

Topic3
Subtopic3a
Subtopic3b
Subtopic3c
Sun Microsystems Inc. 103 JavaHelp V2.0 Specification

Java Software
Appendix B
JavaHelp System 2.0 Reference Implementation

Sun's reference implementation of the JavaHelp system implements the JavaHelp sys-
tem specification and supports additional useful features that are not appropriate for
inclusion in the specification at this time. Some of these features may move to the spec-
ification unchanged, others may be replaced by equivalent or more powerful features
in future versions of the specification, and others may never show up in the specifica-
tion. In all cases, these features will be supported in future versions of the reference
implementation and their presence can be assumed when writing content targeted to
this implementation.

The latest release available at the time of writing is the FCS release, released in April
1999. The FCS release implements this version of the specification. This specification
is also supported by javadoc API documents.

Sun's reference implementation provides a search engine that can be used to create
and access a search database created from HTML-base topic files. The reference im-
plementation also supports lightweight section Appendix D on page 108that can be
embedded in HTML pages using the <OBJECT> tag. Two example components are
provided: one component provides HTML popup functionality, the other provides in-
line glossary definitions.

Information about the JavaHelp system reference implementation as well as other Ja-
vaHelp system information is available at http://java.sun.com/products/javahelp.

B.1 HelpBroker
The HelpBroker created by default upon invocation of the createHelpBroker() meth-
od of HelpSet is a DefaultHelpBroker.

B.2 Search Engine
The reference implementation includes a com.javax.help.search.DefaultSearch-

Engine search engine. This search engine uses a single data attribute that is a relative
URL that specifies the directory that contains the search database. Multi-word queries
are supported and are interpreted using a relaxation algorithm described in section
C.2 on page 106.

The implementation of the search engine is independent and does not depend on the
rest of the JavaHelp system. The client classes do not depend on Swing, the classes that
create the search database (the indexer) depend only on the Swing parser for the
HTML IndexerKit.

B.3 Java Components in <OBJECT> Tag
The reference implementation supports a powerful <OBJECT>tag. In the reference im-
plementation the CLASSID that denotes the class name is used to instantiate the class.
The result is expected to be a lightweight AWT Component. This class is interpreted
Sun Microsystems Inc. 104 JavaHelp V2.0 Specification

http://java.sun.com/products/javahelp

Java Software
as a JavaBeans component --the <PARAM>tag associated with the <OBJECT>tag is used
to provide NAME/VALUEpairs. Each NAMEis interpreted as the name of a String property
of the JavaBeans component and the value is assigned to it.

If the created Component supports the ViewAwareComponent , then the jav-

ax.swing.text.View is passed to the object through a call to setViewData . This mech-
anism is very powerful and provides access to much useful information, for example,
the URL to the document where the <OBJECT> tag is present. See the documentation
about the Swing text package for more details.

B.4 Launcher Application
A simple application (hsviewer) that can be used to create a HelpBroker on a given
HelpSet is included in the FCS release. The hsviewer is described in the reference im-
plementation release documentation.

B.5 Packaging
The reference implementation includes the following JAR files in the FCS release:

JAR file Description

jh.jar Client-side JAR. Includes all default types, and the client-side
search engine.

jhall.jar Complete JAR. Like jh.jar but also includes the indexer
classes.

jhbasic.jar Minimal client-side JAR. Includes all default types except
SearchView.

jhtools.jar Tools JAR. Includes the indexer and search classes, as well as a
simple launcher class.

jsearch.jar Search JAR. Includes only the Search classes, both indexer and
the search classes.
Sun Microsystems Inc. 105 JavaHelp V2.0 Specification

Java Software
Appendix C
JavaHelp 2.0 - Relaxation Searching

C.1 Introduction
The default search engine in com.sun.java.help.search.DefaultSearchEngine uses
an effective natural language search technology that not only retrieves documents, but
locates specific passages within those documents where the answers to a request are
likely to be found. The technology involves a conceptual indexing engine that analyz-
es documents to produce an index of their content and a query engine that uses this
index to find relevant passages in the material.

C.2 Relaxation Ranking
The query engine makes use of a technique called "relaxation ranking" to identify and
score specific passages of material where the answer to a request is likely to be found.
This is referred to as "specific passage retrieval" and is contrasted with the traditional
"document retrieval" which retrieves documents but leaves the user with the task of
finding the relevant information within the document (or finding that the desired in-
formation is not in the document after all).

The relaxation ranking algorithm looks at the search terms and compares them to oc-
currences of the same or related terms in the documents. The algorithm attempts to
find passages in the documents in which as many as possible of the query terms occur
in as nearly as possible to the same form and the same order, but will automatically
relax these constraints to identify passages in which not all of the terms occur or they
occur in different forms or they occur in different order or they occur with intervening
words, and it assigns appropriate penalties to the passages for the various ways in
which a passage departs from an exact match of the requested information. Passages
with words in the same order as the search terms are scored better than passages with
the matching words in some other order. Passages with matching words in any order
are scored better than passages which do not contain matches for all of the requested
terms.

C.3 Conceptual Indexing
Conceptual index consists of the following linguistic resources

• tokens

• lexicons

• lexicons - domain specific

• morphology

• classification

The more of the linguistic resources built into an indexer the better the conceptual in-
dex. The best indexer incorporate all of the above resources.
Sun Microsystems Inc. 106 JavaHelp V2.0 Specification

Java Software
IMPORTANT: Although the core search engine in the reference implementation sup-
ports all these concepts, the indexer (search builder) available in JavaHelp 1.0 only in-
corporates tokens. Details of the other concepts are included below just for the
interested reader.

The indexing engine can perform linguistic content processing of the indexed material
to analyze the structure and interrelationships of words and phrases and to organize
all of the words and phrases from the indexed material into a conceptual taxonomy
that can be browsed and can be used to make connections between terms in a query
and related terms in the material that you'd like to find.

C.4 Morphological and Semantic Relationships
The relaxation ranking algorithm is a very effective retrieval method all by itself, but
can produce significantly improved results by using morphological and semantic re-
lationships from the conceptual taxonomy to automatically make connections be-
tween query terms and related terms that may occur in desired passages.

Morphological relationships refer to relationships between different inflected and de-
rived forms of a word, such as the relationship between "renew" and "renewed" (past
tense inflection) and "renew" and "renewal" (derived normalization). Derived and in-
flected forms of a word are treated as more specific terms in the conceptual taxonomy,
so that a request for "renew" will automatically match "renewed" and "renewal" (with
a small penalty).

Semantic relationships refer to relationships between terms that are more general or
more specific than other terms or that imply other terms. For example, "washing" is a
kind of "cleaning" and since it is more specific than "cleaning" it will automatically be
matched by a request for "cleaning" (again with a small penalty).

Passages with exact word matches are scored better than passages with morphologi-
cal matches or matches using semantic relationships.
Sun Microsystems Inc. 107 JavaHelp V2.0 Specification

Java Software
Appendix D
JavaHelpTM 2.0 - Java Components

The reference implementation has two JComponents that can be used in HTML pages

Secondary Win-
dow

Presents a secondary window for presentation of supple-
mentary HTML-based information

PopUp Presents a popup for presentation of supplementary
HTML-based information
Sun Microsystems Inc. 108 JavaHelp V2.0 Specification

Java Software
Appendix E
History of Changes

The following is a list of changes from the V1.0 Specification

• Added Glossary and Favorites Navigators

• Removed JDK 1.1 as a supported platform

• Added Server based JavaHelp through JSP Extensions and ServletHelpBroker

• Added comprehensive merge support

• Added Presentation controls to HelpSet file and navigator files

• Added Presentation Class and CSH changes to support presentation class

• Added customizable Toolbar support in HelpSet file

• Added implementation section to HelpSet file

• Added Dynamic CSH for components

• Update Invocation Mechanism scenarios

• Added category and topic default images to TOC file definition
Sun Microsystems Inc. 109 JavaHelp V2.0 Specification

	Abstract
	1 Introduction
	1.1 Status of this Specification
	1.2 Change in format
	1.3 How to read this Specification
	1.4 Related Documents
	1.5 Further Reading
	1.5.1 JavaHelp Software Mailing Lists

	1.6 Your Feedback

	2 Overview
	2.1 Introduction
	2.2 Features
	2.3 Supported Platforms
	2.4 The Specification
	2.4.1 API Structure

	2.5 Main Concepts
	2.5.1 HelpSet
	2.5.1.1 HelpSet File
	2.5.1.2 Help Views and Help Navigators
	2.5.1.2.1 Standard Help Views and Help Navigators

	2.5.1.3 Map File
	2.5.1.4 Content files

	2.5.2 HelpBroker
	2.5.3 URL Protocols
	2.5.4 Search
	2.5.5 Merging
	2.5.6 Extensibility
	2.5.7 Updating Help Information
	2.5.8 File Formats

	2.6 An Example

	3 File Formats
	3.1 Overview
	3.2 HelpSet File
	3.2.1 Format
	3.2.2 Processing Instructions
	3.2.3 HelpSet properties
	3.2.4 ID Map Section
	3.2.4.1 Map Example

	3.2.5 Navigational Views Section
	3.2.5.1 View Example

	3.2.6 SubHelpSet Section
	3.2.7 Presentation Section
	3.2.7.1 Presentation Example

	3.2.8 Implementation Section
	3.2.8.1 Implementation examples

	3.3 Map Files
	3.4 Table of Contents
	3.4.1 Table of Contents Example

	3.5 Index
	3.5.1 Index Example

	3.6 Glossary
	3.6.1 Glossary Example

	3.7 Favorites
	3.7.1 Favorites Example

	3.8 Help Content
	3.9 Search Database

	4 Localization
	4.1 A Network Environment
	4.2 Localized Documents
	4.3 Full Text Search
	4.4 More Details

	5 JavaHelpTM 1.0 - Customization
	5.1 Introduction
	5.2 Help Broker
	5.3 Content Viewers
	5.4 NavigatorView and JHelpNavigator
	5.4.1 View-Specific Knowledge
	5.4.2 Different Formats
	5.4.3 Different Presentations
	5.4.4 Two Examples of Custom Views

	5.5 Search Engines
	5.6 Key-Data Map
	5.7 Using new URL protocols

	6 JavaHelpTM 1.0 - JavaBeans Help data
	6.1 Introduction
	6.2 Help Information
	6.3 Mechanism
	6.4 An Example:
	6.4.1 Manifest and JAR File
	6.4.2 The HelpSet File
	6.4.3 The Help Map

	6.5 An Alternative Arrangement
	6.5.1 Manifest and JAR file
	6.5.2 The HelpSet File
	6.5.3 The Help Map

	7 Server Based JavaHelp
	7.1 Java Server Pages
	7.2 Server Based JavaHelp Architecture
	7.3 JavaHelp Server Components
	7.3.1 JavaHelp Server Bean
	7.3.1.1 Usage

	7.3.2 JavaHelp JSP Tag Extensions
	7.3.2.1 Validate Usage

	7.3.3 Navigator Scripting Variables
	7.3.3.1 Navigator Variables
	7.3.3.1.1 Navigator Variable Usage

	7.3.3.2 tocItem Variables
	7.3.3.2.1 tocItem Usage

	7.3.3.3 indexItem Variables
	7.3.3.4 indexItem Usage
	7.3.3.5 searchItem Variables
	7.3.3.5.1 SearchItem Usage

	8 Presentation of Help Content
	8.1 Introduction
	8.2 Presentation Class
	8.2.1 Presentation Extensions
	8.2.1.1 Popup
	8.2.1.2 Window Presentations
	8.2.1.2.1 Main Window
	8.2.1.2.2 Secondary Window

	8.3 Help Author Presentation Control
	8.4 Activating Help in Presentations
	8.4.1 Field-level Context-sensitive Help
	8.4.2 Window Level Context-Sensitive Help
	8.4.3 User initiated context-sensitive help
	8.4.4 System initiated context-sensitive help
	8.4.5 Navigator
	8.4.6 Viewer

	9 Toolbar
	9.1 HelpAction Interface
	9.2 AbstractHelpAction Class
	9.3 HelpAction Extensions
	9.4 Supplied AWT/Swing HelpActions

	10 Context Sensitive Help
	10.1 Context-Sensitive Help
	1. Define the appropriate String ID-URL map,
	2. Assign an ID to each desired visual object,
	3. Enable some user action to activate the help.
	10.1.1 Defining the ID-URL map
	10.1.2 Assigning an ID to Each Visual Object
	10.1.3 Enabling a Help Action
	10.1.4 Dynamic ID Assignment
	10.1.4.1 Example Usage

	10.2 Help Support for JDialogs

	11 Content Search
	11.1 Search API
	11.2 Search Database Creation
	11.2.1 Stopwords
	11.2.2 ConfigFile Directives

	11.3 Search Database Use

	12 Merge
	12.1 Introduction
	12.2 Merging Rules
	12.3 The API
	12.4 Merging TOCs
	12.5 Merging Indices
	12.6 Merging Glossaries
	12.7 Merging Favorites
	12.8 Merging Full-Text Search Databases
	12.9 Overriding Mergetype
	12.10 Examples
	12.10.1 Example: Append Merge
	12.10.2 Example: Sort Merge
	12.10.3 Example: Unite-Append Merge

	13 JavaHelp Class Structure
	13.1 Packages
	13.2 API Structure
	13.2.1 Basic Content Presentation
	13.2.2 Detailed Control and Access
	13.2.3 Extensibility
	13.2.4 Swing components
	13.2.5 Context Sensitive Help
	13.2.6 Search

	Apendix A JavaHelp 2.0 - Scenarios
	A.1 Introduction
	A.2 Invocation Mechanisms
	A.2.1 Application Invocation
	A.2.1.1 User Initiated Context Sensitive Help
	A.2.1.2 Field-level Context-Sensitive Help
	A.2.1.3 Window-level Context-Sensitive Help
	A.2.1.4 System Initiated Context-Sensitive Help

	A.2.2 Internally Initiated Help
	A.2.2.1 Navigators
	A.2.2.2 View

	A.3 Presentation
	A.3.1 Main Window
	A.3.2 Secondary Window
	A.3.3 Popups

	A.4 Deployment
	A.4.1 Information Kiosk
	A.4.2 Stand-Alone Application
	A.4.3 Network Application
	A.4.4 Embedded Help
	A.4.5 Component Help
	A.4.6 A Help Server
	A.4.7 Web Pages and Applets

	A.5 Search Scenarios
	A.5.1 Client-Side
	A.5.2 Server-Side
	A.5.3 Stand-Alone

	A.6 Packaging Scenarios
	A.7 Merge Scenarios

	Appendix B JavaHelp System 2.0 Reference Implementation
	B.1 HelpBroker
	B.2 Search Engine
	B.3 Java Components in <OBJECT> Tag
	B.4 Launcher Application
	B.5 Packaging

	Appendix C JavaHelp 2.0 - Relaxation Searching
	C.1 Introduction
	C.2 Relaxation Ranking
	C.3 Conceptual Indexing
	C.4 Morphological and Semantic Relationships

	Appendix D JavaHelpTM 2.0 - Java Components
	Appendix E History of Changes

