JavaMail™ API
Design Specification

Version 1.4

Send feedback to j avamai | @un. com

/

S, —

wSun JAVA

ssssssssss

Sun Microsystems, Inc. December 2005

4140 Network Circle
Santa Clara, CA 95054 USA
650 960-1300 fax 650 969-9131

JavaMail (TM) Specification ("Specification")
Version: 1.4

Status: Maintenance Release

Release: 17 April 2006

Copyright 2006 SUN MICROSYSTEMS, INC.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under Sun's applicable intellectual property rights to view, download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant
portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent rights
it may have covering the Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully implements the
Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable
TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your not acting outside
its scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification, other than to the extent of your fair use
rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's
licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass
through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize your licensees to make any claims concerning their
implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2, whether or not their infringement can be
avoided in a technically feasible manner when implementing the Specification, such license shall terminate with respect to such claims if You initiate a claim
against Sun that it has, in the course of performing its responsibilities as the Specification Lead, induced any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2 above, where the infringement of such
claims can be avoided in a technically feasible manner when implementing the Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Sun that its making, having made, using, offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the Specification that neither derives from
any of Sun's source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun's source code or binary
code materials; "Licensor Name Space” shall mean the public class or interface declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any recognized successors or replacements
thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide provided by Sun which corresponds to
the Specification and that was available either (i) from Sun's 120 days before the first release of Your Independent Implementation that allows its use for
commercial purposes, or (i) more recently than 120 days from such release but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the scope of the licenses granted above.
DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE

SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or implement any portion of the Specification in any product.
In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING,
IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

December 2005

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accordance with
48 C.ER. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.ER. 2.101 and 12.212 (for non-DoD acquisitions).
REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to comply
strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless
in writing and signed by an authorized representative of each party.

Rev. April, 2006
Sun/Final /Full

December 2005

Contents

Chapter 1:
Introduction 1

Target Audience 1
Acknowledgments 1

Chapter 2:
Goals and Design Principles 3

Chapter 3:
Architectural Overview 5

JavaMail Layered Architecture 5

JavaMail Class Hierarchy 7

The JavaMail Framework 8

Major JavaMail API Components 10
The Message Class 10
Message Storage and Retrieval 10
Message Composition and Transport 11
The Sessi on Class 11

The JavaMail Event Model 11

Using the JavaMail API 12

Chapter 4:
The Message Class 13

The Part Interface 16
Message Attributes 16
The ContentType Attribute 17
The Address Class 18
The BodyPart Class 18
The Multipart Class 19
The Flags Class 22
Message Creation And Transmission 23

Chapter 5:
The Mail Session 25

JavaMail™ API Design Specification December 2005

Contents

iii

v Contents

The Provider Registry 26
Resource Files 26
Provider 28
Protocol Selection and Defaults 28
Example Scenarios 29
Managing Security 30
Store and Folder URLs 31

Chapter 6:
Message Storage And Retrieval 33

The Store Class 33
Store Events 34
The Fol der Class 34
The Fet chProfi | e Method 35
Fol der Events 36
The Expunge Process 37
The Search Process 39

Chapter 7:
The JavaBeans Activation Framework 41

Accessing the Content 41
Example: Message Output 42
Operating on the Content 43
Example: ViewingaMessage 43
Example: Showing Attachments 43
Adding Support for Content Types 44

Chapter 8:
Message Composition 45

Building a Message Object 45

Message Creation 45

Setting Message Attributes 46

Setting Message Content 47

Building a MIME Multipart Message 48

Chapter 9:
Transport Protocols and Mechanisms 51

Obtaining the Transport Object 51
Transport Methods 51

Transport Events 52
ConnectionEvent 52

December 2005

JavaMail™ API Design Specification

Contents

TransportEvent 53
Using The Transport Class 54

Chapter 10:
Internet Mail 55

The M neMessage Class 56
The M meBodyPart Class 57
The M meMul ti part Class 58
The M meUtility Class 58
Content Encoding and Decoding 59
Header Encoding and Decoding 59
The Cont ent Type Class 60

Appendix A:
Environment Properties 61

Appendix B:
Examples Using the JavaMail API 63

Example: Showing a Message 63

Example: Listing Folders 71

Example: Search a Folder for a Message 74
Example: Monitoring a Mailbox 79
Example: Sending a Message 80

Appendix C:
Message Security 83

Overview 83
Displaying an Encrypted /Signed Message 83
MultiPartEncrypted/Signed Classes 83
Reading the Contents 84
Verifying Signatures 84
Creating a Message 85

Appendix D:
Part and Multipart Class Diagram 87

Appendix E:
MimeMessage Object Hierarchy 89

Appendix F:

Features Added in JavaMail 1.1 91
The MessageCont ext Class and MessageAwar e Interface 91

JavaMail™ API Design Specification December 2005
g1 op

Contents

The get Messagel Dmethod 91

Additions to the | nt er net Addr ess Class 92
Additions to the M neUti ity Class 92
New Sear chTerns 92

Additions to the Fol der Class 93

New Servi ce Class 93

Appendix G:
Features Added in JavaMail 1.2 95

Additions to the M neMessage Class 95
Additions to the M neMul ti part Class 96
The get Rawl nput St r eammethod 96
Additions to the | nt er net Addr ess Class 96
The Mai | Dat eFor mat Class 97

Additions to Excepti ons and Events 97
Additions to the Sessi on Class 98
Additions to the M neUt il ity Class 98
Additions for serializable j avax. mai | . sear ch terms 98
Additions to the St or e Class 99

New Cont ent Di sposi tion Class 99

New performance improvements 100
Additions to the Par anet er Li st class 100

Appendix H:
Features Added in JavaMail 1.3 101

Add set Sender and get Sender methods to M neMessage (4405115) 101
Add set Cont ent | Dmethod to M meBodyPart (4377720) 102

Add mai | . mi me. char set property (4377731) 102

Add get Del et edMesageCount method to Fol der (4388730) 102

Support parsing illegal Internet addresses (4650940) 103

Add mai | . mi me. addr ess. strict property (4650940) 104

Add mai | . ni me. decodet ext . stri ct property (4201203) 105

Add mui | . mi me. encodeeol . strict property (4650949) 105

Add i sG oup and get Gr oup methods to | nt er net Addr ess (4650952) 105
Support per-session debug output stream (4517686) 106

Appendix I:
Features Added in JavaMail 1.4 107

Add M nePart . set Text (text, charset, subtype) method (6300765) 107
Add mai | . ni me. encodefi | enanme and decodef i | enane properties (6300768) 108

December 2005 JavaMail™ API Design Specification

Contents

Add Servi ce. connect (user, password) (6300771) 108

Add mai | . mime. nul tipart.ignoreni ssingendboundary System property
(4971381) 109

Add M meMul ti part.isConpl ete() method (6300811) 110

Add mai | . mime. mul tipart.ignoreni ssingboundar ypar anet er property
(6300814) 110

Add M meMul ti part get Preanbl e and set Preanbl e methods (6300828) 111
Add M neMessage. updat eMessagel D() protected method (6300831) 111
Add M neMessage. cr eat eM neMessage() protected method (6300833) 112
Make the part field of M nePar t Dat aSour ce protected (6300834) 112

Fol der. get Separ at or should not require the folder to exist (6301381) 113
Add PreencodedM neBodyPart class (6301386) 113

Add M nmeBodyPart attachFil e and saveFi | e methods (6301390) 114

Add M neUtility fol dand unf ol d methods (6302118) 115

Allow more control over headers in | nt er net Header s object (6302832) 116
Allow applications to dynamically register new protocol providers (6302835) 116
Allow applications to dynamically register address type mappings (4377727) 117
Par anet er Li st class should support non US-ASCII parameters (4107342) 117
Standard interface for St or es that support quotas (6304051) 118

Add Byt eArr ayDat aSour ce class (4623517) 120

Add Shar edByt eArr ayl nput St r eamclass (6304189) 122

Add Shar edFi | el nput St r eamclass (6304193) 123

JavaMail™ API Design Specification December 2005

vii

December 2005 JavaMail™ API Design Specification

Chapter 1:

Introduction

In the years since its first release, the Java™ programming language has matured to
become a platform. The Java platform has added functionality, including distributed
computing with RMI and CORBA, and a component architecture (JavaBeans™). Java
applications have also matured, and many need an addition to the Java platform: a
mail and messaging framework. The JavaMail™ API described in this specification
satisfies that need.

The JavaMail API provides a set of abstract classes defining objects that comprise a
mail system. The API defines classes like Message, Store and Transport. The API can
be extended and can be subclassed to provide new protocols and to add functionality
when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used
Internet mail protocols and conform to specifications RFC822 and RFC2045. They are
ready to be used in application development.

Target Audience
The JavaMail API is designed to serve several audiences:

= Client, server, or middleware developers interested in building mail and
messaging applications using the Java programming language.

= Application developers who need to “mail-enable” their applications.

= Service Providers who need to implement specific access and transfer protocols.
For example; a telecommunications company can use the JavaMail API to
implement a PAGER Transport protocol that sends mail messages to
alphanumeric pagers.

Acknowledgments

The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono
Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback
on the initial drafts of this document:

JavaMail™ API Design Specification December 2005

Chapter 1: Introduction
Acknowledgments

Terry Cline, John Russo, Bill Yeager and Monica Gaines: Sun Microsystems.
Arn Perkins and John Ragan: Novell, Inc.

Nick Shelness: Lotus Development Corporation.

Juerg von Kaenel: IBM Corporation.

Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape
Communications Corporation.

December 2005 JavaMail™ API Design Specification

Chapter 2:

Goals and Design Principles

The JavaMail API is designed to make adding electronic mail capability to simple
applications easy, while also supporting the creation of sophisticated user interfaces.
It includes appropriate convenience classes which encapsulate common mail
functions and protocols. It fits with other packages for the Java platform in order to
facilitate its use with other Java APIs, and it uses familiar programming models.

The JavaMail API is therefore designed to satisfy the following development and
runtime requirements:

= Simple, straightforward class design is easy for a developer to learn and
implement.

= Use of familiar concepts and programming models support code development
that interfaces well with other Java APIs.

= Uses familiar exception-handling and JDK 1.1 event-handling programming
models.

= Uses features from the JavaBeans Activation Framework (JAF) to handle
access to data based on data-type and to facilitate the addition of data types
and commands on those data types. The JavaMail API provides convenience
functions to simplify these coding tasks.

= Lightweight classes and interfaces make it easy to add basic mail-handling tasks
to any application.

= Supports the development of robust mail-enabled applications, that can handle a
variety of complex mail message formats, data types, and access and transport
protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other
messaging system APIs: many of the concepts present in these other systems are also
present in the JavaMail API. It is simpler to use because it uses features of the Java
programming language not available to these other APIs, and because it uses the Java
programming language’s object model to shelter applications from implementation
complexity.

The JavaMail API design is driven by the needs of the applications it supports—but it
is also important to consider the needs of API implementors. It is critically important
to enable the implementation of messaging systems written using the Java

programming language that interoperate with existing messaging systems—especially

JavaMail™ API Design Specification December 2005

Chapter 2: Goals and Design Principles

Internet mail. It is also important to anticipate the development of new messaging
systems. The JavaMail API conforms to current standards while not being so
constrained by current standards that it stifles future innovation.

The JavaMail API supports many different messaging system implementations—
different message stores, different message formats, and different message transports.
The JavaMail API provides a set of base classes and interfaces that define the API for
client applications. Many simple applications will only need to interact with the
messaging system through these base classes and interfaces.

JavaMail subclasses can expose additional messaging system features. For instance,
the MimeMessage subclass exposes and implements common characteristics of an
Internet mail message, as defined by RFC822 and MIME standards. Developers can
subclass JavaMail classes to provide the implementations of particular messaging
systems, such as IMAP4, POP3, and SMTP.

The base JavaMail classes include many convenience APIs that simplify use of the
API, but don’t add any functionality. The implementation subclasses are not required
to implement those convenience methods. The implementation subclasses must
implement only the core classes and methods that provide functionality required for
the implementation.

Alternately, a messaging system can choose to implement all of the JavaMail API
directly, allowing it to take advantage of performance optimizations, perhaps through
use of batched protocol requests. The IMAP4 protocol implementation takes
advantage of this approach.

The JavaMail API uses the Java programming language to good effect to strike a
balance between simplicity and sophistication. Simple tasks are easy, and
sophisticated functionality is possible.

December 2005 JavaMail™ API Design Specification

Chapter 3:

Architectural Overview

This section describes the JavaMail architecture, defines major classes and interfaces
comprising that architecture, and lists major functions that the architecture
implements.

JavaMail provides elements that are used to construct an interface to a messaging
system, including system components and interfaces. While this specification does not
define any specific implementation, JavaMail does include several classes that
implement RFC822 and MIME Internet messaging standards. These classes are
delivered as part of the JavaMail class package.

JavaMail Layered Architecture
The JavaMail architectural components are layered as shown below:

= The Abstract Layer declares classes, interfaces and abstract methods intended to
support mail handling functions that all mail systems support. API elements
comprising the Abstract Layer are intended to be subclassed and extended as
necessary in order to support standard data types, and to interface with message
access and message transport protocols as necessary.

= The internet implementation layer implements part of the abstract layer using
internet standards - RFC822 and MIME.

= JavaMail uses the JavaBeans Activation Framework (JAF) in order to encapsulate
message data, and to handle commands intended to interact with that data.
Interaction with message data should take place via JAF-aware JavaBeans, which
are not provided by the JavaMail APL

JavaMail™ API Design Specification December 2005

Chapter 3: Architectural Overview
JavaMail Layered Architecture

JavaMail clients use the JavaMail API and Service Providers implement the JavaMail
API. The layered design architecture allows clients to use the same JavaMail API calls
to send, receive and store a variety of messages using different data-types from
different message stores and using different message transport protocols.

FIGURE 3-1

Mail-enabled Application

Java Bean - used to interact and

. display message content
[} a
|
i
______________ —_—
| Javaail _ = ';
API JavaMail : 1
[_AbstractCIassLayer s
| . -
® Internet Mail
I A . |
I Implementation Class Layer I
L L
L
|
|
V:

IMAP/POP3/ NNTP implementation Layer

December 2005 JavaMail™ API Design Specification

Chapter 3: Architectural Overview
JavaMail Class Hierarchy

JavaMail Class Hierarchy

The figure below shows major classes and interfaces comprising the JavaMail API. See
“Major JavaMail API Components” on page 10 for brief descriptions of all
components shown on this diagram.

FIGURE 3-2

Legend

Interface [—7 Implements
Class C_—_] Extends =
Container Class [

Java Implementation Layer

1
1
1
Message : PI MimeMessage
[] [
1
1
1
1
[: | MimeBodyPart
Bodypart :
Multipart ! MimeMultipart
ultipar ' :
Contginer 1 Container
Cl = Class
ass
AecmmmemmmsasaooooCoooooooo--

JavaMail™ API Design Specification December 2005

8 Chapter 3: Architectural Overview
The JavaMail Framework

The JavaMail Framework

The JavaMail API is intended to perform the following functions, which comprise the
standard mail handling process for a typical client application:

Create a mail message consisting of a collection of header attributes and a block
of data of some known data type as specified in the Cont ent - Type header field.
JavaMail uses the Par t interface and the Message class to define a mail message.
It uses the JAF-defined Dat aHandl er object to contain data placed in the
message.

Create a Sessi on object, which authenticates the user, and controls access to the
message store and transport.

Send the message to its recipient list.
Retrieve a message from a message store.

Execute a high-level command on a retrieved message. High-level commands like
view and print are intended to be implemented via JAF-Aware JavaBeans.

Note — The JavaMail framework does not define mechanisms that support message
delivery, security, disconnected operation, directory services or filter functionality.

December 2005 JavaMail™ API Design Specification

Chapter 3: Architectural Overview
The JavaMail Framework

This figure illustrates the JavaMail message-handling process.

FIGURE 3-3

MESSAGE j Send a MESSAGE j
Message

TRANSPORT Submit a Contains

Message Messages FOLDERS

Network
Infrastructure

: Message STORE

Receive a —

JavaMail™ API Design Specification December 2005

10 Chapter 3: Architectural Overview
Major JavaMail API Components

Major JavaMail API Components

This section reviews major components comprising the JavaMail architecture.

The Message Class

The Message class is an abstract class that defines a set of attributes and a content for
a mail message. Attributes of the Message class specify addressing information and
define the structure of the content, including the content type. The content is
represented as a Dat aHandl er object that wraps around the actual data.

The Message class implements the Part interface. The Part interface defines
attributes that are required to define and format data content carried by a Message
object, and to interface successfully to a mail system. The Message class adds From
To, Subj ect, Repl y- To, and other attributes necessary for message routing via a
message transport system. When contained in a folder, a Message object has a set of
flags associated with it. JavaMail provides Message subclasses that support specific
messaging implementations.

The content of a message is a collection of bytes, or a reference to a collection of bytes,
encapsulated within a Message object. JavaMail has no knowledge of the data type or
format of the message content. A Message object interacts with its content through an
intermediate layer—the JavaBeans Activation Framework (JAF). This separation
allows a Message object to handle any arbitrary content and to transmit it using any
appropriate transmission protocol by using calls to the same API methods. The
message recipient usually knows the content data type and format and knows how to
handle that content.

The JavaMail API also supports multipart Message objects, where each Bodypart
defines its own set of attributes and content.

Message Storage and Retrieval

Messages are stored in Fol der objects. A Fol der object can contain subfolders as
well as messages, thus providing a tree-like folder hierarchy. The Fol der class
declares methods that fetch, append, copy and delete messages. A Fol der object can
also send events to components registered as event listeners.

The St or e class defines a database that holds a folder hierarchy together with its
messages. The St or e class also specifies the access protocol that accesses folders and
retrieves messages stored in folders. The St or e class also provides methods to
establish a connection to the database, to fetch folders and to close a connection.
Service providers implementing Message Access protocols (IMAP4, POP3, etc.) start
off by subclassing the St or e class. A user typically starts a session with the mail
system by connecting to a particular St or e implementation.

December 2005 JavaMail™ API Design Specification

Chapter 3: Architectural Overview 11
The JavaMail Event Model

Message Composition and Transport

A client creates a new message by instantiating an appropriate Message subclass. It

sets attributes like the recipient addresses and the subject, and inserts the content into
the Message object. Finally, it sends the Message by invoking the Tr ansport . send

method.

The Transport class models the transport agent that routes a message to its
destination addresses. This class provides methods that send a message to a list of
recipients. Invoking the Tr anspor t. send method with a Message object identifies
the appropriate transport based on its destination addresses.

The Sessi on Class

The Sessi on class defines global and per-user mail-related properties that define the
interface between a mail-enabled client and the network. JavaMail system
components use the Sessi on object to set and get specific properties. The Sessi on
class also provides a default authenticated session object that desktop applications can
share. The Sessi on class is a final concrete class. It cannot be subclassed.

The Sessi on class also acts as a factory for St or e and Tr ansport objects that
implement specific access and transport protocols. By calling the appropriate factory
method on a Sessi on object, the client can obtain St or e and Tr ansport objects
that support specific protocols.

The JavaMail Event Model

The JavaMail event model conforms to the JDK 1.1 event-model specification, as
described in the JavaBeans Specification. The JavaMail API follows the design
patterns defined in the JavaBeans Specification for naming events, event methods and
event listener registration.

All events are subclassed from the Mai | Event class. Clients listen for specific events
by registering themselves as listeners for those events. Events notify listeners of state
changes as a session progresses. During a session, a JavaMail component generates a
specific event-type to notify objects registered as listeners for that event-type. The
JavaMalil St or e, Fol der, and Tr ansport classes are event sources. This
specification describes each specific event in the section that describes the class that
generates that event.

JavaMail™ API Design Specification December 2005

12 Chapter 3: Architectural Overview
Using the JavaMail API

Using the JavaMail API

This section defines the syntax and lists the order in which a client application calls
some JavaMail methods in order to access and open a message located in a folder:

1. A JavaMail client typically begins a mail handling task by obtaining a JavaMail
Session object.
Sessi on session = Session. getlnstance(props, authenticator);

2. The client uses the Sessi on object’s get St or e method to connect to the default
store. The get St or e method returns a St or e object subclass that supports the
access protocol defined in the user properties object, which will typically contain
per-user preferences.

Store store = session.getStore();
store. connect ();

3. If the connection is successful, the client can list available folders in the Store, and

then fetch and view specific Message objects.

/1 get the INBOX folder
Fol der inbox = store.getFol der ("1 NBOX");

/1 open the | NBOX fol der
i nbox. open(Fol der. READ_WRI TE) ;

Message m = i nbox. get Message(1); /1 get Message # 1
String subject = m get Subject(); /1 get Subject
Ohj ect content = mget Content (); /1 get content

4. Finally, the client closes all open folders, and then closes the store.

i nbox. cl ose(); /1 Close the | NBOX
store.close(); /1 Close the Store

See “Examples Using the JavaMail API” on page 63 for a more complete example.

December 2005 JavaMail™ API Design Specification

Chapter 4:

The Message Class

The Message class defines a set of attributes and a content for a mail message.
Message attributes specify message addressing information and define the structure
of the content, including the content type. The content is represented by a

Dat aHandl er object that wraps around the actual data. The Message class is an
abstract class that implements the Par t interface.

Subclasses of the Message classes can implement several standard message formats.
For example, the JavaMail API provides the M meMessage class, that extends the
Message class to implement the RFC822 and MIME standards. Implementations can
typically construct themselves from byte streams and generate byte streams for
transmission.

A Message subclass instantiates an object that holds message content, together with
attributes that specify addresses for the sender and recipients, structural information
about the message, and the content type of the message body. Messages placed into a
folder also have a set of flags that describe the state of the message within the folder.

JavaMail™ API Design Specification December 2005

14 Chapter 4: The Message Class

The figure below illustrates the structure of the Message class.

FIGURE 4-1

Message Class
Header Attributes

Attributes defined by the
Par t interface, including
N Content-Type.

Par t interface

Attributes added by the
Message Class.

Optional attributes added by

a Message Subclass,
Dat aHandl er such as M neMessage.
Class
— Content Body

Dat aHandl er Object

Contains data that conforms
to the Content-Type
attribute, together with meth-
ods that provide access to
f— that data.

JavaBean
queries the

Dat aHandl er
object in order to
view and handle
content body.

The Message object has no direct knowledge of the nature or semantics of its content.
This separation of structure from content allows the message object to contain any
arbitrary content.

Message objects are either retrieved from a Fol der object or constructed by
instantiating a new Message object of the appropriate subclass. Messages stored
within a Fol der object are sequentially numbered, starting at one. An assigned
message number can change when the folder is expunged, since the expunge
operation removes deleted messages from the folder and also renumbers the
remaining messages.

December 2005 JavaMail™ API Design Specification

Chapter 4: The Message Class

A Message object can contain multiple parts, where each part contains its own set of
attributes and content. The content of a multipart message is a Mul ti part object that
contains BodyPart objects representing each individual part. The Part interface
defines the structural and semantic similarity between the Message class and the
BodyPart class.

The figure below illustrates a Message instance hierarchy, where the message
contains attributes, a set of flags, and content. See “MimeMessage Object Hierarchy”
on page 89 for an illustration of the M meMessage object hierarchy.

FIGURE 4-2

Flags K>—— Message ——3»p Attributes
Legend
L/ Interface
L] Class
— Contains
——Jpp Implements
——p References

The Message class provides methods to perform the following tasks:

Get, set and create its attributes and content:
public String getSubject() throws Messagi ngExcepti on;

public void setSubject(String subject)
t hrows Messagi ngExcepti on;

public String[] getHeader(String nane)
t hrows Messagi ngExcepti on;

JavaMail™ API Design Specification December 2005

16 Chapter 4: The Message Class
The Part Interface

public void setHeader(String nane, String val ue)
t hrows Messagi ngExcepti on;

public Object getContent()
t hrows Messagi ngExcepti on;

public void setContent(Cbject content, String type)
t hrows Messagi ngExcepti on

Save changes to its containing folder.

public void saveChanges()
t hrows Messagi ngExcepti on;

This method also ensures that the Message header fields are updated to be
consistent with the changed message contents.

Generate a bytestream for the Message object.

public void witeTo(CutputStream os)
throws | OException, Messagi ngExcepti on;

This byte stream can be used to save the message or send it to a Transport object.

The Par t Interface

The Part interface defines a set of standard headers common to most mail systems,
specifies the data-type assigned to data comprising a content block, and defines set
and get methods for each of these members. It is the basic data component in the
JavaMail API and provides a common interface for both the Message and BodyPar t
classes. See the JavaMail API (Javadoc) documentation for details.

Note — A Message object can not be contained directly in a Mul ti part object, but
must be embedded in a BodyPart first.

Message Attributes

The Message class adds its own set of standard attributes to those it inherits from the
Part interface. These attributes include the sender and recipient addresses, the
subject, flags, and sent and received dates. The Message class also supports non-
standard attributes in the form of headers. See the JavaMail API (Javadoc)
Documentation for the list of standard attributes defined in the Message class. Not all
messaging systems will support arbitrary headers, and the availability and meaning
of particular header names is specific to the messaging system implementation.

December 2005 JavaMail™ API Design Specification

Chapter 4: The Message Class 17
The Part Interface

The Cont ent Type Attribute

The cont ent Type attribute specifies the data type of the content, following the
MIME typing specification (RFC 2045). A MIME type is composed of a primary type
that declares the general type of the content, and a subtype that specifies a specific
format for the content. A MIME type also includes an optional set of type-specific
parameters.

JavaMail API components can access content via these mechanisms:

As an input stream The Part interface declares the get | nput St r eammethod that
returns an input stream to the content. Note that Par t
implementations must decode any mail-specific transfer encoding
before providing the input stream.

As a DataHandler object ~ The Part interface declares the get Dat aHandl er method that
returns aj avax. acti vati on. Dat aHandl er object that wraps
around the content. The Dat aHandl er object allows clients to
discover the operations available to perform on the content, and
to instantiate the appropriate component to perform those
operations. See “The JavaBeans Activation Framework” on
page 41 for details describing the data typing framework

As an object in the Java ~ The Part interface declares the get Cont ent method that
programming language returns the content as an object in the Java programming
language. The type of the returned object is dependent on the
content’s data type. If the content is of type multipart, the
get Cont ent method returns a Mul ti part object, or a
Mul ti part subclass object. The get Cont ent method returns an
input stream for unknown content-types. Note that the
get Cont ent method uses the Dat aHandl er internally to obtain
the native form.

The set Dat aHand! er (Dat aHandl er) method specifies content for a new Part
object, as a step toward the construction of a new message. The Part also provides
some convenience methods to set up most common content types.

Part provides the wr i t eTo method that writes its byte stream in mail-safe form
suitable for transmission. This byte stream is typically an aggregation of the Par t
attributes and the byte stream for its content.

avaMail™ API Design Specification December 2005
gn op

18 Chapter 4: The Message Class
The Address Class

The Addr ess Class

The Addr ess class represents email addresses. The Addr ess class is an abstract class.
Subclasses provide implementation-specific semantics.

The BodyPar t Class

The BodyPar t class is an abstract class that implements the Part interface in order
to define the attribute and content body definitions that Par t declares. It does not
declare attributes that set Fr om To, Subj ect, Repl yTo, or other address header
fields, as a Message object does.

A BodyPart object is intended to be inserted into a Mul ti part container, later
accessed via a multipart message.

December 2005 JavaMail™ API Design Specification

Chapter 4: The Message Class
The Multipart Class

The Mul ti part Class

The Mul ti part class implements multipart messages. A multipart message is a
Message object where the content-type specifier has been set to multipart. The

Mul ti part class is a container class that contains objects of type Bodypart. A
Bodypart object is an instantiation of the Part interface—it contains either a new
Mul ti part container object, or a Dat aHandl er object.

The figure below illustrates the structure and content of a multipart message:

FIGURE 4-3
Message Mul ti part Object
Header Attributes Bodypart Object
Normal Message,
includes a Content- Header Attributes
Type attribute)]
setto ‘Ml tipart .. Attributes defined by the Par t
interface only.
/- o
Content Body / Attributes include a second
Content-Type attribute.
Normal Message,
includes a Content
body of type
‘Ml tipart! Content Body
The content body itself can be
either a Dat aHandl er object
A multipart message is a simple containing data, or another
message object where the Con- Mul ti part object.
tent-Type is set to ‘multipart,’

and the Content Body carries a

reference to a Mul ti part

object.
Bodypart Object

A Ml tipart Message can hold
more than one BodyPart object.

A Ml tipart objectis acon-
tainer of Bodypart objects,
where each Bodypart can con-

tain either a Dat aHandl er
object, or another Mul ti part

object.

JavaMail™ API Design Specification December 2005

20

Chapter 4: The Message Class

The Multipart Cl

Note that Mul ti part objects can be nested to any reasonable depth within a
multipart message, in order to build an appropriate structure for data carried in

Dat aHandl er objects. Therefore, it is important to check the Cont ent Type header
for each BodyPart element stored within a Mul ti part container. The figure below
illustrates a typical nested Mul ti part message.

FIGURE 4-4

ass

Message
Object

Carries
addresses for

the entire tree.

Content body
references a
Mul ti part
container

N

Multipart Container
Object

Bodypart object
that carries a

Dat aHandl er
object holding data.

Bodypart object
that holds a Dat aH-
andl| er object holth!

container object.

Other Body-
part objects.

ingaMil tipart N

Other Optional
Multipart Objects

New bodyparts,
containing a
Dat ahandl er
object.

Bodypart

Bodypart

Bodypart

Typically, the client calls the get Cont ent Type method to get the content type of a
message. If get Cont ent Type returns a MIME-type whose primary type is multipart,
then the client calls get Cont ent to get the Mul ti part container object.

The Mul ti part object supports several methods that get, create, and remove
individual BodyPart objects.

public int getCount() throws Messagi ngExcepti on;

publ i c Body get BodyPart (int index)
t hrows Messagi ngExcepti on;

December 2005

JavaMail™ API Design Specification

Chapter 4: The Message Class
The Multipart Class

public void addBodyPart (BodyPart part)
t hrows Messagi ngExcepti on;

public void removeBodyPart (BodyPart body)
t hrows Messagi ngExcepti on;

public void renmpveBodyPart (int index)
t hrows Messagi ngExcepti on;

The Mul ti part class implements the j avax. beans. Dat aSour ce interface. It can
act as the Dat aSour ce object for j avax. beans. Dat aHandl er and

j avax. beans. Dat aCont ent Handl er objects. This allows message-aware content
handlers to handle multipart data sources more efficiently, since the data has already
been parsed into individual parts.

This diagram illustrates the structure of a multipart message, and shows calls from
the associated Message and Mul ti part objects, for a typical call sequence returning
a BodyPar t containing t ext/ pl ai n content.

FIGURE 4-5
etContentT
Message g ype() » multipart/mixed
getContent() L egend
——> extends
Multipart .
—— contains
getBodyPart(index)
0..n-1
etContentT
BodyPart k9 ypeh » text/plain
getContent()

¥,

In this figure, the Cont ent Type attribute of a Message object indicates that it holds
a multipart content. Use the get Cont ent method to obtain the Mul ti part object.

JavaMail™ API Design Specification December 2005

22

Chapter 4: The Message Class
The Flags Class

This code sample below shows the retrieval of a Mul ti part object. See “Examples
Using the JavaMail API” on page 63 for examples that traverse a multipart message
and examples that create new multipart messages.

Mul tipart np = (Miultipart)nmessage. get Content();

int count = np.getCount();
BodyPart body_part;

for (int i =0; i < count; i++)
body_part = np. getBodyPart (i);

The Fl ags Class

Fl ags objects carry flag settings that describe the state of a Message object within its
containing folder. The Message. get Fl ags method returns a Fl ags object that holds
all the flags currently set for that message.

The set Fl ags(Fl ags f, bool ean set) method sets the specified flags for that
message. The add(Fl ags. Fl ag f) method on a FI ags object sets the specified flag;
the cont ai ns(Fl ags. Fl ag f) method returns whether the specified flag is set.

ANSWERED Clients set this flag to indicate that this message has been answered.
DRAFT Indicates that this message is a draft.
FLAGGED No defined semantics. Clients can use this flag to mark a message in some

user-defined manner.

RECENT This message is newly arrived in this folder. This flag is set when the
message is first delivered into the folder and cleared when the containing
folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A client sets this flag implicitly
when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a message marks
it del et ed but does not physically remove the message from its folder.
The client calls the expunge method on a folder to remove all deleted
messages in that folder.

Note that a folder is not guaranteed to support either standard system flags or
arbitrary user flags. The get Per manent Fl ags method in a folder returns a Fl ags
object that contains all the system flags supported by that Fol der implementation.
The presence of the special USER flag indicates that the client can set arbitrary user-
definable flags on any message belonging to this folder.

December 2005 JavaMail™ API Design Specification

Chapter 4: The Message Class
Message Creation And Transmission

Message Creation And Transmission

The Message class is abstract, so an appropriate subclass must be instantiated to
create a new Message object. A client creates a message by instantiating an
appropriate Message subclass.

For example, the M meMessage subclass handles Internet email messages. Typically,
the client application creates an email message by instantiating a M neMessage
object, and passing required attribute values to that object. In an email message, the
client defines Subj ect, Fr om and To attributes. The client then passes message
content into the M neMessage object by using a suitably configured Dat aHandl er
object. See “Message Composition” on page 45 for details.

After the Message object is constructed, the client calls the Transport. send
method to route it to its specified recipients. See “Transport Protocols and
Mechanisms” on page 51 for a discussion of the transport process.

JavaMail™ API Design Specification December 2005

December 2005 JavaMail™ API Design Specification

Chapter 5:

The Mail Session

A mail Sessi on object manages the configuration options and user authentication
information used to interact with messaging systems.

The JavaMail API supports simultaneous multiple sessions. Each session can access
multiple message stores and transports. Any desktop application that needs to access
the current primary message store can share the default session. Typically the mail-
enabled application establishes the default session, which initializes the
authentication information necessary to access the user’s | nbox folder. Other desktop
applications then use the default session when sending or accessing mail on behalf of
the user. When sharing the session object, all applications share authentication
information, properties, and the rest of the state of the object.

For example,

= To create a Sessi on using a static factory method:
Sessi on session = Session. getlnstance(props, authenticator);

= To create the default shared session, or to access the default shared session:

Sessi on def aul t Session =
Sessi on. get Def aul t | nst ance(props, authenticator);

The Properti es object that initializes the Sessi on contains default values and other
configuration information. It is expected that clients using the APIs set the values for
the listed properties, especially mai | . host, mai | . user, and mai | . f r om since the
defaults are unlikely to work in all cases. See “Environment Properties” on page 61 for
a list of properties used by the JavaMail APIs and their defaults.

Some messaging system implementations can use additional properties. Typically the
properties object contains user-defined customizations in addition to system-wide
defaults. Mail-enabled application logic determines the appropriate set of properties.
Lacking a specific requirement, the application can use the system properties object
retrieved from the Syst em get Properti es method.

The Aut hent i cat or object controls security aspects for the Sessi on object. The
messaging system uses it as a callback mechanism to interact with the user when a
password is required to login to a messaging system. It indirectly controls access to
the default session, as described below.

Clients using JavaMail can register Passwor dAut hent i cat i on objects with the
Sessi on object for use later in the session or for use by other users of the same
session. Because Passwor dAut hent i cat i on objects contain passwords, access to

JavaMail™ API Design Specification December 2005

26 Chapter 5: The Mail Session
The Provider Registry

this information must be carefully controlled. Applications that create Sessi on
objects must restrict access to those objects appropriately. In addition, the Sessi on
class shares some responsibility for controlling access to the default session object.

The first call to the get Def aul t | nst ance method creates a new Sessi on object
and associates it with the Aut hent i cat or object. Subsequent calls to the

get Def aul t I nst ance method compare the Aut hent i cat or object passed in with
the Aut hent i cat or object saved in the default session. Access to the default session
is allowed if both objects have been loaded by the same class loader. Typically, this is
the case when both the default session creator and the program requesting default
session access are in the same "security domain." Also, if both objects are nul | , access
is allowed. Using nul | to gain access is discouraged, because this allows access to the
default session from any security domain.

A mail-enabled client uses the Sessi on object to retrieve a St or e or Tr ansport
object in order to read or send mail. Typically, the client retrieves the default St or e or
Transport object based on properties loaded for that session:

Store store = session.getStore();

The client can override the session defaults and access a St or e or Tr ansport object
that implements a particular protocol.

Store store = session.getStore("imp");

See “The Provider Registry” on page 26 for details.

Implementations of St or e and Tr ansport objects will be told the session to which
they have been assigned. They can then make the Sessi on object available to other

objects contained within this St or e or Tr ansport objects using application-
dependent logic.

The Provider Registry

The Provider Registry allows providers to register their protocol implementations to
be used by JavaMail APIs. It provides a mechanism for discovering available protocol,
for registering new protocols, and for specifying default implementations.

Resource Files
The providers for JavaMail APIs are configured using the following files:

javanai | . providers and j avanai |l . defaul t. provi ders
javanmi | . addr ess. map and j avarai | . def aul t. addr ess. map

Each j avamai | . X resource file is searched in the following order:
1. java.homel |i b/ javamail . X

2. META-INF/javanmil . X

3. META-INF/javamail .default. X

December 2005 JavaMail™ API Design Specification

Chapter 5: The Mail Session 27
The Provider Registry

The first method allows the user to include their own version of the resource file by
placing it in the | i b directory where the j ava. home property points. The second
method allows an application that uses the JavaMail APIs to include their own
resource files in their application’s or jar file’s META- | NF directory. The

javamai | . def aul t . X default files are part of the JavaMail mai | . j ar file.

File location depends upon how the Cl assLoader . get Resour ce method is
implemented. Usually, the get Resour ce method searches through CLASSPATH until
it finds the requested file and then stops. JDK 1.2 and newer allows all resources of a
given name to be loaded from all elements of the CLASSPATH. However, this only
affects method two, above; method one is loaded from a specific location (if allowed
by the Securi t yManager) and method three uses a different name to ensure that the
default resource file is always loaded successfully.

The ordering of entries in the resource files matters. If multiple entries exist, the first
entries take precedence over the latter entries as the initial defaults. For example, the
first IMAP provider found will be set as the default IMAP implementation until
explicitly changed by the application.

The user- or system-supplied resource files augment, they do not override, the default
files included with the JavaMail APIs. This means that all entries in all files loaded
will be available.

j avamai |l . provi ders and
javamai |l . defaul t. providers

These resource files specify the stores and transports that are available on the system,
allowing an application to "discover" what store and transport implementations are
available. The protocol implementations are listed one per line. The file format defines
four attributes that describe a protocol implementation. Each attribute is an "="-
separated name-value pair with the name in lowercase. Each name-value pair is semi-

"o

colon (;") separated.

TABLE 5-1 Protocol Attributes

Name Description

pr ot ocol Name assigned to protocol. For example, 'smtp” for Transport.
type Valid entries are “store” and “transport”.

class Class name that implements this protocol.

vendor Optional string identifying the vendor.

version Optional string identifying the version.

JavaMail™ API Design Specification December 2005

28 Chapter 5: The Mail Session
The Provider Registry

Here’s an example of META- | NF/ j avamai | . def aul t. provi der s file contents:

protocol =i map; type=store; class=com sun.nail.imp.| MAPStore; vendor=Sun;
protocol =snt p; type=transport; class=com sun. nail.smp. SMIPTransport;

j avamai | . addr ess. map and
j avamai |l . def aul t. address. map

These resource files map transport address types to the transport protocol. The
javax. mai | . Addr ess. get Type() method returns the address type. The

j avanai | . addr ess. map file maps the transport type to the protocol. The file format
is a series of name-value pairs. Each key name should correspond to an address type
that is currently installed on the system; there should also be an entry for each

j avax. mai | . Addr ess implementation that is present if it is to be used. For example,
javax. mail.internet.|nternetAddress. get Type() returns rfc822. Each
referenced protocol should be installed on the system. For the case of news, below, the
client should install a Transport provider supporting the nntp protocol.

Here are the typical contents of a j avamai | . addr ess. map file.

rfc822=sntp
news=nnt p

Provider

Provider is a class that describes a protocol implementation. The values come from
the j avamai | . provi ders and j avanmai | . def aul t. provi der s resource files.

Protocol Selection and Defaults

The constructor for the Session object initializes the appropriate variables from the
resource files. The order of the protocols in the resource files determines the initial
defaults for protocol implementations. The methods, get Provi ders(),

{get Provi der ()and set Provider () allow the client to discover the available
(installed) protocol implementations, and to set the protocols to be used by default.

At runtime, an application may set the default implementation for a particular
protocol. It can set the mai | . prot ocol .cl ass property when it creates the Session
object. This property specifies the class to use for a particular protocol. The

get Provi der () method consults this property first.

The code can also call set Provi ders() passing in a Provider that was returned by
the discovery methods. A Provider object in not normally explicitly created; it is
usually retrieved using the get Pr ovi der s() method.

December 2005 JavaMail™ API Design Specification

Chapter 5: The Mail Session 29
The Provider Registry

In either case, the provider specified is one of the ones configured in the resource files.
An application may also instantiate a Pr ovi der object to configure a new
implementation.

Example Scenarios

Scenario 1: The client application invokes the default protocols:

class Applicationl {
init() {

/1 application properties include the JavaMi l

/1 required properties: mail.store. protocol,

/1 mail.transport.protocol, mail.host, mail.user
Properties props = | oadApplicationProps();
Sessi on session = Session.getlnstance(props, null);
/1 get the store inplenentation of the protocol
/1 defined in mail.store.protocol; the inplenentation

/1 returned will be defined by the order of entries in
/1 javamail.providers & javanmuil.default.providers
try {

Store store = session.getStore();
store. connect ();
} catch (Messagi ngException nmex) {}

}

Scenario 2: The client application presents available implementations to the user and
then sets the user’s choice as the default implementation:

class Application2 {
init() {
/1 application properties include the JavaMi l
/! properties: nmil.store. protocol,
/1 mail.transport.protocol, nail.host, nmail.user
Properties props = | oadApplicationProps();
Sessi on session = Session. getlnstance(props, null);

/1 find out which inplenmentations are avail able
Provi der[] providers = session.getProviders();

/1 ask the user which inplenmentations to use
/1 user’s response may include a nurmber of choices,
/1l i.e. imap & nntp store providers & sntp transport
Provi der[] userChosenProviders =

askUser Wi chProvi der sToUse(provi ders);

/1 set the defaults based on users response

for (int i = 0; i < userChosenProviders.|length; i++)
sessi on. set Provi der (user ChosenProvi ders[i]);

/1 get the store inplenentation of the protocol

JavaMail™ API Design Specification December 2005

30 Chapter 5: The Mail Session
Managing Security

/1 defined in mail.store.protocol; the inplenentation
/1 returned will be the one configured previously
try {

Store store = session.getStore();

store. connect ();
} catch (Messagi ngException nmex) {}

}

Scenario 3: Application wants to specify an implementation for a given protocol:

cl ass Application3 {
init() {
/1 application properties include the JavaMi l
/1 required properties: mail.store. protocol,
/1 mail.transport.protocol, nail.host, mail.user
Properties props = | oadApplicationProps();

/'l hard-code an inplenmentation to use
/1 "com acme. SMTPTRANSPORT"

props. put("mail.sntp.class", "com acnme. SMTPTRANSPORT") ;
Sessi on session = Session. getlnstance(props, null);

/1 get the sntp transport inplenentation; the
/1 inplenmentation returned will be com acme. SMIPTRANSPORT
/1 if it was correctly configured in the resource files.
/] |f comacne. SMTPTRANSPORT can’t be | oaded, a
/1 Messagi ngException is thrown.
try {
Transport transport = session.getTransport("sntp");
} catch (Messagi ngException mex) {
quit();

Managing Security

The Sessi on class allows messaging system implementations to use the

Aut henti cat or object that was registered when the session was created. The

Aut hent i cat or object is created by the application and allows interaction with the
user to obtain a user name and password. The user name and password is returned in
a Passwor dAut hent i cat i on object. The messaging system implementation can ask
the session to associate a user name and password with a particular message store
using the set Passwor dAut hent i cat i on method. This information is retrieved
using the get Passwor dAut hent i cat i on method. This avoids the need to ask the

December 2005 JavaMail™ API Design Specification

Chapter 5: The Mail Session 31
Store and Folder URLs

user for a password when reconnecting to a St or e that has disconnected, or when a
second application sharing the same session needs to create its own connection to the
same St or e.

Messaging system implementations can register Passwor dAut hent i cat i on objects
with the Sessi on object for use later in the session or for use by other users of the
same session. Because Passwor dAut hent i cat i on objects contain passwords, access
to this information must be carefully controlled. Applications that create Sessi on
objects must restrict access to those objects appropriately. In addition, the Sessi on
class shares some responsibility for controlling access to the default Sessi on object.

The first call to get Def aul t | nst ance creates a new Sessi on object and associates
the Aut henti cat or object with the Sessi on object. Later calls to

get Def aul t | nst ance compare the Aut henti cat or object passed in, to the

Aut hent i cat or object saved in the default session. If both objects have been loaded
by the same class loader, then get Def aul t | nst ance will allow access to the default
session. Typically, this is the case when both the creator of the default session and the
code requesting access to the default session are in the same "security domain." Also,
if both objects are null, access is allowed. This last case is discouraged because setting
objects to nul | allows access to the default session from any security domain.

In the future, JDK security Permissions could control access to the default session.
Note that the Aut hent i cat or and Passwor dAut henti cati on classes and their
use in JavaMail is similar to the classes with the same names provided in the

j ava. net package in the JDK. As new authentication mechanisms are added to the
system, new methods can be added to the Aut hent i cat or class to request the
needed information. The default implementations of these new methods will fail, but
new clients that understand these new authentication mechanisms can provide
implementations of these methods. New classes other than

Passwor dAut hent i cat i on could be needed to contain the new authentication
information, and new methods could be needed in the Sessi on class to store such
information. JavaMail design evolution will be patterned after the corresponding JDK
classes.

Store and Folder URLs

To simplify message folder naming and to minimize the need to manage St or e and
Transport objects, folders can be named using URLNames. URLNames are similar
to URLs except they only include the parsing of the URL string. The Sessi on class
provides methods to retrieve a Fol der object given a URLName:

Fol der f = sessi on. get Fol der (URLNane) ;

or

Store s = session. get St ore(URLNane) ;

JavaMail™ API Design Specification December 2005

December 2005 JavaMail™ API Design Specification

Chapter 6:

Message Storage And Retrieval

This section describes JavaMail message storage facilities supported by the St or e
and Fol der classes.

Messages are contained in Fol der s. New messages are usually delivered to folders
by a transport protocol or a delivery agent. Clients retrieve messages from folders
using an access protocol.

The St or e Class

The St or e class defines a database that holds a Fol der hierarchy and the messages
within. The St or e also defines the access protocol used to access folders and retrieve
messages from folders. St or e is an abstract class. Subclasses implement specific
message databases and access protocols.

Clients gain access to a Message Store by obtaining a St or e object that implements
the database access protocol. Most message stores require the user to be authenticated
before they allow access. The connect method performs that authentication.

For many message stores, a host name, user name, and password are sufficient to
authenticate a user. The JavaMail API provides a connect method that takes this
information as input parameters. St or e also provides a default connect method. In
either case, the client can obtain missing information from the Sessi on object’s
properties, or by interacting with the user by accessing the Sessi on’s

Aut hent i cat or object.

The default implementation of the connect method in the St or e class uses these
techniques to retrieve all needed information and then calls the pr ot ocol Connect
method. The messaging system must provide an appropriate implementation of this
method. The messaging system can also choose to directly override the connect
method.

By default, St or e queries the following properties for the user name and host name:

= mai | . user property, or user . name system property (if mai | . user isnot set)
= mail . host

These global defaults can be overridden on a per-protocol basis by the properties:

« mail.protocol . user
« mail.protocol. host

JavaMail™ API Design Specification December 2005

34

Chapter 6: Message Storage And Retrieval
The Fol der Class

Note that passwords can not be specified using properties.

The St or e presents a default namespace to clients. St or e implementations can also
present other namespaces. The get Def aul t Fol der method on St or e returns the
root folder for the default namespace.

Clients terminate a session by calling the cl ose method on the St or e object. Once a
St or e is closed (either explicitly using the cl 0se method; or externally, if the Mail
server fails), all Messaging components belonging to that St or € become invalid.
Typically, clients will try to recover from an unexpected termination by calling
connect to reconnect to the St or e object, and then fetching new Fol der objects and
new Message objects.

St or e Events

St or e sends the following events to interested listeners:

ConnectionEvent Generated when a connection is successfully made to the St ore, or
when an existing connection is terminated or disconnected.

StoreEvent Communicates alerts and notification messages from the St or e to
the end user. The get MessageType method returns the event type,
which can be one of: ALERT or NOTI CE. The client must display ALERT
events in some fashion that calls the user’s attention to the message.

FolderEvent Communicates changes to any folder contained within the St or e.
These changes include creation of a new Fol der, deletion of an
existing Fol der, and renaming of an existing Fol der.

The Fol der Class

The Fol der class represents a folder containing messages. Folders can contain
subfolders as well as messages, thus providing a hierarchical structure. The get Type
method returns whether a Fol der can hold subfolders, messages, or both. Fol der is
an abstract class. Subclasses implement protocol-specific Message Folders.

The get Def aul t Fol der method for the corresponding St or e object returns the
root folder of a user’s default folder hierarchy. The | i st method for a Fol der
returns all the subfolders under that folder. The get Fol der (St ri ng nanme) method
for a Fol der object returns the named subfolder. Note that this subfolder need not
exist physically in the store. The exi st s method in a folder indicates whether this
folder exists. A folder is created in the store by invoking its cr eat € method.

December 2005 JavaMail™ API Design Specification

Chapter 6: Message Storage And Retrieval 35
The Fol der Class

A closed Fol der object allows certain operations, including deleting the folder,
renaming the folder, listing subfolders, creating subfolders and monitoring for new
messages. The open method opens a Fol der object. All Fol der methods except
open, del ete, and renameTo are valid on an open Fol der object. Note that the
open method is applicable only on Fol der objects that can contain messages.

The messages within a Fol der are sequentially numbered, from 1 through the total
number of messages. This ordering is referred to as the “mailbox order” and is usually
based on the arrival time of the messages in the folder. As each new message arrives
into a folder, it is assigned a sequence number that is one higher than the previous
number of messages in that folder. The get MessageNunber method on a Message
object returns its sequence number.

The sequence number assigned to a Message object is valid within a session, but only
as long as it retains its relative position within the Fol der. Any change in message
ordering can change the Message object's sequence number. Currently this occurs
when the client calls expunge to remove deleted messages and renumber messages
remaining in the folder.

A client can reference a message stored within a Fol der either by its sequence
number, or by the corresponding Message object itself. Since a sequence number can
change within a session, it is preferable to use Message objects rather than sequence
numbers as cached references to messages. Clients extending JavaMail are expected to
provide light-weight Message objects that get filled ‘'on-demand’, so that calling the
get Messages method on a Fol der object is an inexpensive operation, both in terms
of CPU cycles and memory. For instance, an IMAP implementation could return
Message objects that contain only the corresponding IMAP UlDs.

The Fet chPr of i | e Method

The Message objects returned by a Fol der object are expected to be light-weight
objects. Invoking get xxx methods on a Message cause the corresponding data items
to be loaded into the object on demand. Certain St or € implementations support
batch fetching of data items for a range of Messages. Clients can use such
optimizations, for example, when filling the header-list window for a range of
messages. The Fet chPr of i | @ method allows a client to list the items it will fetch in
a batch for a certain message range.

The following code illustrates the use of Fet chPr of i | e when fetching Messages
from a Fol der. The client fills its header-list window with the Subj ect, Fr om and
X-mui | er headers for all messages in the folder.

Message[] nsgs = fol der. get Messages();

FetchProfile fp = new FetchProfile();

fp.add(FetchProfile.ltem ENVELOPE);

fp.add("X-mailer");

fol der.fetch(nmsgs, fp);

for (int i =0; i < folder.getMssageCount(); i++) {
di spl ay(msgs[i].getFrom());

JavaMail™ API Design Specification December 2005

36 Chapter 6: Message Storage And Retrieval
The Fol der Class

di spl ay(nmsgs[i].getSubject());
di spl ay(msgs[i].getHeader("X-mailer"));

Fol der Ewvents

Folders generate events to notify listeners of any change in either the folder or in its
Messages list. The client can register listeners to a closed Fol der, but generates a
notification event only after that folder is opened.

Fol der supports the following events:

ConnectionEvent This event is generated when a Fol der is opened or closed.

When a Fol der closes (either because the client has called cl ose or
from some external cause), all Messaging components belonging to
that Folder become invalid. Typically, clients will attempt to recover by
reopening that Fol der, and then fetching Message objects.

FolderEvent This event is generated when the client creates, deletes or renames this
folder. Note that the St or e object containing this folder can also
generate this event.

MessageCountEvent This event notifies listeners that the message count has changed. The
following actions can cause this change:

Addition of new Messages into the Folder, either by a
delivery agent or because of an append operation. The new
Message objects are included in the event.

Removal of existing messages from this Fol der. Removed
messages are referred to as expunged messages. The

i sExpunged method returns true for removed Messages
and the get MessageNunber method returns the original
sequence number assigned to that message. All other
Message methods throw a MessageRenovedExcepti on.
See “The Fol der Class” on page 34 for a discussion of
removing deleted messages in shared folders. The
expunged Message objects are included in the event. An
expunged message is invalid and should be pruned from
the client's view as early as possible. See “The Expunge
Process” on page 37 for details on the expunge method.

December 2005 JavaMail™ API Design Specification

Chapter 6: Message Storage And Retrieval
The Fol der Class

The Expunge Process

Deleting messages from a Fol der is a two-phase operation. Setting the DELETED flag
on messages marks them as deleted, but it does not remove them from the Folder. The
deleted messages are removed only when the client invokes the expunge method on
that Fol der pbject. The Fol der object then notifies listeners by firing an appropriate
MessageEvent . The MessageEvent object contains the expunged Message objects.
Note that the expunge method also returns the expunged Message objects. The

Fol der object also renumbers the messages falling after the expunged messages in
the message list. Thus, when the expunge method returns, the sequence number of
those Message objects will change. Note, however, that the expunged messages still
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber
others, it is important that the client synchronize itself with the expunged folder as
early as possible. The next sections describe a set of recommendations for clients
wanting to expunge a Fol der:

Expunge the folder; close it; and then reopen and refetch messages from that
Folder. This ensures that the client was notified of the updated folder state. In
fact, the client can just issue the ¢l 0Se method with the expunge parameter set
to true to force an expunge of the Folder during the close operation, thus even
avoiding the explicit call to expunge.

The previous solution might prove to be too simple or too drastic in some
circumstances. This paragraph describes the scenario of a more complex client
expunging a single access folder; for example, a folder that allows only one read-
write connection at a time. The recommended steps for such a client after it issues
the expunge command on the folder are:

Update its message count, either by decrementing it by the number of
expunged messages, or by invoking the get MessageCount method on the
Fol der.

If the client uses sequence numbers to reference messages, it must account for
the renumbering of Message objects subsequent to the expunged messages.
Thus if a folder has 5 messages as shown below, (sequence numbers are
within parenthesis), and if the client is notified that messages A and C are
removed, it should account for the renumbering of the remaining messages as
shown in the second figure.

JavaMail™ API Design Specification December 2005

38

Chapter 6: Message Storage And Retrieval
The Fol der Class

FIGURE 6-1
A D) B(2 c@® D (4) E(®)
B (1) D E®)

The client should prune expunged messages from its internal storage as early as
possible.

The expunge process becomes complex when dealing with a shared folder that
can be edited. Consider the case where two clients are operating on the same
folder. Each client possesses its own Folder object, but each Folder object actually
represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed
from the folder. The primary client can probably deal with this appropriately since it
initiated this process and is ready to handle the consequences. However, secondary
clients are not guaranteed to be in a state where they can handle an unexpected
Message removed event— especially if the client is heavily multithreaded or if it uses
sequence numbers.

To allow clients to handle such situations gracefully, the JavaMail API applies
following restrictions to Folder implementations:

A Fol der can remove and renumber its Messages only when it is explicitly
expunged using the expunge method. When the folder is implicitly expunged, it
marks any expunged messages as expunged, but it still maintains access to those
Message objects. This means that the following state is maintained when the
Folder is implicitly expunged:

get Messages returns expunged Message objects together with valid
message objects. However; an expunged message can throw the
MessageExpungedExcept i on if direct access is attempted.

The messages in the Fol der should not be renumbered.

The implicit expunge operation can not change the total Fol der message
count.

A Fol der can notify listeners of “implicit” expunges by generating appropriate
MessageEvent s. However, the removed field in the event must be set to f al se to
indicate that the message is still in the folder. When this Fol der is explicitly
expunged, then the Fol der must remove all expunged messages, renumber it's
internal Message cache, and generate MessageEvents for all the expunged messages,
with each removed flag set to t r ue.

December 2005 JavaMail™ API Design Specification

Chapter 6: Message Storage And Retrieval 39
The Search Process

The recommended set of actions for a client under the above situation is as follows:

Multithreaded clients that expect to handle shared folders are advised not to use
sequence numbers.

If a client receives a MessageEvent indicating message removal, it should check
the removed flag. If the flag is false, this indicates that another client has removed
the message from this folder. This client might want to issue an expunge request
on the folder object to synchronize it with the physical folder (but note the
caveats in the previous section about using a shared folder). Alternatively, this
client might want to close the Fol der object (without expunging) and reopen it
to synchronize with the physical folder (but note that all message objects would
need to be refreshed in this case). The client may also mark the expunged
messages in order to notify the end user.

If the removed flag was set to t r ue, the client should follow earlier
recommendations on dealing with explicit expunges.

The Search Process

Search criteria are expressed as a tree of search-terms, forming a parse tree for the
search expression. The Sear chTer mclass represents search terms. This is an abstract
class with a single method:

publ i c bool ean mat ch(Message nsg);

Subclasses implement specific matching algorithms by implementing the mat ch
method. Thus new search terms and algorithms can be easily introduced into the
search framework by writing the required code using the Java programming
language.

The search package provides a set of standard search terms that implement specific
match criteria on Message objects. For example, Subj ect Ter mpattern-matches the
given St ri ng with the subject header of the given message.

public final class SubjectTermextends StringTerm {
public SubjectTerm(String pattern);
publ i c bool ean mat ch(Message m;

JavaMail™ API Design Specification December 2005

40

Chapter 6: Message Storage And Retrieval
The Search Process

The search package also provides a set of standard logical operator terms that can be
used to compose complex search terms. These include AndTer m Or Ter mand
Not Ter m

final class AndTerm extends SearchTerm {
public AndTern(SearchTermtl, SearchTermt2);
public bool ean mat ch(Message nsg) {
/1 The AND operat or
for (int i=0; i < terns.length; i++)
if (!ternms[i].match(nsg))
return fal se;
return true;

The Fol der class supports searches on messages through these sear ch method
versions:

public Message[] search(SearchTermterm
public Message[] search(SearchTermterm Message[] nsgs)

These methods return the Message objects matching the specified search term. The
default implementation applies the search term on each Message object in the
specified range. Other implementations may optimize this; for example, the IMAP
Fol der implementation maps the search term into an IMAP SEARCH command that
the server executes.

December 2005 JavaMail™ API Design Specification

Chapter 7:

The JavaBeans Activation Framework

JavaMail relies heavily on the JavaBeans Activation Framework (JAF) to determine
the MIME data type, to determine the commands available on that data, and to
provide a software component corresponding to a particular behavior. The JAF
specification is part of the "Glasgow" JavaBeans specification. More details can be
obtained from htt p://j ava. sun. com beans/ gl asgow/ j af . ht m

This section explains how the JavaMail and JAF APIs work together to manage
message content. It describes how clients using JavaMail can access and operate on
the content of Messages and BodyPar t s. This discussion assumes you are familiar
with the JAF specification posted at htt p: //j ava. sun. com

Accessing the Content

For a client using JavaMail, arbitrary data is introduced to the system in the form of
mail messages. The j avax. mai | . Part interface allows the client to access the
content. Part consists of a set of attributes and a "content". The Par t interface is the
common base interface for Messages and BodyPar t s. A typical mail message has
one or more body parts, each of a particular MIME type.

Anything that deals with the content of a Part will use the Par t s Dat aHandl er.
The content is available through the Dat aHandl er s either as an | nput St r eamor as
an object in the Java programming language. The Par t also defines convenience
methods that call through to the Dat aHand! er. For example: the Par t . get Cont ent
method is the same as calling Par t . get Dat aHandl er () . get Cont ent () and the
Part . get | nput St r eammethod is the same as

Part . get Dat aHandl er (). get | nput Stream() .

The content returned (either via an | nput St r eamor an object in the Java
programmin language) depends on the MIME type. For example: a Part that contains
textual content returns the following:

= The Part. get Cont ent Type method returns t ext/ pl ai n

=« The Part. get | nput St r eammethod returns an | nput St r eamcontaining the
bytes of the text

= The Part. get Cont ent method returns a j ava. | ang. Stri ng object

JavaMail™ API Design Specification December 2005

42 Chapter 7: The JavaBeans Activation Framework
Accessing the Content

Content is returned either as an input stream, or as an object in the Java programming
language.

When an | nput St r eamis returned, any mail-specific encodings are decoded
before the stream is returned.

When an object in the Java programming language is returned using the

get Cont ent method, the type of the returned object depends upon the content
itself. In the JavaMail API, any Part with a main content type set to

“mul tipart/” (any kind of multipart) should return a

javax.mail. Ml tipart object from the get Cont ent method. A Part with a
content type of message/ rf c822 returns a j avax. mai | . Message object from
the get Cont ent method.

Example: Message Output

This example shows how you can traverse Par t s and display the data contained in a
message.

public void printParts(Part p) {

Ohj ect o = p.getContent();

if (o instanceof String) {
Systemout.printin("This is a String");
Systemout. println((String)o);

} else if (o instanceof Multipart) {
Systemout.printin("This is a Miltipart");
Mul tipart np = (Multipart)o;
int count = np.getCount();
for (int i =0; i < count; i++) {

printParts(np. get BodyPart (i));

} else if (o instanceof |nputStrean) {
Systemout.println("This is just an input streamn);
InputStreamis = (I nputStreamo;
int c;
while ((c = is.read()) !=-1)

Systemout.wite(c);

December 2005 JavaMail™ API Design Specification

Chapter 7: The JavaBeans Activation Framework 43
Operating on the Content

Operating on the Content

The Dat aHandl er allows clients to discover the operations available on the content
of a Message, and to instantiate the appropriate JavaBeans to perform those
operations. The most common operations on Message content are view, edit and print.

Example: Viewing a Message

Consider a Message “Viewer” Bean that presents a user interface that displays a mail
message. This example shows how a viewer bean can be used to display the content
of a message (that usually istext/plain, text/html, or nultipart/m xed).

Note — Perform error checking to ensure that a valid Component was created.

/'l message passed in as paraneter

voi d set Message(Message nsg) {
Dat aHandl er dh = nsg. get Dat aHandl er () ;
Conmandl nfo cinfo = dh. get Command("vi ew');
Conponent conmp = (Conponent) dh. get Bean(ci nfo);
t hi s. set Mai nVi ewer (conp) ;

}

Example: Showing Attachments

In this example, the user has selected an attachment and wishes to display it in a
separate dialog. The client locates the correct viewer object as follows.

/1l Retrieve the BodyPart fromthe current attachment
BodyPart bp = get Sel ect edAttachment ();

Dat aHandl er dh = bp. get Dat aHandl er () ;
Conmandl nf o cinfo = dh. get Command("vi ew');
Conponent conmp = (Conponent) dh. get Bean(ci nfo);

/1 Add viewer to dial og Panel
MDi al og nyDi al og = new MyDi al og();
nyDi al og. add(conp) ;

/1 display dialog on screen
nyDi al og. show() ;

See “Setting Message Content” on page 47 for examples that construct a message for a
send operation.

JavaMail™ API Design Specification December 2005

44 Chapter 7: The JavaBeans Activation Framework
Adding Support for Content Types

Adding Support for Content Types

Support for commands acting on message data is an implementation task left to the
client. JavaMail and JAF APIs intend for this support to be provided by a JAF-Aware
JavaBean. Almost all data will require edit and view support.

Currently, the JavaMail API does not provide viewer JavaBeans. The JAF does provide
two very simple JAF-aware viewer beans: A Text Viewer and Image Viewer. These
beans handle data where content-type has been set to t ext/ pl ai n or i mage/ gi f.

Developers writing a JavaMail client need to write additional viewers that support
some of the basic content types-- specifically message/ rfc822, mul ti part/ m xed,
and t ext/ pl ai n. These are the usual content-types encountered when displaying a
Message, and they provide the look and feel of the application.

Content developers providing additional data types should refer to the JAF
specification, that discusses how to create Dat aCont ent Handl er s and Beans that
operate on those contents.

December 2005 JavaMail™ API Design Specification

Chapter 8:

Message Composition

This section describes the process used to instantiate a message object, add content to
that message, and send it to its intended list of recipients.

The JavaMail API allows a client program to create a message of arbitrary complexity.
Messages are instantiated from the Message subclass. The client program can
manipulate any message as if it had been retrieved from a St or e.

Building a Message Object

To create a message, a client program instantiates a Message object, sets appropriate
attributes, and then inserts the content.

» The attributes specify the message address and other values necessary to send,
route, receive, decode and store the message. Attributes also specify the message
structure and data content type.

= Message content is carried in a Dat aHandl er object, that carries either data or a
Mul ti part object. A Dat aHandl er carries the content body and provides
methods the client uses to handle the content. A Mul ti part object is a container
that contains one or more Bodypart objects, each of which can in turn contain
Dat aHandl er objects.

Message Creation

j avax. mai | . Message is an abstract class that implements the Part interface.
Therefore, to create a message object, select a message subclass that implements the
appropriate message type.

For example, to create a Mime message, a JavaMail client instantiates an empty
javax.mail.internet. M meMessage object passing the current Sessi on object
to it:

Message nsg = new M neMessage(session);

JavaMail™ API Design Specification December 2005

46

Chapter 8: Message Composition
Setting Message Attributes

Setting Message Attributes

The Message class provides a set of methods that specify standard attributes
common to all messages. The M neMessage class provides additional methods that
set MIME-specific attributes. The client program can also set non-standard attributes
(custom headers) as name-value pairs.

The methods for setting standard attributes are listed below:

public class Message {
public void setFron Address addr);
public void setFron(); Il retrieves fromsystem
public void setRecipi ents(Reci pi ent Type type, Address[] addrs);
public void setRepl yTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);

The Part interface specifies the following method, that sets custom headers:

public void setHeader(String nane, String val ue)

The set Reci pi ent s method takes a Reci pi ent Type as its first parameter, which
specifies which recipient field to use. Currently, Message. Reci pi ent Type. TO,
Message. Reci pi ent Type. CC, and Message. Reci pi ent Type. BCC are defined.
Additional Reci pi ent Types may be defined as necessary.

The Message class provides two versions of the of the set Fr ommethod:

set From(Addr ess addr) specifies the sender explicitly from an Addr ess
object parameter.

set From() retrieves the sender’s username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it
instantiates Addr ess objects to be used as To and Fr omaddresses. Then, it calls set
methods, which equate those addresses to appropriate message attributes:

t oAddrs[] = new Internet Address[1];
t oAddrs[0] = new I nternet Address("| uke@ ebel | i on. gov");
Address fromAddr =

new | nt er net Addr ess(" han. sol o@nuggl er. cont') ;

nsg. set Fron(fromAddr) ;

nsg. set Reci pi ent s(Message. Reci pi ent Type. TO, toAddrs);
neg. set Subj ect (" Takeof f time.");

neg. set Sent Dat e(new Date());

December 2005 JavaMail™ API Design Specification

Chapter 8: Message Composition 47
Setting Message Content

Setting Message Content

The Message object carries content data within a Dat aHandl| er object. To add
content to a Message, a client creates content, instantiates a Dat aHand| er object,
places content into that Dat aHandl er object, and places that object into a Message
object that has had its attributes defined.

The JavaMail API provides two techniques that set message content. The first
technique uses the set Dat aHand| er method. The second technique uses the
set Cont ent method.

Typically, clients add content to a Dat aHandl er object by calling

set Dat aHandl| er (Dat aHandl er) on a Message object. The Dat aHandl er is an
object that encapsulates data. The data is passed to the Dat aHandl er 's constructor as
either a Dat aSour ce (a stream connected to the data) or as an object in the Java
programming language. The | nput St r eamobject creates the Dat aSour ce. See “The
JavaBeans Activation Framework” on page 41 for additional information.

public class DataHandl er {
Dat aHandl er (Dat aSour ce dat aSource);
Dat aHandl er (Qoj ect data, String nminmeType);

}

The code sample below shows how to place text content into an InternetMessage.
First, create the text as a string object. Then, pass the string into a Dat aHandl er
object, together with its MIME type. Finally, add the Dat aHandl er object to the
message object:

/'l create brief nessage text
String content = "Leave at 300.";

/1 instantiate the DataHandl er object
Dat aHandl er data = new Dat aHandl er (content, "text/plain");

/1l Use setDataHandler() to insert data into the
/1 new Message obj ect

nsg. set Dat aHandl er (dat a) ;

Alternately, set Cont ent implements a simpler technique that takes the data object
and its MIME type. set Cont ent creates the Dat aHand| er object automatically:

/1 create the nessage text
String content = "Leave at 300.";

/1 call setContent to pass content and content type
/1 together into the nessage object

nsg. set Content (content, "text/plain");

JavaMail™ API Design Specification December 2005

48

Chapter 8: Message Composition
Building a MIME Multipart Message

When the client calls Tr ansport. send() to send this message, the recipient will
receive the message below, using either technique:

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From han. sol o@nuggl er. com

Subj ect: Takeoff tine

To: | uke@ ebel lion. gov

Leave at 300.

Building a MIME Multipart Message

Follow these steps to create a MIME Multipart Message:
1. Instantiate a new M meMul ti part object, or a subclass.

2. Create M meBodyPar t s for the specific message parts. Use the set Cont ent
method or the set Dat aHandl er method to create the content for each
Bodypart, as described in the previous section.

Note — The default subtype for a M meMul ti part object is mixed. It can be set to other
subtypes as required. M meMul ti part subclasses might already have their subtype
set appropriately.

December 2005 JavaMail™ API Design Specification

Chapter 8: Message Composition
Building a MIME Multipart Message

3. Insert the Mul ti part object into the Message object by calling
set Cont ent (Mul ti part) within a newly-constructed Message object.

The example below creates a Mul ti part object and then adds two message parts
to it. The first message part is a text string, “Spaceport Map,” and the second
contains a document of type “application/postscript.” Finally, this multipart
object is added to a M meMessage object of the type described above.

/1 Instantiate a Miultipart object
MmeMul tipart np = new M neMil tipart();

/1 create the first bodypart object
M meBodyPart bl = new M neBodyPart ();

/'l create textual content

/1 and add it to the bodypart object

bl. set Cont ent (" Spaceport Map", "text/plain");
nmp. addBodyPart (bl);

/1 Miltipart nmessages usually have nore than
/1 one body part. Create a second body part
/1 object, add newtext to it, and place it

/1 into the nultipart nessage as well. This

/1 second object holds postscript data.

M nmeBodyPart b2 = new M meBodyPart(); b2.setContent(nap,"application/
postscript");
np. addBodyPart (b2);

/1l Create a new nessage object as described above,
/1 and set its attributes. Add the nultipart

/1 object to this nessage and call saveChanges()
/1l to wite other message headers automatically.

Message nsg = new M neMessage(session);

/1 Set nessage attrubutes as in a singlepart
/1 nmessage.

nsg. set Cont ent () ; /1 add Ml tipart
nsg. saveChanges(); /'l save changes

After all message parts are created and inserted, call the saveChanges method to
ensure that the client writes appropriate message headers. This is identical to the
process followed with a single part message. Note that the JavaMail API calls the
saveChanges method implicitly during the send process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.

JavaMail™ API Design Specification December 2005

49

December 2005 JavaMail™ API Design Specification

Chapter 9:

Transport Protocols and Mechanisms

The Tr ansport abstract class defines the message submission and transport protocol.
Subclasses of the Tr ansport class implement SMTP and other transport protocols.

Obtaining the Transport Object

The Transport object is seldom explicitly created. The get Tr ansport method
obtains a Tr ansport object from the Sessi on factory. The JavaMail API provides
three versions of the get Tr ansport method:

public class Session {
public Transport getTransport (Address address);
public Transport getTransport(String protocol);
public Transport getTransport();

= get Transport (Address address) returns the implementation of the
transport class based on the address type. A user-extensible map defines which
transport type to use for a particular address. For example, if the address is an
I nt er net Addr ess, and | nt er net Addr ess is mapped to a protocol that
supports SMTP then SMIPTr ansport can be returned.

= The client can also call get Transport (“sntp”) to request SMTP, or another
transport implementation protocol.

= get Transport () returns the transport specified in the
mai | . transport. protocol property.

See “The Mail Session” on page 25 for details.

Transport Methods

The Transport class provides the connect and prot ocol Connect methods,
which operate similarly to those on the St or e class. See “The Store Class” on page 33
for details.

A Transport object generates a Connect i onEvent to notify its listeners of a
successful or a failed connection. A Tr ansport object can throw an | OExcept i on if
the connection fails.

JavaMail™ API Design Specification December 2005

52

Chapter 9: Transport Protocols and Mechanisms
Transport Events

Transport implementations should ensure that the message specified is of a known
type. If the type is known, then the Tr ansport object sends the message to its
specified destinations. If the type is not known, then the Tr ansport object can
attempt to reformat the Message object into a suitable version using gatewaying
techniques, or it can throw a Messagi ngExcept i on, indicating failure. For example,
the SMTP transport implementation recognizes M neMessages. It invokes the

wri t eTo method on a M meMessage object to generate a RFC822 format byte stream
that is sent to the SMTP host.

The message is sent using the Tr anspor t. send static method or the sendMessage
instance method. The Tr ansport . send method is a convenience method that
instantiates the transports necessary to send the message, depending on the
recipients’ addresses, and then passes the message to each transport's sendMessage
method. Alternatively, the client can get the transport that implements a particular
protocol itself and send the message using the sendMessage method. This adds the
benefit of being able to register as event listeners on the individual transports.

Note that the Addr ess[] argument passed to the send and sendMessage methods
do not need to match the addresses provided in the message headers. Although these
arguments usually will match, the end-user determines where the messages are
actually sent. This is useful for implementing the Bcc: header, and other similar
functions.

Transport Events

Clients can register as listeners for events generated by transport implementations.
(Note that the abstract Tr ansport class doesn't fire any events, only particular
protocol implementations generate events). There are two events generated:
Connecti onEvent and Transport Event.

ConnectionEvent

If the transport connects successfully, it will fire the Connect i onEvent with the type
set to OPENED. If the connection times out or is closed, Connect i onEvent with type
CLOSED is generated.

December 2005 JavaMail™ API Design Specification

TransportEvent

Chapter 9: Transport Protocols and Mechanisms
Transport Events

The sendMessage method generates a Tr ansport Event to its listeners. That event
contains information about the method’s success or failure. There are three types of
TransportEvent: MESSAGE_DELI| VERED, MESSAGE_NOT_DEL| VERED,
MESSAGE_PARTI ALLY_DELI VERED. The event contains three arrays of addresses:
val idSent[],validUnsent[],andinvalid[] that list the valid and invalid
addresses for this message and protocol.

Transport Event

Description

53

MESSAGE_DEL| VERED

MESSAGE_NOT_DELI VERED

MESSAGE_PARTI ALLY_DELI VERED

When the message has been successfully sent to all
recipients by this transport. val i dSent [] contains all the
addresses. val i dUnsent[] and i nvalid[] are null.

When Val i dSent[] is null, the message was not
successfully sent to any recipients. val i dUnsent [] may
have addresses that are valid. i nval i dSent [] may
contain invalid addresses.

Message was successfully sent to some recipients but not
to all. Val i dSent [] holds addresses of recipients to
whom the message was sent. val i dUnsent [] holds valid
addresses but the message wasn't sent to them.

i nval i d[] holds invalid addresses.

JavaMail™ API Design Specification December 2005

54

Chapter 9: Transport Protocols and Mechanisms
Using The Transport Class

Using The Transport Class

The code segment below sends a M neMessage using a Tr ansport class
implementing the SMTP protocol. The client creates two | nt er net Addr ess objects
that specify the recipients and retrieves a Tr ansport object from the default

Sessi on that supports sending messages to Internet addresses. Then the Sessi on
object uses a Tr ansport object to send the message.

I/l CGet a session
Sessi on session = Session.getlnstance(props, null);

/1l Create an enpty M neMessage and its part
Message nmsg = new M neMessage(session);
add headers and nessage parts as before

/1 create two destination addresses
Address[] addrs = {new | nternet Address("m ckey@li sney. cont'),
new | nt er net Addr ess(" goof y@li sney. coni') };

/1l get a transport that can handl e sendi ng nessage to

/1 Internet Addresses. This will probably map to a transport
/1 that supports SMIP.

Transport trans = session. getTransport (addrs[0]);

/1 add oursel ves as Connecti onEvent and TransportEvent |isteners
trans. addConnecti onLi st ener (this);
trans. addTransportLi stener(this);

/1 connect method determ nes what host to use fromthe
/1 session properties
trans. connect ();

/1 send the message to the addresses we specified above
trans. sendMessage(nsg, addrs);

December 2005 JavaMail™ API Design Specification

Chapter 10:

Internet Mail

The JavaMail specification does not define any implementation. However, the API
does include a set of classes that implement Internet Mail standards. Although not
part of the specification, these classes can be considered part of the JavaMail package.
They show how to adapt an existing messaging architecture to the JavaMail
framework.

These classes implement the Internet Mail Standards defined by the RFCs listed
below:

= RFC822 (Standard for the Format of Internet Text Messages)
= RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages
are viewed as having a header and contents. The header is composed of a set of
standard and optional header fields. The header is separated from the content by a
blank line. The RFC specifies the syntax for all header fields and the semantics of the
standard header fields. It does not however, impose any structure on the message
contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining
structured body parts, a typing mechanism for identifying different media types, and
a set of encoding schemes to encode data into mail-safe characters.

The Internet Mail package allows clients to create, use and send messages conforming
to the standards listed above. It gives service providers a set of base classes and
utilities they can use to implement Stores and Transports that use the Internet mail
protocols. See “MimeMessage Object Hierarchy” on page 89 for a Mime class and
interface hierarchy diagram.

The JavaMail MimePart interface models an entity as defined in RFC2045, Section 2.4.
MimePart extends the JavaMail Part interface to add MIME-specific methods and
semantics. The MimeMessage and MimeBodyPart classes implement the MimePart
interface. The following figure shows the class hierarchy of these classes.

JavaMail™ API Design Specification December 2005

56 Chapter 10: Internet Mail
The M neMessage Class

FIGURE 10-1

Message / MimePart

/

MimeMessage

Legend

—>
—>

Extends
Implements

BodyPart / MimePart

v

MimeBodyPart

The M meMessage Class

The M meMessage class extends Message and implements M nePar t . This class
implements an email message that conforms to the RFC822 and MIME standards.

The M meMessage class provides a default constructor that creates an empty

M neMessage object. The client can fill in the message later by invoking the par se
method on an RFC822 input stream. Note that the par se method is protected, so that
only this class and its subclasses can use this method. Service providers implementing
‘light-weight’” Message objects that are filled in on demand can generate the
appropriate byte stream and invoke the par se method when a component is
requested from a message. Service providers that can provide a separate byte stream

for the message body (distinct from the message header) can override the

get Cont ent St r eammethod.

The client can also use the default constructor to create new M meMessage objects for
sending. The client sets appropriate attributes and headers, inserts content into the
message object, and finally calls the send method for that M neMessage object.

December 2005

JavaMail™ API Design Specification

Chapter 10: Internet Mail
The M meBodyPart Class

This code sample creates a new M neMessage object for sending. See “Message
Composition” on page 45 and “Transport Protocols and Mechanisms” on page 51 for
details.

M meMessage m = new M neMessage(sessi on);

/1 Set FROM

m set From(new | nt er net Addr ess("j mk@un. COM")) ;
/1 Set TO

I nternet Address a[] = new I nternet Address[1];

a[0] = new I nternet Address("javamai |l @un. COM') ;
m set Reci pi ent s(Message. Reci pi ent Type. TO, a);
/1 Set content

m set Content (data, "text/plain");

/1 Send nessage

Transport.send(m;

The M meMessage class also provides a constructor that uses an input stream to
instantiate itself. The constructor internally invokes the par se method to fill in the
message. The | nput St r eamobject is left positioned at the end of the message body.

I nput Streamin = getMail Source(); // a streamof nmil nessages
M meMessage m = nul | ;
for (; ;) {
try {
m = new M neMessage(session,in);
} catch (Messagi ngException ex) {
/1 reached end of nessage stream
br eak;

}

M neMessage implements the wr i t eTo method by writing an RFC822-formatted
byte stream of its headers and body. This is accomplished in two steps: First, the
M nmeMessage object writes out its headers; then it delegates the rest to the

Dat aHandl er object representing the content.

The M nmeBodyPart Class

The M meBodyPart class extends BodyPart and implements the M mePar t
interface. This class represents a Part inside a Mul ti part. M meBodyPar t
implements a Body Part as defined by RFC2045, Section 2.5.

The get BodyPart (i nt index) returns the M meBodyPart object at the given
index. M meMul ti part also allows the client to fetch M meBodyPar t objects based
on their Content-IDs.

The addBodyPar t method adds a new M neBodyPart object toa M meMul ti part
as a step towards constructing a new multipart M mneMessage.

JavaMail™ API Design Specification December 2005

58

Chapter 10: Internet Mail
The M meMul ti part Class

The M meMul ti part Class

The M meMul ti part class extends Mul ti part and models a MIME multipart
content within a message or a body part.

A M meMul tipart is obtained from a M nmePart containing a Cont ent Type
attribute set to nul ti part, by invoking that part's get Cont ent method.

The client creates a new M meMul ti part object by invoking its default constructor.
To create a new multipart M mneMessage, create a M meMul ti part object (or its
subclass); use set methods to fill in the appropriate M meBodyPar t s; and finally, use
set Content (Mul ti part) to insert it into the M neMessage.

M nmeMul ti part also provides a constructor that takes an input stream positioned at
the beginning of a MIME multipart stream. This class parses the input stream and
creates the child body parts.

The get SubType method returns the multipart message MIME subtype. The subtype
defines the relationship among the individual body parts of a multipart message.
More semantically complex multipart subtypes are implemented as subclasses of

M meMul ti part, providing additional methods that expose specific functionality.

Note that a multipart content object is treated like any other content. When parsing a
MIME Multipart stream, the JavaMail implementation uses the JAF framework to
locate a suitable DataContentHandler for the specific subtype and uses that handler to
create the appropriate Mul ti part instance. Similarly, when generating the output
stream for a Mul ti part object, the appropriate Dat aCont ent Handl er is used to
generate the stream.

The M meUtility Class

M nmeUtility is a utility class that provides MIME-related functions. All methods in
this class are static methods. These methods currently perform the functions listed
below:

December 2005 JavaMail™ API Design Specification

Chapter 10: Internet Mail 59
TheM meUti | ity Class

Content Encoding and Decoding

Data sent over RFC 821/822-based mail systems are restricted to 7-bit US-ASCII bytes.
Therefore, any non-US-ASCII content needs to be encoded into the 7-bit US-ASCII
(mail-safe) format. MIME (RFC 2045) specifies the “base64” and “quoted-printable”
encoding schemes to perform this encoding. The following methods support content
encoding:

The get Encodi ng method takes a Dat aSour ce object and returns the Content-
Transfer-Encoding that should be applied to the data in that Dat aSour ce object
to make it mail-safe.

The encode method wraps an encoder around the given output stream based on
the specified Content-Transfer-Encoding. The decode method decodes the given
input stream, based on the specified Content-Transfer-Encoding.

Header Encoding and Decoding

RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME
(RFC 2047) specifies a mechanism to encode non 7bit US-ASCII characters so that they
are suitable for inclusion in message headers. This section describes the methods that
enable this functionality.

The header-related methods (getHeader, setHeader) in Part and Message operate on
Strings. String objects contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking the
set Header () methods must ensure that the header values are appropriately
encoded if they contain non US-ASCII characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is
required because Unicode is not yet a widely used charset. Therefore, a client
must convert the Unicode characters into a charset that is more palatable to the
recipient.

2. Apply a suitable encoding format that ensures that the bytes obtained in the
previous step are mail-safe.

The encodeText method combines the two steps listed above to create an encoded
header. Note that as RFC 2047 specifies, only “unstructured” headers and user-
defined extension headers can be encoded. It is prudent coding practice to run such
header values through the encoder to be safe. Also note that the encodeText method
encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header
values obtained from a MimeMessage or MimeBodyPart using the get Header set of
methods, since those headers might be encoded as per RFC 2047. The decodeText
method takes a header value, applies RFC 2047 decoding standards, and returns the

JavaMail™ API Design Specification December 2005

60 Chapter 10: Internet Mail
The Cont ent Type Class

decoded value as a Unicode String. Note that this method should be invoked only on
“unstructured” or user-defined headers. Also note that decodeText attempts
decoding only if the header value was encoded in RFC 2047 style. It is advised that
you always run header values through the decoder to be safe.

The Cont ent Type Class

The Cont ent Type class is a utility class that parses and generates MIME content-
type headers.

To parse a MIME content-Type value, create a Cont ent Type object and invoke the
t oSt ri ng method.

The Cont ent Type class also provides methods that match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME
parameter.

String type = part. get Content Type();
Cont ent Type cType = new Cont ent Type(type);

if (cType. match("application/x-foobar"))
i String color = cType. getParaneter("color");

This code sample uses this class to construct a MIME Content-Type value:

Cont ent Type cType = new Content Type();
cType. setPri maryType("application");
cType. set SubType(" x-foobar");

cType. set Paraneter("color", "red");

String content Type = cType.toString();

December 2005 JavaMail™ API Design Specification

Appendix A:

Environment Properties

This section lists some of the environment properties that are used by the JavaMail
APIs. The JavaMail javadocs contain additional information on properties supported

by JavaMail.

Note that Applets can not determine some defaults listed in this Appendix. When
writing an applet, you must specify the properties you require.

Property

Description

Default Value

mail.store.protocol

mail.transport.protocol

mail.host

mail.user

Specifies the default Message Access
Protocol. The Sessi on. get St ore()
method returns a St or e object that
implements this protocol. The client can
override this property and explicitly
specify the protocol with the

Sessi on. get Store(String

prot ocol) method.

Specifies the default Transport Protocol.
The Sessi on. get Transport () method
returns a Tr ansport object that
implements this protocol. The client can
override this property and explicitly
specify the protocol by using

Sessi on. get Transport (String

prot ocol) method.

Specifies the default Mail server. The

St or e and Tr ansport object’s connect
methods use this property, if the protocol-
specific host property is absent, to locate
the target host.

Specifies the username to provide when
connecting to a Mail server. The St or e
and Tr ansport object’s connect
methods use this property, if the protocol-
specific username property is absent, to
obtain the username.

The first appropriate
protocol in the config
files

The first appropriate
protocol in the config
files

The local machine

user. nanme

JavaMail™ API Design Specification

December 2005

62 Appendix A: Environment Properties

Property

Description

Default Value

mail.protocol.host

mail.protocol.user

mail.from

mail.debug

Specifies the protocol-specific default Mail
server. This overrides the mai | . host

property.

Specifies the protocol-specific default
username for connecting to the Mail
server. This overrides the mai | . user

property.

Specifies the return address of the current
user. Used by the

I nt er net Addr ess. get Local Addr ess
method to specify the current user’s email
address.

Specifies the initial debug mode. Setting
this property to t r ue will turn on debug
mode, while setting it to f al se turns
debug mode off.

Note that the Sessi on. set Debug
method also controls the debug mode.

mai | . host

mai |l . user

user nane@ost

false

December 2005

JavaMail™ API Design Specification

Appendix B:

Examples Using the JavaMail API

Following are some example programs that illustrate the use of the JavaMail APIs.
These examples are also included in the JavaMail implementation.

Example: Showing a Message
import java.util.*;
import java.io.*;

i mport javax.
i mport javax.
i mport javax.
i mport javax.

/*

mail.*;
mai | . event. *;
mai | .internet.*;

activation.*;

* Denp app that exercises the Message interfaces.

Show i nformati on about and contents of nessages.

Shannon

ass msgshow {

ng
ng

pr ot ocol ;

host = null;
user = null;
password = null;
nbox = null;

url = null;

port = -1;

ean verbose = fal se;

bool ean debug = fal se;

bool ean showStructure = fal se;
bool ean showessage = fal se;
bool ean showAl ert = fal se;

bool ean saveAttachnments = fal se;
int attnum= 1;

static void main(String argv[]) {

*

*

* @ut hor John Mani

* @ut hor Bill

*/

public cl
static Stri
static Stri
static Stri
static Stri
static Stri
static Stri
static int
static bool
static
static
static
static
static
static
public

nt nmsgnum = -1,
nt optind;
I nput Stream nmsgStream = System i n;

JavaMail™ API Design Specification

December 2005

Appendix B: Examples Using the JavaMail API
Example: Showing a Message

for (optind = 0; optind < argv.length; optind++) {
if (argv[optind].equals("-T")) {
protocol = argv[++optind];

} else if (argv[optind].equals("-H")) {
host = argv[++optind];

} else if (argv[optind].equals("-U")) {
user = argv[++optind];

} else if (argv[optind].equals("-P")) {
password = argv[++opti nd];

} else if (argv[optind].equals("-v")) {
verbose = true;

} else if (argv[optind].equals("-D")) {
debug = true;

} else if (argv[optind].equals("-f")) {
mbox = argv[++optind];

} else if (argv[optind].equals("-L")) {
url = argv[++optind];

} else if (argv[optind].equals("-p")) {
port = Integer. parselnt(argv[++optind]);

} else if (argv[optind].equals("-s"))
showSt ructure = true;

} else if (argv[optind].equals("-S")) {
saveAttachnents = true;

} else if (argv[optind].equals("-n)) {
showMessage = true;

} else if (argv[optind].equals("-a")) {
showAl ert = true;

} else if (argv[optind].equals("--")) {

opti nd++;
br eak;
} else if (argv[optind].startsWth("-")) {
System out . println(
"Usage: msgshow [-L url] [-T protocol] [-H host] [-p port] [-U user]");
System out . printl n(
"\t[-P password] [-f mailbox] [nsgnum [-v] [-D] [-s] [-9] [-a]");
Systemout. println(

"or msgshow -m[-v] [-D] [-s] [-S] [-f nsg-file]");
Systemexit(1);
} else {
br eak;
}
}
try {
if (optind < argv.|ength)
msgnum = | nt eger. parsel nt (argv[optind]);

/1 Get a Properties object
Properties props = System get Properties();

/1l CGet a Session object
Sessi on session = Session. getlnstance(props, null);
sessi on. set Debug(debug) ;

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API 65
Example: Showing a Message

if (showvessage) ({
M meMessage nsg;
if (mbox !'= null)
nsg = new M neMessage(sessi on,
new Buf f er edl nput St r eam(new Fi | el nput St rean{ nmbox))) ;
el se
nsg = new M neMessage(sessi on, nsgStrean;
dunpPart (nsg) ;
System exit(0);
}

/1l Get a Store object
Store store = null;
if (url '=null) {
URLName urln = new URLName(url);
store = session.getStore(urln);
if (showAlert) {
store. addSt or eLi st ener (new St orelLi stener () {
public void notification(StoreEvent e) {

String s;
if (e.getMessageType() == StoreEvent. ALERT)
s = "ALERT: ";
el se
s = "NOTICE: ";
Systemout.println(s + e.getMessage());
}
1
}
store.connect ();
} else {
if (protocol != null)
store = session. getStore(protocol);
el se
store = session.getStore();
/1l Connect
if (host !'=null || user !'= null || password != null)
st ore. connect (host, port, user, password);
el se

store. connect ();

/1 Open the Fol der

Fol der fol der = store. getDefaul tFol der();

if (folder == null) {
Systemout.println("No default folder");
Systemexit(1);

}

if (mbox == null)

JavaMail™ API Design Specification December 2005

66

Appendix B: Examples Using the JavaMail API
Example: Showing a Message

mbox = "1 NBOX";

fol der = folder. getFol der (nbox);

if (folder == null) {
Systemout.println("Invalid fol der");
Systemexit(1);

}
/1l try to open read/wite and if that fails try read-only
try {

f ol der. open(Fol der. READ WRI TE) ;
} catch (Messagi ngException ex) {
f ol der. open(Fol der. READ_ONLY) ;

int total Messages = fol der. get MessageCount ();

if (total Messages == 0)
Systemout.println("Enpty folder");
fol der.cl ose(false);
store.cl ose();

Systemexit(1);

}

if (verbose) {
int newMessages = fol der. get NewiessageCount () ;

Systemout.println("Total nessages = " + total Messages);
Systemout. println("New nessages = " + newiessages);
Systemout.println("------------mmmmm i ");
}
if (nmsgnum == -1)
/1 Attributes & Flags for all messages ..
Message[] nsgs = fol der. get Messages();
/1 Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.ltem ENVELOPE);
fp.add(FetchProfile.ltem FLAGS);
fp.add("X-Miler");
fol der.fetch(nmsgs, fp);
for (int i =0; i < megs.length; i++) {
Systemout.println("------------cmmmon ");
Systemout. println("MESSACE #" + (i + 1) + ":");
dunpEnvel ope(nsgs[i]);
/1 dumpPart (msgs[il]);
}
} else {
Systemout.println("Getti ng nmessage nunber: " + nsgnum;

Message m = nul | ;

try {
m = fol der. get Message(nsgnunj ;
dunpPart(nj;

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Showing a Message

} catch (1 ndexCQut Of BoundsException iex) {
Systemout. println("Mssage nunmber out of range");
}

}

fol der.close(false);
store.close();
} catch (Exception ex) {
Systemout. println("Oops, got exception! " + ex.getMessage());
ex. print StackTrace();
Systemexit(1);
}
System exit(0);

public static void dumpPart(Part p) throws Exception {
if (p instanceof Message)
dunpEnvel ope((Message) p) ;

/** Dunmp input stream..

Input Streamis = p.getlnputStrean();
/1 If "is" is not already buffered, wap a Bufferedl nputStream
/1 around it.
if (!(is instanceof BufferedlnputStrean))
is = new Bufferedl nput Strean{is);
int c;
while ((c = is.read()) !=-1)
Systemout.wite(c);

**/

String ct = p.getContentType();
try {

pr (" CONTENT-TYPE: " + (new Content Type(ct)).toString());
} catch (ParseException pex) {

pr("BAD CONTENT-TYPE: " + ct);

String filenane = p.getFil eNanme();
if (filename !'= null)
pr("FILENAVE: " + filenane);

/*
* Using i sMneType to determ ne the content type avoids
* fetching the actual content data until we need it.
*/
if (p.isMnmeType("text/plain")) {

pr("This is plain text");

Pr ("= ")

if (!showStructure && !saveAttachnents)

Systemout.println((String)p.getContent());

} else if (p.isMmeType("multipart/*")) {

pr("This is a Miultipart");

JavaMail™ API Design Specification December 2005

68

Appendix B: Examples Using the JavaMail API
Example: Showing a Message

P ("= ")

Mul tipart np = (Miultipart)p.getContent();

| evel ++;

int count = np.getCount();

for (int i =0; i < count; i++)
dunpPart (np. get BodyPart (i));

| evel --;

} else if (p.isMnmeType("nessage/rfc822")) {

pr("This is a Nested Message");

P (" == ")
| evel ++;

dunpPart ((Part) p. getContent());

| evel --;

} else {

~

* X X X

*

*/

if

if (!'showStructure && !saveAttachnments) {

/*

* |f we actually want to see the data, and it's not a

* MM type we know, fetch it and check its Java type.

*/

ohject o = p.getContent();

if (o instanceof String) {
pr("This is a string");
R oF
Systemout.println((String)o);

} else if (o instanceof |nputStrean) {
pr("This is just an input streant);

P (- ")
Input Streamis = (InputStreamo;
int c;
while ((c = is.read()) != -1)
Systemout.wite(c);

} else {
pr("This is an unknown type");
P ("= ")
pr(o.toString());

} else {
/1 just a separator
Pr (M- - ")

If we're saving attachnents, wite out anything that
| ooks like an attachnent into an appropriately naned
file. Don't overwite existing files to prevent

m st akes.

(saveAttachments && level '= 0 && !'p.isM nmeType("nultipart/*")){

String disp = p.getDisposition();

/1 many nuailers don't include a Content-Disposition

if (disp == null || disp.equalslgnoreCase(Part.ATTACHVENT)) ({
if (filenanme == null)

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Showing a Message

filename = "Attachnment" + attnum++;
pr("Saving attachnent to file " + filenane);
try {

File f = new File(filenane);
if (f.exists())
/1 XXX - could try a series of names
t hrow new | CException("file exists");
((M neBodyPart)p).saveFile(f);
} catch (1 OException ex) {
pr("Failed to save attachment: " + ex);

}

public static void dunpEnvel ope(Message m throws Exception {
pr("This is the nessage envel ope");
P ("= -z ");
Address[] a;
/1l FROM
if ((a=mgetFrom()) !'= null) {
for (int j =0; j < a.length; j++)
pr("FROM " + a[j].toString());

/1l TO
if ((a = mgetRecipients(Message. Reci pientType. TO) != null) {
for (int j =0; j <a.length; j++) {
pr("TC " + a[j].toString());
Internet Address ia = (Internet Address)a[j];
if (ia.isGoup()) {
I nternet Address[] aa = ia.getGoup(false);
for (int k = 0; k < aa.length; k++)
pr(" GROUP. " + aa[k].toString());

}

/1 SUBJECT
pr("SUBJECT: " + m getSubject());

/| DATE
Date d = mgetSentDate();
pr("SendbDate: " +
(d!=null ? d.toString() : "UNKNOM'));

/'l FLAGS

Fl ags flags = mget Fl ags();

StringBuffer sb = new StringBuffer();

Fl ags. Flag[] sf = flags.getSystenfFlags(); // get the systemfl ags

bool ean first = true;

JavaMail™ API Design Specification December 2005

70

Appendix B: Examples Using the JavaMail API

Example: Showing a Message

for (int i =
String s
Fl ags. Fl
if (f ==
S =
else if
S =
else if
S =
else if
S =
else if
S =
else if
S =

el se
cont
if (firs
firs

el se
sbh. a
sb. appen

String[] uf
for (int i =
if (firs
firs

el se
sb. a
sb. appen

pr (" FLAGS:

/1 X-MAI LER
String[] hdr
if (hdrs I=
pr("X-Ma
el se
pr("X-Ma

0; i < sf.length;

ag f = sf[i];

i++) {

FI ags. Fl ag. ANSWERED)

"\\ Answer ed";

(f == Fl ags. Fl ag. DELETED)

"\\ Del et ed";

(f == Fl ags. Fl ag. DRAFT)

"\\Draft";

(f == Fl ags. Fl ag. FLAGGED)

"\\ Fl agged";

(f == Fl ags. Fl ag. RECENT)

"\\ Recent";

(f == Fl ags. Fl ag. SEEN)

"\\ Seen";

i nue;
t)

t = fal se;

ppend(* ');
d(s);

= fl ags. get User Fl ags() ;
0; i < uf.length;

t)

t = fal se;

ppend(’ ");
d(uf[i]);

s = mget Header (" X-Mail er");

nul 1)
iler:

/Il skipit

i++) {

" + sb.toString());

" + hdrs[0]);

iler NOT avail able");

static String indentStr ="
static int |evel

/**

* Print a, possibly indented,

*/

= 0;

string.

public static void pr(String s) {

if (showStru

System out. print (indentStr.substring(0,

Systemout. p

cture)

rintln(s);

December 2005

/1 get the user flag strings

| evel

*2));

JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Listing Folders

Example: Listing Folders

import java.util.Properties;
import javax.mail.*;

import comsun. mail.imp.*;

~
*

* X X X X X X

~

Deno app that exercises the Message interfaces.
Li st informati on about fol ders.

@ut hor John Mani
@ut hor Bill Shannon

public class folderlist {
static String protocol = null;

static String host = null;
static String user = null;
static String password = null;
static String url = null;

static String root = null;
static String pattern = "% ;
static bool ean recursive = fal se;
static bool ean verbose = fal se;
static bool ean debug = fal se;

public static void main(String argv[]) throws Exception {
int optind;
for (optind = 0; optind < argv.length; optind++) {
if (argv[optind].equals("-T")) {
protocol = argv[++optind];
} else if (argv[optind].equals("-H")) {
host = argv[++optind];
} else if (argv[optind].equals("-U")) {
user = argv[++optind];
} else if (argv[optind].equals("-P")) {
password = argv[++optind];
} else if (argv[optind].equals("-L")) {
url = argv[++optind];
} {
} {
} {
} {

else if (argv[optind].equals("-R"))
root = argv[++optind];

else if (argv[optind].equals("-r"))
recursive = true;

else if (argv[optind].equals("-v"))
verbose = true;

else if (argv[optind].equals("-D"))
debug = true;

JavaMail™ API Design Specification December 2005

71

Appendix B: Examples Using the JavaMail API
Example: Listing Folders

} else if (argv[optind].equals("--")) {
opti nd++;
br eak;
} else if (argv[optind].startsWth("-")) {
System out . println(
"Uisialg)e: folderlist [-T protocol] [-H host] [-U user] [-P password] [-L
url]");
Systemout. println(
"\t[-Rroot] [-r] [-v] [-D] [pattern]");
Systemexit(1);
} else {
br eak;
}

}
if (optind < argv.length)
pattern = argv[optind];

/1l Get a Properties object
Properties props = System getProperties();

/1l CGet a Session object
Sessi on session = Session. getlnstance(props, null);
sessi on. set Debug(debug) ;

/1l Get a Store object

Store store = null;

Fol der rf = null;

if (url '=null) {
URLNarme urln = new URLName(url);
store = session.getStore(urln);
store. connect ();

} else {
if (protocol != null)
store = session. get Store(protocol);
el se

store = session.getStore();

/| Connect
if (host !'=null || user !'=null || password != null)
store. connect (host, user, password);
el se
store.connect ();
}
/1 List namespace
if (root !'= null)
rf = store.getFol der(root);
el se

rf = store.get Defaul t Fol der();
dunpFol der (rf, false, "");

if ((rf.getType() & Folder.HOLDS FOLDERS) != 0) {
Folder[] f =rf.list(pattern);

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Listing Folders

for (int i =0; i <f.length; i++)
dunpFol der (f[i], recursive, " ");
}

store.close();

}

static void dunpFol der (Fol der fol der, boolean recurse, String tab)
throws Exception {

Systemout. println(tab + "Name: " + fol der. get Nane());
Systemout.printin(tab + "Full Narme: " + folder.getFull Name());
Systemout.println(tab + "URL: " + fol der.get URLNane());

if (verbose) {
if (!folder.isSubscribed())
Systemout.println(tab + "Not Subscribed");

if ((folder.getType() & Fol der. HOLDS MESSAGES) != 0) {
if (folder.hasNewivessages())
Systemout.println(tab + "Has New Messages");
Systemout.println(tab + "Total Messages: " +
f ol der. get MessageCount ());

Systemout.println(tab + "New Messages: "o+

f ol der. get NewMessageCount ()) ;
Systemout.println(tab + "Unread Messages: " +

f ol der. get Unr eadMessageCount ());

}
if ((fol der.getType() & Fol der.HOLDS FOLDERS) != 0)
Systemout.printin(tab + "I's Directory");

/*
* Denmonstrate use of | MAP folder attributes
* returned by the I MAP LI ST response.
*/
if (folder instanceof | MAPFol der) {
| MAPFol der f = (1 MAPFol der) f ol der;
String[] attrs = f.getAttributes();
if (attrs !'= null && attrs.length > 0) {
Systemout.printin(tab + "I MAP Attributes:");
for (int i =0; i < attrs.length; i++)
Systemout.printin(tab + " "+ attrs[i]);

}

Systemout. println();

if ((folder.getType() & Folder.HOLDS FOLDERS) != 0) {
if (recurse) {

Folder[] f = folder.list();
for (int i =0; i < f.length; i++)
dunpFol der (f[i], recurse, tab + " ")

}

JavaMail™ API Design Specification December 2005

74 Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

Example: Search a Folder for a Message

inmport java.util.*;

import java.io.*;

import javax.mail.*;

import javax.nmail.internet.*;
i mport javax.nmil.search.*;

i mport javax.activation.?*;

/*

* Search the given folder for messages matching the given
* criteria.

*

* @ut hor John Mani

*/

public class search {

stati
stati
stati
stati
stati
stati
stati

publ i

OO0O0O0O0O00O0

C

String protocol = "inmap";
String host = null;
String user = null;
String password = null;
String nmbox = "1 NBOX";
String url = null;

bool ean debug = fal se;

static void main(String argv[]) {

nt optind;

String subject = null;
String from= null;
bool ean or = fal se;
bool ean today = fal se;

for (optind = 0; optind < argv.length; optind++) {

if (argv[optind].equals("-T")) {
protocol = argv[++optind];

} else if (argv[optind].equals("-H")) {
host = argv[++optind];

} else if (argv[optind].equals("-U")) {
user = argv[++optind];

} else if (argv[optind].equals("-P")) {
password = argv[++opti nd];

} else if (argv[optind].equals("-or")) {
or = true;

} else if (argv[optind].equals("-D")) {

December 2005 JavaMail™ API Design Specification

try

Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

debug = true;

} else if (argv[optind].equals("-f")) {

mbox = argv[++optind];

} else if (argv[optind].equals("-L")) {

url = argv[++optind];

} else if (argv[optind].equals("-subject")) {

subj ect = argv[++optind];

} else if (argv[optind].equals("-from')) {

from = argv[++optind];

} else if (argv[optind].equals("-today")) {

today = true;

} else if (argv[optind].equals("--")) {
opti nd++;
br eak;

} else if (argv[foptind].startsWth("-")) {
System out . printl n(
"Usage: search [-D] [-L url] [-T protocol] [-H host]
"[-U user] [-P password] [-f mailbox] " +
"[-subject subject] [-fromfrom [-or] [-today]");
Systemexit(1);

} else {
br eak;

}

{

if ((subject == null) && (from== null) && !today) {
System out . println(
"Specify either -subject, -fromor -today");
Systemexit(1);
}

/1l Cet a Properties object
Properties props = System get Properties();

/1l CGet a Session object
Sessi on session = Session. getlnstance(props, null);
sessi on. set Debug(debug) ;

/1l Get a Store object

Store store = null;

if (url '=null) {
URLNane urln = new URLName(url);
store = session.getStore(urln);
store.connect ();

} else {
if (protocol != null)
store = session. get Store(protocol);
el se

store = session.getStore();

/! Connect

JavaMail™ API Design Specification December 2005

"+

75

76 Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

if (host !'=null || user !'=null || password != null)
st ore. connect (host, user, password);

el se
store. connect ();

/1 Open the Fol der

Fol der fol der = store.getDefaultFol der();

if (folder == null) {
Systemout.println("Cant find default namespace");
Systemexit(1);

}

fol der = fol der. get Fol der (nbox) ;

if (folder == null) {
Systemout.printlin("Invalid fol der");
Systemexit(1);

}

f ol der. open(Fol der. READ_ONLY) ;
SearchTermterm = nul | ;

if (subject !'= null)
term = new Subj ect Ter n(subj ect);

if (from!=null) {
FronStringTerm froniferm = new FronStringTern(from;
if (term!=null) {

if (or)
term= new O Ternm(term fronierm;
el se
term= new AndTerm(term fronfTerm;
}
el se

term= fromlerm

}
if (today) ({
Recei vedDat eTer m dat eTerm =
new Recei vedDat eTer m(Conpari sonTerm EQ new Date());
if (term!=null) {

if (or)
term= new O Ternm(term dateTerm;
el se
term= new AndTerm(term dateTerm;
}
el se

term = dateTerm

}

Message[] nsgs = fol der.search(term;
Systemout.println("FOUND " + nsgs.length + " MESSAGES'");
if (nmegs.length == 0) // no match

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

Systemexit(1);

/1 Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.ltem ENVELOPE);
fol der.fetch(nmsgs, fp);

for (int i =0; i < megs.length; i++) {
Systemout.println("------------cmmn ");
Systemout. println("MESSACE #" + (i + 1) + ":");
dunpPart (nsgs[i]);

}

fol der.close(false);
store.close();
} catch (Exception ex) ({
Systemout. println("Oops, got exception! " + ex.getMessage());
ex. printStackTrace();

}

Systemexit(1);
}

public static void dunpPart(Part p) throws Exception {
if (p instanceof Message) {
Message m = (Message) p;
Address[] a;

/1 FROM
if ((a=mgetFrom)) !'=null) {
for (int j =0; j < a.length; j++)
Systemout.printIn("FROM " + a[j].toString());
}
/1 TO
if ((a = mgetRecipients(Message. Reci pi ent Type. TO)) != null) {
for (int j =0; j < a.length; j++)
Systemout.printIn("TQ " + a[j].toString());
}
/1 SUBJECT

Systemout. println("SUBJECT: " + mgetSubject());

/| DATE
Date d = mgetSentDate();
Systemout. println("SendDate: " +
(d !'=null ? d.toLocaleString() : "UNKNOM'));

/'l FLAGS:

Fl ags flags = m get Fl ags();

StringBuffer sb = new StringBuffer();

Fl ags. Fl ag[] sf = flags.getSystenfFlags(); // get the sys flags

bool ean first = true;

JavaMail™ API Design Specification December 2005

78

Appendix B: Examples Using the JavaMail API
Example: Search a Folder for a Message

for (int i =0; i <sf.length; i++) {

String s;

Flags. Flag f = sf[i];

if (f == Fl ags. Fl ag. ANSWERED)
s = "\\ Answered";

else if (f == Flags. Fl ag. DELETED)
s = "\\Del eted";

else if (f == Fl ags. Fl ag. DRAFT)
s = "\\Draft";

else if (f == Flags. Fl ag. FLAGGED)
s = "\\Fl agged";

else if (f == Flags. Fl ag. RECENT)
s = "\\Recent";

else if (f == Flags. Fl ag. SEEN)
s = "\\Seen";

el se
conti nue; /Il skipit

if (first)
first = fal se;

el se
sb. append(' ');

sb. append(s);

}
String[] uf = flags.getUserFlags(); // get the user flag strs
for (int i =0; i <uf.length; i++) {
if (first)
first = fal se;
el se

sb. append(' ');
sb. append(uf[i]);
}
Systemout.printIn("FLAGS = " + sb.toString());

}
System out . println("CONTENT-TYPE: " + p.get Content Type());

/* Dunp input stream
InputStreamis = ((M neMessage) m) . get | nput St ream() ;
int c;
while ((c = is.read()) !'=-1)
Systemout.wite(c);
*/

Obj ect o = p.getContent();

if (o instanceof String) {
Systemout.printIn("This is a String");
Systemout.println((String)o);

} else if (o instanceof Multipart) {
Systemout.printin("This is a Miltipart");
Mil tipart mp = (Miltipart)o;
int count = np.getCount();
for (int i =0; i < count; i++)

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API
Example: Monitoring a Mailbox

dunpPart (np. get BodyPart (i));

} else if (o instanceof I|nputStrean) {
Systemout.printIn("This is just an input streant);
Input Streamis = (InputStreamo;
int c;
while ((c = is.read()) != -1)

Systemout.wite(c);

Example: Monitoring a Mailbox

import java.util.*;

import java.io.*;

import javax.mail.*;
import javax.nmail.event.*;
i mport javax.activation.*;

/* Monitors given nailbox for new mail */
public class nonitor {

public static void nain(String argv[]) {
if (argv.length I'=5) {
System out . println(
"Usage: monitor <host> <user> <password> <nbox> <freqg>");
Systemexit(1);
}

Systemout.println("\nTesting nonitor\n");

try {
Properties props = System get Properties();

/1l Get a Session object
Sessi on session = Session.getlnstance(props, null);
/'l session. set Debug(true);

/1l Get a Store object
Store store = session.getStore("imp");

/'l Connect
store.connect (argv[0], argv[1l], argv[2]);

/1 Open a Fol der

Fol der fol der = store.getFol der(argv[3]);

if (folder == null || !'folder.exists()) {
Systemout.printin("Invalid fol der");
Systemexit(1);

JavaMail™ API Design Specification December 2005

79

80 Appendix B: Examples Using the JavaMail API
Example: Sending a Message

f ol der. open(Fol der. READ _VWRI TE) ;

/1 Add nessageCount Listener to listen for new nessages
f ol der. addMessageCount Li st ener (new MessageCount Adapter () {
public void nmessagesAdded(MessageCount Event ev) {
Message[] nsgs = ev.get Messages();
Systemout.printin("Got " + nsgs.length +
" new nessages");

/1 Just dunp out the new nessages
for (int i =0; i < msgs.length; i++) {
try {
Dat aHandl er dh
InputStreamis
int c;
while ((c = is.read()) !'=-1)
Systemout.wite(c);
} catch (1 OException ioex) ({
i oex. printStackTrace();
} catch (Messagi ngException mex) {
mex. print StackTrace();

nsgs[i]. get Dat aHandl er () ;
dh. get I nput Stream() ;

}
}
1)
/1 Check mail once in "freq" M LLIseconds
int freq = Integer.parselnt(argv[4]);
for (5 1)

Thread. sl eep(freq); // sleep for freq nmilliseconds

/! This is to force the | MAP server to send us
/1 EXISTS notifications.
f ol der. get MessageCount () ;

}

} catch (Exception ex) ({
ex. printStackTrace();
}

Example: Sending a Message

import java.util.*;
import java.io.*;
import javax.mail.*;

December 2005 JavaMail™ API Design Specification

Appendix B: Examples Using the JavaMail API 81
Example: Sending a Message

import javax.nmail.internet.*;
i mport javax.activation.*;

/**

* megnul ti sendsanpl e creates a sinple nultipart/ mxed nessage and sends

* jt. Both body parts are text/plain.

* <p>

* usage: <code>java nsgnultisendsanple <i>to fromsntp true|fal se</i></
code>

* where <i>to</i> and <i>fronk/i> are the destination and

* origin email addresses, respectively, and <i>sntp</i>

* |is the hostnane of the machine that has smtp server

* running. The last paraneter either turns on or turns off

* debuggi ng during sending.

*

* @ut hor Max Spi vak

*/

public class nsgnultisendsanple {
static String nmsgTextl = "This is a nessage body.\nHere's line two.";
static String nsgText2 = "This is the text in the nessage attachnent.";

public static void nmain(String[] args) {
if (args.length !=4) {
System out . printl n(
"usage: java nsgnultisend <to> <fronk <snmtp> true|false");
return;
}

String to = args[0];

String from= args[1];

String host = args[2];

bool ean debug = Bool ean. val ueX (args[3]) . bool eanVal ue();

/| create sonme properties and get the default Session
Properties props = new Properties();
props. put("mail.sntp.host", host);

Sessi on session = Session.getlnstance(props, null);
sessi on. set Debug(debug) ;

try {
/1 create a nmessage

M meMessage nsg = new M neMessage(session);

nsg. set Fron(new | nt ernet Address(from);

I nternet Address[] address = {new | nternet Address(to)};
nmsg. set Reci pi ent s(Message. Reci pi ent Type. TO, address);
nsg. set Subj ect ("JavaMai | APIs Multipart Test");

nsg. set Sent Dat e(new Date());

/'l create and fill the first nmessage part

M meBodyPart nmbpl = new M nmeBodyPart ();
nmbpl. set Text (nsgText 1);

JavaMail™ API Design Specification December 2005

Appendix B: Examples Using the JavaMail API
Example: Sending a Message

/1 create and fill the second nmessage part

M meBodyPart nbp2 = new M neBodyPart ();

/1 Use setText(text, charset), to showit off !
mbp2. set Text (nsgText2, "us-ascii");

/] create the Multipart and its parts to it
Mul tipart np = new M neMil tipart();

np. addBodyPar t (nbpl);

np. addBodyPar t (mbp2) ;

/1 add the Miultipart to the nessage
nsg. set Cont ent (np) ;

/1 send the nessage
Transport.send(nsg);
} catch (Messagi ngException mex) {
nex. print StackTrace();
Exception ex = null;
if ((ex = mex.getNextException()) != null) {
ex. printStackTrace();
}

December 2005 JavaMail™ API Design Specification

Appendix C:

Message Security

QOverview

This is not a full specification of how Message Security will be integrated into the
JavaMail system. This is a description of implementation strategy. The purpose of this
section is to declare that it is possible to integrate message security, not to define how
it will be integrated. The final design for Message Security will change based on
feedback and finalization of the S/MIME IETF specification.

This section discusses encrypting/decrypting messages, and signing/verifying
signatures. It will not discuss how Security Restrictions on untrusted or signed
applets will work, nor will it discuss a general authentication model for Stores (For
example; a GSS API in the Java platform.)

Displaying an Encrypted/Signed Message

Displaying an encrypted or signed message is the same as displaying any other
message. The client uses the Dat aHandl| er for that encrypted message together with
the "view" command. This returns a bean that displays the data. There will be both a
multipart/signed and multipart/encrypted viewer bean (can be the same bean). The
beans will need to be aware of the MultiPartSigned /MultiPartEncrypted classes.

MultiPartEncrypted/Signed Classes

The JavaMail API will probably add two new content classes: Mul t i Part Encrypt ed
and Mul ti Part Si gned. They subclass the Mul ti Part class and handle the MIME
types multipart/encrypted and multipart/signed. There are many possible
"protocols” that specify how a message has been encrypted and/or signed. The MPE/
MPS classes will find all the installed protocols. The Cont ent Type’s protocol
parameter determines which protocol class to use. There needs to be a standard
registration of protocol objects or a way to search for valid packages and instantiate a
particular class. The Mul ti Part classes will hand off the control information, other
parameters, and the data to be manipulated (either the signed or encrypted block)
through some defined Pr ot ocol interface.

JavaMail™ API Design Specification December 2005

84

Appendix C: Message Security
Overview

Reading the Contents

There will be times when an applet/application needs to retrieve the content of the
message without displaying it. The code sample below shows one possible technique
with a message containing encrypted content:

Message msg = // nessage gotten from sone fol der.
if (nmeg.isMnmeType("nultipart/encrypted')) {
Ohj ect o = neg. getContent ();
if (o instanceof MiltiPartEncrypted) {
Mul ti Part Encrypted npe = (MultiPartEncrypted) o;
npe. decrypt ();
/1 use the default keys/certs fromthe user.
/1 W shoul d al sobe able to determ ne
/1 whether or not to interact with the user

/1 should then be able to use the nmultipart nethods to
/1 get any contained bl ocks }

}
}
The get Cont ent method returns a Mul ti Par t Encr ypt ed object. There will be
methods on this class to decrypt the content. The decryption could either determine
which keys needed to be used, use the defaults (maybe the current user’s keys) or
explicitly pass which keys/certificates to use.

Verifying Signatures

Applications/applets will need to verify the validity of a signature. The code sample
below shows how this might be done:

Message nsg = // nessage gotten from sone fol der
if (nmsg.isMnmeType("nultipart/signed")) {
Ohj ect o = nmeg. get Content ();
if (o instanceof MiltiPartSigned) {
Mul ti Part Signed nps = (Miulti PartSi gned) o;
bool ean validsig = nps.verifySignature();

/1 could already get the other bl ocks
/1 even if it wasn't a valid signature

}
}

If the signature is invalid, the application can still access the data. There will be
methods in Mul ti Part Si gned that allow the setting of which keys or certificates to
use when verifying the signature.

December 2005 JavaMail™ API Design Specification

Appendix C: Message Security 85
Overview

Creating a Message

There are two methods for creating an Encrypted/Signed message. Users will
probably see an editor bean for the content types multipart/signed and multipart/
encrypted. These beans would handle the UI components to allow the user to select
how they want to encrypt/sign the message. The beans could be integrated into an
application’s Message Composition window.

Encrypted/Signed

The non-GUI method of creating the messages involves using the
MultiPartEncrypted/Signed classes. The classes can be created and used as the
content for a message. The following code shows how might work:

Mul ti Part Encrypted npe = new Miul ti Part Encrypted();

/1 Can setup paraneters for how you want to encrypt the

/1 message; otherwise, it will use the user's preferences.
/1 Set the content you wish to encrypt (to encrypt nultiple
/1 contents a nultipart/mxed bl ock shoul d be used)

String ourContent = "Please encrypt me!";

nmpe. set Cont ent (our Cont ent) ;

M meMessage m = new M nmeMessage(sessi on);
m set Cont ent (npe) ;

The message will be encrypted when the message is sent. There will be other methods
that allow the setting of which encryption scheme shall be used, and the keys
involved.

Creating a Multipart Signed message is very similar to creating a Multipart Encrypted
message, except that a Multipart Signed object is created instead.

JavaMail™ API Design Specification December 2005

December 2005 JavaMail™ API Design Specification

Appendix D:

Part and Multipart Class Diagram

This appendix illustrates relationships between Par t interfaces and Message classes.

FIGURE D-1
_ N T § Multipart ——
Part & I'u'lultlpalt getcontentType(getContentType(
Class Diagram Sﬁiﬂﬁﬂiiﬁﬁﬁégg) getBodyPart(int)
getDataHandler() getCount()
gg{?ﬁﬁfgﬁ%amo addBodyPart(BodyPan, int)
removeBodyPart(int)
setDataHandleriDataHandler)
setContent{Object, String) putByteStream(CutputStream)
setHeader(String, String)
Message ; BodyPart IE']
getFromf) ME? I part eontained
getRecipients) if by & Multipart
getsubject() getContentiD) Y
getsentDated) getContentMD3() Mimemultipart
getFlags() getEncodingl)
setSubType(strin
setFram{addrass) setContentMDE(Etring) updateHi%dEersOg)
setRecipients(Address]) . -
setSubject(String)
setsentData(Date) K Y
send()
\ " ‘ / Legend
Mimeldessage MimeBodyPart !
E— Extends
fimplernents abstract fimplements abstract
i Message class and if BodyPart classand | | ..
If tdimePart interface If Mime Part interface » Implements

JavaMail™ API Design Specification December 2005

December 2005 JavaMail™ API Design Specification

Appendix E:

MimeMessage Object Hierarchy

This appendix illustrates the object hierarchy.

FIGURE E-1
MimeMessage Object
NestedMultipart Message
Message
<address of message sender> .
getFrom() — 9 Legend:
getSubject() —p> <message subject> method(é method call and
object returned
getContentType()
l i "multipart/mixed"
getContent() “text/plain”
ngn
ﬂ BodyPart getContentType()
Multipart

getCount() /

getBodyPart(0)

BodyPart

<Image>

Multipart

getBodyPart(1) —2>

getBodyPart(2)

BodyPart

JavaMail™ API Design Specification December 2005

(String)getContent() —D <message text>

W"image/gif"
getContentType() DataHandler
ataHandle use the DataHandler
methods to access

the image

__ getDataHandler() —)>

— getContentType() —5> "Multipart/mixed"
\
(Multipart)getContent()

Multipart

repeat with Multipart
as before...

December 2005 JavaMail™ API Design Specification

Appendix F:

Features Added in JavaMail 1.1

This appendix summarizes the features added to JavaMail 1.1. For more information
about each item, refer to the appropriate Javadoc documentation.

The MessageCont ext Class and MessageAwar e Interface

In some cases it is desirable for the object representing the content of a BodyPar t
object to know something about the context in which it is operating. For example, the
content-object might need to know what other data is contained in the same

Mul ti part object, who sent the message containing the data, and so forth. This
allows for more interesting content types that know more about the message
containing them and the mail system in general.

Some uses of the mul ti part/rel at ed object might require these capabilities. For
instance, the handler for a t ext/ ht mM body part contained in a nul ti part/

r el at ed object might need to know about the containing object in order to find the
related image data needed to display the HTML document. (Note that JavaMail
provides no direct support for multipart/related messages.)

To deal with these issues, the MessageCont ext class and MessageAwar e interface
have been added in JavaMail 1.1.

The MessageCont ext class provides the basic information about the context in
which a content object is operating. Given a MessageCont ext obj ect, it is possible
to navigate through a message’s body structure. The MessageAwar e interface is an
optional interface, implemented by Dat aSour ces that have the capability of
providing a suitable MessageCont ext object. The M nmePar t Dat aSour ce
implements the MessageAwar e interface, making this capability available to all
MIME messages.

The get Messagel Dmethod

The get Messagel D method has been added to the M neMessage class. This method
returns the value of RFC822 Message-ID field.

JavaMail™ API Design Specification December 2005

92 Appendix F: Features Added in JavaMail 1.1
Additions to the | nt er net Addr ess Class

Additions to the | nt er net Addr ess Class

The encodedPer sonal protected field has been added to the
javax. mail .internet.|nternet Address class.

The t oStri ng(Address[], int) method has also been added to this class

Additions tothe M meUt i | i ty Class

Two static methods have been added to thej avax. mai |l .internet. M meUtility
class:

String m nmeCharset(String charset)
String getDefaul t JavaCharset ()

KTM

The mi meChar set method returns the MIME name of the given JD charset.

The get Def aul t JavaChar set method returns the default JDK charset for the
platform’s locale.

New Sear chTer ns

The current address related search terms: Addr essTer m Fr onifer mand

Reci pi ent Ter m are limited in that they operate on Addr ess objects, not St ri ngs.
These terms use the equal s methd to compare the addresses, which is not useful for
the common case of substring comparisons.

Hence three new Sear chTer ns have been introduced:

Addr essStri ngTerm
FronStringTerm
Reci pient StringTerm

These terms operate on Addr ess St ri ngs, rather than Addr ess objects.

These new terms correspond to the capabilities provided by the IMAP protocol. The
older terms were not supported by IMAP and thus resulted in client-side searches.

December 2005 JavaMail™ API Design Specification

Appendix F: Features Added in JavaMail 1.1
Additions to the Fol der Class

Additions to the Fol der Class

Two methods have been added to the j avax. mai | . Fol der class:

i nt getMde()
URLNane get URLNane()

The get Mode method returns the mode in which the Fol der object was opened.
The get URLName method returns the URLNane value of the folder.

New Ser vi ce Class

To emphasize the commonality in behavior between the St or e and Tr ansport
classes, and to simplify maintenance of these classes, a new superclass,

j avax. mai | . Servi ce, has been introduced for the St or e and Tr ansport classes.

JavaMail™ API Design Specification December 2005

93

December 2005 JavaMail™ API Design Specification

Appendix G:

Features Added in JavaMail 1.2

This appendix summarizes the features that were added in JavaMail 1.2. Refer to the
appropriate Javadoc documentation for additional information about each item,.

Additions to the M meMessage Class

The following have been added to the M meMessage class:

= To simplify the creation of M neMessage subclasses:

— The nodi fi ed field and the par se(| nput Stream i s) method that were
previously private are now protected.

— The creat el nt er net Header s(| nput Stream i s) method has also been
added to this class.

= When forwarding or saving a message retrieved from a Store, it is sometimes
desirable to be able to modify the message first. Since most Stores do not allow
their Message objects to be modified, the message must first be copied. To
simplify copying a M meMessage, we introduce a copy constructor,

M meMessage(M neMessage source), thatallows a new M neMessage to be
created and initialized with a copy of another M meMessage.

The following convenience methods were added to M neMessage.
— setReci pi ent s(Message. Reci pi ent Type type, String addresses)
— addReci pi ent s(Message. Reci pi ent Type type, String addresses)

Note that these methods take a St ri ng for setting/adding a recipient (instead of
j avax. mai | . Addr ess objects).

One of the most common errors encountered when constructing new messages is
forgetting to call the saveChanges() method before writing out the message or
calling the Tr ansport . sendMessage() method. To solve this problem, a saved
flag was added to M meMessage and the wri t eTo() method was changed
accordingly.

JavaMail™ API Design Specification December 2005

96 Appendix G: Features Added in JavaMail 1.2
Additions to theM meMul ti part Class

Additions to the M meMul ti part Class

To simplify the creation of M meMul ti part subclasses, the following have been
added to the M neMul ti part class:

The parse(Il nput Stream i s) method that was previously private is now
protected.

The cr eat el nt er net Header s(l nput Stream i s) and
createM neBodyPart (I nt er net Headers headers, byte[] content)
methods have been added to this class as protected methods.

The get Rawl nput St r eammethod

In some cases, it is desirable to get the data for a body part before JavaMail attempts
to decode it. This is particularly important if the Content-Transfer-Encoding header is
incorrect. (For example, some mail software is known to use "7-bit" instead of the
MIME-defined "7-bit".) Access to this data is currently provided through the protected
get Cont ent St r eammethod. Since simply making this method public has the
potential to cause a source incompatibility for any subclasses that declare this method
as protected, we instead add a new public method, get Rawl nput St r ean{(), that
calls this protected method to the M meMessage and M meBodyPar t classes.

Additions to the | nt er net Addr ess Class

The following were added to the | nt er net Addr ess class:

To simplify copying of | nt er net Addr ess objects, the | nt er net Addr ess class
now implements the Cl oneabl e interface and will provide a public cl one()
method.

Addr essStri ngTer m mat ch does not return the correct results in some
situations because it wants to do the match against the formatted address string
in Unicode, not the ASCII version that might include charset encoding
information. To do this, it attempts to format the address itself, but its logic does
not handle all the rules about formatting an address (such as, when to quote the
personal name) so it does this formatting differently than

I nt er net Addr ess. t oSt ri ng does. When the address contains only ASCII
characters, the formatting should be identical. This problem has been remedied
by adding a new method, t oUni codeStri ng(), to the I nt ernet Address
class, which returns a properly formatted address (RFC 822 syntax) of Unicode
characters.

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.2
The Mai | Dat eFor mat Class

The | nt er net Addr ess class now implements the Seri al i zabl e interface to
support saving j avax. nai | . sear ch terms (described in “Additions for
serializable j avax. mai | . sear ch terms”).

The Mai | Dat eFor mat Class

The Mai | Dat eFor mat class is now part of the j avax. mai | . i nt er net package. It
was previously contained in the com sun. mai | . uti| package. This is a utility class
used in formatting and parsing dates in MIME headers. The methods it provides are:

StringBuffer format(Date date,
StringBuf fer dateStrBuf,
Fi el dPosition fiel dPosition)

Date parse(String text, ParsePosition pos)

Additions to Excepti ons and Events

The following exceptions and events have been added in JavaMail 1.2:

Previously, if a client attempted to open a read-only folder in read-write mode, a
Messagi ngExcept i on was thrown. This exception type does not indicate that
the anomaly was caused by the lack of write-permissions. A new

ReadOnl yFol der Except i on was added to indicate that the problem was
caused by a read-only folder.

When authentication with a server fails, the server often supplies some
information in its protocol message that indicates the reason for the failure. To
allow a service provider to return this information to the user, we now allow the
Ser vi ce. prot ocol Connect () method to throw an

Aut hent i cati onFai | edExcepti on in this case. The exception may contain a
string message that includes the additional information from the server.

The Fol der Not FoundExcept i on constructors were not consistent with other
exceptions defined in the API. Two new constructors were added to eliminate
these inconsistencies:

— Fol der Not FoundExcepti on(Fol der fol der)
— Fol der Not FoundExcepti on(Fol der folder, String s)

If an error occurs when sending a message, the Tr anspor t Event class saved the
message that caused the error, but provided no get Message method for the
listener to retrieve the Message object. The get Message() method was added to
Transport Event class.

JavaMail™ API Design Specification December 2005

98 Appendix G: Features Added in JavaMail 1.2
Additions to the Sessi on Class

Additions to the Sessi on Class

Two static convenience methods were added to the Sessi on class for retrieving the
default Sessi on or a new Sessi on object, which do not require an Aut hent i cat or
parameter (assumed to be null):

Sessi on Session. get Def aul t |1 nstance(Properties props)

Sessi on Session. getlnstance(Properties props)

Additions to the M meUt i | i ty Class

The following were added to the M meUti | i ty class to provide additional support
for encoding;:

The UUEncode encoder requires the filename to be inserted into the encoded
stream. The public access point to the encoder is through the

MmeUtility. encode() method, which does not have any parameter that can
provide the filename. Hence the uuencoded stream always has "encode. buf " as
filename. A new method, that allows the setting of the filename has been added:

encode(Qut put Stream os, String encoding, String fil enane)

The get Encodi ng() method which was previously added to improve the
performance of JavaMail was changed from package private to public.

Additions for serializable] avax. mai | . sear ch terms

The j avax. nai | . sear ch package allows you to programmatically construct a
search term. As a convenience, these terms can now be saved in persistent storage and
restored in a later session. The simplest way to store these expressions is to use
serialization.

Many of the search terms reference other objects that must also be serializable. The
most problematic such objects are of the class Message. Reci pi ent Type. This class
uses the java "type-safe enum" idiom, which involves a number of static final
instances of the class. Applications are allowed to test for equivalence with these
"constants” by using the "=="equality operator. Thus, it’s critical that only a single
instance of each constant exist in the Java virtual machine. To ensure that this
constraint is met when deserializing an object of this class, we must take advantage of
the J2SE 1.2 r eadRepl ace() method. Since this method is not available on JDK 1.1,
objects of this class, and thus search terms that reference them, can not be correctly
deserialized on JDK 1.1. This is a limitation of this new capability.

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.2
Additions to the St or e Class

To provide this support, the following classes and all their subclasses now implement
the Seri al i zabl e interface:

javax. mail . search. SearchTerm
javax. mai | . Address

javax. mail . Fl ags

j avax. mai | . Message. Reci pi ent Type

In addition, to allow comparison between search terms, the equal s and hashCode
methods on Sear chTer m(and all subclasses) now implement "value" equivalence
rather than identity equivalence.

Additions to the St or e Class

The following methods have been added to j avax. mai | . Store to provide
namespace information:

Fol der[] get Personal Namespaces()

A personal namespace is a set of names that is considered within the personal
scope of the authenticated user. Typically, only the authenticated user has access
to mail folders in their personal namespace. If an INBOX exists for a user, it must
appear within the user’s personal namespace. In the typical case, there should be
only one personal namespace for each user in each Store.

Fol der[] get User Nanespaces(String user)

The namespaces returned represent the personal namespaces for the user. To
access mail folders in the other user’s namespace, the currently authenticated
user must be explicitly granted access rights. For example, it is common for a
manager to grant to their secretary access rights to their mail folders.

Fol der[] get Shar edNanespaces()

A shared namespace is a namespace that consists of mail folders that are
intended to be shared amongst users and do not exist within a user’s personal
namespace.

New Cont ent Di sposi ti on Class

The Cont ent Di sposi ti on class contained in j avax. mai | . i nt er net package has
been changed from package private to public.

JavaMail™ API Design Specification December 2005

99

100 Appendix G: Features Added in JavaMail 1.2
New performance improvements

New performance improvements

To allow us to improve the performance of the M meMessage and M meMul ti part
classes when parsing data from an | nput St r eam we introduce a new

Shar ed| nput St r eaminterface that allows the data in the | nput St r eamto be shared
instead of copied, and we use this new interface in key parts of the implementation.
The methods defined by the Shar edl nput St r eaminterface are:

| ong get Position()
I nput Stream newStrean(l ong start, |ong end)

A new protected | nput St r eam(which implements the Shar edl nput St r eam
interface) data member, cont ent St r eam has been added to the M neMessage and
M nmeBodyPart classes.

Additions to the Par anet er Li st class

The Par amet er Li st. toStri ng() method returns its results "unfolded". It would
be useful to have the results "folded" in certain situations. A new method,
ParaneterList.toString(int used), will be added which will return "folded"
results. Folding is defined by RFC 822 as the process of splitting a header field into
multiple lines. "The general rule is that wherever there may be linear-white-space
(NOT simply LWSP-chars), a CRLF immediately followed by AT LEAST one LWSP-
char may instead be inserted.” Unfolding is the process of returning to a single line
representation. "Unfolding is accomplished by regarding CRLF immediately followed
by a LWSP-char as equivalent to the LWSP-char.”

December 2005 JavaMail™ API Design Specification

Appendix H:

Features Added in JavaMail 1.3

This appendix summarizes the features that were added in JavaMail 1.3. Refer to the
appropriate Javadoc documentation for additional information about each item. The
numbers in parentheses are bug numbers; you can find more information about the
bug reports at:

htt p: // bugs. sun. conf bugdat abase/ i ndex. j sp

Add set Sender and get Sender methods to M neMessage
(4405115)

These convenience methods support setting and reading the RFC 822 Sender header.

/**

* Returns the value of the RFC 822 "Sender" header field.

* |f the "Sender" header field is absent, <code>null </code>
* is returned. <p>

*

* This inplenmentation uses the <code>get Header </ code> net hod
* to obtain the requisite header field.

*

* @eturn Addr ess obj ect

* @xception Messagi ngExcepti on

* @Bee #header s

* @i nce JavaMail 1.3

*/

public Address get Sender () throws Messagi ngException

/**
* Set the RFC 822 "Sender" header field. Any existing values are
* replaced with the given address. |If address is <code>nul | </ code>,
* this header is renoved.
*
* @aram address the sender of this message
* @xception Il egal WiteException if the underlying
* i mpl enent ati on does not support nodification
* of existing val ues
* @xception 11l egal St ateException if this nessage is
* obtai ned froma READ ONLY fol der.
* @xception Messagi ngExcepti on

JavaMail™ API Design Specification December 2005

102 Appendix G: Features Added in JavaMail 1.3

Add set

*

*

Cont ent | Dmethod to M nmeBodyPar t (4377720)

@i nce JavaMail 1.3
/

public void setSender (Address address) throws Messagi ngException

Add set Cont ent | Dmethod to M meBodyPart (4377720)

This convenience method supports setting the Content-ID header.

* 0% X X X X X X X *

*

*

*

Set the "Content-ID' header field of this body part.

I f the <code>cid</code> paranmeter is null, any existing

"Content-1D" is renoved.

@xception Il egal WiteException if the underlying
i mpl enent ati on does not support nodification

@xception 11l egal StateException if this body part is
obt ai ned froma READ O\LY f ol der.

@xception Messagi ngExcepti on

@i nce JavaMai | 1.3

/

public void setContent|I D(String cid) throws Messagi ngException

Addmai | . m me. char set property (4377731)

The mai | . mi me. char set System property (NOTE: not Session property) names the

default
System

charset to be used by JavaMail. If not set, the standard J2SEfi | e. encodi ng
property is used. This allows applications to specify a default character set for

sending messages that’s different than the character set used for files stored on the

system.

This is common on Japanese systems.

Add get Del et edMesageCount method to Fol der (4388730)

This convenience method returns a count of the number of deleted messages in a

folder.

* 0% X X X X X X X

*

Get the nunber of del eted nessages in this Folder. <p>

This nethod can be invoked on a cl osed fol der. However, note

that for sone folder inplenentations, getting the del eted nessage
count can be an expensive operation involving actually opening
the folder. In such cases, a provider can choose not to support
this functionality in the closed state, in which case this nethod
nmust return -1. <p>

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.3 103
Support parsing illegal Internet addresses (4650940)

*

* Clients invoking this nethod on a closed fol der nust be aware

* that this is a potentially expensive operation. Cients nust

* also be prepared to handle a return value of -1 in this case. <p>
*

* This inplementation returns -1 if this folder is closed. El se

* this inplenmentation gets each Message in the fol der using

* <code>get Message(i nt)</code> and checks whether its

* <code>DELETED</code> flag is set. The total nunber of nessages
* that have this flag set is returned.

*

* @eturn number of del eted nessages. -1 may be returned
* by certain inplenentations if this method is
* i nvoked on a cl osed fol der.

* @xception Fol der Not FoundException if this fol der does

* not exist.

* @xception Messagi ngExcepti on

* @i nce JavaMai |l 1.3

*

/
public int getDel etedMessageCount () throws Messagi ngException

Support parsing illegal Internet addresses (4650940)

The parse method on the | nt er net Addr ess class takes a flag that tells whether or
not to strictly enforce the RFC822 syntax rules. Currently, when the flag is false most
rules are still checked while a few are not. To better support the range of invalid
addresses seen in real messages, and in combination with the following two changes,
the parseHeader method would enforce fewer syntax rules when the strict flag is false
and would enforce more rules when the strict flag is true. If the strict flag is false and
the parse is successful in separating out an email address or addresses, the syntax of
the addresses themselves would not be checked. (Introducing a new method
preserves compatibility with users of the existing parse method.)

/**
* Parse the given sequence of addresses into |nternetAddress
* objects. |If <code>strict</code> is false, the full syntax rules for
* individual addresses are not enforced. |[If <code>strict</code> is
* true, nmany (but not all) of the RFC822 syntax rules are enforced.
*
* Non-strict parsing is typically used when parsing a list of
* mai|l addresses entered by a human. Strict parsing is typically
* used when parsing address headers in mail nessages.
*
* @aram addressli st comma separated address strings
* @aram strict enf orce RFC822 synt ax
* @eturn array of InternetAddress objects
* @xception Addr essException if the parse failed
* @i nce JavaMail 1.3

JavaMail™ API Design Specification December 2005

104 Appendix G: Features Added in JavaMail 1.3
Addmai | . mi me. addr ess. stri ct property (4650940)

>/
public static InternetAddress[] parseHeader(String s, boolean strict)
t hrows Addr essExcepti on

To allow applications to check the syntax of addresses that might've been parsed with
the strict flag set to false, we add a val i dat e method.

/**

* Validate that this address conforms to the syntax rul es
* of RFC 822. The current inplenmentation checks many, not
* all, syntax rules. Note that, even though the syntax of
* the address may be correct, there’s no guarantee that a
* mai |l box of that name exists.

*

* @xception Addr essException if the address

* isn't valid.

* @i nce JavaMai | 1.3

*

~

public void validate() throws AddressException

To control the strict flag when constructing a single | nt er net Addr ess object we add
a new constructor.

/**

* Parse the given string and create an | nternet Address.

* |f <code>strict</code> is false, the detailed syntax of the

* address isn’'t checked.

*

* @aram address the address in RFC822 fornmat

* @aram strict enforce RFC822 syntax

* @xception Addr essException if the parse failed
* @i nce JavaMai | 1.3

*

~

public Internet Address(String address, boolean strict)
t hr ows Addr essException

Addmai | . mi me. addr ess. stri ct property (4650940)

The M neMessage class will use the new par seHeader method introduced above to
parse headers in messages. The mai | . mi me. addr ess. stri ct Session property will
control the stri ct flag passed to the par seHeader method. The default is true.

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.3 105
Addmai | . mi nme. decodet ext . stri ct property (4201203)

Addmai | . m me. decodet ext . stri ct property (4201203)

RFC 2047 requires that encoded text start at the beginning of a whitespace separated
word. Some mailers, especially Japanese mailers, improperly encode text and
included encoded text in the middle of words. The

mai | . mi me. decodet ext . strict System property (NOTE: not Session property)
controls whether JavaMail will attempt to decode such incorrectly encoded text. The
default is true.

Addmai | . mi me. encodeeol . stri ct property (4650949)

When choosing an encoding for the data of a message, JavaMail assumes that any of
CR, LE, or CRLF are valid line terminators in message parts that contain only
printable ASCII characters, even if the part is not a MIME text type. It's common,
especially on UNIX systems, for data of MIME type application/octet-stream (for
example) to really be textual data that should be transmitted with the encoding rules
for MIME text. In rare cases, such pure ASCII text may in fact be binary data in which
the CR and LF characters must be preserved exactly. The

mai | . m me. encodeeol . strict System property (NOTE: not Session property)
controls whether JavaMail will consider a lone CR or LF in a body part that’s not a
MIME text type to indicate that the body part needs to be encoded.

Addi sG oup and get G oup methods to | nt er net Addr ess
(4650952)

To better support REC822 group addresses, the following methods would be added.

/**

* | ndi cates whether this address is an RFC 822 group address.

* Note that a group address is different than the mailing

* |ist addresses supported by nost mail servers. G oup addresses
* are rarely used; see RFC 822 for details.
*
*

@eturn true if this address represents a group
* @i nce JavaMai |l 1.3
*/
public bool ean i sG oup()
/**
* Return the nenbers of a group address. A group nay have zero,
* one, or nore menbers. |If this address is not a group, null
* is returned. The <code>strict</code> paranmeter controls whether
*

the group list is parsed using strict RFC 822 rules or not.

JavaMail™ API Design Specification December 2005

106 Appendix G: Features Added in JavaMail 1.3
Support per-session debug output stream (4517686)

* The parsing is done using the <code>par seHeader </ code> net hod.

*

* @eturn array of Internet Address objects, or null

* @xception Addr essException if the group list can’t be parsed
* @i nce JavaMai | 1.3

*/

public Internet Address[] get G oup(bool ean strict)
t hrows Addr essException

Support per-session debug output stream (4517686)

To allow the debugging output for a session to be redirected, we add the following
methods to Sessi on.

/**

* Set the streamto be used for debuggi ng output for this session.

* | f <code>out</code> is null, <code>System out</code> will be used.

* Note that debuggi ng output that occurs before any session is
created,

* as a result of setting the <code>nmil.debug</code> system property,

* will always be sent to <code>System out </ code>.

*

* @aram out the PrintStreamto use for debuggi ng out put

* @i nce JavaMail 1.3

*/

public void setDebugQut (PrintStream out)

/**

* Returns the streamto be used for debugging output. If no stream

* has been set, <code>System out</code> is returned.
*

* @eturn the PrintStreamto use for debuggi ng out put
* @i nce JavaMail 1.3
*/

public PrintStream get DebugQut ()

December 2005 JavaMail™ API Design Specification

Appendix I:

Features Added in JavaMail 1.4

This appendix summarizes the features that were added in JavaMail 1.4. Refer to the
appropriate Javadoc documentation for additional information about each item. The
numbers in parentheses are bug numbers; you can find more information about the
bug reports at:

htt p: // bugs. sun. conf bugdat abase/ i ndex. j sp

Add M mePart . set Text (text, charset, subtype) method
(6300765)

The set Text method is a convenience method used to set the content for a text/plain
part. With the increased use of HTML and XML in mail messages, it would be useful
to have a convenience method to set content of those types as well. To support this
usage we add a new method to the M nePart interface:

/**

* Conveni ence nethod that sets the given String as this part’s
* content, with a primary M ME type of “text” and the specified
* M ME subtype. The given Unicode string will be charset-encoded
* using the specified charset. The charset is also used to set
* the “charset” paraneter.

*

* @aram t ext the text content to set

* @aram charset the charset to use for the text

* @aram subtype the M ME subtype to use (e.g., “htm”)

* @xception Messagi ngException if an error occurs

* @ince JavaMhil 1.4

*/

public void setText(String text, String charset, String subtype)
throws Messagi ngExcepti on;

The M meMessage and M neBodyPar t classes, which implement the M mePar t
interface, will be updated to provide implementations of the new method.

JavaMail™ API Design Specification December 2005

108 Appendix G: Features Added in JavaMail 1.4
Addmai | . mi me. encodef i | enane and decodef i | enane properties (6300768)

Addnmai |l . m me. encodefi | enane and decodefi | enane
properties (6300768)

According to the MIME spec (RFC 2047), filenames included in the filename
parameter of the Content-Disposition header may not include MIME “encoded-
words”, and thus may contain only US-ASCII characters. However, many mailers
violate this spec requirement and use standard MIME encoding techniques to store
non-ASCII filenames in this filename parameter.

If the mai | . mi ne. encodef i | enane System property is set to “true”. the
M meMessage and M neBodyPart set Fi | eNane methods will use the
M meltility. encodeText method to encode the filename.

If the mai | . mi me. decodef i | ename System property is set to “true”. the
M meMessage and M neBodyPart get Fi | eNane methods will use the
M meUtility. decodeText method to decode the filename.

Both of these properties default to “f al se”.

The following text is added to the M meMessage and M neBodyPart set Fi | eNane
methods:

If the <code>mmil . m me. encodefil ename</ code> System property
is set to true, the {@ink MmeUtility#encodeText
MneUtility. encodeText nethod will be used to encode the
filename. While such encoding is not supported by the M M
spec, many nailers use this technique to support non-ASCl |
characters in filenanes. The default value of this property
is fal se.

* F X X X X *

The following text is added to the M meMessage and M neBodyPart get Fi | eNane
methods:

* |f the <code>nmil . m ne. encodefil enane</code> System property
is set to true, the {@ink MnmeUtility#decodeText
MneUtility.decodeText nethod will be used to decode the
filename. While such encoding is not supported by the M M
spec, many nailers use this technique to support non-ASCl |
characters in filenanes. The default value of this property
is fal se.

* F X X X X

Add Servi ce. connect (user, password) (6300771)

This convenience method uses the host already known to the Service (Transport or
Store). Equivalent to connect (nul |, user, password).

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 109
Addmai | . mi me. mul ti part.ignoreni ssi ngendboundary System property (4971381)

@ee javax. mil.event. Connecti onEvent
@ee javax. mil. Sessi on#set Passwor dAut henti cati on
@ee #connect(java.lang. String, java.lang.String, java.lang. String)
@ince JavaMail 1.4
/
public void connect(String user, String password)
t hrows Messagi ngExcepti on

/**

* Connect to the current host using the specified usernane

* and password. This nethod is equivalent to calling the

* <code>connect (host, user, password)</code> nethod with null

* for the host nane.

*

* @aram user t he user nane

* @aram password this user’s password

* @xception AuthenticationFail edException for authentication failures
* @xception Messagi ngException for other failures

* @xception Illegal StateException if the service is already connected
*

*

*

*

*

Addmai |l . mne. nmul ti part.ignorem ssi ngendboundary
System property (4971381)

The current implementation of the M neMul ti part class will ignore a missing end
boundary line; if EOF is reached when parsing the content before seeing an end
boundary line, the last part of the multipart is terminated and no error is returned.

Some users have requested a way to force the multipart parsing to more strictly
enforce the MIME specification. To support this we we introduce a new System

property:

nmai | . mi ne. nultipart.ignoremn ssi ngendboundary

If this property is set to “fal se” M meMul ti part will throw a
Messagi ngExcept i on when parsing a multipart that does not include the proper
end boundary line.

This property is already supported as part of the JavaMail implementation. This
change makes the property a part of the standard APIL

The <code>mmil.m nme. nmul tipart.ignorem ssingendboundary</ code>
System property may be set to <code>fal se</code> to cause a
<code>Messagi ngExcepti on</code> to be thrown if the multipart
data does not end with the required end boundary line. |If this
property is set to <code>true</code> or not set, missing end
boundaries are not considered an error and the final body part

L I I I

JavaMail™ API Design Specification December 2005

110 Appendix G: Features Added in JavaMail 1.4
AddM meMul tipart.isConpl ete() method (6300811)

* ends at the end of the data. <p>

Add M meMul ti part.isConpl et e() method (6300811)

As described above, parsing of a MIME multipart may terminate without an error,
even though no final boundary line was seen. This method will return true if the final
boundary line was seen. This will allow applications to successfully parse mal-
formed messages, while also being able to tell that they were mal-formed.

*

Return true if the final boundary line for this

mul ti part was seen. Wen parsing multipart content,
this class will (by default) terminate parsing with

no error if the end of input is reached before seeing
the final multipart boundary line. In such a case,

this method will return false. (If the System property
“mai | . mme. mul tipart.ignorem ssingendboundary” is set to
fal se, parsing such a nessage will instead throw a
Messagi ngException.)

@eturn true if the final boundary |line was seen
@ince JavaMail 1.4

* 0% X X X X X X X X X X X X

~

public bool ean isConplete() throws Messagi ngException

Add
mai | . mne. nul tipart.ignorem ssi ngboundar ypar anet
er property (6300814)

The following property is already supported as part of the JavaMail implementation.
This change makes the property a part of the standard APIL

The <code>mmi |l . m nme. mul tipart.ignorem ssingboundarypar anet er </ code>
System property may be set to <code>fal se</code> to cause a
<code>Messagi ngExcepti on</ code> to be thrown if the Content-Type

of the MneMiltipart does not include a <code>boundary</code> paraneter.
If this property is set to <code>true</code> or not set, the nultipart
parsing code will look for a line that |ooks |like a bounary line and
use that as the boundary separating the parts.

* X X X X X X

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 111
Add M meMul ti part get Preanbl e and set Pr eanbl e methods (6300828)

Add M meMul ti part get Preanbl e and set Pr eanbl e methods
(6300828)

In a MIME multipart message, it’s possible to include text between the headers and
the first boundary line. This text is called the preamble. It may include instructions
for users of non-MIME compliant software. The get Pr eanbl e method allows access
to this text when available. (Note that IMAP servers provide no convenient access to
this text.) The set Pr eanbl e method allows an application to set the preamble for a
message being constructed.

/**

* Get the preanble text, if any, that appears before the
* first body part of this nultipart. Sone protocols,

* such as IMAP, will not allow access to the preanble text.
*

* @eturn the preanble text, or null if no preanble

* @ince JavaMail 1.4

*/

public String getPreanble() throws Messagi ngException

*

/
Set the preanble text to be included before the first
body part. Applications should generally not include
any preanble text. |In sone cases it may be hel pful to
include preanble text with instructions for users of
pre-M ME sof tware.

* OF X X X X X X

@ar am preanbl e the preanbl e text
@i nce JavaMail 1.4

*

*/
public void setPreanbl e(String preanble) throws Messagi ngException

Add M meMessage. updat eMessagel () protected method
(6300831)

Some applications want more control over the data that’s used to create the Message-
ID for a message. This method allows an application to provide a simple subclass of
M meMessage that overrides the Message-ID algorithm.

/**
* Update the Message-ID header. This nmethod is called

* by the <code>updat eHeader s</ code> and al |l ows a subcl ass
* to override only the algorithmfor choosing a Message-|D.

*

* @ince JavaMail 1.4

JavaMail™ API Design Specification December 2005

112 Appendix G: Features Added in JavaMail 1.4
Add M nmeMessage. cr eat eM neMessage() protected method (6300833)

>/
protected voi d updat eMessagel D() throws Messagi ngException

Add M meMessage. cr eat eM neMessage() protected method
(6300833)

The M neMessage. r epl y method creates and returns a new M neMessage.
Subclasses of M meMessage may need the reply method to create a new message of
the appropriate subclass. This method allows subclasses to control the class created in
this case.

*

Create and return a M neMessage object. The reply nethod

uses this nethod to create the M neMessage object that it

will return. Subclasses can override this method to return

a subcl ass of M neMessage. This inplenentation sinply constructs
and returns a M neMessage object using the supplied Session.

* X X X X X X X X

@ar am session the Session to use for the new nessage
@eturn the new M neMessage obj ect
@i nce JavaMail 1.4

*

*/
protected M nmeMessage createM neMessage(Sessi on session)
t hrows Messagi ngExcepti on

Make the par t field of M mePar t Dat aSour ce protected (6300834)

Subclasses of M mePar t Dat aSour ce may need access to the part field in order to
implement the get | nput St r eammethod. The part field is currently private, this
change will make it protected.

/**

* The M nePart that provides the data for this DataSource.

*

* @incelavaMail 1.4
*/
protected M nePart part;

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 113
Fol der . get Separ at or should not require the folder to exist (6301381)

Fol der. get Separ at or should not require the folder to exist
(6301381)

IMAP folders are able to determine the separator character without knowing whether
the folder exists. Checking whether the folder exists in order to throw

Fol der Not FoundExcept i on introduces additional overhead. Because other
methods often need to know the separator character, this overhead can be noticable.
The specification of this method is changed as follows:

/**

* Return the delimter character that separates this Fol der’s pathnane
* fromthe nanmes of i medi ate subfol ders. This nethod can be invoked

* on a cl osed Fol der.

*

* @xception Fol der Not FoundException if the inplementation

* requires the folder to exist, but it does not

* @eturn Hi erarchy separator character

*/

public abstract char getSeparator() throws Messagi ngExcepti on;

Add PreencodedM neBodyPart class (6301386)

In some cases an application will have data that has already been encoded using (for
example) base64 encoding. There should be an easy way to attach such data to a
message without the need to decode it and reencode it. This class provides such
support.

*

A M neBodyPart that handl es data that has al ready been encoded.
This class is useful when constructing a nessage and attaching
data that has already been encoded (for exanple, using base64
encoding). The data may have been encoded by the application,
or may have been stored in a file or database in encoded form
The encoding is supplied when this object is created. The data
is attached to this object in the usual fashion, by using the
<code>set Text </ code>, <code>set Cont ent </ code>, or

<code>set Dat aHandl| er </ code> net hods.

L N S S R I L T N

~

@i nceJavavail 1.4

public class PreencodedM nmeBodyPart extends M neBodyPart {
/**
* Create a PreencodedM neBodyPart that assumes the data is
* encoded using the specified encoding. The encodi ng nust
* be a M ME supported Content-Transfer-Encoding.

JavaMail™ API Design Specification December 2005

114 Appendix G: Features Added in JavaMail 1.4
Add M meBodyPart attachFi | e and saveFi | e methods (6301390)

>/
publ i c PreencodedM neBodyPart (String encodi ng)

Add M meBodyPart attachFi | eand saveFi | e methods
(6301390)

It’s very common for applications to create messages with files as attachments, and to
receive attachments and save them in files. To simplify this usable, we add several
convenience methods to the M neBodyPart class:

/**

* Use the specified file to provide the data for this part.
* The sinple file name is used as the file name for this

* part and the data in the file is used as the data for this
* part. The encoding will be chosen appropriately for the

* file data.

*

* @aramfile the File object to attach

* @xception | CException errors related to accessing the file
* @xception Messagi ngExcepti on nessage related errors

* @ince JavaMhil 1.4

*/

public void attachFile(File file)
t hrows | OException, Messagi ngException

/**

* Use the specified file to provide the data for this part.
* The sinple file name is used as the file name for this

* part and the data in the file is used as the data for this
* part. The encoding will be chosen appropriately for the

* file data.

*

* @aramfile the name of the file to attach

* @xception | CException errors related to accessing the file
* @xception Messagi ngExcepti on nessage related errors

* @ince JavaMhil 1.4

*/

public void attachFile(String file)
t hrows | OException, Messagi ngException

/**

* Save the contents of this part in the specified file. The content
* |s decoded and saved, w thout any of the M ME headers.

*

* @aramfile the File object to wite to

* @xception | CException errors related to accessing the file
* @xception Messagi ngExcepti on nessage related errors

* @ince JavaMhil 1.4

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 115
AddM meUtility fol dandunf ol dmethods (6302118)

*/

public void saveFile(File file) throws | OException, Messagi ngException
/**

* Save the contents of this part in the specified file. The content
* | s decoded and saved, w thout any of the M ME headers.

*

* @aramfile the nanme of the file to wite to

* @xception | CException errors related to accessing the file
* @xcepti on Messagi ngExcepti on nmessage related errors

* @ince JavaMhil 1.4

*/

public void saveFile(String file)
throws | OException, Messagi ngException

AddM meUtility fol dandunfol dmethods (6302118)

When dealing with long header lines, it’s often necessary to fold the lines to avoid
exceeding line length limitations. When retrieving the data from such headers, the
folding needs to be undone. The JavaMail implementation includes private f ol d and
unf ol d methods for this purpose. These methods should be made public.

/**

* Fold a string at |inear whitespace so that each line is no | onger
* than 76 characters, if possible. If there are nore than 76

* non-whitespace characters consecutively, the string is fol ded at
* the first whitespace after that sequence. The paraneter

* <code>used</ code> i ndi cates how many characters have been used in
* the current line; it is usually the length of the header nane. <p>
*

* Note that |line breaks in the string aren’'t escaped; they probably
* shoul d be.

*

* @aram used characters used in line so far

* @aram s the string to fold

* @eturn the folded string

*/

public static String fold(int used, String s)

/**

* Unfold a fol ded header. Any line breaks that aren’'t escaped and
* are foll owed by whitespace are renoved.

*

* @aram s the string to unfold

* @eturn the unfol ded string

*/

public static String unfold(String s)

JavaMail™ API Design Specification December 2005

116 Appendix G: Features Added in JavaMail 1.4
Allow more control over headers in | nt er net Header s object (6302832)

Allow more control over headers in | nt er net Header s object
(6302832)

Some applications, such as mail server applications, need more control over the order
of headers in the | nt er net Header s class. To support such usage, we allow such
applications to subclass | nt er net Header s and access the Li st of headers directly.
I nt er net Header s exposes a protected field:

protected List headers;

The elements of the list are objects of a new protected final class

I nt er net Header s. | nt er net Header that extends the j avax. mai | . Header class.
To allow the | nt er net Header class to make use of the Header class, we make the
following fields of Header protected:

/**

* The nanme of the header.
*

* @ince JavaMail 1.4

*/

protected String nane;

/**

* The val ue of the header.
*

* @ince JavaMail 1.4

*/

protected String val ue;

Allow applications to dynamically register new protocol providers
(6302835)

Some applications would like to register new protocol providers at runtime rather
than depending on the JavaMail configuration files and resources. To support such
usage we make the constructor for the Provi der class public:

@ar am protocol valid protocol for the type
@ar am cl assnane cl ass nanme that inplenents this protocol

/**

* Create a new provider of the specified type for the specified
* protocol. The specified class inplenments the provider.

*

* @aramtype Type. STORE or Type. TRANSPCORT

*

*

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 117
Allow applications to dynamically register address type mappings (4377727)

* @ar am vendor optional string identifying the vendor (may be null)
* @aramversion optional inplenmentation version string (may be null)
* @ince JavaMhil 1.4
*/
public Provider(Type type, String protocol, String classnaneg,
String vendor, String version)

We also add a new method to Session to allow registering such Providers:

/**

* Add a provider to the session.

*

* @aram provider the provider to add

* @ince JavaMail 1.4

*/

public void addProvider (Provider provider)

Allow applications to dynamically register address type mappings
(4377727)

Along with the above item, some applications will want to dynamically control the
mapping from address type to protocol. This could also be used to change the default
internet protocol from “smtp” to “smtps”. We add the following method to Sessi on:

/**

* Set the default transport protocol to use for addresses of
* the specified type. Nornally the default is set by the
* <code>j avanuai | . def aul t. addr ess. nap</ code> or

* <code>j avanmai | . addr ess. map</code> files or resources.

*

* @aram addresstype type of address

* @aram protocol name of protocol

* @ee #get Transport (Address)

* @ince JavaMail 1.4

*/

public void setProtocol For Address(String addresstype, String protocol)

Par amet er Li st class should support non US-ASCII parameters
(4107342)

RFC 2231 describes a method for encoding non-ASCII parameters in MIME headers.
We introduce the following System properties to control encoding and decoding such
parameters.

JavaMail™ API Design Specification December 2005

118 Appendix G: Features Added in JavaMail 1.4
Standard interface for St or es that support quotas (6304051)

If the mai | . mi ne. encodepar anet er s System property is set to “t rue”. non-
ASCII parameters will be encoded per RFC 2231.

If the mai | . mi me. decodepar anet er s System property is set to “true”.
parameters encoded per RFC 2231 will be decoded.

Both of these properties default to “ f al se”.

Note that RFC 2231 also describes a technique for splitting long parameter values
across multiple parameters. We do not plan to support such parameter continuations.

To allow specifying the charset to use for a parameter, we add the following method
to Paramet er Li st :

/ *
Set a paranmeter. If this paranmeter already exists, it is
replaced by this new value. |If the
<code>mai | . m nme. encodepar anet er s</ code> System property
is true, and the paraneter value is non-ASCIl, it will be

encoded with the specified charset.

@ar am nane nane of the paraneter.

@ar am val ue val ue of the paraneter.

@ar am charset charset of the paraneter val ue.
@i nce JavaMail 1.4

* % kX X X X X X F

*

*/
public void set(String name, String value, String charset)

Standard interface for St or es that support quotas (6304051)

Some IMAP stores support quotas. To allow applications to make use of quota
support without depending on IMAP-specific APIs, we provide a Quot aAwar eSt or e
interface that St or es, such as the IMAP St or e, can implement. We also provide a
Quot a class to represent a set of quotas for a quota root.

package javax. mail;

/**

* An interrface inplemented by Stores that support quotas.
* The {@i nk #get Quota getQota} and {@ink #set Quota set Quota} nethods

* support the quota nodel defined by the | MAP QUOTA extension.

* Refer to RFC 2087</ A>
* for nore information. <p>

*

* @ince JavaMail 1.4

*/

public interface QuotaAwareStore {

/**

* Get the quotas for the named quota root.

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4
Standard interface for St or es that support quotas (6304051)

Quotas are controlled on the basis of a quota root, not
(necessarily) a folder. The relationship between fol ders
and quota roots depends on the server. Sone servers

m ght inplement a single quota root for all folders owned by
a user. Oher servers mght inplenent a separate quota root
for each folder. A single folder can even have nmultiple
quota roots, perhaps controlling quotas for different

resour ces.

@aram root the name of the quota root

@eturn array of Quota objects

@xception Messagi ngException if the server doesn’t support the
QUOTA ext ensi on

E I N S S R T S T

/
Quota[] getQuota(String root) throws Messagi ngExcepti on;

*

/

Typically this will be one of the quota roots obtained fromthe
<code>get Quot a</ code> net hod, but it need not be.

@aram quota the quota to set
@xception Messagi ngException if the server doesn’t support the
QUOTA ext ensi on

EE B I S T T B

~

voi d set Quot a(Quota quota) throws Messagi ngExcepti on;

}

package javax. mail ;

/**

* This class represents a set of quotas for a given quota root.
* Each quota root has a set of resources, represented by the

* <code>Quot a. Resour ce</ code> class. Each resource has a nane
* (for exanple, “STORAGE’), a current usage, and a usage linmt.
* See RFC 2087.

*

* @ince JavaMhil 1.4

*/

public class Quota {

/**

* An individual resource in a quota root.
*
* @ince JavaMail 1.4
*/
public static class Resource {
/** The name of the resource. */
public String nane;
/** The current usage of the resource. */
public | ong usage;
/** The usage limt for the resource. */

JavaMail™ API Design Specification December 2005

Set the quotas for the quota root specified in the quota argument.

119

120 Appendix G: Features Added in JavaMail 1.4
Add Byt eAr r ayDat aSour ce class (4623517)

public long limt;

*

/
Construct a Resource object with the given nane,
usage, and limt.

@ar am nanme the resource nane
@ar am usage the current usage of the resource
@aramlimt the usage limt for the resource

E I B A T

~

public Resource(String nanme, |ong usage, long limt)
}
/**
* The nane of the quota root.
*/
public String quotaRoot;

/**

* The set of resources associated with this quota root.
*/

publ i c Quota. Resource[] resources;

/**

* Create a Quota object for the named quotaroot with no associ ated
* resources.

*

* @aram quot aRoot the nane of the quota root

*/

public Quota(String quotaRoot)

/**

* Set a resource linmt for this quota root.

*

* @aramnane the nane of the resource

* @aramlinmt the resource limt

*/

public void setResourceLimt(String nane, long limt)

Add Byt eArr ayDat aSour ce class (4623517)

The Byt eAr r ayDat aSour ce has been included in the JavaMail demo source code for
quite some time. Quite a few applications need a class of this sort. It’s time to add it
as a standard API. To avoid conflicting with applications that have used the demo
version, we put this version in a new j avax. mai | . uti| package.

package javax.mail.util;

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 121
Add Byt eAr r ayDat aSour ce class (4623517)

/**
* A Dat aSource backed by a byte array. The byte array may be
* passed in directly, or may be initialized froman |nputStream
* or a String.
*
* @ince JavaMhil 1.4
*/
public class ByteArrayDat aSource inplenents DataSource {
/**
* Create a ByteArrayDataSource with data fromthe
* specified byte array and with the specified MM type.
*/
public ByteArrayDat aSource(byte[] data, String type)

/**

* Create a ByteArrayDataSource with data fromthe

* specified InputStreamand with the specified MM type.

* The InputStreamis read conpletely and the data is

* stored in a byte array.

*/

public ByteArrayDat aSource(lnputStreamis, String type)
throws | OException

/**

* Create a ByteArrayDataSource with data fromthe

* specified String and with the specified MME type.

The M ME type shoul d include a <code>char set </ code>

par amet er specifying the charset to be used for the

string. |If the paraneter is not included, the

default charset is used.

/

public ByteArrayDataSource(String data, String type) throws | CException

* X X X X

/**

* Return an InputStreamfor the data.

* Note that a new streamis returned each tine

* this nethod is called.

*/

public | nputStream getl nputStream) throws | CException

/**

* Return an QutputStream for the data.

* Witing the data is not supported; an <code>| OExcepti on</code>
* is always thrown.

*/

publ i c Qutput Stream get Qut put Strean() throws | OException

/**

* Get the M ME content type of the data.
*/
public String getContent Type()

/**

JavaMail™ API Design Specification December 2005

122 Appendix G: Features Added in JavaMail 1.4
Add Shar edByt eAr r ayl nput St r eamclass (6304189)

* CGet the nane of the data.

* By default, an enpty string (““) is returned.
*/

public String getName()

/**

* Set the nane of the data.

*/

public void setNanme(String nane)

Add Shar edByt eArr ayl nput St r eamclass (6304189)

The Shar edl nput St r eaminterface allows the JavaMail implementation to efficiently
process data when parsing messages, without needing to make many copies of the
data. This class is an implementation of the Shar edl nput St r eaminterface that uses
a byte array as the backing store.

package javax.mail.util;

/**
* A ByteArrayl nput Streamthat inplenments the Sharedl nputStreaminterface,
* allow ng the underlying byte array to be shared between nultiple
* readers.
*
* @ince JavaMail 1.4
*/
public class SharedByt eArrayl nput Stream ext ends Byt eArrayl nput Stream
i mpl enent s Shar edl nput Stream {
/**
* Position within shared buffer that this streamstarts at.
*/
protected int start;

/**

* Create a SharedByteArrayl nput Stream representing the entire
* byte array.

*/

publ i ¢ Shar edByt eArrayl nput St ream(byte[] buf)

/**

* Create a SharedByteArrayl nput Stream representing the part

* of the byte array from <code>of f set </ code> for <code>l engt h</ code>
* pytes.

*/

publ i ¢ SharedByt eArrayl nput Stream(byte[] buf, int offset, int |ength)

/**

* Return the current position in the InputStream as an

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 123
Add Shar edFi | el nput St r eamclass (6304193)

* of fset fromthe begi nning of the | nputStream
*

* @eturn the current position
*/
public | ong getPosition()

*

/
Return a new | nput Streamrepresenting a subset of the data
fromthis InputStream starting at <code>start</code> (inclusive)
up to <code>end</code> (exclusive). <code>start</code> nust be
non-negative. |f <code>end</code> is -1, the new stream ends

at the same place as this stream The returned | nputStream

wi Il also inplenent the SharedlnputStreaminterface.

@ar anstartthe starting position
@ar anendt he endi ng position + 1
@eturnthe new stream

* % X X X X X X X X X X

~

public I nputStream newStrean{(long start, |ong end)

Add Shar edFi | el nput St r eamclass (6304193)

Finally, Shar edFi | el nput St r eamis an implementation of the
Shar edl nput St r eaminterface that uses a file as the backing store.

package javax.mail.util;

/**

* A <code>Shar edFi | el nput St reanx/code> is a

* <code>Buf f er edl nput St reanx/ code> that buffers

data fromthe file and supports the <code>mar k</code>
and <code>reset</code> nmethods. It also supports the
<code>newsSt r eanx/ code> nethod that allows you to create
ot her streans that represent subsets of the file.

A <code>RandomAccessFi | e</ code> object is used to
access the file data.

@i nce JavaMai | 1.4
/
public class SharedFil el nput Stream ext ends Buf f eredl nput St ream
i mpl enents Shar edl nput Stream {

* 0% X X X X X X X

/**

* The file containing the data.
* Shared by all rel ated SharedFil el nput Stream i nst ances.
*/

prot ect ed RandomAccessFile in;

JavaMail™ API Design Specification December 2005

124 Appendix G: Features Added in JavaMail 1.4
Add Shar edFi | el nput St r eamclass (6304193)

/**

* The normal size of the read buffer.
*/

protected int bufsize;

/**

* The file offset that corresponds to the first byte in
* the read buffer.

*/

protected | ong buf pos;

/**

* The file offset of the start of data in this subset of the file.
*/

protected long start = 0;

/**

* The amount of data in this subset of the file.
>/

protected | ong datal en;

/**

* Creates a <code>SharedFil el nput Streanx/ code>

* for the file.

*

* @aram file the file

*/

public SharedFilelnputStrean(File file) throws | OCException

/**

* Creates a <code>SharedFil el nput St reanx/ code>

* for the named file.

*

* @aram file the file

*/

public SharedFilelnputStrean(String file) throws | OException

*

Creates a <code>SharedFil el nput St reanx/ code>
with the specified buffer size.

/

* F X X *

@aram file the file
* @aram size the buffer size.

* @xception |l egal Argunent Exception if size <= 0.

*/
public SharedFilelnputStrean(File file, int size) throws | CException
/**

* Creates a <code>SharedFil el nput St reanx/ code>

* with the specified buffer size.

*

* @aram file the file

*

@aram size the buffer size.

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 125
Add Shar edFi | el nput St r eamclass (6304193)

* @xception |l egal Argument Exception if size <= 0.
*/
public SharedFilelnputStrean(String file, int size) throws | OException

/**

* See the general contract of the <code>read</code>
* met hod of <code>l nput Streanx/ code>.

@eturn the next byte of data, or <code>-1</code> if the end of
the streamis reached.
@xception | OException if an I/O error occurs.
/
public int read() throws | CException

* F X X X

/**

* Reads bytes fromthis streaminto the specified byte array,

* starting at the given offset.

*

* <p> This nethod i npl ements the general contract of the corresponding
* <code>{@ink java.io.|nputStreant#read(byte[], int, int) read}</code>
* method of the <code>{@ink java.io.|nputStreant}</code> cl ass.

*

* @aram b destination buffer.

* @aram of f of fset at which to start storing bytes.

* @aram I en maxi mum nunber of bytes to read.

* @eturn the nunber of bytes read, or <code>-1</code> if the end
* of the stream has been reached.

* @xception |OException if an I/O error occurs.

*

~

public int read(byte b[], int off, int len) throws | OException

/**

* See the general contract of the <code>skip</code>
* met hod of <code>l nput Streanx/ code>.

*

* @aram n the nunber of bytes to be skipped.
* @eturn the actual nunber of bytes skipped.

* @xception |OException if an I/Oerror occurs.
*/

public I ong skip(long n) throws | CException

/**

* Returns the number of bytes that can be read fromthis input
* stream w t hout bl ocki ng.

*

* @eturn the nunmber of bytes that can be read fromthis input
* stream wi t hout bl ocki ng.

* @xception |CException if an I/O error occurs.

*/

public int available() throws | OException

/**

* See the general contract of the <code>nmark</code>

JavaMail™ API Design Specification December 2005

126 Appendix G: Features Added in JavaMail 1.4
Add Shar edFi | el nput St r eamclass (6304193)

met hod of <code>l nput St reanx/ code>.

*

*

* @aram readlimt the maximumlinmt of bytes that can be read
* before the mark position becones invalid.

*

*

@ee #reset ()
/
public void mark(int readlimt)

*

/
See the general contract of the <code>reset</code>
met hod of <code>| nput Streanx/ code>.

<p>

I f <code>mar kpos</code> i s <code>- 1</ code>

(no mark has been set or the mark has been

i nval i dated), an <code>| CExcepti on</code>

is thrown. Ot herw se, <code>pos</code> is

set equal to <code>narkpos</code>.

@xception |OException if this stream has not been nmarked or
if the mark has been invalidated.
Gee #mar k(i nt)

L B S I T S T T T T

~

public void reset() throws | OException

/**
* Tests if this input stream supports the <code>mar k</code>
* and <code>reset </ code> nethods. The <code>nmar kSupport ed</ code>
* met hod of <code>SharedFil el nput St reanx/ code> returns
* <code>true</code>.
*
* @eturn a <code>bool ean</code> indicating if this streamtype
* supports the <code>mark</code> and <code>reset </ code>
* nmet hods.
* @Bee java.io. |l nput Streantmar k(i nt)
* @ee java.io. | nput Streamtreset ()
*

~

publ i c bool ean mar kSupported()

/**

* Closes this input stream and rel eases any systemresources
* associated with the stream

*

* @xception |OException if an I/O error occurs.
*/
public void close() throws | OException

/**

* Return the current position in the InputStream as an

* of fset fromthe begi nning of the | nputStream
*

* @eturn the current position
*/
public | ong getPosition()

December 2005 JavaMail™ API Design Specification

Appendix G: Features Added in JavaMail 1.4 127
Add Shar edFi | el nput St r eamclass (6304193)

/**

* Return a new | nputStreamrepresenting a subset of the data

* fromthis InputStream starting at <code>start</code> (inclusive)
* up to <code>end</code> (exclusive). <code>start</code> nust be
* non-negative. |f <code>end</code> is -1, the new stream ends

* at the sane place as this stream The returned |nputStream

* will also inplenment the Sharedl nputStreaminterface.

*

* @aram start the starting position

* @aram end the ending position + 1

* @eturn the new stream

*/

public I nputStream newStrean{long start, |ong end)

/**

* Force this streamto close.

*/

protected void finalize() throws Throwabl e

JavaMail™ API Design Specification December 2005

December 2005 JavaMail™ API Design Specification

	Chapter 1: Introduction
	Target Audience
	Acknowledgments

	Chapter 2: Goals and Design Principles
	Chapter 3: Architectural Overview
	JavaMail Layered Architecture
	JavaMail Class Hierarchy
	The JavaMail Framework
	Major JavaMail API Components
	The Message Class
	Message Storage and Retrieval
	Message Composition and Transport
	The Session Class

	The JavaMail Event Model
	Using the JavaMail API

	Chapter 4: The Message Class
	The Part Interface
	Message Attributes
	The ContentType Attribute

	The Address Class
	The BodyPart Class
	The Multipart Class
	The Flags Class
	Message Creation And Transmission

	Chapter 5: The Mail Session
	The Provider Registry
	Resource Files
	Provider
	Protocol Selection and Defaults
	Example Scenarios

	Managing Security
	Store and Folder URLs

	Chapter 6: Message Storage And Retrieval
	The Store Class
	Store Events

	The Folder Class
	The FetchProfile Method
	Folder Events
	The Expunge Process

	The Search Process

	Chapter 7: The JavaBeans Activation Framework
	Accessing the Content
	Example: Message Output

	Operating on the Content
	Example: Viewing a Message
	Example: Showing Attachments

	Adding Support for Content Types

	Chapter 8: Message Composition
	Building a Message Object
	Message Creation
	Setting Message Attributes
	Setting Message Content
	Building a MIME Multipart Message

	Chapter 9: Transport Protocols and Mechanisms
	Obtaining the Transport Object
	Transport Methods

	Transport Events
	ConnectionEvent
	TransportEvent

	Using The Transport Class

	Chapter 10: Internet Mail
	The MimeMessage Class
	The MimeBodyPart Class
	The MimeMultipart Class
	The MimeUtility Class
	Content Encoding and Decoding
	Header Encoding and Decoding

	The ContentType Class

	Appendix A: Environment Properties
	Appendix B: Examples Using the JavaMail API
	Example: Showing a Message
	Example: Listing Folders
	Example: Search a Folder for a Message
	Example: Monitoring a Mailbox
	Example: Sending a Message

	Appendix C: Message Security
	Overview
	Displaying an Encrypted/Signed Message
	MultiPartEncrypted/Signed Classes
	Reading the Contents
	Verifying Signatures
	Creating a Message

	Appendix D: Part and Multipart Class Diagram
	Appendix E: MimeMessage Object Hierarchy
	Appendix F: Features Added in JavaMail 1.1
	The MessageContext Class and MessageAware Interface
	The getMessageID method
	Additions to the InternetAddress Class
	Additions to the MimeUtility Class
	New SearchTerms
	Additions to the Folder Class
	New Service Class

	Appendix G: Features Added in JavaMail 1.2
	Additions to the MimeMessage Class
	Additions to the MimeMultipart Class
	The getRawInputStream method
	Additions to the InternetAddress Class
	The MailDateFormat Class
	Additions to Exceptions and Events
	Additions to the Session Class
	Additions to the MimeUtility Class
	Additions for serializable javax.mail.search terms
	Additions to the Store Class
	New ContentDisposition Class
	New performance improvements
	Additions to the ParameterList class

	Appendix H: Features Added in JavaMail 1.3
	Add setSender and getSender methods to MimeMessage (4405115)
	Add setContentID method to MimeBodyPart (4377720)
	Add mail.mime.charset property (4377731)
	Add getDeletedMesageCount method to Folder (4388730)
	Support parsing illegal Internet addresses (4650940)
	Add mail.mime.address.strict property (4650940)
	Add mail.mime.decodetext.strict property (4201203)
	Add mail.mime.encodeeol.strict property (4650949)
	Add isGroup and getGroup methods to InternetAddress (4650952)
	Support per-session debug output stream (4517686)

	Appendix I: Features Added in JavaMail 1.4
	Add MimePart.setText(text, charset, subtype) method (6300765)
	Add mail.mime.encodefilename and decodefilename properties (6300768)
	Add Service.connect(user, password) (6300771)
	Add mail.mime.multipart.ignoremissingendboundary System property (4971381)
	Add MimeMultipart.isComplete() method (6300811)
	Add mail.mime.multipart.ignoremissingboundaryparamet er property (6300814)
	Add MimeMultipart getPreamble and setPreamble methods (6300828)
	Add MimeMessage.updateMessageID() protected method (6300831)
	Add MimeMessage.createMimeMessage() protected method (6300833)
	Make the part field of MimePartDataSource protected (6300834)
	Folder.getSeparator should not require the folder to exist (6301381)
	Add PreencodedMimeBodyPart class (6301386)
	Add MimeBodyPart attachFile and saveFile methods (6301390)
	Add MimeUtility fold and unfold methods (6302118)
	Allow more control over headers in InternetHeaders object (6302832)
	Allow applications to dynamically register new protocol providers (6302835)
	Allow applications to dynamically register address type mappings (4377727)
	ParameterList class should support non US-ASCII parameters (4107342)
	Standard interface for Stores that support quotas (6304051)
	Add ByteArrayDataSource class (4623517)
	Add SharedByteArrayInputStream class (6304189)
	Add SharedFileInputStream class (6304193)

