Programmer’s Reference

jConnect for JDBC
4.5and 5.5

DOCUMENT ID: 39001-01-0550-01
LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software descritefihestiad
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax @45) 229-9

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All othe
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only atotegpildely s
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by alectradas,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server EnterpriserReplicatio
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connec
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Véork Design
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replieation Serv
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL AJlywhere, S
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Geteways, Syb
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Transtation Toolk
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) G20FPARS
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

About This Book

CHAPTER 1

CHAPTER 2

... vii
INEFOAUCTION 1o 1
WHhAL IS IDBEC? ..ttt ettt e e 1
What iS JCONNECL? ...vvviiieei ittt e e 2
Programming INfOrmationccccooiiiiiiiiiiii e, 5
Setting UP JCONNECT.......ueiiiiiiiiiiiiiiee e 5
Setting the JCONNECE VEISIONcooviiiiiiiiieeiiiiiieccee e 6
Invoking the JCoNNeCt driVer..........cccvvvvviieiiiiiie e 11
Establishing @ conNectionccccceeviiiiiiiiiieie e 12
Setting CONNECLION ProPErtieS.......ccoviivviiiieeeiiiiiiiiiee e 12
Connecting to Adaptive Server Enterpriseccccceeeevviivvnnen. 18
Connecting to Adaptive Server Anywhere..........cccccceeeeevcvnneen. 20
Connecting to a server using JNDI.........ccccceeeviviiiieeee e, 21
Implementing custom socket plug-iNSccccvvieee i 27
SYBSOCKET_FACTORY connection property..........cccccoeeeueis 28
Creating and configuring a custom socketcccccceeernnneen. 28
Handling internationalization and localizationcccccvveveenn. 31
Using jConnect to pass Unicode dataccccceeeeviiiiiiieiennnn, 32
jConnect character-set CONVErtErsccccccvviiviieeieenniiiiieeennn 33
Working with databasescoeviiiiiiiiiiii e 38
Implementing high availability failover support............cccccoec.... 39
Performing server-to-server remote procedure calls............... 43
Wide table support for Adaptive Server version 12.5.............. 45
Accessing database metadataoccvvvviiieiiiiiiiiee s 45
Using cursors with result SetS.........ccccvvvveeeiiiiiiiieeee e 47
Support for batch updates.........cccceeiieiiiiieiie e, 57
Updating the database from the result set
of a stored ProCedurecovvvveeei e 59
Working with datatypesccoveciiiiiiieei e 60
Implementing advanced featuresc.coccvvveevieeiiiiiiiieec e 65
Using event NOIfICAtioNcovviiiiiiiiieeiiiee e 66

Handling error MESSAQES.cceeviiiiiiiiiee e e e 68

Storing Java objects as column data in a table 73
Dynamic class [0adingccoovvviiiiiieeiiiiiiiee e a e 77
JDBC 2.0 optional package extensions SUPPOrt............cceveee.. 81
Handling restrictions, limitations, and deviations

from JDBC standardsS..........cccueeviieeiiiiiiiiiiieee e 92
Making adjustments for multithreadingc.occvieiiennniins 92
Using ResultSet.getCursorName()ooovvvveeereeeniniiiieeeeeennnns 93
Using setLong() with large parameter values...........c.cccceeee... 93
Using COMPUTE statementS..........cevieeeiiiiiiiiieeeeeeiiiiiiieee e e 93
Executing stored proCeduUresocoveiiieeeeiiieees e eieeens 94
CHAPTER 3 TroubleShOOtIiNG . .uuuiiieiieee e 97
Debugging With JCONNECT..........cccoiiiiiiiiiiec e 97
Obtaining an instance of the Debug class............cccceccvvvivneenn. 97
Turning on debugging in your application............ccccceeeeevivnne.. 98
Turning off debugging in your application.............ccccceeeeviivnnnn. 99
Setting the CLASSPATH for debuggingcccoevvviieeiiniinnns 99
Using the Debug methodscccvvvieiieiiiiiiieee e 99
Capturing TDS cOMMUNICALION.......eviieiiiiiiiiiiiee s 101
PROTOCOL_CAPTURE connection property.........ccccueeee.... 101
pause() and resume() methods in the Capture class........... 102
Unsuccessful CoNNECLION EITOTScovvvvvivieeiiiiiiiiiie e 102
Gateway connection refusedccccvvvveeesiiciiiieee e, 102
Unable to connect to a 4.9.2 SQL Server........ccccccceeeeeeeee... 103
Memory usage in jConnect applications...........ccccccvveeeiiiiiiieneeeenn, 103
Stored ProCEAUIE EITOIS .uuiiiiiiiiiiiiiie e e s eeiiiiee e e e s e e e e eaeee s 104
RPC returns fewer output parameters than registered.......... 104

Fetch/state error when stored procedure
returns OULPUL PAramMS.......cevvvviiiiiiiiiiiiiiiiieeeeeeeeeee e 105

Stored procedure executed in unchained
transaction MOAEccvveiiiieieie e 105
Custom socket implementation error...........cccccovvcvvveeeeeeniiiiieeeenn. 106
CHAPTER 4 Performance and TUNINGoooooiiiiiiiiie e 107
Improving jConnect PerformMancecc.ccoveriieveeniiee e 107
BigDecimal reSCalingccevviiiiiiiiiiiiiieeeeiiiieee e 108
REPEAT_READ connection property.........ccccccveeevviiveveeeeeenn 108
Character-set CONVErSiON.........ccoiuiiieiiiiee e 109
Performance tuning for prepared statements in dynamic SQL..... 110

Choosing between prepared statements
and stored ProCeAUIESccovviiiiiieee e 111
Prepared statements in portable applications........................ 112

Chapter

Prepared statements in applications

With JCONNECt EXIENSIONSuvviveieeiiiiiiiieee e 113
Connection.prepareStatement()ccccceveeeeviiiiiieee e, 114
DYNAMIC_PREPARE connection propertycccvveeeeeenn. 114
SybConnection.prepareStatement()ccccvveeeeiiiiiinenennnn, 115
CUrSOr PErfOrMAaNCE........cuiiiiiiiiiiiiiie et 116
LANGUAGE_CURSOR connection property..........cccocuveveennn. 117
CHAPTER 5 Migrating jConnect Applicationsccccuvuiiiiiiiiiieiii s 119
Migrating jConnect applicationNS..........cccvvveiiieeniiiiiiieeee e 119
Migrating applications to jConnect 4.5 and 5.5............cc..ce... 119
Sybase EXIENSIONSuiiiieiiiiiiiie e 121
Change eXample........ccoiiiiiiiie e 121
MethOd NAMESccoiiiii e 122
DEDUQ CIaSSvviiiiiie ettt 122
CHAPTER 6 WED SErver GatEWaY'Suuueieeeeeeiieiciiiiieieeeeeeeseessssnnnenereeeeaeseesnnas 123
About Web server gatewaysS..........cccvvieiieeiiiiiiiiieee e 123
TDS tUNNEIING .o 123
jConnect and gateway configuration............cccccceevviiiineeneennn. 124
USAQE rEQUITEMENTS ...vviieeiiiiiiiiiete e ettt e e et e e e e e nbaaee e e e 128
Reading the index.htmlfile ..., 128
Running the sample Isgl applet ..., 129
Using the TDS-tunnelling servlet..........ccccccev i 130
TDS-tunnelling servlet system requirements..........cccccoeeuveee. 131
Installing the servlet..........cccvveee i 132
INvoking the serviet........cccoieiiii e 133
Tracking active TDS SESSIONSccceiviiviieeieeeeiiiiiieeeee e e e 133
Resuming @ TDS SESSIONccceeeiiiiiiiiiieeesieiiiiee e e e ssiiiieeens 134
TDS tunnelling and Netscape Enterprise Server 3.5.1
ON SOIAIIS ..t 134
APPENDIX A SQL Exception and Warning MesSSagescccccceveeeeeriniiiiinnnnns 137
APPENDIX B jConnect Sample Programsccceeveeiiiiiiniiiiiiiieeee e 153
RUNNING ISOIAPD <ttt 153
Running jConnect sample programs and COdeccccvvveereennn. 155
Sample appliCatioNS........cccvvvvviieeiii e 155
SAMPIE COUR ... 156
O X e et e e e e e e bbb et e e e e e e e e e e e e nrarbeaeaaes 159

Vi

About This Book

Audience

Related Documents

Other sources of
information

The Sybase jConnect for JDBC Programmer’s Refererdescribes the
jConnect for IDBC product and explains how to use it to access data
stored in relational database management systems.

Thismanual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
Sybase version of Structured Query Language.

You may find the following documents helpful:

The Sybase jConnect for JDBC Installation Guide
The Sybase jConnect for JDBC Release Bulletin

The javadoc documentation of jConnect extensions to JDBC. The
Java Development Kit (JDK) from Java Software contains a javadoc
script for extracting comments from source-code files. This script has
been used to extract documentation of jConnect packages, classes,
and methods from jConnect source files. When you install jConnect
using the full installation or javadocs option, the javadoc information
is placed in th¢avadocs directory:

Installation_directory/docs/en/javadocs

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to access
technical information about your product in an easy-to-use format.

Refer to thélechnical Library Installation Guide in your
documentation package for instructions on installing and starting the
Technical Library.

Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you'll find links to the
Technical Documents Web site (formerly known as Tech Info

Library), the Solved Cases page, and Sybase/Powersoft newsgroups.

Vii

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals.

Sybﬁse Vc\:/e[)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

O For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

N

Select a product from the product pick list and click Go.

w

Select the Certification Report filter, specify atime frame, and click Go.
4 Click aCertification Report title to display the report.

0 For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing web accounts) or create a new account (afree
service).

3 Specify atime frame and click Go.
4 Select aproduct.
5 Click an EBF/Update title to display the report.

0 To create a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseis afree service that allowsyou to create
apersonalized view of Sybase web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.
Conventions This manual uses the following font and syntax conventions:

e Classes, interfaces, methods, and packages are shewmeitica within
paragraph text. For example:

SybConnection class
SybEventHandler interface

setBinaryStream() method

viii

About This Book

If you need help

com.sybase.jdbcx package

¢ Objects, instances, and parameter names are shown in italics. For
example:

“In the following examplegtx is aDirContext object.”

“eventHdleris an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

¢ Code fragments are shown in a monospaced font. Variables in code
fragments (that is, words that stand for values that you fill in) are italicized.
For example:

Connection con = DriverMnager. get Connecti on("j dbc:
sybase: Tds: host . port", props);

Each Sybase installation that has purchased a support contract has one or mor
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

CHAPTER 1 Introduction

This chapter introduces you to jConnect for JDBC, and describesits
concepts and components.
This chapter contains:

Topics
What is JDBC?
Wheat is jConnect?

What is JDBC?

JDBC (Java Database Connectivity) from the Java Software Division of
Sun MicroSystems, Inc. is a specification for an application program
interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL). The
JDBC driver manager handles multiple drivers that connect to different
databases.

A set of interfacesisincluded in the standard JDBC API so you can open
connections to databases, execute SQL commands, and process results.
The interfaces are described in Table 1-1.

Table 1-1: JDBC interfaces

Interface Description

java.sql.Driver L ocates the driver for a database URL
java.sgl.Connection Connection to a specific database
java.sgl.Statement Executes SQL statements
java.sql.PreparedStatement Handles parameterized SQL statements
java.sgl.CallableStatement Handles database stored procedure calls
java.sgl.ResultSet Gets the results of SQL statements

java.sgl.DatabaseMetaData Used to access a variety of information about a connection’s DBMS and database

java.sgl.ResultSetMetaData Used to access a variety of information describing a ResultSet’s attributes

What is jConnect?

Each relational database management system requires adriver to implement
these interfaces. All JDBC calls are sent to the JIDBC driver manager, which
passes the call to the specified driver.

There are four types of JDBC drivers:

e Type1lJDBC-ODBC bridge — translates JDBC calls into ODBC calls and
passes them to an ODBC driver. Some ODBC software must be resident
on the client machine. Some client database code may also reside on the
client machine.

e TypeZ2 native-API partly-Java driver — converts JDBC calls into database-
specific calls. This driver, which communicates directly with the database
server, also requires some binary code on the client machine.

« Type3net-protocol all-Javadriver — communicates to a middle-tier server
using a DBMS-independent net protocol. A middle-tier gateway then
converts the request to a vendor-specific protocol.

« Type 4 native-protocol all-Java driver — converts JDBC calls to the
vendor-specific DBMS protocol, allowing client applications direct
communication with the database server.

What is jConnect?

jConnect is Sybase’s high-performance JDBC driver. jConnect is both a:
* Net-protocol/all-Java driver within a three-tier environment, and a
* Native-protocol/all-Java driver within a two-tier environment.

The protocol used by jConnect is TDS 5.0 (Tabular Data Stream™, version 5),
the native protocol for Adaptive Ser{feand Open Server™ applications.
jConnect implements the JDBC standard to provide optimal connectivity to the
complete family of Sybase products, allowing access to over 25 enterprise and
legacy systems, including:

e Adaptive Server Enterprise
e Adaptive Server Anywhere
« Adaptive Server 1Q (formerly Sybase IQ™)

* Replication Server®

CHAPTER 1 Introduction

¢ OmniConnect™

Note Since changing the name of Sybase SQL Server™ to Adaptive Server
Enterprise, Sybase may use the names Adaptive Server and Adaptive Server
Enterprise to refer collectively to all supported versions of Sybase SQL Server
and Adaptive Server Enterprise.

In addition, jConnect for JDBC can access Oracle, AS/400, and other data
sources using Sybase DirectConnect™,

In some instances, jConnect’s implementation of JDBC deviates from the
JDBC 1.x or 2.x specifications. For more information ‘séendling
restrictions, limitations, and deviations from JDBC standards” on page 92

What is jConnect?

CHAPTER 2

Programming Information

This chapter describes the basic components and programming
requirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

Note For information about JDBC programming, go to
http://java.sun.com/jdbc.

To access the JDBC Guide: Getting Sarted manual for JIDBC 1.0, go to
http://java.sun.com/products/jdk/1.1/docs/guide/jdbc.

To access the JDBC Guide: Getting Sarted manual for JIDBC 2.0, go to
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/.

The following topics are included in this chapter:

Topics

Setting up jConnect

Establishing a connection

Implementing custom socket plug-ins
Handling internationalization and localization
Working with databases

Implementing advanced features

Handling restrictions, limitations, and deviations from JDBC
standards

Setting up jConnect

This section describes the tasks you need to perform before you use
jConnect.

Setting up jConnect

Setting the jConnect version
There are severa versions of jConnect; use a version setting to determine;
e The default value of the LANGUAGE connection property.
e The version-specific features that are available.

e The default character set, if no character set is specified through the
CHARSET connection property.

e The default value of the CHARSET _CONVERTER connection property.

e The default value of the CANCEL_ALL connection property, which is
used to set the behavior &fitement.cancel(), which by default cancels
the object on which it is invoked and any othierement objects that have
begun to execute and are waiting for results.

e Whether you are requesting support for wide tables from the server.

« Whether you would like to request server support for storing character
data inunichar (Unicode) columns.

Note Only Adaptive Server Enterprise version 12.5 and later support wide
tables andinichar character data.

Table 2-1lists the version settings available and their features.

CHAPTER 2 Programming Information

Table 2-1: jConnect version settings and their features

Version
constant Features Comments
VERSION_6 » jConnect requests support for th@char For jConnect version 5.x, the default is
andunivarchar datatypes from the server. VERSION_5.
This request is ignored by servers other thay additional information, see the comments
Adaptive Server Enterprise 12.5 and latery; vERSION 4.
* jConnect requests support for wide tables For more information on wide tables, see
from the server. This request is ignored by\yjige table support for Adaptive Server
servers other than Adaptive Server version 12.5” on page 45
Enterprise 12.5 and later. . . .
For more information onnichar and
* The default value of the LANGUAGE univarchar datatypes and Unicode, séésing
connection property is null. jConnect to pass Unicode data” on page 32
» If the CHARSET connection property does
not specify a character set, jConnect uses the
database’s default character set.The default
value for CHARSET_CONVERTER is the
PureConverter class.
Note If the server is set to suppartichar
andunivarchar datatypes, the settings you
make for CHARSET and
CHARSET_CONVERTER will be ignored,
as jConnect will pass all character parameter
data using Unicode encoding.
« By default,Statement.cancel() cancels only
theStatement object it is invoked on.
» JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.
VERSION_5 ¢ The default value of the LANGUAGE For jConnect version 5.x, the default is

connection property is null. VERSION_5.

If the CHARSET connection property doed-or additional information, see the comments
not specify a character set, jConnect uses tfer VERSION_4.

database’s default character set.The default

value for CHARSET_CONVERTER is the

PureConverter class.

By default,Statement.cancel() cancels only
theStatement object it is invoked on.

JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

Setting up jConnect

Version
constant Features Comments
VERSION 4 * The default value of the LANGUAGE For jConnect version 4.x and earlier, the default

connection property is null. is VERSION_2.

« If the CHARSET connection property doesServer messages are localized according to the
not specify a character set, jConnect uses tlaguage setting in your local environment.
database’s default character set.The defadlhe languages supported are: Chinese, U.S.
value for CHARSET_CONVERTER is the English, French, German, Japanese, Korean,
PureConverter class. Portuguese, and Spanish.

» By default,Statement.cancel() cancels only The default behavior cftatement.cancel() is
the Statement object it is invoked on. JDBC-compliant.

« JDBC 2.0 methods can be used to store attbe CANCEL_ALL to set the behavior of

retrieve Java objects as column data. Statement.cancel(). Se€'CANCEL_ALL
connection property” on page .10

For information on Java objects as column
data, seéStoring Java objects as column data
in a table” on page 73

VERSION_3 ¢ The default value of the LANGUAGE The default is VERSION_2.
connection property is us_english. See the comments for VERSION_2.
« If the CHARSET connection property does

not specify a character set, jConnect uses the
database’s default character set.

e The default value for
CHARSET_CONVERTER is the
PureConverter class.

» By default,Statement.cancel() cancels the
object it is invoked on and any other
Statement objects that have begun to
execute and are waiting for results.

CHAPTER 2 Programming Information

Version
constant Features Comments
VERSION_2 * The default value of the LANGUAGE The default version setting for jConnect

connection property is us_english. version 2.x is VERSION_2.

« If the CHARSET connection property doesThe LANGUAGE connection property
not specify a character set, the default determines the language in which messages

character set is iso_1. from jConnect and the server appear.
* The default value for For information on the CHARSET and

CHARSET_CONVERTER is the CHARSET_CONVERTER connection

TruncationConverter class, unless the classes, segConnect character-set

CHARSET connection property specifies a&onverters” on page 33

multibyte or 8-bit character set, in which The VERSION 2 default behavior of
case the default CHARSET_CONVERTERs e ment.cancel() is not JDBC-compliant.

is thepureConverter class. Use CANCEL_ALL to set the behavior of
» By default,Statement.cancel() cancels the Statement.cancel(). Se€'CANCEL_ALL
object it is invoked on and any other connection property” on page.10

Statement objects that have begun to
execute and are waiting for results.

The version values are constant values from the SybDriver class. When
referring to the version constant, use this syntax:

com sybase. j dbcx. SybDri ver. VERSI ON_5

Use SybDriver.setVersion() to set the jConnect version. The following code
samples show how to load the jConnect driver and set the version.

For jConnect 4.x:

i mport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)
Cl ass. forNane ("com sybase.jdbc. SybDriver").new nstance();
sybDri ver. set Versi on
(com sybase. j dbcx. SybDri ver. VERSI ON_4) ;
Driver Manager.regi sterDriver(sybDriver);

For jConnect 5.x:

i mport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. f or Nane

("com sybase. j dbc2.j dbc. SybDriver").new nstance();
sybDri ver. set Ver si on

(com sybase. j dbcx. SybDri ver. VERSI ON_5) ;
Driver Manager.regi sterDriver(sybDriver);

For wide table support with jConnect 4.x and 5.x:

Setting up jConnect

To enablewidetable support with Adaptive Server Enterprise version 12.5 and
later, use SybDriver.setVersion() to set the jConnect version to 6:

sybDri ver. set Ver si on
(com sybase. j dbcx. SybDri ver. VERSI ON_6) ;

You can call setVersion() multiple times to change the version setting. New
connectionsinherit the behavior associated with the version setting at the time
the connection was made. Changing the version setting during a session does
not affect the current connection.

As described in the next section, you can use JCONNECT_VERSION to
override the SybDriver version setting and specify adifferent version setting for
a specific connection.

JCONNECT_VERSION connection property

Use JCONNECT_VERSION to specify the version setting for a specific
session.You can set JCONNECT_VERSION to an integer value of “2,” “3,”
“4,” “5," or “6” depending on the characteristics you want ($eble 2-).

CANCEL_ALL connection property

CANCEL_ALL is a Boolean-valued connection property for specifying the
behavior of thestatement.cancel() method.

Note In jConnect version 4.0 and earlier, the default for CANCEL_ALL is
true. In jConnect version 4.1 and later, to comply with the JDBC specification,
if you set the connection property JCONNECT_VERSION to “4” or above, the
default setting for CANCEL_ALL is false.

The settings for CANCEL_ALL have the following effect on
Statement.cancel():

e If CANCEL_ALL is false, invokingStatement.cancel() cancels only the
Statement object it is invoked on. Thus, 4fmtA is aStatement object,
stmtA.cancel() cancels the execution of the SQL statement contained in
stmtA in the database, but no other statements are affected.is
canceled whether it is in cache waiting to execute or has started to execute
and is waiting for results.

e If CANCEL_ALL is true, invokingsStatement.cancel() cancels not only
the object it is invoked on, but also any otherement objects on the
same connection that have executed and are waiting for results.

10

CHAPTER 2 Programming Information

Thefollowing example sets CANCEL_ALL tofase. In the example, propsis
aProperties object for specifying connection properties.

-brops.put("CANCEL_ALL", "false");

Note To cancel the execution of all Statement objects on a connection,
regardless of whether or not they have begun execution on the server, use the
extension method SybConnection.cancel().

Invoking the jConnect driver

To register and invoke the Sybase jConnect driver, use either of two suggested
methods:

For jConnect 4.x:
Cl ass. for Nane("com sybase. j dbc. SybDriver"). new nstance();

For jConnect 5.x:
Cl ass. for Name("com sybase. j dbc2. j dbc. SybDri ver"). newl nstance();

Add the jConnect driver to the jdbc.drivers system property. At initialization,
the DriverManager class attempts to load the driverslisted in jdbc.drivers. This
islessefficient than the previous approach. You can list multiple driversin this
property, separated with acolon (:). The following code samples show how to
add a driver to jdbc.drivers within a program:

For jConnect 4.x:
Properties sysProps = System getProperties();
String drivers = "com sybase.jdbc. SybDriver";
String oldDrivers =
sysProps. get Property("jdbc.drivers");
if (oldDrivers !'= null)
drivers += ":" + ol dDrivers;
sysProps. put ("jdbc.drivers", drivers.toString());

For jConnect 5.x:

Properties sysProps = System getProperties();
String drivers = "com sybase. jdbc2.jdbc. SybDriver"
String oldDrivers =
sysProps. get Property("jdbc.drivers");
if (oldDrivers !'= null)

drivers += ":" + ol dDrivers;

11

Establishing a connection

sysProps. put ("jdbc.drivers", drivers.toString());

Note System.getProperties() isnot allowed for Java applets. Use the
Class.forName() method, instead.

Establishing a connection

This section describes how to establish a connection to an Adaptive Server
Enterprise or Adaptive Server Anywhere database using jConnect.

Setting connection properties

Table 2-2 lists the connection properties for jConnect and indicates their
default values. You must set the connection properties before you make a
connection.

There are two ways to set the driver connection properties:
e Use theDriverManager.getConnection() method in your application.
« When you define the URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To obtain a current list of properties for any driver, use the
Driver.getDriverPropertyInfo(String url, Properties props), whichreturns an array
of DriverPropertylnfo objects. The array lists:

e The driver properties
e The current settings on which the driver properties are based
e The URL andbrops passed in

Driver connection property names are not case-sensitive (jConnect uses the
String.equalsignoreCase(String) method to compare property hames).

12

CHAPTER 2 Programming Information

Table 2-2: Connection properties

Property

Description Default value

APPLICATIONNAME

A user-defined property. The server sidecanbe Null
programmed to interpret the value given to this

property.

BE_AS JDBC_COMPLIANT_
AS_POSSIBLE

Adjusts other properties to ensure that jConnect false
methods respond in away that is ascompliant as
possible with the JDBC 2.0 standard.

These properties are affected (and overridden)
when this property is set to true:

« CANCEL_ALL (set to false)

 LANGUAGE CURSOR (set to true for
jConnect 4., set to false for jConnect 5.x)

e SELECT_OPENS_CURSOR (set to true)
FAKE_METADATA (set to true)

GET_BY_NAME_USES_COLUMN_LABEL
(set to false)

CANCEL_ALL

Determines the behavior of the Depends on version
Statement.cancel() method. See setting (seéSetting
“CANCEL_ALL connection property” on page the jConnect version”
10. on page 6

CHARSET

Specifies the character set for strings passed Null
through TDS. If you specify a CHARSET, it
must match a CHARSET listed $gischar sets.

If null, jConnect uses the server’s default
CHARSET.

CHARSET_CONVERTER_CLASS

Use this property to specify the character-seversion dependent
converter class you want jConnect to use.
jConnect uses the version setting from
SybDriver.setVersion() to determine the default
character-set converter class to use. See
“Selecting a character-set converter” on page 34
for details.

CONNECTION_FAILOVER

For use with the Java Naming and Directory true
Interface (JNDI). See
“CONNECTION_FAILOVER connection
property” on page 24

DYNAMIC_PREPARE

Determines whether dynamic SQL prepared false
statements are precompiled in the database. See
“DYNAMIC_PREPARE connection property”

on page 114

13

Establishing a connection

Property

Description Default value

FAKE_METADATA

When you call the ResultSetMetaData methods — true
getCatalogName, getSchemaName, and
getTableName and this property isset to true, the

call will return empty strings ("") because the

server does not supply useful metadata.

When this property is set to false, calling these
methods throws a “Not Implemented”
SQLException.

Note If you have enabled wide tables and are
using an Adaptive Server 12.5 or later, this
property setting is ignored, because the server
does supply useful metadata.

GET_BY_NAME_USES_
COLUMN_LABEL

Provides backward compatibility with versionstrue
of jConnect previous to 4.5/5.5.

With Adaptive Server Enterprise version 12.5,
jConnect has access to more metadata than was
previously available. Previous to version 12.5,
column name andcolumn alias meant the same
thing. jConnect can now differentiate between
the two when used with a 12.5 or later Adaptive
Server with wide tables enabled.

To preserve backward compatibility, set this
property to true.

If you want calls to getByte, getint, geBt(ing
columnName) to look at the actual name for the
column (called for in the JDBC 2.0
specification), set this property to false.

EXPIRESTRING

A read-only property that contains the licenseNever
expiration date. Expiration is never except for
evaluation copies of jConnect.

HOSTNAME

The name of the current host. None

HOSTPROC

Identifies the application’s process on the hodtione
machine.

IGNORE_DONE_IN_PROC

When set to true, intermediate update resultS#étse
in stored procedures) are not returned, only the
final result set.

JCONNECT_VERSION

14

Use this property to set version-specific 5
characteristics. SE6CONNECT_VERSION
connection property” on page .10

CHAPTER 2 Programming Information

Property Description Default value

LANGUAGE Set this property for error messages returned Version dependent (see
from the server and for jConnect messages. It “Setting the jConnect
must match alanguage in syslanguages. version” on page)6

LANGUAGE_CURSOR

Set this property to true if you want jConnect false
use “language cursors” instead of “protocol
cursors.”

See“Cursor performance” on page 116

LITERAL_PARAMS

This property is for use only with Adaptive false
Server Anywhere, which requires you to send
prepared statement parameters as literals. For all
other Sybase databases, this property can be set
to false.

When set to true, any parameters set by the
setXXX methods in th@reparedStatement
interface are inserted literally into the SQL
statement when it is executed.

If set to false, parameter markers are left in the
SQL statement and the parameter values are sent
to the server separately.

PACKETSIZE

Network packet size. 512

PASSWORD

Login password. None

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if usinggetConnection(String, Props).

PROTOCOL_CAPTURE

The PROTOCOL_CAPTURE connection Null
property is used to specify a file for capturing
TDS communication between an application and
an Adaptive Server.

PROXY

Gateway address. For the HTTP protocol, theNone
URL is http://host: port.

To use the HTTPS protocol that supports
encryption, the URL is
https:/host:port/serviet_alias.

REMOTEPWD

Remote server passwords for access via servidpne
to-server remote procedure calls. See

“Performing server-to-server remote procedure
calls” on page 43

REPEAT_READ

Determines whether the driver keeps copies d¢fue
columns and output parameters so that columns
can be read out of order or repeatedly. See
“REPEAT_READ connection property” on
page 108

15

Establishing a connection

Property

Description Default value

REQUEST HA_SESSION

This property indicates whether the connecting false
client wantsto begin aHA failover session with
aversion 12 or later Adaptive Server configured

for failover.

Setting this property to true causes jConnect to
attempt afailover login. If you do not set this
connection property, afailover session will not
start, evenif the server is configured for failover.

You cannot reset the property once a connection
has been made.

If you want more flexibility for requesting
failover sessions, code the client application to
set REQUEST_HA_SESSION &t runtime.

SELECT_OPENS_CURSOR

If set to true, callsto false
Statement.executeQuery() will automatically

generate a cursor when the query contains a

“FOR UPDATE” clause.

If you have previously called
Statement.setFetchSize() or
Statement.setCursorName() on the same
statement, a setting of true for
SELECT_OPENS_CURSOR has no effect.

Note You may experience some performance
degradation when SELECT_OPENS_CURSOR
is set to true.

See"Using cursors with result sets” on page 47
for more information on using cursors with
jConnect.

SERIALIZE_REQUESTS

If set to true, jConnect waits for responses frdatse
the server before sending additional requests.

SERVICENAME The name of a back-end database server thatNone
DirectConnect gateway serves. Also used to
indicate the database to which Adaptive Server
Anywhere wants to connect.

SESSION_ID When this property is set, jConnect assumes tRat|

16

an application is trying to resume
communication on an existing TDS session held
open by the TDS-tunnelling gateway. jConnect
skips the login negotiations and forwards all
requests from the application to the specified
session ID.

CHAPTER 2 Programming Information

Property

Description Default value

SESSION_TIMEOUT

Use this property to specify the amount of time ~ Null
(in seconds) that an http-tunnelled session

(created using the jConnect TDS-tunnelling

servlet) will remain alive whileidle. After the
specified time, the connection will be

automatically closed. For more information

about the TDS-tunnelling servlet, see page 130.

SQLINITSTRING

Usethis property to defineaset of commandsto Null
be passed to the back-end database server. These

must be SQL commands that can be executed

using the Statement.executeUpdate() method.

SYBSOCKET_FACTORY

Use this property to enablejConnect touseyour Null
custom socket implementation.

Set SYBSOCKET_FACTORY either to:

» The name of a class that implements
com.sybase.jdbcx.SybSocketFactory; or

* “DEFAULT,” which instantiates a new
java.net.Socket()

See'Implementing custom socket plug-ins” on

page 27
STREAM_CACHE_SIZE Maximum size used to cache statement respoNsé (unlimited cache
streams. size)

USE_METADATA

When set to true, @atabaseMetaData object true
will be created and initialized when you

establish a connection. ThetabaseMetaData

object is necessary to connect to a specified
database.

jConnect usedatabaseMetaData for some
features, including Distributed Transaction
Management support (JTA/JTS) and dynamic
class loading (DCL).

If you receive error 010SJ, which indicates that
your application requires metadata, install the
stored procedures for returning metadata that
come with jConnect (see “Installing Stored
Procedures” in Chapter 3 of theonnect for

JDBC Installation Guide).

USER

Login ID. None

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if usinggetConnection(String, Props).

17

Establishing a connection

Property Description Default value
VERSIONSTRING Read-only version information for the JDBC jConnect driver
driver. version

Thefollowing codeisan example of setting connection properties. The sample
programs provided with jConnect also contain examples of setting these

properties.
Properties props = new Properties();
props. put("user", "userid");
props. put ("password", "user_password");
/*

* |f the programis an applet that wants to access

* a server that is not on the same host as the

* web server, then it uses a proxy gateway.

*/

props. put ("proxy", "/local host: port");

/*

* Make sure you set connection properties before

* attenpting to nake a connection. You can al so

* set the properties in the URL.

*/

Connection con = DriverManager. get Connecti on
("jdbc: sybase: Tds: host: port", props);

Connecting to Adaptive Server Enterprise

In your Javaapplication, definea URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is:

j dbc: sybase: Tds: host: port
where:
jdbc:sybase — identifies the driver.
Tds — the Sybase communication protocol for Adaptive Server.

host: port — the Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASEY\ini\sgl.ini (Windows) for the
entry that your database or Open Server application uses. Obthaositipert
from the “query” entry.

You can connect to a specific database using this format:

18

CHAPTER 2 Programming Information

Example

j dbc: sybase: Tds: host: port/dat abase

Note To connect to a specific database using Adaptive Server Anywhere 6.x
or 7.x or DirectConnect, use the SERVICENAME connection property to
specify the database name instead of “/database.”

The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps. put ("user", "userid");
SysProps. put ("password", " user_password");
String url = "jdbc: sybase: Tds: myserver: 3697";
Connecti on_con =

Dri ver Manager . get Connecti on(url, SysProps);

URL connection property parameters

You can specify the values for the jConnect driver connection properties when
you define a URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To set a connection property in the URL, append the property name and its
value to the URL definition. Use this syntax:

j dbc: sybase: Tds: host: port/ dat abase?
property_nane=val ue

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

j dbc: sybase: Tds: nyserver: 1234/ nydat abase?
LI TERAL_PARANMS=t r ue&PACKETSI ZE=512&HOSTNAVE=ny host

If the value for one of the connection properties contains “&,” precede the “&”
in the connection property value with a backslash (\). For example, if your host
name is “a&bhost,” use this syntax:

j dbc: sybase: Tds: nyserver: 1234/ nydat abase?
LI TERAL PARANMS=t r ue&PACKETSI ZE=512&HOSTNANME=
a\ &host

19

Establishing a connection

Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=ny host
not:

HOSTNAME=" nyhost "

Connecting to Adaptive Server Anywhere

To use jConnect with Adaptive Server Anywhere, you should upgrade to
Adaptive Server Anywhere version 6.x or 7.X.

Connecting to Adaptive Server Anywhere 5.x.x

If you have to connect to Adaptive Server Anywhere version 5.x.x via
jConnect, you must run the Adaptive Server Anywhere Open Server Gateway
dbos50, which is distributed with Adaptive Server Anywhere.

Note Thefreedownload version of Adaptive Server Anywhere, availablefrom
the Powersoft Web site, does not include this Open Server Gateway. Call
Powersoft at (800) 265-4555 to receive a CD that includes the Open Server
Gateway and the required Open Server DLLs. You will be charged only for
shipping and handling.

1 Install Open Server Gateway 5.5.x3 or later and the Open Server DLLs.
Use Open Server DLLs, version 11.1.

2 Add an entry for the gateway to your %SYBASE%\ini\sgl.ini file (using,
for example, sqledit).

3 Start the gateway by entering:
start dbos50 gateway- deno
where gateway-demo is the gateway name defined in step 2.

4 When the Open Server Gateway is running, you can define a connection
asfollows:

j dbc: sybase: Tds: host: port

20

CHAPTER 2 Programming Information

host is the host name where the Adaptive Server Anywhere and Open
Server gateway is running, and port is the port number defined in sql.ini.

Note To support multiple Adaptive Server Anywhere databases, use sgledit to
add an entry with a different port for each database, then run the Open Server
Gateway for each database.

Connecting to a server using JNDI

InjConnect 4.0 and later, you can use the JavaNaming and Directory Interface
(INDI) to provide connection information, which offers:

¢ A centralized location where you can specify host names and ports for
connecting to a server. You do not need to hard code a specific host and
port number in an application.

« A centralized location where you can specify connection properties and a
default database for all applications to use.

¢ The jConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVER is
set to true, jConnect attempts to connect to a sequence of host/port server
addresses in the JNDI name space until one succeeds.

To use jConnect with JNDI, you need to make sure that certain information is
available in any directory service that JNDI accesses and that required
information is set in th@vax.naming.Context class. This section covers the
following topics:

¢ Connection URL for using JNDI
¢ Required directory service information
¢ CONNECTION_FAILOVER connection property

¢ Providing JNDI context information

Connection URL for using JNDI

To specify that jConnect use JNDI to obtain connection information, place
“indi” as the URL's subprotocol after “sybase”:

j dbc: sybase: j ndi: protocol -i nfornation-for-use-wth-JNDI

21

Establishing a connection

Anything that follows “jndi” in the URL is handled through JNDI. For
example, to use JNDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

j dbc: sybase: jndi: | dap:// LDAP _host nane: port_nunber/servernane=

Sybasell, o=MyConpany, c=US

This URL tells JNDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the name
of a database server in an LDAP-specific form.

Required directory service information

22

When you use JNDI with jConnect, JNDI needs to return the following
information for the target database server:

e A host name and port number to connect to
e The name of the database to use

< Any connection properties that individual applications are not allowed to
set on their own

This information needs to be stored according to a fixed format in any directory
service used for providing connection information. The required format
consists of a numerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), followed
by the formatted information (s€Example 1" on page 23

Note You can use the alias name for to reference the attribute instead of the
OID. Se€‘Example 2" on page 24

Table 2-3shows the required formatting.

CHAPTER 2 Programming Information

dn:

s
1
1
1

. 3. 6.
.3.6.
.3.6.

Table 2-3: Directory service information for JNDI

Attribute description Alias OID (object_id)

Interfacesentry replacementin sybaseServer 136.1.4.1897.4.1.1

LDAP directory services

Collection point for sybaseServer 13.6.1.4.1.897.4.2

sybaseServer LDAP attributes

Version Attribute sybaseVersion 1.3.6.1.4.1.897.4.2.1

Servername Attribute sybaseServer 1.3.6.1.4.1.897.4.2.2

Service Attribute sybaseService 1.3.6.1.4.1.897.4.2.3

Status Attribute sybaseStatus 1.3.6.1.4.1.897.4.2.4

Address Attribute sybaseAddress 1.3.6.1.4.1.897.4.25

Security Mechanism Attribute sybaseSecurity 1.3.6.1.4.1.897.4.2.6

Retry Count Attribute sybaseRetryCount 1.3.6.1.4.1.897.4.2.7

Loop Delay Attribute sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8

jConnect Connection Protocol — sybaseJconnectProtocol 1.3.6.1.4.1.897.4.2.9

jConnect Connection Property sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10

Database Name sybaseDatabasename 1.3.6.1.4.1.897.4.2.11

High Availability Failover sybaseHA servername 1.3.6.1.4.1.897.4.2.15

Servername Attribute

ResourceManager Name sybaseResourceManager 1.3.6.1.4.1.897.4.2.16
Name

ResourceManager Type sybaseResourceManager 1.3.6.1.4.1.897.4.2.17
Type

JDBCDataSource Interface sybaseJdbcDataSource- 1.3.6.1.4.1.897.4.2.18
Interface

ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19

Note Attributesin italics are required.

Thefollowing examples show connection information entered for the database
server SYBASE11 under an LDAP directory service. Example 1 uses the

attribute’s OID Example 2uses the attribute’s alias, which is case insensitive.

You can use either the OID or the alias.

Example 1

server nane=SYBASE11, o=MyConpany, c=US
erver nane: SYBASE11l

1.4.1.897.4.2.5: TCP#1#gi otto 1266

1.
1

4.1.897.4.2.5: TCP#l1#gi otto 1337
.4.1.897. 4. 2. 5: TCP#1#st andbyl 4444

23

Establishing a connection

dn:

3.6.1.4.1.897. 4. 2. 10: REPEAT_READ=f al se&PACKETSI ZE=1024
3.6.1.4.1.897.4.2.10: CONNECTI ON_FAI LOVER=t r ue
3.6.1.4.1.897.4.2.11: pubs2
3.6.1.4.1.897.4.2.9:Tds

Example 2
server nane=SYBASE11, o=MyConpany, c=US

server nanme: SYBASE11l

sybaseAddr ess: TCP#1#gi otto 1266

sybaseAddr ess: TCP#1#gi otto 1337

sybaseAddr ess: TCP#1#st andbyl 4444

sybaseJconnect Property: REPEAT _READ=f al se&PACKETSI ZE=1024
sybaseJconnect Property: CONNECTI ON_FAI LOVER=t r ue
sybaseDat abasenane: pubs2

sybaseJconnect Prot ocol : Tds

In these examples, SY BASE11 can be accessed through either port 1266 or

port 1337 on host “giottoAnd it can be accessed through port 4444 on host
“standbyl.” Two connection properties, REPEAT _READ and PACKETSIZE,
are set within one entry. The CONNECTION_FAILOVER connection

property is set as a separate entry. Applications connecting to SYBASE11 are
initially connected with theubs2 database. You do not need to specify a
connection protocol, but if you do, you must enter the attributeds,not

“TDS".

CONNECTION_FAILOVER connection property

24

CONNECTION_FAILOVER is a Boolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

If CONNECTION_FAILOVER is set to true, jConnect makes multiple

attempts to connect to a server. If one attempt to connect to a host and port
number associated with a server fails, jConnect uses JNDI to get the next host
and port number associated with the server and attempts to connect through
them. Connection attempts proceed sequentially through all the hosts and ports
associated with a server.

For example, suppose CONNECTION_FAILOVER is set to true, and a
database server is associated with the following hosts and port numbers, as in
the earlier LDAP example:

1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1266
1.3.6.1.4.1.897.4.2.5: TCP#1#gi otto 1337
1.3.6.1.4.1.897.4.2.5: TCP#1#st andby 4444

CHAPTER 2 Programming Information

To get a connection to the server, jConnect tries to connect to the host “giotto”
at port 1266. If this fails, jConnect tries port 1337 on “giotto.” If this fails,
jConnect tries to connect to host “standbyl” through port 4444,

The default for CONNECTION_FAILOVER is true.

If CONNECTION_FAILOVER is set to false, jConnect attempts to connect to
an initial host and port number. If the attempt fails, jConnect throws a SQL
exception and does not try again.

Providing JNDI context information

To use jConnect with JNDI, a developer should be familiar with the JNDI
specification from Sun Microsystems, available from the Web:

http://java.sun.com/products/jndi

In particular, the developer needs to make sure that required initialization
properties are set javax.naming.directory.DirContext when JNDI and jConnect

are used together. These properties can be set either at the system level or at
runtime.

Two key properties are:
e Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of the initial context
factory for JNDI to use. This determines the JNDI driver that is used with
the URL specified in the Context. PROVIDER_URL property.

* Context.PROVIDER_URL

This property takes the URL of the directory service that the driver (for
example, the LDAP driver) is to access. The URL should be a string, such
as “ldap://ldaphost:427".

The following example shows how to set context properties at runtime and how
to get a connection using JNDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property is set to invoke Sun
Microsystem'’s implementation of an LDAP service provider. The
PROVIDER_URL context property is set to the URL of an LDAP directory
service located on the host “Idap_serverl” at port 983.

Properties props = new Properties();
/* We want to use LDAP, so I N TI AL _CONTEXT FACTORY is set to the

* class nane of an LDAP context factory. In this case, the
* context factory is provided by Sun’s implementation of a

25

Establishing a connection

* driver for LDAP directory service.

*/

props. put (Cont ext. | Nl TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . | dap. LdapCt xFact ory");

/* Now, we set PROVIDER URL to the URL of the LDAP server that
* is to provide directory information for the connection.

*/

pr ops. put (Cont ext. PROVI DER_URL, "I dap://I|dap_server1:983");

/* Set up additional context properties, as needed. */
props. put ("user", "xyz");
props. put ("password", "123");

/* get the connection */

Connection con = DriverManager. get Connecti on
("jdbc: sybase:jndi:|ldap://1dap_server1: 983" +
"/ server nane=Sybasell, o=MyConpany, c=US", pr ops) ;

The connection string passed to getConnection() contains LDAP-specific
information, which the developer must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to INDI to be used ininitializing a server, asin the
following jConnect code:

javax. nam ng. directory. DirContext ctx =
new j avax. nam ng. directory. | nitial D rContext(props);

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes(), asin the following example, where ctxisa
DirContext object:

javax. nam ng.directory. Attributes attrs =
ctx.getAttributes(ldap://|dap_server1l: 983/ server nane=
Sybasell, SYBASE_SERVER ATTRI BUTES);

In the example, SYBASE_SERVER _ATTRIBUTES isan array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.

26

CHAPTER 2 Programming Information

Implementing custom socket plug-ins

E I S T I

~

This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket is an example of a socket that you could customize to
enable encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket.For ajConnect version 4.1 or later driver to load a custom
socket, an application must:

¢ Implement this interface
¢ Define thecreateSocket(..) method

jConnect uses the new socket for its subsequent input/output operations.
Classes that implemefaybSocketFactory create sockets and provide a general
framework for the addition of public socket-level functionality.

*

Returns a socket connected to a Server Socket on the named host,
at the given port.

@ar am host the server host

@aram port the server port

@aram props Properties passed in through the connection
@eturns Socket

@xception | OExcepti on, UnknownHost Excepti on

public java.net. Socket createSocket(String host, int port, Properties props)
throws | OException, UnknownHost Excepti on;

Passing in properties allows instances\afSocketFactory to use connection
properties to implement an intelligent socket.

27

Implementing custom socket plug-ins

When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factoriesthat create socketsto the application. You
can customize factories with parameters used in socket construction. For
example, you could customize factories to return sockets with different
networking time outs or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory isintended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.* if desired.

To use a custom socket with jConnect:

1 ProvideaJavaclassthat implements com.sybase.jdbcx. SybSocketFactory.
See “Creating and configuring a custom socket” on page 28

2 Setthe SYBSOCKET_FACTORY connection property so that jConnect
can use your implementation to obtain a socket.

SYBSOCKET_FACTORY connection property

To use a custom socket with jConnect, set the SYBSOCKET_FACTORY
connection property to a string that is either:

e The name of a class that implemenits.sybase.jdbcx.SybSocketFactory
or
» DEFAULT, which instantiates a newwa.net.Socket()

See'Setting connection properties” on pageftRinstructions on how to set
SYBSOCKET_FACTORY.

Creating and configuring a custom socket

Once jConnect obtains a custom socket, it uses the socket to connect to a server.
Any configuration of the socket must be completed before jConnect obtains it.

28

CHAPTER 2 Programming Information

This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

Note Currently, only Adaptive Server version 12.5 and later supports SSL.

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configure it, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory toimplement SSL. It containstwo createSocket
methods—one foBSL SocketFactory and one foBybSocketFactory—that:

*« Create an SSL socket

¢ InvokeSSLSocket.setEnableCipherSuites() to specify the cipher suites
available for encryption

¢ Return the socket to be used by jConnect

Example

public class MySSLSocket Factory extends SSLSocket Factory
i mpl ements SybSocket Fact ory
{
/**
* Create a socket, set the cipher suites it can use, return
* the socket.
* Denonstrates how cither suites could be hard-coded into the
* i npl erent ati on.
*
* See javax. net.SSLSocket Fact or y#cr eat eSocket
*/
public Socket createSocket(String host, int port)
throws | OException, UnknownHost Exception
{
/1 Prepare an array containing the cipher suites that are to
/'l be enabl ed.
String enabl eThese[] =

{
"SSL_DH DSS EXPORT W TH DES40_ CBC SHA',
"SSL_RSA EXPORT_W TH_RC2_CBC 40 _MD5",
"SSL_DH RSA EXPORT_W TH_DES40_CBC_SHA"

}

Socket s =

SSLSocket Fact ory. get Defaul t (). creat eSocket (host, port);

29

Implementing custom socket plug-ins

*

~

E I R T S R S R I N N N B g

~

((SSLSocket) s) . set Enabl edCi pher Sui t es(enabl eThese) ;
return s;

Return an SSLSocket .
Denonstrates how to set cipher suites based on connection
properties |ike:
Properties _props = new Properties();
Set other url, password, etc. properties.
_props. put (("Cl PHER _SUI TES_1",
"SSL_DH DSS EXPORT_W TH_DES40_CBC_SHA");
_props. put ("Cl PHER_SUl TES_2",
"SSL_RSA EXPORT_W TH_RC2_CBC_40_MDd5") ;
_props. put ("Cl PHER_SUl TES_3",
"SSL_DH RSA EXPORT_W TH _DES40_CBC_SHA");
_conn = _driver.getConnection(url, _props);

See com sybase. j dbcx. SybSocket Fact or y#cr eat eSocket

public Socket createSocket(String host, int port,

30

Properties props)
throws | OException, UnknownHost Exception

/'l check to see if cipher suites are set in the connection
/'l properites

Vector cipherSuites = new Vector();

String cipherSuitevVal = null;

int cipherlndex = 1;

do

i f((cipherSuiteVal = props.getProperty("C PHER SU TES "

+ ci pherl ndex++)) == null)
{

i f(cipherlndex <= 2)

{
/1 No cipher suites available
/1l return what the object considers its default
/1 SSLSocket, with cipher suites enabl ed.
return createSocket (host, port);

}

el se

{
/'l we have at |east one cipher suite to enable
/'l per request on the connection
br eak;

}

CHAPTER 2 Programming Information

el se
}
/1 add to the cipher suit Vector, so that
/1 we may enabl e them toget her
ci pher Sui t es. addEl enent (ci pher Sui teVal) ;
}
}
whil e(true);

/1 lets you create a String[] out of the created vector
String enabl eThese[] = new String[cipherSuites.size()];
ci pher Sui t es. copyl nt o(enabl eThese) ;
/1 enabl e the cipher suites
Socket s =
SSLSocket Factory. get Defaul t (). creat eSocket

(host, port);
((SSLSocket) s) . set Enabl edCi pher Sui t es(enabl eThese) ;
/'l return the SSLSocket
return s;

}

/1 ot her nethods

Since jConnect requires no information about the kind of socket it is, you must
complete any configuration before you return a socket.

For additional information, see:

e Encrypt.java — located in theample (jConnect 4.x) andample2
(jConnect 5.x) subdirectories of your jConnect directory, this sample
shows you how to use tlsgbSocketFactory interface with jConnect
applications.

e MySSL SocketFactory.java — also located in theample (jConnect 4.x) and
sample2 (jConnect 5.x) subdirectories your jConnect directory, this is a
sample implementation of tt#&bSocketFactory interface that you can
plug in to your application and use.

Handling internationalization and localization

This section discusses internationalization and localization issues relevant to
jConnect.

31

Handling internationalization and localization

Using jConnect to pass Unicode data

32

With the release of Adaptive Server Enterprise 12.5, database clients can take
advantage of two new server datatypes, unichar and univarchar, which allow for
the efficient storage and retrieval of Unicode data.

Quoting from the Unicode Standard, version 2.0:

“The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding characters and text. The repertoire of this international character code
for information processing includes characters for the major scripts of the
world, as well as technical symbols in common. The Unicode character
encoding treats alphabetic characters, ideographic characters, and symbols
identically, which means they can be used in any mixture and with equal
facility. The Unicode Standard is modeled on the ASCII character set, but uses
a 16-bit encoding to support full multilingual text.”

This means that the user can designate database table columns to store Unicode
data, and clients, such as jConnect, can efficiently store Unicode data directly,
without the overhead of conversion.

Two things must happen for jConnect to take advantage of this feature:

* The database server must have the UTF-8 character set loaded as its
default character set.

« When you connect to the server using jConnect, you must set the
JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

When these two conditions are met, jConnect can properly store and retrieve
Unicode data from the database. Where this feature is enabled, your jConnect
application will continue to behave as expected. That is, your JDBC calls to
such methods aseparedStatement.setString (int column, String value) do not

need to be modified just because you have set the JCONNECT_VERSION to
6 and turned on the server capability.

Where the difference will be seen, however, is in the “under the covers” work
done by jConnect in communicating character data to the server. Where you are
storing data in a database column designed to hold Unicode data, or when you
are selecting Unicode data from such a column, jConnect performs all the
necessary conversions.

CHAPTER 2 Programming Information

A side effect isthat when the above two conditions are met, and the unichar and
univarchar datatypes setting is turned on, the CHARSET and
CHARSET_CONVERTER connection property settings are ignored by
jConnect. This is because with unichar enabled, all character datais passed to
the server as Unicode data; therefore the CHARSET setting isirrelevant, and
all conversion is handled internally by jConnect.

Note For more information on support for unichar and univarchar datatypes, see
the Adaptive Server Enterprise version 12.5 manuals.

jConnect character-set converters

jConnect uses specia classes for all character-set conversions. By selecting a
character-set converter class, you specify how jConnect should handle
single-byte and multibyte character-set conversions, and the performance
impact the conversions will have on your applications.

There are two character-set conversion classes. The conversion class that
jConnect usesisbased on the version setting (for example, VERSION_4), and
the CHARSET and CHARSET CONVERTER_CLASS connection
properties.

The TruncationConverter class works only with single-byte character sets
that use ASCII characters such as iso_1 and cp850. It does not work with
multibyte character sets or single-byte character sets that use non-ASCI|
characters.

Using theTruncationConverter class, jConnect 5.x handles character sets in
the same manner as jConnect version 2.2 TTtheationConverter class is
the default converter when the version setting is VERSION_2.

ThePureConverter class is a pure Java, multibyte character-set converter.
jConnect uses this class if the version setting is VERSION_4 or later.
jConnect also uses this converter with VERSION_2 if it detects a
character set specified in the CHARSET connection property that is not
compatible with th&runcationConverter class.

Although it enables multibyte character-set conversions, the
PureConverter class may negatively impact jConnect driver performance.
If driver performance is a concern, seeproving character-set
conversion performance” on page. 35

33

Handling internationalization and localization

Selecting a character-set converter

jConnect usesthe version setting from SybDriver.setVersion() to determine the
default character-set converter classto use. For VERSION_2, the default is
TruncationConverter. For VERSION_4 and later, the default is PureConverter.

You can also set the CHARSET_CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. Thisis
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set jConnect to VERSION_4 or later, but want to use the
TruncationConverter class rather than the multibyte PureConverter class, you
can set CHARSET_CONVERTER_CLASS:

For jConnect 4.x:

pr ops. put (" CHARSET_CONVERTER_CLASS",
"com sybase. utils. Truncati onConverter")

For jConnect 5.x:

pr ops. put (" CHARSET CONVERTER CLASS",
"com sybase.jdbc2. utils. Truncati onConverter")

Setting the CHARSET connection property

34

You can specify the character set to use in your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

« For VERSION_2, jConnect uses iso_1 as the default character set.

e For VERSION_3, VERSION_4, VERSION_5, and VERSION_6,
jConnect uses the database’s default character set, and adjusts
automatically to perform any necessary conversions on the client side.

You can also use thecharset command line option for theglApp application
to specify a character set.

To determine which character sets are installed on your Adaptive Server, issue
the following SQL query on your server:

sel ect nane from syscharsets
go

CHAPTER 2 Programming Information

For the PureConverter class, if the designated CHARSET does not work with

the client’s Java Virtual Machine (VM), the connection fails with a
SQLException, indicating that you must set CHARSET to a character set that is
supported by both Adaptive Server and the client.

When theTruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.

Improving character-set conversion performance

If you use multibyte character sets and need to improve driver performance,
you can use theunloConverter class provided with the jConnect samples. See
“Character-set conversion” on page ¥oBdetails.

Supported character sets

Table 2-4lists the Sybase character sets that are supported by jConnect. The
table also lists the corresponding JDK byte converter for each supported
character set.

Although jConnect supports UCS-2, currently no Sybase databases or open
servers support UCS-2.

Adaptive Server Enterprise version 12.5 supports a version of Unicode known
as the UTF-16 encoding.

Note You can still send Unicode data to a Sybase Adaptive Server version 12.5
and later by setting JCONNECT_VERSION property to VERSION_6, and by
having the server’s default character set as UTF-8.

The Sybassgjischaracter set does not include the IBM or Microsoft extensions
to JIS, whereas the JDK SJIS byte converter includes these extensions. As a
result, conversions from Java strings to a Sybase databassjissimay result

in character values that are not supported by the Sybase database. However,
conversions frongjison a Sybase database to Java strings should not have this
problem.

Table 2-4lists the character sets currently supported by Sybase.

Table 2-4: Supported Sybase character sets

SybCharset name JDK byte converter
ascii_7 8859 1
bigs Big5

35

Handling internationalization and localization

36

SybCharset name

JDK byte converter

cp037 Cp037
cp437 Cp437
cp500 Cp500
cp850 Cp850
cp852 Cp852
cp855 Cp855
cp857 Cp857
cp860 Cp860
cp863 Cp863
cp864 Cp864
cp866 Cp866
cp869 Cp869
cp874 Cp874
cp932 Cp932
cp936 Cp936
cp950 Cp950
cp1250 Cp1250
cpl251 Cp1251
cpl252 Cpl252
cpl253 Cpl1253
cpl254 Cpl254
cpl255 Cp1255
cpl256 Cpl256
cpl257 Cpl257
cpl258 Cp1258
deckanji EUCJIS
eucgb GB2312
eucjis EUCJIS
eucksc Cp949
ibm420 Cp420
ibm918 Cp918
iso_1 8859 1
15088592 8859-2
15088595 8859 5
15088596 8859 _6
5088597 8859 7
15088598 8859_8

CHAPTER 2 Programming Information

SybCharset name

JDK byte converter

15088599 8859 9
150885915 8859_15
koi8 KOI8 R
mac Macroman
mac_cyr MacCyrillic
mac_ee MacCentral Europe
macgreek MacGreek
macturk MacTurkish
§jis (see note) SIS

tis620 MS874

utf8 UTF8

European currency symbol support

jConnect version 4.1 and later support the use of the new European currency
symbol, or ‘turo” and its conversion to and from UCS-2 Unicode.

Theeuro has been added to the following Sybase character sets: cp1250,
cpl251, cpl252, cpl253, cpl254, cpl255, cpl256, cpl257, cpl258, cp874,
50885915, and utf8.

Character sets cp1257, cp1258, and iso885915 are new.
To use thesuro symbol:

* Use therureConverter class, a pure Java, multibyte character-set
converter. SegConnect character-set converters” on pagddsinore
information.

« Verify that the new character sets are installed on the server.

Theeuro symbol is currently supported only on Adaptive Server
Enterprise version 11.9.2 and later; Adaptive Server Anywhere does not
support thesuro symbol.

e Select the appropriate character set on the client:S8ggng the
CHARSET connection property” on page f&4 more information.

e Upgrade to JDK 1.1.7 or the Java™ 2 Platform.

37

Working with databases

Unsupported character sets

Thefollowing Sybase character sets are not supported in jConnect 5.x because
no JDK byte converters are analogous to the Sybase character sets:

« cpl047
* euccns
e greek8
* roman8
e turkish8

You can use these character sets withrthecationConverter class as long as
the application uses only the 7-bit ASCII subsets of these characters.

Working with databases

This section discusses database issues relevant to jConnect and includes these
topics:

* Implementing high availability failover support

« Performing server-to-server remote procedure calls

* Wide table support for Adaptive Server version 12.5

e Accessing database metadata

e Using cursors with result sets

e Support for batch updates

« Updating the database from the result set of a stored procedure

« Working with datatypes

38

CHAPTER 2 Programming Information

Implementing high availability failover support

Overview

jConnect versions 4.5 and 5.5 support the failover feature availablein Adaptive
Server Enterprise version 12.0 and later.

Note Sybasefailover in ahigh availability system is a different feature than
“connection failover.” Sybase strongly recommends that you read this section
very carefully if you want to use both.

Sybase failover allows you to configure two version 12.0 or later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Servers, each physically
located on a different machine, that are connected so that if one of the servers
is brought down, the other assumes its workload. The secondary Adaptive
Server acts as a “hot standby” and does not perform any work until failover
occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines. However, if failover occurs, either Adaptive Server can act
as a primary or secondary companion for the other Adaptive Server. In this
configuration, each Adaptive Server is fully functional with its own system
devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both machines.

You can enable failover in jConnect and connect a client application to an
Adaptive Server configured for failover. If the primary server fails over to the
secondary server, the client application also automatically switches to the
second server and reestablishes network connections.

Note Refer toUsing Sybase Failover in High Availability Systems for more
detailed information.

39

Working with databases

Requirements, dependencies, and restrictions

e You must have two version 12.0 or later Adaptive Servers configured for
failover.

* You must use jConnect version 4.2, 4.5, 5.2, or 5.5. Earlier driver versions
do not support this feature.

« Only changes that were committed to the database before failover are
retained when the client fails over.

« The client application connection must be made using JNDI. See
“Connecting to a server using JNDI” on page 21

« jConnect event notification does not work when failover occurs. See
“Using event notification” on page 66

* Close all statements when they are no longer used. jConnect stores
information on statements to enable failover. If you do not close
statements, you will experience memory leaks.

Implementing failover in jConnect

40

To implement failover support in jConnect:
1 Configure the primary and secondary Adaptive Servers for failover.

2 Include an entry for the primary server and a separate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry will have an attribute (the HA OID) that
refers to the entry for the secondary server.

Using LDAP as the service provider for JINDI, there are three possible
forms that this HA attribute can have:

« Reative Distinguished Name (RDN) — this form assumes that the
search base (typically provided by thea.naming.provider.url
attribute) combined with this attribute’s value is enough to identify
the secondary server. For example, assume the primary server is at
hostname:4200 and the secondary server is at hostname:4202:

dn: servernanme=hapri mary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#host name 4200
1.3.6.1.4.1.897.4.2.15: servernane=hasecondary
obj ectcl ass: sybaseServer

dn: servernane=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#host nane 4202

CHAPTER 2 Programming Information

obj ectcl ass: sybaseServer

« Distinguished Name (DN) — this form assumes that the HA attribute’s
value uniquely identifies the secondary server, and may or may not
duplicate values found in the search base. For example:

erver nane=hapri mary, o=Sybase, c=US
1.4.1.897.4.2.5: TCP#l#host nane 4200
1.4.1.897.4.2.15: servernane=hasecondary,
o=Sybase, c¢=US ou=Accounti ng

obj ectcl ass: sybaseServer

S
.3.6. 1.
.3.6. 1.

dn: servernane=hasecondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#host nane 4202
obj ectcl ass: sybaseServer

Notice thathasecondary is located in a different branch of the tree
(see the additionalu=Account i ng qualifier).

¢ Full LDAP URL - this form assumes nothing about the search base.

The HA attribute is expected to be a fully-qualified LDAP URL that
is used to identify the secondary (it may even point to a different
LDAP server). For example:

n: servernane=hafail over, o0=Sybase, c=US

1.897.4.2.5: TCP#1#host nane 4200

1.897.4.2.15: |dap://|dapserver: 386/ servernane=secondary,

o=Sybase, c¢=US ou=Accounti ng

obj ectcl ass: sybaseServer

R a

serve
6.1.4.
6.1.4.

. 3.
. 3.

dn: servernane=secondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostnane 4202
obj ectcl ass: sybaseServer

¢ Inthe directory service information file required by JNDI, set the
REQUEST_HA_SESSION connection property to enable a failover
session every time you make a connection.

The new REQUEST_HA_ SESSION connection property is used to
indicate that the connecting client wants to begin a failover session
with the version 12.0 or later Adaptive Server configured for failover.
Setting this property to true causes jConnect to attempt a failover
login. If you do not set this connection property, a failover session will
not start, even if the server is configured correctly. The default value
for REQUEST_HA_ SESSION is false.

Set the connection property like any other connection property. You
cannot reset the property once a connection has been made.

41

Working with databases

]

=

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST _HA_SESSION at runtime.

The following example shows connection information entered for the
database server SYBASELL under an LDAP directory service:

server nane=SYBASE11, o=MyConpany, c=US
6.1.4.1.897.4.2.5: TCP#1#tahiti 3456
6.1.4.1.897.4.2.10: REPEAT_READ=f al se&PACKETSI ZE=1024
6.1.4.1.897.4.2.10: CONNECTI ON_FAI LOVER=f al se
6.1.4.1.897.4.2.11: pubs2

6.1.4.1.897.4.2.9: Tds

6.1.4.1.897.4.2.15: server namne=SECONDARY
6.1.4.1.897.4.2.10: REQUEST_HA SESSI ON=t r ue

dn: ser ver name=SECONDARY, o=MyConpany, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#noor ea 6000

where “tahiti” is the primary server and “moorea” is the secondary
companion server.

3 Request a connection using JNDI and LDAP.

e jConnect uses the LDAP server’s directory server to determine the
name and location of the primary and secondary servers:

/* get the connection */

Connection con = DriverManager. get Connecti on
("j dbc: sybase: jndi:ldap://|dap_server1l: 983" +
"/ server nane=Sybasell, o=MyConpany, c=US", props) ;

or
* Specify a searchbase:

props. put (Cont ext . PROVI DER_URL,
"l dap:/ /1 dap_server1: 983/ o=MyConpany, c=US");

Connecti on con=Dri ver Manager . get Connecti on
("] dbc: sybase: j ndi : server nane=Sybasell", props);

Logging in to the primary server

42

If an Adaptive Server is not configured for failover, or for some reason cannot
grant a failover session, the client cannot log in, and the following warning
displays:

" The server denied your request to use the high-
avai lability feature.

Pl ease reconfigure your database, or do not request a

CHAPTER 2 Programming Information

hi gh-availability session.’

Failing over to the secondary server
When failover occurs, the SQL exception JZOF2 is thrown:

‘Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

Theclient then automatically reconnectsto the secondary database using JINDI.

Note that:

e The identity of the database to which the client was connected and any
committed transactions are retained.

« Partially read result sets, cursors, and stored procedure invocations are
lost.

¢ When failover occurs, your application may need to restart a procedure or
go back to the last completed transaction or activity.

Failing back to the primary server

At some point, the client will fail back from the secondary server to the primary
server. When failback occurs is determined by the System Administrator who
issuessp_failback on the secondary server. Afterward, the client can expect the
same behavior and results on the primary server as documetied ity

over to the secondary server” on page 43

Performing server-to-server remote procedure calls

A Transact-SQL language command or stored procedure running on one server
can execute a stored procedure located on another server. The server to which
an application has connected logs in to the remote server, and executes a serve
to-server remote procedure call.

An application can specify a “universal” password for server-to-server
communication; that is, a password used in all server-to-server connections.
Once the connection is open, the server uses this password to log in to any
remote server.

By default, jConnect uses the current connection’s password as the default
password for server-to-server communications.

43

Working with databases

However, if the passwords are different on two servers for the same user and
that user is performing server-to-server remote procedure calls, the application
must explicitly define passwords for each server it plansto use.

jConnect versions 4.1 and later include a property that lets you set a universal
“remote” password or different passwords on several servers. jConnect lets you
set and configure the property using the&xemotePassword() method in the
SybDriver class:

Properties connectionProps = new Properties();

public final void setRenotePassword(String serverNane,
String password, Properties connectionProps)

To use this method, the application needs to imporstheriver class, then
call the method.

For jConnect 4.x:

i mport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. for Nane("com sybase. j dbc. SybDri ver"). new nstance();
sybDri ver. set Renot ePasswor d

(server Nane, password, connectionProps);

For jConnect 5.x:

i mport com sybase. j dbcx. SybDri ver;
SybDriver sybDriver = (SybDriver)

Cl ass. for Name(" com sybase. j dbc2. j dbc. SybDri ver"). newl nstance();
sybDri ver. set Renot ePasswor d

(server Nane, password, connectionProps);

Note To set different remote passwords for various servers, repeat the
preceding call (appropriate for your version of jConnect) for each server.

This call adds the given server name-password pair to the givesties
object, which can be passed by the applicatiait@rManager in
DriverManager.getConnection (Server_url, props).

If serverName is NULL, the universal password will be settasword for
subsequent connections to all servers except the ones specifically defined by
previous calls t@etRemotePassword().

When an application sets the REMOTEPWD property, jConnect no longer sets
the default universal password.

44

CHAPTER 2 Programming Information

Wide table support for Adaptive Server version 12.5

Adaptive Server Enterprise version 12.5 and later offer larger limits on the
number of columns and parameters you can use. For example:

¢ Tables can now contain 1,024 columns,

e Varchar andvarbinary columns can contain more than 255 bytes of data,
and

¢ You can send and retrieve up to 2,048 parameters when invoking stored
procedures or inserting data into tables.

To take advantage of this capability, [Connect version 4.5 and 5.5 users need to
set their JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST. This will request that the server enable wide table
support.

Note jConnect continues to work with an Adaptive Server version 12.5 and
later if you set the version to below VERSION_6. However, if you try selecting
from a table that requires wide table support to fully retrieve the data, you may
encounter unexpected errors or data truncation.

You can also set the version to VERSION_6 or VERSION_LATEST when you
access data from a Sybase server that does not support wide tables. In this case
the server simply ignores your request for wide table support.

Wide table support offers an extra benefit for jConnect users, besides the larger
number of columns and parameters—a greater amotratsofiSetMetaData.

For example, in versions of jConnect earlier than 4.5 and 5.5, the
ResultSetMetaData methodgjetCatalogName, getSchemaName, and

getTableName all returned “Not Implemented” SQLEXxceptions because that
metadata was not supplied by the server. When you enable wide table support,
the server now sends back this information, and the three methods return useful
information.

Accessing database metadata

To support JDBMatabaseMetaData methods, Sybase provides a set of stored
procedures that jConnect can call for metadata about a database. These store
procedures must be installed on the server for the JDBC metadata methods to
work.

45

Working with databases

If the stored procedures for providing metadata are not aready installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

e ggl_server.sgl installs stored procedures on pre-12.0 Adaptive Server
databases.

e ggl_serverl2.sgl installs stored procedures on a version 12.0 Adaptive
Server database.

e gyl server12.5.sql installs stored procedures on a version 12.5 Adaptive
Server database.

e gogl_asa.sgl installs stored procedures on an Adaptive Server Anywhere
database.

Note The most recent version of these scripts is compatible with all versions
of jConnect.

See theSybase jConnect for JDBC Installation Guide andRelease Bulletin for
complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_METADATA
connection property to true (its default value) when you establish a connection.

You cannot get metadata about temporary tables in a database.

Note TheDatabaseMetaData.getPrimaryKeys() method finds primary keys
declared in a table definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using
sp_primarykey.

Server-side metadata installation

Metadata support can be implemented in either the client (ODBC, JDBC) or in
the data source (server stored procedures). jConnect provides metadata support
on the server, which results in the following benefits:

e Maintains jConnect’s small size, which ensures the driver can be quickly
downloaded from the Internet.

« Gains runtime efficiency from preloaded stored procedures on the data
source.

« Provides flexibility—jConnect can connect to a variety of databases.

46

CHAPTER 2 Programming Information

Using cursors with result sets

jConnect 5.x implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rows in atable based on
valuesin aresult set.

Note To have full JIDBC 2.0 support, use jConnect version 5.x or later.
jConnect version 4.x provides some JDBC 2.0 features via Sybase extensions
and the ScrollableResultSet.java samplefound in the sample subdirectory under
your jConnect directory. Seethe com.sybase.jdbcx and the sample packagesfor
the javadocs on these methods.

In JDBC 2.0, ResultSets are characterized by their type and their concurrency.
Thetypeand concurrency valuesarepart of thejava.sql.ResultSet interface and
are described in its javadocs.

Table 2-5 identifiesthe characteristics of java.sql.ResultSet that are availablein
jConnect 5.x.

Table 2-5: java.sql.ResultSet options available in jConnect 5.x

Type
TYPE_FORWARD_ TYPE_SCROLL_ TYPE_SCROLL_
Concurrency ONLY INSENSITIVE SENSITIVE
CONCUR_READ_ONLY Supported in 5.x Supported in 5.x Not availablein 5.x
CONCUR_UPDATABLE Supported in 5.x Not availablein 5.x Not availablein 5.x

Creating a cursor

This section includes the following topics:

¢ Creating a cursor

¢ Positioned updates and deletes using JDBC 1.x methods
¢ Using a cursor with a PreparedStatement object

e Support for SCROLL_INSENSITIVE result sets in jConnect

To create a cursor using jConnect 4.x, use either
SybStatement.setCursorName() or SybStatement.setFetchSize(). When you
useSybStatement.setCursorName(), you explicitly assign the cursor a name.
The signature fosybStatement.setCursorName() is:

void setCursorName(String name) throws SQLException;

47

Working with databases

48

You use SybStatement.setFetchSize() to create acursor and specify the number
of rows returned from the database in each fetch. The signature for
SybStatement.setFetchSize() is:

void setFetchSize(int rows) throws SQLEXxception;

When you use setFetchSize() to create a cursor, the jConnect driver namesthe
cursor. To get the cursor’'s name, aseultSet.getCursorName().

You create cursors in jConnect version 5.x the same way as in version 4.x, but
because version 5.x supports JDBC 2.0, there is another way to create cursors.
You can specify which kind cfesultSet you want returned by the statement,
using the following JDBC 2.0 method on the connection:

Stat ement createStatenent(int resultSetType, int
resul t Set Concurrency)throws SQ Exception

The type and concurrency correspond to the types and concurrences found on
theResultSet interface listed imable 2-5 If you request an unsupported
ResultSet, @ SQL warning is chained to the connection. When the returned
Statement is executed, you will receive the kindrfsultSet that is most like

the one you requested. See the JDBC 2.0 specification for more details on this
method’s behavior.

If you do not usereateStatement(), or you are using jConnect version 4.x, the
default types oResultSet are:

e Ifyou call onlystatement.executeQuery(), then theResultSet returned is a
SybResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

e Ifyou callsetFetchSize() orsetCursorName(), then theresultSet returned
from executeQuery() is aSybCursorResultSet that is
TYPE_FORWARD_ONLY and CONCUR_UPDATABLE.

To verify that the kind oResultSet object is what you intended, the JDBC 2.0
API for ResultSet has added two methods:

i nt getConcurrency() throws SQ.Excepti on;
int getType() throws SQ.Excepti on;

The basic steps for creating and using a cursor are:

1 Create the cursor usimptement.setCursorName() or
SybStatement.setFetchSize().

2 Invokestatement.executeQuery() to open the cursor for a statement and
return a cursor result set.

CHAPTER 2 Programming Information

Invoke ResultSet.next() to fetch rows and position the cursor in the result
Set.

The following exampl e uses each of the two methods for creating cursors
and returning aresult set. It also usesResultSet.getCursorName() to get the
name of the cursor created by SybStatement.setFetchSize().

/1 Wth conn as a Connection object, create a

/1 Statenent object and assign it a cursor using
/| Statenent.set CursorName().

Statenment stmt = conn.createStatenent();

stnt . set Cur sor Nane(" aut hor _cursor");

/1 Use the statenment to execute a query and return
/1 a cursor result set.
ResultSet rs = stnt.executeQuery("SELECT au_id,
au_| nanme, au_fnanme FROM aut hors
WHERE city = ' Qakland' ");
while(rs.next())
{

/1l Create a second statenment object and use

/1 SybStatenent.setFetchSize()to create a cursor
// that returns 10 rows at a tine.

SybSt at ement syb_stnt = conn.createStatenent();
syb_stnt.setFetchSi ze(10);

/1l Use the syb_stnt to execute a query and return
/1 a cursor result set.
SybCur sor Resul t Set rs2 =
(SybCursorResul t Set) syb_st nt. execut eQuery
("SELECT au_id, au_l name, au_fnane FROM
aut hors
WHERE city = "Pinole ");
whil e(rs2. next())
{

}
/1l CGet the name of the cursor created through the
/'l setFetchSize() nethod.

String cursor_nane = rs2.getCursorName();

/'l For jConnect 5.x, create a third statenent
/1 object using the new nmet hod on Connecti on,

49

Working with databases

/1 and obtain a SCROLL_I NSENSI Tl VE Resul t Set.
/1 Note: you no |onger have to downcast the
/] Statenent or the ResultSet.

Statenment stm = conn.createStatenment (

Resul t Set . TYPE_SCRCLL_I NSENSI TI VE,

Resul t Set . CONCUR_READ_ONLY) ;
Resul t Set rs3 = stnt.executeQuery
("SELECT ... [whatever]");
/1 Execute any of the JDBC 2.0 nethods that
/1 are valid for read only ResultSets.
rs3.next();
rs3. previous();
rs3.relative(3);
rs3.afterlLast();

Positioned updates and deletes using JDBC 1.x methods

The following example shows how to use methodsin JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rows in the result set.

/1l Create two statenent objects and create a cursor
/1 for the result set returned by the first
/] statenent, stntl. Use stntl to execute a query
/1 and return a cursor result set.
Statenent stnmtl = conn.createStatenent();
Statenent stnt2 = conn.createStatenent();
stnt 1. set Cur sor Nane(" aut hor _cursor");
ResultSet rs = stnt1l. execut eQuery(" SELECT

au_id, au_l name, au_fnane

FROM aut hors WHERE city = ' Oakl and’

FOR UPDATE OF au_l nane");

/'l Get the nanme of the cursor created for stntl so
/1l that it can be used with stnt?2.
String cursor = rs.getCursorNane();

/1l Use stnt2 to update the database fromthe
/1 result set returned by stntl.

String last_name = new String("Snmth");
while(rs.next())

50

CHAPTER 2 Programming Information

{
if (rs.getString(1l).equal s("274-80-9391"))
{
st nt 2. execut eUpdat e(" UPDATE aut hors "+
"SET au_l nane = "+l ast_nane +
"WHERE CURRENT OF " + cursor);
}
}

Deletions in a result set

The following exampl e uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:

st nt 2. execut eUpdat e(" DELETE FROM aut hor s
WHERE CURRENT OF " + cursor);

Positioned updates and deletes using JDBC 2.0 methods

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in a result
set. They are followed by an example.

Updating columns in aresult set

voi d

voi d

voi d
voi d
voi d
voi d

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or delete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the JDBC 2.0 update methods available in jConnect are:

updat eAscii Strean(String col umNane, java.io.lnputStream x,
int length) throws SQLException;
updat eBool ean(int col uml ndex, bool ean x) throws
SQLExcepti on;
updat eFl oat (i nt col uml ndex, float x) throws SQLException;
updatelnt (String columNane, int x) throws SQ.Exception;
updatel nt (i nt columml ndex, int x) throws SQLException;
updat eCbj ect (String col umNanme, Object x) throws
SQLExcepti on;

51

Working with databases

Methods for updating the database from aresult set

JDBC 2.0 specifies two new methods for updating or deleting rows in the
database, based on the current valuesin aresult set. These methods are simpler
in form than Statement.executeUpdate() in JDBC 1.x and do not require a
cursor name. They areimplemented in SybCursorResultSet:

void updateRow() throws SQLEXxception;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE,
otherwise the above methods will raise an exception. For insertRow(), al table
columns that require non-null entries must be specified.

Methods provided on DatabaseMetaData dictate when these changes are
visible.

Example The following example creates a single Statement object that is used to return

52

acursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the row’s new column values.

/1l Create a Statement object and set fetch size to
/1 25. This creates a cursor for the Statenent
/1 object Use the statenent to return a cursor
/'l result set.
SybSt at enent syb_stnt =
(SybSt at enent) conn. creat eSt at enent () ;
syb_stnt. set Fet chSi ze(25);
SybCur sorResul t Set syb_rs =
(SybCursor Resul t Set) syb_stnt . execut eQuery(
"SELECT * from T1 WHERE ... ")

/'l Update each rowin the result set according to
/1 code in the follow ng while |oop. jConnect
// fetches 25 rows at a tinme, until fewer than 25
/[l rows are left. Its last fetch takes any
/1 remaining rows.
whi | e(syb_rs. next())
{
/1l Update colums 2 and 3 of each row, where
/1 colum 2 is a varchar in the database and
/1 colum 3 is an integer.
syb_rs.updateString(2, "xyz");
syb_rs. updatelnt(3, 100);
/I Now, update the row in the database.
syb_rs. updat eRow() ;

CHAPTER 2 Programming Information

}
/1l Create a Statenent object using the
/1 JDBC 2.0 nethod inplemented in jConnect 5.x
Statenment stnt = conn.createSt at enent
(Resul t Set. TYPE_FORWARD_ONLY, Resul t Set . CONCUR_UPDATABLE) ;
/1 Use the Statenment to return an updatabl e Result Set
ResultSet rs = stmt.executeQuery(“SELECT * FROM T1 WHERE...");
/I In jConnect 5.x, downcasting to SybCursorResultSet is not
/I necessary. Update each row in the ResultSet in the same
/l manner as above
while (rs.next())
{
rs.updateString(2, “xyz");
rs.updatelnt(3,100);
rs.updateRow();

}

Deleting a row from a result set

To delete arow from a cursor result set, you can use
SybCursorResultSet.deleteRow() as follows:

while(syb_rs.next())

{
int col3 = getInt(3);
if (col3 >100)
{
syb_rs.deleteRow();
}

}

Inserting a row into a result set

The following example illustrates how to do inserts using the JDBC 2.0 AP,
which isonly availablein jConnect 5.x. Thereis no need to downcast to a
SybCursorResultSet.

I prepare to insert
rs.moveTolnsertRow();

/I populate new row with column values
rs.updateString(1, "New entry for col 1");
rs.updatelnt(2, 42);

/I insert new row into db

rs.insertRow();

/I return to current row in result set
rs.moveToCurrentRow();

53

Working with databases

Using a cursor with a PreparedStatement object

54

Onceyou create a PreparedStatement object, you can useit multipletimeswith
the same or different valuesfor itsinput parameters. If you use a cursor with a
PreparedStatement object, you need to close the cursor after each use and then
reopen the cursor to use it again. A cursor is closed when you close its result
set (ResultSet.close()). It is opened when you execute its prepared statement
(PreparedStatement.executeQuery()).

The following example shows how to create a PreparedStatement object,
assign it acursor, and execute the PreparedStatement object twice, closing and
then reopening the cursor.

/'l Create a prepared statenent object with a
/| paraneterized query.

PreparedSt at enent prep_stnt =

conn. pr epar eSt at enent (

"SELECT au_id, au_lname, au_fname "+

"FROM aut hors WHERE city = ? "+

"FOR UPDATE OF au_l nane");

//Create a cursor for the statenent.
prep_stnt.set Cursor Nane("aut hor_cursor");

/1 Assign the paraneter in the query a val ue.
/'l Execute the prepared statenent to return a
/] result set.

prep_stnt.setString(1, "Cakland");

ResultSet rs = prep_stnt. executeQuery();

/1 Do sonme processing on the result set.
whi | e(rs. next())

{
}

/!l Close the result, which also closes the cursor.
rs.close();

/| Execute the prepared statenent again with a new
/1 paraneter val ue.

prep_stnt.setString(1,"San Francisco");

rs = prep_stnt.executeQery();

/'l reopens cursor

CHAPTER 2 Programming Information

Support for SCROLL_INSENSITIVE result sets in jConnect

bool ean
bool ean
bool ean
bool ean
bool ean

jConnect version 5.x supports only TYPE_SCROLL_INSENSITIVE result
sets.

jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect 5.x,
TDS does not support scrollable cursors. To support scrollable cursors,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next(). However, when the end of the result set is reached, the entire
result set is stored in the client's memory. Because this may cause a
performance strain, we recommend that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Note When you use TYPE_SCROLL_INSENSITIVsultSets in jConnect
5.X, you can only call theLast() method after the last row of tResultSet has
been read. CallingLast() before the last row is reached will cause an
UnimplementedOperationException to be thrown.

A sample has been added to jConnect version 4.x that provides a limited
TYPE_SCROLL_INSENSITIVEResultSet using JDBC 1.0 interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-
insensitive, read-only result set; that is, a static view of the underlying data that
is not sensitive to changes made while the result set isBpendedResultSet
caches all of theesultSet rows on the client. Be cautious when you use this
class with large result sets.

Thesample.ScrollableResultSet interface:
¢ |s an extension of JDBC 1jfva.sql.ResultSet.

« Defines additional methods that have the same signatures as the JDBC 2.0
java.sql.ResultSet.

¢ Doesnot contain all of the JDBC 2.0 methods. The missing methods deal
with modifying theResultSet.

The methods from the JDBC 2.0 API are:

previous() throws SQ.Exception;
absol ut e(i nt
relative(int
first() throws SQ.Exception;
last () throws SQLException;

row) throws SQLException;
rows) throws SQ.Exception;

voi d beforeFirst() throws SQ.Exception;

55

Working with databases

void afterLast() throws SQLException;

bool ean i sFirst() throws SQ.Exception;

bool ean isLast() throws SQLException;

bool ean i sBeforeFirst() throws SQLExcepti on;

bool ean i sAfterLast() throws SQ.Exception;

int getFetchSize() throws SQLException;

voi d set FetchSi ze(int rows) throws SQLException;
int getFetchDirection() throws SQLException;

voi d setFetchDirection(int direction) throws SQ.Exception;
int getType() throws SQ.Excepti on;

i nt getConcurrency() throws SQ.Excepti on;

int getRow() throws SQLException;

To use the new sampl e classes, create an ExtendedResultSet using any JDBC
1.0java.sql.ResultSet. Below aretherelevant piecesof code (assumeaJaval.l
environment):

/1 inport the sanple files
i nport sanple.*;
[linport the JDBC 1.0 cl asses
i mport java.sql.*;
/1 connect to sone db using sone driver;
/] create a statement and a query;
/]l Get a reference to a JDBC 1.0 Result Set
Resul tSet rs = stnt.executeQuery(_query);
/'l Create a ScrollableResultSet with it
Scrol | abl eResul t Set srs = new Ext endedResul t Set (rs);
/1 invoke methods fromthe JDBC 2.0 API
srs.beforeFirst();
/'l or invoke nmethods fromthe JDBC 1.0 API
if (srs.next())

String columl = srs.getString(1);

Figure 2-1 is aclass diagram that shows the relationships between the new
sampl e classes and the JIDBC API.

56

CHAPTER 2 Programming Information

Figure 2-1: Class diagram

java.sgl.ResultSet
(JDBC 1.0 API)

extends

sample.ScrollableResultSet
(adds some methods
from JDBC 2.0 API)

implements

sample.ExtendedResultSet
(wrapper for
java.sql.ResultSet)

See the IDBC 2.0 API at http://java.sun.conVproducts/jdbc/jdbese2.html for
more details.

Support for batch updates

Batch updates allow a Statement object to submit multiple update commands
as one unit (batch) to an underlying database for processing together.

Note To use batch updates, you must refresh the SQL scriptsinthesp directory
under your jConnect installation directory.

57

Working with databases

Implementation notes

58

See BatchUpdates.java in the sample (jConnect 4.x) and sample2 (jConnect
5.x) subdirectories for an example of using batch updates with Statement,
PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

jConnect implements batch updates as specified in the JIDBC 2.0 AP, except
as described below.

If the JDBC 2.0 standard for implementing —
BatchUpdateException.getUpdateCounts() is modified or relaxed in the
future, jConnect will continue to implement the original standard by
havingBatchUpdateException.getUpdateCounts() return annt[| length of

M < N, indicating that the first M statements in the batch succeeded, that
the M+1 statement failed, and M+2..N statements were not executed:;
where “N” equals the total statements in the batch.

Batch updates of stored procedures — to call stored procedures in batch
(unchained) mode, you must create the stored procedure in unchained
mode. For more information, setored procedure executed in
unchained transaction mode” on page.105

Adaptive Server Enterprise version 11.5.x and later —
BatchUpdateException.getUpdateCounts() will return only anint[] length

of zero. The entire transaction is rolled back if an error is encountered,
resulting in zero successful rows.

Adaptive Server Enterprise version 11.0.1 —returns 0 (zero) rows affected
for stored procedures.

SQL Anywhere version 5.5.x:

e SQL Anywhere version 5.5.x does not allow you to obtain inserted
row counts from stored procedures that contain inserts. For example:

create proc sp_A as insert tableA values (1,
‘hello A)

create proc sp_B

as

insert tableA values (1, ‘hello A’)

update tableA set col1=2

create proc sp_C

as

update tableA set col1=2

delete tableA

CHAPTER 2 Programming Information

Running executeBatch on the preceding stored procedures would
result in, respectively:

0 Rows Affected
1 Rows Affected
2 Rows Affected

e There is no support for dynanticeparedStatements in batch.

¢ Because SQL Anywhere 5.5.x does not natively support batch
updates according to the JDBC 2.0 specification, batch updates are
carried out in amxecuteUpdate loop.

« Batch updates in databases that do not support batch updates — jConnect
carries out batch updates inamcuteUpdate loop even if your database
does not support batch updates. This allows you to use the same batch
code, regardless of the database to which you are pointing.

SeeSun Microsystems, Inc. JDBC™ 2.0 A& more details on batch updates.

Updating the database from the result set of a stored procedure

jConnect includes update and del ete methods that allow you to get a cursor on

the result set returned by a stored procedure. You can then use the cursor’s
position to update or delete rows in the underlying table that provided the result
set. The methods are §ybCursorResultSet:

void updateRow(String tableName) throws SQLEXxception;
void deleteRow(String tableName) throws SQLException;

ThetableName parameter identifies the database table that provided the result
set.

To get a cursor on the result set returned by a stored procedure, you need to use
eithersSybCallableStatement.setCursorName() or

SybCallableStatement.setFetchSize() before you execute the callable statement
that contains the procedure. The following example shows how to create a
cursor on the result set of a stored procedure, update values in the result set, anc
then update the underlying table using $hieCursorResultSet.update()

method:

/1 Create a Call abl eStatenment object for executing the stored
/| procedure.
Cal | abl eSt at enent sproc_stnt =

conn. prepareCall ("{call update_titles}");

59

Working with databases

/1l Set the nunber of rows to be returned fromthe database with
/]l each fetch. This creates a cursor on the result set.
(SybCal I abl eSt at enent) sproc_st nt . set Fet chSi ze(10) ;

/| Execute the stored procedure and get a result set fromit.
SybCur sor Resul t Set sproc_result = (SybCursorResul t Set)
sproc_stnt. executeQuery();

/1 Move through the result set row by row, updating values in the
I cursor’s current row and updating the underlying titles table

/I with the modified row values.

while(sproc_result.next())

{
sproc_result.updateString(...);
sproc_result.updatelnt(...);
sproc_result.updateRow(titles);
}

Working with datatypes

Sending numeric data

jConnect has added the SybPreparedStatement extension to support the way
Adaptive Server Enterprise handles the NUMERIC datatype where precision
(total digits) and scale (digits after the decimal) can be specified.

The corresponding datatype in Javiava.math.BigDecimal—is slightly
different, and these differences can cause problems when jConnect

applications use thetBigDecimal method to control values of an input/output
parameter. Specifically, there are cases where the precision and scale of the
parameter must precisely match that precision and scale of the corresponding

SQL object, whether it is a stored procedure parameter or a column.

To give jConnect applications fuller control over thesigDecimal method,
The SybPreparedStatement extension has been added with this method:

public void setBigDecimal (int paraneterlndex, BigDecimal X int scale,
int precision) throws SQLException

See theéSybPrepExtension.java sample in thésample (jConnect 4.x) and
/sample2 (jConnect 5.x) subdirectories under your jConnect installation
directory for more information.

60

CHAPTER 2 Programming Information

Sending image data

jConnect has a TextPointer class with sendData() methods for updating an
image column in an Adaptive Server Enterprise or Adaptive Server Anywhere
database. In earlier versions of jConnect, you had to send image data using the
setBinaryStream() method in java.sql.PreparedStatement. The
TextPointer.sendData() methods use java.io.InputStream and greatly improve
performance when you send image data to an Adaptive Server database.

Warning! The TextPointer class has been deprecated; that is, it is no longer
recommended and may cease to exist in afuture version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send image data:

Pr epar edSt at enent . set Bi naryStrean(i nt param ndex,
I nput St ream i mage)

To obtain instances of the TextPointer class, you can use either of two
getTextPtr() methodsin SybResultSet:

public TextPointer getTextPtr(String columnName)
public TextPointer getTextPtr(int columnindex)

Public methods in the TextPointer class

The com.sybase.jdbc package contains the TextPointer class. Its public method
interfaceis:

public void sendData(InputStream is, boolean log)
throws SQLException

public void sendData(InputStream is, int length,
boolean log) throws SQLException

public void sendData(InputStream is, int offset,
int length, boolean log) throws SQLException

public void sendData(byte[] bytelnput, int offset,
int length, boolean log) throws SQLEXception

sendData(InputStream is, boolean log) — Updates aimage column with data in
the specified input stream.

sendData(InputStream is, int length, boolean log) — updates aimnage column
with data in the specified input stredmngth is the number of bytes being sent.

61

Working with databases

Getting a TextPointer
object

62

sendData(InputStream s, int offset, int length, boolean log) — updates aimnage
column with data in the specified input stream, starting at the byte offset given
in theoffset parameter and continuing for the number of bytes specified in the
length parameter.

sendData(byte[] bytelnput, int offset, int length, boolean |og) — updates a column
with image data contained in the byte array specified ifytaenput
parameter. The update starts at the byte offset given afiftheparameter and
continues for the number of bytes specified inlthgth parameter.

Each method haslag parameter. Thiog parameter specifies whetheiage
data is to be fully logged in the database transaction log. [lb¢hEarameter is
set to true, the entire binary image is written into the transaction log.ltithe
parameter is set to false, the update is logged, but the image itself is not
included in the log.

Updating an image column with TextPointer.sendData()
To update a column with image data:

1 Get arextPointer object for the row and column that you want to update.
2 UseTextPointer.sendData() to execute the update.

The next two sections illustrate these steps with an example. In the example,
image data from the filénne_Ringer.gif is sent to update the: column of the
au_pix table in theoubs2 database. The update is for the row with author ID
899-46-2035.

text andimage columns contaiimestamp and page-location information that
is separate from their text and image data. When data is selectedtfsamra
image column, this extra information is “hidden” as part of the result set.

A TextPointer object for updating aimage column requires this hidden
information, but does not need the image portion of the column data. To get this
information, you need to select the column intceaultSet object and then use
SybResultSet.getTextPtr() (see the example that follows the next paragraph).
SybResultSet.getTextPtr() extracts text-pointer information, ignores image

data, and createsraxtPointer object.

When a column contains a significant amount of image data, selecting the
column for one or more rows and waiting to get all the data is likely to be
inefficient, since the data is not used. You can shortcut this process by using the
set textsize command to minimize the amount of data returned in a packet. The
following code example for gettingraxtPointer object includes the use @ft

textsize for this purpose.

CHAPTER 2 Programming Information

/*

* Define a string for selecting pic colum data for author ID

* 899-46- 2035.

*/

String get Col uimbDat a = "sel ect pic fromau_pi x where au_id ="' 899-46-2035"";
/*
* Use set textsize to return only a single byte of colum data
* to a Statenent object. The packet with the colum data will
* contain the "hidden" information necessary for creating a

* Text Poi nter object.

*/

Statenent stmt= connection.createStatenent();

stnt. execut eUpdat e("set textsize 1");

/*

* Sel ect the colum data into a ResultSet object--cast the

* ResultSet to SybResultSet because the getTextPtr nmethod is

* in SybResultSet, which extends Result Set.

*/

SybResul tSet rs = (SybResultSet)stnt. executeQuery(get Col umbat a) ;

/*

* Position the result set cursor on the returned colum data
* and create the desired TextPointer object.

*/

rs.next();

TextPointer tp = rs.getTextPtr("pic");

/ *

* Now, assuming we are only updating one row, and won't need
* the minimum textsize set for the next return from the server,

* we reset textsize to its default value.

*/

stmt.executeUpdate("set textsize 0");

Exgcuting rt1he The following code uses the TextPointer object from the preceding section to
update wit ; it i i i ; i
TextPointer sendData update the pic column with image datain the file Anne_Ringer.gif.

/*

*First, define an input stream for the file.

*

FilelnputStream in = new FilelnputStream("Anne_Ringer.gif");

63

Working with databases

/*

* Prepare to send the input stream wi thout |ogging the i mage data
* in the transaction | og.

*/

bool ean |1 og = fal se;

/*

* Send the inmage data in Anne_Ringer.gif to update the pic
* columm for author | D 899-46-2035.

*/
tp. sendDat a(i n,

Using text data

I 0g);

See the TextPointers.java sample in the sample (jConnect 4.x) and sample2
(jConnect 5.x) subdirectories under your jConnect installation directory for
more information.

In earlier versions, jConnect used a TextPointer classwith sendData() methods
for updating atext columnin an Adaptive Server Enterprise or Adaptive Server
Anywhere database.

The TextPointer class has been deprecated; that is, it isno longer recommended
and may ceaseto exist in afuture version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send text data:

Prepar edSt at enent . set Asci i Strean(i nt paranl ndex,
I nput Stream text, int |ength)

or

Pr epar edSt at ement . set Uni codeSt rean(i nt param ndex,
I nput Stream text, int |ength)

or

Pr epar edSt at enent . set Charact er Strean(i nt paranl ndex,
Reader reader, int |ength)

Using Date and Time datatypes

64

JDBC uses three temporal datatypes: Time, Date, and Timestamp. Adaptive
Server uses only one temporal datatype, datetime, which is equivalent to the
JDBC Timestamp datatype. The Adaptive Server datetime datatype supports
second resolution to 1/300th of a second.

CHAPTER 2 Programming Information

All three IDBC datatypes are treated as datetime datatypes on the server side.
A JDBC Timestamp is essentially the same as a server datetime; therefore, no

conversion is necessary. However, translating aJDBC Time or Date datatypeto
or from a server datetime datatype requires a conversion.

¢ To convertTime to datetime, the date 1 Jan 1970 is added.
¢ To convertDate to datetime, “00:00:00” is appended.

* To convert alatetime to aDate variable or &ime variable, the unused
information is stripped out.

Implementation notes

« JDBC'sTimestamp datatype is not the same as Adaptive Server’s
timestamp datatype. The Adaptive Servenestamp datatype is a unique
varbinary value used when updates are made with an “optimistic
concurrency” strategy.

¢ When avalue is inserted aZime datatype, the date portion is essentially
meaningless, so the value should be fetched back using Tintg a
datatype, never Bate or Timestamp datatype.

e If you usegetObject() with an Adaptive Server Anywhetkte or time
column, the value will be returned as a JDBi@estamp datatype.

Charlvarcharl Text datatypes and getByte()

Do not uses.getByte() on achar, univarchar, unichar, varchar, ortext field
unless the data is hex, octal, or decimal.

Implementing advanced features

This section describes how to use advanced jConnect features and contains the
following topics:

¢ Using event notification

« Handling error messages

e Storing Java objects as column data in a table
¢ Dynamic class loading

« JDBC 2.0 optional package extensions support

65

Implementing advanced features

Using event notification

66

You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

To use this feature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains aregWatch() method for turning
event notification on and aregNowatch() method for turning event notification
off.

Your application must also implement the SybEventHandler interface. This
interface contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of
the event are passed to event() and it tells the application how to respond.

To useevent notificationin your application, call SybConnection.regwatch() to
register your application in the notification list of aregistered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdlr,option)

e proc_nameis asString that is the name of the registered procedure that
generates the notification.

« eventHdler is an instance of theybEventHandler class that you
implement.

e optionis either NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY_ALWAYS if you want the
application to be notified every time the procedure executes.

Whenever an event with the designaisat _name occurs on the Open Server,
jConnect callgventHdir.event() from a separate thread. The event parameters
are passed teventHdIr.event() when it is executed. Because it is a separate
thread, event notification does not block execution of the application.

If proc_nameis not a registered procedure, or if Open Server cannot add the
client to the notification list, the call tegwatch() throws a SQL exception.

To turn off event notification, use this call:

CHAPTER 2 Programming Information

SybConnect i on. regNoWat ch(proc_nane)

Note When you use Sybase event notification extensions, the application
needs to call the close() method on the connection to remove a child thread
created by the first call to regwatch(). Failing to do so may cause the Virtual
Machine to hang when exiting the application.

Event notification example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a
connection:

public class MyEvent Handl er inpl enents SybEvent Handl er

{

/1 Declare fields and constructors, as needed.

public MyEvent Handl er (String event nane)
{

}

/1 | npl enent SybEvent Handl er. event.
public void event(String event Nane, ResultSet parans)
{
try
{
/1 Check for error nmessages received prior to event
/1 notification.
SQLVr ni ng sqgl w = par ans. get VWar ni ngs() ;
if sglw!= null
{

/'l process errors, if any

}
/'l process parans as you would any result set with
/1 one row.
Resul t Set Met aData rsnd = parans. get Met aDat a() ;
i nt nunCol uims = rsnd. get Col umCount () ;
whil e (parans. next()) /'l optional
{

for (int i = 1; i <= nunCol umms; i ++)

{

System out . println(rsnd. get Col umNane(i) + " =

67

Implementing advanced features

+ parans. getString(i));
}
/| Take appropriate action on the event. For exanple,
/'l perhaps notify application thread.

}
}
catch (SQLException sqe)
{
/1 process errors, if any
}
}
}
public class M/Program
{
/1l Get a connection and register an event with an instance
/1 of MyEvent Handl er.
Connection conn = DriverManager. get Connection(...);
MyEvent Handl er nyHdl r = new MEvent Handl er (" MY_EVENT") ;
/'l Register your event handl er.
((SybConnection) conn).regWat ch("MY_EVENT", nyHdlr,
SybEvent Handl er. NOTI FY_ALWAYS) ;
conn. r egNoVWat ch(" MY_EVENT") ;
conn. cl ose();
}

Handling error messages

jConnect providestwo classesfor returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.

68

CHAPTER 2 Programming Information

Retrieving Sybase-specific error information

jConnect provides an Eedinfo interface that specifies methods for obtaining
Sybase-specific error information. The Eedinfo interface isimplemented in
SybSQLException and SybSQLWarning, which extend the SQLException and
SQLWarning classes.

SybSQLException and SybSQLWarning contain the following methods:
* public ResultSet getEedParams();

Returns a one-row result set containing any parameter values that
accompany the error message.

* public int getStatus();

Returns a “1” if there are parameter values, returns a “0” if there are no
parameter values in the message.

* public int getLineNumber();

Returns the line number of the stored procedure or query that caused the
error message.

* public String getProcedureName();
Returns the name of the procedure that caused the error message.
* public String getServerName();
Returns the name of the server that generated the message.
* public int getSeverity();
Returns the severity of the error message.
* public int getState();

Returns information about the internal source of the error message in the
server. For use by Sybase Technical Support only.

* public int getTranState();
Returns one of the following transaction states:
e 0 The connection is currently in an extended transaction.
e 1 The previous transaction committed successfully.

e 3 The previous transaction aborted.

69

Implementing advanced features

Some error messages may be SQLException or SQLWarning messages, without
being SybSQLException or SybSQLWarning messages. Your application should
check the type of exception it is handling before it downcasts to
SybSQLException Or SybSQLWarning.

Customizing error-message handling

You can use the SybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler inyour own classfor handling error messages can provide
the following benefits:

e “Universal” error handling

Error-handling logic can be placed in your error-message handler, instead
of being repeated throughout your application.

e “Universal” error logging

Your error-message handler can contain the logic for handling all error
logging.
« Remapping of error-message severity, based on application requirements.

Your error-message handler can contain logic for recognizing specific
error messages and downgrading or upgrading their severity based on
application considerations rather than the server’s severity rating. For
example, during a cleanup operation that deletes old rows, you might want
to downgrade the severity of a message that a row does not exist; you may
want to upgrade the severity in other circumstances.

Note Error-message handlers implementingghieviessageHandler interface
only receive server-generated messages. They do not handle messages
generated by jConnect.

When jConnect receives an error message, it checks to see if a
SybMessageHandler class has been registered for handling the message. If so,
jConnect invokes theiessageHandler() method. ThenessageHandler()

method accepts a SQL exception as its argument, and jConnect processes the
message based on what value is returned fressageHandler(). The error-
message handler can:

e Return the SQL exception as is.

e Return a null. As a result, jConnect ignores the message.

70

CHAPTER 2 Programming Information

e Create a SQL warning from a SQL exception, and return it. This results in
the warning being added to the warning-message chain.

e If the originating message is a SQL warnimgssageHandler() can
evaluate the SQL warning as urgent and create and return a SQL exception
to be thrown once control is returned to jConnect.

Installing an error-message handler

You can install an error-message handler implemestinglessageHandler by
calling thesetMessageHandler() method fromSybDriver, SybConnection, or
SybStatement. If you install an error-message handler freyDriver, all
subsequentybConnection objects inherit it. If you install an error-message
handler from a&ybConnection object, it is inherited by aflybStatement objects
created by thatybConnection.

This hierarchy only applies from the time the error-message handler object is
installed. For example, if you creategConnection object,myConnection,

and then calbybDriver.setMessageHandler() to install an error-message

handler objectyyConnection cannot use that object.

To return the current error-message handler object, use
getMessageHandler().

Error-message-handler example

The following example uses jConnect version 4.1.

i mport java.io.*;
java.sql.*;

i nport
i nport
i mport
i mport
i mport

public

{

stati
stati
stati
stati
stati
stati
stati

publ i

com sybase. j dbcx. SybMessageHand! er;
com sybase. j dbcx. SybConnecti on;
com sybase. j dbcx. SybSt at ement ;
java.util.*;

class MyApp

C
C
C
C
C
C
C

SybConnection conn = nul | ;

SybSt atement stnmt = nul |

ResultSet rs = null;

String user = "guest";

String password = "sybase";

String server = "jdbc:sybase: Tds: 192. 138. 151. 39: 4444";
final int AVO D _SQ.E = 20001;

M/ App()

71

Implementing advanced features

{
try
{

Cl ass. for Name(" com sybase. j dbc. SybDri ver"). new nst ance;
Properties props = new Properties();
props. put ("user", user);
props. put ("password", password);
conn = (SybConnecti on)
Dri ver Manager . get Connecti on(server, props);
conn. set MessageHand! er (new NoResul t Set Handl er ()) ;
stnmt =(SybStatenment) conn.createStatenent();
stnt. execut eUpdate("rai serror 20001 'your error’");

for (SQ.Warning sqgw = _stnt.get Warni ngs();
sqw !'= nul | ;
sqw = sqgw. get Next War ni ng());

{
if (sqw. get ErrorCode() == AVO D _SQLE);
{

Systemout.println("Error" +sqw. getErrorCode() +
" was found in the Statement’s warning list.");
break;

}

}

stmt.close();
conn.close();

}

catch(Exception e)

{
System.out.printin(e.getMessage());
e.printStackTrace();

}

}

class NoResultSetHandler implements SybMessageHandler

{
public SQLException messageHandler(SQLException sge)

{
int code = sqe.getErrorCode();
if (code == AVOID_SQLE)

{
System.out.printin("User " + _user + " downgrading " +
AVOID_SQLE + " to a warning");
sge = new SQLWarning(sge.getMessage(),
sge.getSQLState(),sqe.getErrorCode());
}

72

CHAPTER 2 Programming Information

return sqge,

}
}
public static void main(String args[])
{
new MyApp();
}

Storing Java objects as column data in a table

Some database products enable you to directly store Java objects as column
datain adatabase. In such databases, Java classes are treated as datatypes, and
you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject() methods defined in the PreparedStatement interface and the
getObject() methods defined in the CallableStatement and ResultSet interfaces.
This allows you to use jConnect with an application that uses native JDBC
classes and methods to directly store and retrieve Java objects as column data.

Note To use getObject() and setObject(), set the jConnect version to
VERSION_4 or later. See “Setting the jConnect version” on page 6

The following sections describe the requirements and procedures for storing
objects in a table and retrieving them using JDBC with jConnect:

¢ Prerequisites for storing java objects as column data
e Sending Java objects to a database

e Receiving Java objects from the database

Note Adaptive Server Enterprise version 12.0 and later and Adaptive Server
Anywhere version 6.0.x and later can store Java objects in a table, with some
limitations. See thgConnect for JDBC Release Bulletin for more information.

Prerequisites for storing java objects as column data

To store Java objects belonging to a user-defined Java class in a column, three
requirements must be met:

73

Implementing advanced features

e The class must implement thea.io.Serializable interface. This is because
jConnect uses native Java serialization and deserialization to send objects
to a database and receive them back from the database.

e The class definition must be installed in the destination datatrage
must be using theynamicClassLoader (DCL) to load a class directly from
an Adaptive Server Anywhere or an Adaptive Server Enterprise server and
use it as if it was present in the local CLASSPATH. ‘$egiamic class
loading” on page 7for more information.

e The client system must have the class definition.ahaas file that is
accessible through the local CLASSPATH environment variable.

Sending Java objects to a database

To send an instance of a user-defined class as column data, use one of the
following setObject() methods, as specified in theeparedStatement interface:

voi d set Obj ect (i nt paraneterlndex, Object x, int targetSql Type,
int scale) throws SQLException;

voi d set Obj ect (i nt paraneterlndex, Object x, int targetSql Type)
throws SQLExcepti on;

voi d set Obj ect (int paraneterlndex, Object x) throws SQ.Exception;

In jConnect 4.5, you can also useparedStatement.setObject (int
parameterindex, Obj ect x, Types.OTHER) method to pass a Java object to the
database. The object must still implementjthe.io.Serializable interface.

In jConnect 5.5, you can use thges.OTHER targetsql Type to send a Java
object, or you can usegpes.JAVA_OBJECT (available only in jConnect 5.x).

The following example defines anidress class, shows the definition of a
Friends table that has afddress column whose datatype is thedress class,
and inserts a row into the table.

public class Address inplenents Serializable

{
public String streetNunber;
public String street;
public String apartnent Nunber;
public String city;
public int zipCode;
/1 Met hods

}

/* This code assunes a table with the follow ng structure

74

CHAPTER 2 Programming Information

* Create table Friends:
*x (firstnane varchar (30),
*x | ast nane var char (30),

* * addr ess Addr ess,

*x phone var char (15))

*/

/1 Connect to the database containing the Friends table.
Connecti on conn =
Dri ver Manager . get Connecti on("j dbc: sybase: Tds: | ocal host: 5000",
"usernane", "password");

/1l Create a Prepared Statenent object with an insert statenent

//for updating the Friends table.

Prepar edSt at ement ps = conn. prepareStat enent ("1 NSERT | NTO
Friends values (?,?,?2,?2)");

/1 Now, set the values in the prepared statenent object, ps.
/'l set firstname to "Joan."
ps.setString(l, "Joan");

/1 Set last name to "Smith."
ps.setString(2, "Snmith");

/1 Assumi ng that we already have "Joan_address" as an instance
/1 of Address, use setObject(int paraneterlndex, Ohject x) to
/1 set the address columm to "Joan_address."

ps. set Qbj ect (3, Joan_address);

/I Set the phone column to Joan’s phone number.
ps.setString(4, "123-456-7890");

/I Perform the insert.
ps.executeUpdate();

Receiving Java objects from the database

A client JDBC application can receive a Java object from the databasein a
result set or as the value of an output parameter returned from a stored
procedure.

If aresult set contains a Java object as column data, use one of the following
getObject() methods in the ResultSet interface to retrieve the object:

Object getObject(int columnindex) throws SQLEXxception;
Object getObject(String columnName) throws SQLException;

75

Implementing advanced features

If an output parameter from a stored procedure contains a Java object, use the
following getObject() method in the CallableStatement interface to retrieve the
object:

hj ect get Obj ect(int paraneterlndex) throws SQLException;

The following example illustrates the use of

ResultSet.getObject(int parameterindex) to assign an object received in aresult
set to aclass variable. The example uses the Address class and Friends table
used in the previous section and presents a simple application that prints a
name and address on an envel ope.

/ *
** This application takes a first and | ast nane, gets the
** specified person’s address from the Friends table in the
** database, and addresses an envelope using the name and
** retrieved address.
*/
public class Envelope
{
Connection conn = null;
String firstName = null;
String lastName = null;
String street = null;
String city = null;
String zip = null;

public static void main(String[] args)
{

if (args.length < 2)

{

System.out.printin("Usage: Envelope <firstName>
<lastName>");

System.exit(1);

}

I/l create a 4" x 10" envelope

Envelope e = new Envelope(4, 10);

try

{
/I connect to the database with the Friends table.
conn = DriverManager.getConnection(

"jdbc:sybase:Tds:localhost:5000", "username”,
"password");

/I'look up the address of the specified person
firstName = args|[0];
lastName = args[1];
PreparedStatement ps = conn.prepareStatement(

76

CHAPTER 2 Programming Information

"SELECT address FROM friends WHERE " +
"firstnane = ? AND | astnane = ?");
ps.setString(1, firstNane);
ps.setString(2, |astNane);
Resul t Set rs = ps. executeQuery();
if (rs.next())

Address a = (Address) rs.getoject(1);
/1 set the destination address on the envel ope
e.set Address(firstNane, |astNanme, a);

}
conn. cl ose();
}
catch (SQLException sqge)
{
sqge. print StackTrace();
System exit(2);
}
/1 if everything was successful, print the envel ope
e.print();
private void set Address(String fname, String | name, Address a)
{
street = a.streetNunber + " " + a.street + " " +
a. apart ment Nunber ;
city = a.city;
zip ="" + a.zipCode;
}
private void print()
{
/1 Print the nane and address on the envel ope.
}

You can find amore detailed example of HandleObject.java in the sample
(jConnect 4.x) and sample2 (jConnect 5.x) subdirectories under your jConnect
directory.

Dynamic class loading

Adaptive Server Anywhereversion 6.0 and Adaptive Server Enterpriseversion
12.0 and later allow you to specify Java classes as:

e Datatypes of SQL columns

77

Implementing advanced features

- Datatypes of Transact-SQL variables
» Default values for SQL columns

In earlier versions, only classes that appeared in jConnect’s CLASSPATH were
accessible; that is, if a jConnect application attempted to access an instance of
a class that was not in the local CLASSPATkhva.lang.ClassNotFound

exception would result.

jConnect version 5.2 implemeritgnamicClassLoader (DCL) to load a class
directly from an Adaptive Server Anywhere or Adaptive Server Enterprise
server and use it as if it was present in the local CLASSPATH.

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attempts
to load a requested class from the CLASSPATH,; if that fails, jConnect tries the
DynamicClassLoader.

SeeJava in Adaptive Server Enterprise for more detailed information about
use Java and Adaptive Server.

Using DynamicClassLoader

78

To use DCL functionality:

1 Create and configure a class loader. Your jConnect application’s code
should look similar to this:

Properties props = new Properties();

/1 URL of the server where the classes |ive.
String classesU | = "jdbc:sybase: Tds: myase: 1200";

/1 Connection properties for connecting to above server.
props. put ("user", "grinch");
props. put ("password", "neanone");

/'l Ask the SybDriver for a new class | oader.
Dynanmi cCl assLoader | oader = driver.getC assLoader (cl assesUrl, props);

2 Use the CLASS LOADER connection property to make the new class
loader available to the statement that executes the query. Once you create
the class loader, pass it to subsequent connections as shown below
(continuing from the code example in step 1).

/1 Stash the class | oader so that other connection(s)
/1 can know about it.
props. put ("CLASS LOADER', | oader);

CHAPTER 2 Programming Information

/1 Additional connection properties
props. put("user", "joeuser");
props. put (" password", "joespassword");

/1 URL of the server we now want to connect to.
String url = "jdbc:sybase: Tds:j dbc. sybase. com 4446";

/1 Make a connection and go.
Connection conn = DriverManager. get Connection(url, props);

Assuming the following Java class definition:

class Addr {
String street;
String city;
String state;
}

and the following SQL table definition:
create table enpl oyee (char(100) nane, int enpid, Addr address)

3 Usethefollowing client-side code in the absence of an Addr classin the
client application’s CLASSPATH:

Statenent stmmt = conn. createStatenent();
/'l Retrieve some rows fromthe table that has a Java cl ass
/1 as one of its fields.
Resul t Set rs = stmmt. execut eQuery(
"select * from employee where empid ='19™);
if (rs.next() {
/I Even though the class is not in our class path,
/I we should be able to access its instance.
Object obj = rs.getObject("address");
/l The class has been loaded from the server,
/I so let's take a look.
Class ¢ = obj.getClass();

/I Some Java Reflection can be done here
/ to access the fields of obj.

TheCLASS L OADER connection property providesaconvenient mechanism
for sharing one class loader among several connections.

79

Implementing advanced features

You should ensurethat sharing aclass|oader across connections does not result
in class conflicts. For example, if two different, incompatible instances of class
org.foo.Bar exist in two different databases, problems can arise if you use the
same |oader to access both classes. Thefirst classis loaded when examining a
result set from the first connection. Whenit istimeto examine aresult set from
the second connection, the class is already loaded. The second class is never
loaded, and there is no direct way for jConnect to detect this situation.

However, Java has a built-in mechanism for ensuring that the version of aclass
matches the version information in a deserialized object. The above situation
isat least detected and reported by Java.

Classes and their instances do not need to residein the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database/server.

Deserialization

Thefollowing exampleillustrates how to deserialize an object fromalocal file.
The serialized object is an instance of aclass that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectinputStream, whichisa
subclass of ObjectinputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class loader.

/1 Make a streamon the file containing the

//serialized object.

FilelnputStreamfil eStream = new Fil el nput Strean{"serFile");
/1 Make a "deserializer" on it. Notice that, apart
//fromthe additional paraneter, this is the sane

/las Obj ect | nput St reanDynam cChj ect | nput Stream

stream = new Dynam cCObj ect | nput Strean(fil eStream | oader);
/1 As the object is deserialized, its class is

[lretrieved via the | oader from our server.

Obj ect obj = streamreadObject();streamclose();

Preloading JARS

jConnect version 5.2 includes a new connection property called
PRELOAD_JARS. When defined as a comma-delimited list of JAR file
names, the JAR files are loaded in their entirety. In this context, “JAR” refers
to the “retained JARname” used by the server. This is the JAR name specified
in the install Java program, for example:

80

CHAPTER 2 Programming Information

install java new jar 'nyJarNane’ fromfile '/tnp/nystuff.jar’

If you set PRELOAD_JARS, the JAR files are associated with the class | oader,
so it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARS for one connection. Subsequent attemptsto prel oad
the same JAR files may result in performance problems as the JAR datais
retrieved from the server unnecessarily.

Note Adaptive Server Anywhere 6.x and later cannot return an JAR fileasone
entity, so jConnect iteratively retrieves each classin turn. However, Adaptive
Server 12.x and later retrieves the entire JAR and loads each class that it
contains.

Advanced features

There are various public methods in DynamicClassLoader. For more
information, see the javadocs information in JDBC_HOME/docs/en/javadocs.

Additional features include the ability to keep a loader’s database connection
“alive” when a series of class loads is expected, and to explicitly load a single
class by name.

Public methods inherited frofava.lang.ClassLoader can also be used.

Methods injava.lang.Class that deal with loading classes are also available;
however, use these methods with caution since some of them make
assumptions about which class loader gets used. In particular, you should use
the 3-argument version ofass.forName(), otherwise the system (“boot”) class
loader will be used. Seelandling error messages” on page 68

JDBC 2.0 optional package extensions support

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API) defines several new features that may be implemented by JDBC 2.0
drivers. jConnect version 5.2 has implemented the following optional package
extension features:

¢ JNDI for naming databases
(works with any Sybase DBMS supported by jConnect)

e Connection pooling
(works with any Sybase DBMS supported by jConnect)

81

Implementing advanced features

¢ Distributed transaction management support
(works only with Adaptive Server Enterprise version 12.0 and later, or
version 11.x using XA-Server™)

The above features require classes and/or interfaces that fend in
standard Java 2 distributions. You must downleagk.sql.* and
javax.naming.* to implement

Databases and Connection Pooling, and you must download
javax.transaction.xa.* to implement Distributed Transaction Management
Support.

Note Sybase recommends that you use JNDI 1.2, which is compatible with
Java 1.1.6 and later.

JNDI for naming databases

Reference

Related interfaces

82

The JDBC 2.0 Optional Package (formerly theJDBC 2.0 Sandard Extension
API), Chapter 5, “JNDI and the JDBC API.”

* javax.sgl.DataSource
* javax.naming.Referenceable
* javax.naming.spi.ObjectFactory

This feature provides JDBC clients with an alternative to the standard approach
for obtaining database connections. Instead of invokiags.forName
(“com.sybase.jdbc2.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager'getConnection() method, clients can access a JNDI name
server using a logical name to retrievievax.sql.DataSource object. This

object is responsible for loading the driver and establishing the connection to
the physical database it represents. The client code is simpler and reusable
because the vendor-specific information has been placed within the
DataSource object.

The Sybase implementation of thetaSource object is
com.sybase.jdbcx.SybDataSource (see the javadocs for details). This
implementation supports the following standard properties using the design
pattern for JavaBean components:

CHAPTER 2 Programming Information

¢ databaseName

* dataSourceName

e description

* networkProtocol

e password

e portNumber

i serverName

e user

roleName is not supported.

jConnect provides an implementation of theix.naming.spi.ObjectFactory
interface so th@ataSource object can be constructed from the attributes of a
name server entry. When givemaax.naming.Reference, or a
javax.naming.Name and gavax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc2.SybObjectFactory.

Usage

You can us®ataSource in different ways, in different applications. All options
are discussed below with some code examples to guide you through the
process. For more information, see JB8BC 2.0 Optional Package (formerly
theJDBC 2.0 Sandard Extension API), and the JNDI documentation on Sun’s
Web site.

la. Configuration by jConnect has supported LDAP connectivity since version 4.0. As a result, the

administrator: LDAP recommended approach, which requires no custom software, is to configure
DataSources as LDAP entries using the LDAP Data Interchange Format
(LDIF). For example:

er nanme: myASE, o=MyConpany, c=US
97. 4. 2.5: TCP#1# nymachi ne 4000
7.4.2.10: PACKETSI ZE=1024&user =me&passwor d=secr et

rna
.4.1.8
.4.1.89

.4.1.897.4.2.11: userdb

83

Implementing advanced features

1b. Access by client Thisisthetypical JDBC client application. The only differenceisthat you
access the name server to obtain areference to a DataSource object, instead of
accessing the DriverManager and providing aJDBC URL. Once you obtain the
connection, the client codeisidentical to any other JDBC client code. The code
is very generic and references Sybase only when setting the object factory
property, which can be set as part of the environment.

The jConnect installation contains the sample program
sample2/SmpleDataSource.java to illustrate the use of DataSource. This
sampleisprovided for reference only; that is, you cannot run the sample unless
you configure your environment and edit the sample appropriately.
SmpleDataSource.java contains the following critical code:

i nport javax.nam ng.*;
i nport javax.sql.?*;
i nport java.sql.*;

/'l set necessary JNDI properties for your environnent (sane as above)
Properties jndi Props = new Properties();

/1 used by JNDI to build the SybDataSource
j ndi Props. put (Cont ext . OBJECT_FACTORI ES,
"com sybase. j dbc2.j dbc. SybChj ect Fact ory");

/1 nanmeserver that JNDI should talk to
j ndi Props. put (Cont ext. PROVI DER_URL, "I dap:
/I some_| dap_server: 238/ o=MyConpany, c=Us") ;

/1 used by JNDI to establish the nami ng context
j ndi Props. put (Context. | N Tl AL_CONTEXT_FACTCRY,
"com sun. j ndi .| dap. LdapCt xFactory");

/1 obtain a connection to your nanme server
Context ctx = new Initial Context(jndiProps);
Dat aSource ds = (DataSource) ctx.|ookup("servername=nyASE");

/1 obtains a connection to the server as configured earlier.
/1 in this case, the default usernane and password will be used
Connecti on conn = ds. get Connection();

/1 do standard JDBC net hods

Explicitly passing the Properties to the InitialContext constructor is not required
if the properties have adready been defined within the virtual machine; that is,
passed when Javawas either set as part of the browser properties, or by using:

84

CHAPTER 2 Programming Information

java -Djava. nam ng. obj ect. factory=com sybase. j dbc2. j dbc. SybOhj ect Factory

See your Java VM documentation for more information about setting
environment properties.

2a. Configuration by This phaseis typically done by the person who does database system

administrator: custom — ggmjinjstration or application integration for their company. The purposeisto
define a data source, then deploy it under alogical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runsthis configuration utility (outlined
below) and reassignsthelogical nameto the new data source configuration. As
aresult, the client code does not change, since it knows only the logical name.

i mport javax.sql.*;
i mport com sybase. j dbcx. *;

/1 create a SybDataSource, and configure it

SybDat aSour ce ds = new com sybase. j dbc2. j dbc. SybDat aSour ce();

ds. set User (" ny_user nanme") ;

ds. set Passwor d(" ny_password");

ds. set Dat abaseNane("ny_favorite_db");

ds. set Server Name("db_machi ne") ;

ds. set Port Nunber (4000) ;

ds. set Description("This DataSource represents the Adaptive Server
Enterprise server running on db_nachine at port 2638. The default
user nane and password have been set to 'nme’ and 'mi ne’ respectively.
Upon connection, the user will access the ny_favorite_db database on
this server.");

Properties props = newProperties()

props. put (" REPEAT_READ', "fal se");

props. put (" REQUEST_HA SESSI ON', "true");

ds. set Connecti onProperties(props);

/| store the DataSource object. Typically this is

/1 done by setting JNDI properties specific to the

/1 type of JNDI service provider you are using.

/1 Then, initialize the context and bind the object.

Context ctx = new Initial Context();

ctx. bind("jcbc/ nyASE", ds);

Once you set up your DataSource, you decide where and how you want to store
the information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine
how the data is stored depending on what service provider you are using for
JNDI.

85

Implementing advanced features

2b. Access by client

The client retrieves the DataSource object by setting its INDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object asit is stored (for example,
serialized) into a Java object.

Context ctx = new Initial Context();
Dat aSource ds = (DataSource ctx.|ookup("jchc/ myASE");

Connection pooling

Reference

Related interfaces

Overview

86

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 6, “Connection Pooling.”

* javax.sgl.ConnectionPoolDataSource

* javax.sgl.PooledConnection

Traditional database applications create one connection to a database that you
use for each session of an application. However, a Web-based database
application may need to open and close a new connection several times during
the application’s use. An efficient way to handle Web-based database
connections is to use connection pooling, which maintains open database
connections and manages connection sharing across different user requests to
maintain performance and to reduce the number of idle connections. On each
connection request, the connection pool first determines if there is an idle
connection in the pool. If there is, the connection pool returns that connection
instead of making a new connection to the database.

Connection pooling capabilities are providedtayinectionPoolDataSource. If
you use this interface, you can pool connections. If you useatheource
interface, you cannot pool connections.

When you use€onnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when a user closes the
connection, or if the user has an error that destroys the connection. At this
point, the pool implementation decides what to do withPthigedConnection.

Without connection pooling, a transaction:

1 Creates a connection to the database.

CHAPTER 2 Programming Information

2 Sendsthe query to the database.
3 Getsback theresult set.
4 Displaysthe result set.
5 Destroysthe connection.
With connection pooling, the sequence looks more like this:
Sees if an unused connection exists in the “pool” of connections.
If so, uses it; otherwise creates a new connection.
Sends the query to the database.

1

2

3

4 Gets back the result set.
5 Displays the result set.
6

Returns the connection to the “pool.” The user still caltsé()”, but the
connection remains open and the pool is notified ofithe request.

It is less costly to reuse a connection than to create a new one every time a
client needs to establish a connection to a database.

To enable a third party to implement the connection pool, the jConnect
implementation has theonnectionPoolDataSource interface produce
PooledConnections, similar to how theataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods ofonnectionPoolDataSource. Then, the pool
implementation registers itself as a listener torth@edConnection.

Currently, when a client requests a connection, the pool implementation
invokesgetConnection() on an availabl@ooledConnection. When the client
finishes with the connection and callsse(), the pool implementation is
notified via theConnectionEventListener interface that the connection is free
and available for reuse.

The pool implementation is also notified via the@nectionEventListener
interface if the client somehow corrupts the database connection, so that the
pool implementation can remove that connection from the pool.

For more information, refer to Appendix B of the tiEBC 2.0 Optional
Package (formerly theJDBC 2.0 Sandard Extension API).

87

Implementing advanced features

Configuration by This approach isthe same as “1a. Configuration by administrator: LDAP”

administrator: LDAP described in INDI for naming databasgexcept that you enter an additional
line to your LDIF entry. In the following example, the added line of code is
bolded for your reference.

dn: server nane=nyASE, o=MyConpany, c¢=US

1.3.6.1.4.1.897.4.2.5: TCP#1# nynachi ne 4000
1.3.6.1.4.1.897.4.2.10: PACKETSI ZE=1024&user =ne&passwor d=secr et
1.3.6.1.4.1.897.4.2.11: userdb

1.3.6.1.4.1.897.4.2.18: Connect i onPool Dat aSour ce

Access by middle-tier This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,

clients PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), and
retrieves aConnectionPoolDataSource object. For a more complete code
example, seeample2/S mpleConnectionPool.java. The fundamental
difference is:

Connect i onPool Dat abase cpds = (Connecti onPool Dat aSour ce)
ct x. | ookup("servernane=nyASE") ;
Pool edConnecti on pconn = cpds. get Pool edConnecti on();

Distributed transaction management support

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server Enterprise version 12.x or version
11.x with XA-Server.

Note This feature is designed for use in a large multitier environment.

Reference

See Chapter 7, “Distributed Transactions,” indb&C 2.0 Optional Package
(formerly theJDBC 2.0 Sandard Extension API).

88

CHAPTER 2 Programming Information

Related interfaces

* javax.sgl.XADataSource
e javax.sgl.XAConnection

* javax.transaction.xa.XAResource

Background and system requirements

For Adaptive Server ¢ Because jConnect is communicating directly with the resource manager
Elrgé?rprlse 12.0 and within Sybase Adaptive Server Enterprise version 12.0 and later, the

installation must have Distributed Transaction Management support.

¢ Any user that wants to participate in a distributed transaction must have
the “dtm_tm_role” granted to them or the transactions will fail.

e To use distributed transactions, you must install the stored procedures in
the/sp directory. Refer to “Installing Stored Procedures” in Chapter 1 of
your jConnect for JDBC Installation Guide.

Figure 2-2: Distributed transaction management
support with version 12.x

Middle-tier
Components
JTA
i TDS
Client . ASE 12.x
Application jConnect
DTM
For Adaptive Server jConnect also provides a standard Java API for performing distributed
Enterprise 11.x transactions with Adaptive Server Enterprise version 11.x as your database
server.

* This implementation works only with Sybase Adaptive Server Enterprise
version 11.x and XA-Server 11.1.

89

Implementing advanced features

Figure 2-3: Distributed transaction management support with version

11.x
Middle-tier ITA .
COmponentS < » JConnect
ITDS
Client XA-Server TDS .| ASE 11.x
Application 1.1 >

e Thelogin chosen cannot have a default login databasesafr, model, or
sybsystemdb. This is because XA-Server connects only when the user's
work is associated with a distributed transaction, and distributed
transactions are not permitted on those databases.

* There is no access to metadata. While this restricts the client, it is most
likely not the part of the API being used within the boundaries of
distributed transactions.

Adaptive Server Enterprise 12.x use

Configuration by This approach is the same“as. Configuration by administrator:
administrator: LDAP LDAP”described iflJNDI for naming databases” on page 82cept that you
enter an additional line to the LDIF entry. In the following example, the added

line of code is displayed in bold.
n: server nanme: nyASE, o=MyConpany, c=US
1.897. 4. 2. 5: TCP#1# nymachi ne 4000
1.897. 4. 2. 10: PACKETSI ZE=1024&user =nme&passwor d=secr et
1.897.4.2.11: userdb

4.1.897.4.2.18: XADat aSour ce

Access by middle-tier This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

erver
6.1. 4.
6.1. 4.
6.1. 4.
6.1

XADat aSour ce xads = (XADat asource) ctx.|ookup("servername=nyASE") ;
XAConnecti on xaconn = xads. get XAConnection();
or override the default settings for the user name and password:

XADat aSour ce xads = (XADat asource) ctx.|ookup("servername=nyASE");

90

CHAPTER 2 Programming Information

XAConnecti on xaconn

= xads. get XAConnecti on("ny_usernanme", "ny_password");

Adaptive Server Enterprise 11.x use

Configuration by
administrator: LDAP

!‘!‘!‘!‘!—‘!—‘D—

erver
6.1.4
6.1.4.
6.1.4.
6.1.4
6.1.4
6.1.4

i

Access by middle-tier
clients

This approach is the same as “1a. Configuration by administrator:
LDAP"described irtJNDI for naming databases” on page 8%cept that you
enter an additional three lines to the LDIF entry.

In the following example, the additional code lines are displayed in bold .

4.

el

2.
. 10: PACKETSI ZE=1024&user =ne&passwor d=secr et
.11: userdb

. 16: userconnection

2.

NN NN

er nanme: myASE, o=MyConpany, c=US
. 897.

897.
897.
897.
897:
. 897.

5: TCP#1# nynmachi ne 4000

17:1
18: XADat aSour ce

where. . .4.2. 17:1 indicates that jConnect is going to connect to an XA-
Server andiser connect i on corresponds to the Logical Resource Manager
(LRM) to use. XA-Server has a@ _config file that contains these entries:

[xa]

| r mruser connecti on
server=ny_ase_11 server
XASer ver =ny_xa_server

Figure 2-4: Distributed transaction management support sample
configuration

Middle-tier | JTA

Components|< » jConnect
1 A
TDS
v v
i my_Xxa_server
clent r);_nniﬁ on: < my_ase_11 server
Application g on: pE"
mymachine:4000

See the XA-Server documentation for details on how to writ@ aronfig file.

This procedure initializes three properties (INITIAL_CONTEXT_FACTORY,
PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

XADat aSour ce xads

(XADat asource) ctx. | ookup("servernanme=nyASE");

91

Handling restrictions, limitations, and deviations from JDBC standards

XAConnecti on xaconn = xads. get XAConnection();

With Adaptive Server Enterprise 11.x, you cannot override the default user
name and password; that is, you cannot call:

xads. get XAConnecti on("my_user nane", "nmy_password");

because the Irmis associated with a specific user name and password.

Handling restrictions, limitations, and deviations from
JDBC standards

This section discusses restrictions and limitations that apply to jConnect,
including how the jConnect implementation of JDBC deviates from the JDBC
1.x and 2.0 standards. The following topics are covered:

¢ Making adjustments for multithreading

¢ Using ResultSet.getCursorName()

e Using setLong() with large parameter values
¢« Using COMPUTE statements

* Executing stored procedures

Making adjustments for multithreading

92

If several threads simultaneously call methods on the sameent instance,
CallableStatement, orPreparedStatement—which we do not recommend— you
have to manually synchronize the calls to the methods chichenent;
jConnect does not do this automatically.

For example, if you have two threads operating on the samenent
instance—one thread sending a query and the other thread processing
warnings—you have to synchronize the calls to the methods amtheent
or conflicts may occur.

CHAPTER 2 Programming Information

Using ResultSet.getCursorName()

Some JDBC drivers generate a cursor name for any SQL query so that astring
can always be returned. However, jConnect does not return a name when
ResultSet.getCursorName() is called, unless you either

e calledsetFetchSize() or setCursorName() on the correspondirigatement,
or

¢ setthe SELECT_OPENS_CURSOR connection property to true, and your
query was in the form of SELECT... FOR UPDATE; for example,

select au_id fromauthors for update

If you do not calketFetchSize() or setCursorName() on the corresponding
Statement, or setthe SELECT_OPENS_CURSOR connection property to true,
null is returned.

According to the JDBC 2.0 API (chapter 11, “Clarifications”), all other SQL
statements do not need to open a cursor and return a name.

For more information on how to use cursors in jConnect,$e@g cursors
with result sets” on page 47

Using setLong() with large parameter values

Implementations of thereparedStatement.setLong() method set a parameter
value to a SQIBIGINT datatype. Most Adaptive Server databases do not have
an 8-byteBIGINT datatype. If a parameter value requires more than 4 bytes of
aBIGINT, usingsetLong() may result in an overflow exception.

Using COMPUTE statements

jConnect does not support computed rows. Results are automatically cancelled
when a query contains a computed row. For example, the following statement
is rejected:

SELECT nane FROM sysobj ects
WHERE type="S" COWPUTE COUNT(nane)

To avoid this problem, substitute the following code:

SELECT nane from sysobj ects WHERE type="S"
SELECT COUNT(nane) from sysobjects WHERE type="S"

93

Handling restrictions, limitations, and deviations from JDBC standards

Executing stored procedures

94

e If you execute a stored procedure inzableStatement object that
represents parameter values as question marks, you get better performance
than if you use both question marks and literal values for parameters.
Further, if you mix literals and question marks, you cannot use output
parameters with a stored procedure.

The following example creategs stmt as aCallableStatement object for
executing the stored procedurigProc:

Cal | abl eSt at enent sp_stnt = conn. prepareCal | (
"{call MyProc(?,?)}");

The two parameters inyProc are represented as question marks. You can
register one or both of them as output parameters using the
registerOutParameter() methods in the€allableStatement interface.

In the following examplesp_stmt2 is aCallableStatement object for
executing the stored procedurigProc?.

Cal | abl eSt at enent sp_stnt2 = conn. prepareCal | (
{"call MyProc2(?,'javelin)}");

In sp_stmt2, one parameter value is given as a literal value and the other
as a question mark. You cannot register either parameter as an output
parameter.

« To execute stored procedures with RPC commands using name-binding
for parameters, use either of the following procedures.

« Use language commands, passing input parameters to them directly
from Java variables using thesparedStatement class. This is
illustrated in the following code fragment:

/'l Prepare the statenent

Systemout.println("Preparing the statenent...");

String stntString = "exec " + procnane + " @3=?, @1=?";
PreparedSt at ement pstnt = con. preparedStatenent(stnmtString);

/'l Set the val ues
pstnt.setString(1, "xyz");
pstnt.setlnt (2, 123);

/'l Send the query
Systemout. println("Executing the query...");
Resul t Set rs = pstnt.executeQuery();

CHAPTER 2 Programming Information

¢ With jConnect version 5.2, use the
com.sybase.jdbcx.SybCallableStatement interface, illustrated in this
example:

i mport com sybase. j dbcx. *;

/| prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procNanme + " (2?2, ?)}";

SybCal | abl eSt at ement scs = (SybCal | abl eSt at enrent)

con. prepareCal | (execRPC) ;

/1 set the values and nane the paraneters

/1 also (optional) register for any output paraneters
scs.setString(1, "xyz");

scs. set Par anet er Nanme(1, " @3");

scs.setlnt (2, 123);

scs. set Par anet er Nane(2, "@1");

/| execute the RPC
/1 may al so process the results using getResultSet()
/1 and get MoreResul ts()

/'l see the sanples for nore infornmation on processing results

rs = scs. executeQuery();

95

Handling restrictions, limitations, and deviations from JDBC standards

96

CHAPTER 3 Troubleshooting

Thischapter describes sol utions and workaroundsfor problemsyou might
encounter when using jConnect.

Topics

Debugging with jConnect
Capturing TDS communication
Unsuccessful connection errors

Memory usage in jConnect applications
Stored procedure errors
Custom socket implementation error

Debugging with jConnect

jConnect includes a Debug class that contains a set of debugging
functions. The Debug methodsinclude a variety of assert, trace, and timer
functions that let you define the scope of the debugging process and the
output destination for the debugging results.

The jConnect installation also includes a compl ete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under
your jConnect installation directory. For debugging purposes, you must
redirect your CLASSPATH environment variable to reference the debug
mode runtime classes (devclasses for jConnect 4.x and
devclasses/jconn2d.jar for jConnect 5.x), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a
-classpath argument to the java command when you run a Java program.

Obtaining an instance of the Debug class

To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug() method on the SybDriver class.

97

Debugging with jConnect

For jConnect 4.x:
i nport com sybase. j dbcx. Debug
i nport.com sybase. j dbcx. SybDebug
/1

SybDriver sybDriver = (SybDriver)
Cl ass. f or Name("com sybase. j dbc. SybDri ver"). new nstance();
Debug sybdebug = sybDriver. get Debug();

For jConnect 5.x:
i mport com sybase. j dbcx. Debug
i mport.com sybase. j dbcx. SybDebug
/1

SybDriver sybDriver = (SybDriver)
Cl ass. for Name("com sybase. j dbc2. j dbc. SybDriver"). new nstance();
Debug sybdebug = sybDriver. get Debug();

Turning on debugging in your application

To use the debug() method on the Debug object to turn on debugging within
your application, add this call:

sybdebug. debug(true, [classes], [printstream);

The classes parameter is a string that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug. debug(true, "Md ass")
and
sybdebug. debug(true, "M/ ass: Your C ass")

“STATIC” in the class string turns on debugging for all static methods in
jConnect in addition to the designated classes. For example:

sybdebug. debug(true, " STATI C. MyCl ass")
You can specify “ALL”" to turn on debugging for all classes. For example:
sybdebug. debug(true, "ALL");

Theprintstream parameter is optional. If you do not specify a printstream, the
debug output goes to the output file you specified with
DriverManager.setLogStream().

98

CHAPTER 3 Troubleshooting

Turning off debugging in your application

To turn off debugging, add this call:
sybdebug. debug(f al se);

Setting the CLASSPATH for debugging

Using the Debug

Before you run your debug-enabled application, redefine the CLASSPATH
environment variable to reference the /devclasses subdirectory under your
jConnect installation directory.

For jConnect 4.x:

e For UNIX, replacesJDBC_HOME/classes with
$IDBC_HOME/devcl asses.

¢ For Windows, replac&JDBC_HOME%b\classes with
%JDBC_HOMEY\devclasses.

For jConnect 5.x:

e For UNIX, replacesJDBC_HOME/classes/jconn2.jar with
$IDBC_HOME/devclasses/jconn2.jar.

¢ For Windows, replac&JDBC_HOME%o\classe\jconn2.jar with
%JDBC_HOME%Y\devclasses\jconn2.jar.

methods

To customize the debugging process, you can add calls tocather
methods.

In these methods, the first (object) parameter is ustiafiyo specify the
calling object. If any of these methods are static,;usiefor the object
parameter.

. printin()

Use this method to define the message to print in the output log if

debugging is enabled and the object is included in the list of classes to

debug. The debug output goes to the file you specified with
sybdebug.debug().

The syntax is:

99

Debugging with jConnect

100

sybdebug. pri ntl n(obj ect, nessage string);
For example:
sybdebug. printIn(this,"Query: "+ query);
produces a message similar to thisin the output log:
nyApp(thread[x,y, z]): Query: select * from authors
assert()

Use this method to assert a condition and throw a runtime exception when
the condition is not met. You can also define the message to print in the
output log if the condition is not met. The syntax is:

sybdebug. assert (obj ect, bool ean conditi on, mnessage
string);

For example:

sybdebug. assert (thi s, amobunt <=buf . | engt h, anmount +"
too big!");

produces a message similar to this in the output log if “amount” exceeds
the value obuf.length:

java. |l ang. Runti meExcepti on: myApp(t hread[x, vy, z]):
Assertion failed: 513 too big!

at jdbc. sybase. utils.sybdebug. assert(

sybdebug. j ava: 338)

at nmyApp. nyCal | (nyApp. j ava: xxx)

at nore stack:

startTimer()
stopTimer()

Use these methods to start and stop a timer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and
one for all static methods. The syntax to start the timer is:

sybdebug. start Ti ner (obj ect);
The syntax to stop the timer is:

sybdebug. st opTi ner (obj ect, nessage string);
For example:

sybdebug. start Ti mer (t hi s);
stnt. execut eQuery(query);
sybdebug. st opTi ner (t hi s, "execut eQuery");

CHAPTER 3 Troubleshooting

produces a message similar to this in the output log:

myApp(thread[x,y, z]): executeQuery el apsed tinme =
25ms

Capturing TDS communication

Tabular Data Stream (TDS) is Sybase’s proprietary protocol for handling
communication between a client application and Adaptive Server. jConnect
includes a PROTOCOL_CAPTURE connection property that allows you to
capture raw TDS packets to a file.

If you are having problems with an application that you cannot resolve within
either the application or the server, you can use PROTOCOL_CAPTURE to
capture the communication between the client and the server in a file. You can
then send the file, which contains binary data and is not directly interpretable,
to Sybase Technical Support for analysis.

Note You can also use th@bo utility to capture, translate, and display the
protocol stream flowing between the client and the server. For details on how
to obtain and useibo, visit the jConnect utilities Web page at
http://www.sybase.com/products/internet/jconnect/utilities/

PROTOCOL_CAPTURE connection property

Use the PROTOCOL_CAPTURE connection property to specify a file for
receiving the TDS packets exchanged between an application and an Adaptive
Server. PROTOCOL_CAPTURE takes effectimmediately so that TDS packets
exchanged during connection establishment are written to the specified file. All
packets continue to be written to the file untibture.pause() is executed or

the session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS data to the fileds data:

props. put (" PROTOCOL_CAPTURE", "tds_data")
Connection conn = Driver Manager. get Connection(ur/, props);

101

Unsuccessful connection errors

where url isthe connection URL and propsisaProperties object for specifying
connection properties.

pause() and resume() methods in the Capture class

The Capture classiscontainedin the com.sybase.jdbcx package. It containstwo
public methods:

* public void pause()
* public void resume()

Capture.pause() stops the capture of raw TDS packets into a file;
Capture.resume() restarts the capture.

The TDS capture file for an entire session can become very large. If you want
to limit the size of the capture file, and you know where in an application you
want to capture TDS data, you can do the following:

1 Immediately after you have established a connection, getthere
object for the connection and use these() method to stop capturing
TDS data:

Capture cap = ((SybConnection)conn). get Capture();
cap. pause();

2 Placecap.resume() just before the point where you want to start capturing
TDS data.

3 Placecap.pause() just after the point where you want to stop capturing
data.

Unsuccessful connection errors

This section addresses problems that may arise when you are trying to establish
a connection or start a gateway.

Gateway connection refused

Gat eway connection refused:
HTTP/ 1.0 502 Bad Gat eway| Restart Connection

102

CHAPTER 3 Troubleshooting

This error message indicates that something iswrong with the hostname or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASEY\ini\sgl.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > fj/enane
For UNIX, enter:
sh httpd.sh -Dverbose=1 > fj/enane &
wherefilename is the debug messages output file.

Your Web server probably does not support the connect method. Applets can
connect only to the host from which they were downloaded.

The HTTP gateway and your Web server must run on the same host. In this
scenario, your applet can connect to the same machine/host through the port
controlled by the HTTP gateway, which routes the request to the appropriate
database.

To see how this is accomplished, review the sour¢sgbfava and
gateway.html in thesample (jConnect 4.x) osample2 (jConnect 5.x)
subdirectory under the jConnect installation directory. Search for “proxy.”

Unable to connect to a 4.9.2 SQL Server

jConnect uses TDS 5.0 (Sybase transfer protocol). SQL Server 4.9.x uses TDS
4.6, which is not compatible with TDS 5.0.

SQL Server 10.0.2 or later is required for use with jConnect.

Memory usage in jConnect applications

The following situations and their solutions may be helpful if you notice
increased memory use in jConnect applications.

103

Stored procedure errors

In jConnect applications, you should explicitly closesaltement objects

and subclasses (for examplegparedStatement, CallableStatement) after

their last use to prevent statements from accumulating in memory. Closing
theResultSet is not sufficient.

For example:

ResultSet rs = _conn. prepareCal |l (_query). execute();
rs.close();
will cause problems. Instead use:

PreparedSt at ement ps = _conn. prepareCal | (_query);
Result Set rs = ps. execute();

ps.close();

rs.close();
jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect
5.0, TDS does not support scrollable cursors. To support scrollable
cursors, jConnect caches the row data on demand, on the client, on each
call torResultSet.next(). However, when the end of the result set is reached,
the entire result set is stored in the client's memory. Because this may
cause a performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Stored procedure errors

This section addresses problems that may arise when you are trying to use
jConnect and stored procedures.

RPC returns fewer output parameters than registered

104

SQ.State: JZOSG - An RPC did not return as nmany out put
paraneters as the application had registered for it.

CHAPTER 3 Troubleshooting

Thiserror occursif you call CallableStatement.registerOutParam() for more
parameters than you have declared as “OUTPUT” parameters in the stored
procedure. Make sure that you have declared all of the appropriate parameters
as “OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@1 int OUTPUT,

Note If you receive this error while using Adaptive Server Anywhere
(previously known as SQL Anywhere), upgrade to Adaptive Server Anywhere
version 5.5.04 or later.

Fetch/state error when stored procedure returns output params

If a query does not return row data, then it should use the
CallableStatement.executeUpdate() or execute() methods rather than the
executeQuery() method.

As required by the JDBC standards, jConnect throws a SQL exception if an
executeQuery() has no result sets.

Stored procedure executed in unchained transaction mode

Sybase Error 7713 - Stored Procedure can only be
executed in unchai ned transacti on node.

JDBC attempts to put the connectiorainocommit(true) mode. The
application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using &set chained on” language
command. This error occursiif the stored procedure was not created in a
compatible mode.

To fix the problem, use:

sp_procxmode procedure_name, 'anymode"

105

Custom socket implementation error

Custom socket implementation error

106

You may receive an exception similar to the following while trying to set up an
SSL socket when calling
sun.security.ssl.SSLSocketlmpl.setEnabledCipherSuites:

java.lang. |11 egal Argunent Excepti on:
SSL_SH anon_EXPORT W TH _RC4_40_ MDS

Verify that the SSL libraries are in the system library path.

CHAPTER 4 Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

Topics

Improving jConnect performance

Performance tuning for prepared statements in dynamic SQL

Cursor performance

Improving jConnect performance

There areanumber of waysto optimizethe performance of an application
using jConnect:

UseTextPointer.sendData() methods to send text and image data to an
Adaptive Server database. S&ending image data” on page.61

Create precompiledreparedStatement objects for dynamic SQL
statements that are used repeatedly during a session. See
“Performance tuning for prepared statements in dynamic SQL” on
page 110

Batch updates improve performance by reducing network traffic;
specifically, all queries are sent to the server in one group and all
responses returned to the client are sent in one groupSSeeort
for batch updates” on page.57

For sessions that are likely to move image data, large row sets, and
lengthy text data, use the PACKETSIZE connection property to set
the maximum feasible packet size.

For TDS-tunneled HTTP, set the maximum TDS packet size and
configure your Web server to support the HTTP1.1 Keep-Alive
feature. Also set th&ipDoneProc servlet argument to true.

107

Improving jConnect performance

« Use protocol cursors, the default setting of the LANGUAGE_CURSOR
connection property. SEeANGUAGE_CURSOR connection property”
on page 11for more information.

e Ifyouuse TYPE_SCROLL_INSENSITIVE result sets, only use them
when the result set is reasonably small. 'Segport for
SCROLL_INSENSITIVE result sets in jConnect” on pagef@Smore
information.

Additional considerations for improving performance are described below.

BigDecimal rescaling

The JDBC 1.0 specification requires a scale factor geitkigDecimal(). Then,
when aBigDecimal object is returned from the server, it must be rescaled using
the original scale factor you used witktBigDecimal().

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal() method, which jConnect implements in th@ResultSet class
and does not requiresaale value:

public BigDecimal getBigDecimal(int columnindex)
throws SQLException

For example:

SybResul tSet rs =
(SybResul t Set) st nt. execut eQuery(" SELECT
nuneric_colum from T1");
while (rs.next())

{
Bi gDeci mal bd rs. get Bi gDeci nal (

"nuneric_colum");

REPEAT_READ connection property

You can improve performance on retrieving a result set from the database if
you set the REPEAT_READ connection property to false. However, when
REPEAT_READ is “false:”

108

CHAPTER 4 Performance and Tuning

¢ You must read column values in order, according to column index. This is
difficult if you want to access columns by name rather than column
number.

¢ You cannot read a column value in a row more than once.

Character-set conversion

Bandwidth reduction when unichar or univarchar dataypes are enabled

SunloConverter

When communicating with version 12.5 or later of Adaptive Server in which
unichar andunivarchar datatype support has been turned on for Unicode data,
jConnect sends all character parameter data in the Unicode format. This means
that ASCII strings such as the word “dog,” which would normally require three
bytes to transmit, will require six bytes because Unicode data, at the time of this
writing, requires two bytes per character.

If your client application is going to send character data that is in a one-byte-
per-character character set (such as ASCII or iso_1), consider using the
setAsciiStream method to send it. This can result in a reduction of network
bandwidth (that is, you will be sending fewer bytes across the wire). However,
jConnect and the database server must perform internal conversions to handle
this data.

If you are using multibyte character sets and need to improve driver
performance, you can use theloConverter class provided with the jConnect
samples. This converter is based onstheio classes provided by the Java
Software Division of Sun Microsystems, Inc.

109

Performance tuning for prepared statements in dynamic SQL

The SunloConverter classisnot apure Javaimplementation of the character-set
converter feature, and thereforeis not integrated with the standard jConnect
product. However, we have provided this converter class for your reference,
and you can useit with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunloConverter class improved
performance on al VMs on which it was tested. However, the Java Software
Division of Sun Microsystems, Inc. reservestheright to remove or change the
sun.io classes with future releases of the JDK, and therefore this
SunloConverter class may not be compatible with later JDK releases.

To use the SunloConverter class, you must install the jConnect sample
applications. See the Sybase jConnect for JDBC Installation Guide for
completeinstructions on installing jConnect and its components, including the
sampl e applications. Once the samples areinstalled, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunloConverter class in the sample (jConnect 4.x) or sample2 (jConnect 5.x)
subdirectory under your jConnect installation directory.

Performance tuning for prepared statements in

dynamic SQL

110

In Embedded SQL, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although thisis not a requirement. In SQL, the
prepare command is used to precompil e adynamic statement and saveit so that
it can be executed repeatedly without being recompiled during a session.

If astatement is used multiple timesin a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If astatement islikely to be used only afew times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.

CHAPTER 4 Performance and Tuning

Precompiling adynamic SQL statement for execution and saving it in memory
uses time and resources. If a statement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration isthat once a dynamic SQL statement is
prepared in the database, it isvery similar to astored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. Thisis
discussed under “Choosing between prepared statements and stored
procedures” on page 111

You can use jConnect to optimize the performance of dynamic SQL statements
on a Sybase database as follows:

¢ CreatePreparedStatement objects that contain precompiled statements in
cases where a statement is likely to be executed several times in a session

¢ CreatePreparedStatement objects that contain uncompiled SQL
statements in cases where a statement will be used very few times in a
session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and createparedStatement
objects is likely to depend on whether your application needs to be portable
across JDBC drivers or whether you are writing an application that allows
jConnect-specific extensions to JDBC.

jConnect 4.1 and later provide performance tuning features for dynamic SQL
statements.

Choosing between prepared statements and stored procedures

If you create @&reparedStatement object containing a precompiled dynamic

SQL statement, once the statement is compiled in the database, it effectively
becomes a stored procedure that is retained in memory and attached to the dat:
structure associated with your session. In deciding whether to maintain stored
procedures in the database or to creatgaredStatement objects containing
compiled SQL statements in your application, resource demands and database
and application maintenance are important considerations:

¢ Once a stored procedure is compiled, it is globally available across all
connections. In contrast, a dynamic SQL statemerttigparedStatement
object needs to be compiled and deallocated in every session that uses it.

111

Performance tuning for prepared statements in dynamic SQL

If your application accesses multiple databases, using stored procedures
means that the same stored procedures need to be available on all target
databases. This can create a database maintenance problem. If you use
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

If your application createsallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table references in the
stored procedures. You can then modify the underlying database or SQL
code without have to change the application.

Prepared statements in portable applications

If your application is to run on databases from different vendors and you want
somePreparedStatement objects to contain precompiled statements and others
to contain uncompiled statements, proceed as follows:

112

When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to true.

To returnPreparedStatement objects containing precompiled statements,
useConnection.prepareStatement() in the standard way:

Prepar edSt at enent ps_preconp =
Connecti on. prepareSt atement (sql _string);

To returnPreparedStatement objects containing uncompiled statements,
useConnection.prepareCall().

Connection.prepareCall() returns aCallableStatement object, but since
CallableStatement is a subclass ofreparedStatement, you can upcast a
CallableStatement object to @reparedStatement object, as in the following
example:

Prepar edSt at enent ps_unconp =
Connecti on. prepareCal | (sq/ _string);

The PreparedStatement objectps _uncomp is guaranteed to contain an
uncompiled statement, since onlynnection.prepareStatement() is
implemented to returhreparedStatement objects containing precompiled
statements.

CHAPTER 4 Performance and Tuning

Prepared statements in applications with jConnect extensions

If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement() to specify whether a
PreparedStatement object contains precompiled or uncompiled statements. In
this case, how you code prepared statementsis likely to depend on whether
most of the dynamic statementsin an application are likely to be executed
many times or only afew times during a session.

If most dynamic statements are executed very few times

For an application in which most dynamic SQL statements are likely to be
executed only once or twicein a session:

¢ Set the connection property DYNAMIC_PREPARE to false.

* To returnPreparedStatement objects containing uncompiled statements,
useConnection.prepareStatement() in the standard way:

Pr epar edSt at ement ps_unconp =
Connect i on. prepareSt atenent (sql/_string);

¢ To returnPreparedStatement objects containing precompiled statements,
useSybConnection.prepareStatement() with dynamic set to “true:”

Prepar edSt at ement ps_preconp =
(SybConnecti on) conn. prepareSt at enent (sql/_string, true);

If most dynamic statements are executed many times in a session
If most of the dynamic statements in an application are likely to be executed
many times in the course of a session, proceed as follows:
¢ Set the connection property DYNAMIC_PREPARE to true.

* To returnPreparedStatement objects containing precompiled statements,
useConnection.prepareStatement() in the standard way:

Prepar edSt at ement ps_preconp =
Connecti on. prepareSt atenent (sql/_string);

¢ To returnPreparedStatement objects containing uncompiled statements,
you can use eitheTonnection.prepareCall() (see the third bullet under
Prepared statements in portable applica)ions
SybConnection.prepareStatement(), with dynamic set to “false:”

Pr epar edSt at ement ps_unconp =
(SybConnecti on) conn. prepareStatenent (sq/ _string, false);

113

Performance tuning for prepared statements in dynamic SQL

Prepar edSt at enent ps_unconp =
Connecti on. prepareCal | (sq/ _string);

Connection.prepareStatement()

jConnect implements Connection.prepare Statement() SO you can set it to return
either precompiled SQL statements or uncompiled SQL statementsin
PreparedStatement objects. If you set Connection.prepareStatement() to return
precompiled SQL statements in PreparedStatement objects, it sends dynamic
SQL statements to the database to be precompiled and saved exactly as they
would be under direct execution of the prepare command. If you set
Connection.prepareStatement() to return uncompiled SQL statements, it
returns them in PreparedStatement objects without sending them to the
database.

The type of SQL statement that Connection.prepareStatement() returnsis
determined by the connection property DY NAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 5.0 provides a prepareStatement()
method under the jConnect SybConnection class.
SybConnection.prepareStatement() allowsyou to specify whether anindividual
dynamic SQL statement isto be precompiled, independent of the session-level
setting of the DYNAMIC_PREPARE connection property.

DYNAMIC_PREPARE connection property

DYNAMIC_PREPARE isaBoolean-valued connection property for enabling
dynamic SQL prepared statements:

« If DYNAMIC_PREPARE is set to true, every invocation of
Connection.prepareStatement() during a session attempts to return a
precompiled statement inFaeparedStatement object.

In this case, whenmeparedStatement is executed, the statement it
contains is already precompiled in the database, with place holders for
dynamically assigned values, and the statement needs only to be executed.

« If DYNAMIC_PREPARE is set to falsfor a connection, the
PreparedStatement object returned bgonnection.prepareStatement() does
not contain a precompiled statement.

114

CHAPTER 4 Performance and Tuning

Inthis case, each time aPreparedStatement is executed, the dynamic SQL
statement it contains must be sent to the database to be both compiled and
executed.

The default value for DYNAMIC_PREPARE isfalse.

In the following example, DYNAMIC_PREPARE is set to true to enable
precompilation of dynamic SQL statements. In the example, props isa
Properties object for specifying connection properties.

props. put ("DYNAM C_PREPARE", "true")
Connection conn = Driver Manager. get Connection(ur/, props);

When DYNAMIC_PREPARE is set to true, note that:

¢ Not all dynamic statements can be precompiled undenthere
command. The SQL-92 standard places some restrictions on the
statements that can be used withlegare command, and individual
database vendors may have their own constraints.

« If the database generates an error because it is unable to precompile and
save a statement sent to it througimnection.prepareStatement(),
jConnect traps the error and returmseparedStatement object containing
an uncompiled dynamic SQL statement. Each timeitty@redStatement
object is executed, the statement is re-sent to the database to be compiled
and executed.

* A precompiled statement resides in memory in the database and persists
either to the end of a session or untiFtsparedStatement object is
explicitly closed. Garbage collection or@paredStatement object does
not remove the prepared statement from the database.

As a general rule, you should explicitly close evemparedStatement
object after its last use to prevent prepared statements from accumulating
in server memory during a session and slowing performance.

SybConnection.prepareStatement()

If your application allows jConnect-specific extensions to JDBC, you can use
the SybConnection.prepareStatement() extension method to return dynamic
SQL statements iAreparedStatement objects:

Prepar edSt at ement SybConnecti on. prepareStatenent (String sql _stnt,
bool ean dynamic) throws SQ.Exception

115

Cursor performance

SybConnection.prepareStatement() can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamicistrue,
SybConnection.prepareStatement() returns a PreparedStatement object with a
precompiled SQL statement. If dynamic isfalse, it returnsaPreparedStatement
object with an uncompiled SQL statement.

The following example shows the use of
SybConnection.prepareStatement() to return a PreparedStatement object
containing a precompiled statement;

Prepar edSt at enent preconp_stnt =
((SybConnection) conn). prepareStatenent("SELECT * FROM
aut hors WHERE au_fnane LIKE ?", true);

In the example, the connection object conn is downcast to a SybConnection
object to alow the use of SybConnection.prepareStatement(). The SQL string
passed to SybConnection.prepareStatement() will be precompiled in the
database, even if the connection property DYNAMIC_PREPARE isfalse.

If the database generates an error becauseit is unableto precompile astatement
sent to it through SybConnection.prepareStatement(), jConnect throws a
SQLException and the call failsto return a PreparedStatement object. Thisis
unlike Connection.prepareStatement(), which traps SQL errors and, in the
event of an error, returns a PreparedStatement object contai ning an uncompiled
Statement.

Cursor performance

When you use the Statement.setCursorName() method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the
database. Other methods cause jConnect to open, fetch, and update a cursor.

Versions of jConnect earlier than 4.0 can create and manipulate cursors only by
sending SQL statements with explicit cursor commands to the database for
parsing and compilation.

jConnect version 4.0 and later create and manipulate cursors either by sending
SQL statements to the database or by encoding cursor commands as tokens
within the Tabular Data Stream (TDS) communi cation protocol. Cursorsof the
first type are “language cursors;” cursors of the second type are “protocol
cursors.”

116

CHAPTER 4 Performance and Tuning

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, Adaptive
Server Anywhere databases do not support language cursors.

In jConnect, the default conditionisfor all cursorsto be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and mani pulated through language commands
in the database.

LANGUAGE_CURSOR connection property

LANGUAGE_CURSOR isaBool ean-valued connection property in jConnect
that allows you to determine whether cursors are created as protocol cursors or
language cursors:

If LANGUAGE_CURSOR is set to false, all cursors created during a
session are protocol cursors, which provide better performance. jConnect
creates and manipulates the cursors by sending cursor commands as
tokens in the TDS protocol.

By default, LANGUAGE_CURSOR is set to false.

If LANGUAGE_CURSOR is set to true, all cursors created during a
session are language cursors. jConnect creates and manipulates the cursor
by sending SQL statements to the database for parsing and compilation.

There is no known advantage to setting LANGUAGE_CURSOR to true,
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR s false.

117

Cursor performance

118

CHAPTER 5 Migrating JConnect Applications

This chapter explains how to migrate applications that use Sybase
extensions from jConnect version 4.0 or earlier to use jConnect versions
4.1 and | ater.

Topics
Migrating applications to jConnect 4.5 and 5.5
Sybase extensions

Migrating jConnect applications

Migrating applications to jConnect 4.5 and 5.5

If you upgrade to jConnect 4.5 or 5.5 from earlier versions, the following
table shows which upgrade paths require you to make changes and
recompile the source code.

Legend:

A Change CLASSPATH for new installation structure

B Recompileto use new jConnect 5.x driver

C Verify that the new driver isfirst in your CLASSPATH.
See below for additional details.

Upgrading from To jConnect version

jConnect version 45 5.2 55

4.2 A BC BC

52 - - A
A. Use the new Sybase 1 Change package imports from

extensions.
import com.sybase.jdbc.*

119

Migrating jConnect applications

to
import com.sybase.jdbcx.*;

2 Usenew Sybase extentions APIs. See “Sybase extensions” on page 121

A. Change Set JDBC_HOME to the top directory of the jConnect driver you installed.
CLASSPATH for new For example:

JDBC_HOME :

installation structure For jConnect 4.5:

JDBC_HOVE=j Connect-4_5
For jConnect 5.5:
JDBC_HOVE=<j Connect installation directory>

For more information on setting JDBC_HOME, see “Setting Environment
Variables” in Chapter 1 of th€onnect for JDBC Installation Guide.

Version change CLASSPATH includes

From 4.2 JDBC_HOME/classes

To 5.2 JDBC_HOME/jconn2.jar

From 4.2 JDBC_HOME/classes

To 45 JDBC_HOME/classes

From 5.2 JDBC_HOME/classes/jconn2.jar

To 55 JDBC_HOME/classes/jconn2.jar
B. Recompile to use Change the source code where the driver is loaded from:
new jConnect 5.x
driver Cl ass. for Nane("com sybase. j dbc. SybDriver");

to
Cl ass. for Name("com sybase. j dbc2. j dbc. SybDriver");

C. Verify that new To verify that the new jConnect driver is first in your CLASSPATH, display
jConnect driver is in your CLASSPATH and find the directory where you installed the new jConnect
CLASSPATH driver

Verify that the classes for the new driver (either in/thesses directory for 4.x
or classes/jconn2.jar for 5.x) appear in the CLASSPATH before the classes for
any previously installed driver.

120

CHAPTER 5 Migrating jConnect Applications

Sybase extensions

jConnect version 4.1 and later include the package com.sybase.jdbcx that
contains al of the Sybase extensions to JDBC. In versions of jConnect
previous to 4.1, these extensions were available in the com.sybase.jdbc and
com.sybase.utils packages.

com.sybase.jdbcx provides a consistent interface across different versions of
jConnect. All of the Sybase extensions are defined as Java interfaces, which
allows the underlying implementations to change without affecting
applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. The interfaces in this package allow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Note Applications previously built using the Sybase extensions to the JDBC
API, which were available in com.sybase.jdbc and com.sybase.utils, will
continue to work under jConnect 4.x; however, all Sybase extensionsin
com.sybase.jdbc and com.sybase.utils have been marked deprecated.

Some of the Sybase extensions have been changed to accommodate the new
com.sybase.jdbcx interface.

Change example
If an application usesthe SybMessageHandler, the code differenceswould be:
e jConnect 4.0 code:

i mport com sybase. j dbc. SybConnecti on;
i mport com sybase. j dbc. SybMessageHand! er;

Connection con = DriverManager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set MessageHandl er (new Connecti onMsgHandl er());

e jConnect 4.1 and later code:

i mport com sybase. j dbcx. SybConnecti on;
i mport com sybase. j dbcx. SybMessageHandl er;

121

Sybase extensions

Connection con = DriverManager. get Connection(url, props);
SybConnecti on sybCon = (SybConnection) con;
sybCon. set SybMessageHand! er (new Connecti onMsgHandl er ());

See the samples provided with jConnect for more examples of how to use
Sybase extensions.

Method names
Thefollowing table lists how methods were been renamed in the new interface.

Class Old name New name
SybConnection getCapture() createCapture()
SybConnection setMessageHandler() setSybMessageHandler()
SybConnection getMessageHandler() getSybMessageHandler()
SybStatement setMessageHandler() setSybMessageHandler()
SybStatement getMessageHandler() getSybMessageHandler()

Debug class

Direct static references to the Debug class are no longer supported, but exist in
deprecated form in the com.sybase.utils package. To use jConnect debugging
facilities, use the getDebug() method of the SybDriver classto obtain a
reference to the Debug class. For example:

i nport com sybase. j dbcx. SybDri ver;
i nport com sybase. j dbcx. Debug;

SybDriver sybDriver =

SybDriver) d ass. f or Nane

("com sybase. j dbc2.jdbc. SybDriver") new nstance();
Debug sybDebug = sybDriver. get Debug();
sybDebug. debug(true, "ALL", System out);

A completelist of Sybase extensionsisin the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

122

CHAPTER 6 Web Server Gateways

Thischapter describesWeb server gateways and explains how to usethem
with jConnect.

TOPICS
About Web server gateways
Using the TDS-tunnelling servlet

About Web server gateways

If your database server runs on a different host than your Web server, or if
you are developing Internet applications that must connect to a secure
database server through afirewall, you need a gateway to act as a proxy,
providing a path to the database server.

To connect to servers using the Secure Sockets Layer (SSL) protocol,
jConnect provides a Java servlet that you can install on any Web server
that supportsthe javax.serviet interfaces. This servlet enables jConnect to
support encryption using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For
information on jConnect’s client-side support of SSL,“seglementing
custom socket plug-ins” on page.27

TDS tunnelling

jConnect uses TDS to communicate with database servers. HTTP-
tunnelled TDS is useful for forwarding requests. Requests from a client to
a back-end server that go through the gateway contain TDS in the body of
the request. The request header indicates the length of the TDS included
in the request packet.

123

About Web server gateways

TDS is aconnection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain alogical connection acrossHT TP requests.
The servlet generates a session ID during the initial login request, and the
session ID isincluded in the header of every subsequent request. Using session
IDs lets you identify active sessions, and even resume a session as long as the
servlet has an open connection using that specific session ID.

Thelogical connection provided by the TDS-tunnelling servlet enables

jConnect to support encrypted communication between two systems—for
example, a jConnect client with the CONNECT_PROTOCOL connection
property set to “https” connecting to a Web server running the TDS-tunnelling
servlet.

jConnect and gateway configuration

There are several options for setting up your Web servers and Adaptive
Servers. Four common configurations are described below. These examples
show where to install the jConnect driver and when to use a gateway with the
TDS-tunnelling servlet.

Web server and Adaptive Server on one host

124

In this two-tier configuration, the Web server and Adaptive Server are both
installed on the same host.

e Install jConnect on the Web server host.

* No gateway required.

CHAPTER 6 Web Server Gateways

Figure 6-1: Web server and Adaptive Server on one host

Client Host
Browser URL
(Web
Downloaded Server
appplets and | | Download applets and
jConnect applets and jConnect
driver a jConnect
\ Adaptive
TDS 5.0 Server

Dedicated JDBC Web server and Adaptive Server on one host

With this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server direct requests requiring
SQL access to the dedicated Web server.

¢ Install jConnect on the second (Adaptive Server) host.

¢ No gateway required.

125

About Web server gateways

Figure 6-2: Main Web server on separate host

TDS 5.0

Web server and Adaptive Server on separate hosts

126

In this three-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive

Server.

Host A
Client
Browser Main Web
URL » Server
Downloaded \¢ non-SQL
appplets and applets
jConnect
driver Host B
URL
'\ \
Download A Web
applets and~_| Server
jConnect
applets and
jConnect

Adaptive
Server

e Install jConnect on the Web server host.

« Requires a TDS-tunnelling servlet or a different gateway.

CHAPTER 6 Web Server Gateways

Figure 6-3: Web Server and Adaptive Server on separate hosts

Client

Browser
URL

Host A

»

Downloaded \¢7— Download —

appplets and applets and
jConnect jConnect
driver
L
HTTP
tunneled
TDS
TDS 5.0

Main Web
Server

applets and
jConnect

Adaptive

Connecting to a server through a firewall

Server

To connect to aserver protected by afirewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request

responses over the Internet.

¢ Install jConnect on the Web server host.

¢ Requires a Web server that supportsjghex.serviet interfaces.

127

Usage requirements

Figure 6-4: Connect a server through a firewall

|
Client | URL Host A
Browser i
| Download
Downloaded T applets and— 7 Web Server
apppletsand | || jConnect ~Supporting
jConnect | javax.servlet
driver HTTP/HTTPS | TDS servlet
T tunneled N__
| TDS
| » applets and
| jConnect
Firewall |
|
| Host B
: TDS 5.0
| » [Adaptive
| Server
|

Usage requirements

Reading the index.html file

Use your Web browser to view the index.html filein your jConnect installation
directory. index.html provides|linksto the jConnect documentation and sample
code.

128

CHAPTER 6 Web Server Gateways

Note If you use Netscape on the same machine where you have installed
jConnect, make sure that your browser does not have access to your
CLASSPATH environment variable. See “Restrictions on Setting
CLASSPATH When You Use Netscape” in Chapter 3 of3fimse jConnect
for JDBC Installation Guide and Release Bulletin.

Open your Web browser.

Enter the URL that matches your setup. For example, if your browser and
the Web server are running on the same host, enter:

http://1 ocal host: 8000/ i ndex. ht m
If the browser and the Web server are running on different hosts, enter:
http:// host: portlindex. htm

wherehost is the name of the host on which the Web server is running, and
port is the listening port.

Running the sample Isqgl applet
After loading thendex.html file in your browser:

Troubleshooting

1

3

Click “Run Sample JDBC Applets.”
This takes you to the jConnect Sample Programs page.

Move down the Sample Programs page to find the table under “Executable
Samples.”

Locate “Isqgl.java” in the table and click Run at the end of the row.

The samplesql.java applet prompts for a simple query on a sample database
and displays the results. The applet displays a default Adaptive Server host
name, port number, user namgedst), passwordgybase), database, and query.
Using the default values, the applet connects to the Sybase demonstration
database. It returns results after you click Go.

Under UNIX, if the applet does not appear as expected, you can modify the
applet screen dimensions:

1

Use a text editor to edit the following:

129

Using the TDS-tunnelling serviet

For jConnect 4.x
$IDBC_HOME/sample/gateway.html
For jConnect 5.x
$IDBC_HOME/sample2/gateway.html

2 Changethe height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Using the TDS-tunnelling servlet

130

To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such as Sun Microsystems, Inc.’s Java Web server.
When you install the Web server, include the jConnect TDS-tunnelling servlet
in the list of active servlets. You can also set servlet parameters to define
connection timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server
that go through the gateway include a GET or POST command, the TDS
session ID (after the initial request), back-end address, and status of the
request.

TDS is in the body of the request. Two header fields indicate the length of the
TDS stream and the session ID assigned by the gateway.

When the client sends a request, the Content-Length header field indicates the
size of the TDS content, and the request command is POST. If there is no TDS
data in the request because the client is either retrieving the next portion of the
response data from the server, or closing the connection, the request command
is GET.

The following example illustrates how information is passed between the client
and an HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a
connection to a back-end server named DBSERVER with a port number
“1234.”

CHAPTER 6 Web Server Gateways

Table 6-1: Client to gateway login request. No session ID.

Query POST/tds?ServerHost=dbserver& ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content Login request
(TDS)

Table 6-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Query 200 SUCCESSHTTP/1.0
Header Content-Length: 210
TDS-Session: TDS00245817298274292

Content Login acknowledgment
(TDS) EED

Table 6-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Query POST/tds?TDS-
Session=TDS00245817298274292& Operation=more HTTP/1.0

Header Content-Length: 32

Content Query “SELECT * from authors”
(TDS)

Table 6-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

Query 200 SUCCESS HTTP/1.0

Header Content-Length: 2048
TDS-Session: TDS00245817298274292

Content Row format and some rows from query response
(TDS)

TDS-tunnelling servlet system requirements
To use the jConnect servlet for TDS-tunneled HTTR, you need:

A Web server that supports/ax.serviet interfaces. To install the server,
follow the instructions that are provided with it.

« A Web browser that supports JDK 1.1, such as Netscape 4.0, Internet
Explorer 4.0, or HotJava.

131

Using the TDS-tunnelling serviet

Installing the servlet

Your jConnect installation includes a gateway subdirectory (jConnect 4.x) or
gateway? subdirectory (jConnect 5.x) under the classes directory. The
subdirectory contains files required for the TDS-tunnelling servlet.

Copy the jConnect gateway package to a gateway subdirectory (jConnect 4.x)

or gateway?2 subdirectory (jConnect 5.x) under your Web server’s servlets
directory. Once you have copied the servlets, activate the servlets by following
the instructions for your Web server.

Setting servlet arguments

When you add the servlet to your Web server, you can enter optional arguments
to customize performance:

132

SkipDoneProc [true|false] Sybase databases often return row count

information as intermediate processing steps are performed during the

execution of aquery. Usually client applicationsignorethisdata. If you set
SkipDoneProto true, the servlet will remove this extrainformation from
responses “on the fly,” which reduces network usage and processing
requirements on the client. This is particularly useful when using
HTTPS/SSL because the unwanted data does not get encrypted/decrypted
before it is ignored.

TdsResponseSizeset the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSimamore efficient if you have only afew
users with alarge volume of data. Use a smaller TdsResponseSideyou
have many users making smaller transactions.

TdsSessionldleTimeoudefine the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionldle Timeoist600,000 (10
minutes).

If you haveinteractive client programsthat may beidlefor long periods of
time and you do not want the connections broken, increase the
TdsSessionldleTimeout

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. Thisisuseful if you
have specific applications that may beidlefor longer periods. In this case,
set alonger timeout for those connections with the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

Debug —turn on debugging. See “Debugging with jConnect” on page 97

CHAPTER 6 Web Server Gateways

Enter the servlet arguments in a comma-delimited string. For example:

TdsResponseSi ze=[si ze] , TdsSessi onl dl eTi neout =
[tineout], Debug=true

Refer to your Web server documentation for complete instructions on entering
servlet arguments.

Invoking the servlet

jConnect determines when to use the gateway where the TDS-tunnelling
servlet isinstalled based on the path extension of the proxy connection
property. jConnect recognizes the servlet path extension to the proxy and
invokes the servlet on the designated gateway.

Define the connection URL using this format:
http:// host: port/ TDS- servl et - pat h

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS
through HTTR. The servlet path must be the path you defined in your Web
server’s servlet alias list.

Tracking active TDS sessions

You can view information about active TDS sessions, including the server
connections for each session. Use your Web browser to open the administrative
URL:

http:// host: portl TDS-ser vl et - pat h?Qper ati on=li st

For example, if your server is MYSERVER and the TDS servlet pdittisjs
enter:

http://nyserver: 8080/ tds?Qperation=list

This shows you a list of active TDS sessions. You can click on a session to see
more information, including the server connection.

Terminating TDS sessions

You can use the URL described above to terminate any active TDS session.
Click on an active session from the list of sessions on the first page, then click
Terminate This Session.

133

Using the TDS-tunnelling serviet

Resuming a TDS session

You can set the SESSION_ID connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_ID,
jConnect skipsthelogin phase of the protocol and resumesthe connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

TDS tunnelling and Netscape Enterprise Server 3.5.1 on Solaris

134

Netscape Enterprise Server 3.5.1 does not support the
javax.servlet.ServletConfig.getinitParameters() or
javax.servlet.ServletConfig.getinitParameterNames() methods. To provide the
necessary parameter values, you need to replace callsto getinitParameter() and
getinitParameterNames() with hard-coded parameter valuesin

TDSTunnel Serviet.java.

To enter the required parameter valuesin TDSTunnel Servlet.java and use TDS
tunnelling with Netscape Enterprise Server 3.5.1 on Solaris:

1 Hard code parameter valuesin TDSTunnel Serviet.java.
2 Create .classfiles from the class declarations in TDSTunnel Serviet.java.
This should result in the following files:
* TDSTunnel Servet.class
e TdsSession.class
e TdsSessionManager.class

3 Create a directory for thelass files under your Netscape Enterprise
Server 3.5.1 (NSE_3.5.1) installation directory, as follows:

nkdir NSE 3.5.1 install _dirlplugins/javalservlets/gateway

4 Copy theclassfiles derived fromrDSTunnel Servlet.java to the directory
you just created.

5 Copy the classes und&liDBC_HOME/classes/com/sybase to
NSE 3.5.1 install_dir/docs/com/sybase.

An easy way to do this is to recursively copy everything under
$IDBC_HOME/classesto NSE_3.5.1 install_dir/docs, as:

cp -r $JDBC HOVE/ cl asses NSE 3. 5.1 install_dirldocs

CHAPTER 6 Web Server Gateways

This copies a number of files and directories that are not under
$IDBC_HOME/classes/conVsybase. The extrafiles and directories are

harmless, but take up disk space. You can delete them to reclaim the disk
space.

6 Setthe proxy URL to the TDS-tunnelling servlet.

For example, in $JDBC_HOME/sample/gateway.html, you would edit the
proxy parameter to appear as follows:

<param name=proxy value="http:// host nanelserviet/
gat enay _nanme.TDSTunnel_Servlet_name”>

135

Using the TDS-tunnelling serviet

136

arpennpix A SQL Exception and Warning

Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQL state

Message/description/action

010DP

Duplicate connection property __ ignored.

Description: A connection property is defined twice. It may be defined twice in the driver

connection properties list with different capitalization, for example “password” and
“PASSWORD.” Connection property names are not case-sensitive, and therefore jConnect does
not distinguish between property names with the same name but different capitalization.

The connection property may also be defined both in the connection properties list, and in the
URL. In this case, the property value in the connection property list takes precedence.

Action: Make sure your application defines the connection property only once. However, you
may want you application to take advantage of the precedence of connection properties defined
in the property list over those defined in the URL. In this case, you can safely ignore this warning.

010HA

The server deni ed your request to use the high-availability feature.
Pl ease reconfigure your database, or do not request a high-
avail ability session.

Description: The REQUEST_HA_SESSION connection property was not set to true, and the
server to which jConnect attempted a connection did not allow the connection.

Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to true.

010HD

137

Sybase high-availability failover is not supported by this type of
dat abase server.

Description: The database to which jConnect attempted a connection does not support high
availability failover.

Action: Connect only to database servers that support high availability failover.

SQL state

Message/description/action

010MX

Met adat a accessor informati on was not found on this database. Pl ease
install the required tables as nentioned in the jConnect
docunentation. Error encountered while attenpting to retrieve

net adata i nformation:

Description: The server may not have the necessary stored procedures for returning metadata
information.

Action: Make surethat stored proceduresfor providing metadata areinstalled on the server. See
“Installing Stored Procedures” in Chapter 3 of jfiennect for JDBC Installation Guide.

010P4

An out put paraneter was received and ignored.

Description: The query you executed returned an output parameter but the application result-
processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, you must rewrite the application so
it can get it. This may require usingallableStatement to execute the query, and adding calls to
registerOutputParameter() andgetXXX().

010PF

One or nore jars specified in the PRELOAD JARS connection property
coul d not be | oaded.

Description: This happens when using thenamicClassLoader with the PRELOAD_JARS
connection property set to a comma-delimited list of JAR names. WhegrtheicClassLoader

opens its connection to the server from which the classes are to be loaded, it attempts to “preload”
all the JAR files mentioned in this connection property. If one or more of the JAR names
specified does not exist on the server, the above error message results.

Action: Verify that every JAR file mentioned in your application's PRELOAD_JARS
connection property exists and is accessible on the server.

010RC

The requested ResultSet type and concurrency i s not supported. They
have been converted.

Description: You requested a type and concurrency combination for the ResultSet that is not
supported. The requested values had to be converted.

Action: Request a type and concurrency combination for the ResultSet that is supported.

010SJ

138

Met adat a accessor information was not found on this database. Pl ease
install the required tables as nentioned in the jConnect
docunent ati on.

Description: The metadata information is not configured on the server.

Action: If your application requires metadata, install the stored procedures for returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of the
jConnect for JDBC Installation Guide). If you do not need metadata, set the USE_METADATA
property to false.

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

010SK Dat abase cannot set connection option

Description: Your application attempted an operation that the database you are connected to
does not support.

Action: You may need to upgrade your database or make sure that the latest version of metadata
information isinstalled on it.

010SN Perm ssion to wite to file was denied. File: . Error nessage:

Description: Permission to write to afile specified in the PROTOCOL_CAPTURE connection
property is denied because of a security violation inthe VM. This can occur if an applet attempts
to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the applet has
accessto the target file system.

010SP File could not be opened for witing. File: . Error nessage:

Action: Make sure that the file name is correct and that the file is writable.

010TP The connection’s initial character set, , could not be converted
by the server. The server’s proposed character set, , will be
used, with conversions performed by jConnect.

Description: The server cannot use the character set initially requested by jConnect, and has
responded with a different character set. jConnect accepts the change, and will perform the
necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid thismessage, set the CHARSET connection property to acharacter set that the
server supports.

010UF Attempt to execute use database command failed. Error message:
Description: jConnect cannot connect to the database specified in the connection URL. Two
possibilities are:
« The name was entered incorrectly in the URL.

e USE_METADATA is true (the default condition), but the stored procedures for returning
metadata have not been installed. As a result, jConnect tried to exeaute dhisbase
command with the database in the URL, but the command failed. This may be because you
attempted to access an Adaptive Anywhere database. SQL Anywhere databases do not
support theise database command.

Action: Make sure the database name in the URL is correct. Make sure that the stored procedures
for returning metadata are installed on the server (see “Installing Stored Procedures” in Chapter
3 of thejConnect for JDBC Installation Guide and Release Bulletin). If you are attempting to

access a SQL Anywhere database, either do not specify a database name in the URL, or set
USE_METADATA to false.

139

SQL state Message/description/action

010UP Unr ecogni zed connection property __ ignored.
Description: You attempted to set a connection property in the URL that jConnect does not
currently recognize. jConnect ignores the unrecognized property.
Action: Check the URL definition in your application to make sure it references only valid
jConnect driver connection properties.

0100V The version of TDS protocol being used is too ol d.
Ver si on:

Description: The server does not support the required version of the TDS protocol. jConnect
requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the jConnect installation
guide’s system requirements section for details.

JWO0IO I/O layer: thread operation fail ed.
Description: An internal error occurred with a timed 1/O stream.

Action: Close and reopen the connection.

JZ001 User name property " too long. Maximum length is 30.
Action: Do not exceed the 30 byte maximum.
JZ002 Password property ' too long. Maximum length is 30.

Action: Do not exceed the 30-byte maximum.
Jz003 Incorrect URL format. URL:
Action: Verify the URL format. See “URL connection property parameters” on page 19.

If you are using the PROXY connection property, you may get a JZ003 exception while trying
to connect if the format for the PROXY property is incorrect.

The PROXY format for the Cascade proxy is:
ip_address:port_number

The PROXY format for the TDS tunnelling servlet is:
http[s]:/host:port/tunneling_serviet_alias

JZ004 User name property missing in DriverManager. get Connection(...,
Properties)

Action: Provide the required user property.
JZ006 Caught | OExcepti on:

Description: An unexpected I/O error was detected from a lower layer. When such 1/1O
exceptions are caught, they are rethrown as SQL exceptions using the ERR_IO_EXCEPTION
JZ006 sqlstate. These errors are often the result of network communication problems.

Action: Try increasing the statement cache size.

140

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

Jz008 Invalid colum index value
Description: You have requested a column index value of lessthan 1 or greater than the highest
available value.
Action: Check call to the getxxX() method and the text of the original query, or be sureto call
rs.next().

JZ009 Error encountered in conversion. Error nessage:
Description: Some of the possibilities are:
« A conversion between two incompatible datatypes was attempted, suete &sint.
« There was an attempt to convert a string containing a nonnumeric character to a numeric type.
» There was a formatting error, such as an incorrectly formatted time/date string.
Action: Make sure that the JDBC specification supports the attempted type conversion. Make
sure that strings are correctly formatted. If a string contains non-numeric characters, do not
attempt to convert it to a numeric type.

Jz00oB Nurmeric overfl ow
Description: You tried to send aiginteger as a TDS numeric, and the value was too large, or
you tried to send a Jauag as annt and the value was too large.
Action: These values cannot be stored in Sybaselok@rconsider using a Sybase numeric.
There is no solution fasignum.

JZOOE Attenpt to call execute() or executeUpdate() for a statenent where
set Cursor Nane() has been call ed.
Action: Do not try to calkxecute or executeUpdate on a statement that has a cursor name set.
Use a separate statement to delete or update a cursor. See “Using cursors with result sets” on pag
47 for more information

JZOOF Cursor nane has al ready been set by set Cursor Nanme().
Action: Do not set the cursor name twice for a statement. Close the result set of the current cursor
statement.

JZ00G No colum val ues were set for this row update.
Description: You attempted to update a row in which no column values were changed.
Action: To change column values in a row, calllate XX() methods before callingodateRow().

JZOOH The result set is not updatable. Use
St at ement . set Resul t Set ConcurrencyType() .
Action: To change a result set from read-only to updatable, use the
Statement.setResultSetConcurrencyType() method or add @r update clause to your SQkelect
statement.

JZ00L Login failed. Exam ne the SQ.Warnings chained to this exception for

141

the reason(s).
Action: See message text; proceed according to the reason(s) given for the login failure.

SQL state

Message/description/action

Jz010

Unabl e to deserialize an Cbject value. Error text:

Action: Make sure that the Java object from the database implements the Serializable interface
and isinyour local CLASSPATH variable.

Jz011

Nunber format exception encountered whil e parsing numeric connection
property __ .
Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

Jz012

Internal Error. Please report it to Sybase technical support. Wong
access type for connection property ___ .

Action: Please contact Sybase Technical Support.

Jz013

Error obtaining JND entry:

Action: Correct the INDI URL or make anew entry in the directory service.

Jz0BD

Qut of range or invalid value used for nethod paraneter.
Action: Verify that the parameter value in the method is correct.

JZO0BE

Bat chUpdat eException: Error occurred while executing batch
st at ement : .

Action: Contact Sybase Technical Support.

Jz0BlI

Message: set Fet chSi ze: The fetch size should be set with the follow ng
restrictions — 0 <=rows <= (maximum number of rows in the ResultSet).

Description: The client application hastried to call setFetchSize with an invalid number of
rows.

Action: Verify that you are calling setFetchSize with the parameter falling within the above
range of values.

JZ0BP

Output parameters are not allowed in Batch Update Statements.

JZOBR

The cursor is not positioned on a row that supports the method.

Description: You attempted to call aResultSet method that isinvalid for the current row position
(for example, calling insertRow() when the cursor is not on the insert row).

Action: Do not attempt to call a ResultSet method that isinvalid for the current row position.

JZ0BS

Batch Statements not supported.

JZ0BT

The method is not supported for ResultSets of type
Description: You attempted to call a ResultSet method that isinvalid for the type of ResultSet.
Action: Do not attempt to call a ResultSet method that isinvalid for the type of ResultSet.

JZ0CO0

142

Connection is already closed.

Description: The application has aready called Connection.close() on this connection object; it
cannot be used any more.

Action: Fix the code so that connection object references are nulled out whe a connection is
closed.

APPENDIX A SQL Exception and Warning Messages

SQL state Message/description/action

JZ0DO0 Thi s j Connect installation has not been registered yet. You need to
install the appropriate SybDriverKey cl asses.
Action: Register your jConnect software at http://www.sybase.com/products/internet/jconnect/.
Onceyou register, you can download the SybDriverKey classes hecessary to activate the jConnect
driver.

JZ0D2 Your Sybase JDBC |license expired on _ . Please obtain a new
|'i cense.
Action: Contact Sybase to obtain a new license for your jConnect driver.

JZ0D3 Your Sybase JDBC license will expire soon. Please obtain a new
license. It will expire on __
Action: Contact Sybase to obtain a new license for your jConnect driver.

JZ0D4 Unr ecogni zed protocol in Sybase JDBC URL:
Description: You specified aconnection URL using aprotocol other than TDS, whichistheonly
protocol currently supported by jConnect.
Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make sure that
the entry uses the following format and capitalization:
jdbc:sybase: Tds:host:port
If the URL specifies INDI as a subprotocol, make sure that it starts with:
jdbc:sybase:jndi:

JZ0D5 Error |oading protocol _
Action: Check the settings for the CLASSPATH system variable.

JZ0D6 Unr ecogni zed ver si on nunber ___specifiedin setVersion. Choose one
of the SybDriver.VERSI ON_* val ues, and make sure that the version of
j Connect that you are using is at or beyond the version you specify.
Action: See message text.

JZ0D7 Error loading url provider __ . Error nessage: __
Action: Check the INDI URL to make sureit is correct.

JZ0D8 Error initializing url provider: o
Action: Check the INDI URL to make sureiit is correct.

JZ0EM End of data.

143

Action: Please report this error to Sybase Technical Support.

SQL state Message/description/action

JZ0F2 Sybase high-availability failover has occurred. The current
transaction is aborted, but the connection is still usable. Retry
your transaction.
Description: The backend database server to which you were connected has gone down, but you
have failed over to a secondary server. The database connection is still usable.
Action: Client code should catch this exception, then restart the transaction from the last
committed point. Assuming you properly handle the exception, you can continue executing
JDBC cdlls on the same Connection object.

JZOHO Unable to start thread for event handler; event nane =
Action: Please report this error to Sybase Technical Support.

JZ0H1 An event notification was received but the event handl er was not
found; event name =
Action: Please report this error to Sybase Technical Support.

JZOHC lllegal character * " encountered while parsing hexadecimal
number.
Description: A string that is supposed to represent abinary value contains a character that is not
in the range (0-9, a—f) that is required for a hexadecimal number.
Action: Check the character values in the string to make sure they are in the required range.

JZ0I1 I/O Layer: Error reading stream
Description: The connection was unable to read the amount requested. Most likely, the
statement timeout period was exceeded and the connection timed out.
Action: Increase the statement timeout value.

JZ0I12 /O layer: Error witing stream
Description: The connection was unable to write the output requested. Most likely, the statement
time-out period was exceeded and the connection timed out.
Action: Increase the statement time out value.

JZ0I3 Unknown property. This message i ndicates an internal product problem
Report this error to Sybase Techni cal support.
Action: Indicates an internal product problem. Please report this error to Sybase Technical
Support.

JZ0I5 An unrecogni zed CHARSET property was specified:

144

Description: You specified an unsupported character set code for the CHARSET connection
property.

Action: Enter a valid character-set code for the connection property. See “jConnect character-
set converters” on page 33.

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ016

An error occurred converting UNICODE to the charset used by the
server. Error nessage:

Action: Choose a different character set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install adifferent character set on the server, too.

Jzoi7

No response from proxy gateway.
Description: The Cascade or security gateway is not responding.
Action: Make sure the gateway is properly installed and running.

Jz018

Proxy gateway connection refused. Gateway response: __
Description: TheWeb server/gateway indicated by the PROXY connection property hasrefused
your connection request.

Action: Check the access and error logs on the proxy to determine why the connection was
refused. Make sure the proxy isa JDBC gateway.

Jz019

Thi s I nput Stream was cl osed.

Description: You tried to read an InputStream obtained from getAsciiStream(),
getUnicodeStream(), or getBinaryStream(), but the InputStream was already closed. The stream
may have been closed because you moved to another column or cancelled the result set and there
were not enough resources to cache the data.

Action: Increase the cache size or read columnsin order.

JZOIA

Truncation error trying to send____

Description: There was atruncation error on character set conversion prior to sending a string.
The converted string is longer than the size all ocated for it.

Action: Choose a different character-set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install adifferent character set on the server, too.

JZ0IS

get XXXStream may not be called on a columm after it has been updated
in the result set.

Description: After updating a column in aresult set, you attempted to read the updated column
value using one of the following SybResultSet methods: getAsciiStream(), getUnicodeStream(),
getBinaryStream(). jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

Jz0J0

O fset and/or |length values exceed the actual text/inage |ength.
Action: Check the offset and/or length values you used to make sure they are correct.

JZONC

145

wasNul I called without a preceding call to get a colum.

Description: You can only call wasNull() after a call to get a column, such as getint() or
getBinaryStream().

Action: Change the code to move the call to wasNull().

SQL state Message/description/action

JZONE Incorrect URL format. URL: __ . Error nessage: __

Action: Check the format of the URL. Make sure that the port number consists only of numeric
characters.

JZONF Unabl e to | oad SybSocket Factory. Make sure that you have spelled the
class nane correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argunent constructor.

Action: See message text.

JZ0P1 Unexpected result type.

Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally indicates that the
application isusing JDBC incorrectly to execute the query or stored procedure. If the JIDBC
application is connected to an Open Server application, it may indicate an error in the Open
Server application that causes the Open Server to send unexpected segquences of results.
Action: Use the com.sybase.utils.Debug(true, “ALL") debugging toolsto try to figure out what
unexpected result is seen, and to understand its causes.

JZ0P4 Protocol error. This nmessage indicates an internal product problem
Report this error to Sybase technical support.

Action: See message text.

JZ0P7 Colum is not cached; use RE- READABLE_COLUWNS property.

Description: With the REPEAT_READ connection property set to false, an attempt was made
to reread a column or read a column in the wrong order.

When REPEAT_READ isfase, you can only read the column value for arow once, and you can
only read columns in ascending column-index order. For example, after reading column 3 for a
row, you cannot read its value a second time and you cannot read column 2 for the row.
Action: Either set REPEAT_READ to true, or do not attempt to reread a column value and make
sure that you read columnsin ascending column-index order.

JZ0P38 The RSMDA Col umm Type Nane you requested i s unknown.

Description: jConnect cannot determine the name of a column typein the
ResultSetMetaData.getColumnTypeName() method.
Action: Make sure that your database has the most recent stored procedures for metadata.

JZ0P9 A COWPUTE BY query has been detected. That type of result is

146

unsupported and has been cancel | ed.

Description: The query you executed returned COMPUTE results, which are not supported by
jConnect.

Action: Change your query or stored procedure so it does not use COMPUTE BY.

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZOPA

The query has been cancel |l ed and the same response di scarded.
Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements to
determine the cause.

JZ0PB

The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server of
capabilitiesit wants supported and the server informsjConnect of the capabilitiesthat it supports.
This error message is sent when an application requests an operation that was denied in the
original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sgl_stmt, dynamic), and dynamic is set to
true, jConnect generates this message.

Action: Modify your code so that it does not request an unsupported capability.

JZ0PC

The nunber and size of paraneters in your query require wide table
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSI ON property to >=6 if you wish to request wi detable
support.

Description: You are trying to execute a statement with alarge number of parameters, and the
server is not configured to handle that many parameters. The number of parameters that can
produce this exception will vary, depending on the datatypes of the data you are sending. You
will never get this exception if you are sending 481 or fewer parameters.

Action: You must run thisquery against an ASE 12.5 or higher server. When you connect to the
database, set the JCONNECT_VERSION property to VERSION_6 or VERSION_LATEST.

JZOPE

The number of columms in your cursor declaration ORthe size of your
cursor declarationitself are | arge enough that you require w detabl e
support. But either the server does not of fer such support, or it was
not requested during the |login sequence. Try setting the
JCONNECT_VERSI ON property to >= 6 if you wish to request w de table
support.

Description: Thiserror can occur when your SELECT statement triesto return data from more
than 255 columns, or when the actual |ength of the SELECT statement isvery large (greater than
approximately 65500 characters).

Action: You must run this query against aversion 12.5 or later Adaptive Server. When you

connect to the database, set the JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

JZORO

147

Result set has al ready been cl osed.

Description: The ResultSet.close() method has already been called on the result set object; you
cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are set to null whenever aresult set is
closed.

SQL state Message/description/action

JZ0R1 Result set is IDLE as you are not currently accessing a row.
Description: The application has called one of the ResultSet.getXXX column-data retrieval
methods, but there is no current row; the application has not called ResultSet.next(), or
ResultSet.next() returned false to indicate that thereis no data.

Action: Check that rs.next() is set to true before calling rs.getXxXx.

JZOR2 No result set for this query.

Description: You used Statement.executeQuery(), but the statement returned no rows.
Action: Use executeUpdate for statements returning no rows.

JZOR3 Colum is DEAD. This is aninternal error. Please report it to Sybase
techni cal support.
Action: See message text.

JZ0R4 Col unm does not have a text pointer. It is not a text/inmage colum
or the colum is NULL.

Description: You cannot update atext/image columnif itisNULL. A NULL text/image column
does not contain atext pointer.

Action: Make sure that you are not trying to update or get atext pointer to a column that does
not support text/image data. Make sure that you are not trying to update atext/image column that
isNULL. Insert data first, then make the update.

JZORM refreshRow may not be called after updateRow or del et eRow.
Description: After updating arow in the database with SybCursorResult.updateRow(), or
deletingit with SybCursorResult.deleteRow(), you used SybCursorResult.refreshRow() to refresh
the row from the database.

Action: Do not attempt to refresh arow after updating it or deleting it from the database.

JZ00 St at enent state nmachine: Statenent is BUSY.

Description: The only timethis error is raised is from the Statement.setCursorname() method,
if the application is trying to set the cursor name when the statement is already in use and has
noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queriesonit, or call
Statement.cancel() before setting the cursor name, to make sure that the statement isn't busy.

JZ0S1 Stat ement state nmachine: Trying to FETCH on | DLE statenent.
Description: Aninternal error occurred on the statement.

Action: Close the statement and open another one.

JZ0S2 St at ement obj ect has al ready been cl osed.

148

Description: The Statement.close() method has already been called on the statement object; you
cannot use the statement for anything else.

Action: Fix the application so that statement object references are set to null whenever a
statement is closed.

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0S3

The inherited nethod __ cannot be used in this subcl ass.

Description: PreparedStatement does not support executeQuery(String), executeUpdate(String),
or execute(String).

Action: To pass aquery string, use Statement, ot PreparedStatement.

JZ04

Cannot execute an enpty (zero-length) query.
Action: Do not execute an empty query ().

JZ0S8

An escape sequence in a SQL Query was malformed: *
Description: This error results from bad escape syntax.
Action: Check JDBC documentation for correct syntax.

JZ0S9

Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (*).

JZ0SA

Prepared Statenent: |nput paraneter not set, index:

Action: Make sure that each input parameter has a value.

JZ0SB

Par anet er i ndex out of range:

Description: You have attempted to get, set, or register a parameter that goes beyond the
maximum number of parameters.

Action: Check the number of parameters in your query.

Jz0SC

Callable Statenment: attenpt to set the return status as an
| nPar anet er .

Description: You have prepared a call to a stored procedure that returns a status, but you are
trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

JZ0SD

No regi stered paraneter found for output paraneter.

Description: This indicates an application logic error. You attempted togeatxXx() or
wasNull() on a parameter, but you have not read any parameters yet, or there are no output
parameters.

Action: Check to make sure that the application has registered output parameters on the
CallableStatement, that the statement has been executed, and that the output parameters were
read.

JZOSE

Inval id object type specified for setChject().
Description: lllegal type argument passedra:paredStatement.setObject.
Action: Check the JDBC documentation. The argument must be a constafi\ficm. Types.

JZOSF

149

No Paraneters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.
Action: Make sure the query has been sent before you set the parameters.

SQL state Message/description/action

JZ0SG An RPC did not return as nmany output paranmeters as the application
had registered for it.
Description: Thiserror occursif you call CallableStatement.registerOutParam() for more
parameters than you declared as “OUTPUT” parameters in the stored procedure. See “RPC
returns fewer output parameters than registered” on page 104 for more information.
Action: Check your stored procedures anglsterOutParameter calls. Make sure that you have
declared all of the appropriate parameters as “OUTPUT.” Look at the line of code that reads:
create procedure yourproc (@1 int OUTPUT,
Note If you receive this error while using Adaptive Server Anywhere (previously known as SQL
Anywhere), upgrade to Adaptive Server Anywhere version 5.5.04.

JZOSH A static function escape was used, but the netadata accessor
informati on was not found on this server.
Action: Install metadata accessor information before using static function escapes.

JZ0SI A static function escape __ was used which is not supported by
this server.
Action: Do not use this escape.

JZ0SJ Met adat a accessor information was not found on this database.
Action: Install metadata information before making metadata calls.

JZ0SM Unsupported SQL type
Action: Do not useTypes.NULL, or PreparedStatement.setObject(null).

JZOSN set MaxFi el dSi ze: field size cannot be negative.
Action: Use a positive value or zero (unlimited) when calling/axFieldSize.

JZOSR set MaxRows: nmax rows cannot be negative.
Action: Use a positive value or zero (unlimited) when callingy/iaxRows.

JZ0SS set QueryTi meout: query tinmeout cannot be negative.

JZOST j Connect cannot send a Java object as a literal paraneter in a query.
Make sure that your database server supports Java objects and that
the LI TERAL_PARAMS connection property is set to false when you
execute this query.

JZ0T2 Li stener thread read error.
Action: Check your network communications.

JZ0T3 Read operation tined out.
Description: The time allotted to read the response to a query was exceeded.
Action: Increase the timeout period by calliggitement.setQueryTimeout().

JZ0T4 Wite operation timed out. Tineout in mlliseconds:

150

Description: The time allotted to send a request was exceeded.
Action: Increase the timeout period by calliggitement.setQueryTimeout().

APPENDIX A SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0T5

Cache used to store responses is full.
Action: Use default or larger value for the STREAM_CACHE_SIZE connection property.

JZ0T6

Error reading tunneled TDS URL.
Description: The tunneled protocol failed while reading the URL header.
Action: Check the URL you defined for the connection.

Jz0oT7

Li stener thread read error -- caught ThreadDeath. Check network
connecti on.

Action: Check the network connections and try to run the application again. If the threads
continue to be aborted, please contact Sybase Technical Support.

Jz0T9

Request to send not synchronized. Please report this error to Sybase
Techni cal Support.

Action: See message text.

JZ0oTC

Attenpted conversion between an illegal pair of types.
Description: Conversion between a Javatype and a SQL type failed.

Action: Check the requested type conversion to make sureit is supported in the JDBC
specification.

JZOTE

Att enpt ed conversion between an illegal pair of types. Valid database
types are: * g

Description: Thedatabase column datatype and the datatype requested in theResultSet.getX XX ()
call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZ0US

The SybSocketFactory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this combination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://”.

Action: See message text.

JZ0CX

is an unrecognized transaction coordinator type.

Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists, please
contact Sybase Technical Support.

JZOXS

151

The serverdoes notsupport XA-style transactions. Please verify that
the transaction feature is enabled and licensed on this server.

Description: The server to which jConnect attempted a connection does not support distributed
transactions.

Action: Do not use XADataSource with this server, or upgrade or configure the server for
distributed transactions.

SQL state Message/description/action

JZ0XU Current user does not have permission to do XA-style transactions.
Be sure user has __ role.
Description: The user connected to the database is not authorized to conduct distributed
transactions. Most likely because they do not have the proper role (shown in the blank).
Action: Grant the user the role shown in the error message, or have another user with that role
conduct the transaction.

S0022 Invalid column name * '
Description: You attempted to reference a column by hame and there is no column with that
name.
Action: Check the spelling of the column name.

ZZ00A The method has not been completed and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can a so check the jConnect Web page at http://www.sybase.com to see
whether amore recent version of jConnect implements the method. If not, do not use the method.

152

appennix 8 JConnect Sample Programs

This appendix is a guide to jConnect sample programs.
Topics
Running IsglApp
Running jConnect sample programs and code

Running IsqlApp

IsqlApp alows you to issue isql commands from the command line, and
run jConnect sample programs.

The syntax for IsglApp is:

Isql App [-U usernane] [-P password]
[-S servernane]
[- G gat enay]
[-p {http|https}]
[-D debug-cl ass-1ist]
[-V]
[-1 input-conmmand-file]
[-¢c conmand_t erm nator]
[-C charset] [-L Ianguage]
[-T sessionl D
[-V <version {2, 3, 4,5}>]

Parameter Description

-U The login ID with which you want to connect to a server.

P The password for the specified login ID.

-S The name of the server to which you want to connect.

G Gateway address. For the HTTP protocol, the URL is: http://host: port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/serviet_alias.

-p Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption.

153

Running IsqlApp

Parameter Description

-D Turns on debugging for al classes or for just the ones you specify, separated by a
comma. For example,
-DALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.
-v Turns on verbose output for display or printing.
-l Causes IsglApp to take commands from afile instead of the keyboard.

After the parameter, you specify the name of thefileto use for the IsqlApp input. The
file must contain command terminators (“go” by default).

-C Lets you specify a keyword (for example, “go”) that, when entered on a line by itself,
terminates the command. This lets you enter multiline commands before using the
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

-C Specifies the character set for strings passed through TDS.
If you do not specify a character setjApp uses the server’s default charset.

-L The language in which to display error messages returned from the server and for
jConnect messages.

T When this parameter is set, jConnect assumes that an application is trying to resume

communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

Y Enables the use version-specific characteristics! 888NNECT_VERSION
connection property” on page .10

Note You must enter a space after each option flag.

To obtain afull description of the command-line options, enter:
java |Isql App -help

The following example shows how to connect to a database on a host named
“myserver” through port “3756” and run &yl script named “myscript”:

java |Isql App -U sa -P sapassword
-S jdbc: sybase: Tds: myserver: 3756

154

APPENDIX B jConnect Sample Programs

-1 $JDBC_HOVE/ sp/ nyscript -c run

Note An applet that provides GUI accessto isql commands is available as:

For jConnect 4.x:
$IDBC_HOME/sample/gateway.html (UNIX)
%JDBC_HOME%Y\sampl e\gateway.html (Windows)

For jConnect 5.x:
$IDBC_HOME/sample2/gateway.html (UNIX)
%JDBC_HOME%Y\sample2\gateway.html (Windows)

Running jConnect sample programs and code

jConnect includes several sample programs that illustrate many of the topics
covered in this chapter, and to help you understand how jConnect works with
various JDBC classes and methods. In addition, this section includes a sample
code fragment for your reference.

Sample applications

When you install jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note ThejConnect sample programs are intended for demonstration purposes
only.

The sampleprogramsareinstalled in the sampl e subdirectory (jConnect 4.x) or
sample2 subdirectory (jConnect 5.x) under your jConnect installation

directory. Thefileindex.html in the sample or sample2 subdirectory containsa
completelist of the samplesthat are available along with a description of each
sample. index.html also lets you view and run the sample programs as applets.

155

Running jConnect sample programs and code

Running the sample applets

Using your Web browser, you can run some of the sample programs as applets.
This enables you to view the source code while viewing the output results.

To run the samples as applets, you need to start the Web server gateway.
Use your Web browser to open index.html:

For jConnect 4.x, enter:

http://local host: 8000/sampl e/index.htm

For jConnect 5.x, enter:

http://local host: 8000/sample2/index.htm

Running the sample programs with Adaptive Server Anywhere

Sample code

inport java.io.*;
import java.sql.?*;

156

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with Adaptive Server Anywhere. Refer to
index.html in the sample or sample2 subdirectory for acurrent list of the
sample programs that are compatible with Adaptive Server Anywhere.

To run the sample programs that are available for Adaptive Server Anywhere,
you must install the pubs2_any.sgl script on your Adaptive Server Anywhere
server. Thisscript islocated in the sample (jConnect 4.1) or sample2 (jConnect
5.0) subdirectory.

For Windows, go to DOS command window and enter:

java |Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 % DBC_HOVE% sanpl e\ pubs2_any. sqgl -c go

For UNIX, enter:

java Isql App -U dba -P password
-S jdbc: sybase: Tds: [host nane] : [port]
-1 $JDBC_HOVE/ sanpl e/ pubs2_any. sql -c go

Thefollowing sample codeillustrates how to invoke the jConnect driver, make
aconnection, issue a SQL statement, and process results.

APPENDIX B jConnect Sample Programs

public class Sanpl eCode
{
public static void main(String args[])
{
try
{
/*
* Open the connection. May throw a SQLExcepti on.
*/
Connection con = DriverManager. get Connecti on
"jdbc: sybase: Tds: nyserver: 3767", "sa", "");
/*
* Create a statenent object, the container for the SQ
* statement. May throw a SQLException.
*/
Statenent stnt = con.createStatenent();
/*
* Create a result set object by executing the query.
* May throw a SQLException.
*/
Resul tSet rs = stnt.executeQuery("Select 1");
/*
* Process the result set.
*/

if (rs.next())

int value = rs.getlnt(1);
System out.println("Fetched value " + val ue);

}
/*
* Exception handling.
*
/
catch (SQLException sqge)
{
Systemout. println("Unexpected exception : " +
sqge.toString() + ", sqlstate =" +
sqge. get SQLState());
Systemexit(1);
}
System exit (0);

157

Running jConnect sample programs and code

158

Index

A

Adaptive Server
connectingto 18
connection example 19
Adaptive Server Anywhere 16
accessing metadata 46
connectingto 20
euro symbol 37
sending imagedata 61, 64
SERVICENAME connection property 19
storing and retrieving Javaobjects 73
advanced features 65
applets 128
APPLICATIONNAME connection property 13
applications
turning off debuggingin 98
turning on debuggingin 98
audience Vil

B

bandwidth reduction 109
batch updates 59
stored procedures 58
BE_AS JDBC_COMPLIANT_ 13
BigDecimal rescaling
improving driver performance 108

C

CANCEL_ALL connection property 6, 10, 13
capturing TDS communication 101
character sets
setting 34
supported 35
character-set conversion
improving driver performance 109

improving performance 35
character-set converter classes 33

PureConverter 33

selecting 34

TruncationConverter 33
CHARSET connection property 6, 13

setting 34

CHARSET_CONVERTER connection property 6

CHARSET_CONVERTER_CLASS connection
property 13,34

CLASSPATH

setting for debugging 99

columns

deletionsin cursor result sets 50

updating in cursor result sets 51

compute statements 93

connecting to

aserver using JNDI 21

Adaptive Server 18

Adaptive Server Anywhere 20

connection

errors 102, 103

pooling 86

connection properties

APPLICATIONNAME 13

BE_AS JDBC COMPLIANT_ 13

CANCEL_ALL 6,10,13

CHARSET 6,13

CHARSET_CONVERTER 6

CHARSET_CONVERTER_CLASS 13,34

CONNECTION_FAILOVER 13,21

DYNAMIC_PREPARE 13

EXPIRESTRING 14

FAKE_METADATA 14

GET_BY_NAME_USES COLUMN_LABEL

HOSTNAME 14

HOSTPROC 14

IGNORE_DONE_IN_PROC 14

JCONNECT_VERSION 10, 14

LANGUAGE 6,15

14

159

Index

LANGUAGE_CURSOR 15,117
LANGUAGE_CURSOR and cursor performance 116
LITERAL_PARAMS 15

PACKETSIZE 15

password 15

PROTOCOL_CAPTURE 15

PROXY 15
REMOTEPWD 15
REPEAT_READ 15,108

REQUEST_HA_SESSION 16
SELECT_OPENS CURSOR 16
SERIALIZE_REQUESTS 16
SERVICENAME 16
SESSION_ID 16
SESSION_TIMEOUT 17
setting 12
settingin URL 19
SQLINITSTRING 17
STREAM_CACHE SIZE 17
SYBSOCKET_FACTORY 17
USE_METADATA 17
user 17
VERSIONSTRING 18
CONNECTION_FAILOVER connection property 13, 21
connections
gateway connection refused 102
conventions viii
creatingacursor 47
currency symbol, euro 37
cursor performance 116
and the LANGUAGE_CURSOR connection property
116
cursor result sets
deletingarow 53
deletions 50
insertingarow 53
methods for updating the database 51
positioned updates 50
positioned updates and deletes
using JDBC 1.x methods 50
positioned updates and deletes
using JDBC 2.0 methods 51
updating columns 51
cursors 47
creating 47
using with a PreparedStatement 54

160

D

data
image 61
databases
JNDI for naming 82
storing Java objects as column datain atable 73
datatypes
Time, Date, and Timestamp 64
unichar and univarchar 32
Debug class 97
Debug serviet argument 132
debugging 97
methods 99
obtaining an instance of the Debug class 97
setting CLASSPATH 99
turning off in your application 98
turning on in your application 98
deserialization 80
deviations from JDBC standards 92
distributed transaction support 88

driver
JDBCtypes 2
properties 12

dynamic classloading 77
DYNAMIC_PREPARE connection property 13

E

error messages
cutomizing handling 70
error-message handler example 71
handling 68
installing an error-message-handler 71
SQL exception and warning 137
Sybase-specific 68

errors
connection 102, 103
stored procedure 104

euro currency symbol 37

event notification 66
example 67

EXPIRESTRING connection property 14

extension changes, Sybase 121

F

FAKE_METADATA connection property 14
font conventions viii

G

gateways 123
configuration 124
connection refused 102
Open Server 20
GET_BY_NAME_USES COLUMN_LABEL
connection property 14

H

handling

error messages 68
high availability (HA) support 39
HOSTNAME connection property 14
HOSTPROC connection property 14
HTTP 123

IGNORE_DONE_IN_PROC connection property
14
image data
executing the update with
TextPointer.sendData 62
getting a TextPointer object 62
public methods in the TextPointer class 61
sending 61
updating a column with
TextPointer.sendData() 62
installing
an error-message-handler 71
the TDSservlet 132
interfaces, JDBC 1
internationalization 31
invoking jConnect 11
Isgl applet
running the sample 129
IsglApp utility 153

Index

J

JAR files
preloading 81
Java objects
storing and retrievingin ASA 6.0 73
storing as column datain atable 73
jConnect
debugging 97
definition 2
gateways 123
improving performance 107
invoking 11
memory problemsin applications 103
sample programs 155
setting connection properties 12
settingup 5
using cursors 47
jConnect 4.x
SCROLL_INSENTIVE result sets 55
JCONNECT_VERSION connection property 10, 14
JDBC
definition 1
driver types 2
interfaces 1
restrictions, limitations, and deviations 92
JDBC 2.0
optional package extensions support 81
standard extensions 81
JDBC drivers
JDBC-ODBC bridge 2
native-APl/partly-Java 2
native-protocol/al-Java 2
net-protocol/al-Java 2
jdbc.drivers 11
JNDI
context information 25
using 21
JNDI for naming databases 82

L

LANGUAGE connection property 6, 15
LANGUAGE_CURSOR 117
LANGUAGE_CURSOR connection property 15
Lightweight Directory Access Protocol (LDAP) 22

Index

LITERAL_PARAMS connection property 15
localization 31

M

memory problemsin jConnect applications 103
metadata
accessing 45
server-sideimplementation 46
USE_METADATA 17
migrating jConnect applications
jConnect applications, migrating 119
multibyte character sets
supported 35
multibyte character-sets
converter classes 33
multithreading
making adjustments 92

N

native-APl/partly-Javadriver 2
native-protocol/all-Javadriver 2
net-protocol/all-Javadriver 2

O

Open Server Gateway 20

P

PACKETSIZE connection property 15
password 15
performance, improving 107
bandwidth reduction 109
BigDecimal rescaling 108
character-set conversion 109
cursors 116
tuning for prepared statementsin Dynamic SQL 110
pooling connections 86
positioned updates and deletes
using JDBC 1.x methods 50

162

using JDBC 2.0 methods 51
preloading JAR files 81
PreparedStatement
using with cursors 54
properties
driver 12
PROTOCOL_CAPTURE connection property 15
PROXY connection property 15
PureConverter class 33

R

related documents vii
remote procedure calls (RPCs)
server-to-server 43
REMOTEPWND connection property 15
REPEAT_READ 108
REPEAT_READ connection property 15
REQUEST_HA_SESSION 16
resuming
TDSsessions 134
rows
deleting from acursor result set 53
inserting inacursor result set 53

rs.getByte() 65

S

sample programs 155
SCROLL_INSENSITIVE result setsin jConnect 4.x
55

SELECT_OPENS_CURSOR connection property 16
selecting a character-set converter class 34
sending image data 61
SERIALIZE_REQUESTS connection property 16
server-to-server remote procedure calls 43
SERVICENAME connection property 16
servlet arguments

Debug 132

SkipDoneProc 132

TdsResponseSize 132

TdsSessionldleTimeout 132
serviets 123

TDS 123

SESSION_ID connection property 16
SESSION_TIMEOQOUT connection property 17
setRemotePassword() 44
Ssetting

jConnect connection properties 12

TDS servlet arguments 132
setting up jConnect 5
SkipDoneProc servlet argument 132
SQL exception and warning messages 137
SQLINITSTRING connection properties 17
Statement.cancel () method 10
stored procedures

errors 104

executing 94

updating the database from theresult set 59
storing Java objects as column datain atable 73

prerequisites 73

receiving Java objects from the database 75

sending Java objectsto adatabase 74
STREAM_CACHE_SIZE connection property 17
Sybase extension changes 121
SybEventHandler 66
SybMessageHandler 70
SYBSOCKET_FACTORY connection property 17
syntax conventions ix
system properties abd jdbc.drivers 11

T

TDS 2
capturing communication 101
installing servlets 132
resuming sessions 134
servlet system requirements 131
servlets 123
setting servlet arguments 132
tracking sessions 133
tunnelling 123
TdsResponseSize servlet argument 132
TdsSessionldleTimeout servlet argument 132
Time, Date, and Timestamp datatypes 64
tracking TDS sessions 133
troubleshooting 97
TruncationConverter class 33, 38
tunnelling

TDS 1283

turning off debugging in your application
turning on debugging in your application

98
98

TYPE_SCROLL_INSENSITIVE limitations

U

unichar 6

unichar and univarchar datatypes 32
updating database from the result set of

astored procedure 59

connection property parameters

19

USE_METADATA connection property 17

URL

syntax 18
user 17
utilities
IsglApp 153
\

VERSIONSTRING connection property 18

w

Web server gateways
widetables 45

X

XAServer 88

123

Index

55

Index

164

	CHAPTER 1 Introduction
	What is JDBC?
	What is jConnect?

	CHAPTER 2 Programming Information
	Setting up jConnect
	Setting the jConnect version
	Invoking the jConnect driver

	Establishing a connection
	Setting connection properties
	Connecting to Adaptive Server Enterprise
	Connecting to Adaptive Server Anywhere
	Connecting to a server using JNDI

	Implementing custom socket plug-ins
	SYBSOCKET_FACTORY connection property
	Creating and configuring a custom socket

	Handling internationalization and localization
	Using jConnect to pass Unicode data
	jConnect character-set converters

	Working with databases
	Implementing high availability failover support
	Performing server-to-server remote procedure calls
	Wide table support for Adaptive Server version 12.5
	Accessing database metadata
	Using cursors with result sets
	Support for batch updates
	Updating the database from the result set of a stored procedure
	Working with datatypes

	Implementing advanced features
	Using event notification
	Handling error messages
	Storing Java objects as column data in a table
	Dynamic class loading
	JDBC 2.0 optional package extensions support

	Handling restrictions, limitations, and deviations from JDBC standards
	Making adjustments for multithreading
	Using ResultSet.getCursorName()
	Using setLong() with large parameter values
	Using COMPUTE statements
	Executing stored procedures

	CHAPTER 3 Troubleshooting
	Debugging with jConnect
	Obtaining an instance of the Debug class
	Turning on debugging in your application
	Turning off debugging in your application
	Setting the CLASSPATH for debugging
	Using the Debug methods

	Capturing TDS communication
	PROTOCOL_CAPTURE connection property
	pause() and resume() methods in the Capture class

	Unsuccessful connection errors
	Gateway connection refused
	Unable to connect to a 4.9.2 SQL Server

	Memory usage in jConnect applications
	Stored procedure errors
	RPC returns fewer output parameters than registered
	Fetch/state error when stored procedure returns output params
	Stored procedure executed in unchained transaction mode

	Custom socket implementation error

	CHAPTER 4 Performance and Tuning
	Improving jConnect performance
	BigDecimal rescaling
	REPEAT_READ connection property
	Character-set conversion

	Performance tuning for prepared statements in dynamic SQL
	Choosing between prepared statements and stored procedures
	Prepared statements in portable applications
	Prepared statements in applications with jConnect extensions
	Connection.prepareStatement()
	DYNAMIC_PREPARE connection property
	SybConnection.prepareStatement()

	Cursor performance
	LANGUAGE_CURSOR connection property

	CHAPTER 5 Migrating jConnect Applications
	Migrating jConnect applications
	Migrating applications to jConnect 4.5 and 5.5

	Sybase extensions
	Change example
	Method names
	Debug class

	CHAPTER 6 Web Server Gateways
	About Web server gateways
	TDS tunnelling
	jConnect and gateway configuration

	Usage requirements
	Reading the index.html file
	Running the sample Isql applet

	Using the TDS-tunnelling servlet
	TDS-tunnelling servlet system requirements
	Installing the servlet
	Invoking the servlet
	Tracking active TDS sessions
	Resuming a TDS session
	TDS tunnelling and Netscape Enterprise Server 3.5.1 on Solaris

	APPENDIX A SQL Exception and Warning Messages
	APPENDIX B jConnect Sample Programs
	Running IsqlApp
	Running jConnect sample programs and code
	Sample applications
	Sample code

