
 Programmer’s Reference
jConnect for JDBC

4.5 and 5.5

n new

29-9

the

erver,
catio

s,
n
onnec
esign
tion
ase,

upport,
ent,
 Open
r,

ktop,
 Serv
L
re, S
QL

SQL
ys, Syb
inancial,
 Toolk
er
m SQL
 XP

s.
DOCUMENT ID: 39001-01-0550-01

LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated i
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 2845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All or
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replin,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpres
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distributio
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Ct,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Der,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Informa
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeB
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MyS
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Cli
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect,
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilde
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Des
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replicationer,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQ
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL AnywheQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, S
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent,
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gatewaase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber F
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translationit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWrit,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watco
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companie

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents
About This Book .. vii

CHAPTER 1 Introduction ... 1
What is JDBC?... 1
What is jConnect? .. 2

CHAPTER 2 Programming Information .. 5
Setting up jConnect .. 5

Setting the jConnect version ... 6
Invoking the jConnect driver .. 11

Establishing a connection .. 12
Setting connection properties.. 12
Connecting to Adaptive Server Enterprise 18
Connecting to Adaptive Server Anywhere............................... 20
Connecting to a server using JNDI.. 21

Implementing custom socket plug-ins .. 27
SYBSOCKET_FACTORY connection property....................... 28
Creating and configuring a custom socket 28

Handling internationalization and localization 31
Using jConnect to pass Unicode data 32
jConnect character-set converters .. 33

Working with databases ... 38
Implementing high availability failover support 39
Performing server-to-server remote procedure calls 43
Wide table support for Adaptive Server version 12.5 45
Accessing database metadata .. 45
Using cursors with result sets.. 47
Support for batch updates ... 57
Updating the database from the result set

of a stored procedure ... 59
Working with datatypes ... 60

Implementing advanced features ... 65
Using event notification ... 66
iii

Handling error messages... 68
Storing Java objects as column data in a table 73
Dynamic class loading ... 77
JDBC 2.0 optional package extensions support 81

Handling restrictions, limitations, and deviations
from JDBC standards.. 92

Making adjustments for multithreading.................................... 92
Using ResultSet.getCursorName() ... 93
Using setLong() with large parameter values 93
Using COMPUTE statements .. 93
Executing stored procedures ... 94

CHAPTER 3 Troubleshooting.. 97
Debugging with jConnect.. 97

Obtaining an instance of the Debug class 97
Turning on debugging in your application................................ 98
Turning off debugging in your application................................ 99
Setting the CLASSPATH for debugging 99
Using the Debug methods ... 99

Capturing TDS communication... 101
PROTOCOL_CAPTURE connection property....................... 101
pause() and resume() methods in the Capture class........... 102

Unsuccessful connection errors ... 102
Gateway connection refused ... 102
Unable to connect to a 4.9.2 SQL Server 103

Memory usage in jConnect applications....................................... 103
Stored procedure errors ... 104

RPC returns fewer output parameters than registered 104
Fetch/state error when stored procedure

returns output params... 105
Stored procedure executed in unchained

transaction mode .. 105
Custom socket implementation error.. 106

CHAPTER 4 Performance and Tuning.. 107
Improving jConnect performance ... 107

BigDecimal rescaling ... 108
REPEAT_READ connection property.................................... 108
Character-set conversion... 109

Performance tuning for prepared statements in dynamic SQL..... 110
Choosing between prepared statements

and stored procedures .. 111
Prepared statements in portable applications........................ 112
iv

Chapter
Prepared statements in applications
with jConnect extensions .. 113

Connection.prepareStatement() ... 114
DYNAMIC_PREPARE connection property 114
SybConnection.prepareStatement() 115

Cursor performance.. 116
LANGUAGE_CURSOR connection property......................... 117

CHAPTER 5 Migrating jConnect Applications ... 119
Migrating jConnect applications.. 119

Migrating applications to jConnect 4.5 and 5.5...................... 119
Sybase extensions ... 121

Change example.. 121
Method names ... 122
Debug class ... 122

CHAPTER 6 Web Server Gateways... 123
About Web server gateways... 123

TDS tunnelling ... 123
jConnect and gateway configuration...................................... 124

Usage requirements ... 128
Reading the index.html file .. 128
Running the sample Isql applet ... 129

Using the TDS-tunnelling servlet .. 130
TDS-tunnelling servlet system requirements 131
Installing the servlet ... 132
Invoking the servlet.. 133
Tracking active TDS sessions ... 133
Resuming a TDS session .. 134
TDS tunnelling and Netscape Enterprise Server 3.5.1

on Solaris .. 134

APPENDIX A SQL Exception and Warning Messages.................................... 137

APPENDIX B jConnect Sample Programs ... 153
Running IsqlApp ... 153
Running jConnect sample programs and code 155

Sample applications... 155
Sample code.. 156

Index ...159
v

vi

e
oc
as
es,
ect
on

uct

ss
t.

the

of
eb

oups.
About This Book

The Sybase jConnect for JDBC Programmer’s Reference describes the
jConnect for JDBC product and explains how to use it to access data
stored in relational database management systems.

Audience This manual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
Sybase version of Structured Query Language.

Related Documents You may find the following documents helpful:

• The Sybase jConnect for JDBC Installation Guide

• The Sybase jConnect for JDBC Release Bulletin

• The javadoc documentation of jConnect extensions to JDBC. Th
Java Development Kit (JDK) from Java Software contains a javad
script for extracting comments from source-code files. This script h
been used to extract documentation of jConnect packages, class
and methods from jConnect source files. When you install jConn
using the full installation or javadocs option, the javadoc informati
is placed in the javadocs directory:

Installation_directory/docs/en/javadocs

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Prod
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to acce
technical information about your product in an easy-to-use forma

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting
Technical Library.

• Technical Library Product Manuals Web site is an HTML version
the Technical Library CD that you can access using a standard W
browser. In addition to product manuals, you’ll find links to the
Technical Documents Web site (formerly known as Tech Info
Library), the Solved Cases page, and Sybase/Powersoft newsgr
vii

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select a product from the product pick list and click Go.

3 Select the Certification Report filter, specify a time frame, and click Go.

4 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

Conventions This manual uses the following font and syntax conventions:

• Classes, interfaces, methods, and packages are shown in Helvetica within
paragraph text. For example:

SybConnection class

SybEventHandler interface

setBinaryStream() method
viii

 About This Book

o

ed.

r more
ort. If
e the
idiary
com.sybase.jdbcx package

• Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

“eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want t
debug.”

• Code fragments are shown in a monospaced font. Variables in code
fragments (that is, words that stand for values that you fill in) are italiciz
For example:

Connection con = DriverManager.getConnection("jdbc:
 sybase:Tds:host:port", props);

If you need help Each Sybase installation that has purchased a support contract has one o
designated people who are authorized to contact Sybase Technical Supp
you cannot resolve a problem using the manuals or online help, please hav
designated person contact Sybase Technical Support or the Sybase subs
in your area.
ix

x

ase
C H A P T E R 1 Introduction

This chapter introduces you to jConnect for JDBC, and describes its
concepts and components.

This chapter contains:

What is JDBC?
JDBC (Java Database Connectivity) from the Java Software Division of
Sun MicroSystems, Inc. is a specification for an application program
interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL). The
JDBC driver manager handles multiple drivers that connect to different
databases.

A set of interfaces is included in the standard JDBC API so you can open
connections to databases, execute SQL commands, and process results.
The interfaces are described in Table 1-1.

Table 1-1: JDBC interfaces

Topics
What is JDBC?

What is jConnect?

Interface Description

java.sql.Driver Locates the driver for a database URL

java.sql.Connection Connection to a specific database

java.sql.Statement Executes SQL statements

java.sql.PreparedStatement Handles parameterized SQL statements

java.sql.CallableStatement Handles database stored procedure calls

java.sql.ResultSet Gets the results of SQL statements

java.sql.DatabaseMetaData Used to access a variety of information about a connection’s DBMS and datab

java.sql.ResultSetMetaData Used to access a variety of information describing a ResultSet’s attributes
1

What is jConnect?

d
ent
 the

-
se

r

 5),

 the
 and
Each relational database management system requires a driver to implement
these interfaces. All JDBC calls are sent to the JDBC driver manager, which
passes the call to the specified driver.

There are four types of JDBC drivers:

• Type 1 JDBC-ODBC bridge – translates JDBC calls into ODBC calls an
passes them to an ODBC driver. Some ODBC software must be resid
on the client machine. Some client database code may also reside on
client machine.

• Type 2 native-API partly-Java driver – converts JDBC calls into database
specific calls. This driver, which communicates directly with the databa
server, also requires some binary code on the client machine.

• Type 3 net-protocol all-Java driver – communicates to a middle-tier serve
using a DBMS-independent net protocol. A middle-tier gateway then
converts the request to a vendor-specific protocol.

• Type 4 native-protocol all-Java driver – converts JDBC calls to the
vendor-specific DBMS protocol, allowing client applications direct
communication with the database server.

What is jConnect?
jConnect is Sybase’s high-performance JDBC driver. jConnect is both a:

• Net-protocol/all-Java driver within a three-tier environment, and a

• Native-protocol/all-Java driver within a two-tier environment.

The protocol used by jConnect is TDS 5.0 (Tabular Data Stream™, version
the native protocol for Adaptive Server® and Open Server™ applications.
jConnect implements the JDBC standard to provide optimal connectivity to
complete family of Sybase products, allowing access to over 25 enterprise
legacy systems, including:

• Adaptive Server Enterprise

• Adaptive Server Anywhere

• Adaptive Server IQ (formerly Sybase IQ™)

• Replication Server®
2

CHAPTER 1 Introduction

ver
rver
rver

a

2

• OmniConnect™

Note Since changing the name of Sybase SQL Server™ to Adaptive Ser
Enterprise, Sybase may use the names Adaptive Server and Adaptive Se
Enterprise to refer collectively to all supported versions of Sybase SQL Se
and Adaptive Server Enterprise.

In addition, jConnect for JDBC can access Oracle, AS/400, and other dat
sources using Sybase DirectConnect™.

In some instances, jConnect’s implementation of JDBC deviates from the
JDBC 1.x or 2.x specifications. For more information see “Handling
restrictions, limitations, and deviations from JDBC standards” on page 9.
3

What is jConnect?
4

C H A P T E R 2 Programming Information

This chapter describes the basic components and programming
requirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

Note For information about JDBC programming, go to
http://java.sun.com/jdbc.

To access the JDBC Guide: Getting Started manual for JDBC 1.0, go to
http://java.sun.com/products/jdk/1.1/docs/guide/jdbc.

To access the JDBC Guide: Getting Started manual for JDBC 2.0, go to
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/.

The following topics are included in this chapter:

Setting up jConnect
This section describes the tasks you need to perform before you use
jConnect.

Topics
Setting up jConnect

Establishing a connection

Implementing custom socket plug-ins

Handling internationalization and localization

Working with databases

Implementing advanced features

Handling restrictions, limitations, and deviations from JDBC
standards
5

Setting up jConnect

ty.

r

Setting the jConnect version
There are several versions of jConnect; use a version setting to determine:

• The default value of the LANGUAGE connection property.

• The version-specific features that are available.

• The default character set, if no character set is specified through the
CHARSET connection property.

• The default value of the CHARSET_CONVERTER connection proper

• The default value of the CANCEL_ALL connection property, which is
used to set the behavior of Statement.cancel(), which by default cancels
the object on which it is invoked and any other Statement objects that have
begun to execute and are waiting for results.

• Whether you are requesting support for wide tables from the server.

• Whether you would like to request server support for storing characte
data in unichar (Unicode) columns.

Note Only Adaptive Server Enterprise version 12.5 and later support wide
tables and unichar character data.

Table 2-1 lists the version settings available and their features.
6

CHAPTER 2 Programming Information

Table 2-1: jConnect version settings and their features

Version
constant Features Comments

VERSION_6 • jConnect requests support for the unichar
and univarchar datatypes from the server.
This request is ignored by servers other than
Adaptive Server Enterprise 12.5 and later.

• jConnect requests support for wide tables
from the server. This request is ignored by
servers other than Adaptive Server
Enterprise 12.5 and later.

• The default value of the LANGUAGE
connection property is null.

• If the CHARSET connection property does
not specify a character set, jConnect uses the
database’s default character set.The default
value for CHARSET_CONVERTER is the
PureConverter class.

Note If the server is set to support unichar
and univarchar datatypes, the settings you
make for CHARSET and
CHARSET_CONVERTER will be ignored,
as jConnect will pass all character parameter
data using Unicode encoding.

• By default, Statement.cancel() cancels only
the Statement object it is invoked on.

• JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

For jConnect version 5.x, the default is
VERSION_5.

For additional information, see the comments
for VERSION_4.

For more information on wide tables, see
“Wide table support for Adaptive Server
version 12.5” on page 45.

For more information on unichar and
univarchar datatypes and Unicode, see “Using
jConnect to pass Unicode data” on page 32.

VERSION_5 • The default value of the LANGUAGE
connection property is null.

• If the CHARSET connection property does
not specify a character set, jConnect uses the
database’s default character set.The default
value for CHARSET_CONVERTER is the
PureConverter class.

• By default, Statement.cancel() cancels only
the Statement object it is invoked on.

• JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

For jConnect version 5.x, the default is
VERSION_5.

For additional information, see the comments
for VERSION_4.
7

Setting up jConnect

t

e

VERSION_4 • The default value of the LANGUAGE
connection property is null.

• If the CHARSET connection property does
not specify a character set, jConnect uses the
database’s default character set.The default
value for CHARSET_CONVERTER is the
PureConverter class.

• By default, Statement.cancel() cancels only
the Statement object it is invoked on.

• JDBC 2.0 methods can be used to store and
retrieve Java objects as column data.

For jConnect version 4.x and earlier, the defaul
is VERSION_2.

Server messages are localized according to th
language setting in your local environment.
The languages supported are: Chinese, U.S.
English, French, German, Japanese, Korean,
Portuguese, and Spanish.

The default behavior of Statement.cancel() is
JDBC-compliant.

Use CANCEL_ALL to set the behavior of
Statement.cancel(). See “CANCEL_ALL
connection property” on page 10.

For information on Java objects as column
data, see “Storing Java objects as column data
in a table” on page 73.

VERSION_3 • The default value of the LANGUAGE
connection property is us_english.

• If the CHARSET connection property does
not specify a character set, jConnect uses the
database’s default character set.

• The default value for
CHARSET_CONVERTER is the
PureConverter class.

• By default, Statement.cancel() cancels the
object it is invoked on and any other
Statement objects that have begun to
execute and are waiting for results.

The default is VERSION_2.

See the comments for VERSION_2.

Version
constant Features Comments
8

CHAPTER 2 Programming Information
The version values are constant values from the SybDriver class. When
referring to the version constant, use this syntax:

com.sybase.jdbcx.SybDriver.VERSION_5

Use SybDriver.setVersion() to set the jConnect version. The following code
samples show how to load the jConnect driver and set the version.

For jConnect 4.x:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
 Class.forName ("com.sybase.jdbc.SybDriver").newInstance();
sybDriver.setVersion
 (com.sybase.jdbcx.SybDriver.VERSION_4);
DriverManager.registerDriver(sybDriver);

For jConnect 5.x:
import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
 Class.forName
 ("com.sybase.jdbc2.jdbc.SybDriver").newInstance();
sybDriver.setVersion
 (com.sybase.jdbcx.SybDriver.VERSION_5);
DriverManager.registerDriver(sybDriver);

For wide table support with jConnect 4.x and 5.x:

VERSION_2 • The default value of the LANGUAGE
connection property is us_english.

• If the CHARSET connection property does
not specify a character set, the default
character set is iso_1.

• The default value for
CHARSET_CONVERTER is the
TruncationConverter class, unless the
CHARSET connection property specifies a
multibyte or 8-bit character set, in which
case the default CHARSET_CONVERTER
is the PureConverter class.

• By default, Statement.cancel() cancels the
object it is invoked on and any other
Statement objects that have begun to
execute and are waiting for results.

The default version setting for jConnect
version 2.x is VERSION_2.

The LANGUAGE connection property
determines the language in which messages
from jConnect and the server appear.

For information on the CHARSET and
CHARSET_CONVERTER connection
classes, see “jConnect character-set
converters” on page 33.

The VERSION_2 default behavior of
Statement.cancel() is not JDBC-compliant.
Use CANCEL_ALL to set the behavior of
Statement.cancel(). See “CANCEL_ALL
connection property” on page 10.

Version
constant Features Comments
9

Setting up jConnect

,”

on,
he

n

cute
To enable wide table support with Adaptive Server Enterprise version 12.5 and
later, use SybDriver.setVersion() to set the jConnect version to 6:

sybDriver.setVersion
 (com.sybase.jdbcx.SybDriver.VERSION_6);

You can call setVersion() multiple times to change the version setting. New
connections inherit the behavior associated with the version setting at the time
the connection was made. Changing the version setting during a session does
not affect the current connection.

As described in the next section, you can use JCONNECT_VERSION to
override the SybDriver version setting and specify a different version setting for
a specific connection.

JCONNECT_VERSION connection property

Use JCONNECT_VERSION to specify the version setting for a specific
session.You can set JCONNECT_VERSION to an integer value of “2,” “3
“4,” “5,” or “6” depending on the characteristics you want (see Table 2-1).

CANCEL_ALL connection property

CANCEL_ALL is a Boolean-valued connection property for specifying the
behavior of the Statement.cancel() method.

Note In jConnect version 4.0 and earlier, the default for CANCEL_ALL is
true. In jConnect version 4.1 and later, to comply with the JDBC specificati
if you set the connection property JCONNECT_VERSION to “4” or above, t
default setting for CANCEL_ALL is false.

The settings for CANCEL_ALL have the following effect on
Statement.cancel():

• If CANCEL_ALL is false, invoking Statement.cancel() cancels only the
Statement object it is invoked on. Thus, if stmtA is a Statement object,
stmtA.cancel() cancels the execution of the SQL statement contained i
stmtA in the database, but no other statements are affected. stmtA is
canceled whether it is in cache waiting to execute or has started to exe
and is waiting for results.

• If CANCEL_ALL is true, invoking Statement.cancel() cancels not only
the object it is invoked on, but also any other Statement objects on the
same connection that have executed and are waiting for results.
10

CHAPTER 2 Programming Information
The following example sets CANCEL_ALL to false. In the example, props is
a Properties object for specifying connection properties.

...
 props.put("CANCEL_ALL", "false");

Note To cancel the execution of all Statement objects on a connection,
regardless of whether or not they have begun execution on the server, use the
extension method SybConnection.cancel().

Invoking the jConnect driver
To register and invoke the Sybase jConnect driver, use either of two suggested
methods:

For jConnect 4.x:

Class.forName("com.sybase.jdbc.SybDriver").newInstance();

For jConnect 5.x:
Class.forName("com.sybase.jdbc2.jdbc.SybDriver").newInstance();

Add the jConnect driver to the jdbc.drivers system property. At initialization,
the DriverManager class attempts to load the drivers listed in jdbc.drivers. This
is less efficient than the previous approach. You can list multiple drivers in this
property, separated with a colon (:). The following code samples show how to
add a driver to jdbc.drivers within a program:

For jConnect 4.x:
Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty("jdbc.drivers");
if (oldDrivers != null)
 drivers += ":" + oldDrivers;
sysProps.put("jdbc.drivers", drivers.toString());

For jConnect 5.x:

Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc2.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty("jdbc.drivers");
if (oldDrivers != null)
 drivers += ":" + oldDrivers;
11

Establishing a connection

the
 sysProps.put("jdbc.drivers", drivers.toString());

Note System.getProperties() is not allowed for Java applets. Use the
 Class.forName() method, instead.

Establishing a connection
This section describes how to establish a connection to an Adaptive Server
Enterprise or Adaptive Server Anywhere database using jConnect.

Setting connection properties
Table 2-2 lists the connection properties for jConnect and indicates their
default values. You must set the connection properties before you make a
connection.

There are two ways to set the driver connection properties:

• Use the DriverManager.getConnection() method in your application.

• When you define the URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To obtain a current list of properties for any driver, use the
Driver.getDriverPropertyInfo(String url, Properties props), which returns an array
of DriverPropertyInfo objects. The array lists:

• The driver properties

• The current settings on which the driver properties are based

• The URL and props passed in

Driver connection property names are not case-sensitive (jConnect uses
String.equalsIgnoreCase(String) method to compare property names).
12

CHAPTER 2 Programming Information
Table 2-2: Connection properties

Property Description Default value

APPLICATIONNAME A user-defined property. The server side can be
programmed to interpret the value given to this
property.

Null

BE_AS_JDBC_COMPLIANT_
AS_POSSIBLE

Adjusts other properties to ensure that jConnect
methods respond in a way that is as compliant as
possible with the JDBC 2.0 standard.

These properties are affected (and overridden)
when this property is set to true:

• CANCEL_ALL (set to false)

• LANGUAGE CURSOR (set to true for
jConnect 4.x, set to false for jConnect 5.x)

• SELECT_OPENS_CURSOR (set to true)

• FAKE_METADATA (set to true)

• GET_BY_NAME_USES_COLUMN_LABEL
 (set to false)

false

CANCEL_ALL Determines the behavior of the
Statement.cancel() method. See
“CANCEL_ALL connection property” on page
10.

Depends on version
setting (see “Setting
the jConnect version”
on page 6.

CHARSET Specifies the character set for strings passed
through TDS. If you specify a CHARSET, it
must match a CHARSET listed in syscharsets.

If null, jConnect uses the server’s default
CHARSET.

Null

CHARSET_CONVERTER_CLASS Use this property to specify the character-set
converter class you want jConnect to use.
jConnect uses the version setting from
SybDriver.setVersion() to determine the default
character-set converter class to use. See
“Selecting a character-set converter” on page 34
for details.

Version dependent

CONNECTION_FAILOVER For use with the Java Naming and Directory
Interface (JNDI). See
“CONNECTION_FAILOVER connection
property” on page 24.

true

DYNAMIC_PREPARE Determines whether dynamic SQL prepared
statements are precompiled in the database. See
“DYNAMIC_PREPARE connection property”
on page 114.

false
13

Establishing a connection
FAKE_METADATA When you call the ResultSetMetaData methods
getCatalogName, getSchemaName, and
getTableName and this property is set to true, the
call will return empty strings ("") because the
server does not supply useful metadata.

When this property is set to false, calling these
methods throws a “Not Implemented”
SQLException.

Note If you have enabled wide tables and are
using an Adaptive Server 12.5 or later, this
property setting is ignored, because the server
does supply useful metadata.

true

GET_BY_NAME_USES_
COLUMN_LABEL

Provides backward compatibility with versions
of jConnect previous to 4.5/5.5.

With Adaptive Server Enterprise version 12.5,
jConnect has access to more metadata than was
previously available. Previous to version 12.5,
column name and column alias meant the same
thing. jConnect can now differentiate between
the two when used with a 12.5 or later Adaptive
Server with wide tables enabled.

To preserve backward compatibility, set this
property to true.

If you want calls to getByte, getInt, get* (String
columnName) to look at the actual name for the
column (called for in the JDBC 2.0
specification), set this property to false.

true

EXPIRESTRING A read-only property that contains the license
expiration date. Expiration is never except for
evaluation copies of jConnect.

Never

HOSTNAME The name of the current host. None

HOSTPROC Identifies the application’s process on the host
machine.

None

IGNORE_DONE_IN_PROC When set to true, intermediate update results (as
in stored procedures) are not returned, only the
final result set.

false

JCONNECT_VERSION Use this property to set version-specific
characteristics. See “JCONNECT_VERSION
connection property” on page 10.

5

Property Description Default value
14

CHAPTER 2 Programming Information
LANGUAGE Set this property for error messages returned
from the server and for jConnect messages. It
must match a language in syslanguages.

Version dependent (see
“Setting the jConnect
version” on page 6).

LANGUAGE_CURSOR Set this property to true if you want jConnect to
use “language cursors” instead of “protocol
cursors.”
See “Cursor performance” on page 116.

false

LITERAL_PARAMS This property is for use only with Adaptive
Server Anywhere, which requires you to send
prepared statement parameters as literals. For all
other Sybase databases, this property can be set
to false.

When set to true, any parameters set by the
setXXX methods in the PreparedStatement
interface are inserted literally into the SQL
statement when it is executed.

If set to false, parameter markers are left in the
SQL statement and the parameter values are sent
to the server separately.

false

PACKETSIZE Network packet size. 512

PASSWORD Login password.

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

PROTOCOL_CAPTURE The PROTOCOL_CAPTURE connection
property is used to specify a file for capturing
TDS communication between an application and
an Adaptive Server.

Null

PROXY Gateway address. For the HTTP protocol, the
URL is http://host:port.

To use the HTTPS protocol that supports
encryption, the URL is
https://host:port/servlet_alias.

None

REMOTEPWD Remote server passwords for access via server-
to-server remote procedure calls. See
“Performing server-to-server remote procedure
calls” on page 43.

None

REPEAT_READ Determines whether the driver keeps copies of
columns and output parameters so that columns
can be read out of order or repeatedly. See
“REPEAT_READ connection property” on
page 108.

true

Property Description Default value
15

Establishing a connection
REQUEST_HA_SESSION This property indicates whether the connecting
client wants to begin a HA failover session with
a version 12 or later Adaptive Server configured
for failover.

Setting this property to true causes jConnect to
attempt a failover login. If you do not set this
connection property, a failover session will not
start, even if the server is configured for failover.

You cannot reset the property once a connection
has been made.

If you want more flexibility for requesting
failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

false

SELECT_OPENS_CURSOR If set to true, calls to
Statement.executeQuery() will automatically
generate a cursor when the query contains a
“FOR UPDATE” clause.

If you have previously called
Statement.setFetchSize() or
Statement.setCursorName() on the same
statement, a setting of true for
SELECT_OPENS_CURSOR has no effect.

Note You may experience some performance
degradation when SELECT_OPENS_CURSOR
is set to true.

See “Using cursors with result sets” on page 47
for more information on using cursors with
jConnect.

false

SERIALIZE_REQUESTS If set to true, jConnect waits for responses from
the server before sending additional requests.

false

SERVICENAME The name of a back-end database server that a
DirectConnect gateway serves. Also used to
indicate the database to which Adaptive Server
Anywhere wants to connect.

None

SESSION_ID When this property is set, jConnect assumes that
an application is trying to resume
communication on an existing TDS session held
open by the TDS-tunnelling gateway. jConnect
skips the login negotiations and forwards all
requests from the application to the specified
session ID.

Null

Property Description Default value
16

CHAPTER 2 Programming Information
SESSION_TIMEOUT Use this property to specify the amount of time
(in seconds) that an http-tunnelled session
(created using the jConnect TDS-tunnelling
servlet) will remain alive while idle. After the
specified time, the connection will be
automatically closed. For more information
about the TDS-tunnelling servlet, see page 130.

Null

SQLINITSTRING Use this property to define a set of commands to
be passed to the back-end database server. These
must be SQL commands that can be executed
using the Statement.executeUpdate() method.

Null

SYBSOCKET_FACTORY Use this property to enable jConnect to use your
custom socket implementation.

Set SYBSOCKET_FACTORY either to:

• The name of a class that implements
com.sybase.jdbcx.SybSocketFactory; or

• “DEFAULT,” which instantiates a new
 java.net.Socket()

See “Implementing custom socket plug-ins” on
page 27.

Null

STREAM_CACHE_SIZE Maximum size used to cache statement response
streams.

Null (unlimited cache
size)

USE_METADATA When set to true, a DatabaseMetaData object
will be created and initialized when you
establish a connection. The DatabaseMetaData
object is necessary to connect to a specified
database.

jConnect uses DatabaseMetaData for some
features, including Distributed Transaction
Management support (JTA/JTS) and dynamic
class loading (DCL).

If you receive error 010SJ, which indicates that
your application requires metadata, install the
stored procedures for returning metadata that
come with jConnect (see “Installing Stored
Procedures” in Chapter 3 of the jConnect for
JDBC Installation Guide).

true

USER Login ID.

Set automatically if using the
getConnection(String, String, String) method, or
explicitly if using getConnection(String, Props).

None

Property Description Default value
17

Establishing a connection
The following code is an example of setting connection properties. The sample
programs provided with jConnect also contain examples of setting these
properties.

 Properties props = new Properties();
 props.put("user", "userid");
 props.put("password", "user_password");
 /*
 * If the program is an applet that wants to access
 * a server that is not on the same host as the
 * web server, then it uses a proxy gateway.
 */
 props.put("proxy", "localhost:port");
 /*
 * Make sure you set connection properties before
 * attempting to make a connection. You can also
 * set the properties in the URL.
 */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:Tds:host:port", props);

Connecting to Adaptive Server Enterprise
In your Java application, define a URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is:

jdbc:sybase:Tds:host:port

where:

jdbc:sybase – identifies the driver.

Tds – the Sybase communication protocol for Adaptive Server.

host:port – the Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASE%\ini\sql.ini (Windows) for the
entry that your database or Open Server application uses. Obtain the host:port
from the “query” entry.

You can connect to a specific database using this format:

VERSIONSTRING Read-only version information for the JDBC
driver.

jConnect driver
version

Property Description Default value
18

CHAPTER 2 Programming Information

hen

its

&”
ost
jdbc:sybase:Tds:host:port/database

Note To connect to a specific database using Adaptive Server Anywhere 6.x
or 7.x or DirectConnect, use the SERVICENAME connection property to
specify the database name instead of “/database.”

Example The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps.put("user","userid");
SysProps.put("password","user_password");
String url = "jdbc:sybase:Tds:myserver:3697";
Connection_con =
 DriverManager.getConnection(url,SysProps);

URL connection property parameters

You can specify the values for the jConnect driver connection properties w
you define a URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection() method.

To set a connection property in the URL, append the property name and
value to the URL definition. Use this syntax:

jdbc:sybase:Tds:host:port/database?
 property_name=value

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=myhost

If the value for one of the connection properties contains “&,” precede the “
in the connection property value with a backslash (\). For example, if your h
name is “a&bhost,” use this syntax:

jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=
 a\&bhost
19

Establishing a connection
Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=myhost

not:

HOSTNAME="myhost"

Connecting to Adaptive Server Anywhere
To use jConnect with Adaptive Server Anywhere, you should upgrade to
Adaptive Server Anywhere version 6.x or 7.x.

Connecting to Adaptive Server Anywhere 5.x.x

If you have to connect to Adaptive Server Anywhere version 5.x.x via
jConnect, you must run the Adaptive Server Anywhere Open Server Gateway
dbos50, which is distributed with Adaptive Server Anywhere.

Note The free download version of Adaptive Server Anywhere, available from
the Powersoft Web site, does not include this Open Server Gateway. Call
Powersoft at (800) 265-4555 to receive a CD that includes the Open Server
Gateway and the required Open Server DLLs. You will be charged only for
shipping and handling.

1 Install Open Server Gateway 5.5.x3 or later and the Open Server DLLs.
Use Open Server DLLs, version 11.1.

2 Add an entry for the gateway to your %SYBASE%\ini\sql.ini file (using,
for example, sqledit).

3 Start the gateway by entering:

start dbos50 gateway-demo

where gateway-demo is the gateway name defined in step 2.

4 When the Open Server Gateway is running, you can define a connection
as follows:

jdbc:sybase:Tds:host:port
20

CHAPTER 2 Programming Information

r
nd

d a

 is
erver

n is

host is the host name where the Adaptive Server Anywhere and Open
Server gateway is running, and port is the port number defined in sql.ini.

Note To support multiple Adaptive Server Anywhere databases, use sqledit to
add an entry with a different port for each database, then run the Open Server
Gateway for each database.

Connecting to a server using JNDI
In jConnect 4.0 and later, you can use the Java Naming and Directory Interface
(JNDI) to provide connection information, which offers:

• A centralized location where you can specify host names and ports fo
connecting to a server. You do not need to hard code a specific host a
port number in an application.

• A centralized location where you can specify connection properties an
default database for all applications to use.

• The jConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVER
set to true, jConnect attempts to connect to a sequence of host/port s
addresses in the JNDI name space until one succeeds.

To use jConnect with JNDI, you need to make sure that certain informatio
available in any directory service that JNDI accesses and that required
information is set in the javax.naming.Context class. This section covers the
following topics:

• Connection URL for using JNDI

• Required directory service information

• CONNECTION_FAILOVER connection property

• Providing JNDI context information

Connection URL for using JNDI

To specify that jConnect use JNDI to obtain connection information, place
“jndi” as the URL’s subprotocol after “sybase”:

jdbc:sybase:jndi:protocol-information-for-use-with-JNDI
21

Establishing a connection

ame

 to

tory

ed

the
Anything that follows “jndi” in the URL is handled through JNDI. For
example, to use JNDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

jdbc:sybase:jndi:ldap://LDAP_hostname:port_number/servername=
Sybase11,o=MyCompany,c=US

This URL tells JNDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the n
of a database server in an LDAP-specific form.

Required directory service information

When you use JNDI with jConnect, JNDI needs to return the following
information for the target database server:

• A host name and port number to connect to

• The name of the database to use

• Any connection properties that individual applications are not allowed
set on their own

This information needs to be stored according to a fixed format in any direc
service used for providing connection information. The required format
consists of a numerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), follow
by the formatted information (see “Example 1” on page 23).

Note You can use the alias name for to reference the attribute instead of
OID. See “Example 2” on page 24.

Table 2-3 shows the required formatting.
22

CHAPTER 2 Programming Information

e.
Table 2-3: Directory service information for JNDI

Note Attributes in italics are required.

The following examples show connection information entered for the database
server SYBASE11 under an LDAP directory service. Example 1 uses the
attribute’s OID, Example 2 uses the attribute’s alias, which is case insensitiv
You can use either the OID or the alias.

Example 1

dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
 1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
 1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
 1.3.6.1.4.1.897.4.2.5:TCP#1#standby1 4444

Attribute description Alias OID (object_id)

Interfaces entry replacement in
LDAP directory services

sybaseServer 1.3.6.1.4.1.897.4.1.1

Collection point for
sybaseServer LDAP attributes

sybaseServer 1.3.6.1.4.1.897.4.2

Version Attribute sybaseVersion 1.3.6.1.4.1.897.4.2.1

Servername Attribute sybaseServer 1.3.6.1.4.1.897.4.2.2

Service Attribute sybaseService 1.3.6.1.4.1.897.4.2.3

Status Attribute sybaseStatus 1.3.6.1.4.1.897.4.2.4

Address Attribute sybaseAddress 1.3.6.1.4.1.897.4.2.5

Security Mechanism Attribute sybaseSecurity 1.3.6.1.4.1.897.4.2.6

Retry Count Attribute sybaseRetryCount 1.3.6.1.4.1.897.4.2.7

Loop Delay Attribute sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8

jConnect Connection Protocol sybaseJconnectProtocol 1.3.6.1.4.1.897.4.2.9

jConnect Connection Property sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10

Database Name sybaseDatabasename 1.3.6.1.4.1.897.4.2.11

High Availability Failover
Servername Attribute

sybaseHAservername 1.3.6.1.4.1.897.4.2.15

ResourceManager Name sybaseResourceManager
Name

1.3.6.1.4.1.897.4.2.16

ResourceManager Type sybaseResourceManager
Type

1.3.6.1.4.1.897.4.2.17

JDBCDataSource Interface sybaseJdbcDataSource-
Interface

1.3.6.1.4.1.897.4.2.18

ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19
23

Establishing a connection

t
E,

 are

ort
 host
ugh
ports

 as in
 1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&PACKETSIZE=1024
 1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=true
 1.3.6.1.4.1.897.4.2.11:pubs2
 1.3.6.1.4.1.897.4.2.9:Tds

Example 2

dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
sybaseAddress:TCP#1#giotto 1266
sybaseAddress:TCP#1#giotto 1337
sybaseAddress:TCP#1#standby1 4444
sybaseJconnectProperty:REPEAT_READ=false&PACKETSIZE=1024
sybaseJconnectProperty:CONNECTION_FAILOVER=true
sybaseDatabasename:pubs2
sybaseJconnectProtocol:Tds

In these examples, SYBASE11 can be accessed through either port 1266 or
port 1337 on host “giotto” and it can be accessed through port 4444 on hos
“standby1.” Two connection properties, REPEAT_READ and PACKETSIZ
are set within one entry. The CONNECTION_FAILOVER connection
property is set as a separate entry. Applications connecting to SYBASE11
initially connected with the pubs2 database. You do not need to specify a
connection protocol, but if you do, you must enter the attribute as “Tds”, not
“TDS”.

CONNECTION_FAILOVER connection property

CONNECTION_FAILOVER is a Boolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

If CONNECTION_FAILOVER is set to true, jConnect makes multiple
attempts to connect to a server. If one attempt to connect to a host and p
number associated with a server fails, jConnect uses JNDI to get the next
and port number associated with the server and attempts to connect thro
them. Connection attempts proceed sequentially through all the hosts and
associated with a server.

For example, suppose CONNECTION_FAILOVER is set to true, and a
database server is associated with the following hosts and port numbers,
the earlier LDAP example:

1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1#standby 4444
24

CHAPTER 2 Programming Information

tto”

 to
L

or at

ith

r
uch

how

To get a connection to the server, jConnect tries to connect to the host “gio
at port 1266. If this fails, jConnect tries port 1337 on “giotto.” If this fails,
jConnect tries to connect to host “standby1” through port 4444.

The default for CONNECTION_FAILOVER is true.

If CONNECTION_FAILOVER is set to false, jConnect attempts to connect
an initial host and port number. If the attempt fails, jConnect throws a SQ
exception and does not try again.

Providing JNDI context information

To use jConnect with JNDI, a developer should be familiar with the JNDI
specification from Sun Microsystems, available from the Web:

http://java.sun.com/products/jndi

In particular, the developer needs to make sure that required initialization
properties are set in javax.naming.directory.DirContext when JNDI and jConnect
are used together. These properties can be set either at the system level
runtime.

Two key properties are:

• Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of the initial context
factory for JNDI to use. This determines the JNDI driver that is used w
the URL specified in the Context.PROVIDER_URL property.

• Context.PROVIDER_URL

This property takes the URL of the directory service that the driver (fo
example, the LDAP driver) is to access. The URL should be a string, s
as “ldap://ldaphost:427”.

The following example shows how to set context properties at runtime and
to get a connection using JNDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property is set to invoke Sun
Microsystem’s implementation of an LDAP service provider. The
PROVIDER_URL context property is set to the URL of an LDAP directory
service located on the host “ldap_server1” at port 983.

Properties props = new Properties();

 /* We want to use LDAP, so INITIAL_CONTEXT_FACTORY is set to the
 * class name of an LDAP context factory. In this case, the
 * context factory is provided by Sun’s implementation of a
25

Establishing a connection
 * driver for LDAP directory service.
 */
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

 /* Now, we set PROVIDER_URL to the URL of the LDAP server that
 * is to provide directory information for the connection.
 */
 props.put(Context.PROVIDER_URL, "ldap://ldap_server1:983");

 /* Set up additional context properties, as needed. */
 props.put("user", "xyz");
 props.put("password", "123");

 /* get the connection */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:jndi:ldap://ldap_server1:983" +
 "/servername=Sybase11,o=MyCompany,c=US",props);

The connection string passed to getConnection() contains LDAP-specific
information, which the developer must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to JNDI to be used in initializing a server, as in the
following jConnect code:

javax.naming.directory.DirContext ctx =
 new javax.naming.directory.InitialDirContext(props);

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes(), as in the following example, where ctx is a
DirContext object:

javax.naming.directory.Attributes attrs =
 ctx.getAttributes(ldap://ldap_server1:983/servername=
 Sybase11, SYBASE_SERVER_ATTRIBUTES);

In the example, SYBASE_SERVER_ATTRIBUTES is an array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.
26

CHAPTER 2 Programming Information

al
Implementing custom socket plug-ins
This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket is an example of a socket that you could customize to
enable encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket.For a jConnect version 4.1 or later driver to load a custom
socket, an application must:

• Implement this interface

• Define the createSocket(..) method

jConnect uses the new socket for its subsequent input/output operations.
Classes that implement SybSocketFactory create sockets and provide a gener
framework for the addition of public socket-level functionality.

/**
 * Returns a socket connected to a ServerSocket on the named host,
 * at the given port.
 * @param host the server host
 * @param port the server port
 * @param props Properties passed in through the connection
 * @returns Socket
 * @exception IOException, UnknownHostException
 */
 public java.net.Socket createSocket(String host, int port, Properties props)
throws IOException, UnknownHostException;

Passing in properties allows instances of SybSocketFactory to use connection
properties to implement an intelligent socket.
27

Implementing custom socket plug-ins

ct

erver.
s it.
When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factories that create sockets to the application. You
can customize factories with parameters used in socket construction. For
example, you could customize factories to return sockets with different
networking time outs or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory is intended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.* if desired.

To use a custom socket with jConnect:

1 Provide a Java class that implements com.sybase.jdbcx.SybSocketFactory.
See “Creating and configuring a custom socket” on page 28.

2 Set the SYBSOCKET_FACTORY connection property so that jConne
can use your implementation to obtain a socket.

SYBSOCKET_FACTORY connection property
To use a custom socket with jConnect, set the SYBSOCKET_FACTORY
connection property to a string that is either:

• The name of a class that implements com.sybase.jdbcx.SybSocketFactory

or

• DEFAULT, which instantiates a new java.net.Socket()

See “Setting connection properties” on page 12 for instructions on how to set
SYBSOCKET_FACTORY.

Creating and configuring a custom socket
Once jConnect obtains a custom socket, it uses the socket to connect to a s
Any configuration of the socket must be completed before jConnect obtain
28

CHAPTER 2 Programming Information
This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

Note Currently, only Adaptive Server version 12.5 and later supports SSL.

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configure it, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory to implement SSL. It contains two createSocket
methods—one for SSLSocketFactory and one for SybSocketFactory—that:

• Create an SSL socket

• Invoke SSLSocket.setEnableCipherSuites() to specify the cipher suites
available for encryption

• Return the socket to be used by jConnect

Example
public class MySSLSocketFactory extends SSLSocketFactory
 implements SybSocketFactory
 {
 /**
 * Create a socket, set the cipher suites it can use, return
 * the socket.
 * Demonstrates how cither suites could be hard-coded into the
 * implementation.
 *
 * See javax.net.SSLSocketFactory#createSocket
 */
public Socket createSocket(String host, int port)
 throws IOException, UnknownHostException
 {
 // Prepare an array containing the cipher suites that are to
 // be enabled.
 String enableThese[] =
 {
 "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA",
 "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5",
 "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA"
 }
 ;
 Socket s =
 SSLSocketFactory.getDefault().createSocket(host, port);
29

Implementing custom socket plug-ins
 ((SSLSocket)s).setEnabledCipherSuites(enableThese);
 return s;
 }
/**
 * Return an SSLSocket.
 * Demonstrates how to set cipher suites based on connection
 * properties like:
 * Properties _props = new Properties();
 * Set other url, password, etc. properties.
 * _props.put(("CIPHER_SUITES_1",
 * "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA");
 * _props.put("CIPHER_SUITES_2",
 * "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5");
 * _props.put("CIPHER_SUITES_3",
 * "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA");
 * _conn = _driver.getConnection(url, _props);
 *
 * See com.sybase.jdbcx.SybSocketFactory#createSocket
 */
public Socket createSocket(String host, int port,
 Properties props)
 throws IOException, UnknownHostException
 {
 // check to see if cipher suites are set in the connection
 // properites
 Vector cipherSuites = new Vector();
 String cipherSuiteVal = null;
 int cipherIndex = 1;
 do
 {
 if((cipherSuiteVal = props.getProperty("CIPHER_SUITES_"
 + cipherIndex++)) == null)
 {
 if(cipherIndex <= 2)
 {
 // No cipher suites available
 // return what the object considers its default
 // SSLSocket, with cipher suites enabled.
 return createSocket(host, port);
 }
 else
 {
 // we have at least one cipher suite to enable
 // per request on the connection
 break;
 }
30

CHAPTER 2 Programming Information

t to
 else
 }
 // add to the cipher suit Vector, so that
 // we may enable them together
 cipherSuites.addElement(cipherSuiteVal);
 }
 }
 while(true);

// lets you create a String[] out of the created vector
 String enableThese[] = new String[cipherSuites.size()];
 cipherSuites.copyInto(enableThese);

// enable the cipher suites
 Socket s =
 SSLSocketFactory.getDefault().createSocket
 (host, port);
 ((SSLSocket)s).setEnabledCipherSuites(enableThese);

// return the SSLSocket
 return s;
 }

// other methods
 }

Since jConnect requires no information about the kind of socket it is, you must
complete any configuration before you return a socket.

For additional information, see:

• Encrypt.java – located in the sample (jConnect 4.x) and sample2
(jConnect 5.x) subdirectories of your jConnect directory, this sample
shows you how to use the SybSocketFactory interface with jConnect
applications.

• MySSLSocketFactory.java – also located in the sample (jConnect 4.x) and
sample2 (jConnect 5.x) subdirectories of your jConnect directory, this is a
sample implementation of the SybSocketFactory interface that you can
plug in to your application and use.

Handling internationalization and localization
This section discusses internationalization and localization issues relevan
jConnect.
31

Handling internationalization and localization

 code

ols

ses

nicode
ctly,

eve
nect
to

N to

ork
u are
 you

Using jConnect to pass Unicode data
With the release of Adaptive Server Enterprise 12.5, database clients can take
advantage of two new server datatypes, unichar and univarchar, which allow for
the efficient storage and retrieval of Unicode data.

Quoting from the Unicode Standard, version 2.0:

“The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding characters and text. The repertoire of this international character
for information processing includes characters for the major scripts of the
world, as well as technical symbols in common. The Unicode character
encoding treats alphabetic characters, ideographic characters, and symb
identically, which means they can be used in any mixture and with equal
facility. The Unicode Standard is modeled on the ASCII character set, but u
a 16-bit encoding to support full multilingual text.”

This means that the user can designate database table columns to store U
data, and clients, such as jConnect, can efficiently store Unicode data dire
without the overhead of conversion.

Two things must happen for jConnect to take advantage of this feature:

• The database server must have the UTF-8 character set loaded as its
default character set.

• When you connect to the server using jConnect, you must set the
JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

When these two conditions are met, jConnect can properly store and retri
Unicode data from the database. Where this feature is enabled, your jCon
application will continue to behave as expected. That is, your JDBC calls
such methods as PreparedStatement.setString (int column, String value) do not
need to be modified just because you have set the JCONNECT_VERSIO
6 and turned on the server capability.

Where the difference will be seen, however, is in the “under the covers” w
done by jConnect in communicating character data to the server. Where yo
storing data in a database column designed to hold Unicode data, or when
are selecting Unicode data from such a column, jConnect performs all the
necessary conversions.
32

CHAPTER 2 Programming Information

s
with
CII

 in

ter.

ot

e.
A side effect is that when the above two conditions are met, and the unichar and
univarchar datatypes setting is turned on, the CHARSET and
CHARSET_CONVERTER connection property settings are ignored by
jConnect. This is because with unichar enabled, all character data is passed to
the server as Unicode data; therefore the CHARSET setting is irrelevant, and
all conversion is handled internally by jConnect.

Note For more information on support for unichar and univarchar datatypes, see
the Adaptive Server Enterprise version 12.5 manuals.

jConnect character-set converters
jConnect uses special classes for all character-set conversions. By selecting a
character-set converter class, you specify how jConnect should handle
single-byte and multibyte character-set conversions, and the performance
impact the conversions will have on your applications.

There are two character-set conversion classes. The conversion class that
jConnect uses is based on the version setting (for example, VERSION_4), and
the CHARSET and CHARSET_CONVERTER_CLASS connection
properties.

• The TruncationConverter class works only with single-byte character set
that use ASCII characters such as iso_1 and cp850. It does not work
multibyte character sets or single-byte character sets that use non-AS
characters.

Using the TruncationConverter class, jConnect 5.x handles character sets
the same manner as jConnect version 2.2. The TruncationConverter class is
the default converter when the version setting is VERSION_2.

• The PureConverter class is a pure Java, multibyte character-set conver
jConnect uses this class if the version setting is VERSION_4 or later.
jConnect also uses this converter with VERSION_2 if it detects a
character set specified in the CHARSET connection property that is n
compatible with the TruncationConverter class.

Although it enables multibyte character-set conversions, the
PureConverter class may negatively impact jConnect driver performanc
If driver performance is a concern, see “Improving character-set
conversion performance” on page 35.
33

Handling internationalization and localization

.

ssue
Selecting a character-set converter

jConnect uses the version setting from SybDriver.setVersion() to determine the
default character-set converter class to use. For VERSION_2, the default is
TruncationConverter. For VERSION_4 and later, the default is PureConverter.

You can also set the CHARSET_CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. This is
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set jConnect to VERSION_4 or later, but want to use the
TruncationConverter class rather than the multibyte PureConverter class, you
can set CHARSET_CONVERTER_CLASS:

For jConnect 4.x:
...
 props.put("CHARSET_CONVERTER_CLASS",
 "com.sybase.utils.TruncationConverter")

For jConnect 5.x:

...
 props.put("CHARSET_CONVERTER_CLASS",
 "com.sybase.jdbc2.utils.TruncationConverter")

Setting the CHARSET connection property

You can specify the character set to use in your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

• For VERSION_2, jConnect uses iso_1 as the default character set.

• For VERSION_3, VERSION_4, VERSION_5, and VERSION_6,
jConnect uses the database’s default character set, and adjusts
automatically to perform any necessary conversions on the client side

You can also use the -J charset command line option for the IsqlApp application
to specify a character set.

To determine which character sets are installed on your Adaptive Server, i
the following SQL query on your server:

select name from syscharsets
 go
34

CHAPTER 2 Programming Information

t is

ce,
e

The

en

own

12.5
 by

ns
s a

ver,
 this
For the PureConverter class, if the designated CHARSET does not work with
the client’s Java Virtual Machine (VM), the connection fails with a
SQLException, indicating that you must set CHARSET to a character set tha
supported by both Adaptive Server and the client.

When the TruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.

Improving character-set conversion performance

If you use multibyte character sets and need to improve driver performan
you can use the SunIoConverter class provided with the jConnect samples. Se
“Character-set conversion” on page 109 for details.

Supported character sets

Table 2-4 lists the Sybase character sets that are supported by jConnect.
table also lists the corresponding JDK byte converter for each supported
character set.

Although jConnect supports UCS-2, currently no Sybase databases or op
servers support UCS-2.

Adaptive Server Enterprise version 12.5 supports a version of Unicode kn
as the UTF-16 encoding.

Note You can still send Unicode data to a Sybase Adaptive Server version
and later by setting JCONNECT_VERSION property to VERSION_6, and
having the server’s default character set as UTF-8.

The Sybase sjis character set does not include the IBM or Microsoft extensio
to JIS, whereas the JDK SJIS byte converter includes these extensions. A
result, conversions from Java strings to a Sybase database using sjis may result
in character values that are not supported by the Sybase database. Howe
conversions from sjis on a Sybase database to Java strings should not have
problem.

Table 2-4 lists the character sets currently supported by Sybase.

Table 2-4: Supported Sybase character sets

SybCharset name JDK byte converter

ascii_7 8859_1

big5 Big5
35

Handling internationalization and localization
cp037 Cp037

cp437 Cp437

cp500 Cp500

cp850 Cp850

cp852 Cp852

cp855 Cp855

cp857 Cp857

cp860 Cp860

cp863 Cp863

cp864 Cp864

cp866 Cp866

cp869 Cp869

cp874 Cp874

cp932 Cp932

cp936 Cp936

cp950 Cp950

cp1250 Cp1250

cp1251 Cp1251

cp1252 Cp1252

cp1253 Cp1253

cp1254 Cp1254

cp1255 Cp1255

cp1256 Cp1256

cp1257 Cp1257

cp1258 Cp1258

deckanji EUCJIS

eucgb GB2312

eucjis EUCJIS

eucksc Cp949

ibm420 Cp420

ibm918 Cp918

iso_1 8859_1

iso88592 8859-2

is088595 8859_5

iso88596 8859_6

iso88597 8859_7

iso88598 8859_8

SybCharset name JDK byte converter
36

CHAPTER 2 Programming Information

74,

not
European currency symbol support

jConnect version 4.1 and later support the use of the new European currency
symbol, or “euro” and its conversion to and from UCS-2 Unicode.

The euro has been added to the following Sybase character sets: cp1250,
cp1251, cp1252, cp1253, cp1254, cp1255, cp1256, cp1257, cp1258, cp8
iso885915, and utf8.

Character sets cp1257, cp1258, and iso885915 are new.

To use the euro symbol:

• Use the PureConverter class, a pure Java, multibyte character-set
converter. See “jConnect character-set converters” on page 33 for more
information.

• Verify that the new character sets are installed on the server.

The euro symbol is currently supported only on Adaptive Server
Enterprise version 11.9.2 and later; Adaptive Server Anywhere does
support the euro symbol.

• Select the appropriate character set on the client. See “Setting the
CHARSET connection property” on page 34 for more information.

• Upgrade to JDK 1.1.7 or the Java™ 2 Platform.

iso88599 8859_9

iso885915 8859_15

koi8 KOI8_R

mac Macroman

mac_cyr MacCyrillic

mac_ee MacCentralEurope

macgreek MacGreek

macturk MacTurkish

sjis (see note) SJIS

tis620 MS874

utf8 UTF8

SybCharset name JDK byte converter
37

Working with databases

 these
Unsupported character sets

The following Sybase character sets are not supported in jConnect 5.x because
no JDK byte converters are analogous to the Sybase character sets:

• cp1047

• euccns

• greek8

• roman8

• turkish8

You can use these character sets with the TruncationConverter class as long as
the application uses only the 7-bit ASCII subsets of these characters.

Working with databases
This section discusses database issues relevant to jConnect and includes
topics:

• Implementing high availability failover support

• Performing server-to-server remote procedure calls

• Wide table support for Adaptive Server version 12.5

• Accessing database metadata

• Using cursors with result sets

• Support for batch updates

• Updating the database from the result set of a stored procedure

• Working with datatypes
38

CHAPTER 2 Programming Information

tion

ces,
ion.

lly
rvers
e
er

n act
is

akes

he

Implementing high availability failover support
jConnect versions 4.5 and 5.5 support the failover feature available in Adaptive
Server Enterprise version 12.0 and later.

Note Sybase failover in a high availability system is a different feature than
“connection failover.” Sybase strongly recommends that you read this sec
very carefully if you want to use both.

Overview

Sybase failover allows you to configure two version 12.0 or later Adaptive
Servers as companions. If the primary companion fails, that server’s devi
databases, and connections can be taken over by the secondary compan

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Servers, each physica
located on a different machine, that are connected so that if one of the se
is brought down, the other assumes its workload. The secondary Adaptiv
Server acts as a “hot standby” and does not perform any work until failov
occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines. However, if failover occurs, either Adaptive Server ca
as a primary or secondary companion for the other Adaptive Server. In th
configuration, each Adaptive Server is fully functional with its own system
devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which m
the disks visible and accessible to both machines.

You can enable failover in jConnect and connect a client application to an
Adaptive Server configured for failover. If the primary server fails over to t
secondary server, the client application also automatically switches to the
second server and reestablishes network connections.

Note Refer to Using Sybase Failover in High Availability Systems for more
detailed information.
39

Working with databases

 for

ons

e

t

 at
Requirements, dependencies, and restrictions

• You must have two version 12.0 or later Adaptive Servers configured
failover.

• You must use jConnect version 4.2, 4.5, 5.2, or 5.5. Earlier driver versi
do not support this feature.

• Only changes that were committed to the database before failover ar
retained when the client fails over.

• The client application connection must be made using JNDI. See
“Connecting to a server using JNDI” on page 21.

• jConnect event notification does not work when failover occurs. See
“Using event notification” on page 66.

• Close all statements when they are no longer used. jConnect stores
information on statements to enable failover. If you do not close
statements, you will experience memory leaks.

Implementing failover in jConnect

To implement failover support in jConnect:

1 Configure the primary and secondary Adaptive Servers for failover.

2 Include an entry for the primary server and a separate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry will have an attribute (the HA OID) tha
refers to the entry for the secondary server.

Using LDAP as the service provider for JNDI, there are three possible
forms that this HA attribute can have:

• Relative Distinguished Name (RDN) – this form assumes that the
search base (typically provided by the java.naming.provider.url
attribute) combined with this attribute’s value is enough to identify
the secondary server. For example, assume the primary server is
hostname:4200 and the secondary server is at hostname:4202:

dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary
objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
40

CHAPTER 2 Programming Information

s
ot

e.
t

er

to
on
r.

ill

lue

ou
objectclass: sybaseServer

• Distinguished Name (DN) – this form assumes that the HA attribute’
value uniquely identifies the secondary server, and may or may n
duplicate values found in the search base. For example:

dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary,

o=Sybase, c=US ou=Accounting
objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

Notice that hasecondary is located in a different branch of the tree
(see the additional ou=Accounting qualifier).

• Full LDAP URL – this form assumes nothing about the search bas
The HA attribute is expected to be a fully-qualified LDAP URL tha
is used to identify the secondary (it may even point to a different
LDAP server). For example:

dn: servername=hafailover, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: ldap://ldapserver:386/servername=secondary,

o=Sybase, c=US ou=Accounting
objectclass: sybaseServer

dn: servername=secondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

• In the directory service information file required by JNDI, set the
REQUEST_HA_SESSION connection property to enable a failov
session every time you make a connection.

The new REQUEST_HA_SESSION connection property is used
indicate that the connecting client wants to begin a failover sessi
with the version 12.0 or later Adaptive Server configured for failove
Setting this property to true causes jConnect to attempt a failover
login. If you do not set this connection property, a failover session w
not start, even if the server is configured correctly. The default va
for REQUEST_HA_SESSION is false.

Set the connection property like any other connection property. Y
cannot reset the property once a connection has been made.
41

Working with databases

e

not

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST_HA_SESSION at runtime.

The following example shows connection information entered for the
database server SYBASE11 under an LDAP directory service:

dn: servername=SYBASE11,o=MyCompany,c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#tahiti 3456
1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&PACKETSIZE=1024
1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=false
1.3.6.1.4.1.897.4.2.11:pubs2
1.3.6.1.4.1.897.4.2.9:Tds
1.3.6.1.4.1.897.4.2.15:servername=SECONDARY
1.3.6.1.4.1.897.4.2.10:REQUEST_HA_SESSION=true

dn:servername=SECONDARY, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#moorea 6000

where “tahiti” is the primary server and “moorea” is the secondary
companion server.

3 Request a connection using JNDI and LDAP.

• jConnect uses the LDAP server’s directory server to determine th
name and location of the primary and secondary servers:

/* get the connection */
Connection con = DriverManager.getConnection

("jdbc:sybase:jndi:ldap://ldap_server1:983" +
"/servername=Sybase11,o=MyCompany,c=US",props);

or

• Specify a searchbase:

props.put(Context.PROVIDER_URL,
"ldap://ldap_server1:983/ o=MyCompany, c=US");

Connection con=DriverManager.getConnection
("jdbc:sybase:jndi:servername=Sybase11", props);

Logging in to the primary server

If an Adaptive Server is not configured for failover, or for some reason can
grant a failover session, the client cannot log in, and the following warning
displays:

’The server denied your request to use the high-
availability feature.

Please reconfigure your database, or do not request a
42

CHAPTER 2 Programming Information

ny

re

e or

ary
ho

the

erver
which
server-

ns.
ny

lt
high-availability session.’

Failing over to the secondary server

When failover occurs, the SQL exception JZ0F2 is thrown:

‘Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

The client then automatically reconnects to the secondary database using JNDI.

Note that:

• The identity of the database to which the client was connected and a
committed transactions are retained.

• Partially read result sets, cursors, and stored procedure invocations a
lost.

• When failover occurs, your application may need to restart a procedur
go back to the last completed transaction or activity.

Failing back to the primary server

At some point, the client will fail back from the secondary server to the prim
server. When failback occurs is determined by the System Administrator w
issues sp_failback on the secondary server. Afterward, the client can expect
same behavior and results on the primary server as documented in “Failing
over to the secondary server” on page 43.

Performing server-to-server remote procedure calls
A Transact-SQL language command or stored procedure running on one s
can execute a stored procedure located on another server. The server to
an application has connected logs in to the remote server, and executes a
to-server remote procedure call.

An application can specify a “universal” password for server-to-server
communication; that is, a password used in all server-to-server connectio
Once the connection is open, the server uses this password to log in to a
remote server.

By default, jConnect uses the current connection’s password as the defau
password for server-to-server communications.
43

Working with databases

 you

d by

sets
However, if the passwords are different on two servers for the same user and
that user is performing server-to-server remote procedure calls, the application
must explicitly define passwords for each server it plans to use.

jConnect versions 4.1 and later include a property that lets you set a universal
“remote” password or different passwords on several servers. jConnect lets
set and configure the property using the setRemotePassword() method in the
SybDriver class:

Properties connectionProps = new Properties();

public final void setRemotePassword(String serverName,
String password, Properties connectionProps)

To use this method, the application needs to import the SybDriver class, then
call the method.

For jConnect 4.x:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)

Class.forName("com.sybase.jdbc.SybDriver").newInstance();
sybDriver.setRemotePassword

(serverName, password, connectionProps);

For jConnect 5.x:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)

Class.forName("com.sybase.jdbc2.jdbc.SybDriver").newInstance();
sybDriver.setRemotePassword

(serverName, password, connectionProps);

Note To set different remote passwords for various servers, repeat the
preceding call (appropriate for your version of jConnect) for each server.

This call adds the given server name-password pair to the given Properties
object, which can be passed by the application to DriverManager in
DriverManager.getConnection (server_url, props).

If serverName is NULL, the universal password will be set to password for
subsequent connections to all servers except the ones specifically define
previous calls to setRemotePassword().

When an application sets the REMOTEPWD property, jConnect no longer
the default universal password.
44

CHAPTER 2 Programming Information

,

red

ed to

d
ing

ay

ou
s case,

arger

t
port,
seful

d
stored
ds to
Wide table support for Adaptive Server version 12.5
Adaptive Server Enterprise version 12.5 and later offer larger limits on the
number of columns and parameters you can use. For example:

• Tables can now contain 1,024 columns,

• Varchar and varbinary columns can contain more than 255 bytes of data
and

• You can send and retrieve up to 2,048 parameters when invoking sto
procedures or inserting data into tables.

To take advantage of this capability, jConnect version 4.5 and 5.5 users ne
set their JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST. This will request that the server enable wide table
support.

Note jConnect continues to work with an Adaptive Server version 12.5 an
later if you set the version to below VERSION_6. However, if you try select
from a table that requires wide table support to fully retrieve the data, you m
encounter unexpected errors or data truncation.

You can also set the version to VERSION_6 or VERSION_LATEST when y
access data from a Sybase server that does not support wide tables. In thi
the server simply ignores your request for wide table support.

Wide table support offers an extra benefit for jConnect users, besides the l
number of columns and parameters—a greater amount of ResultSetMetaData.
For example, in versions of jConnect earlier than 4.5 and 5.5, the
ResultSetMetaData methods getCatalogName, getSchemaName, and
getTableName all returned “Not Implemented” SQLExceptions because tha
metadata was not supplied by the server. When you enable wide table sup
the server now sends back this information, and the three methods return u
information.

Accessing database metadata
To support JDBC DatabaseMetaData methods, Sybase provides a set of store
procedures that jConnect can call for metadata about a database. These
procedures must be installed on the server for the JDBC metadata metho
work.
45

Working with databases

e

e

ns

TA
tion.

r in
upport

kly

ta
If the stored procedures for providing metadata are not already installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

• sql_server.sql installs stored procedures on pre-12.0 Adaptive Server
databases.

• sql_server12.sql installs stored procedures on a version 12.0 Adaptive
Server database.

• sql_server12.5.sql installs stored procedures on a version 12.5 Adaptiv
Server database.

• sql_asa.sql installs stored procedures on an Adaptive Server Anywher
database.

Note The most recent version of these scripts is compatible with all versio
of jConnect.

See the Sybase jConnect for JDBC Installation Guide and Release Bulletin for
complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_METADA
connection property to true (its default value) when you establish a connec

You cannot get metadata about temporary tables in a database.

Note The DatabaseMetaData.getPrimaryKeys() method finds primary keys
declared in a table definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using
sp_primarykey.

Server-side metadata installation

Metadata support can be implemented in either the client (ODBC, JDBC) o
the data source (server stored procedures). jConnect provides metadata s
on the server, which results in the following benefits:

• Maintains jConnect’s small size, which ensures the driver can be quic
downloaded from the Internet.

• Gains runtime efficiency from preloaded stored procedures on the da
source.

• Provides flexibility—jConnect can connect to a variety of databases.
46

CHAPTER 2 Programming Information

Using cursors with result sets
jConnect 5.x implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rows in a table based on
values in a result set.

Note To have full JDBC 2.0 support, use jConnect version 5.x or later.
jConnect version 4.x provides some JDBC 2.0 features via Sybase extensions
and the ScrollableResultSet.java sample found in the sample subdirectory under
your jConnect directory. See the com.sybase.jdbcx and the sample packages for
the javadocs on these methods.

In JDBC 2.0, ResultSets are characterized by their type and their concurrency.
The type and concurrency values are part of the java.sql.ResultSet interface and
are described in its javadocs.

Table 2-5 identifies the characteristics of java.sql.ResultSet that are available in
jConnect 5.x.

Table 2-5: java.sql.ResultSet options available in jConnect 5.x

This section includes the following topics:

• Creating a cursor

• Positioned updates and deletes using JDBC 1.x methods

• Using a cursor with a PreparedStatement object

• Support for SCROLL_INSENSITIVE result sets in jConnect

Creating a cursor

To create a cursor using jConnect 4.x, use either
SybStatement.setCursorName() or SybStatement.setFetchSize(). When you
use SybStatement.setCursorName(), you explicitly assign the cursor a name.
The signature for SybStatement.setCursorName() is:

void setCursorName(String name) throws SQLException;

Concurrency

Type

TYPE_FORWARD_
ONLY

TYPE_SCROLL_
INSENSITIVE

TYPE_SCROLL_
SENSITIVE

CONCUR_READ_ONLY Supported in 5.x Supported in 5.x Not available in 5.x

CONCUR_UPDATABLE Supported in 5.x Not available in 5.x Not available in 5.x
47

Working with databases

, but
rsors.
,

nd on

 this

e

You use SybStatement.setFetchSize() to create a cursor and specify the number
of rows returned from the database in each fetch. The signature for
SybStatement.setFetchSize() is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize() to create a cursor, the jConnect driver names the
cursor. To get the cursor’s name, use ResultSet.getCursorName().

You create cursors in jConnect version 5.x the same way as in version 4.x
because version 5.x supports JDBC 2.0, there is another way to create cu
You can specify which kind of ResultSet you want returned by the statement
using the following JDBC 2.0 method on the connection:

Statement createStatement(int resultSetType, int
resultSetConcurrency)throws SQL Exception

The type and concurrency correspond to the types and concurrences fou
the ResultSet interface listed in Table 2-5. If you request an unsupported
ResultSet, a SQL warning is chained to the connection. When the returned
Statement is executed, you will receive the kind of ResultSet that is most like
the one you requested. See the JDBC 2.0 specification for more details on
method’s behavior.

If you do not use createStatement(), or you are using jConnect version 4.x, th
default types of ResultSet are:

• If you call only Statement.executeQuery(), then the ResultSet returned is a
SybResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

• If you call setFetchSize() or setCursorName(), then the ResultSet returned
from executeQuery() is a SybCursorResultSet that is
TYPE_FORWARD_ONLY and CONCUR_UPDATABLE.

To verify that the kind of ResultSet object is what you intended, the JDBC 2.0
API for ResultSet has added two methods:

int getConcurrency() throws SQLException;
int getType() throws SQLException;

The basic steps for creating and using a cursor are:

1 Create the cursor using Statement.setCursorName() or
SybStatement.setFetchSize().

2 Invoke Statement.executeQuery() to open the cursor for a statement and
return a cursor result set.
48

CHAPTER 2 Programming Information
3 Invoke ResultSet.next() to fetch rows and position the cursor in the result
set.

The following example uses each of the two methods for creating cursors
and returning a result set. It also uses ResultSet.getCursorName() to get the
name of the cursor created by SybStatement.setFetchSize().

// With conn as a Connection object, create a
// Statement object and assign it a cursor using
// Statement.setCursorName().
Statement stmt = conn.createStatement();
stmt.setCursorName("author_cursor");

// Use the statement to execute a query and return
// a cursor result set.
ResultSet rs = stmt.executeQuery("SELECT au_id,

au_lname, au_fname FROM authors
WHERE city = ’Oakland’");

while(rs.next())
{
...
}

// Create a second statement object and use
// SybStatement.setFetchSize()to create a cursor
// that returns 10 rows at a time.
SybStatement syb_stmt = conn.createStatement();
syb_stmt.setFetchSize(10);

// Use the syb_stmt to execute a query and return
// a cursor result set.
SybCursorResultSet rs2 =

(SybCursorResultSet)syb_stmt.executeQuery
("SELECT au_id, au_lname, au_fname FROM

authors
 WHERE city = ’Pinole’");
while(rs2.next())
{
...
}

// Get the name of the cursor created through the
// setFetchSize() method.
String cursor_name = rs2.getCursorName();
 ...
// For jConnect 5.x, create a third statement
// object using the new method on Connection,
49

Working with databases
// and obtain a SCROLL_INSENSITIVE ResultSet.
// Note: you no longer have to downcast the
// Statement or the ResultSet.
Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet rs3 = stmt.executeQuery
 ("SELECT ... [whatever]");
// Execute any of the JDBC 2.0 methods that
// are valid for read only ResultSets.
rs3.next();
rs3.previous();
rs3.relative(3);
rs3.afterLast();
...

Positioned updates and deletes using JDBC 1.x methods

The following example shows how to use methods in JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rows in the result set.

// Create two statement objects and create a cursor
// for the result set returned by the first
// statement, stmt1. Use stmt1 to execute a query
// and return a cursor result set.
Statement stmt1 = conn.createStatement();
Statement stmt2 = conn.createStatement();
stmt1.setCursorName("author_cursor");
ResultSet rs = stmt1.executeQuery("SELECT

au_id,au_lname, au_fname
FROM authors WHERE city = ’Oakland’
FOR UPDATE OF au_lname");

// Get the name of the cursor created for stmt1 so
// that it can be used with stmt2.
String cursor = rs.getCursorName();

// Use stmt2 to update the database from the
// result set returned by stmt1.
String last_name = new String("Smith");
while(rs.next())
50

CHAPTER 2 Programming Information
{
if (rs.getString(1).equals("274-80-9391"))

 {
 stmt2.executeUpdate("UPDATE authors "+
 "SET au_lname = "+last_name +
 "WHERE CURRENT OF " + cursor);

}
}

Deletions in a result set

The following example uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:

stmt2.executeUpdate("DELETE FROM authors
 WHERE CURRENT OF " + cursor);

Positioned updates and deletes using JDBC 2.0 methods

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in a result
set. They are followed by an example.

Updating columns in a result set

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or delete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the JDBC 2.0 update methods available in jConnect are:

void updateAsciiStream(String columnName, java.io.InputStream x,
 int length) throws SQLException;
void updateBoolean(int columnIndex, boolean x) throws
 SQLException;
void updateFloat(int columnIndex, float x) throws SQLException;
void updateInt(String columnName, int x) throws SQLException;
void updateInt(int columnIndex, int x) throws SQLException;
void updateObject(String columnName, Object x) throws
 SQLException;
51

Working with databases

ues.
Methods for updating the database from a result set

JDBC 2.0 specifies two new methods for updating or deleting rows in the
database, based on the current values in a result set. These methods are simpler
in form than Statement.executeUpdate() in JDBC 1.x and do not require a
cursor name. They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE,
otherwise the above methods will raise an exception. For insertRow(), all table
columns that require non-null entries must be specified.

 Methods provided on DatabaseMetaData dictate when these changes are
visible.

Example The following example creates a single Statement object that is used to return
a cursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the row’s new column val

// Create a Statement object and set fetch size to
// 25. This creates a cursor for the Statement
// object Use the statement to return a cursor
// result set.
SybStatement syb_stmt =
(SybStatement)conn.createStatement();
syb_stmt.setFetchSize(25);
SybCursorResultSet syb_rs =
(SybCursorResultSet)syb_stmt.executeQuery(

"SELECT * from T1 WHERE ...")

// Update each row in the result set according to
// code in the following while loop. jConnect
// fetches 25 rows at a time, until fewer than 25
// rows are left. Its last fetch takes any
// remaining rows.
while(syb_rs.next())
{

// Update columns 2 and 3 of each row, where
// column 2 is a varchar in the database and
// column 3 is an integer.

syb_rs.updateString(2, "xyz");
syb_rs.updateInt(3,100);
//Now, update the row in the database.

syb_rs.updateRow();
52

CHAPTER 2 Programming Information
}
// Create a Statement object using the
// JDBC 2.0 method implemented in jConnect 5.x
Statement stmt = conn.createStatement
(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);
// Use the Statement to return an updatable ResultSet
ResultSet rs = stmt.executeQuery(“SELECT * FROM T1 WHERE...”);
// In jConnect 5.x, downcasting to SybCursorResultSet is not
// necessary. Update each row in the ResultSet in the same
// manner as above
while (rs.next())
{
rs.updateString(2, “xyz”);
rs.updateInt(3,100);

rs.updateRow();
}

Deleting a row from a result set

To delete a row from a cursor result set, you can use
SybCursorResultSet.deleteRow() as follows:

 while(syb_rs.next())
 {
 int col3 = getInt(3);
 if (col3 >100)
 {
 syb_rs.deleteRow();
 }
 }

Inserting a row into a result set

The following example illustrates how to do inserts using the JDBC 2.0 API,
which is only available in jConnect 5.x. There is no need to downcast to a
SybCursorResultSet.

// prepare to insert
rs.moveToInsertRow();
// populate new row with column values
rs.updateString(1, "New entry for col 1");
rs.updateInt(2, 42);
// insert new row into db
rs.insertRow();
// return to current row in result set
rs.moveToCurrentRow();
53

Working with databases
Using a cursor with a PreparedStatement object

Once you create a PreparedStatement object, you can use it multiple times with
the same or different values for its input parameters. If you use a cursor with a
PreparedStatement object, you need to close the cursor after each use and then
reopen the cursor to use it again. A cursor is closed when you close its result
set (ResultSet.close()). It is opened when you execute its prepared statement
(PreparedStatement.executeQuery()).

The following example shows how to create a PreparedStatement object,
assign it a cursor, and execute the PreparedStatement object twice, closing and
then reopening the cursor.

// Create a prepared statement object with a
// parameterized query.
PreparedStatement prep_stmt =
conn.prepareStatement(
"SELECT au_id, au_lname, au_fname "+
"FROM authors WHERE city = ? "+
"FOR UPDATE OF au_lname");

//Create a cursor for the statement.
prep_stmt.setCursorName("author_cursor");

// Assign the parameter in the query a value.
// Execute the prepared statement to return a
// result set.
prep_stmt.setString(1, "Oakland");
ResultSet rs = prep_stmt.executeQuery();

//Do some processing on the result set.
while(rs.next())
{
 ...
}

// Close the result, which also closes the cursor.
rs.close();

// Execute the prepared statement again with a new
// parameter value.
prep_stmt.setString(1,"San Francisco");
rs = prep_stmt.executeQuery();
// reopens cursor
54

CHAPTER 2 Programming Information

 5.x,

tire

ll-
 that

s

C 2.0

eal
Support for SCROLL_INSENSITIVE result sets in jConnect

jConnect version 5.x supports only TYPE_SCROLL_INSENSITIVE result
sets.

jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jConnect
TDS does not support scrollable cursors. To support scrollable cursors,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next(). However, when the end of the result set is reached, the en
result set is stored in the client’s memory. Because this may cause a
performance strain, we recommend that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Note When you use TYPE_SCROLL_INSENSITIVE ResultSets in jConnect
5.x, you can only call the isLast() method after the last row of the ResultSet has
been read. Calling isLast() before the last row is reached will cause an
UnimplementedOperationException to be thrown.

A sample has been added to jConnect version 4.x that provides a limited
TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0 interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scro
insensitive, read-only result set; that is, a static view of the underlying data
is not sensitive to changes made while the result set is open. ExtendedResultSet
caches all of the ResultSet rows on the client. Be cautious when you use thi
class with large result sets.

The sample.ScrollableResultSet interface:

• Is an extension of JDBC 1.0 java.sql.ResultSet.

• Defines additional methods that have the same signatures as the JDB
java.sql.ResultSet.

• Does not contain all of the JDBC 2.0 methods. The missing methods d
with modifying the ResultSet.

The methods from the JDBC 2.0 API are:

boolean previous() throws SQLException;
boolean absolute(int row) throws SQLException;
boolean relative(int rows) throws SQLException;
boolean first() throws SQLException;
boolean last() throws SQLException;
void beforeFirst() throws SQLException;
55

Working with databases
void afterLast() throws SQLException;
boolean isFirst() throws SQLException;
boolean isLast() throws SQLException;
boolean isBeforeFirst() throws SQLException;
boolean isAfterLast() throws SQLException;
int getFetchSize() throws SQLException;
void setFetchSize(int rows) throws SQLException;
int getFetchDirection() throws SQLException;
void setFetchDirection(int direction) throws SQLException;
int getType() throws SQLException;
int getConcurrency() throws SQLException;
int getRow() throws SQLException;

To use the new sample classes, create an ExtendedResultSet using any JDBC
1.0 java.sql.ResultSet. Below are the relevant pieces of code (assume a Java 1.1
environment):

// import the sample files
import sample.*;
//import the JDBC 1.0 classes
import java.sql.*;
// connect to some db using some driver;
// create a statement and a query;
// Get a reference to a JDBC 1.0 ResultSet
ResultSet rs = stmt.executeQuery(_query);
// Create a ScrollableResultSet with it
ScrollableResultSet srs = new ExtendedResultSet(rs);
// invoke methods from the JDBC 2.0 API
srs.beforeFirst();
// or invoke methods from the JDBC 1.0 API
if (srs.next())

String column1 = srs.getString(1);

Figure 2-1 is a class diagram that shows the relationships between the new
sample classes and the JDBC API.
56

CHAPTER 2 Programming Information
Figure 2-1: Class diagram

See the JDBC 2.0 API at http://java.sun.com/products/jdbc/jdbcse2.html for
more details.

Support for batch updates
Batch updates allow a Statement object to submit multiple update commands
as one unit (batch) to an underlying database for processing together.

Note To use batch updates, you must refresh the SQL scripts in the sp directory
under your jConnect installation directory.

java.sql.ResultSet
(JDBC 1.0 API)

sample.ScrollableResultSet
(adds some methods
from JDBC 2.0 API)

sample.ExtendedResultSet
(wrapper for

java.sql.ResultSet)

extends

implements
57

Working with databases

that
;

tch
d

,

ted

d
ple:
See BatchUpdates.java in the sample (jConnect 4.x) and sample2 (jConnect
5.x) subdirectories for an example of using batch updates with Statement,
PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

Implementation notes

jConnect implements batch updates as specified in the JDBC 2.0 API, except
as described below.

• If the JDBC 2.0 standard for implementing –
BatchUpdateException.getUpdateCounts() is modified or relaxed in the
future, jConnect will continue to implement the original standard by
having BatchUpdateException.getUpdateCounts() return an int[] length of
M < N, indicating that the first M statements in the batch succeeded,
the M+1 statement failed, and M+2..N statements were not executed
where “N” equals the total statements in the batch.

• Batch updates of stored procedures – to call stored procedures in ba
(unchained) mode, you must create the stored procedure in unchaine
mode. For more information, see “Stored procedure executed in
unchained transaction mode” on page 105.

• Adaptive Server Enterprise version 11.5.x and later –
BatchUpdateException.getUpdateCounts() will return only an int[] length
of zero. The entire transaction is rolled back if an error is encountered
resulting in zero successful rows.

• Adaptive Server Enterprise version 11.0.1 – returns 0 (zero) rows affec
for stored procedures.

• SQL Anywhere version 5.5.x:

• SQL Anywhere version 5.5.x does not allow you to obtain inserte
row counts from stored procedures that contain inserts. For exam

create proc sp_A as insert tableA values (1,
‘hello A’)
create proc sp_B
as
insert tableA values (1, ‘hello A’)
update tableA set col1=2
create proc sp_C
as
update tableA set col1=2
delete tableA
58

CHAPTER 2 Programming Information

re

nect

ch

r’s
sult

sult

to use

nt
a
t, and
Running executeBatch on the preceding stored procedures would
result in, respectively:

0 Rows Affected
1 Rows Affected
2 Rows Affected

• There is no support for dynamic PreparedStatements in batch.

• Because SQL Anywhere 5.5.x does not natively support batch
updates according to the JDBC 2.0 specification, batch updates a
carried out in an executeUpdate loop.

• Batch updates in databases that do not support batch updates – jCon
carries out batch updates in an executeUpdate loop even if your database
does not support batch updates. This allows you to use the same bat
code, regardless of the database to which you are pointing.

See Sun Microsystems, Inc. JDBC™ 2.0 API for more details on batch updates.

Updating the database from the result set of a stored procedure
jConnect includes update and delete methods that allow you to get a cursor on
the result set returned by a stored procedure. You can then use the curso
position to update or delete rows in the underlying table that provided the re
set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLException;

void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the re
set.

To get a cursor on the result set returned by a stored procedure, you need
either SybCallableStatement.setCursorName() or
SybCallableStatement.setFetchSize() before you execute the callable stateme
that contains the procedure. The following example shows how to create
cursor on the result set of a stored procedure, update values in the result se
then update the underlying table using the SybCursorResultSet.update()
method:

// Create a CallableStatement object for executing the stored
// procedure.
CallableStatement sproc_stmt =
 conn.prepareCall("{call update_titles}");

59

Working with databases

t
the
ding
// Set the number of rows to be returned from the database with
// each fetch. This creates a cursor on the result set.
(SybCallableStatement)sproc_stmt.setFetchSize(10);

//Execute the stored procedure and get a result set from it.
SybCursorResultSet sproc_result = (SybCursorResultSet)
 sproc_stmt.executeQuery();

// Move through the result set row by row, updating values in the
// cursor’s current row and updating the underlying titles table
// with the modified row values.
while(sproc_result.next())
{
 sproc_result.updateString(...);
 sproc_result.updateInt(...);
 ...
 sproc_result.updateRow(titles);
}

Working with datatypes

Sending numeric data

jConnect has added the SybPreparedStatement extension to support the way
Adaptive Server Enterprise handles the NUMERIC datatype where precision
(total digits) and scale (digits after the decimal) can be specified.

The corresponding datatype in Java—java.math.BigDecimal—is slightly
different, and these differences can cause problems when jConnect
applications use the setBigDecimal method to control values of an input/outpu
parameter. Specifically, there are cases where the precision and scale of
parameter must precisely match that precision and scale of the correspon
SQL object, whether it is a stored procedure parameter or a column.

To give jConnect applications fuller control over the setBigDecimal method,
The SybPreparedStatement extension has been added with this method:

public void setBigDecimal (int parameterIndex, BigDecimal X, int scale,
int precision) throws SQLException

See the SybPrepExtension.java sample in the /sample (jConnect 4.x) and
/sample2 (jConnect 5.x) subdirectories under your jConnect installation
directory for more information.
60

CHAPTER 2 Programming Information

t.
Sending image data

jConnect has a TextPointer class with sendData() methods for updating an
image column in an Adaptive Server Enterprise or Adaptive Server Anywhere
database. In earlier versions of jConnect, you had to send image data using the
setBinaryStream() method in java.sql.PreparedStatement. The
TextPointer.sendData() methods use java.io.InputStream and greatly improve
performance when you send image data to an Adaptive Server database.

 Warning! The TextPointer class has been deprecated; that is, it is no longer
recommended and may cease to exist in a future version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send image data:

PreparedStatement.setBinaryStream(int paramIndex,
InputStream image)

To obtain instances of the TextPointer class, you can use either of two
getTextPtr() methods in SybResultSet:

public TextPointer getTextPtr(String columnName)

public TextPointer getTextPtr(int columnIndex)

Public methods in the TextPointer class

The com.sybase.jdbc package contains the TextPointer class. Its public method
interface is:

public void sendData(InputStream is, boolean log)
 throws SQLException

public void sendData(InputStream is, int length,
 boolean log) throws SQLException

public void sendData(InputStream is, int offset,
 int length, boolean log) throws SQLException

public void sendData(byte[] byteInput, int offset,
 int length, boolean log) throws SQLEXception

sendData(InputStream is, boolean log) – Updates an image column with data in
the specified input stream.

sendData(InputStream is, int length, boolean log) – updates an image column
with data in the specified input stream. length is the number of bytes being sen
61

Working with databases

ven
the

.

ple,

t this

).

g the
he
sendData(InputStream is, int offset, int length, boolean log) – updates an image
column with data in the specified input stream, starting at the byte offset gi
in the offset parameter and continuing for the number of bytes specified in
length parameter.

sendData(byte[] byteInput, int offset, int length, boolean log) – updates a column
with image data contained in the byte array specified in the byteInput
parameter. The update starts at the byte offset given in the offset parameter and
continues for the number of bytes specified in the length parameter.

Each method has a log parameter. The log parameter specifies whether image
data is to be fully logged in the database transaction log. If the log parameter is
set to true, the entire binary image is written into the transaction log. If thelog
parameter is set to false, the update is logged, but the image itself is not
included in the log.

❖ Updating an image column with TextPointer.sendData()

To update a column with image data:

1 Get a TextPointer object for the row and column that you want to update

2 Use TextPointer.sendData() to execute the update.

The next two sections illustrate these steps with an example. In the exam
image data from the file Anne_Ringer.gif is sent to update the pic column of the
au_pix table in the pubs2 database. The update is for the row with author ID
899-46-2035.

Getting a TextPointer
object

text and image columns contain timestamp and page-location information that
is separate from their text and image data. When data is selected from a text or
image column, this extra information is “hidden” as part of the result set.

A TextPointer object for updating an image column requires this hidden
information, but does not need the image portion of the column data. To ge
information, you need to select the column into a ResultSet object and then use
SybResultSet.getTextPtr() (see the example that follows the next paragraph
SybResultSet.getTextPtr() extracts text-pointer information, ignores image
data, and creates a TextPointer object.

When a column contains a significant amount of image data, selecting the
column for one or more rows and waiting to get all the data is likely to be
inefficient, since the data is not used. You can shortcut this process by usin
set textsize command to minimize the amount of data returned in a packet. T
following code example for getting a TextPointer object includes the use of set
textsize for this purpose.

62

CHAPTER 2 Programming Information
/*
 * Define a string for selecting pic column data for author ID
 * 899-46-2035.
 */
 String getColumnData = "select pic from au_pix where au_id = ’899-46-2035’";

 /*
 * Use set textsize to return only a single byte of column data
 * to a Statement object. The packet with the column data will
 * contain the "hidden" information necessary for creating a
 * TextPointer object.
 */
 Statement stmt= connection.createStatement();
 stmt.executeUpdate("set textsize 1");

 /*
 * Select the column data into a ResultSet object--cast the
 * ResultSet to SybResultSet because the getTextPtr method is
 * in SybResultSet, which extends ResultSet.
 */
 SybResultSet rs = (SybResultSet)stmt.executeQuery(getColumnData);

 /*
 * Position the result set cursor on the returned column data
 * and create the desired TextPointer object.
 */
 rs.next();
 TextPointer tp = rs.getTextPtr("pic");

 /*
 * Now, assuming we are only updating one row, and won’t need
 * the minimum textsize set for the next return from the server,
 * we reset textsize to its default value.
 */
 stmt.executeUpdate("set textsize 0");

Executing the
update with
TextPointer.sendData

The following code uses the TextPointer object from the preceding section to
update the pic column with image data in the file Anne_Ringer.gif.

/*
 *First, define an input stream for the file.
 */
 FileInputStream in = new FileInputStream("Anne_Ringer.gif");

63

Working with databases
 /*
 * Prepare to send the input stream without logging the image data
 * in the transaction log.
 */
 boolean log = false;

 /*
 * Send the image data in Anne_Ringer.gif to update the pic
 * column for author ID 899-46-2035.
 */
 tp.sendData(in, log);

See the TextPointers.java sample in the sample (jConnect 4.x) and sample2
(jConnect 5.x) subdirectories under your jConnect installation directory for
more information.

Using text data

In earlier versions, jConnect used a TextPointer class with sendData() methods
for updating a text column in an Adaptive Server Enterprise or Adaptive Server
Anywhere database.

The TextPointer class has been deprecated; that is, it is no longer recommended
and may cease to exist in a future version of Java.

If your data server is Adaptive Server 12.5 or later or Adaptive Server
Anywhere version 6.0 or later, use the standard JDBC form to send text data:

PreparedStatement.setAsciiStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setUnicodeStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setCharacterStream(int paramIndex,
Reader reader, int length)

Using Date and Time datatypes

JDBC uses three temporal datatypes: Time, Date, and Timestamp. Adaptive
Server uses only one temporal datatype, datetime, which is equivalent to the
JDBC Timestamp datatype. The Adaptive Server datetime datatype supports
second resolution to 1/300th of a second.
64

CHAPTER 2 Programming Information

y

ns the
All three JDBC datatypes are treated as datetime datatypes on the server side.
A JDBC Timestamp is essentially the same as a server datetime; therefore, no
conversion is necessary. However, translating a JDBC Time or Date datatype to
or from a server datetime datatype requires a conversion.

• To convert Time to datetime, the date 1 Jan 1970 is added.

• To convert Date to datetime, “00:00:00” is appended.

• To convert a datetime to a Date variable or a Time variable, the unused
information is stripped out.

Implementation notes

• JDBC’s Timestamp datatype is not the same as Adaptive Server’s
timestamp datatype. The Adaptive Server timestamp datatype is a unique
varbinary value used when updates are made with an “optimistic
concurrency” strategy.

• When a value is inserted as a Time datatype, the date portion is essentiall
meaningless, so the value should be fetched back using only a Time
datatype, never a Date or Timestamp datatype.

• If you use getObject() with an Adaptive Server Anywhere date or time
column, the value will be returned as a JDBC Timestamp datatype.

Char/Varchar/Text datatypes and getByte()
Do not use rs.getByte() on a char, univarchar, unichar, varchar, or text field
unless the data is hex, octal, or decimal.

Implementing advanced features
This section describes how to use advanced jConnect features and contai
following topics:

• Using event notification

• Handling error messages

• Storing Java objects as column data in a table

• Dynamic class loading

• JDBC 2.0 optional package extensions support
65

Implementing advanced features

rs

he
Using event notification
You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

To use this feature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains a regWatch() method for turning
event notification on and a regNoWatch() method for turning event notification
off.

Your application must also implement the SybEventHandler interface. This
interface contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of
the event are passed to event() and it tells the application how to respond.

To use event notification in your application, call SybConnection.regWatch() to
register your application in the notification list of a registered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdlr,option)

• proc_name is a String that is the name of the registered procedure that
generates the notification.

• eventHdler is an instance of the SybEventHandler class that you
implement.

• option is either NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY_ALWAYS if you want the
application to be notified every time the procedure executes.

Whenever an event with the designated proc_name occurs on the Open Server,
jConnect calls eventHdlr.event() from a separate thread. The event paramete
are passed to eventHdlr.event() when it is executed. Because it is a separate
thread, event notification does not block execution of the application.

If proc_name is not a registered procedure, or if Open Server cannot add t
client to the notification list, the call to regWatch() throws a SQL exception.

To turn off event notification, use this call:
66

CHAPTER 2 Programming Information
SybConnection.regNoWatch(proc_name)

Note When you use Sybase event notification extensions, the application
needs to call the close() method on the connection to remove a child thread
created by the first call to regWatch(). Failing to do so may cause the Virtual
Machine to hang when exiting the application.

Event notification example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a
connection:

public class MyEventHandler implements SybEventHandler
 {
 // Declare fields and constructors, as needed.
 ...
 public MyEventHandler(String eventname)
 {
 ...
 }

 // Implement SybEventHandler.event.
 public void event(String eventName, ResultSet params)
 {
 try
 {
 // Check for error messages received prior to event
 // notification.
 SQLWarning sqlw = params.getWarnings();
 if sqlw != null
 {
 // process errors, if any
 ...
 }
 // process params as you would any result set with
 // one row.
 ResultSetMetaData rsmd = params.getMetaData();
 int numColumns = rsmd.getColumnCount();
 while (params.next()) // optional
 {
 for (int i = 1; i <= numColumns; i++)
 {
 System.out.println(rsmd.getColumnName(i) + " =
67

Implementing advanced features
 " + params.getString(i));
 }
 // Take appropriate action on the event. For example,
 // perhaps notify application thread.
 ...
 }
 }
 catch (SQLException sqe)
 {
 // process errors, if any
 ...
 }
 }
 }

 public class MyProgram
 {
 ...
 // Get a connection and register an event with an instance
 // of MyEventHandler.
 Connection conn = DriverManager.getConnection(...);
 MyEventHandler myHdlr = new MyEventHandler("MY_EVENT");

 // Register your event handler.
 ((SybConnection)conn).regWatch("MY_EVENT", myHdlr,
 SybEventHandler.NOTIFY_ALWAYS);
 ...

conn.regNoWatch("MY_EVENT");
 conn.close();
}

Handling error messages
jConnect provides two classes for returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.
68

CHAPTER 2 Programming Information

o

 the

 the
Retrieving Sybase-specific error information

jConnect provides an EedInfo interface that specifies methods for obtaining
Sybase-specific error information. The EedInfo interface is implemented in
SybSQLException and SybSQLWarning, which extend the SQLException and
SQLWarning classes.

SybSQLException and SybSQLWarning contain the following methods:

• public ResultSet getEedParams();

Returns a one-row result set containing any parameter values that
accompany the error message.

• public int getStatus();

Returns a “1” if there are parameter values, returns a “0” if there are n
parameter values in the message.

• public int getLineNumber();

Returns the line number of the stored procedure or query that caused
error message.

• public String getProcedureName();

Returns the name of the procedure that caused the error message.

• public String getServerName();

Returns the name of the server that generated the message.

• public int getSeverity();

Returns the severity of the error message.

• public int getState();

Returns information about the internal source of the error message in
server. For use by Sybase Technical Support only.

• public int getTranState();

Returns one of the following transaction states:

• 0 The connection is currently in an extended transaction.

• 1 The previous transaction committed successfully.

• 3 The previous transaction aborted.
69

Implementing advanced features

tead

r

ents.

n

ant

 may

 so,

s the
Some error messages may be SQLException or SQLWarning messages, without
being SybSQLException or SybSQLWarning messages. Your application should
check the type of exception it is handling before it downcasts to
SybSQLException or SybSQLWarning.

Customizing error-message handling

You can use the SybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler in your own class for handling error messages can provide
the following benefits:

• “Universal” error handling

Error-handling logic can be placed in your error-message handler, ins
of being repeated throughout your application.

• “Universal” error logging

Your error-message handler can contain the logic for handling all erro
logging.

• Remapping of error-message severity, based on application requirem

Your error-message handler can contain logic for recognizing specific
error messages and downgrading or upgrading their severity based o
application considerations rather than the server’s severity rating. For
example, during a cleanup operation that deletes old rows, you might w
to downgrade the severity of a message that a row does not exist; you
want to upgrade the severity in other circumstances.

Note Error-message handlers implementing the SybMessageHandler interface
only receive server-generated messages. They do not handle messages
generated by jConnect.

When jConnect receives an error message, it checks to see if a
SybMessageHandler class has been registered for handling the message. If
jConnect invokes the messageHandler() method. The messageHandler()
method accepts a SQL exception as its argument, and jConnect processe
message based on what value is returned from messageHandler(). The error-
message handler can:

• Return the SQL exception as is.

• Return a null. As a result, jConnect ignores the message.
70

CHAPTER 2 Programming Information

s in

ption

ct is
• Create a SQL warning from a SQL exception, and return it. This result
the warning being added to the warning-message chain.

• If the originating message is a SQL warning, messageHandler() can
evaluate the SQL warning as urgent and create and return a SQL exce
to be thrown once control is returned to jConnect.

Installing an error-message handler

You can install an error-message handler implementing SybMessageHandler by
calling the setMessageHandler() method from SybDriver, SybConnection, or
SybStatement. If you install an error-message handler from SybDriver, all
subsequent SybConnection objects inherit it. If you install an error-message
handler from a SybConnection object, it is inherited by all SybStatement objects
created by that SybConnection.

This hierarchy only applies from the time the error-message handler obje
installed. For example, if you create a SybConnection object, myConnection,
and then call SybDriver.setMessageHandler() to install an error-message
handler object, myConnection cannot use that object.

To return the current error-message handler object, use
getMessageHandler().

Error-message-handler example

The following example uses jConnect version 4.1.
import java.io.*;
 import java.sql.*;
 import com.sybase.jdbcx.SybMessageHandler;
 import com.sybase.jdbcx.SybConnection;
 import com.sybase.jdbcx.SybStatement;
 import java.util.*;

 public class MyApp
 {
 static SybConnection conn = null;
 static SybStatement stmt = null
 static ResultSet rs = null;
 static String user = "guest";
 static String password = "sybase";
 static String server = "jdbc:sybase:Tds:192.138.151.39:4444";
 static final int AVOID_SQLE = 20001;

 public MyApp()
71

Implementing advanced features
 {
 try
 {
 Class.forName("com.sybase.jdbc.SybDriver").newInstance;
 Properties props = new Properties();
 props.put("user", user);
 props.put("password", password);
 conn = (SybConnection)
 DriverManager.getConnection(server, props);
 conn.setMessageHandler(new NoResultSetHandler());
 stmt =(SybStatement) conn.createStatement();
 stmt.executeUpdate("raiserror 20001 ’your error’");

 for (SQLWarning sqw = _stmt.getWarnings();
 sqw != null;
 sqw = sqw.getNextWarning());
 {
 if (sqw.getErrorCode() == AVOID_SQLE);
 {
 System.out.println("Error" +sqw.getErrorCode()+
 " was found in the Statement’s warning list.");
 break;
 }
 }
 stmt.close();
 conn.close();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 class NoResultSetHandler implements SybMessageHandler
 {
 public SQLException messageHandler(SQLException sqe)
 {
 int code = sqe.getErrorCode();
 if (code == AVOID_SQLE)
 {
 System.out.println("User " + _user + " downgrading " +
 AVOID_SQLE + " to a warning");
 sqe = new SQLWarning(sqe.getMessage(),
 sqe.getSQLState(),sqe.getErrorCode());
 }
72

CHAPTER 2 Programming Information

ing

rver
ome

 three
 return sqe;
 }
 }

 public static void main(String args[])
 {
 new MyApp();
 }

Storing Java objects as column data in a table
Some database products enable you to directly store Java objects as column
data in a database. In such databases, Java classes are treated as datatypes, and
you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject() methods defined in the PreparedStatement interface and the
getObject() methods defined in the CallableStatement and ResultSet interfaces.
This allows you to use jConnect with an application that uses native JDBC
classes and methods to directly store and retrieve Java objects as column data.

Note To use getObject() and setObject(), set the jConnect version to
VERSION_4 or later. See “Setting the jConnect version” on page 6.

The following sections describe the requirements and procedures for stor
objects in a table and retrieving them using JDBC with jConnect:

• Prerequisites for storing java objects as column data

• Sending Java objects to a database

• Receiving Java objects from the database

Note Adaptive Server Enterprise version 12.0 and later and Adaptive Se
Anywhere version 6.0.x and later can store Java objects in a table, with s
limitations. See the jConnect for JDBC Release Bulletin for more information.

Prerequisites for storing java objects as column data

To store Java objects belonging to a user-defined Java class in a column,
requirements must be met:
73

Implementing advanced features

jects

 and

e

e
• The class must implement the java.io.Serializable interface. This is because
jConnect uses native Java serialization and deserialization to send ob
to a database and receive them back from the database.

• The class definition must be installed in the destination database, or you
must be using the DynamicClassLoader (DCL) to load a class directly from
an Adaptive Server Anywhere or an Adaptive Server Enterprise server
use it as if it was present in the local CLASSPATH. See “Dynamic class
loading” on page 77 for more information.

• The client system must have the class definition in a .class file that is
accessible through the local CLASSPATH environment variable.

Sending Java objects to a database

To send an instance of a user-defined class as column data, use one of th
following setObject() methods, as specified in the PreparedStatement interface:

void setObject(int parameterIndex, Object x, int targetSqlType,
 int scale) throws SQLException;
void setObject(int parameterIndex, Object x, int targetSqlType)
 throws SQLException;
void setObject(int parameterIndex, Object x) throws SQLException;

In jConnect 4.5, you can also use PreparedStatement.setObject (int
parameterIndex, Object x, Types.OTHER) method to pass a Java object to th
database. The object must still implement the java.io.Serializable interface.

In jConnect 5.5, you can use the Types.OTHER target sqlType to send a Java
object, or you can use Types.JAVA_OBJECT (available only in jConnect 5.x).

The following example defines an Address class, shows the definition of a
Friends table that has an Address column whose datatype is the Address class,
and inserts a row into the table.

public class Address implements Serializable
{

public String streetNumber;
 public String street;
 public String apartmentNumber;
 public String city;
 public int zipCode;

//Methods
...

}

/* This code assumes a table with the following structure
74

CHAPTER 2 Programming Information
** Create table Friends:
** (firstname varchar(30),
** lastname varchar(30),
** address Address,
** phone varchar(15))
*/

// Connect to the database containing the Friends table.
Connection conn =
 DriverManager.getConnection("jdbc:sybase:Tds:localhost:5000",
 "username", "password");

// Create a Prepared Statement object with an insert statement
//for updating the Friends table.
PreparedStatement ps = conn.prepareStatement("INSERT INTO
 Friends values (?,?,?,?)");

// Now, set the values in the prepared statement object, ps.
// set firstname to "Joan."
ps.setString(1, "Joan");

// Set last name to "Smith."
ps.setString(2, "Smith");

// Assuming that we already have "Joan_address" as an instance
// of Address, use setObject(int parameterIndex, Object x) to
// set the address column to "Joan_address."
ps.setObject(3, Joan_address);

// Set the phone column to Joan’s phone number.
ps.setString(4, "123-456-7890");

// Perform the insert.
ps.executeUpdate();

Receiving Java objects from the database

A client JDBC application can receive a Java object from the database in a
result set or as the value of an output parameter returned from a stored
procedure.

If a result set contains a Java object as column data, use one of the following
getObject() methods in the ResultSet interface to retrieve the object:

Object getObject(int columnIndex) throws SQLException;
Object getObject(String columnName) throws SQLException;
75

Implementing advanced features
If an output parameter from a stored procedure contains a Java object, use the
following getObject() method in the CallableStatement interface to retrieve the
object:

Object getObject(int parameterIndex) throws SQLException;

The following example illustrates the use of
 ResultSet.getObject(int parameterIndex) to assign an object received in a result
set to a class variable. The example uses the Address class and Friends table
used in the previous section and presents a simple application that prints a
name and address on an envelope.

/*
 ** This application takes a first and last name, gets the
 ** specified person’s address from the Friends table in the
 ** database, and addresses an envelope using the name and
 ** retrieved address.
 */
 public class Envelope
 {
 Connection conn = null;
 String firstName = null;
 String lastName = null;
 String street = null;
 String city = null;
 String zip = null;

 public static void main(String[] args)
 {
 if (args.length < 2)
 {
 System.out.println("Usage: Envelope <firstName>
 <lastName>");
 System.exit(1);
 }
 // create a 4" x 10" envelope
 Envelope e = new Envelope(4, 10);
 try
 {
 // connect to the database with the Friends table.
 conn = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:5000", "username",
 "password");
 // look up the address of the specified person
 firstName = args[0];
 lastName = args[1];
 PreparedStatement ps = conn.prepareStatement(
76

CHAPTER 2 Programming Information
 "SELECT address FROM friends WHERE " +
 "firstname = ? AND lastname = ?");
 ps.setString(1, firstName);
 ps.setString(2, lastName);
 ResultSet rs = ps.executeQuery();
 if (rs.next())
 {
 Address a = (Address) rs.getObject(1);
 // set the destination address on the envelope
 e.setAddress(firstName, lastName, a);
 }
 conn.close();
 }
 catch (SQLException sqe)
 {
 sqe.printStackTrace();
 System.exit(2);
 }
 // if everything was successful, print the envelope
 e.print();
 }
 private void setAddress(String fname, String lname, Address a)
 {
 street = a.streetNumber + " " + a.street + " " +
 a.apartmentNumber;
 city = a.city;
 zip = "" + a.zipCode;
 }
 private void print()
 {
 // Print the name and address on the envelope.
 ...
 }
 }

You can find a more detailed example of HandleObject.java in the sample
(jConnect 4.x) and sample2 (jConnect 5.x) subdirectories under your jConnect
directory.

Dynamic class loading
Adaptive Server Anywhere version 6.0 and Adaptive Server Enterprise version
12.0 and later allow you to specify Java classes as:

• Datatypes of SQL columns
77

Implementing advanced features

ere
ce of

pts
 the

s
reate
• Datatypes of Transact-SQL variables

• Default values for SQL columns

In earlier versions, only classes that appeared in jConnect’s CLASSPATH w
accessible; that is, if a jConnect application attempted to access an instan
a class that was not in the local CLASSPATH, a java.lang.ClassNotFound
exception would result.

jConnect version 5.2 implements DynamicClassLoader (DCL) to load a class
directly from an Adaptive Server Anywhere or Adaptive Server Enterprise
server and use it as if it was present in the local CLASSPATH.

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attem
to load a requested class from the CLASSPATH; if that fails, jConnect tries
DynamicClassLoader.

See Java in Adaptive Server Enterprise for more detailed information about
use Java and Adaptive Server.

Using DynamicClassLoader
To use DCL functionality:

1 Create and configure a class loader. Your jConnect application’s code
should look similar to this:

Properties props = new Properties();

// URL of the server where the classes live.
String classesUrl = "jdbc:sybase:Tds:myase:1200";

// Connection properties for connecting to above server.
props.put("user", "grinch");
props.put("password", "meanone");
...

// Ask the SybDriver for a new class loader.
DynamicClassLoader loader = driver.getClassLoader(classesUrl, props);

2 Use the CLASS_LOADER connection property to make the new clas
loader available to the statement that executes the query. Once you c
the class loader, pass it to subsequent connections as shown below
(continuing from the code example in step 1).

// Stash the class loader so that other connection(s)
// can know about it.
props.put("CLASS_LOADER", loader);
78

CHAPTER 2 Programming Information
// Additional connection properties
props.put("user", "joeuser");
props.put("password", "joespassword");

// URL of the server we now want to connect to.
String url = "jdbc:sybase:Tds:jdbc.sybase.com:4446";

// Make a connection and go.
Connection conn = DriverManager.getConnection(url, props);

Assuming the following Java class definition:

class Addr {
String street;
String city;
String state;

}

and the following SQL table definition:

create table employee (char(100) name, int empid, Addr address)

3 Use the following client-side code in the absence of an Addr class in the
client application’s CLASSPATH:

Statement stmnt = conn.createStatement();
// Retrieve some rows from the table that has a Java class
// as one of its fields.
ResultSet rs = stmnt.executeQuery(

"select * from employee where empid = ’19’");
if (rs.next() {

// Even though the class is not in our class path,
// we should be able to access its instance.
Object obj = rs.getObject("address");
// The class has been loaded from the server,
// so let's take a look.
Class c = obj.getClass();

// Some Java Reflection can be done here
// to access the fields of obj.
...

}

The CLASS_LOADER connection property provides a convenient mechanism
for sharing one class loader among several connections.
79

Implementing advanced features

ers
ified
You should ensure that sharing a class loader across connections does not result
in class conflicts. For example, if two different, incompatible instances of class
org.foo.Bar exist in two different databases, problems can arise if you use the
same loader to access both classes. The first class is loaded when examining a
result set from the first connection. When it is time to examine a result set from
the second connection, the class is already loaded. The second class is never
loaded, and there is no direct way for jConnect to detect this situation.

However, Java has a built-in mechanism for ensuring that the version of a class
matches the version information in a deserialized object. The above situation
is at least detected and reported by Java.

Classes and their instances do not need to reside in the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database/server.

Deserialization

The following example illustrates how to deserialize an object from a local file.
The serialized object is an instance of a class that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectInputStream, which is a
subclass of ObjectInputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class loader.

// Make a stream on the file containing the
//serialized object.
FileInputStream fileStream = new FileInputStream("serFile");
// Make a "deserializer" on it. Notice that, apart
//from the additional parameter, this is the same
//as ObjectInputStreamDynamicObjectInputStream
stream = new DynamicObjectInputStream(fileStream, loader);
// As the object is deserialized, its class is
//retrieved via the loader from our server.
Object obj = stream.readObject();stream.close();

Preloading JARS

jConnect version 5.2 includes a new connection property called
PRELOAD_JARS. When defined as a comma-delimited list of JAR file
names, the JAR files are loaded in their entirety. In this context, “JAR” ref
to the “retained JARname” used by the server. This is the JAR name spec
in the install Java program, for example:
80

CHAPTER 2 Programming Information

tion
gle

 use

ion

age
install java new jar ’myJarName’ from file ’/tmp/mystuff.jar’

If you set PRELOAD_JARS, the JAR files are associated with the class loader,
so it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARS for one connection. Subsequent attempts to preload
the same JAR files may result in performance problems as the JAR data is
retrieved from the server unnecessarily.

Note Adaptive Server Anywhere 6.x and later cannot return an JAR file as one
entity, so jConnect iteratively retrieves each class in turn. However, Adaptive
Server 12.x and later retrieves the entire JAR and loads each class that it
contains.

Advanced features

There are various public methods in DynamicClassLoader. For more
information, see the javadocs information in JDBC_HOME/docs/en/javadocs.

Additional features include the ability to keep a loader’s database connec
“alive” when a series of class loads is expected, and to explicitly load a sin
class by name.

Public methods inherited from java.lang.ClassLoader can also be used.
Methods in java.lang.Class that deal with loading classes are also available;
however, use these methods with caution since some of them make
assumptions about which class loader gets used. In particular, you should
the 3-argument version of Class.forName(), otherwise the system (“boot”) class
loader will be used. See “Handling error messages” on page 68.

JDBC 2.0 optional package extensions support
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extens
API) defines several new features that may be implemented by JDBC 2.0
drivers. jConnect version 5.2 has implemented the following optional pack
extension features:

• JNDI for naming databases
(works with any Sybase DBMS supported by jConnect)

• Connection pooling
(works with any Sybase DBMS supported by jConnect)
81

Implementing advanced features

r

th

ach

n to
le

n
• Distributed transaction management support
(works only with Adaptive Server Enterprise version 12.0 and later, o
version 11.x using XA-Server™)

The above features require classes and/or interfaces that are not found in
standard Java 2 distributions. You must download javax.sql.* and
javax.naming.* to implement

 Databases and Connection Pooling, and you must download
javax.transaction.xa.* to implement Distributed Transaction Management
Support.

Note Sybase recommends that you use JNDI 1.2, which is compatible wi
Java 1.1.6 and later.

JNDI for naming databases

Reference

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API), Chapter 5, “JNDI and the JDBC API.”

Related interfaces

• javax.sql.DataSource

• javax.naming.Referenceable

• javax.naming.spi.ObjectFactory

This feature provides JDBC clients with an alternative to the standard appro
for obtaining database connections. Instead of invoking Class.forName
(“com.sybase.jdbc2.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access a JNDI name
server using a logical name to retrieve a javax.sql.DataSource object. This
object is responsible for loading the driver and establishing the connectio
the physical database it represents. The client code is simpler and reusab
because the vendor-specific information has been placed within the
DataSource object.

The Sybase implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (see the javadocs for details). This
implementation supports the following standard properties using the desig
pattern for JavaBean components:
82

CHAPTER 2 Programming Information

 a

 the
ure
• databaseName

• dataSourceName

• description

• networkProtocol

• password

• portNumber

• serverName

• user

roleName is not supported.

jConnect provides an implementation of the javax.naming.spi.ObjectFactory
interface so the DataSource object can be constructed from the attributes of
name server entry. When given a javax.naming.Reference, or a
javax.naming.Name and a javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc2.SybObjectFactory.

Usage

You can use DataSource in different ways, in different applications. All options
are discussed below with some code examples to guide you through the
process. For more information, see the JDBC 2.0 Optional Package (formerly
the JDBC 2.0 Standard Extension API), and the JNDI documentation on Sun’s
Web site.

1a. Configuration by
administrator: LDAP

jConnect has supported LDAP connectivity since version 4.0. As a result,
recommended approach, which requires no custom software, is to config
DataSources as LDAP entries using the LDAP Data Interchange Format
(LDIF). For example:

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
83

Implementing advanced features
1b. Access by client This is the typical JDBC client application. The only difference is that you
access the name server to obtain a reference to a DataSource object, instead of
accessing the DriverManager and providing a JDBC URL. Once you obtain the
connection, the client code is identical to any other JDBC client code. The code
is very generic and references Sybase only when setting the object factory
property, which can be set as part of the environment.

The jConnect installation contains the sample program
sample2/SimpleDataSource.java to illustrate the use of DataSource. This
sample is provided for reference only; that is, you cannot run the sample unless
you configure your environment and edit the sample appropriately.
SimpleDataSource.java contains the following critical code:

import javax.naming.*;
import javax.sql.*;
import java.sql.*;

// set necessary JNDI properties for your environment (same as above)
Properties jndiProps = new Properties();

// used by JNDI to build the SybDataSource
jndiProps.put(Context.OBJECT_FACTORIES,

"com.sybase.jdbc2.jdbc.SybObjectFactory");

// nameserver that JNDI should talk to
jndiProps.put(Context.PROVIDER_URL, "ldap:
//some_ldap_server:238/o=MyCompany,c=Us");

// used by JNDI to establish the naming context
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.ldap.LdapCtxFactory");

// obtain a connection to your name server
Context ctx = new InitialContext(jndiProps);
DataSource ds = (DataSource) ctx.lookup("servername=myASE");

// obtains a connection to the server as configured earlier.
// in this case, the default username and password will be used
Connection conn = ds.getConnection();

// do standard JDBC methods
...

Explicitly passing the Properties to the InitialContext constructor is not required
if the properties have already been defined within the virtual machine; that is,
passed when Java was either set as part of the browser properties, or by using:
84

CHAPTER 2 Programming Information
java -Djava.naming.object.factory=com.sybase.jdbc2.jdbc.SybObjectFactory

See your Java VM documentation for more information about setting
environment properties.

2a. Configuration by
administrator: custom

This phase is typically done by the person who does database system
administration or application integration for their company. The purpose is to
define a data source, then deploy it under a logical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runs this configuration utility (outlined
below) and reassigns the logical name to the new data source configuration. As
a result, the client code does not change, since it knows only the logical name.

import javax.sql.*;
import com.sybase.jdbcx.*;
.....

// create a SybDataSource, and configure it
SybDataSource ds = new com.sybase.jdbc2.jdbc.SybDataSource();
ds.setUser("my_username");
ds.setPassword("my_password");
ds.setDatabaseName("my_favorite_db");
ds.setServerName("db_machine");
ds.setPortNumber(4000);
ds.setDescription("This DataSource represents the Adaptive Server

Enterprise server running on db_machine at port 2638. The default
username and password have been set to ’me’ and ’mine’ respectively.
Upon connection, the user will access the my_favorite_db database on
this server.");

Properties props = newProperties()
props.put("REPEAT_READ","false");
props.put("REQUEST_HA_SESSION","true");
ds.setConnectionProperties(props);
// store the DataSource object. Typically this is
// done by setting JNDI properties specific to the
// type of JNDI service provider you are using.
// Then, initialize the context and bind the object.
Context ctx = new InitialContext();
ctx.bind("jcbc/myASE", ds);

Once you set up your DataSource, you decide where and how you want to store
the information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine
how the data is stored depending on what service provider you are using for
JNDI.
85

Implementing advanced features

t you

uring

sts to
ach

tion

s
2b. Access by client The client retrieves the DataSource object by setting its JNDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object as it is stored (for example,
serialized) into a Java object.

Context ctx = new InitialContext();
DataSource ds = (DataSource ctx.lookup("jcbc/myASE");

Connection pooling

Reference

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API), Chapter 6, “Connection Pooling.”

Related interfaces

• javax.sql.ConnectionPoolDataSource

• javax.sql.PooledConnection

Overview

Traditional database applications create one connection to a database tha
use for each session of an application. However, a Web-based database
application may need to open and close a new connection several times d
the application’s use. An efficient way to handle Web-based database
connections is to use connection pooling, which maintains open database
connections and manages connection sharing across different user reque
maintain performance and to reduce the number of idle connections. On e
connection request, the connection pool first determines if there is an idle
connection in the pool. If there is, the connection pool returns that connec
instead of making a new connection to the database.

Connection pooling capabilities are provided by ConnectionPoolDataSource. If
you use this interface, you can pool connections. If you use the DataSource
interface, you cannot pool connections.

When you use ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when a user closes the
connection, or if the user has an error that destroys the connection. At thi
point, the pool implementation decides what to do with the PooledConnection.

Without connection pooling, a transaction:

1 Creates a connection to the database.
86

CHAPTER 2 Programming Information

 a

the
2 Sends the query to the database.

3 Gets back the result set.

4 Displays the result set.

5 Destroys the connection.

With connection pooling, the sequence looks more like this:

1 Sees if an unused connection exists in the “pool” of connections.

2 If so, uses it; otherwise creates a new connection.

3 Sends the query to the database.

4 Gets back the result set.

5 Displays the result set.

6 Returns the connection to the “pool.” The user still calls “close()”, but the
connection remains open and the pool is notified of the close request.

It is less costly to reuse a connection than to create a new one every time
client needs to establish a connection to a database.

To enable a third party to implement the connection pool, the jConnect
implementation has the ConnectionPoolDataSource interface produce
PooledConnections, similar to how the DataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods of ConnectionPoolDataSource. Then, the pool
implementation registers itself as a listener to the PooledConnection.

Currently, when a client requests a connection, the pool implementation
invokes getConnection() on an available PooledConnection. When the client
finishes with the connection and calls close(), the pool implementation is
notified via the ConnectionEventListener interface that the connection is free
and available for reuse.

The pool implementation is also notified via the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that
pool implementation can remove that connection from the pool.

For more information, refer to Appendix B of the the JDBC 2.0 Optional
Package (formerly the JDBC 2.0 Standard Extension API).
87

Implementing advanced features

l

,
d

n
Configuration by
administrator: LDAP

This approach is the same as “1a. Configuration by administrator: LDAP”
described in “JNDI for naming databases,” except that you enter an additiona
line to your LDIF entry. In the following example, the added line of code is
bolded for your reference.

dn:servername=myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:ConnectionPoolDataSource

Access by middle-tier
clients

This procedure initializes three properties (INITIAL_CONTEXT_FACTORY
PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), an
retrieves a ConnectionPoolDataSource object. For a more complete code
example, see sample2/SimpleConnectionPool.java. The fundamental
difference is:

...
ConnectionPoolDatabase cpds = (ConnectionPoolDataSource)

ctx.lookup("servername=myASE");
PooledConnection pconn = cpds.getPooledConnection();

Distributed transaction management support

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server Enterprise version 12.x or versio
11.x with XA-Server.

Note This feature is designed for use in a large multitier environment.

Reference

See Chapter 7, “Distributed Transactions,” in the JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Standard Extension API).
88

CHAPTER 2 Programming Information

er

ve

s in
of

se

ise
Related interfaces

• javax.sql.XADataSource

• javax.sql.XAConnection

• javax.transaction.xa.XAResource

Background and system requirements

For Adaptive Server
Enterprise 12.0 and
later

• Because jConnect is communicating directly with the resource manag
within Sybase Adaptive Server Enterprise version 12.0 and later, the
installation must have Distributed Transaction Management support.

• Any user that wants to participate in a distributed transaction must ha
the “dtm_tm_role” granted to them or the transactions will fail.

• To use distributed transactions, you must install the stored procedure
the /sp directory. Refer to “Installing Stored Procedures” in Chapter 1
your jConnect for JDBC Installation Guide.

Figure 2-2: Distributed transaction management
support with version 12.x

For Adaptive Server
Enterprise 11.x

jConnect also provides a standard Java API for performing distributed
transactions with Adaptive Server Enterprise version 11.x as your databa
server.

• This implementation works only with Sybase Adaptive Server Enterpr
version 11.x and XA-Server 11.1.

Client
Application

Middle-tier
Components

jConnect
ASE 12.x

DTM

JTA TDS
89

Implementing advanced features

's

st

ed

,
Figure 2-3: Distributed transaction management support with version
11.x

• The login chosen cannot have a default login database of master, model, or
sybsystemdb. This is because XA-Server connects only when the user
work is associated with a distributed transaction, and distributed
transactions are not permitted on those databases.

• There is no access to metadata. While this restricts the client, it is mo
likely not the part of the API being used within the boundaries of
distributed transactions.

Adaptive Server Enterprise 12.x use

Configuration by
administrator: LDAP

This approach is the same as “1a. Configuration by administrator:
LDAP”described in “JNDI for naming databases” on page 82, except that you
enter an additional line to the LDIF entry. In the following example, the add
line of code is displayed in bold.

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:XADataSource

Access by middle-tier
clients

This procedure initializes three properties (INITIAL_CONTEXT_FACTORY
PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

...
XADataSource xads = (XADatasource) ctx.lookup("servername=myASE");
XAConnection xaconn = xads.getXAConnection();

or override the default settings for the user name and password:

...
XADataSource xads = (XADatasource) ctx.lookup("servername=myASE");

Client
Application

Middle-tier
Components

XA-Server
11.1

ASE 11.x

JTA

TDS

jConnect

TDS
90

CHAPTER 2 Programming Information

-
r

,
XAConnection xaconn = xads.getXAConnection("my_username","my_password");

Adaptive Server Enterprise 11.x use

Configuration by
administrator: LDAP

This approach is the same as “1a. Configuration by administrator:
LDAP”described in “JNDI for naming databases” on page 82, except that you
enter an additional three lines to the LDIF entry.

In the following example, the additional code lines are displayed in bold .

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.16:userconnection
1.3.6.1.4.1.897:4.2.17:1
1.3.6.1.4.1.897.4.2.18:XADataSource

where . . .4.2.17:1 indicates that jConnect is going to connect to an XA
Server and userconnection corresponds to the Logical Resource Manage
(LRM) to use. XA-Server has an xa_config file that contains these entries:

[xa]
lrm=userconnection
server=my_ase_11_server
XAServer=my_xa_server

Figure 2-4: Distributed transaction management support sample
configuration

See the XA-Server documentation for details on how to write an xa_config file.

Access by middle-tier
clients

This procedure initializes three properties (INITIAL_CONTEXT_FACTORY
PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

...
XADataSource xads = (XADatasource) ctx.lookup("servername=myASE");

Client
Application

Middle-tier
Components

my_xa_server
running on:

mymachine:4000

my_ase_11_server

JTA

TDS

jConnect

TDS
91

Handling restrictions, limitations, and deviations from JDBC standards

XAConnection xaconn = xads.getXAConnection();

With Adaptive Server Enterprise 11.x, you cannot override the default user
name and password; that is, you cannot call:

xads.getXAConnection("my_username","my_password");

because the lrm is associated with a specific user name and password.

Handling restrictions, limitations, and deviations from
JDBC standards

This section discusses restrictions and limitations that apply to jConnect,
including how the jConnect implementation of JDBC deviates from the JDBC
1.x and 2.0 standards. The following topics are covered:

• Making adjustments for multithreading

• Using ResultSet.getCursorName()

• Using setLong() with large parameter values

• Using COMPUTE statements

• Executing stored procedures

Making adjustments for multithreading
If several threads simultaneously call methods on the same Statement instance,
CallableStatement, or PreparedStatement—which we do not recommend— you
have to manually synchronize the calls to the methods on the Statement;
jConnect does not do this automatically.

For example, if you have two threads operating on the same Statement
instance—one thread sending a query and the other thread processing
warnings—you have to synchronize the calls to the methods on the Statement
or conflicts may occur.
92

CHAPTER 2 Programming Information

our

true,

L

ve
 of

elled
ent
Using ResultSet.getCursorName()
Some JDBC drivers generate a cursor name for any SQL query so that a string
can always be returned. However, jConnect does not return a name when
ResultSet.getCursorName() is called, unless you either

• called setFetchSize() or setCursorName() on the corresponding Statement,
or

• set the SELECT_OPENS_CURSOR connection property to true, and y
query was in the form of SELECT... FOR UPDATE; for example,

select au_id from authors for update

If you do not call setFetchSize() or setCursorName() on the corresponding
Statement, or set the SELECT_OPENS_CURSOR connection property to
null is returned.

According to the JDBC 2.0 API (chapter 11, “Clarifications”), all other SQ
statements do not need to open a cursor and return a name.

For more information on how to use cursors in jConnect, see “Using cursors
with result sets” on page 47.

Using setLong() with large parameter values
Implementations of the PreparedStatement.setLong() method set a parameter
value to a SQL BIGINT datatype. Most Adaptive Server databases do not ha
an 8-byte BIGINT datatype. If a parameter value requires more than 4 bytes
a BIGINT, using setLong() may result in an overflow exception.

Using COMPUTE statements
jConnect does not support computed rows. Results are automatically canc
when a query contains a computed row. For example, the following statem
is rejected:

SELECT name FROM sysobjects
WHERE type="S" COMPUTE COUNT(name)

To avoid this problem, substitute the following code:

SELECT name from sysobjects WHERE type="S"
SELECT COUNT(name) from sysobjects WHERE type="S"
93

Handling restrictions, limitations, and deviations from JDBC standards

ance
.

an

er
t

ing

ctly
Executing stored procedures
• If you execute a stored procedure in a CallableStatement object that

represents parameter values as question marks, you get better perform
than if you use both question marks and literal values for parameters
Further, if you mix literals and question marks, you cannot use output
parameters with a stored procedure.

The following example creates sp_stmt as a CallableStatement object for
executing the stored procedure MyProc:

CallableStatement sp_stmt = conn.prepareCall(
 "{call MyProc(?,?)}");

The two parameters in MyProc are represented as question marks. You c
register one or both of them as output parameters using the
registerOutParameter() methods in the CallableStatement interface.

In the following example, sp_stmt2 is a CallableStatement object for
executing the stored procedure MyProc2.

CallableStatement sp_stmt2 = conn.prepareCall(
 {"call MyProc2(?,’javelin’)}");

In sp_stmt2, one parameter value is given as a literal value and the oth
as a question mark. You cannot register either parameter as an outpu
parameter.

• To execute stored procedures with RPC commands using name-bind
for parameters, use either of the following procedures.

• Use language commands, passing input parameters to them dire
from Java variables using the PreparedStatement class. This is
illustrated in the following code fragment:

// Prepare the statement
System.out.println("Preparing the statement...");
String stmtString = "exec " + procname + " @p3=?, @p1=?";
PreparedStatement pstmt = con.preparedStatement(stmtString);

// Set the values
pstmt.setString(1, "xyz");
pstmt.setInt(2, 123);

// Send the query
System.out.println("Executing the query...");
ResultSet rs = pstmt.executeQuery();
94

CHAPTER 2 Programming Information
• With jConnect version 5.2, use the
com.sybase.jdbcx.SybCallableStatement interface, illustrated in this
example:

import com.sybase.jdbcx.*;
....
// prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (?, ?)}";
SybCallableStatement scs = (SybCallableStatement)
con.prepareCall(execRPC);

// set the values and name the parameters
// also (optional) register for any output parameters
scs.setString(1, "xyz");
scs.setParameterName(1, "@p3");
scs.setInt(2, 123);
scs.setParameterName(2, "@p1");

// execute the RPC
// may also process the results using getResultSet()
// and getMoreResults()

// see the samples for more information on processing results
ResultSet rs = scs.executeQuery();
95

Handling restrictions, limitations, and deviations from JDBC standards
96

C H A P T E R 3 Troubleshooting

This chapter describes solutions and workarounds for problems you might
encounter when using jConnect.

Debugging with jConnect
jConnect includes a Debug class that contains a set of debugging
functions. The Debug methods include a variety of assert, trace, and timer
functions that let you define the scope of the debugging process and the
output destination for the debugging results.

The jConnect installation also includes a complete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under
your jConnect installation directory. For debugging purposes, you must
redirect your CLASSPATH environment variable to reference the debug
mode runtime classes (devclasses for jConnect 4.x and
devclasses/jconn2d.jar for jConnect 5.x), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a
-classpath argument to the java command when you run a Java program.

Obtaining an instance of the Debug class
To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug() method on the SybDriver class.

Topics
Debugging with jConnect

Capturing TDS communication

Unsuccessful connection errors

Memory usage in jConnect applications

Stored procedure errors

Custom socket implementation error
97

Debugging with jConnect

he
For jConnect 4.x:
import com.sybase.jdbcx.Debug
 import.com.sybase.jdbcx.SybDebug
 //
 ...
 SybDriver sybDriver = (SybDriver)
 Class.forName("com.sybase.jdbc.SybDriver").newInstance();
Debug sybdebug = sybDriver.getDebug();
 ...

 For jConnect 5.x:
import com.sybase.jdbcx.Debug
 import.com.sybase.jdbcx.SybDebug
 //
 ...
 SybDriver sybDriver = (SybDriver)
 Class.forName("com.sybase.jdbc2.jdbc.SybDriver").newInstance();
Debug sybdebug = sybDriver.getDebug();
 ...

Turning on debugging in your application
To use the debug() method on the Debug object to turn on debugging within
your application, add this call:

sybdebug.debug(true, [classes], [printstream]);

The classes parameter is a string that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug.debug(true,"MyClass")

and

sybdebug.debug(true,"MyClass:YourClass")

“STATIC” in the class string turns on debugging for all static methods in
jConnect in addition to the designated classes. For example:

sybdebug.debug(true,"STATIC:MyClass")

You can specify “ALL” to turn on debugging for all classes. For example:

sybdebug.debug(true,"ALL");

The printstream parameter is optional. If you do not specify a printstream, t
debug output goes to the output file you specified with
DriverManager.setLogStream().
98

CHAPTER 3 Troubleshooting

to
Turning off debugging in your application
To turn off debugging, add this call:

sybdebug.debug(false);

Setting the CLASSPATH for debugging
Before you run your debug-enabled application, redefine the CLASSPATH
environment variable to reference the /devclasses subdirectory under your
jConnect installation directory.

For jConnect 4.x:

• For UNIX, replace $JDBC_HOME/classes with
$JDBC_HOME/devclasses.

• For Windows, replace %JDBC_HOME%\classes with
%JDBC_HOME%\devclasses.

For jConnect 5.x:

• For UNIX, replace $JDBC_HOME/classes/jconn2.jar with
$JDBC_HOME/devclasses/jconn2.jar.

• For Windows, replace %JDBC_HOME%\classe\jconn2.jar with
%JDBC_HOME%\devclasses\jconn2.jar.

Using the Debug methods
To customize the debugging process, you can add calls to other Debug
methods.

In these methods, the first (object) parameter is usually this to specify the
calling object. If any of these methods are static, use null for the object
parameter.

• println()

Use this method to define the message to print in the output log if
debugging is enabled and the object is included in the list of classes
debug. The debug output goes to the file you specified with
sybdebug.debug().

The syntax is:
99

Debugging with jConnect

hen
he

ds

onds
and
sybdebug.println(object,message string);

For example:

sybdebug.println(this,"Query: "+ query);

produces a message similar to this in the output log:

myApp(thread[x,y,z]): Query: select * from authors

• assert()

Use this method to assert a condition and throw a runtime exception w
the condition is not met. You can also define the message to print in t
output log if the condition is not met. The syntax is:

sybdebug.assert(object,boolean condition,message
 string);

For example:

sybdebug.assert(this,amount<=buf.length,amount+"
 too big!");

produces a message similar to this in the output log if “amount” excee
the value of buf.length:

java.lang.RuntimeException:myApp(thread[x,y,z]):
Assertion failed: 513 too big!
at jdbc.sybase.utils.sybdebug.assert(
sybdebug.java:338)
at myApp.myCall(myApp.java:xxx)
at more stack:

• startTimer()
stopTimer()

Use these methods to start and stop a timer that measures the millisec
that elapse during an event. The method keeps one timer per object,
one for all static methods. The syntax to start the timer is:

sybdebug.startTimer(object);

The syntax to stop the timer is:

sybdebug.stopTimer(object,message string);

For example:

sybdebug.startTimer(this);
stmt.executeQuery(query);
sybdebug.stopTimer(this,"executeQuery");
100

CHAPTER 3 Troubleshooting

ct
o

hin
 to
 can
ble,

how

ptive
kets
. All

produces a message similar to this in the output log:

myApp(thread[x,y,z]):executeQuery elapsed time =
25ms

Capturing TDS communication
Tabular Data Stream (TDS) is Sybase’s proprietary protocol for handling
communication between a client application and Adaptive Server. jConne
includes a PROTOCOL_CAPTURE connection property that allows you t
capture raw TDS packets to a file.

If you are having problems with an application that you cannot resolve wit
either the application or the server, you can use PROTOCOL_CAPTURE
capture the communication between the client and the server in a file. You
then send the file, which contains binary data and is not directly interpreta
to Sybase Technical Support for analysis.

Note You can also use the Ribo utility to capture, translate, and display the
protocol stream flowing between the client and the server. For details on
to obtain and use Ribo, visit the jConnect utilities Web page at
http://www.sybase.com/products/internet/jconnect/utilities/

PROTOCOL_CAPTURE connection property
Use the PROTOCOL_CAPTURE connection property to specify a file for
receiving the TDS packets exchanged between an application and an Ada
Server. PROTOCOL_CAPTURE takes effect immediately so that TDS pac
exchanged during connection establishment are written to the specified file
packets continue to be written to the file until Capture.pause() is executed or
the session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS data to the file tds_data:

...
 props.put("PROTOCOL_CAPTURE", "tds_data")
 Connection conn = DriverManager.getConnection(url, props);
101

Unsuccessful connection errors

ant
ou

g

blish
where url is the connection URL and props is a Properties object for specifying
connection properties.

pause() and resume() methods in the Capture class
The Capture class is contained in the com.sybase.jdbcx package. It contains two
public methods:

• public void pause()

• public void resume()

Capture.pause() stops the capture of raw TDS packets into a file;
Capture.resume() restarts the capture.

The TDS capture file for an entire session can become very large. If you w
to limit the size of the capture file, and you know where in an application y
want to capture TDS data, you can do the following:

1 Immediately after you have established a connection, get the Capture
object for the connection and use the pause() method to stop capturing
TDS data:

Capture cap = ((SybConnection)conn).getCapture();
 cap.pause();

2 Place cap.resume() just before the point where you want to start capturin
TDS data.

3 Place cap.pause() just after the point where you want to stop capturing
data.

Unsuccessful connection errors
This section addresses problems that may arise when you are trying to esta
a connection or start a gateway.

Gateway connection refused
Gateway connection refused:
HTTP/1.0 502 Bad Gateway|Restart Connection
102

CHAPTER 3 Troubleshooting

rty.

 can

his
port
iate

 TDS
This error message indicates that something is wrong with the hostname or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASE%\ini\sql.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system prope

For Windows, go to a DOS prompt and enter:

httpd -Dverbose=1 > filename

For UNIX, enter:

sh httpd.sh -Dverbose=1 > filename &

where filename is the debug messages output file.

Your Web server probably does not support the connect method. Applets
connect only to the host from which they were downloaded.

The HTTP gateway and your Web server must run on the same host. In t
scenario, your applet can connect to the same machine/host through the
controlled by the HTTP gateway, which routes the request to the appropr
database.

To see how this is accomplished, review the source of Isql.java and
gateway.html in the sample (jConnect 4.x) or sample2 (jConnect 5.x)
subdirectory under the jConnect installation directory. Search for “proxy.”

Unable to connect to a 4.9.2 SQL Server
jConnect uses TDS 5.0 (Sybase transfer protocol). SQL Server 4.9.x uses
4.6, which is not compatible with TDS 5.0.

SQL Server 10.0.2 or later is required for use with jConnect.

Memory usage in jConnect applications
The following situations and their solutions may be helpful if you notice
increased memory use in jConnect applications.
103

Stored procedure errors

sing

nect

ach
d,

y

e
• In jConnect applications, you should explicitly close all Statement objects
and subclasses (for example, PreparedStatement, CallableStatement) after
their last use to prevent statements from accumulating in memory. Clo
the ResultSet is not sufficient.

For example:

ResultSet rs = _conn.prepareCall(_query).execute();
...
rs.close();

will cause problems. Instead use:

PreparedStatement ps = _conn.prepareCall(_query);
ResultSet rs = ps.execute();
...
ps.close();
rs.close();

• jConnect uses the Tabular Data Stream (TDS)—Sybase’s proprietary
protocol—to communicate with Sybase database servers. As of jCon
5.0, TDS does not support scrollable cursors. To support scrollable
cursors, jConnect caches the row data on demand, on the client, on e
call to ResultSet.next(). However, when the end of the result set is reache
the entire result set is stored in the client’s memory. Because this ma
cause a performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small.

Stored procedure errors
This section addresses problems that may arise when you are trying to us
jConnect and stored procedures.

RPC returns fewer output parameters than registered
SQLState: JZ0SG - An RPC did not return as many output
parameters as the application had registered for it.
104

CHAPTER 3 Troubleshooting

ed
eters

ere

an
This error occurs if you call CallableStatement.registerOutParam() for more
parameters than you have declared as “OUTPUT” parameters in the stor
procedure. Make sure that you have declared all of the appropriate param
as “OUTPUT.” Look at the line of code that reads:

 create procedure yourproc (@p1 int OUTPUT, ...

Note If you receive this error while using Adaptive Server Anywhere
(previously known as SQL Anywhere), upgrade to Adaptive Server Anywh
version 5.5.04 or later.

Fetch/state error when stored procedure returns output params
If a query does not return row data, then it should use the
CallableStatement.executeUpdate() or execute() methods rather than the
executeQuery() method.

As required by the JDBC standards, jConnect throws a SQL exception if
executeQuery() has no result sets.

Stored procedure executed in unchained transaction mode
Sybase Error 7713 - Stored Procedure can only be
executed in unchained transaction mode.

JDBC attempts to put the connection in autocommit(true) mode. The
application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using a “set chained on” language
command. This error occurs if the stored procedure was not created in a
compatible mode.

To fix the problem, use:

sp_procxmode procedure_name,"anymode"
105

Custom socket implementation error
Custom socket implementation error
You may receive an exception similar to the following while trying to set up an
SSL socket when calling
sun.security.ssl.SSLSocketImpl.setEnabledCipherSuites:

java.lang.IllegalArgumentException:
 SSL_SH_anon_EXPORT_WITH_RC4_40_MDS

Verify that the SSL libraries are in the system library path.
106

an

n

l

nd
et

C H A P T E R 4 Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

Improving jConnect performance
There are a number of ways to optimize the performance of an application
using jConnect:

• Use TextPointer.sendData() methods to send text and image data to
Adaptive Server database. See “Sending image data” on page 61.

• Create precompiled PreparedStatement objects for dynamic SQL
statements that are used repeatedly during a session. See
“Performance tuning for prepared statements in dynamic SQL” o
page 110.

• Batch updates improve performance by reducing network traffic;
specifically, all queries are sent to the server in one group and al
responses returned to the client are sent in one group. See “Support
for batch updates” on page 57.

• For sessions that are likely to move image data, large row sets, a
lengthy text data, use the PACKETSIZE connection property to s
the maximum feasible packet size.

• For TDS-tunneled HTTP, set the maximum TDS packet size and
configure your Web server to support the HTTP1.1 Keep-Alive
feature. Also set the SkipDoneProc servlet argument to true.

Topics
Improving jConnect performance

Performance tuning for prepared statements in dynamic SQL

Cursor performance
107

Improving jConnect performance

R

.

ing

 if

• Use protocol cursors, the default setting of the LANGUAGE_CURSO
connection property. See “LANGUAGE_CURSOR connection property”
on page 117 for more information.

• If you use TYPE_SCROLL_INSENSITIVE result sets, only use them
when the result set is reasonably small. See “Support for
SCROLL_INSENSITIVE result sets in jConnect” on page 55 for more
information.

Additional considerations for improving performance are described below

BigDecimal rescaling
The JDBC 1.0 specification requires a scale factor with getBigDecimal(). Then,
when a BigDecimal object is returned from the server, it must be rescaled us
the original scale factor you used with getBigDecimal().

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal() method, which jConnect implements in the SybResultSet class
and does not require a scale value:

public BigDecimal getBigDecimal(int columnIndex)
 throws SQLException

For example:

SybResultSet rs =
 (SybResultSet)stmt.executeQuery("SELECT
 numeric_column from T1");
 while (rs.next())
 {
 BigDecimal bd rs.getBigDecimal(
 "numeric_column");
 ...
 }

REPEAT_READ connection property
You can improve performance on retrieving a result set from the database
you set the REPEAT_READ connection property to false. However, when
REPEAT_READ is “false:”
108

CHAPTER 4 Performance and Tuning

s is

ch
ta,
eans
ee
f this

te-

ver,
andle

• You must read column values in order, according to column index. Thi
difficult if you want to access columns by name rather than column
number.

• You cannot read a column value in a row more than once.

Character-set conversion

Bandwidth reduction when unichar or univarchar dataypes are enabled

When communicating with version 12.5 or later of Adaptive Server in whi
unichar and univarchar datatype support has been turned on for Unicode da
jConnect sends all character parameter data in the Unicode format. This m
that ASCII strings such as the word “dog,” which would normally require thr
bytes to transmit, will require six bytes because Unicode data, at the time o
writing, requires two bytes per character.

If your client application is going to send character data that is in a one-by
per-character character set (such as ASCII or iso_1), consider using the
setAsciiStream method to send it. This can result in a reduction of network
bandwidth (that is, you will be sending fewer bytes across the wire). Howe
jConnect and the database server must perform internal conversions to h
this data.

SunloConverter

If you are using multibyte character sets and need to improve driver
performance, you can use the SunIoConverter class provided with the jConnect
samples. This converter is based on the sun.io classes provided by the Java
Software Division of Sun Microsystems, Inc.
109

Performance tuning for prepared statements in dynamic SQL
The SunIoConverter class is not a pure Java implementation of the character-set
converter feature, and therefore is not integrated with the standard jConnect
product. However, we have provided this converter class for your reference,
and you can use it with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunIoConverter class improved
performance on all VMs on which it was tested. However, the Java Software
Division of Sun Microsystems, Inc. reserves the right to remove or change the
sun.io classes with future releases of the JDK, and therefore this
SunIoConverter class may not be compatible with later JDK releases.

To use the SunIoConverter class, you must install the jConnect sample
applications. See the Sybase jConnect for JDBC Installation Guide for
complete instructions on installing jConnect and its components, including the
sample applications. Once the samples are installed, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunIoConverter class in the sample (jConnect 4.x) or sample2 (jConnect 5.x)
subdirectory under your jConnect installation directory.

Performance tuning for prepared statements in
dynamic SQL

In Embedded SQL, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although this is not a requirement. In SQL, the
prepare command is used to precompile a dynamic statement and save it so that
it can be executed repeatedly without being recompiled during a session.

If a statement is used multiple times in a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If a statement is likely to be used only a few times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.
110

CHAPTER 4 Performance and Tuning

ents

in
ssion.

 a

le

QL

vely
e data
ored

base

ll

es it.
Precompiling a dynamic SQL statement for execution and saving it in memory
uses time and resources. If a statement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration is that once a dynamic SQL statement is
prepared in the database, it is very similar to a stored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. This is
discussed under “Choosing between prepared statements and stored
procedures” on page 111.

You can use jConnect to optimize the performance of dynamic SQL statem
on a Sybase database as follows:

• Create PreparedStatement objects that contain precompiled statements
cases where a statement is likely to be executed several times in a se

• Create PreparedStatement objects that contain uncompiled SQL
statements in cases where a statement will be used very few times in
session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and create PreparedStatement
objects is likely to depend on whether your application needs to be portab
across JDBC drivers or whether you are writing an application that allows
jConnect-specific extensions to JDBC.

jConnect 4.1 and later provide performance tuning features for dynamic S
statements.

Choosing between prepared statements and stored procedures
If you create a PreparedStatement object containing a precompiled dynamic
SQL statement, once the statement is compiled in the database, it effecti
becomes a stored procedure that is retained in memory and attached to th
structure associated with your session. In deciding whether to maintain st
procedures in the database or to create PreparedStatement objects containing
compiled SQL statements in your application, resource demands and data
and application maintenance are important considerations:

• Once a stored procedure is compiled, it is globally available across a
connections. In contrast, a dynamic SQL statement in a PreparedStatement
object needs to be compiled and deallocated in every session that us
111

Performance tuning for prepared statements in dynamic SQL

res
rget

use

he
QL

ant
rs

,

• If your application accesses multiple databases, using stored procedu
means that the same stored procedures need to be available on all ta
databases. This can create a database maintenance problem. If you
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

• If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table references in t
stored procedures. You can then modify the underlying database or S
code without have to change the application.

Prepared statements in portable applications
If your application is to run on databases from different vendors and you w
some PreparedStatement objects to contain precompiled statements and othe
to contain uncompiled statements, proceed as follows:

• When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to true.

• To return PreparedStatement objects containing precompiled statements
use Connection.prepareStatement() in the standard way:

PreparedStatement ps_precomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareCall().

Connection.prepareCall() returns a CallableStatement object, but since
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to a PreparedStatement object, as in the following
example:

PreparedStatement ps_uncomp =
 Connection.prepareCall(sql_string);

The PreparedStatement object ps_uncomp is guaranteed to contain an
uncompiled statement, since only Connection.prepareStatement() is
implemented to return PreparedStatement objects containing precompiled
statements.
112

CHAPTER 4 Performance and Tuning

,

ted

,

Prepared statements in applications with jConnect extensions
If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement() to specify whether a
PreparedStatement object contains precompiled or uncompiled statements. In
this case, how you code prepared statements is likely to depend on whether
most of the dynamic statements in an application are likely to be executed
many times or only a few times during a session.

If most dynamic statements are executed very few times

For an application in which most dynamic SQL statements are likely to be
executed only once or twice in a session:

• Set the connection property DYNAMIC_PREPARE to false.

• To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareStatement() in the standard way:

PreparedStatement ps_uncomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing precompiled statements
use SybConnection.prepareStatement() with dynamic set to “true:”

PreparedStatement ps_precomp =
 (SybConnection)conn.prepareStatement(sql_string, true);

If most dynamic statements are executed many times in a session

If most of the dynamic statements in an application are likely to be execu
many times in the course of a session, proceed as follows:

• Set the connection property DYNAMIC_PREPARE to true.

• To return PreparedStatement objects containing precompiled statements
use Connection.prepareStatement() in the standard way:

PreparedStatement ps_precomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements,
you can use either Connection.prepareCall() (see the third bullet under
Prepared statements in portable applications) or
SybConnection.prepareStatement(), with dynamic set to “false:”

PreparedStatement ps_uncomp =
 (SybConnection)conn.prepareStatement(sql_string, false);
113

Performance tuning for prepared statements in dynamic SQL

r
cuted.
PreparedStatement ps_uncomp =
 Connection.prepareCall(sql_string);

Connection.prepareStatement()
jConnect implements Connection.prepareStatement() so you can set it to return
either precompiled SQL statements or uncompiled SQL statements in
PreparedStatement objects. If you set Connection.prepareStatement() to return
precompiled SQL statements in PreparedStatement objects, it sends dynamic
SQL statements to the database to be precompiled and saved exactly as they
would be under direct execution of the prepare command. If you set
Connection.prepareStatement() to return uncompiled SQL statements, it
returns them in PreparedStatement objects without sending them to the
database.

The type of SQL statement that Connection.prepareStatement() returns is
determined by the connection property DYNAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 5.0 provides a prepareStatement()
method under the jConnect SybConnection class.
SybConnection.prepareStatement() allows you to specify whether an individual
dynamic SQL statement is to be precompiled, independent of the session-level
setting of the DYNAMIC_PREPARE connection property.

DYNAMIC_PREPARE connection property
DYNAMIC_PREPARE is a Boolean-valued connection property for enabling
dynamic SQL prepared statements:

• If DYNAMIC_PREPARE is set to true, every invocation of
Connection.prepareStatement() during a session attempts to return a
precompiled statement in a PreparedStatement object.

In this case, when a PreparedStatement is executed, the statement it
contains is already precompiled in the database, with place holders fo
dynamically assigned values, and the statement needs only to be exe

• If DYNAMIC_PREPARE is set to false for a connection, the
PreparedStatement object returned by Connection.prepareStatement() does
not contain a precompiled statement.
114

CHAPTER 4 Performance and Tuning

 and

piled

sists

ting

use
In this case, each time a PreparedStatement is executed, the dynamic SQL
statement it contains must be sent to the database to be both compiled and
executed.

The default value for DYNAMIC_PREPARE is false.

In the following example, DYNAMIC_PREPARE is set to true to enable
precompilation of dynamic SQL statements. In the example, props is a
Properties object for specifying connection properties.

...
 props.put("DYNAMIC_PREPARE", "true")
 Connection conn = DriverManager.getConnection(url, props);

When DYNAMIC_PREPARE is set to true, note that:

• Not all dynamic statements can be precompiled under the prepare
command. The SQL-92 standard places some restrictions on the
statements that can be used with the prepare command, and individual
database vendors may have their own constraints.

• If the database generates an error because it is unable to precompile
save a statement sent to it through Connection.prepareStatement(),
jConnect traps the error and returns a PreparedStatement object containing
an uncompiled dynamic SQL statement. Each time the PreparedStatement
object is executed, the statement is re-sent to the database to be com
and executed.

• A precompiled statement resides in memory in the database and per
either to the end of a session or until its PreparedStatement object is
explicitly closed. Garbage collection on a PreparedStatement object does
not remove the prepared statement from the database.

As a general rule, you should explicitly close every PreparedStatement
object after its last use to prevent prepared statements from accumula
in server memory during a session and slowing performance.

SybConnection.prepareStatement()
If your application allows jConnect-specific extensions to JDBC, you can
the SybConnection.prepareStatement() extension method to return dynamic
SQL statements in PreparedStatement objects:

PreparedStatement SybConnection.prepareStatement(String sql_stmt,
 boolean dynamic) throws SQLException
115

Cursor performance

SybConnection.prepareStatement() can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamic is true,
SybConnection.prepareStatement() returns a PreparedStatement object with a
precompiled SQL statement. If dynamic is false, it returns a PreparedStatement
object with an uncompiled SQL statement.

The following example shows the use of
 SybConnection.prepareStatement() to return a PreparedStatement object
containing a precompiled statement:

PreparedStatement precomp_stmt =
 ((SybConnection) conn).prepareStatement("SELECT * FROM
 authors WHERE au_fname LIKE ?", true);

In the example, the connection object conn is downcast to a SybConnection
object to allow the use of SybConnection.prepareStatement(). The SQL string
passed to SybConnection.prepareStatement() will be precompiled in the
database, even if the connection property DYNAMIC_PREPARE is false.

If the database generates an error because it is unable to precompile a statement
sent to it through SybConnection.prepareStatement(), jConnect throws a
SQLException and the call fails to return a PreparedStatement object. This is
unlike Connection.prepareStatement(), which traps SQL errors and, in the
event of an error, returns a PreparedStatement object containing an uncompiled
statement.

Cursor performance
When you use the Statement.setCursorName() method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the
database. Other methods cause jConnect to open, fetch, and update a cursor.

Versions of jConnect earlier than 4.0 can create and manipulate cursors only by
sending SQL statements with explicit cursor commands to the database for
parsing and compilation.

jConnect version 4.0 and later create and manipulate cursors either by sending
SQL statements to the database or by encoding cursor commands as tokens
within the Tabular Data Stream (TDS) communication protocol. Cursors of the
first type are “language cursors;” cursors of the second type are “protocol
cursors.”
116

CHAPTER 4 Performance and Tuning

nect

ursors
ion.

e,

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, Adaptive
Server Anywhere databases do not support language cursors.

In jConnect, the default condition is for all cursors to be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and manipulated through language commands
in the database.

LANGUAGE_CURSOR connection property
LANGUAGE_CURSOR is a Boolean-valued connection property in jConnect
that allows you to determine whether cursors are created as protocol cursors or
language cursors:

• If LANGUAGE_CURSOR is set to false, all cursors created during a
session are protocol cursors, which provide better performance. jCon
creates and manipulates the cursors by sending cursor commands as
tokens in the TDS protocol.

By default, LANGUAGE_CURSOR is set to false.

• If LANGUAGE_CURSOR is set to true, all cursors created during a
session are language cursors. jConnect creates and manipulates the c
by sending SQL statements to the database for parsing and compilat

There is no known advantage to setting LANGUAGE_CURSOR to tru
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR is false.
117

Cursor performance
118

C H A P T E R 5 Migrating jConnect Applications

This chapter explains how to migrate applications that use Sybase
extensions from jConnect version 4.0 or earlier to use jConnect versions
4.1 and later.

Migrating jConnect applications

Migrating applications to jConnect 4.5 and 5.5
If you upgrade to jConnect 4.5 or 5.5 from earlier versions, the following
table shows which upgrade paths require you to make changes and
recompile the source code.

Legend:

A Change CLASSPATH for new installation structure

B Recompile to use new jConnect 5.x driver

C Verify that the new driver is first in your CLASSPATH.

See below for additional details.

A. Use the new Sybase
extensions.

1 Change package imports from

import com.sybase.jdbc.*

Topics
Migrating applications to jConnect 4.5 and 5.5

Sybase extensions

Upgrading from To jConnect version

jConnect version 4.5 5.2 5.5

4.2 A BC BC

5.2 - - A
119

Migrating jConnect applications

ect

or
to

import com.sybase.jdbcx.*;

2 Use new Sybase extentions APIs. See “Sybase extensions” on page 121.

A. Change
CLASSPATH for new
JDBC_HOME
installation structure

Set JDBC_HOME to the top directory of the jConnect driver you installed.
For example:

For jConnect 4.5:

JDBC_HOME=jConnect-4_5

For jConnect 5.5:

JDBC_HOME=<jConnect installation directory>

For more information on setting JDBC_HOME, see “Setting Environment
Variables” in Chapter 1 of the jConnect for JDBC Installation Guide.

B. Recompile to use
new jConnect 5.x
driver

Change the source code where the driver is loaded from:

Class.forName("com.sybase.jdbc.SybDriver");

to

Class.forName("com.sybase.jdbc2.jdbc.SybDriver");

C. Verify that new
jConnect driver is in
CLASSPATH

To verify that the new jConnect driver is first in your CLASSPATH, display
your CLASSPATH and find the directory where you installed the new jConn
driver.

Verify that the classes for the new driver (either in the /classes directory for 4.x
or classes/jconn2.jar for 5.x) appear in the CLASSPATH before the classes f
any previously installed driver.

Version change CLASSPATH includes

From 4.2 JDBC_HOME/classes

To 5.2 JDBC_HOME/jconn2.jar

From 4.2 JDBC_HOME/classes

To 4.5 JDBC_HOME/classes

From 5.2 JDBC_HOME/classes/jconn2.jar

To 5.5 JDBC_HOME/classes/jconn2.jar
120

CHAPTER 5 Migrating jConnect Applications
Sybase extensions
jConnect version 4.1 and later include the package com.sybase.jdbcx that
contains all of the Sybase extensions to JDBC. In versions of jConnect
previous to 4.1, these extensions were available in the com.sybase.jdbc and
com.sybase.utils packages.

com.sybase.jdbcx provides a consistent interface across different versions of
jConnect. All of the Sybase extensions are defined as Java interfaces, which
allows the underlying implementations to change without affecting
applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. The interfaces in this package allow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Note Applications previously built using the Sybase extensions to the JDBC
API, which were available in com.sybase.jdbc and com.sybase.utils, will
continue to work under jConnect 4.x; however, all Sybase extensions in
com.sybase.jdbc and com.sybase.utils have been marked deprecated.

Some of the Sybase extensions have been changed to accommodate the new
com.sybase.jdbcx interface.

Change example
If an application uses the SybMessageHandler, the code differences would be:

• jConnect 4.0 code:

import com.sybase.jdbc.SybConnection;
import com.sybase.jdbc.SybMessageHandler;
.
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setMessageHandler(new ConnectionMsgHandler());

• jConnect 4.1 and later code:

import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybMessageHandler;
.

121

Sybase extensions
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setSybMessageHandler(new ConnectionMsgHandler());

See the samples provided with jConnect for more examples of how to use
Sybase extensions.

Method names
The following table lists how methods were been renamed in the new interface.

Debug class
Direct static references to the Debug class are no longer supported, but exist in
deprecated form in the com.sybase.utils package. To use jConnect debugging
facilities, use the getDebug() method of the SybDriver class to obtain a
reference to the Debug class. For example:

import com.sybase.jdbcx.SybDriver;
import com.sybase.jdbcx.Debug;
.
.
.
SybDriver sybDriver =

SybDriver)Class.forName
("com.sybase.jdbc2.jdbc.SybDriver") newInstance();

Debug sybDebug = sybDriver.getDebug();
sybDebug.debug(true, "ALL", System.out);

A complete list of Sybase extensions is in the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

Class Old name New name

SybConnection getCapture() createCapture()

SybConnection setMessageHandler() setSybMessageHandler()

SybConnection getMessageHandler() getSybMessageHandler()

SybStatement setMessageHandler() setSybMessageHandler()

SybStatement getMessageHandler() getSybMessageHandler()
122

t to
y of
ded
C H A P T E R 6 Web Server Gateways

This chapter describes Web server gateways and explains how to use them
with jConnect.

About Web server gateways
If your database server runs on a different host than your Web server, or if
you are developing Internet applications that must connect to a secure
database server through a firewall, you need a gateway to act as a proxy,
providing a path to the database server.

To connect to servers using the Secure Sockets Layer (SSL) protocol,
jConnect provides a Java servlet that you can install on any Web server
that supports the javax.servlet interfaces. This servlet enables jConnect to
support encryption using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For
information on jConnect’s client-side support of SSL, see “Implementing
custom socket plug-ins” on page 27.

TDS tunnelling
jConnect uses TDS to communicate with database servers. HTTP-
tunnelled TDS is useful for forwarding requests. Requests from a clien
a back-end server that go through the gateway contain TDS in the bod
the request. The request header indicates the length of the TDS inclu
in the request packet.

TOPICS
About Web server gateways
Using the TDS-tunnelling servlet
123

About Web server gateways

ing

les
 the

h
TDS is a connection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain a logical connection across HTTP requests.
The servlet generates a session ID during the initial login request, and the
session ID is included in the header of every subsequent request. Using session
IDs lets you identify active sessions, and even resume a session as long as the
servlet has an open connection using that specific session ID.

The logical connection provided by the TDS-tunnelling servlet enables
jConnect to support encrypted communication between two systems—for
example, a jConnect client with the CONNECT_PROTOCOL connection
property set to “https” connecting to a Web server running the TDS-tunnell
servlet.

jConnect and gateway configuration
There are several options for setting up your Web servers and Adaptive
Servers. Four common configurations are described below. These examp
show where to install the jConnect driver and when to use a gateway with
TDS-tunnelling servlet.

Web server and Adaptive Server on one host

In this two-tier configuration, the Web server and Adaptive Server are bot
installed on the same host.

• Install jConnect on the Web server host.

• No gateway required.
124

CHAPTER 6 Web Server Gateways
Figure 6-1: Web server and Adaptive Server on one host

Dedicated JDBC Web server and Adaptive Server on one host

With this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server direct requests requiring
SQL access to the dedicated Web server.

• Install jConnect on the second (Adaptive Server) host.

• No gateway required.

Web
Server

Client

Downloaded
appplets and

jConnect
driver

Browser

Host

Adaptive
Server

URL

Download
applets and

jConnect

applets and
jConnect

TDS 5.0
125

About Web server gateways
Figure 6-2: Main Web server on separate host

Web server and Adaptive Server on separate hosts

In this three-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive
Server.

• Install jConnect on the Web server host.

• Requires a TDS-tunnelling servlet or a different gateway.

Web
Server

Client

Downloaded
appplets and

jConnect
driver

Browser

Host B

Adaptive
Server

URL

applets and
jConnect

Main Web
Server

Host A

non-SQL
applets

URL

Download
applets and

jConnect

TDS 5.0
126

CHAPTER 6 Web Server Gateways
Figure 6-3: Web Server and Adaptive Server on separate hosts

Connecting to a server through a firewall

To connect to a server protected by a firewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request
responses over the Internet.

• Install jConnect on the Web server host.

• Requires a Web server that supports the javax.servlet interfaces.

Client

Downloaded
appplets and

jConnect
driver

Browser
URL

Host B

Download
applets and

jConnect

TDS 5.0

Main Web
Server

Host A

Adaptive
Server

applets and
jConnect

TDS-TS
or other
Gateway

HTTP
tunneled
TDS
127

Usage requirements
Figure 6-4: Connect a server through a firewall

Usage requirements

Reading the index.html file
Use your Web browser to view the index.html file in your jConnect installation
directory. index.html provides links to the jConnect documentation and sample
code.

Client

Downloaded
appplets and

jConnect
driver

Browser
URL

Host B

Download
applets and

jConnect

TDS 5.0

Host A

Adaptive
Server

applets and
jConnect

HTTP/HTTPS
tunneled

TDS

Web Server
Supporting

javax.servlet
TDS servlet

Firewall
128

CHAPTER 6 Web Server Gateways

and

r:

nd

able

se
st

n

he
Note If you use Netscape on the same machine where you have installed
jConnect, make sure that your browser does not have access to your
CLASSPATH environment variable. See “Restrictions on Setting
CLASSPATH When You Use Netscape” in Chapter 3 of the Sybase jConnect
for JDBC Installation Guide and Release Bulletin.

1 Open your Web browser.

2 Enter the URL that matches your setup. For example, if your browser
the Web server are running on the same host, enter:

http://localhost:8000/index.html

If the browser and the Web server are running on different hosts, ente

http://host:port/index.html

where host is the name of the host on which the Web server is running, a
port is the listening port.

Running the sample Isql applet
After loading the index.html file in your browser:

1 Click “Run Sample JDBC Applets.”

This takes you to the jConnect Sample Programs page.

2 Move down the Sample Programs page to find the table under “Execut
Samples.”

3 Locate “Isql.java” in the table and click Run at the end of the row.

The sample Isql.java applet prompts for a simple query on a sample databa
and displays the results. The applet displays a default Adaptive Server ho
name, port number, user name (guest), password (sybase), database, and query.
Using the default values, the applet connects to the Sybase demonstratio
database. It returns results after you click Go.

Troubleshooting

Under UNIX, if the applet does not appear as expected, you can modify t
applet screen dimensions:

1 Use a text editor to edit the following:
129

Using the TDS-tunnelling servlet

.
vlet

rver

 the

s the
TDS
f the
mand

ient
s a
For jConnect 4.x

$JDBC_HOME/sample/gateway.html

For jConnect 5.x

$JDBC_HOME/sample2/gateway.html

2 Change the height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Using the TDS-tunnelling servlet
To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such as Sun Microsystems, Inc.’s Java Web server
When you install the Web server, include the jConnect TDS-tunnelling ser
in the list of active servlets. You can also set servlet parameters to define
connection timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end se
that go through the gateway include a GET or POST command, the TDS
session ID (after the initial request), back-end address, and status of the
request.

TDS is in the body of the request. Two header fields indicate the length of
TDS stream and the session ID assigned by the gateway.

When the client sends a request, the Content-Length header field indicate
size of the TDS content, and the request command is POST. If there is no
data in the request because the client is either retrieving the next portion o
response data from the server, or closing the connection, the request com
is GET.

The following example illustrates how information is passed between the cl
and an HTTPS gateway using the TDS-tunneled HTTPS protocol; it show
connection to a back-end server named DBSERVER with a port number
“1234.”
130

CHAPTER 6 Web Server Gateways

t
Table 6-1: Client to gateway login request. No session ID.

Table 6-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Table 6-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Table 6-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

TDS-tunnelling servlet system requirements
To use the jConnect servlet for TDS-tunneled HTTP, you need:

• A Web server that supports javax.servlet interfaces. To install the server,
follow the instructions that are provided with it.

• A Web browser that supports JDK 1.1, such as Netscape 4.0, Interne
Explorer 4.0, or HotJava.

Query POST/tds?ServerHost=dbserver&ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content
(TDS)

Login request

Query 200 SUCCESS HTTP/1.0

Header Content-Length: 210
 TDS-Session: TDS00245817298274292

Content
(TDS)

Login acknowledgment
 EED

Query POST/tds?TDS-
Session=TDS00245817298274292&Operation=more HTTP/1.0

Header Content-Length: 32

Content
(TDS)

Query “SELECT * from authors”

Query 200 SUCCESS HTTP/1.0

Header Content-Length: 2048
 TDS-Session: TDS00245817298274292

Content
(TDS)

Row format and some rows from query response
131

Using the TDS-tunnelling servlet

ing

ents

ypted
Installing the servlet
Your jConnect installation includes a gateway subdirectory (jConnect 4.x) or
gateway2 subdirectory (jConnect 5.x) under the classes directory. The
subdirectory contains files required for the TDS-tunnelling servlet.

Copy the jConnect gateway package to a gateway subdirectory (jConnect 4.x)
or gateway2 subdirectory (jConnect 5.x) under your Web server’s servlets
directory. Once you have copied the servlets, activate the servlets by follow
the instructions for your Web server.

Setting servlet arguments

When you add the servlet to your Web server, you can enter optional argum
to customize performance:

• SkipDoneProc [true|false] – Sybase databases often return row count
information as intermediate processing steps are performed during the
execution of a query. Usually client applications ignore this data. If you set
SkipDoneProc to true, the servlet will remove this extra information from
responses “on the fly,” which reduces network usage and processing
requirements on the client. This is particularly useful when using
HTTPS/SSL because the unwanted data does not get encrypted/decr
before it is ignored.

• TdsResponseSize – set the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSize is more efficient if you have only a few
users with a large volume of data. Use a smaller TdsResponseSize if you
have many users making smaller transactions.

• TdsSessionIdleTimeout – define the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionIdleTimeout is 600,000 (10
minutes).

If you have interactive client programs that may be idle for long periods of
time and you do not want the connections broken, increase the
TdsSessionIdleTimeout.

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. This is useful if you
have specific applications that may be idle for longer periods. In this case,
set a longer timeout for those connections with the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

• Debug – turn on debugging. See “Debugging with jConnect” on page 97.
132

CHAPTER 6 Web Server Gateways

r
ative

 see

on.
click
Enter the servlet arguments in a comma-delimited string. For example:

TdsResponseSize=[size],TdsSessionIdleTimeout=
[timeout],Debug=true

Refer to your Web server documentation for complete instructions on entering
servlet arguments.

Invoking the servlet
jConnect determines when to use the gateway where the TDS-tunnelling
servlet is installed based on the path extension of the proxy connection
property. jConnect recognizes the servlet path extension to the proxy and
invokes the servlet on the designated gateway.

Define the connection URL using this format:

http://host:port/TDS-servlet-path

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS
through HTTP. The servlet path must be the path you defined in your Web
server’s servlet alias list.

Tracking active TDS sessions
You can view information about active TDS sessions, including the serve
connections for each session. Use your Web browser to open the administr
URL:

http://host:port/TDS-servlet-path?Operation=list

For example, if your server is MYSERVER and the TDS servlet path is /tds,
enter:

http://myserver:8080/tds?Operation=list

This shows you a list of active TDS sessions. You can click on a session to
more information, including the server connection.

Terminating TDS sessions

You can use the URL described above to terminate any active TDS sessi
Click on an active session from the list of sessions on the first page, then
Terminate This Session.
133

Using the TDS-tunnelling servlet
Resuming a TDS session
You can set the SESSION_ID connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_ID,
jConnect skips the login phase of the protocol and resumes the connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

TDS tunnelling and Netscape Enterprise Server 3.5.1 on Solaris
Netscape Enterprise Server 3.5.1 does not support the
javax.servlet.ServletConfig.getInitParameters() or
javax.servlet.ServletConfig.getInitParameterNames() methods. To provide the
necessary parameter values, you need to replace calls to getInitParameter() and
getInitParameterNames() with hard-coded parameter values in
TDSTunnelServlet.java.

To enter the required parameter values in TDSTunnelServlet.java and use TDS
tunnelling with Netscape Enterprise Server 3.5.1 on Solaris:

1 Hard code parameter values in TDSTunnelServlet.java.

2 Create .class files from the class declarations in TDSTunnelServlet.java.

This should result in the following files:

• TDSTunnelServet.class

• TdsSession.class

• TdsSessionManager.class

3 Create a directory for the .class files under your Netscape Enterprise
Server 3.5.1 (NSE_3.5.1) installation directory, as follows:

mkdir NSE_3.5.1_install_dir/plugins/java/servlets/gateway

4 Copy the .class files derived from TDSTunnelServlet.java to the directory
you just created.

5 Copy the classes under $JDBC_HOME/classes/com/sybase to
NSE_3.5.1_install_dir/docs/com/sybase.

An easy way to do this is to recursively copy everything under
$JDBC_HOME/classes to NSE_3.5.1_install_dir/docs, as:

cp -r $JDBC_HOME/classes NSE_3.5.1_install_dir/docs
134

CHAPTER 6 Web Server Gateways
This copies a number of files and directories that are not under
$JDBC_HOME/classes/com/sybase. The extra files and directories are
harmless, but take up disk space. You can delete them to reclaim the disk
space.

6 Set the proxy URL to the TDS-tunnelling servlet.

For example, in $JDBC_HOME/sample/gateway.html, you would edit the
proxy parameter to appear as follows:

<param name=proxy value=”http:// hostname/servlet/
 gateway_name.TDSTunnel_Servlet_name”>
135

Using the TDS-tunnelling servlet
136

 does

 the

ou
fined

ning.

he

h
A P P E N D I X A SQL Exception and Warning
Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQL state Message/description/action

010DP Duplicate connection property _____ ignored.

Description: A connection property is defined twice. It may be defined twice in the driver
connection properties list with different capitalization, for example “password” and
“PASSWORD.” Connection property names are not case-sensitive, and therefore jConnect
not distinguish between property names with the same name but different capitalization.

The connection property may also be defined both in the connection properties list, and in
URL. In this case, the property value in the connection property list takes precedence.

Action: Make sure your application defines the connection property only once. However, y
may want you application to take advantage of the precedence of connection properties de
in the property list over those defined in the URL. In this case, you can safely ignore this war

010HA The server denied your request to use the high-availability feature.
Please reconfigure your database, or do not request a high-
availability session.

Description: The REQUEST_HA_SESSION connection property was not set to true, and t
server to which jConnect attempted a connection did not allow the connection.

Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to true.

010HD Sybase high-availability failover is not supported by this type of
database server.

Description: The database to which jConnect attempted a connection does not support hig
availability failover.

Action: Connect only to database servers that support high availability failover.
137

lt-

 so

load”

ot

010MX Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation. Error encountered while attempting to retrieve
metadata information: _____

Description: The server may not have the necessary stored procedures for returning metadata
information.

Action: Make sure that stored procedures for providing metadata are installed on the server. See
“Installing Stored Procedures” in Chapter 3 of the jConnect for JDBC Installation Guide.

010P4 An output parameter was received and ignored.

Description: The query you executed returned an output parameter but the application resu
processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, you must rewrite the application
it can get it. This may require using a CallableStatement to execute the query, and adding calls to
registerOutputParameter() and getXXX().

010PF One or more jars specified in the PRELOAD_JARS connection property
could not be loaded.

Description: This happens when using the DynamicClassLoader with the PRELOAD_JARS
connection property set to a comma-delimited list of JAR names. When the DynamicClassLoader
opens its connection to the server from which the classes are to be loaded, it attempts to “pre
all the JAR files mentioned in this connection property. If one or more of the JAR names
specified does not exist on the server, the above error message results.

Action: Verify that every JAR file mentioned in your application’s PRELOAD_JARS
connection property exists and is accessible on the server.

010RC The requested ResultSet type and concurrency is not supported. They
have been converted.

Description: You requested a type and concurrency combination for the ResultSet that is n
supported. The requested values had to be converted.

Action: Request a type and concurrency combination for the ResultSet that is supported.

010SJ Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation.

Description: The metadata information is not configured on the server.

Action: If your application requires metadata, install the stored procedures for returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of the
jConnect for JDBC Installation Guide). If you do not need metadata, set the USE_METADATA
property to false.

SQL state Message/description/action
138

APPENDIX A SQL Exception and Warning Messages

 you
t

dures
apter

et
010SK Database cannot set connection option _____.

Description: Your application attempted an operation that the database you are connected to
does not support.

Action: You may need to upgrade your database or make sure that the latest version of metadata
information is installed on it.

010SN Permission to write to file was denied. File: _____. Error message:

Description: Permission to write to a file specified in the PROTOCOL_CAPTURE connection
property is denied because of a security violation in the VM. This can occur if an applet attempts
to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the applet has
access to the target file system.

010SP File could not be opened for writing. File: _____. Error message:

Action: Make sure that the file name is correct and that the file is writable.

010TP The connection’s initial character set,_____, could not be converted
by the server. The server’s proposed character set,_____, will be
used, with conversions performed by jConnect.

Description: The server cannot use the character set initially requested by jConnect, and has
responded with a different character set. jConnect accepts the change, and will perform the
necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid this message, set the CHARSET connection property to a character set that the
server supports.

010UF Attempt to execute use database command failed. Error message:_____

Description: jConnect cannot connect to the database specified in the connection URL. Two
possibilities are:

• The name was entered incorrectly in the URL.

• USE_METADATA is true (the default condition), but the stored procedures for returning
metadata have not been installed. As a result, jConnect tried to execute the use database
command with the database in the URL, but the command failed. This may be because
attempted to access an Adaptive Anywhere database. SQL Anywhere databases do no
support the use database command.

Action: Make sure the database name in the URL is correct. Make sure that the stored proce
for returning metadata are installed on the server (see “Installing Stored Procedures” in Ch
3 of the jConnect for JDBC Installation Guide and Release Bulletin). If you are attempting to
access a SQL Anywhere database, either do not specify a database name in the URL, or s
USE_METADATA to false.

SQL state Message/description/action
139

ng

ON
010UP Unrecognized connection property _____ ignored.

Description: You attempted to set a connection property in the URL that jConnect does not
currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sure it references only valid
jConnect driver connection properties.

0100V The version of TDS protocol being used is too old.
 Version: _____

Description: The server does not support the required version of the TDS protocol. jConnect
requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the jConnect installation
guide’s system requirements section for details.

JW0I0 I/O layer: thread operation failed.

Description: An internal error occurred with a timed I/O stream.

Action: Close and reopen the connection.

JZ001 User name property ‘_____’ too long. Maximum length is 30.

Action: Do not exceed the 30 byte maximum.

JZ002 Password property ‘_____’ too long. Maximum length is 30.

Action: Do not exceed the 30-byte maximum.

JZ003 Incorrect URL format. URL: _____

Action: Verify the URL format. See “URL connection property parameters” on page 19.

If you are using the PROXY connection property, you may get a JZ003 exception while tryi
to connect if the format for the PROXY property is incorrect.

The PROXY format for the Cascade proxy is:

 ip_address:port_number

The PROXY format for the TDS tunnelling servlet is:

 http[s]://host:port/tunneling_servlet_alias

JZ004 User name property missing in DriverManager.getConnection(...,
Properties)

Action: Provide the required user property.

JZ006 Caught IOException: _____

Description: An unexpected I/O error was detected from a lower layer. When such I/O
exceptions are caught, they are rethrown as SQL exceptions using the ERR_IO_EXCEPTI
JZ006 sqlstate. These errors are often the result of network communication problems.

Action: Try increasing the statement cache size.

SQL state Message/description/action
140

APPENDIX A SQL Exception and Warning Messages

 type.

ke
t

.
n page

ursor
JZ008 Invalid column index value _____.

Description: You have requested a column index value of less than 1 or greater than the highest
available value.

Action: Check call to the getXXX() method and the text of the original query, or be sure to call
rs.next().

JZ009 Error encountered in conversion. Error message: _____

Description: Some of the possibilities are:

• A conversion between two incompatible datatypes was attempted, such as date to int.

• There was an attempt to convert a string containing a nonnumeric character to a numeric

• There was a formatting error, such as an incorrectly formatted time/date string.

Action: Make sure that the JDBC specification supports the attempted type conversion. Ma
sure that strings are correctly formatted. If a string contains non-numeric characters, do no
attempt to convert it to a numeric type.

JZ00B Numeric overflow.

Description: You tried to send a BigInteger as a TDS numeric, and the value was too large, or
you tried to send a Java long as an int and the value was too large.

Action: These values cannot be stored in Sybase. For long, consider using a Sybase numeric.
There is no solution for Bignum.

JZ00E Attempt to call execute() or executeUpdate() for a statement where
setCursorName() has been called.

Action: Do not try to call execute or executeUpdate on a statement that has a cursor name set
Use a separate statement to delete or update a cursor. See “Using cursors with result sets” o
47 for more information

JZ00F Cursor name has already been set by setCursorName().

Action: Do not set the cursor name twice for a statement. Close the result set of the current c
statement.

JZ00G No column values were set for this row update.

Description: You attempted to update a row in which no column values were changed.

Action: To change column values in a row, call updateXX() methods before calling updateRow().

JZ00H The result set is not updatable. Use
Statement.setResultSetConcurrencyType().

Action: To change a result set from read-only to updatable, use the
Statement.setResultSetConcurrencyType() method or add a for update clause to your SQL select
statement.

JZ00L Login failed. Examine the SQLWarnings chained to this exception for
the reason(s).

Action: See message text; proceed according to the reason(s) given for the login failure.

SQL state Message/description/action
141

JZ010 Unable to deserialize an Object value. Error text: _____

Action: Make sure that the Java object from the database implements the Serializable interface
and is in your local CLASSPATH variable.

JZ011 Number format exception encountered while parsing numeric connection
property _____.

Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

JZ012 Internal Error. Please report it to Sybase technical support. Wrong
access type for connection property _____.

Action: Please contact Sybase Technical Support.

JZ013 Error obtaining JNDI entry: _____

Action: Correct the JNDI URL or make a new entry in the directory service.

JZ0BD Out of range or invalid value used for method parameter.

Action: Verify that the parameter value in the method is correct.

JZ0BE BatchUpdateException: Error occurred while executing batch
statement: ________.

Action: Contact Sybase Technical Support.

JZ0BI Message: setFetchSize: The fetch size should be set with the following
restrictions – 0 <= rows <= (maximum number of rows in the ResultSet).

Description: The client application has tried to call setFetchSize with an invalid number of
rows.

Action: Verify that you are calling setFetchSize with the parameter falling within the above
range of values.

JZ0BP Output parameters are not allowed in Batch Update Statements.

JZ0BR The cursor is not positioned on a row that supports the _____ method.

Description: You attempted to call a ResultSet method that is invalid for the current row position
(for example, calling insertRow() when the cursor is not on the insert row).

Action: Do not attempt to call a ResultSet method that is invalid for the current row position.

JZ0BS Batch Statements not supported.

JZ0BT The _____ method is not supported for ResultSets of type _____.

Description: You attempted to call a ResultSet method that is invalid for the type of ResultSet.

Action: Do not attempt to call a ResultSet method that is invalid for the type of ResultSet.

JZ0C0 Connection is already closed.

Description: The application has already called Connection.close() on this connection object; it
cannot be used any more.

Action: Fix the code so that connection object references are nulled out whe a connection is
closed.

SQL state Message/description/action
142

APPENDIX A SQL Exception and Warning Messages
JZ0D0 This jConnect installation has not been registered yet. You need to
install the appropriate SybDriverKey classes.

Action: Register your jConnect software at http://www.sybase.com/products/internet/jconnect/.

Once you register, you can download the SybDriverKey classes necessary to activate the jConnect
driver.

JZ0D2 Your Sybase JDBC license expired on _____. Please obtain a new
license.

Action: Contact Sybase to obtain a new license for your jConnect driver.

JZ0D3 Your Sybase JDBC license will expire soon. Please obtain a new
license. It will expire on _____.

Action: Contact Sybase to obtain a new license for your jConnect driver.

JZ0D4 Unrecognized protocol in Sybase JDBC URL:_____.

Description: You specified a connection URL using a protocol other than TDS, which is the only
protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make sure that
the entry uses the following format and capitalization:

jdbc:sybase:Tds:host:port

If the URL specifies JNDI as a subprotocol, make sure that it starts with:

jdbc:sybase:jndi:

JZ0D5 Error loading protocol _____.

Action: Check the settings for the CLASSPATH system variable.

JZ0D6 Unrecognized version number _____ specified in setVersion. Choose one
of the SybDriver.VERSION_* values, and make sure that the version of
jConnect that you are using is at or beyond the version you specify.

Action: See message text.

JZ0D7 Error loading url provider _____. Error message: _____

Action: Check the JNDI URL to make sure it is correct.

JZ0D8 Error initializing url provider: _____

Action: Check the JNDI URL to make sure it is correct.

JZ0EM End of data.

Action: Please report this error to Sybase Technical Support.

SQL state Message/description/action
143

e.

ent

n

ter-
JZ0F2 Sybase high-availability failover has occurred. The current
transaction is aborted, but the connection is still usable. Retry
your transaction.

Description: The backend database server to which you were connected has gone down, but you
have failed over to a secondary server. The database connection is still usable.

Action: Client code should catch this exception, then restart the transaction from the last
committed point. Assuming you properly handle the exception, you can continue executing
JDBC calls on the same Connection object.

JZ0H0 Unable to start thread for event handler; event name = _____.

Action: Please report this error to Sybase Technical Support.

JZ0H1 An event notification was received but the event handler was not
found; event name = _____.

Action: Please report this error to Sybase Technical Support.

JZ0HC Illegal character ‘_____’ encountered while parsing hexadecimal
number.

Description: A string that is supposed to represent a binary value contains a character that is not
in the range (0–9, a–f) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required rang

JZ0I1 I/O Layer: Error reading stream.

Description: The connection was unable to read the amount requested. Most likely, the
statement timeout period was exceeded and the connection timed out.

Action: Increase the statement timeout value.

JZ0I2 I/O layer: Error writing stream.

Description: The connection was unable to write the output requested. Most likely, the statem
time-out period was exceeded and the connection timed out.

Action: Increase the statement time out value.

JZ0I3 Unknown property. This message indicates an internal product problem.
Report this error to Sybase Technical support.

Action: Indicates an internal product problem. Please report this error to Sybase Technical
Support.

JZ0I5 An unrecognized CHARSET property was specified: _____.

Description: You specified an unsupported character set code for the CHARSET connectio
property.

Action: Enter a valid character-set code for the connection property. See “jConnect charac
set converters” on page 33.

SQL state Message/description/action
144

APPENDIX A SQL Exception and Warning Messages
JZ0I6 An error occurred converting UNICODE to the charset used by the
server. Error message: _____

Action: Choose a different character set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install a different character set on the server, too.

JZ0I7 No response from proxy gateway.

Description: The Cascade or security gateway is not responding.

Action: Make sure the gateway is properly installed and running.

JZ0I8 Proxy gateway connection refused. Gateway response: _____

Description: The Web server/gateway indicated by the PROXY connection property has refused
your connection request.

Action: Check the access and error logs on the proxy to determine why the connection was
refused. Make sure the proxy is a JDBC gateway.

JZ0I9 This InputStream was closed.

Description: You tried to read an InputStream obtained from getAsciiStream(),
getUnicodeStream(), or getBinaryStream(), but the InputStream was already closed. The stream
may have been closed because you moved to another column or cancelled the result set and there
were not enough resources to cache the data.

Action: Increase the cache size or read columns in order.

JZ0IA Truncation error trying to send_____.

Description: There was a truncation error on character set conversion prior to sending a string.
The converted string is longer than the size allocated for it.

Action: Choose a different character-set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install a different character set on the server, too.

JZ0IS getXXXStream may not be called on a column after it has been updated
in the result set.

Description: After updating a column in a result set, you attempted to read the updated column
value using one of the following SybResultSet methods: getAsciiStream(), getUnicodeStream(),
getBinaryStream(). jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

JZ0J0 Offset and/or length values exceed the actual text/image length.

Action: Check the offset and/or length values you used to make sure they are correct.

JZ0NC wasNull called without a preceding call to get a column.

Description: You can only call wasNull() after a call to get a column, such as getInt() or
getBinaryStream().

Action: Change the code to move the call to wasNull().

SQL state Message/description/action
145

JZ0NE Incorrect URL format. URL: _____. Error message: _____

Action: Check the format of the URL. Make sure that the port number consists only of numeric
characters.

JZ0NF Unable to load SybSocketFactory. Make sure that you have spelled the
class name correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argument constructor.

Action: See message text.

JZ0P1 Unexpected result type.

Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally indicates that the
application is using JDBC incorrectly to execute the query or stored procedure. If the JDBC
application is connected to an Open Server application, it may indicate an error in the Open
Server application that causes the Open Server to send unexpected sequences of results.

Action: Use the com.sybase.utils.Debug(true, “ALL”) debugging tools to try to figure out what
unexpected result is seen, and to understand its causes.

JZ0P4 Protocol error. This message indicates an internal product problem.
Report this error to Sybase technical support.

Action: See message text.

JZ0P7 Column is not cached; use RE-READABLE_COLUMNS property.

Description: With the REPEAT_READ connection property set to false, an attempt was made
to reread a column or read a column in the wrong order.

When REPEAT_READ is false, you can only read the column value for a row once, and you can
only read columns in ascending column-index order. For example, after reading column 3 for a
row, you cannot read its value a second time and you cannot read column 2 for the row.

Action: Either set REPEAT_READ to true, or do not attempt to reread a column value and make
sure that you read columns in ascending column-index order.

JZ0P8 The RSMDA Column Type Name you requested is unknown.

Description: jConnect cannot determine the name of a column type in the
ResultSetMetaData.getColumnTypeName() method.

Action: Make sure that your database has the most recent stored procedures for metadata.

JZ0P9 A COMPUTE BY query has been detected. That type of result is
unsupported and has been cancelled.

Description: The query you executed returned COMPUTE results, which are not supported by
jConnect.

Action: Change your query or stored procedure so it does not use COMPUTE BY.

SQL state Message/description/action
146

APPENDIX A SQL Exception and Warning Messages
JZ0PA The query has been cancelled and the same response discarded.

Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements to
determine the cause.

JZ0PB The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server of
capabilities it wants supported and the server informs jConnect of the capabilities that it supports.
This error message is sent when an application requests an operation that was denied in the
original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sql_stmt, dynamic), and dynamic is set to
true, jConnect generates this message.

Action: Modify your code so that it does not request an unsupported capability.

JZ0PC The number and size of parameters in your query require wide table
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSION property to >=6 if you wish to request widetable
support.

Description: You are trying to execute a statement with a large number of parameters, and the
server is not configured to handle that many parameters. The number of parameters that can
produce this exception will vary, depending on the datatypes of the data you are sending. You
will never get this exception if you are sending 481 or fewer parameters.

Action: You must run this query against an ASE 12.5 or higher server. When you connect to the
database, set the JCONNECT_VERSION property to VERSION_6 or VERSION_LATEST.

JZ0PE The number of columns in your cursor declaration OR the size of your
cursor declaration itself are large enough that you require widetable
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSION property to >= 6 if you wish to request wide table
support.

Description: This error can occur when your SELECT statement tries to return data from more
than 255 columns, or when the actual length of the SELECT statement is very large (greater than
approximately 65500 characters).

Action: You must run this query against a version 12.5 or later Adaptive Server. When you
connect to the database, set the JCONNECT_VERSION property to VERSION_6 or
VERSION_LATEST.

JZ0R0 Result set has already been closed.

Description: The ResultSet.close() method has already been called on the result set object; you
cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are set to null whenever a result set is
closed.

SQL state Message/description/action
147

JZ0R1 Result set is IDLE as you are not currently accessing a row.

Description: The application has called one of the ResultSet.getXXX column-data retrieval
methods, but there is no current row; the application has not called ResultSet.next(), or
ResultSet.next() returned false to indicate that there is no data.

Action: Check that rs.next() is set to true before calling rs.getXXX.

JZ0R2 No result set for this query.

Description: You used Statement.executeQuery(), but the statement returned no rows.

Action: Use executeUpdate for statements returning no rows.

JZ0R3 Column is DEAD. This is an internal error. Please report it to Sybase
technical support.

Action: See message text.

JZ0R4 Column does not have a text pointer. It is not a text/image column
or the column is NULL.

Description: You cannot update a text/image column if it is NULL. A NULL text/image column
does not contain a text pointer.

Action: Make sure that you are not trying to update or get a text pointer to a column that does
not support text/image data. Make sure that you are not trying to update a text/image column that
is NULL. Insert data first, then make the update.

JZ0RM refreshRow may not be called after updateRow or deleteRow.

Description: After updating a row in the database with SybCursorResult.updateRow(), or
deleting it with SybCursorResult.deleteRow(), you used SybCursorResult.refreshRow() to refresh
the row from the database.

Action: Do not attempt to refresh a row after updating it or deleting it from the database.

JZ0S0 Statement state machine: Statement is BUSY.

Description: The only time this error is raised is from the Statement.setCursorname() method,
if the application is trying to set the cursor name when the statement is already in use and has
noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queries on it, or call
Statement.cancel() before setting the cursor name, to make sure that the statement isn’t busy.

JZ0S1 Statement state machine: Trying to FETCH on IDLE statement.

Description: An internal error occurred on the statement.

Action: Close the statement and open another one.

JZ0S2 Statement object has already been closed.

Description: The Statement.close() method has already been called on the statement object; you
cannot use the statement for anything else.

Action: Fix the application so that statement object references are set to null whenever a
statement is closed.

SQL state Message/description/action
148

APPENDIX A SQL Exception and Warning Messages

re

 were
JZ0S3 The inherited method _____ cannot be used in this subclass.

Description: PreparedStatement does not support executeQuery(String), executeUpdate(String),
or execute(String).

Action: To pass a query string, use Statement, not PreparedStatement.

JZ0S4 Cannot execute an empty (zero-length) query.

Action: Do not execute an empty query (““).

JZ0S8 An escape sequence in a SQL Query was malformed: ‘_____’.

Description: This error results from bad escape syntax.

Action: Check JDBC documentation for correct syntax.

JZ0S9 Cannot execute an empty (zero-length) query.

Action: Do not execute an empty query (““).

JZ0SA Prepared Statement: Input parameter not set, index: _____.

Action: Make sure that each input parameter has a value.

JZ0SB Parameter index out of range: _____.

Description: You have attempted to get, set, or register a parameter that goes beyond the
maximum number of parameters.

Action: Check the number of parameters in your query.

JZ0SC Callable Statement: attempt to set the return status as an
InParameter.

Description: You have prepared a call to a stored procedure that returns a status, but you a
trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

JZ0SD No registered parameter found for output parameter.

Description: This indicates an application logic error. You attempted to call getXXX() or
wasNull() on a parameter, but you have not read any parameters yet, or there are no output
parameters.

Action: Check to make sure that the application has registered output parameters on the
CallableStatement, that the statement has been executed, and that the output parameters
read.

JZ0SE Invalid object type specified for setObject().

Description: Illegal type argument passed to PreparedStatement.setObject.

Action: Check the JDBC documentation. The argument must be a constant from java.sql.Types.

JZ0SF No Parameters expected. Has query been sent?

Description: You tried to set a parameter on a statement with no parameters.

Action: Make sure the query has been sent before you set the parameters.

SQL state Message/description/action
149

C

s:

L
JZ0SG An RPC did not return as many output parameters as the application
had registered for it.

Description: This error occurs if you call CallableStatement.registerOutParam() for more
parameters than you declared as “OUTPUT” parameters in the stored procedure. See “RP
returns fewer output parameters than registered” on page 104 for more information.

Action: Check your stored procedures and registerOutParameter calls. Make sure that you have
declared all of the appropriate parameters as “OUTPUT.” Look at the line of code that read

create procedure yourproc (@p1 int OUTPUT, ...

Note If you receive this error while using Adaptive Server Anywhere (previously known as SQ
Anywhere), upgrade to Adaptive Server Anywhere version 5.5.04.

JZ0SH A static function escape was used, but the metadata accessor
information was not found on this server.

Action: Install metadata accessor information before using static function escapes.

JZ0SI A static function escape _____ was used which is not supported by
this server.

Action: Do not use this escape.

JZ0SJ Metadata accessor information was not found on this database.

Action: Install metadata information before making metadata calls.

JZ0SM Unsupported SQL type _____.

Action: Do not use Types.NULL, or PreparedStatement.setObject(null).

JZ0SN setMaxFieldSize: field size cannot be negative.

Action: Use a positive value or zero (unlimited) when calling setMaxFieldSize.

JZ0SR setMaxRows: max rows cannot be negative.

Action: Use a positive value or zero (unlimited) when calling setMaxRows.

JZ0SS setQueryTimeout: query timeout cannot be negative.

JZ0ST jConnect cannot send a Java object as a literal parameter in a query.
Make sure that your database server supports Java objects and that
the LITERAL_PARAMS connection property is set to false when you
execute this query.

JZ0T2 Listener thread read error.

Action: Check your network communications.

JZ0T3 Read operation timed out.

Description: The time allotted to read the response to a query was exceeded.

Action: Increase the timeout period by calling Statement.setQueryTimeout().

JZ0T4 Write operation timed out. Timeout in milliseconds: _____.

Description: The time allotted to send a request was exceeded.

Action: Increase the timeout period by calling Statement.setQueryTimeout().

SQL state Message/description/action
150

APPENDIX A SQL Exception and Warning Messages
JZ0T5 Cache used to store responses is full.

Action: Use default or larger value for the STREAM_CACHE_SIZE connection property.

JZ0T6 Error reading tunneled TDS URL.

Description: The tunneled protocol failed while reading the URL header.

Action: Check the URL you defined for the connection.

JZ0T7 Listener thread read error -- caught ThreadDeath. Check network
connection.

Action: Check the network connections and try to run the application again. If the threads
continue to be aborted, please contact Sybase Technical Support.

JZ0T9 Request to send not synchronized. Please report this error to Sybase
Technical Support.

Action: See message text.

JZ0TC Attempted conversion between an illegal pair of types.

Description: Conversion between a Java type and a SQL type failed.

Action: Check the requested type conversion to make sure it is supported in the JDBC
specification.

JZ0TE Attempted conversion between an illegal pair of types. Valid database
types are: ‘_________.’

Description: The database column datatype and the datatype requested in theResultSet.getXXX()
call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZ0US The SybSocketFactory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this combination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://”.

Action: See message text.

JZ0CX ____________ is an unrecognized transaction coordinator type.

Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists, please
contact Sybase Technical Support.

JZ0XS The server does not support XA-style transactions. Please verify that
the transaction feature is enabled and licensed on this server.

Description: The server to which jConnect attempted a connection does not support distributed
transactions.

Action: Do not use XADataSource with this server, or upgrade or configure the server for
distributed transactions.

SQL state Message/description/action
151

JZ0XU Current user does not have permission to do XA-style transactions.
Be sure user has _______ role.

Description: The user connected to the database is not authorized to conduct distributed
transactions. Most likely because they do not have the proper role (shown in the blank).

Action: Grant the user the role shown in the error message, or have another user with that role
conduct the transaction.

S0022 Invalid column name ‘_____’.

Description: You attempted to reference a column by name and there is no column with that
name.

Action: Check the spelling of the column name.

ZZ00A The method _____ has not been completed and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can also check the jConnect Web page at http://www.sybase.com to see
whether a more recent version of jConnect implements the method. If not, do not use the method.

SQL state Message/description/action
152

A P P E N D I X B jConnect Sample Programs

This appendix is a guide to jConnect sample programs.

Running IsqlApp
IsqlApp allows you to issue isql commands from the command line, and
run jConnect sample programs.

The syntax for IsqlApp is:

IsqlApp [-U username] [-P password]
 [-S servername]
 [-G gateway]
 [-p {http|https}]
 [-D debug-class-list]
 [-v]
 [-I input-command-file]
 [-c command_terminator]
 [-C charset] [-L language]
 [-T sessionID]

 [-V <version {2,3,4,5}>]

Topics
Running IsqlApp

Running jConnect sample programs and code

Parameter Description

-U The login ID with which you want to connect to a server.

-P The password for the specified login ID.

-S The name of the server to which you want to connect.

-G Gateway address. For the HTTP protocol, the URL is: http://host:port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/servlet_alias.

-p Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption.
153

Running IsqlApp

lf,
e

r

ume

Note You must enter a space after each option flag.

To obtain a full description of the command-line options, enter:

java IsqlApp -help

The following example shows how to connect to a database on a host named
“myserver” through port “3756” and run an isql script named “myscript”:

java IsqlApp -U sa -P sapassword
 -S jdbc:sybase:Tds:myserver:3756

-D Turns on debugging for all classes or for just the ones you specify, separated by a
comma. For example,

-D ALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.

-v Turns on verbose output for display or printing.

-I Causes IsqlApp to take commands from a file instead of the keyboard.

After the parameter, you specify the name of the file to use for the IsqlApp input. The
file must contain command terminators (“go” by default).

-c Lets you specify a keyword (for example, “go”) that, when entered on a line by itse
terminates the command. This lets you enter multiline commands before using th
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

-C Specifies the character set for strings passed through TDS.

If you do not specify a character set, IsqlApp uses the server’s default charset.

-L The language in which to display error messages returned from the server and fo
jConnect messages.

-T When this parameter is set, jConnect assumes that an application is trying to res
communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

-V Enables the use version-specific characteristics. See “JCONNECT_VERSION
connection property” on page 10.

Parameter Description
154

APPENDIX B jConnect Sample Programs
 -I $JDBC_HOME/sp/myscript -c run

Note An applet that provides GUI access to isql commands is available as:

For jConnect 4.x:
$JDBC_HOME/sample/gateway.html (UNIX)
 %JDBC_HOME%\sample\gateway.html (Windows)

For jConnect 5.x:
$JDBC_HOME/sample2/gateway.html (UNIX)
 %JDBC_HOME%\sample2\gateway.html (Windows)

Running jConnect sample programs and code
jConnect includes several sample programs that illustrate many of the topics
covered in this chapter, and to help you understand how jConnect works with
various JDBC classes and methods. In addition, this section includes a sample
code fragment for your reference.

Sample applications
When you install jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note The jConnect sample programs are intended for demonstration purposes
only.

The sample programs are installed in the sample subdirectory (jConnect 4.x) or
sample2 subdirectory (jConnect 5.x) under your jConnect installation
directory. The file index.html in the sample or sample2 subdirectory contains a
complete list of the samples that are available along with a description of each
sample. index.html also lets you view and run the sample programs as applets.
155

Running jConnect sample programs and code
Running the sample applets

Using your Web browser, you can run some of the sample programs as applets.
This enables you to view the source code while viewing the output results.

To run the samples as applets, you need to start the Web server gateway.

Use your Web browser to open index.html:

For jConnect 4.x, enter:

http://localhost:8000/sample/index.html

For jConnect 5.x, enter:

http://localhost:8000/sample2/index.html

Running the sample programs with Adaptive Server Anywhere

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with Adaptive Server Anywhere. Refer to
index.html in the sample or sample2 subdirectory for a current list of the
sample programs that are compatible with Adaptive Server Anywhere.

To run the sample programs that are available for Adaptive Server Anywhere,
you must install the pubs2_any.sql script on your Adaptive Server Anywhere
server. This script is located in the sample (jConnect 4.1) or sample2 (jConnect
5.0) subdirectory.

For Windows, go to DOS command window and enter:

java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I %JDBC_HOME%\sample\pubs2_any.sql -c go

For UNIX, enter:

java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I $JDBC_HOME/sample/pubs2_any.sql -c go

Sample code
The following sample code illustrates how to invoke the jConnect driver, make
a connection, issue a SQL statement, and process results.

import java.io.*;
 import java.sql.*;
156

APPENDIX B jConnect Sample Programs

 public class SampleCode
 {
 public static void main(String args[])
 {
 try
 {
 /*
 * Open the connection. May throw a SQLException.
 */
 Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:myserver:3767", "sa", "");
 /*
 * Create a statement object, the container for the SQL
 * statement. May throw a SQLException.
 */
 Statement stmt = con.createStatement();
 /*
 * Create a result set object by executing the query.
 * May throw a SQLException.
 */
 ResultSet rs = stmt.executeQuery("Select 1");
 /*
 * Process the result set.
 */

 if (rs.next())
 {
 int value = rs.getInt(1);
 System.out.println("Fetched value " + value);
 }
 }
 /*
 * Exception handling.
 */
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 System.exit(1);
 }
 System.exit(0);
 }
 }
157

Running jConnect sample programs and code
158

Index
A
Adaptive Server

connecting to 18
connection example 19

Adaptive Server Anywhere 16
accessing metadata 46
connecting to 20
euro symbol 37
sending image data 61, 64
SERVICENAME connection property 19
storing and retrieving Java objects 73

advanced features 65
applets 128
APPLICATIONNAME connection property 13
applications

turning off debugging in 98
turning on debugging in 98

audience vii

B
bandwidth reduction 109
batch updates 59

stored procedures 58
BE_AS_JDBC_COMPLIANT_ 13
BigDecimal rescaling

improving driver performance 108

C
CANCEL_ALL connection property 6, 10, 13
capturing TDS communication 101
character sets

setting 34
supported 35

character-set conversion
improving driver performance 109
improving performance 35
character-set converter classes 33

PureConverter 33
selecting 34
TruncationConverter 33

CHARSET connection property 6, 13
setting 34

CHARSET_CONVERTER connection property 6
CHARSET_CONVERTER_CLASS connection

property 13, 34
CLASSPATH

setting for debugging 99
columns

deletions in cursor result sets 50
updating in cursor result sets 51

compute statements 93
connecting to

a server using JNDI 21
Adaptive Server 18
Adaptive Server Anywhere 20

connection
errors 102, 103
pooling 86

connection properties
APPLICATIONNAME 13
BE_AS_JDBC_COMPLIANT_ 13
CANCEL_ALL 6, 10, 13
CHARSET 6, 13
CHARSET_CONVERTER 6
CHARSET_CONVERTER_CLASS 13, 34
CONNECTION_FAILOVER 13, 21
DYNAMIC_PREPARE 13
EXPIRESTRING 14
FAKE_METADATA 14
GET_BY_NAME_USES_COLUMN_LABEL 14
HOSTNAME 14
HOSTPROC 14
IGNORE_DONE_IN_PROC 14
JCONNECT_VERSION 10, 14
LANGUAGE 6, 15
159

Index
LANGUAGE_CURSOR 15, 117
LANGUAGE_CURSOR and cursor performance 116
LITERAL_PARAMS 15
PACKETSIZE 15
password 15
PROTOCOL_CAPTURE 15
PROXY 15
REMOTEPWD 15
REPEAT_READ 15, 108
REQUEST_HA_SESSION 16
SELECT_OPENS_CURSOR 16
SERIALIZE_REQUESTS 16
SERVICENAME 16
SESSION_ID 16
SESSION_TIMEOUT 17
setting 12
setting in URL 19
SQLINITSTRING 17
STREAM_CACHE_SIZE 17
SYBSOCKET_FACTORY 17
USE_METADATA 17
user 17
VERSIONSTRING 18

CONNECTION_FAILOVER connection property 13, 21
connections

gateway connection refused 102
conventions viii
creating a cursor 47
currency symbol, euro 37
cursor performance 116

and the LANGUAGE_CURSOR connection property
116

cursor result sets
deleting a row 53
deletions 50
inserting a row 53
methods for updating the database 51
positioned updates 50
positioned updates and deletes

using JDBC 1.x methods 50
positioned updates and deletes

using JDBC 2.0 methods 51
updating columns 51

cursors 47
creating 47
using with a PreparedStatement 54
160
D
data

image 61
databases

JNDI for naming 82
storing Java objects as column data in a table 73

datatypes
Time, Date, and Timestamp 64
unichar and univarchar 32

Debug class 97
Debug servlet argument 132
debugging 97

methods 99
obtaining an instance of the Debug class 97
setting CLASSPATH 99
turning off in your application 98
turning on in your application 98

deserialization 80
deviations from JDBC standards 92
distributed transaction support 88
driver

JDBC types 2
properties 12

dynamic class loading 77
DYNAMIC_PREPARE connection property 13

E
error messages

cutomizing handling 70
error-message handler example 71
handling 68
installing an error-message-handler 71
SQL exception and warning 137
Sybase-specific 68

errors
connection 102, 103
stored procedure 104

euro currency symbol 37
event notification 66

example 67
EXPIRESTRING connection property 14
extension changes, Sybase 121

Index
F
FAKE_METADATA connection property 14
font conventions viii

G
gateways 123

configuration 124
connection refused 102
Open Server 20

GET_BY_NAME_USES_COLUMN_LABEL
connection property 14

H
handling

error messages 68
high availability (HA) support 39
HOSTNAME connection property 14
HOSTPROC connection property 14
HTTP 123

I
IGNORE_DONE_IN_PROC connection property

14
image data

executing the update with
TextPointer.sendData 62

getting a TextPointer object 62
public methods in the TextPointer class 61
sending 61
updating a column with

TextPointer.sendData() 62
installing

an error-message-handler 71
the TDS servlet 132

interfaces, JDBC 1
internationalization 31
invoking jConnect 11
Isql applet

running the sample 129
IsqlApp utility 153
J
JAR files

preloading 81
Java objects

storing and retrieving in ASA 6.0 73
storing as column data in a table 73

jConnect
debugging 97
definition 2
gateways 123
improving performance 107
invoking 11
memory problems in applications 103
sample programs 155
setting connection properties 12
setting up 5
using cursors 47

jConnect 4.x
SCROLL_INSENTIVE result sets 55

JCONNECT_VERSION connection property 10, 14
JDBC

definition 1
driver types 2
interfaces 1
restrictions, limitations, and deviations 92

JDBC 2.0
optional package extensions support 81
standard extensions 81

JDBC drivers
JDBC-ODBC bridge 2
native-API/partly-Java 2
native-protocol/all-Java 2
net-protocol/all-Java 2

jdbc.drivers 11
JNDI

context information 25
using 21

JNDI for naming databases 82

L
LANGUAGE connection property 6, 15
LANGUAGE_CURSOR 117
LANGUAGE_CURSOR connection property 15
Lightweight Directory Access Protocol (LDAP) 22

Index
LITERAL_PARAMS connection property 15
localization 31

M
memory problems in jConnect applications 103
metadata

accessing 45
server-side implementation 46
USE_METADATA 17

migrating jConnect applications
jConnect applications, migrating 119

multibyte character sets
supported 35

multibyte character-sets
converter classes 33

multithreading
making adjustments 92

N
native-API/partly-Java driver 2
native-protocol/all-Java driver 2
net-protocol/all-Java driver 2

O
Open Server Gateway 20

P
PACKETSIZE connection property 15
password 15
performance, improving 107

bandwidth reduction 109
BigDecimal rescaling 108
character-set conversion 109
cursors 116
tuning for prepared statements in Dynamic SQL 110

pooling connections 86
positioned updates and deletes

using JDBC 1.x methods 50
162
using JDBC 2.0 methods 51
preloading JAR files 81
PreparedStatement

using with cursors 54
properties

driver 12
PROTOCOL_CAPTURE connection property 15
PROXY connection property 15
PureConverter class 33

R
related documents vii
remote procedure calls (RPCs)

server-to-server 43
REMOTEPWD connection property 15
REPEAT_READ 108
REPEAT_READ connection property 15
REQUEST_HA_SESSION 16
resuming

TDS sessions 134
rows

deleting from a cursor result set 53
inserting in a cursor result set 53

rs.getByte() 65

S
sample programs 155
SCROLL_INSENSITIVE result sets in jConnect 4.x

55
SELECT_OPENS_CURSOR connection property 16
selecting a character-set converter class 34
sending image data 61
SERIALIZE_REQUESTS connection property 16
server-to-server remote procedure calls 43
SERVICENAME connection property 16
servlet arguments

Debug 132
SkipDoneProc 132
TdsResponseSize 132
TdsSessionIdleTimeout 132

servlets 123
TDS 123

Index
SESSION_ID connection property 16
SESSION_TIMEOUT connection property 17
setRemotePassword() 44
setting

jConnect connection properties 12
TDS servlet arguments 132

setting up jConnect 5
SkipDoneProc servlet argument 132
SQL exception and warning messages 137
SQLINITSTRING connection properties 17
Statement.cancel() method 10
stored procedures

errors 104
executing 94
updating the database from the result set 59

storing Java objects as column data in a table 73
prerequisites 73
receiving Java objects from the database 75
sending Java objects to a database 74

STREAM_CACHE_SIZE connection property 17
Sybase extension changes 121
SybEventHandler 66
SybMessageHandler 70
SYBSOCKET_FACTORY connection property 17
syntax conventions ix
system properties abd jdbc.drivers 11

T
TDS 2

capturing communication 101
installing servlets 132
resuming sessions 134
servlet system requirements 131
servlets 123
setting servlet arguments 132
tracking sessions 133
tunnelling 123

TdsResponseSize servlet argument 132
TdsSessionIdleTimeout servlet argument 132
Time, Date, and Timestamp datatypes 64
tracking TDS sessions 133
troubleshooting 97
TruncationConverter class 33, 38
tunnelling
TDS 123
turning off debugging in your application 98
turning on debugging in your application 98
TYPE_SCROLL_INSENSITIVE limitations 55

U
unichar 6
unichar and univarchar datatypes 32
updating database from the result set of

a stored procedure 59
URL

connection property parameters 19
syntax 18

USE_METADATA connection property 17
user 17
utilities

IsqlApp 153

V
VERSIONSTRING connection property 18

W
Web server gateways 123
wide tables 45

X
XAServer 88

Index
164

	CHAPTER 1 Introduction
	What is JDBC?
	What is jConnect?

	CHAPTER 2 Programming Information
	Setting up jConnect
	Setting the jConnect version
	Invoking the jConnect driver

	Establishing a connection
	Setting connection properties
	Connecting to Adaptive Server Enterprise
	Connecting to Adaptive Server Anywhere
	Connecting to a server using JNDI

	Implementing custom socket plug-ins
	SYBSOCKET_FACTORY connection property
	Creating and configuring a custom socket

	Handling internationalization and localization
	Using jConnect to pass Unicode data
	jConnect character-set converters

	Working with databases
	Implementing high availability failover support
	Performing server-to-server remote procedure calls
	Wide table support for Adaptive Server version 12.5
	Accessing database metadata
	Using cursors with result sets
	Support for batch updates
	Updating the database from the result set of a stored procedure
	Working with datatypes

	Implementing advanced features
	Using event notification
	Handling error messages
	Storing Java objects as column data in a table
	Dynamic class loading
	JDBC 2.0 optional package extensions support

	Handling restrictions, limitations, and deviations from JDBC standards
	Making adjustments for multithreading
	Using ResultSet.getCursorName()
	Using setLong() with large parameter values
	Using COMPUTE statements
	Executing stored procedures

	CHAPTER 3 Troubleshooting
	Debugging with jConnect
	Obtaining an instance of the Debug class
	Turning on debugging in your application
	Turning off debugging in your application
	Setting the CLASSPATH for debugging
	Using the Debug methods

	Capturing TDS communication
	PROTOCOL_CAPTURE connection property
	pause() and resume() methods in the Capture class

	Unsuccessful connection errors
	Gateway connection refused
	Unable to connect to a 4.9.2 SQL Server

	Memory usage in jConnect applications
	Stored procedure errors
	RPC returns fewer output parameters than registered
	Fetch/state error when stored procedure returns output params
	Stored procedure executed in unchained transaction mode

	Custom socket implementation error

	CHAPTER 4 Performance and Tuning
	Improving jConnect performance
	BigDecimal rescaling
	REPEAT_READ connection property
	Character-set conversion

	Performance tuning for prepared statements in dynamic SQL
	Choosing between prepared statements and stored procedures
	Prepared statements in portable applications
	Prepared statements in applications with jConnect extensions
	Connection.prepareStatement()
	DYNAMIC_PREPARE connection property
	SybConnection.prepareStatement()

	Cursor performance
	LANGUAGE_CURSOR connection property

	CHAPTER 5 Migrating jConnect Applications
	Migrating jConnect applications
	Migrating applications to jConnect 4.5 and 5.5

	Sybase extensions
	Change example
	Method names
	Debug class

	CHAPTER 6 Web Server Gateways
	About Web server gateways
	TDS tunnelling
	jConnect and gateway configuration

	Usage requirements
	Reading the index.html file
	Running the sample Isql applet

	Using the TDS-tunnelling servlet
	TDS-tunnelling servlet system requirements
	Installing the servlet
	Invoking the servlet
	Tracking active TDS sessions
	Resuming a TDS session
	TDS tunnelling and Netscape Enterprise Server 3.5.1 on Solaris

	APPENDIX A SQL Exception and Warning Messages
	APPENDIX B jConnect Sample Programs
	Running IsqlApp
	Running jConnect sample programs and code
	Sample applications
	Sample code

