The data for this example are generated to follow a GARCH(p,q) process by using a random number generation function sgarch . The data set is analyzed and estimates of sigma, the AR parameters, and the MA parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are returned.
import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
public class GARCHEx1 {
static private void sgarch(int p, int q, int m, double[] x, double[] y,
double[] z, double[] y0, double[] sigma) {
int i, j, l;
double s1, s2, s3;
Random rand = new Random(182198625L);
rand.setMultiplier(16807);
for (i = 0; i < m+1000; i++) z[i] = rand.nextNormal();
l = Math.max(p, q);
l = Math.max(l, 1);
for(i =0; i <l; i++) y0[i] = z[i] * x[0];
/* COMPUTE THE INITIAL VALUE OF SIGMA */
s3 = 0.0;
if (Math.max(p, q) >= 1) {
for(i =1; i <(p +q +1); i++) s3 += x[i];
}
for(i =0;i <l;i++) sigma[i] = x[0] / (1.0 - s3);
for(i =l;i <(m +1000); i++) {
s1 = 0.0;
s2 = 0.0;
if (q >= 1) {
for(j =0;j <q;j++) s1+=x[j +1]*y0[i -j -1]*y0[i -j -1];
}
if (p >= 1) {
for(j =0;j <p;j++) s2+=x[q +1 +j]*sigma[i -j -1];
}
sigma[i] = x[0] + s1 + s2;
y0[i] = z[i] * Math.sqrt(sigma[i]);
}
/*
* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
*/
for(i =0;i <m;i++) y[i] = y0[1000 + i];
return;
}
public static void main(String args[]) throws Exception {
int n, p, q, m;
double[] x = {1.3, 0.2, 0.3, 0.4};
double[] xguess = {1.0, 0.1, 0.2, 0.3};
double[] y = new double[1000];
double[] wk1 = new double[2000];
double[] wk2 = new double[2000];
double[] wk3 = new double[2000];
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(3);
m = 1000;
p = 2;
q = 1;
n = p+q+1;
sgarch(p, q, m, x, y, wk1, wk2, wk3);
GARCH garch = new GARCH(p, q, y, xguess);
garch.compute();
System.out.println("Sigma estimate is " + nf.format(garch.getSigma()));
System.out.println();
new PrintMatrix("AR estimate is ").print(garch.getAR());
new PrintMatrix("MR estimate is ").print(garch.getMA());
System.out.println("Log-likelihood function value is " +
nf.format(garch.getLogLikelihood()));
System.out.println("Akaike Information Criterion value is " +
nf.format(garch.getAkaike()));
}
}
Sigma estimate is 1.692
AR estimate is
0
0 0.245
1 0.337
MR estimate is
0
0 0.31
Log-likelihood function value is -2,707.072
Akaike Information Criterion value is 5,422.144
Link to Java source.