The following example uses the same data as in example 1. Now, all the statistics are displayed.
import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
public class WilcoxonRankSumEx2 {
public static void main(String args[]) {
double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};
String[] labels = {
"Wilcoxon W statistic ......................",
"2*E(W) - W ................................",
"p-value ................................... ",
"Adjusted Wilcoxon statistic ...............",
"Adjusted 2*E(W) - W .......................",
"Adjusted p-value .......................... ",
"W statistics for averaged ranks............",
"Standard error of W (averaged ranks) ...... ",
"Standard normal score of W (averaged ranks) ",
"Two-sided p-value of W (averaged ranks) ... "
};
WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(3);
// Trun off printing of warning messages.
Warning.setOut(null);
wilcoxon.compute();
double[] stat = wilcoxon.getStatistics();
for (int i = 0; i < 10; i++) {
System.out.println(labels[i] + " " + nf.format(stat[i]));
}
}
}
Wilcoxon W statistic ...................... 34.000 2*E(W) - W ................................ 21.000 p-value ................................... 0.110 Adjusted Wilcoxon statistic ............... 35.000 Adjusted 2*E(W) - W ....................... 20.000 Adjusted p-value .......................... 0.075 W statistics for averaged ranks............ 34.500 Standard error of W (averaged ranks) ...... 4.758 Standard normal score of W (averaged ranks) 1.471 Two-sided p-value of W (averaged ranks) ... 0.141Link to Java source.