Visual WS@

E Oo , 70
S = 7 o 5,50 7,
] MSL b 7’)‘?7 7‘(_‘,’-—7,.-‘ F i

VERSION 4.0

JMSL Numerical Library V.4.0

User's Guide

Trusted for Over 30 Years

Visual -ms*

Visual Numerics Corporate Headquarters
2500 Wilcrest Drive
Houston, TX 77042

USA Contact Information

Toll Free: 800.222.4675
Houston, TX: 713.784.3131
Westminster, CO: 303.379.3040
Email: info@vni.com
Web site: WWW.Vni.com

Visual Numerics has Offices Worldwide
USA « UK » France = Germany =Mexico

Japan = Korea = Taiwan

For contact information, please visit
www.vni.com/contact

© 1970-2006 Visual Numerics, Inc. All rights reserved.

Visual Numerics and PV-WAVE are registered trademarks of Visual Numerics, Inc. in the U.S. and other countries. IMSL,
JMSL, JWAVE, TS-WAVE and Knowledge in Motion are trademarks of Visual Numerics, Inc. All other company, product or
brand names are the property of their respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this document

is subject to the terms and conditions of a Visual Numerics Software License Agreement, including, without limitation, the Limited
Warranty and Limitation of Liability. If you do not accept the terms of the license agreement, you may not use this documentation
and should promptly return the product for a full refund. This documentation may not be copied or distributed in any

form without the express written consent of Visual Numerics..

IMSL C, C#, Java™, and Fortran
Application Development Tools

Contents

1 Linear Systems

Matrix classo Lo
ComplexMatrix class
LUclass
ComplexLU class
Cholesky class
QRclass.
SVD class L

SingularMatrixException class

2 Eigensystem Analysis

Figenclass

SymEigen class

3 Interpolation and Approximation

Splineclass
CsAkimaclass
Cslnterpolate class
CsPeriodicclass.o
CsShapeclass,
CsSmooth class oL
CsSmoothC2 class,

BsInterpolate class L.

Contents

Contents e

BsLeastSquares class e e e 62

RadialBasis class 65
4 Quadrature 73
Quadrature class 74
HyperRectangleQuadrature class o o 80
5 Differential Equations 85
OdeRungeKutta class o e 86
6 Transforms 93
FFT class o o e e 94
ComplexFFET class e 98
7 Nonlinear Equations 103
ZeroPolynomial class L L 104
ZeroFunction class L 109
ZeroSystem class oL 113
8 Optimization 119
MinUncon class o e e 121
MinUnconMultiVar class o e 127
NonlinLeastSquares class e e 137
DenseLP class o . e 148
LinearProgramming class L L 156
QuadraticProgramming class L L oL 164
MinConGenLin class e 169
BoundedLeastSquares class Lo o 179
MinConNLP class e 189
9 Special Functions 213
Sfun class e 213
Bessel class 229
JMath class L e 234

ii @ Contents JMSL

IEEE class

Hyperbolic class

10 Miscellaneous
Complex class
Physical class
EpsilonAlgorithm class

11 Printing Functions
PrintMatrix class

PrintMatrixFormat class

12 Basic Statistics
Summary class
Covariances class
NormOneSample class

NormTwoSample class

Sort class .

Ranks class

EmpiricalQuantiles class
TableOneWay class
TableTwoWay class
TableMultiWay class

13 Regression

LinearRegression class
NonlinearRegression class
UserBasisRegression class
RegressionBasis interface
SelectionRegression class

StepwiseRegression class

14 Analysis of Variance

Contents

Contents e iii

ANOVA class
ANOVAFactorial class

MultipleComparisons class L

15 Categorical and Discrete Data Analysis

ContingencyTable class L .

CategoricalGenLinModel class

16 Nonparametric Statistics

SignTest class L

WilcoxonRankSum class

17 Tests of Goodness of Fit

ChiSquaredTest class

NormalityTest class

18 Time Series and Forecasting

AutoCorrelation class L
CrossCorrelation class
MultiCrossCorrelation class
ARMA class. o
Difference class
GARCH class

KalmanFilter class

19 Multivariate Analysis

ClusterKMeans class
Dissimilarities class L oo
ClusterHierarchical class
FactorAnalysis class o

DiscriminantAnalysis class L.

20 Probability Distribution Functions and Inverses

Cdfclass o o

459

......... 459
......... 472

499

......... 500
......... 503

509

......... 509
......... 515

iv e Contents

CdfFunction interface

InverseCdfclass

21 Random Number Generation

Randomclass
FaureSequence class
MersenneTwister class
MersenneTwister64 class

RandomSequence interface

22 Input/Output

AbstractFlatFile class
FlatFileclass
Tokenizer class

MPSReader class

23 Finance

BasisPart interface
Bondclass.
DayCountBasis class

Financeclass

24 Chart 2D

Chart class
AbstractChartNode class
ChartNode class
Background class
ChartTitleclass
Legendclass.
Gridclass
Axisclass o
AxisXY classo
AxisID classo

Contents

Contents eV

AxisLabel class 971

Axisline class oL 972
AxisTitle class 973
AxisUnit class. 973
MajorTick class o L L 974
MinorTick class o . o 974
Transform interface L 975
TransformDate class L 976
AxisR class oo 977
AxisRLabel class L 979
AxisRLine class L 980
AxisRMajorTick class oL o 981
AxisTheta class o 982
GridPolar class e 983
Dataclass o e 984
ChartFunction interface 995
ChartSpline class e 996
Text class L 997
ToolTip class o e 999
FillPaint class 1001
Draw class. e 1004
JFrameChart class oL 1015
JPanelChart class L 1016
DrawPick class 1018
PickEvent class 1025
PickListener interface L L 1026
JspBean class 1027
ChartServlet class 1030
DrawMap class e e 1032
BoxPlot class 1038
Contour class e 1049

vi e Contents JMSL

ErrorBar class e 1057

HighLowClose class o e 1062
Candlestick class L 1069
CandlestickItem classo 1071
SplineData class 1072
Bar class 1075
Barltem class L 1081
BarSet class 1082
Pieclass o 1083
PieSlice class 1087
Dendrogram class e 1088
Polar class L 1096
Heatmap class e 1098
Colormap interface L 1109
25 Chart 3D 1113
Chart3D class o e 1113
JFrameChart3D class oL 1117
ChartNode3D class o e 1118
Background class L 1129
Canvas3DChart class L 1129
BufferedPaint class oL 1133
ChartLights class o e 1134
AmbientLight class 1135
DirectionalLiight class o 1135
PointLight class 1137
AxisXYZ class o oo 1139
AxisBox class 1141
Axis3D class e 1143
AxisLabel class L 1146
AxisLine class L 1147
AxisTitle class e 1148

Contents Contents e vii

MajorTick class e 1148

Surface class L 1149
Dataclass e 1160
ColorFunction interface L e 1173
ColormapLegend class e 1173
26 Neural Nets 1177
Network class L 1220
FeedForwardNetwork class L 1229
Layer class e 1243
InputLayer class Lo 1245
HiddenLayer class 1246
OutputLayer class e 1247
Node class L e 1249
InputNode class e 1249
Perceptron class oL 1250
OutputPerceptron class L 1251
Activation interface 1252
Link class e 1254
Trainer interface Lo 1255
QuasiNewtonTrainer class 1257
LeastSquaresTrainer class e e 1266
EpochTrainer class e 1271
BinaryClassification class L oL 1277
MultiClassification class L 1317
ScaleFilter class e 1331
UnsupervisedNominalFilter class 00, 1340
UnsupervisedOrdinalFilter class o L 1343
TimeSeriesFilter class 1348
TimeSeriesClassFilter class 1351
27 Miscellaneous 1355

viii e Contents JMSL

Messages class 1355

Version class e 1356
Warning class L e 1357
WarningObject class e 1358
IMSLException class L 1360
IMSLRuntimeException class o 1361
LicenseManagerException class o o 1362
28 References 1365
Index i

0 e Contents JMSL

Chapter 1. Linear Systems

Types

ClaSS IVLATTIX ottt e et e e e e e e e e 3
class CompleXIVATTIXttt e et 7
class LU oo 11
class ComplexTiUo e 15
class CholesKyo 19
Class QR . .o 24
Class SV D Lo 28
exception SingularMatrixExXception. 32

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Az = b, where A is a user-specified
n x n matrix, b is a given right-hand side n vector, and z is the solution n vector. Each entry of
A and b must be specified by the user. The entire vector z is returned as output.

When A is invertible, a unique solution to Az = b exists. The most commonly used direct
method for solving Az = b factors the matrix A into a product of triangular matrices and solves
the resulting triangular systems of linear equations. Functions that use direct methods for
solving systems of linear equations all compute the solution to Az = b.

Matrix Factorizations

In some applications, it is desirable to just factor the » x » matrix A into a product of two
triangular matrices. This can be done by a constructor of a class for solving the system of
linear equations Az = b. The constructor of class LU computes the LU factorization of A.

Besides the basic matrix factorizations, such as LU and LL”, additional matrix factorizations
also are provided. For a real matrix A, its QR factorization can be computed using the class QR.

The class for computing the singular value decomposition (SVD) of a matrix is discussed in a
later section.

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the method inverse in
the classes for solving systems of linear equations. The inverse of a matrix need not be
computed if the purpose is to solve one or more systems of linear equations. Even with multiple
right-hand sides, solving a system of linear equations by computing the inverse and performing
matrix multiplication is usually more expensive than the method discussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector.
It is most economical to find the solution vectors by first factoring the coefficient matrix A into
products of triangular matrices. Then, the resulting triangular systems of linear equations are
solved for each right-hand side. When A is a real general matrix, access to the LU factorization
of A is computed by a constructor of LU. The solution zj for the kth right-hand side vector, by
is then found by two triangular solves, Ly = by and Uxzy = yi. The method solve in class LU
is used to solve each right-hand side. These arguments are found in other functions for solving
systems of linear equations.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations
A xnt = b, where m > n. A least-squares solution z minimizes the Euclidean length of the
residual vector r = Az — b. The class QR computes a unique least-squares solution for z when
A has full column rank. If A is rank-deficient, then the base solution for some variables is
computed. These variables consist of the resulting columns after the interchanges. The QR
decomposition, with column interchanges or pivoting, is computed such that AP = QR. Here,
@ is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in magnitude,
and P is the permutation matrix determined by the pivoting. The base solution z g is obtained
by solving R(PT)x = QTb for the base variables. For details, see class QR. The QR factorization
of a matrix A such that AP = QR with P specified by the user can be computed using
keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix 4 is a matrix decomposition A = USV?’. With ¢ = min(m,n),
the factors U, xq and V,, x4 are orthogonal matrices, and S;«4 is a nonnegative diagonal matrix
with nonincreasing diagonal terms. The class SVD computes the singular values of A by default.
Part or all of the U and V matrices, an estimate of the rank of A, and the generalized inverse of
A, also can be obtained.

2e JMSL

llI-Conditioning and Singularity

An m x n matrix A, is mathematically singular if there is an x # 0 such that Az = 0. In this
case, the system of linear equations Az = b does not have a unique solution. On the other
hand, a matrix A is numerically singular if it is ”close” to a mathematically singular matrix.
Such problems are called ill-conditioned. If the numerical results with an ill-conditioned
problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approzimate solution to the system. One form
of approximation can be obtained using the SVD of A: If ¢ = min(m,n) and

_2 :q vl
A=) 18w

then the approximate solution is given by the following:

T = Zleti’i (bTui) (]

The scalars t; ; are defined below.

tig = :
b 0 otherwise

{ sThoif sij > tol >0
The user specifies the value of tol. This value determines how ”close” the given matrix is to a
singular matrix. Further restrictions may apply to the number of terms in the sum, k < ¢. For
example, there may be a value of k < ¢ such that the scalars |bTui| , © > k are smaller than the
average uncertainty in the right-hand side b. This means that these scalars can be replaced by
zero; and hence, b is replaced by a vector that is within the stated uncertainty of the problem.

Matrix class

public class com.imsl.math.Matrix

Matrix manipulation functions.

Methods

add
static public double[][] add(double[][] a, double[][] Db)

Description
Add two rectangular arrays, a + b.

Linear Systems Matrix class o 3

Parameters
a — a double rectangular array

b — a double rectangular array

Returns
a double rectangular array representing the matrix sum of the two arguments
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

checkMatrix
static public void checkMatrix(double[][] a)

Description
Check that all of the rows in the matrix have the same length.
Parameter

a — a double matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

checkSquareMatrix
static public void checkSquareMatrix(double([][] a)

Description
Check that the matrix is square.
Parameter

a — a double matrix

IllegalArgumentException This exception is thrown when the matrix is not square.

frobeniusNorm
static public double frobeniusNorm(double[][] a)

Description
Return the Frobenius norm of a matrix.
Parameter

a — a double rectangular array

4 e Matrix class JMSL

Returns

a double scalar value equal to the Frobenius norm of the matrix.

infinityNorm
static public double infinityNorm(double[][] a)

Description
Return the infinity norm of a matrix.
Parameter

a — a double rectangular array

Returns

a double scalar value equal to the maximum of the row sums of the absolute values of the
array elements

multiply
static public double[] multiply(double[] x, double[][] a)

Description
Return the product of the row array x and the rectangular array a.
Parameters

x — a double row array

a — a double rectangular matrix

Returns
a double matrix representing the product of the arguments, x*a.
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of the input matrix are not uniform, or (2) the number of elements in the input
vector is not equal to the number of rows of the matrix.

oneNorm
static public double oneNorm(double[][] a)

Description
Return the matrix one norm.
Parameter

a — a double rectangular array

Linear Systems Matrix class 5

Returns

a double value equal to the maximum of the column sums of the absolute values of the
array elements

subtract
static public double[][] subtract(double[][] a, double[][] b)

Description
Subtract two rectangular arrays, a - b.
Parameters

a — a double rectangular array

b — a double rectangular array

Returns
a double rectangular array representing the matrix difference of the two arguments
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

transpose
static public double[][] transpose(double([][] a)

Description
Return the transpose of a matrix.
Parameter

a — a double matrix

Returns

a double matrix which is the transpose of the argument

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed
using the PrintMatrix class.

import com.imsl.math.x*;

public class MatrixExl {

public static void main(String args[]) {
double nrmil;

6 e Matrix class JMSL

Output

A Simple Matrix

0

W N~ O
3 0> O

The 1 norm of the matrix is 20.0

1

wW O U=

double
{0.
{4.
{8.
{6.
};

// Get the 1 norm of matrix a
nrml = Matrix.oneNorm(a);

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm

p-print(a);
System.out.println("The 1 norm of the matrix is "+nrml);

N

S 00N

3

WL Nw

S 00O N

(ISR
R R

ComplexMatrix class

public class com.imsl.math.ComplexMatrix

Complex matrix manipulation functions.

Methods

add
static public Complex[][] add(Complex[][] a, Complex[][] Db)

Description

Add two rectangular Complex arrays, a + b.

Linear Systems

ComplexMatrix class

o7

Parameters
a — a Complex rectangular array

b — a Complex rectangular array

Returns
the Complex matrix sum of the two arguments
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

checkMatrix
static public void checkMatrix(Complex[][] a)

Description
Check that all of the rows in the Complex matrix have the same length.
Parameter

a — a Complex matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

checkSquareMatrix
static public void checkSquareMatrix(Complex[][] a)

Description
Check that the Complex matrix is square.
Parameter

a — a Complex matrix

IllegalArgumentException This exception is thrown when the matrix is not square..

frobeniusNorm
static public double frobeniusNorm(Complex[][] a)

Description
Return the Frobenius norm of a Complex matrix.
Parameter

a — a Complex rectangular matrix

8 ¢ ComplexMatrix class JMSL

Returns

a double value equal to the Frobenius norm of the matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

infinityNorm
static public double infinityNorm(Complex[][] a)

Description
Return the infinity norm of a Complex matrix.
Parameter

a — a Complex rectangular matrix

Returns
a double value equal to the maximum of the row sums of the absolute values of the array

elements.

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

multiply
static public Complex[] multiply(Complex[] x, Complex[][] a)

Description
Return the product of the row vector x and the rectangular array a, both Complex.
Parameters

x — a Complex row vector

a — a Complex rectangular matrix

Returns
a Complex vector containing the product of the arguments, x*A.
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of the input matrix are not uniform, or (2) the number of elements in the input
vector is not equal to the number of rows of the matrix.

oneNorm
static public double oneNorm(Complex[][] a)

Description

Return the Complex matrix one norm.

Linear Systems ComplexMatrix class 9

Parameter

a — a Complex rectangular array

Returns
a double value equal to the maximum of the column sums of the absolute values of the

array elements

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

subtract
static public Complex[][] subtract(Complex[][] a, Complex[][] b)

Description
Subtract two Complex rectangular arrays, a - b.
Parameters

a — a Complex rectangular array

b — a Complex rectangular array

Returns
the Complex matrix difference of the two arguments.
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

transpose
static public Complex[][] transpose(Complex[][] a)

Description
Return the transpose of a Complex matrix.
Parameter

a — a Complex matrix

Returns

the Complex matrix transpose of the argument

I1llegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

10 ¢ ComplexMatrix class JMSL

Example: Print a Complex Matrix

A Complex matrix is initialized and printed.

import com.imsl.math.x*;

public class ComplexMatrixEx1l {
public static void main(String args[]) {

Complex al[l[] = {
{new Complex(1,3), new Complex(3,5), new Complex(7,9)},
{new Complex(8,7), new Complex(9,5), new Complex(1,9)},
{new Complex(2,9), new Complex(6,9), new Complex(7,3)},
{new Complex(5,4), new Complex(8,4), new Complex(5,9)}

};

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Complex Matrix");

// Print the matrix
p-print(a);

Output

A Complex Matrix
0 1 2

0 1+3i 3+bi 7491
1 8+7i 9+5i 1+9i
2 2+9i 6+9i T7+3i
3 5+4i 8+4i 5+9i
LU class

public class com.imsl.math.LU implements Serializable, Cloneable
LU factorization of a matrix of type double.

LU performs an LU factorization of a real general coefficient matrix. The condition method
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same infinity norm.

The L; condition number of the matrix A is defined to be k(A) = [|A]|1|]A71|]1. Since it is
expensive to compute ||A71||1, the condition number is only estimated. The estimation

Linear Systems LUclass o1l

algorithm is the same as used by LINPACK and is described in a paper by Cline et al. (1979).

An estimated condition number greater than 1/e (where € is machine precision) indicates that
very small changes in A can cause very large changes in the solution z. Iterative refinement can
sometimes find the solution to such a system.

LU fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

Use the solve method to solve systems of equations. The determinant method can be called
to compute the determinant of the coefficient matrix.

LU is based on the LINPACK routine SGECO; see Dongarra et al. (1979). SGECO uses unscaled
partial pivoting.

Fields

factor
protected double[][] factor
LU factorization of A with partial pivoting

ipvt
protected int[] ipvt
Pivot sequence for the factorization

Constructor

LU
public LU(double[][] a) throws SingularMatrixException

Description

Creates the LU factorization of a square matrix of type double.

Parameter
a — the double square matrix to be factored

IllegalArgumentException is thrown when the row lengths of input matrix are not
equal (for example, the matrix edges are ”jagged”.)

SingularMatrixException is thrown when the input matrix is singular.

Methods

condition
public double condition(double[][] a)

12 ¢ LU class JMSL

Description
Return an estimate of the reciprocal of the L1 condition number of a matrix.
Parameter

a — the double square matrix for which the reciprocal of the L1 condition number is
desired

Returns

a double value representing an estimate of the reciprocal of the L1 condition number of
the matrix

determinant
public double determinant()

Description
Return the determinant of the matrix used to construct this instance.
Returns

a double scalar containing the determinant of the matrix used to construct this instance

inverse
public double[][] inverse()

Description
Returns the inverse of the matrix used to construct this instance.
Returns

a double matrix representing the inverse of the matrix used to construct this instance

solve
public double[] solve(double[] b)

Description
Return the solution z of the linear system Az = b using the LU factorization of A.
Parameter

b — a double array containing the right-hand side of the linear system

Returns

a double array containing the solution to the linear system of equations

solve
static public double[] solve(double[][] a, double[] b) throws
SingularMatrixException

Description

Solve ax=Db for x using the LU factorization of a.

Linear Systems LUclass 13

Parameters
a — a double square matrix

b — a double column vector

Returns
a double column vector containing the solution to the linear system of equations
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of the input matrix are not uniform, and (2) the number of rows in the input matrix
is not equal to the number of elements in x.

SingularMatrixException is thrown when the matrix is singular.

solveTranspose
public double[] solveTranspose(double[] b)

Description
Return the solution x of the linear system A7 = b.
Parameter

b — double array containing the right-hand side of the linear system

Returns

double array containing the solution to the linear system of equations

Example: LU Factorization of a Matrix

The LU Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The inverse, determinant, and condition number of the input matrix are also
computed.

import com.imsl.math.x*;

public class LUEx1 {
public static void main(String args[]) throws SingularMatrixException {
double allll = {

{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double b[] = {12, 13, 14};

// Compute the LU factorization of A
LU 1lu = new LU(a);

// Solve Ax = b
double x[] lu.solve(b);
new PrintMatrix("x").print(x);

14 ¢ LU class JMSL

// Find the inverse of A.
double ainv[][] = lu.inverse();
new PrintMatrix("ainv").print(ainv);

// Find the condition number of A.

double condition = lu.condition(a);
System.out.println("condition number = "+condition) ;
System.out.println();

// Find the determinant of A.
double determinant = lu.determinant();

System.out.println("determinant = "+determinant);

}
}
Output

b4

0
0 3
1 2
2 1

ainv
o 1 2

o 7 -3 -3
1 -1 0 1
2 -1 1 0
condition number = 0.015120274914089344

determinant = -0.9999999999999998

ComplexLU class

public class com.imsl.math.ComplexLU implements Serializable, Cloneable
LU factorization of a matrix of type Complex.

ComplexLU performs an LU factorization of a complex general coefficient matrix. ComplexLU’s
method condition estimates the condition number of the matrix. The LU factorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the
pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The L; condition number of the matrix A is defined to be & (4) = ||A]|; HA*1H1. Since it is

Linear Systems ComplexLU class e 15

'l

expensive to compute HA_ 1» the condition number is only estimated. The estimation
algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

An estimated condition number greater than 1/e (where € is machine precision) indicates that
very small changes in A can cause very large changes in the solution z. Iterative refinement can
sometimes find the solution to such a system.

ComplexLU fails if U, the upper triangular part of the factorization, has a zero diagonal element.
This can occur only if A either is singular or is very close to a singular matrix.

The solve method can be used to solve systems of equations. The method determinant can be
called to compute the determinant of the coefficient matrix.

ComplexLU is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses
unscaled partial pivoting.

Fields

factor
protected Complex[][] factor
LU factorization of A with partial pivoting

ipvt
protected int[] ipvt
Pivot sequence for the factorization

Constructor

ComplexLU
public ComplexLU(Complex[][] a) throws SingularMatrixException

Description
Creates the LU factorization of a square matrix of type Complex.
Parameter

a — Complex square matrix to be factored

IllegalArgumentException is thrown when the row lengths of input matrix are not
equal (for example, the matrix edges are ”jagged”.)

SingularMatrixException is thrown when the input matrix is singular.

Methods

condition

16 ¢ ComplexLU class JMSL

public double condition(Complex[][] a)
Description
Return an estimate of the reciprocal of the L1 condition number.
Parameter

a — a Complex matrix

Returns

a double scalar value representing the estimate of the reciprocal of the L1 condition
number of the matrix a

determinant
public Complex determinant ()

Description
Return the determinant of the matrix used to construct this instance.
Returns

a Complex scalar containing the determinant of the matrix used to construct this instance

inverse
public Complex[][] inverse()

Description
Compute the inverse of a matrix of type Complex.
Returns

a Complex matrix containing the inverse of the matrix used to construct this object.

solve
public Complex[] solve(Complex[] b)

Description
Return the solution x of the linear system Ax = b using the LU factorization of A.
Parameter

b — Complex array containing the right-hand side of the linear system

Returns

Complex array containing the solution to the linear system of equations

solve
static public Complex[] solve(Complex[][] a, Complex[] b) throws
SingularMatrixException

Linear Systems ComplexLU class o 17

Description
Solve ax=Db for x using the LU factorization of a.
Parameters

a — a Complex square matrix

b — a Complex column vector

Returns
a Complex column vector containing the solution to the linear system of equations.
IllegalArgumentException This exception is thrown when (1) the lengths of the rows

of the input matrix are not uniform, and (2) the number of rows in the input matrix
is not equal to the number of elements in x.

SingularMatrixException is thrown when the matrix is singular.

solveTranspose
public Complex[] solveTranspose(Complex[] b)

Description
Return the solution x of the linear system A7z = b.
Parameter

b — Complex array containing the right-hand side of the linear system

Returns

Complex array containing the solution to the linear system of equations

Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU decomposition
of the matrix is performed and the determinant and condition number of the matrix are
obtained.

import com.imsl.math.x*;

public class ComplexLUEx1 {
public static void main(String args[]) throws SingularMatrixException {
double ar([l[] = {

{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double br[] = {12, 13, 14};

Complex al[l[] = new Complex[3][3];
Complex b[] = new Complex[3];

18 ¢ ComplexLU class JMSL

for (int i = 0; i < 3; i++){
b[i] = new Complex(br([i]);
for (int j = 0; j < 3; j++) {
ali] [j] = new Complex(ar[i][j1);
}
}

// Compute the LU factorization of A
ComplexLU clu = new ComplexLU(a);

// Solve Ax = b

Complex x[] = clu.solve(b);
System.out.println("The solution is:");
System.out.println(" ");

new PrintMatrix("x").print(x);

// Find the condition number of A.

double condition = clu.condition(a);
System.out.println("The condition number = "+condition);
System.out.println();

// Find the determinant of A.

Complex determinant = clu.determinant();
System.out.println("The determinant = "+determinant);

Output

The solution is:
b4
0

1
2

=N WO

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

Cholesky class

public class com.imsl.math.Cholesky implements Serializable, Cloneable

Cholesky factorization of a matrix of type double.

Linear Systems Cholesky class o 19

Class Cholesky is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A and
final elements to the trailing part of A. During the decomposition only rows and columns
corresponding to the free elements are moved. The result of the decomposition is an upper
triangular matrix R and a permutation matrix P that satisfy PTAP = RT R, where P is
represented by ipvt.

The method update is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RT R, where R is an upper triangular matrix.
Given this factorization, downdate computes the factorization

A—z2" =R"R

downdate determines an orthogonal matrix U as the product Gy ... G of Givens rotations,
such that ~
R R

By multiplying this equation by its transpose and noting that U7U = I, the desired result
RTR— 22" =R'R
is obtained.

Let a be the solution of the linear system R”7a = x and let

2
a=/1—llal;

The Givens rotations, G;, are chosen such that

Gan[2]=]0]

The G;, are (N + 1) * (N + 1) matrices of the form

Ii_1 O 0 0
0 C; 0 —S;
0 0 In—; O
0 S; 0 C;

G =

where I, is the identity matrix of order k; and ¢; = cos#;, s; = sin 6; for some 6;.

The Givens rotations are then used to form

N P

Hé agl}
| I

The matrix

R

20 e Cholesky class JMSL

is upper triangular and

T=x
because
_ (pT a | /pT T a | _ (sr=\| 0| -
m—(RO)[a]—(RO)UU[a]—<Rx>{1}—x
Constructor
Cholesky

public Cholesky(double[][] a) throws SingularMatrixException,
Cholesky.NotSPDException

Description
Create the Cholesky factorization of a symmetric positive definite matrix of type double.
Parameter
a — a double square matrix to be factored
IllegalArgumentException Thrown when the row lengths of matrix a are not equal (for
example, the matrix edges are ”jagged”.)
SingularMatrixException Thrown when the input matrix a is singular.

NotSPDException Thrown when the input matrix is not symmetric, positive definite.

Methods

downdate
public void downdate(double[] x) throws Cholesky.NotSPDException

Description

Downdates the factorization by subtracting a rank-1 matrix. The object will contain the
Cholesky factorization of a — x x 27, where a is the previously factored matrix.

Parameter

x — A double array which specifies the rank-1 matrix. x is not modified by this
function.

T

NotSPDException if a — x X ' is not symmetric positive-definite.

getR
public double[][] getR(O)

Linear Systems Cholesky class o 21

Description

Returns the R matrix that results from the Cholesky factorization. R is a lower triangular
matrix and A = RRT.

Returns

a double matrix which contains the R matrix that results from the Cholesky factorization

inverse
public double[][] inverse()

Description
Returns the inverse of this matrix
Returns

a double matrix containing the inverse

solve
public double[] solve(double[] b)

Description
Solve Ax = b where A is a positive definite matrix with elements of type double.
Parameter

b — a double array containing the right-hand side of the linear system

Returns

a double array containing the solution to the system of linear equations

update
public void update(double[] x)

Description

Updates the factorization by adding a rank-1 matrix. The object will contain the
Cholesky factorization of a + = * X7 = b, where a is the previously factored matrix.

Parameter

x — A double array which specifies the rank-1 matrix. x is not modified by this
function.

Example: Cholesky Factorization

The Cholesky Factorization of a matrix is performed as well as its inverse.

22 e Cholesky class JMSL

import com.imsl.math.x*;

public class CholeskyExl {
public static void main(String args[]) throws com.imsl.IMSLException {

double afl[]l = {
{1, -3, 2},
{-3, 10, -5},
{2, -5, 6}

I

double b[] = {27, -78, 64};

// Compute the Cholesky factorization of A
Cholesky cholesky = new Cholesky(a);

// Solve Ax = b
double x[] = cholesky.solve(b);
new PrintMatrix("x").print(x);

// Find the inverse of A.
double ainv[][] = cholesky.inverse();
new PrintMatrix("ainv").print(ainv);

H
|
N

ainv
0 1 2
0 35 8 -5
8 2 -1
2 -5 -1 1

[y

Cholesky.NotSPDEXxception class

static public class com.imsl.math.Cholesky.NotSPDException extends
com.imsl.IMSLException

The matrix is not symmetric, positive definite.

Linear Systems Cholesky class o 23

Constructor

Cholesky.NotSPDEXxception
public Cholesky.NotSPDException()

QR class

public class com.imsl.math.QR implements Serializable, Cloneable
QR Decomposition of a matrix.

Class QR computes the QR decomposition of a matrix using Householder transformations. It is
based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

QR determines an orthogonal matrix @, a permutation matrix P, and an upper trapezoidal
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The
Householder transformation for column k is of the form

[UL
Py
for k=1,2,..., min(number of rows of A, number of columns of A), where u has zeros in the

first k - 1 positions. The matrix @ is not produced directly by QR. Instead the information
needed to reconstruct the Householder transformations is saved. If the matrix @ is needed
explicitly, the method getQ can be called after QR. This method accumulates @ from its
factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array
A and the final columns to the end. Both initial and final columns are frozen in place during
the computation. Only free columns are pivoted. Pivoting is done on the free columns of
largest reduced norm.

Constructor

QR
public QR(double[][] a)

Description
Constructs the QR decomposition of a matrix with elements of type double.
Parameter

a — a double matrix to be factored

24 ¢ QR class JMSL

IllegalArgumentException Thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”.)

Methods

getPermute
public int[] getPermute()

Description

Returns an integer vector containing information about the permutation of the elements
of the matrix during pivoting.

Returns

an int array containing the permutation information. The k-th element contains the
index of the column of the matrix that has been interchanged into the kth column.

getQ
public double[][] getQ(O

Description
Returns the orthogonal or unitary matrix Q.
Returns

a double matrix containing the accumulated orthogonal matrix Q from the QR
decomposition

getR
public double[][] getR()

Description

Returns the upper trapezoidal matrix R.

Returns

the upper trapezoidal double matrix R of the QR decomposition

getRank
public int getRank()

Description
Returns the rank of the matrix used to construct this instance.
Returns

an int specifying the rank of the matrix used to construct this instance

rank
public int rank(double tolerance)

Linear Systems QR class 25

Description
Returns the rank of the matrix given an input tolerance.
Parameter

tolerance — a double scalar value used in determining the rank of the matrix

Returns

an int specifying the rank of the matrix

solve
public double[] solve(double[] b) throws SingularMatrixException

Description
Returns the solution to the least-squares problem Ax = b.
Parameter

b — a double array to be manipulated

Returns
a double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero

SingularMatrixException Thrown when the upper triangular matrix R resulting from
the QR factorization is singular.

solve
public double[] solve(double[] b, double tol) throws SingularMatrixException

Description
Returns the solution to the least-squares problem Ax = b using an input tolerance.
Parameters

b — a double array to be manipulated

tol — a double scalar value used in determining the rank of A

Returns
a double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero

SingularMatrixException Thrown when the upper triangular matrix R resulting from
the QR factorization is singular.

26 ¢ QR class JMSL

Example: QR Factorization of a Matrix

The QR Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The rank of the input matrix is also computed.

import com.imsl.math.x*;

public class QREx1 {
public static void main(String args[]) throws SingularMatrixException {
double all[] = {

{1, 2, 4%,
{1, 4, 16},
{1, 6, 367},
{1, 8, 64}
};
double b[]l = {4.999, 9.001, 12.999, 17.001};

// Compute the QR factorization of A
QR qr = new QR(a);

// Solve Ax = b
double x[] = gr.solve(b);
new PrintMatrix("x").print(x);

// Print Q and R.
new PrintMatrix("Q").print(qr.getQQ));
new PrintMatrix("R").print(qr.getR(Q));

// Find the rank of A.
int rank = qr.getRank();

System.out.println("rank = "+rank);

}
}
Output

X

0
0 0.999
1 2
2 -0

Q

0 1 2 3
0 -0.053 -0.542 0.808 -0.224
1 -0.213 -0.657 -0.269 0.671
2 -0.478 -0.346 -0.449 -0.671
3 -0.85 0.393 0.269 0.224

R
0 1 2

Linear Systems QR class o 27

0 -75.26 -10.63 -1.594
1 0 -2.647 -1.153
2 0 0 0.359
3 0 0 0
rank = 3

SVD class

public class com.imsl.math.SVD
Singular Value Decomposition (SVD) of a rectangular matrix of type double.
SVD is based on the LINPACK routine SSVDC; see Dongarra et al. (1979).

Let n be the number of rows in A and let p be the number of columns in A. For any
n X p matrix A, there exists an n x n orthogonal matrix U and a p x p orthogonal matrix V
such that

% .
UTAV = {o } ifn=p
X0 ifn<p
where ¥ = diag(o1,...,0m), and m = min(n,p). The scalars o1 > 09 > ... > 0y, > 0 are called

the singular values of A. The columns of U are called the left singular vectors of A. The
columns of V are called the right singular vectors of A.

The estimated rank of A is the number of o), that is larger than a tolerance 7. If 7 is the
parameter tol in the program, then

_ T ifr>0
T 1AL, ifr <0

The Moore-Penrose generalized inverse of the matrix is computed by partitioning the matricies

U, Vand ¥ as U = (U1,Us), V = (V4, V) and ¥; = diag(oy, ..., 0k) where the ”1” matrices are
k by k. The Moore-Penrose generalized inverse is V; ZflUlT .

Constructors

SVvD
public SVD(double[][] a) throws SVD.DidNotConvergeException

28 e SVD class JMSL

Description

Construct the singular value decomposition of a rectangular matrix with default
tolerance. The tolerance used is 2.2204460492503e-14. This tolerance is used to determine
rank. A singular value is considered negligible if the singular value is less than or equal to
this tolerance.

Parameter

a — a double matrix for which the singular value decomposition is to be computed

IllegalArgumentException is thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”)

SVvD
public SVD(double[][] a, double tol) throws SVD.DidNotConvergeException
Description

Construct the singular value decomposition of a rectangular matrix with a given
tolerance. If tol is positive, then a singular value is considered negligible if the singular
value is less than or equal to tol. If tol is negative, then a singular value is considered
negligible if the singular value is less than or equal to the absolute value of the product of
tol and the infinity norm of the input matrix. In the latter case, the absolute value of
tol generally contains an estimate of the level of the relative error in the data.

Parameters
a — a double matrix for which the singular value decomposition is to be computed

tol — a double scalar containing the tolerance used to determine when a singular
value is negligible

IllegalArgumentException is thrown when the row lengths of input matrix a are not
equal (for example, the matrix edges are ”jagged”)

DidNotConvergeException is thrown when the rank cannot be determined because
convergence was not obtained for all singular values

Methods

getinfo
public int getInfo()

Description

Returns convergence information about S, U, and V.

Linear Systems SVD class e 29

Returns

Convergence was obtained for the info, info+1, ..., min(nra,nca) singular values and their
corresponding vectors. Here, nra and nca represent the number of rows and columns of
the input matrix respectively.

getRank
public int getRank()

Description
Returns the rank of the matrix used to construct this instance.
Returns

an int scalar containing the rank of the matrix used to construct this instance. The
estimated rank of the input matrix is the number of singular values which are larger than
a tolerance.

getS
public double[] getS(Q)

Description
Returns the singular values.
Returns

a double array containing the singular values of the matrix

getU
public double[][] getU(Q)

Description
Returns the left singular vectors.
Returns

a double matrix containing the left singular vectors

getv
public double[]l[] getV()

Description
Returns the right singular vectors.
Returns

a double matrix containing the right singular vectors

inverse
public double[][] inverse()

30 ¢ SVD class JMSL

Description

Compute the Moore-Penrose generalized inverse of a real matrix.

Returns

a double matrix containing the generalized inverse of the matrix used to construct this
instance

Example: Singular Value Decomposition of a Matrix

The singular value decomposition of a matrix is performed. The rank of the matrix is also

computed.

import com.imsl.math.x*;

public class SVDEx1 {
public static void main(String args[]) throws SVD.DidNotConvergeException {
all(]
{1, 25
{3,
{4,

double

};

{1,
{1,

2’
35
{2, 1,
55
2’

={
4},
3}3
4},
1}’
2},
3}

// Compute the SVD factorization of A
SVD svd = new SVD(a);

// Print U, S and V.
new PrintMatrix("U").print(svd.getU());
new PrintMatrix("S") .print(svd.getS());
new PrintMatrix("V").print(svd.getV());

// Find the rank of A.
int rank = svd.getRank();

System.out.println("rank = "+rank);

}
}
Output

U

0 1 3
0 -0.38 0.12 0.439 -0.565 0.024
1 -0.404 0.345 -0.057 0.215 0.809
2 -0.545 0.429 0.051 0.432 -0.572
3 -0.265 -0.068 -0.884 -0.215 -0.063
4 -0.446 -0.817 0.142 0.321 0.062
5 -0.355 -0.102 -0.004 -0.546 -0.099

-0.
.119
.04
-0.
-0.
. 746

573

306
08

Linear Systems

SVD class

e 31

0
0 11.485
1 3.27
2 2.653
3 2.089

v

0 1 2 3
0 -0.444 0.556 -0.435 0.552
1 -0.558 -0.654 0.277 0.428
2 -0.324 -0.351 -0.732 -0.485
3 -0.621 0.374 0.444 -0.526
rank = 4

SVD.DidNotConvergeException class

static public class com.imsl.math.SVD.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge

Constructors

SVD.DidNotConvergeException
public SVD.DidNotConvergeException(String message)

SVD.DidNotConvergeException
public SVD.DidNotConvergeException(String key, Object[] arguments)

SingularMatrixException class

public class com.imsl.math.SingularMatrixException extends
com.imsl.IMSLException

The matrix is singular.

32 e SingularMatrixException class JMSL

Constructor

SingularMatrixException
public SingularMatrixException()

Chapter 1. Linear Systems SingularMatrixException class e 33

34 e SingularMatrixException class JMSL

Chapter 2. Eigensystem Analysis

Types
class BRI, . ..o 37
class SYMEIZEILo 40

Usage Notes

An ordinary linear eigensystem problem is represented by the equation Az = Az where A
denotes an n x n matrix. The value A is an eigenvalue and x # 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have
chosen this factor so that x has Euclidean length one, and the component of z of largest
magnitude is positive. If z is a complex vector, this component of largest magnitude is scaled to
be real and positive. The entry where this component occurs can be arbitrary for eigenvectors
having nonunique maximum magnitude values.

Error Analysis and Accuracy

Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the
ordinary eigenvalue problem Ax = Ax. Typically, the computed pair

DY

are an exact eigenvector-eigenvalue pair for a "nearby” matrix A 4+ E. Information about E is
known only in terms of bounds of the form [|E||, < f (n)||A]|,e. The value of f(n) depends on
the algorithm, but is typically a small fractional power of n. The parameter ¢ is the machine
precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

min ‘X - A‘ < w(X)|E|l, for all \ino (A)
where o(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of

35

eigenvectors, ||-||, is Euclidean length, and x(X) is the condition number of X defined as
K (X) =Xy HX_1 ||2 If A is a real symmetric or complex Hermitian matrix, then its
eigenvector matrix X is respectively orthogonal or unitary. For these matrices, k(X) = 1.

The accuracy of the computed eigenvalues

>
<.

and eigenvectors

L
can be checked by computing their performance index 7. The performance index is defined to be
|25 - 33|
7= max ——————2
1<j<n e [|Ally 125,
where € is again the machine precision.

The performance index 7 is related to the error analysis because

1E%], = HA@‘ = X

where F is the "nearby” matrix discussed above.

While the exact value of 7 is precision and data dependent, the performance of an eigensystem
analysis function is defined as excellent if 7 < 1, good if 1 < 7 < 100, and poor if 7 > 100. This
is an arbitrary definition, but large values of 7 can serve as a warning that there is a significant
error in the calculation.

If the condition number x(X) of the eigenvector matrix X is large, there can be large errors in
the eigenvalues even if 7 is small. In particular, it is often difficult to recognize near multiple
eigenvalues or unstable mathematical problems from numerical results. This facet of the
eigenvalue problem is often difficult for users to understand. Suppose the accuracy of an
individual eigenvalue is desired. This can be answered approximately by computing the
condition number of an individual eigenvalue(see Golub and Van Loan 1989, pp. 344-345). For
matrices A, such that the computed array of normalized eigenvectors X is invertible, the
condition number of \; is

_ Ty —1
ki = Jlef X7

the Euclidean length of the j-th row of X ~!. Users can choose to compute this matrix using the
class LU in ”Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by ke ||A||. To compute an approximate bound for the relative
accuracy of an eigenvalue, divide this bound by |A;|.

36 e JMSL

Eigen class

public class com.imsl.math.Eigen
Collection of Eigen System functions.

Eigen computes the eigenvalues and eigenvectors of a real matrix. The matrix is first balanced.
Orthogonal similarity transformations are used to reduce the balanced matrix to a real upper
Hessenberg matrix. The implicit double-shifted QR algorithm is used to compute the
eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such
that each has Euclidean length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is
based on the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the
EISPACK routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details,
some timing data, and credits are given in Hanson et al. (1990).

While the exact value of the performance index, 7, is highly machine dependent, the
performance of Eigen is considered excellent if 7 < 1, good if 1 < 7 < 100, and poor if 7 > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Smith et al. (1976, pages 124-125).

Constructors

Eigen

pu?)lic Eigen(double[][] a) throws Eigen.DidNotConvergeException
Description
Constructs the eigenvalues and the eigenvectors of a real square matrix.
Parameter

a — is the double square matrix whose eigensystem is to be constructed

DidNotConvergeException is thrown when the algorithm fails to converge on the
eigenvalues of the matrix.

Eigen
public Eigen(double[][] a, boolean computeVectors) throws
Eigen.DidNotConvergeException

Description

Constructs the eigenvalues and (optionally) the eigenvectors of a real square matrix.

Eigensystem Analysis Eigenclass e 37

Parameters
a — is the double square matrix whose eigensystem is to be constructed

computeVectors — is true if the eigenvectors are to be computed

DidNotConvergeException is thrown when the algorithm fails to converge on the
eigenvalues of the matrix.

Methods

getValues
public Complex[] getValues()

Description
Returns the eigenvalues of a matrix of type double.
Returns

a Complex array containing the eigenvalues of this matrix in descending order

getVectors
public Complex[][] getVectors()

Description
Returns the eigenvectors.
Returns

A Complex matrix containing the eigenvectors. The eigenvector corresponding to the j-th
eigenvalue is stored in the j-th column. Each vector is normalized to have Euclidean
length one.

performancelndex
public double performanceIndex(double[][] a)

Description
Returns the performance index of a real eigensystem.
Parameter

a — a double matrix

Returns

A double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed. A performance index less than 1 is
considered excellent, 1 to 100 is good, while greater than 100 is considered poor.

38 e Eigen class JMSL

Example: Eigensystem Analysis
The eigenvalues and eigenvectors of a matrix are computed.

import com.imsl.math.x*;

public class EigenExl {
public static void main(String args[]) throws
Eigen.DidNotConvergeException {
double afllll = {

{ 8, -1, _5}:
{_4, 4: _2}’
{18, -5, -7}

};

Eigen eigen = new Eigen(a);

new PrintMatrix("Eigenvalues") .print(eigen.getValues());
new PrintMatrix("Eigenvectors").print(eigen.getVectors());

Output

Eigenvalues
0

0 2+4i

2-4i

2 1

[y

Eigenvectors
0 1 2
0.316-0.3161 0.316+0.316i 0.408
0.632 0.632 0.816
0-0.6321 0+0.6321 0.408

N = O

Eigen.DidNotConvergeException class

static public class com.imsl.math.Eigen.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge

Eigensystem Analysis Eigenclass e 39

Constructors

Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException(String message)

Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException(String key, Object[] arguments)

SymEigen class

public class com.imsl.math.SymEigen

Computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix.
These transformations are accumulated. An implicit rational QR algorithm is used to compute
the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the eigenvalues
as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on the
EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines. Further details,
some timing data, and credits are given in Hanson et al. (1990).

Let M = the number of eigenvalues, A = the array of eigenvalues, and x; is the associated
eigenvector with jth eigenvalue.

Also, let € be the machine precision. The performance index, 7, is defined to be

Ar: — \x;
T = max || =1 Jm]”l
1<j<M 10Ne || A, =],

While the exact value of 7 is highly machine dependent, the performance of SymEigen is
considered excellent if 7 < 1, good if 1 < 100, and poor if 7 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al.
(1976, pages 124-125).

Constructors

SymEigen
public SymEigen(double[][] a)

Description

Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.

40 e SymEigen class JMSL

Parameter

a — is the symmetric matrix whose eigensystem is to be constructed.

SymEigen
public SymEigen(double[][] a, boolean computeVectors)

Description
Constructs the eigenvalues and (optionally) the eigenvectors for a real symmetric matrix.
Parameters

a — a double symmetric matrix whose eigensystem is to be constructed

computeVectors — a boolean, true if the eigenvectors are to be computed

IllegalArgumentException is thrown when the lengths of the rows of the input matrix
are not uniform.

Methods

getValues
public double[] getValues()

Description
Returns the eigenvalues
Returns

a double array containing the eigenvalues in descending order. If the algorithm fails to
converge on an eigenvalue, that eigenvalue is set to NaN.

getVectors
public double[][] getVectors()

Description
Return the eigenvectors of a symmetric matrix of type double.
Returns

a double array containing the eigenvectors. The j-th column of the eigenvector matrix
corresponds to the j-th eigenvalue. The eigenvectors are normalized to have Euclidean
length one. If the eigenvectors were not computed by the constructor, then null is
returned.

performancelndex
public double performanceIndex(double[][] a)

Description

Returns the performance index of a real symmetric eigensystem.

Eigensystem Analysis SymEigen class e 41

Parameter

a — a double symmetric matrix

Returns

a double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed. A performance index less than 1 is
considered excellent, 1 to 100 is good, while greater than 100 is considered poor.

IllegalArgumentException is thrown when the lengths of the rows of the input matrix
are not uniform.

Example: Eigenvalues and Eigenvectors of a Symmetric Matrix
The eigenvalues and eigenvectors of a symmetric matrix are computed.

import com.imsl.math.x*;

public class SymEigenEx1l {
public static void main(String args[]) {
double afllll = {

{1, 1, 1},
{1, 1, 13},
{1, 1, 1}

};

SymEigen eigen = new SymEigen(a);
new PrintMatrix("Eigenvalues") .print(eigen.getValues());
new PrintMatrix("Eigenvectors").print(eigen.getVectors());

¥
}
Output
Eigenvalues

0
0o 3
1 -0
2 -0

Eigenvectors
0 1 2

0 0.577 0.816 O
1 0.577 -0.408 -0.707
2 0.577 -0.408 0.707

42 ¢ SymEigen class JMSL

Chapter 3: Interpolation and
Approximation

Types

Class SPLNEo e 45
Class CSAKIMIAt e e 47
class CsInterpolate. 49
class CsPeriodico 51
Class CSSNAPE. . .« 53
class CSSIMOOtILo 55
class CsSMOOthC 2 57
class BsInterpolate. 60
class BsLeastSquares. 62
class RadialBasis 65

This chapter contains classes to interpolate and approximate data with cubic splines.
Interpolation means that the fitted curve passes through all of the specified data points. An
approximation spline does not have to pass through any of the data points. An appoximating
curve can therefore be smoother than an interpolating curve.

Cubic splines are smooth C! or C? fourth-order piecewise-polynomial (pp) functions. For
historical and other reasons, cubic splines are the most heavily used pp functions.

This chapter contains four cubic spline interpolation classes and two approximation classes.
These classes are dervived from the base class Spline, which provides basic services, such as
spline evaluation and integration.*

43

o o o o = =
WM N @ =
= o o o o o

|

o
=}

Csinterpolate

-010

1.30

I e e
[
= o o o o

o
=

T T T T T 1
ooo 1.00 200 300 400 500 600 7.00

Cshkima

0o T T T T T T d
000 1.00 200 300 400 500 6.00 7.00

1.30

o =
o
= o

o
pw
=

o
w
=

o o
— o
= =

TR NN NN N RN ey Ree]

CsSmooth

-0.10

000 1.00 200 300 400 500 6.00 7.00

-010 T T T T T 1
000 1.00 200 300 400 500 600 7.00

-0.10 T T T T T d
0.00 1.00 200 300 400 500 600 7.00

1.30 7]

1.10

0.80 7

0.70

0.50 7

0.30

0104

CsPeriodic

1307

1.10

0.90

0.70

0.50

0.30

010

CsShape

10 T T T T T T d
0.00 1.00 200 300 400 500 600 7.00

1.30 7

1101

0.40

0704

0.60

0307

010

CsSmoothC2 (o = 0.01)

The chart shows how the six cubic splines in this chapter fit a single data set.

Class CsInterpolate allows the user to specify various endpoint conditions (such as the value
of the first and second derviatives at the right and left endpoints).

Class CsPeriodic is used to fit periodic (repeating) data. The sample data set used is not
periodic and so the curve does not pass through the final data point.

Class CsAkima keeps the shape of the data while minimizing oscillations.

Class CsShape keeps the shape of the data by preserving its convexity.

Class CsSmooth constructs a smooth spline from noisy data.

Class CsSmoothC2 constructs a smooth spline from noisy data using cross-validation and a
user-supplied smoothing parameter.

44 o

JMSL

Spline class

abstract public class com.imsl.math.Spline implements Serializable, Cloneable
Spline represents and evaluates univariate piecewise polynomial splines.

A univariate piecewise polynomial (function) p(z) is specified by giving its breakpoint sequence
& € R", the order k (degree k-1) of its polynomial pieces, and the k x (n — 1) matrix c of its
local polynomial coefficients. In terms of this information, the piecewise polynomial (ppoly)
function is given by
PGl

p(x) = chi(j_izl), forg; <z < §1+1
The breakpoint sequence ¢ is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals.

Jj=1

Fields

breakPoint
protected double[] breakPoint
The breakpoint array of length n, where n is the number of piecewise polynomials.

coef

protected double[][] coef
Coefficients of the piecewise polynomials. This is an n by k array, where n is the number
of piecewise polynomials and k is the order (degree+1) of the piecewise polynomials.

coef [i] contains the coefficients for the piecewise polynomial valid in the interval
[x[k],x[k+1]).

EPSILON_LARGE
static final protected double EPSILON_LARGE
The largest relative spacing for double.

Constructor

Spline
public Spline()

Interpolation and Approximation Spline class e 45

Methods

copyAndSortData
protected void copyAndSortData(double[] xData, double[] yData)

Description

Copy and sort xData into breakPoint and yData into the first column of coef.

copyAndSortData
protected void copyAndSortData(double[] xData, double[] yData, doublel[]
weight)

Description

Copy and sort xData into breakPoint and yData into the first column of coef.

derivative
public double derivative(double x)

Description
Returns the value of the first derivative of the spline at a point.
Parameter

x — a double, the point at which the derivative is to be evaluated

Returns

a double containing the value of the first derivative of the spline at the point x

derivative
public double derivative(double x, int ideriv)

Description
Returns the value of the derivative of the spline at a point.
Parameters

x — a double, the point at which the derivative is to be evaluated

ideriv — an int specifying the derivative to be computed. If zero, the function value
is returned. If one, the first derivative is returned, etc.

Returns

a double containing the value of the derivative of the spline at the point x

getBreakpoints
public double[] getBreakpoints()

46 e Spline class JMSL

Description
Returns a copy of the breakpoints.
Returns

a double array containing a copy of the breakpoints

integral
public double integral(double a, double b)

Description
Returns the value of an integral of the spline.
Parameters
a — a double specifying the lower limit of integration

b — a double specifying the upper limit of integration

Returns

a double, the integral of the spline from a to b

value
public double value(double x)

Description
Returns the value of the spline at a point.
Parameter

x — a double, the point at which the spline is to be evaluated

Returns
a double giving the value of the spline at the point x

CsAkima class

public class com.imsl.math.CsAkima extends com.imsl.math.Spline
Extension of the Spline class to handle the Akima cubic spline.

Class CsAkima computes a C! cubic spline interpolant to a set of data points (x;, f;) for
i =0,...,n— 1. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth, say C*, function f, i.e. f; = f(z;), then the
error will behave in a predictable fashion. Let £ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

Interpolation and Approximation CsAkima class e 47

2
[507§n71 |§|

1S = slligy, ey = C Hf(z)’

where

€] == max |§ — &

i=1,...,n—1

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The
method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are
not reproduced. (However, linear polynomials are reproduced.)

Constructor

CsAkima
public CsAkima(double[] xData, double[] yData)

Description
Constructs the Akima cubic spline interpolant to the given data points.

Parameters

xData — a double array containing the x-coordinates of the data. Values must be
distinct.

yData — a double array containing the y-coordinates of the data.

IllegalArgumentException This exception is thrown if the arrays xData and yData do
not have the same length.

Example: The Akima cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

import com.imsl.math.x*;

public class CsAkimaEx1l {
public static void main(String args[]) {
int n = 11;
double x[] = new doublel[n];
double y[] = new doublel[n];

for (int k = 0; k < n; k++) {
x[k] = (double)k/(double) (n-1);
y[k] = Math.sin(15.0%x[k]);

}

48 e CsAkima class JMSL

CsAkima cs = new CsAkima(x, y);

double csv = cs.value(0.25);
System.out.println("The computed cubic spline value at point .25 is "
+ csv);
}
}
Output

The computed cubic spline value at point .25 is -0.478185519991867

Cslinterpolate class

public class com.imsl.math.CsInterpolate extends com.imsl.math.Spline
Extension of the Spline class to interpolate data points.

CsInterpolate computes a C? cubic spline interpolant to a set of data points (z;, f;) for
i=0,...,n — 1. The breakpoints of the spline are the abscissas. Endpoint conditions can be
automatically determined by the program, or explicitly specified by using the appropriate
constructor. Constructors are provided that allow setting specific values for first or second
derivative values at the endpoints, or for specifying conditions that correspond to the
”not-a-knot” condition (see de Boor 1978).

The "not-a-knot” conditions require that the third derivative of the spline be continuous at the
second and next-to-last breakpoint. If n is 2 or 3, then the linear or quadratic interpolating
polynomial is computed, respectively.

If the data points arise from the values of a smooth, say, C* function f, i.e. f; = f(z;), then the
error will behave in a predictable fashion. Let £ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

7 = sl < [f 0 et

[£0.6n

where
€] == max {41 — &

1=0,...,n—1

For more details, see de Boor (1978, pages 55-56).

Interpolation and Approximation Csinterpolate class e 49

Fields

FIRST_DERIVATIVE
static final public int FIRST_DERIVATIVE

NOT_A_KNOT
static final public int NOT_A_KNOT

SECOND_DERIVATIVE
static final public int SECOND_DERIVATIVE

Constructors

Csinterpolate
public CsInterpolate(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points. The interpolant satisfies
the "not-a-knot” condition.

Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.
yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Csinterpolate
public CsInterpolate(double[] xData, double[] yData, int typeLeft, double
valuelLeft, int typeRight, double valueRight)

Description

Constructs a cubic spline that interpolates the given data points with specified derivative
endpoint conditions.

Parameters

xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

typeleft — An int denoting the type of condition at the left endpoint. This can be
NOT_A_KNOT, FIRST_DERIVATIVE or SECOND_DERIVATIVE.

50 e Csinterpolate class JMSL

valueLeft — A double value at the left endpoint. If typeLeft is NOT_A_KNOT this is
ignored, Otherwise, it is the value of the specified derivative.

typeRight — An int denoting the type of condition at the right endpoint. This can
be NOT_A_KNOT, FIRST_DERIVATIVE or SECOND_DERIVATIVE.

valueRight — A double value at the right endpoint.

Example: The cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

import com.imsl.math.x*;

public class CsInterpolateExl {
public static void main(String args[]) {
int n = 11;
double x[] = new double[n];

double y[] = new double[n];
for (int k = 0; k < n; k++) {
x[k] = (double)k/(double) (n-1);

y[k] = Math.sin(15.0*x[k]);

}

CsInterpolate cs = new CsInterpolate(x, y);

double csv = cs.value(0.25);

System.out.println("The computed cubic spline value at point .25 is "
+ csv);

Output

The computed cubic spline value at point .25 is -0.5487725038121579

CsPeriodic class

public class com.imsl.math.CsPeriodic extends com.imsl.math.Spline
Extension of the Spline class to interpolate data points with periodic boundary conditions.

Class CsPeriodic computes a C? cubic spline interpolant to a set of data points (z;, f;) for
i =20,...n — 1. The breakpoints of the spline are the abscissas. The program enforces periodic

Interpolation and Approximation CsPeriodic class e 51

endpoint conditions. This means that the spline s satisfies s(a) = s(b), s’ (a) = s’ (b), and

s (a) = §"” (b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate
values corresponding to a and b are not equal, then a warning message is issued. The ordinate
value at b is set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C*) periodic function £, i.e. fi = f(2;),
then the error will behave in a predictable fashion. Let £ be the breakpoint vector for the above
spline interpolant. Then, the maximum absolute error satisfies

If = sligo,en_a] < CLFP 0,601 1€]*

where

€ == _max & — &

i=1,...,n—1

For more details, see de Boor (1978, pages 320-322).

Constructor

CsPeriodic
public CsPeriodic(double[] xData, double[] yData)

Description
Constructs a cubic spline that interpolates the given data points with periodic boundary
conditions.
Parameters
xData — A double array containing the x-coordinates of the data. There must be at
least 4 data points and values must be distinct.
yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Example: The cubic spline interpolant with periodic boundary conditions

A cubic spline interpolant to a function is computed. The value of the spline at point 0.23 is
printed.

import com.imsl.math.x*;

public class CsPeriodicExl {
public static void main(String args[]) {
int n = 11;
double x[] new double[n];
double yI[] new double[n];

double h = 2.%Math.PI/15./10.;
for (int k = 0; k < n; k++) {

52 e CsPeriodic class JMSL

x[k] = h * (double) (k);

y[k]l = Math.sin(15.0*x[k]);
}
CsPeriodic cs = new CsPeriodic(x, y);
double csv = cs.value(0.23);
System.out.println("The computed cubic spline value at point .23 is "
+ csv);
}
}
Output

The computed cubic spline value at point .23 is -0.3034014726064514

CsShape class

public class com.imsl.math.CsShape extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points consistent with the concavity of the
data.

Class CsShape computes a cubic spline interpolant to n data points x;, f; for i =0,...,n — 1.
For ease of explanation, we will assume that z; < x;41, although it is not necessary for the user
to sort these data values. If the data are strictly convex, then the computed spline is convex,
C?, and minimizes the expression
Tn
/ (")
xp

over all convex C! functions that interpolate the data. In the general case when the data have
both convex and concave regions, the convexity of the spline is consistent with the data and the
above integral is minimized under the appropriate constraints. For more information on this
interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this class is that it is not possible, a priori, to
predict the number of breakpoints of the resulting interpolant. In most cases, there will be
breakpoints at places other than data locations. The method is nonlinear; and although the
interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear
polynomials are reproduced.) This routine should be used when it is important to preserve the
convex and concave regions implied by the data.

Interpolation and Approximation CsShape class e 53

Constructor

CsShape
public CsShape(double[] xData, double[] yData) throws
CsShape.TooManyIterationsException, SingularMatrixException
Description
Construct a cubic spline interpolant which is consistent with the concavity of the data.
Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Example: The shape preserving cubic spline interpolant

A cubic spline interpolant to a function is computed consistent with the concavity of the data.
The spline value at 0.05 is printed.

import com.imsl.math.x*;

public class CsShapeEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {
double x[] = {0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00};
double y[] = {0.00, 0.90, 0.95, 0.90, 0.10, 0.05, 0.05, 0.20, 1.00};

CsShape cs = new CsShape(x, y);

double csv cs.value(0.05);

System.out.println("The computed cubic spline value at point .05 is "
+ csv);

Output

The computed cubic spline value at point .05 is 0.5582312228648201

CsShape.TooManylterationsException class

static public class com.imsl.math.CsShape.TooManyIterationsException extends
com.imsl.IMSLException

54 e CsShape class JMSL

Too many iterations.

Constructors

CsShape.TooManylterationsException
public CsShape.TooManyIterationsException()

CsShape.TooManylterationsException
public CsShape.TooManyIterationsException(Object[] arguments)

CsShape.TooManylterationsException
public CsShape.TooManyIterationsException(String key, Object[] arguments)

CsSmooth class

public class com.imsl.math.CsSmooth extends com.imsl.math.Spline
Extension of the Spline class to construct a smooth cubic spline from noisy data points.

Class CsSmooth is designed to produce a C? cubic spline approximation to a data set in which
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic
spline with knots at all the data abscissas £ = xData, but it does not interpolate the data

(x;, f;). The smoothing spline S is the unique C? function that minimizes

b
/ S" (z)? dx

subject to the constraint

n—1

Z (S (z) — fi)wi|2 <o

=0

where o is the smoothing parameter. The reader should consult Reinsch (1967) for more
information concerning smoothing splines. CsSmooth solves the above problem when the user
provides the smoothing parameter o. CsSmoothC2 attempts to find the ”optimal” smoothing
parameter using the statistical technique known as cross-validation. This means that (in a very
rough sense) one chooses the value of o so that the smoothing spline (S,) best approximates
the value of the data at xzj, if it is computed using all the data except the -th; this is true for
all i =0,...,n — 1. For more information on this topic, we refer the reader to Craven and
Wahba (1979).

Interpolation and Approximation CsSmooth class e 55

Constructors

CsSmooth
public CsSmooth(double[] xData, double[] yData)

Description
Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. All of the points have equal weights.
Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

CsSmooth
public CsSmooth(double[] xData, double[] yData, double[] weight)

Description

Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. Weights are supplied by the user.

Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

weight — A double array containing the relative weights. This array must have the
same length as xData.

Example: The cubic spline interpolant to noisy data

A cubic spline interpolant to noisy data is computed using cross-validation to estimate the
smoothing parameter. The value of the spline at point 0.3010 is printed.

import com.imsl.math.x*;
import com.imsl.stat.x*;

public class CsSmoothEx1l {
public static void main(String args[]) {

int n = 300;

double x[] = new doubleln];

double y[] = new doublel[n];

for (int k = 0; k < n; k++) {
x [k] (3.0%k)/(n-1);
ylk] = 1.0/(0.1 + Math.pow(3.0*(x[k]-1.0),4));

56 ¢ CsSmooth class JMSL

}

// Seed the random number generator
Random rn = new Random();

rn.setSeed (1234579L) ;
rn.setMultiplier (16807);

// Contaminate the data
for (int i = 0; i < n; i++) {

y[i] += 2.0 * rn.nextFloat() - 1.0;
}

// Smooth the data

CsSmooth c¢s = new CsSmooth(x, y);

double csv = cs.value(0.3010);

System.out.println("The computed cubic spline value at point .3010 is "
+ csv);

Output

The computed cubic spline value at point .3010 is 0.1078582256142388

CsSmoothC2 class

public class com.imsl.math.CsSmoothC2 extends com.imsl.math.Spline

Extension of the Spline class used to construct a spline for noisy data points using an alternate
method.

Class CsSmoothC2 is designed to produce a C? cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is a natural
cubic spline with knots at all the data abscissas z, but it does not interpolate the data (z;, f;).
The smoothing spline S, is the unique C? function that minimizes

b
/ " (x)? dx

subject to the constraint

n—1
Y lso (@)= fil* <o
=0

Interpolation and Approximation CsSmoothC2 class e 57

Recommended values for ¢ depend on the weights, w. If an estimate for the standard deviation
of the error in the y-values is availiable, then w; should be set to this value and the smoothing
parameter should be choosen in the confidence interval corresponding to the left side of the

above inequality. That is,
n—van<oc<n++v2n

CsSmoothC2 is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de
Boor (1978, pages 235-243).

Constructors

CsSmoothC2
public CsSmoothC2(double[] xData, double[] yData, double sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967). All of the points have equal weights.

Parameters

xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

sigma — A double value specifying the smoothing parameter. Sigma must not be
negative.

CsSmoothC2

public CsSmoothC2(double[] xData, double[] yData, double[] weight, double
sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967) with weights supplied by the user.

Parameters

xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

weight — A double array containing the weights. The arrays xData and weight must
have the same length.

sigma — A double value specifying the smoothing parameter. Sigma must not be
negative.

58 ¢ CsSmoothC2 class JMSL

Example: The cubic spline interpolant to noisy data with supplied weights

A cubic spline interpolant to noisy data is computed using supplied weights and smoothing
parameter. The value of the spline at point 0.3010 is printed.

import com.imsl.math.x*;
import com.imsl.stat.x*;

public class CsSmoothC2Ex1 {
public static void main(String args[]) {
// Set up a grid
int n = 300;
double x[] = new doubleln];
double y[] = new doublel[n];

for (int k = 0; k < mn; k++t) {
x[k] = 3. * ((double) (k)/(double) (n-1));
ylk] = 1./(.1 + Math.pow(3.*(x[k]-1.),4));
}

// Seed the random number generator
Random rn = new Random();

rn.setSeed (1234579) ;
rn.setMultiplier (16807);

// Contaminate the data
for (int i = 0; i < n; i++) {

y[i] = y[i] + 2. * rn.nextFloat() - 1.;
}

// Set the weights

double sdev = 1./Math.sqrt(3.);

double weights[] = new double[n];

for (int i = 0; i < n; i++) {
weights[i] = sdev;

}

// Set the smoothing parameter
double smpar = (double)n;

// Smooth the data

CsSmoothC2 cs = new CsSmoothC2(x, y, weights, smpar);

double csv = cs.value(0.3010);

System.out.println("The computed cubic spline value at point .3010 is "
+ csv);

Output

The computed cubic spline value at point .3010 is 0.06458434076781128

Interpolation and Approximation CsSmoothC2 class

¢ 59

Bsinterpolate class

public class com.imsl.math.BsInterpolate extends com.imsl.math.BSpline
Extension of the BSpline class to interpolate data points.

Given the data points = xData, f = yData, and n the number of elements in xData and
yData, the default action of BsInterpolate computes a cubic (order = 4) spline interpolant s
to the data using a default "not-a-knot” knot sequence. Constructors are also provided that
allow the order and knot sequence to be specified. This algorithm is based on the routine
SPLINT by de Boor (1978, p. 204).

First, the xData vector is sorted and the result is stored in z. The elements of yData are
permuted appropriately and stored in f, yielding the equivalent data (z;, f;) for i = 0 to n-1.
The following preliminary checks are performed on the data, with k = order. We verify that

Ti < xipq fori=0,...,n—2
t; <tjyp fori=0,...,n—1
ti<ti+1 fOI‘Z.:O,...,’I‘L+]€72

The first test checks to see that the abscissas are distinct. The second and third inequalities
verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tx_; < x; <t, for i =10
to n-1. This first inequality in the last check is necessary since the method used to generate the
entries of the interpolation matrix requires that the k possibly nonzero B-splines at z;,

Bj_k41, ..., Bj where j satisfies t; < a; < tj;41 be well-defined (that is, j —k + 1> 0).

Constructors

Bslinterpolate
public BsInterpolate(double[] xData, double[] yData)

Description

Constructs a B-spline that interpolates the given data points. The computed B-spline will
be order 4 (cubic) and have a default "not-a-knot” spline knot sequence.

Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Bsinterpolate

60 e Bsinterpolate class JMSL

public BsInterpolate(double[] xData, double[] yData, int order)
Description

Constructs a B-spline that interpolates the given data points and order, using a default
”not-a-knot” spline knot sequence.

Parameters

xData — A double array containing the x-coordinates of the data. Values must be
distinct.

yData — A double array containing the y-coordinates of the data.The arrays xData
and yData must have the same length.

order — An int denoting the order of the B-spline.

Bsinterpolate
public BsInterpolate(double[] xData, double[] yData, int order, double[]
knot)

Description

Constructs a B-spline that interpolates the given data points, using the specified order
and knots.

Parameters
xData — A double array containing the x-coordinates of the data. Values must be
distinct.
yData — A double array containing the y-coordinates of the data.The arrays xData
and yData must have the same length.
order — An int denoting the order of the spline.

knot — A double array containing the knot sequence for the B-spline.

Example: The B-spline interpolant
A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.

import com.imsl.math.x*;

public class BsInterpolateEx1l {
public static void main(String args[]) {
int n = 11;
double x[] = new doublel[n];
double y[] = new double[n];

double h
for (int
x [k]
y [k]

2.*%Math.PI/15./10.;
=0; k <n; k+t+t) {
h * (double) (k);

Math.sin(15.0*x[k]);

o= n

Interpolation and Approximation Bslinterpolate class e 61

BsInterpolate bs = new BsInterpolate(x, y);

double bsv = bs.value(0.23);

System.out.println("The computed B-spline value at point .23 is "
+ bsv);

Output

The computed B-spline value at point .23 is -0.3034183992767692

BsLeastSquares class

public class com.imsl.math.BsLeastSquares extends com.imsl.math.BSpline
Extension of the BSpline class to compute a least squares spline approximation to data points.
Let’s make the identifications

n = xData.length

z = xData
f= yData
m = nCoef
k = order

For convenience, we assume that the sequence z is increasing, although the class does not
require this.

By default, k¥ = 4, and the knot sequence we select equally distributes the knots through the
distinct x;'s. In particular, the m + k knots will be generated in [z1,2,] with k knots stacked
at each of the extreme values. The interior knots will be equally spaced in the interval.

Once knots t and weights w are determined, then the spline least-squares fit to the data is
computed by minimizing over the linear coefficients a;

n—1 m 2
Z W; |:fz - Zaij(xi):|
i=0 j=1

where the Bj,j =1,...,m are a (B-spline) basis for the spline subspace.

This algorithm is based on the routine L2ZAPPR by deBoor (1978, p. 255).

62 e BsLeastSquares class JMSL

Fields

nCoef
protected int nCoef
Number of B-spline coefficients.

weight
protected double[] weight
The weight array of length n, where n is the number of data points fit.

Constructors

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef)

Description
Constructs a least squares B-spline approximation to the given data points.
Parameters

xData — A double array containing the x-coordinates of the data.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef — An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline (whose default value is 4).

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order)

Description
Constructs a least squares B-spline approximation to the given data points.
Parameters

xData — A double array containing the x-coordinates of the data.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef — An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.

order — An int denoting the order of the spline.

Interpolation and Approximation BsLeastSquares class e 63

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order,
double[] weight, double[] knot)

Description
Constructs a least squares B-spline approximation to the given data points.
Parameters

xData — A double array containing the x-coordinates of the data.

yData — A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef — An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.

order — An int denoting the order of the spline.

weight — A double array containing the weights for the data. The arrays xData,
yData and weights must have the same length.

knot — A double array containing the knot sequence for the spline.

Example: The B-spline least squares fit
A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is printed.

import com.imsl.math.x*;

public class BsLeastSquaresEx1l {
public static void main(String args[]) {
int n = 11;
double x[] = {0, 1, 2, 3, 4, 5, 8, 9, 10};
double y[] = {1.0, 0.8, 2.4, 3.1, 4.5, 5.8, 6.2, 4.9, 3.7};

BsLeastSquares bs = new BsLeastSquares(x, y, 5);
double bsv = bs.value(4.5);

System.out.println("The computed B-spline value at point 4.5 is "
+ bsv);

Output

The computed B-spline value at point 4.5 is 5.228554323596942

64 e BsLeastSquares class JMSL

RadialBasis class

public class com.imsl.math.RadialBasis implements Serializable, Cloneable

RadialBasis computes a least-squares fit to scattered data in R?, where d is the dimension.
More precisely, we are given data points

d
Loy -y Tn—1 eR

and function values
f07"'afn—1 € Rl

The radial basis fit to the data is a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error

Z_:wi (F(x:) =)
=0

where w are the weights. Of course, we must restrict the functional form of F. Here we assume
it is a linear combination of radial functions:

m—1

Fz)=) ajé(lle - ¢l)

j=0
The c; are the centers.

A radial function, ¢(r), maps [0,00) into R!. The default radial function is the Hardy

multiquadric,
o(r) = Vr? + §2

with § = 1. An alternate radial function is the Gaussian, e~

LL.’IJ2

By default, the centers are points in a Faure sequence, scaled to cover the box containing the
data.

Field

serialVersionUID
static final public long serialVersionUID

Constructor

RadialBasis
public RadialBasis(int nDim, int nCenters)

Interpolation and Approximation RadialBasis class e 65

Description
Creates a new instance of RadialBasis.
Parameters

nDim — is the number of dimensions.

nCenters — is the number of centers.

Methods

getANOVA
public ANOVA getANOVA()

Description

Returns the ANOVA statistics from the linear regression.
Returns

an ANOVA table and related statistics

getRadialFunction
public RadialBasis.Function getRadialFunction()

Description
Returns the radial function.
Returns

the current radial function.

gradient
public double[] gradient(double[] x)

Description

Returns the gradient of the radial basis approximation at a point.

Parameter
X —is a double array containing the locations of the data point at which the
approximation’s gradient is to be computed.

Returns

a double array, of length nDim containing the value of the gradient of the radial basis
approximation at z.

setRadialFunction
public void setRadialFunction(RadialBasis.Function radialFunction)

66 e RadialBasis class JMSL

Description
Sets the radial function.
Parameter

radialFunction — is the radial function.

update
public void update(double[] x, double f)

Description
Adds a data point with weight = 1.
Parameters
x — is a double array containing the locations of the data point.

f — is a double containing the function value at the data point.

update
public void update(double[] x, double f, double w)

Description

Adds a data point with a specified weight.

Parameters
X — is a double array containing the locations of the data point.
f —is a double containing the function value at the data point.

w — is a double containing the weight of this data point.

value
public double value(double[] x)

Description
Returns the value of the radial basis approximation at a point.
Parameter

X —is a double array containing the locations of the data point at which the
approximation is to be computed.

Returns

the value of the radial basis approximation at z.

Interpolation and Approximation RadialBasis class ® 67

Example: Radial Basis Function Approximation

The function
e I1E2/d

where d is the dimension, is evaluated at a set of randomly choosen points. Random noise is
added to the values and a radial basis approximated to the noisy data is computed. The radial
basis fit is then compared to the original function at another set of randomly choosen points.
Both the average error and the maximum error are computed and printed.

In this example, the dimension d=10. The function is sampled at 200 random points, in the
[~1,1]? cube, to which what noise in the range [-0.2,0.2] is added. The error is computed at
1000 random points, also from the [—1,1]¢ cube. The compute errors are less than the added
noise.

import com.imsl.math.x*;
import java.util.Random;

public class RadialBasisEx1l {

public static void main(String args[]) {
int nDim = 10;

// Sample, with noise, the function at 100 randomly choosen points
int nData = 200;
double xDatal[][] = new double[nData] [nDim] ;
double fData[] = new double[nData];
Random rand = new Random(234567L);
for (int k = 0; k < nData; k++) {

for (int i = 0; i < nDim; i++) {

xDatal[k] [i] = 2.0*rand.nextDouble() - 1.0;

}

// noisy sample

fDatal[k] = fcn(xDatal[k]) + 0.20%(2.0*rand.nextDouble()-1.0);
}

// Compute the radial basis approximation using 25 centers
int nCenters = 25;

RadialBasis rb = new RadialBasis(nDim, nCenters);
rb.update(xData, fData);

// Compute the error at a randomly selected set of points
int nTest = 1000;
double maxError = 0.0;
double aveError = 0.0;
double x[] = new double[nDim];
for (int k = 0; k < nTest; k++) {
for (int i = 0; i < nDim; i++) {
x[i] = 2.0*rand.nextDouble() - 1.0;
}
double error = Math.abs(fcn(x)-rb.value(x));
aveError += error;
maxError = Math.max(error, maxError);
double f = fen(x);

68 e RadialBasis class JMSL

}

aveError /= nTest;

System.out.println("average error is "+aveError);
System.out.println("maximum error is "+maxError);

// The function to approximate
static double fcn(double x[]) {
double sum = 0.0;
for (int k = 0; k < x.length; k++) {
sum += x[k]*x[k];
}
sum /= x.length;
return Math.exp(-sum) ;

Output

average error is 0.02619296746295321
maximum error is 0.13197595135821727

RadialBasis.Function interface

public interface com.imsl.math.RadialBasis.Function

Public interface for the user supplied function to the RadialBasis object.

Methods

f
public double f(double x)

Description
A radial basis function.
Parameter

x — a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

Interpolation and Approximation RadialBasis class

e 69

g
public double g(double x)

Description
The derivative of the radial basis function.
Parameter

x — a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

RadialBasis.HardyMultiquadric class

static public class com.imsl.math.RadialBasis.HardyMultiquadric implements
com.imsl.math.RadialBasis.Function

The Hardy multiquadric basis function, v/r2 + 62.

Constructor

RadialBasis.HardyMultiquadric
public RadialBasis.HardyMultiquadric(double delta)

Description
Creates a Hardy multiquadric basis function.
Parameter

delta — is the parameter in the function definition.

Methods

f
public double f(double x)

g
public double g(double x)

70 e RadialBasis class JMSL

RadialBasis.Gaussian class

static public class com.imsl.math.RadialBasis.Gaussian implements
com.imsl.math.RadialBasis.Function

. . . — 2
The Gaussian basis function, e~%*

Constructor

RadialBasis.Gaussian
public RadialBasis.Gaussian(double a)

Methods

f
public double f(double x)

g
public double g(double x)

Chapter 3. Interpolation and Approximation RadialBasis class o 71

72 e RadialBasis class JMSL

Chapter 4: Quadrature

Types
class QUAadrature.o . 74
class HyperRectangleQuadrature. i 80

Usage Notes

Univariate Quadrature

Class Quadrature computes approximations to integrals of the form

/cb f(z)dzx

Quadrature computes an estimated answer R. An optional value ErrorEstimate = FE estimates
the error. These numbers are related as follows:

b b
/f(x)dx—R < E <max\ €,p /f(m)dac

One situation that occasionally arises in univariate quadrature concerns the approximation of
integrals when only tabular data are given. The functions described above do not directly
address this question. However, the standard method for handling this problem is first to
interpolate the data, and then to integrate the interpolant. This can be accomplished by using
a JMSL spline interpolation class derived from com.imsl.math.Spline and the method
com.imsl.Spline.integral (a,b)

Multivariate Quadrature
The class HypercubeQuadrature computes an approximation to the integral of a function of n

73

variables over a hyper-rectangle.

by b
/ / f (1, ooy xy)day... dx;
ay An,

Quadrature class

public class com.imsl.math.Quadrature implements Serializable, Cloneable

Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to
reduce the absolute error. It subdivides the interval [A, B] and uses a

(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for
each subinterval is estimated by comparison with the A&point Gauss quadrature rule. The
subinterval with the largest estimated error is then bisected and the same procedure is applied
to both halves. The bisection process is continued until either the error criterion is satisfied,
roundoff error is detected, the subintervals become too small, or the maximum number of
subintervals allowed is reached. The Class Quadrature is based on the subroutine QAG by
Piessens et al. (1983).

Reference

Constructor

Quadrature
public Quadrature()

Description

Constructs a Quadrature object.

Methods

eval
public double eval(Quadrature.Function objectF, double a, double b)

Description
Returns the value of the integral from a to b.
Parameters

objectF — an implementation of Function containing the function to be integrated

74 e Quadrature class JMSL

a — a double specifying the lower limit of integration

b — a double specifying the upper limit of integration, either or both of a and b can
be Double. POSITIVE_INFINITY or Double. NEGATIVE_INFINITY

getErrorEstimate

public double getErrorEstimate()

Description

Returns an estimate of the relative error in the computed result.

Returns

a double specifying an estimate of the relative error in the computed result

getErrorStatus

public int getErrorStatus()

Description

Returns the non-fatal error status.

Returns

an int specifying the non-fatal error status:

Status

Meaning

1

Maximum number of subdivisions allowed has been achieved.
One can allow more subdivisions by using setMaxSubinter-
vals. If this yields no improvement it is advised to analyze
the integrand in order to determine the integration difficul-
ties. If the position of a local difficulty can be determined
(e.g. singularity, discontinuity within the interval) one will
probably gain from splitting up the interval at this point and
calling the integrator on the subranges. If possible, an ap-
propriate special-purpose integrator should be used, which is
designed for handling the type of difficulty involved.

The occurrence of roundoff error is detected, which prevents
the requested tolerance from being achieved. The error may
be under-estimated.

Extremely bad integrand behavior occurs at some points of
the integration interval.

The algorithm does not converge. Roundoff error is detected
in the extrapolation table. It is presumed that the requested
tolerance cannot be achieved, and that the returned result is
the best that can be obtained.

The integral is probably divergent, or slowly convergent. It
must be noted that divergence can occur with any other status
value.

Quadrature

Quadrature class

75

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description
Sets the absolute error tolerance.
Parameter

errorAbsolute — a double scalar value specifying the absolute error

setExtrapolation
public void setExtrapolation(boolean doExtrapolation)

Description

If true, the epsilon-algorithm for extrapolation is enabled. The default is false
(extrapolation is not used).

Parameter

doExtrapolation — a boolean, true if the epsilon-algorithm for extrapolation is to
be enabled, false otherwise

setMaxSubintervals
public void setMaxSubintervals(int maxSubintervals)

Description
Sets the maximum number of subintervals allowed. The default value is 500.
Parameter

maxSubintervals — an int specifying the maximum number of subintervals to be

allowed. The default is 500.

setRelativeError
public void setRelativeError(double errorRelative)

Description
Sets the relative error tolerance.
Parameter

errorRelative — a double scalar value specifying the relative error

setRule
public void setRule(int rule)

76 e Quadrature class JMSL

Description

Set the Gauss-Kronrod rule.

Rule | Data points used
1 7-15

10 - 21

15 - 31

20 - 41

25 - 51

30 - 61

O U | W N

The default is rule 3.
Parameter

rule — an int specifying the rule to be used. The default is 3.

3
Example 1: Integral fl e dx

The integral flg e2* dx is computed and compared to its expected value.

import com.imsl.math.x*;

public class QuadratureEx1l {
public static void main(String args[]) {
Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {
return Math.exp(2.*x);
}
};

Quadrature q = new Quadrature();
double result = q.eval(fcn, 1.0, 3.0);

double expect = (Math.exp(6)-Math.exp(2))/2.;

System.out.println("result = "+result);
System.out.println("expect = "+expect);
}
}
Output
result = 198.01986869690225
expect = 198.01986869690222

Quadrature Quadrature class

o 77

Example 2: Integral fooo e Tdx

The integral fooo e~ " dz is computed and compared to its expected value.

import com.imsl.math.x*;

public class QuadratureEx2 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {
return Math.exp(-x);
}
};

Quadrature q = new Quadrature();
double result = q.eval(fcn, 0.0, Double.POSITIVE_INFINITY);

double expect = 1.;

System.out.println("result = "+result);
System.out.println("expect = "+expect);
}
}
Output
result = 0.999999999999999
expect = 1.0

Example 3: Integral of the entire real line

The integral [*° —=% — dz is computed and compared to its expected value. This integral is
oo 4eT+9e

evaluated in Gradshteyn and Ryzhik (equation 3.417.1).

import com.imsl.math.x*;

public class QuadratureEx3 {
public static void main(String args[]) {
Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {
return x / (4#Math.exp(x)+9*Math.exp(-x));
}
};

Quadrature q = new Quadrature();
double result = q.eval(fcn, Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY);

78 e Quadrature class JMSL

double expect = Math.PI*Math.log(1.5)/12.;

System.out.println("result = "+result);
System.out.println("expect = "+expect);
}

}

Output

result = 0.10615051707662819

expect = 0.10615051707663337

Reference

Gradshteyn, I. S. and I. M. Ryzhik (1965), Table of Integrals, Series, and Products, Academic

Press, New York.

Example 4. Integral of an oscillatory function

The integral of cos(az) for a = 10* is computed and compared to its expected value. Because
the function is highly oscillatory, the quadrature rule is set to 6. The relative error tolerance is

also set.

import com.imsl.math.x*;

public class QuadratureEx4 {
public static void main(String args[]) {
final double a = 1.0e4;

Quadrature.Function fcn = new Quadrature.Function() {

public double f(double x) {
return Math.cos(a*x);
}
};

Quadrature q = new Quadrature();
q.setRule(6);
q.setRelativeError(1.e-10);

double result = q.eval(fcn, 0.0, 1.0);

double expect = Math.sin(a)/a;

System.out.println("result = "+result);
System.out.println("expect = "+expect);
System.out.println("relative error = "+(expect-result)/expect);

System.out.println("relative error estimate =

"+q.getErrorEstimate());

Quadrature

Quadrature class

79

Output

result = -3.05614388902526E-5

expect = -3.056143888882521E-5

relative error = -4.670545934003717E-11
relative error estimate = 1.0488375541870691E-8

Quadrature.Function interface

public interface com.imsl.math.Quadrature.Function

Public interface function for the Quadrature class.

Method

f
public double f(double x)

Description
Returns the value of the function at the given point.
Parameter
x — a double specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

HyperRectangleQuadrature class

public class com.imsl.math.HyperRectangleQuadrature implements Serializable,
Cloneable

HyperRectangleQuadrature integrates a function over a hypercube. This class is used to
evaluate integrals of the form:

bn—1 bo
/ f('rOa---7x71,—1)dx0...d$n_1
a ao

n—1

80 e HyperRectangleQuadrature class JMSL

Integration of functions over hypercubes by Monte Carlo, in which the integral is evaluated as
the value of the function averaged over a sequence of randomly chosen points. Under mild
assumptions on the function, this method will converge like 1/4/n, where n is the number of
points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at
which the function is to be evaluated. Randomly distributed points tend to be non-uniformly
distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A
low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by
com.imsl.stat.FaureSequence (p. 747) .

Constructors

HyperRectangleQuadrature
public HyperRectangleQuadrature(RandomSequence sequence)

Description
Constructs a HyperRectangleQuadrature object.

HyperRectangleQuadrature
public HyperRectangleQuadrature(int dim)

Description
Constructs a HyperRectangleQuadrature object.

Methods

eval
public double eval (HyperRectangleQuadrature.Function objectF)

Description
Returns the value of the integral over the unit cube.
Parameter

objectF — Function containing the function to be integrated

eval

public double eval (HyperRectangleQuadrature.Function objectF, double[] a,
double[] b)

Description

Returns the value of the integral over a cube.

Quadrature HyperRectangleQuadrature class e 81

Parameters
objectF — Function containing the function to be integrated

a — is a double specifying the lower limit of integration. If null all of the lower limits
default to 0.

b — is a double specifying the upper limit of integration. If null all of the upper
limits default to 1.

getErrorEstimate
public double getErrorEstimate()

Description
Returns an estimate of the relative error in the computed result.
Returns

a double specifying an estimate of the relative error in the computed result

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description
Sets the absolute error tolerance.
Parameter

errorAbsolute — a double scalar value specifying the absolute error

setRelativeError
public void setRelativeError(double errorRelative)

Description
Sets the relative error tolerance.
Parameter

errorRelative — a double scalar value specifying the relative error

Example: HyperRectangle Quadrature

This example evaluates the following multidimensional integral, with n=10.

n

bn—1 bo] i 1 1\ "
/a /a(J Z(_l)znxj dzo...dx,—1 =3 [1— (—2) }
n—1 i=0 7=0

82 e HyperRectangleQuadrature class JMSL

import com.imsl.math.x*;

public class HyperRectangleQuadratureExl {
public static void main(String args[]) {

HyperRectangleQuadrature.Function fcn =
new HyperRectangleQuadrature.Function() {
public double f(double x[]1) {
int sign = 1;
double sum = 0.0;
for (int i = 0; i < x.length; i++) {
double prod = 1.0;
for (int j = 0; j <= 1i; j++) {

prod *= x[j];
}
sum += sign * prod;
sign = -sign;

}

return sum;

};

HyperRectangleQuadrature q = new HyperRectangleQuadrature(10);
double result = q.eval(fcn);
System.out.println("result = "+result);

Output

result = 0.3331253832089543

HyperRectangleQuadrature.Function interface

public interface com.imsl.math.HyperRectangleQuadrature.Function

Public interface function for the HyperRectangleQuadrature class.

Method

f
public double f(double[] x)

Quadrature HyperRectangleQuadrature class

e 83

Description
Returns the value of the function at the given point.
Parameter

x — a double array specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

84 e HyperRectangleQuadrature class JMSL

Chapter 5: Differential Equations

Type

class OdeRungeKutta. 86

Usage Notes

Ordinary Differential Equations
An ordinary differential equation is an equation involving one or more dependent variables
called y;, one independent variable, ¢, and derivatives of the y; with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables y; at
a known value t = ty are given. Values of y;(t) for ¢t > 0 or ¢t < tg are required.

The 0deRungeKutta class solves the IVP for ODEs of the form

dy;
dt

:y;:fl(tyla 7yN) 2217 7]\/v

with y; = (t = to) specified. Here, f; is a user-supplied function that must be evaluated at any
set of values (¢,y1,...,yn),i=1,...,N.

This problem statement is abbreviated by writing it as a system of first-order ODEs,

gyl () ,yn O [(8 y) s v ()]

, so that the problem becomes y' = f (¢, y)with initial values y(¢o).

The system

dy

E:y/:f(ta?»

is said to be stiff if some of the eigenvalues of the Jacobian matrix

85

{0y;/0y;}

are large and negative. This is frequently the case for differential equations modeling the
behavior of physical systems, such as chemical reactions proceeding to equilibrium where
subspecies effectively complete their reactions in different epochs. An alternate model concerns
discharging capacitors such that different parts of the system have widely varying decay rates
(or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers
such as OdeRungeKutta are inefficient, or else completely fail. Special methods are often
required. The most common inefficiency is that a large number of evaluations of f(t, y) (and
hence an excessive amount of computer time) are required to satisfy the accuracy and stability
requirements of the software.

OdeRungeKutta class

public class com.imsl.math.0OdeRungeKutta implements Serializable, Cloneable

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method.

Class 0deRungeKutta finds an approximation to the solution of a system of first-order
differential equations of the form yo = f(¢,y) with given initial data. The routine attempts to
keep the global error proportional to a user-specified tolerance. This routine is efficient for
nonstiff systems where the derivative evaluations are not expensive.

OdeRungeKutta is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses
Runge-Kutta formulas of order five and six developed by J. H. Verner.

Fields

AFTER_SUCCESSFUL_STEP
static final public int AFTER_SUCCESSFUL_STEP
Used by method examineStep to indicate examining after a successful step

AFTER_UNSUCCESSFUL_STEP
static final public int AFTER_UNSUCCESSFUL_STEP
Used by method examineStep to indicate examining after an unsuccessful step

BEFORE_STEP
static final public int BEFORE_STEP
Used by method examineStep to indicate examining before the next step

86 ¢ OdeRungeKutta class JMSL

Constructor

OdeRungeKutta
public OdeRungeKutta(OdeRungeKutta.Function function)

Description
Constructs an ODE solver to solve the initial value problem dy/dz = f(x,y)
Parameter

function — Implementation of interface Function that defines the right-hand side

function f(x,y)

Methods

examineStep
protected void examineStep(int state, double x, double[] y)

Description
Called before and after each internal step.
Parameters

state — an int, one of BEFORE_STEP, AFTER_SUCCESSFUL_STEP or
AFTER_UNSUCCESSFUL_STEP.

x — double representing the indepenent variable.

y — double array containing the dependent variables.

setFloor
public void setFloor(double floor)

Description
Sets the value used in the norm computation.
Parameter

floor — double used in the norm computation, default value is 1.

IllegalArgumentException is thrown if floor is less than or equal to zero.

setlnitialStepsize
public void setInitialStepsize(double stepsize)

Description

Sets the initial internal step size.

Differential Equations OdeRungeKutta class

e 87

Parameter

stepsize — double specifying the initial internal step size.

IllegalArgumentException is thrown if stepsize is less than or equal to zero.

setMaximumStepsize
public void setMaximumStepsize(double stepsize)

Description
Sets the maximum internal step size.
Parameter

stepsize — Maximum internal step size. Default value is 2.

IllegalArgumentException is thrown if stepsize is less than or equal to 0.

setMaxSteps
public void setMaxSteps(int maxSteps)

Description
Sets the maximum number of internal steps allowed.
Parameter
maxSteps — int specifying the maximum number of internal steps allowed, default

value is 500

IllegalArgumentException is thrown if maxSteps is less than or equal to zero.

setMinimumStepsize
public void setMinimumStepsize(double stepsize)

Description
Sets the minimum internal step size.
Parameter

stepsize — Minimum internal step size. Default value is 0.

I1llegalArgumentException is thrown if stepsize is less than or equal to 0.

setNorm
public void setNorm(int normMethod)

Description

Sets the switch for determining the error norm.

88 ¢ OdeRungeKutta class JMSL

Parameter

normMethod — int specifying the switch for determining the error norm, default
value is 0. In the following, e; is the absolute value fo an estimate of the error in y;(?)

norm Constraint

0 Minimum of the absolute error and the relative error, equals the maxi-
mum of e;/max(|y;(t)|,1)
1 Absolute error, equals maz(e;)

2 Maximum of e; /maz(|y;(t)|, floor)

IllegalArgumentException is thrown if norm is is not 0, 1, or 2.

setScale
public void setScale(double scale)

Description
Sets the scaling factor.
Parameter

scale — double specifying the scaling factor, default value is 1.e0

IllegalArgumentException is thrown if scale is less than or equal to 0.

setTolerance
public void setTolerance(double tolerance)

Description
Sets the error tolerance.
Parameter

tolerance — double specifying the error tolerance. Default value is 1.0e-6.

IllegalArgumentException is thrown if tolerance less than or equal 0.

solve

public void solve(double x, double xEnd, double[] y) throws
OdeRungeKutta.ToleranceTooSmallException,
OdeRungeKutta.DidNotConvergeException

Description

Integrates the ODE system from x to xEnd. On all but the first call to solve, the value of
x must equal the value of xEnd for the previous call.

Differential Equations OdeRungeKutta class e 39

Parameters
x — double specifying the independent variable
xEnd — double specifying the value of x at which the solution is desired

y — On input, double array containing the initial values. On output, double array
containing the approximate solution.

DidNotConvergeException is thrown if the number of internal steps exceeds maxSteps
(default 500). This can be an indication that the ODE system is stiff. This exception
can also be thrown if the error tolerance condition could not be met.

ToleranceTooSmallException is thrown if the computation does not converge on some
step.

vnorm
protected double vnorm(double[] v, double[] y, double[] ymax)

Description

Returns the norm of a vector.

Parameters
v — double array containing the vector whose norm is to be computed
y — double array containing the values of the dependent variable

ymax — double array containing the maximum y values computed thus far

Returns

double scalar value representing the norm of the vector v

Example: Runge-Kutta-Verner ordinary differential equation solver

An ordinary differential equation problem is solved using a solver which implements the
Runge-Kutta-Verner method. The solution at time t=10 is printed.

import com.imsl.math.x*;

public class OdeRungeKuttaExl {
public static void main(String args[]) throws com.imsl.IMSLException {
OdeRungeKutta.Function fcn = new OdeRungeKutta.Function() {
public void f(double t, double y[], double yprime[]) {
yprime[0] = 2. * y[0] * (1-y[1]);
yprime[1] = -y[1] * (1-y[0]);

};

double y[1 = {1,3};

OdeRungeKutta q = new OdeRungeKutta(fcn);
int nsteps = 10;

for (int k = 0; k < nsteps; k++) {

90 ¢ OdeRungeKutta class JMSL

q.solve(k, k+1, y);
}
System.out.println("Result = {"+y[0]+","+y[1]+"}");

Output

Result = {3.1443416765160768,0.3488265985196999}

OdeRungeKutta.Function interface

public interface com.imsl.math.O0deRungeKutta.Function

Public interface for user supplied function to 0deRungeKutta object.

Method

f
public void f(double x, double[] y, double[] yprime)

Description

Returns the value of the function at the given point.

Parameters
x — a double, the point at which the function is to be evaluated
y — a double array which contains the dependent variable values

yprime — a double array which contains the value of the function at (x,y)

OdeRungeKutta.ToleranceTooSmallException class

static public class com.imsl.math.0OdeRungeKutta.ToleranceTooSmallException
extends com.imsl.IMSLException

Tolerance is too small.

Differential Equations OdeRungeKutta class

e 91

Constructor

OdeRungeKutta.ToleranceTooSmallException
public OdeRungeKutta.ToleranceTooSmallException(String key, Object[]
arguments)

OdeRungeKutta.DidNotConvergeException class

static public class com.imsl.math.0OdeRungeKutta.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge.

Constructors

OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException(String message)

OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException(String key, Object[] arguments)

92 ¢ OdeRungeKutta class JMSL

Chapter 6: Transforms

Types
class BT . 94
class ComplexE T . ..o 98

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform takes
approximately n? operations where n is the number of points in the transform, while the FFT
(which computes the same values) takes approximately

n log n operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)
algorithm. Hence, these functions are most efficient for integers that are highly composite; that
is, integers that are a product of small primes.

For the two classes, FFT and ComplexFFT, a single instance can be used to transform multiple
sequences of the same length. In this situation, the constructor computes the initial setup once.
This may result in substantial computational savings. For more information on the use of these
classes consult the documentation under the appropriate class name.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham
1974) as

Flw) = (Sf) () = L et

93

We begin by making the following approximation:

. T/2 ,
frx [e

—T/2

T
_ / f (t _ T/2)€72mw(t7T/2)dt
0

T
_ 67rin / f (t o T/2)6727Tiwtdt
0
If we approximate the last integral using the rectangle rule with spacing h = T'/n , we have

n—1

f(w) ~ emiwTp Z e—QTriwkhf (kh _ T/2)

k=0

Finally, setting w = j/T for j =0,...,n— 1 yields

n—1 n—1
f(]/T) ~ em‘jh Z e—2m’jk/nf (k’h _ T/2) — (_1)]' Z e—27rijk/nf£,
k=0 k=0

where the vector f* = (f(=1/2),...,f((n —1)h —T/2)) . Thus, after scaling the components
by (—1)" , the discrete Fourier transform, as computed in ComplexFFT (with input f") is
related to an approximation of the continuous Fourier transform by the above formula.

FFT class

public class com.imsl.math.FFT implements Serializable, Cloneable
FFT functions.

Class FFT computes the discrete Fourier transform of a real vector of size n. The method used
is a variant of the Cooley-Tukey algorithm, which is most efficient when 7 is a product of small
prime factors. If n satisfies this condition, then the computational effort is proportional to n log
n.

The forward method computes the forward transform. If n is even, then the forward transform
is

n—1

2rkm
1 = ; COS m=1, ..., n/2
q2m—1 ;}pk n /

94 e FFT class JMSL

m=1,...,n/2-1

s 2mrkm
Gom—2 = — Zpk sin
k=0

n—1
do =Y Dk
k=0

If nis odd, gy, is defined as above for m from 1 to (n - 1)/2.

Let fbe a real valued function of time. Suppose we sample f at n equally spaced time intervals
of length § seconds starting at time to. That is, we have

piZ:f(to-i-’L'A)i:O, 1,...,n—1

We will assume that n is odd for the remainder of this discussion. The class FFT treats this
sequence as if it were periodic of period n. In particular, it assumes that f (to) = f (to + nA).
Hence, the period of the function is assumed to be T'=nA. We can invert the above transform
for p as follows:

(n—3)/2 (n—3)/2
1 kE+1)m . 2m(k+1)m
Pm = o qo +2 g_ q2k-+1 COS (7 -2 E G2k+2 S 7(n)

This formula is very revealing. It can be interpreted in the following manner. The coefficients ¢
produced by FFT determine an interpolating trigonometric polynomial to the data. That is, if
we define

(n—3)/2 (n—3)/2
27Tk+1 t—t() . 27T]€+1 t—t()
g(t):ﬁ qo + 2 Z q2k+1 COS (n) -2 Z Q2k+2 Sin (n)A()
(n—3)/2 (n—3)/2
1 k+1)(t—to . 2m(k+1)(t—to
- n Qo +2 Z G2k+1 COS 2n(T()—2 kz% G2k+2 SIn (72)

then we have

flo+(i-1)A)=g(to+(i—1)A

Now suppose we want to discover the dominant frequencies, forming the vector P of length (n
+ 1)/2 as follows:

Transforms FFT class e 95

= |qo

P, ::,/qgk72+q§k71 k=1,2,...,(n—-1)/2

These numbers correspond to the energy in the spectrum of the signal. In particular, Py
corresponds to the energy level at frequency

k k n—1
T—niA k—07].,...7 2

Furthermore, note that there are only (n + 1)/2 ~ T'/(2A) resolvable frequencies when n
observations are taken. This is related to the Nyquist phenomenon, which is induced by
discrete sampling of a continuous signal. Similar relations hold for the case when n is even.

If the backward method is used, then the backward transform is computed. If n is even, then
the backward transform is

n/2—1 n/2—2
m 2w(k + 1)m k+1
Gm=po+ (~1)"pn1+2 > pzkﬂcos(i—? Z Pak2sin ————— (Jm
k=0
If n is odd,
(n—3)/2 27T(]€—|—1 (n—3)/2 (k—l—]_)
Gm =Do +2 Z D2k+1 6087 -2 Z P2kt2 SID ———
k=0

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

FFT is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

Constructor

FFT
public FFT(int n)

Description
Constructs an FFT object.
Parameter

n — is the length of the sequence to be transformed

96 e FFT class JMSL

Methods

backward
public double[] backward(double[] coef)

Description
Compute the real periodic sequence from its Fourier coefficients.
Parameter

coef — a double array containing the Fourier coefficients

Returns

a double array containing the periodic sequence

forward
public double[] forward(doublel[] seq)

Description
Compute the Fourier coefficients of a real periodic sequence.
Parameter

seq — a double array containing the sequence to be transformed

Returns

a double array containing the transformed sequence

Example: Fast Fourier Transform

The Fourier coefficients of a periodic sequence are computed. The coefficients are then used to
reproduce the periodic sequence.

import com.imsl.math.x*;

public class FFTEx1 {
public static void main(String args[]) {
double x[] = {1, 2, 3, 4, 5, 6, 7, 8};
FFT fft = new FFT(x.length);

double yl[] = fft.forward(x);

double z[] = fft.backward(y);

for (int i = 0; i < x.length; i++) {
z[i] = z[i] / x.length;

}

new PrintMatrix("x").print(x);
new PrintMatrix("y").print(y);
new PrintMatrix("z").print(z);

Transforms FFT class e 97

Output

X
0
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
y
0
0 36
1 -4
2 9.657
3 -4
4 4
5 -4
6 1.657
7 -4
z
0
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8

ComplexFFT class

public class com.imsl.math.ComplexFFT implements Serializable, Cloneable
Complex FFT.

Class ComplexFFT computes the discrete complex Fourier transform of a complex vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N. This considerable savings has historically led people to refer to this
algorithm as the ”fast Fourier transform” or FFT.

Specifically, given an N-vector x, method forward returns

98 ¢ ComplexFFT class JMSL

N-—-1
Com = § :xne—mem/N

n=0

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

VNS

Finally, note that we can invert the Fourier transform as follows:
1 Nl
Ty = N ZO Cme27mn]/N
j=

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized
inverse is implemented in backward. ComplexFFT is based on the complex FFT in FFTPACK.
The package, FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Specifically, given an N-vector ¢, backward returns

N
Sy = E Cn627mnm/N
n=0
Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

VNS

Finally, note that we can invert the inverse Fourier transform as follows:

N-1
1 .
E —2minm/N
Cp — ﬁ 05m6 /
m=

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. backward is based on
the complex inverse FFT in FFTPACK. The package, FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

Constructor

ComplexFFT
public ComplexFFT(int n)

Transforms ComplexFFT class e 99

Description
Constructs a complex FFT object.
Parameter

n — is the array size that this object can handle.

Methods

backward
public Complex[] backward(Complex[] coef)

Description
Compute the complex periodic sequence from its Fourier coefficients.
Parameter

coef — Complex array of Fourier coefficients

Returns

Complex array containing the periodic sequence

forward
public Complex[] forward(Complex[] seq)

Description
Compute the Fourier coefficients of a complex periodic sequence.
Parameter

seq — is the Complex array containing the sequence to be transformed.

Returns

a Complex array containing the transformed sequence.

Example: Complex FFT

The Fourier coefficients of a complex periodic sequence are computed. Then the coefficients are
used to try to reproduce the periodic sequence.

import com.imsl.math.x*;

public class ComplexFFTEx1 {
public static void main(String args[]) {
Complex x[] = {
new Complex(1,8),
new Complex(2,7),
new Complex(3,6),
new Complex(4,5),

100 ¢ ComplexFFT class JMSL

new Complex(5,4),
new Complex(6,3),
new Complex(7,2),
new Complex(8,1)
I
ComplexFFT fft = new ComplexFFT(x.length);

Complex y[] = fft.forward(x);
Complex z[] = fft.backward(y);
for (int i = 0; i < x.length; i++) {
z[i] = Complex.divide(z[i], x.length);

}

new PrintMatrix("x").print(x);
new PrintMatrix("y").print(y);
new PrintMatrix("z").print(z);

Output

1+81i
2471
3+61
4+5i
5+4i
6+31
7+21
8+1i

~NoO o WN O

y
0

36+36i
5.657+13.6571
+81i
-2.343+5.6571
-4+41
-5.657+2.3431i
-8
-13.657-5.6571

~NOoO O WN O

4

0
1+81i
2471
3+61
4+5i
5+4i
6+31
T+21

OO WN R~ O

Transforms ComplexFFT class o 101

7 8+1i

102 ¢ ComplexFFT class JMSL

Chapter 7. Nonlinear Equations

Types

class ZeroPolynomial 104
class ZerOFUNCHION 109
Class ZeTOSYSEEIMot 113

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(2) = anz™n 4 ap_ 12"+ a1z +ag

where a,, # 0. The class finds zeros of a polynomial with real or complex coefficients using
Aberth’s method.

Zeros of a Function

The class uses Muller’s method to find the real zeros of a real-valued function.

Root of System of Equations

A system of equations can be stated as follows:

filx) =0,for i=1,2,...,n

where x € R, and f; : R® — R. The ZeroSystem class uses a modified hybrid method due to
M.J.D. Powell to find the zero of a system of nonlinear equations.

103

ZeroPolynomial class

public class com.imsl.math.ZeroPolynomial implements Serializable, Cloneable

The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients,
Aberth’s method. This class is a Java translation of a Fortran code written by Dario Andrea
Bini, University of Pisa, Italy (bini@dm.unipi.it). Numerical computation of polynomial zeros
by means of Aberth’s method, Numerical Algorithms, 13 (1996), pp. 179-200. The original
Fortran code includes the following notice.

All the software contained in this library is protected by copyright Permission to use, copy,
modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or
modification of this software and in all copies of the supporting documentation for such
software.

THIS SOFTWARE IS BEING PROVIDED ”AS IS”, WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE
PUBLISHER, NOR ANY MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL
"NUMERICAL ALGORITHMS”, NOR ITS EDITOR-IN-CHIEF, BE LIABLE FOR ANY
ERROR IN THE SOFTWARE, ANY MISUSE OF IT OR ANY DAMAGE ARISING OUT
OF ITS USE. THE ENTIRE RISK OF USING THE SOFTWARE LIES WITH THE PARTY
DOING SO. ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE
TERMS OF THE ABOVE STATEMENT.

Field

EPSILON_SMALL
static final public double EPSILON_SMALL
The smallest relative spacing for doubles.

Constructor

ZeroPolynomial
public ZeroPolynomial()

Description

Creates an instance of the solver.

104 e ZeroPolynomial class JMSL

Methods

computeRoots
public Complex[] computeRoots(Complex[] coef) throws
ZeroPolynomial.DidNotConvergeException

Description

Computes the roots of the polynomial with Complex coefficients.

p(z) = coef[n] x 2™ + coef[n — 1] x "~ + ... 4 coef[0]

Parameter

coef — a Complex array containing the polynomial coefficients.

Returns

a Complex array containing the roots of the polynomial.

computeRoots
public Complex[] computeRoots(double[] coef) throws
ZeroPolynomial .DidNotConvergeException

Description

Computes the roots of the polynomial with real coefficients.

p(z) = coef[n] x x™ + coef[n — 1] x "~ + ... 4 coef[0]

Parameter

coef — a double array containing the polynomial coefficients

Returns

a Complex array containing the roots of the polynomial

getRadius
public double getRadius(int index)

Description
Returns an a-posteriori absolute error bound on the root.
Parameter

index — an int specifying the (0-based) index of the root whose error bound is to be
returned

Nonlinear Equations ZeroPolynomial class e 105

Returns

a double representing the error bound on the index-th root. NaN is returned if the
corresponding root cannot be represented as floating point due to overflow or underflow
or if the roots have not yet been computed.

getRoot
public Complex getRoot(int index)

Description
Returns a zero of the polynomial.
Parameter

index — an int which specifies the (0-based) index of the root to be returned

Returns

a Complex which represents the index-th root of the polynomial

getRoots
public Complex[] getRoots()

Description
Returns the zeros of the polynomial.
Returns

a Complex array containing the roots of the polynomial

getStatus
public boolean getStatus(int index)

Description
Returns the error status of a root.
Parameter

index — an int representing the (0-based) index of the root whose error status is to
be returned

Returns

a boolean representing the error status on the index-th root. It is false if the
approximation of the index-th root has been carried out successfully, for example, the
computed approximation can be viewed as the exact root of a slightly perturbed
polynomial. It is true if more iterations are needed for the index-th root.

setMaxlterations
public void setMaxIterations(int maxIterations)

106 e ZeroPolynomial class JMSL

Description
Sets the maximum number of iterations allowed. The default value is 30.

Parameter

maxIterations — an int which specifies the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to zero.

Example 1: Zeros of a Polynomial
The zeros of a polynomial with real coefficients are computed.

import com.imsl.math.x*;

public class ZeroPolynomialEx1l {
public static void main(String args[]) throws
ZeroPolynomial.DidNotConvergeException {
double coef[] = {-2, 4, -3, 1};

ZeroPolynomial zp = new ZeroPolynomial();
Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {

System.out.println("root = " + root[k]);
System.out.println(" radius = "+ zp.getRadius(k));
System.out.println(" status = "+ zp.getStatus(k));
}
}
}
Output

root = 0.9999999999999999-0.99999999999999971
radius = 1.9197212602501468E-14
status = false

root = 1.0000000000000004+1.00000000000000021
radius = 1.9618522761623435E-14
status = false

root = 1.0000000000000002-3.3087224502121107E-241
radius = 2.5512925105887074E-14
status = false

Example 2: Zeros of a Polynomial with Complex Coefficients

The zeros of a polynomial with Complex coefficients are computed.

Nonlinear Equations ZeroPolynomial class

e 107

import com.imsl.math.x*;

public class ZeroPolynomialEx2 {
public static void main(String args[]) throws
ZeroPolynomial.DidNotConvergeException {
// Find zeros of z"3-(3+61)*z"~2+(-8+12i)*z+10
Complex coef[] = {
new Complex(10),
new Complex(-8, 12),
new Complex(-3, -6),
new Complex(1)
};

ZeroPolynomial zp = new ZeroPolynomial();
Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {

System.out.println("root = " + root[k]);
System.out.println(" radius = "+ zp.getRadius(k));
System.out.println(" status = "+ zp.getStatus(k));
}
}
}
Output

root = 1.0+1.01i
radius = 6.105673569140261E-14
status = false

root = 1.0000000000000002+2.00000000000000041
radius = 1.9846776908049295E-13
status = false

root = 0.9999999999999992+2.9999999999999991
radius = 1.5275632034267045E-13
status = false

ZeroPolynomial.DidNotConvergeException class

static public class com.imsl.math.ZeroPolynomial.DidNotConvergeException
extends com.imsl.IMSLException

The iteration did not converge

108 e ZeroPolynomial class JMSL

Constructors

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String message)

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String key, Object[]
arguments)

ZeroFunction class

public class com.imsl.math.ZeroFunction implements Serializable, Cloneable
Muller’s method to find the zeros of a univariate function, f(x).

ZeroFunction computes n real zeros of a real function f. Given a user-supplied function f(z)
and an n-vector of initial guesses 1, xo, ..., T,, the routine uses Muller’s method to locate n
real zeros of f, that is, n real values of z for which f(z) = 0. The routine has two convergence
criteria: the first requires that

f (")l

be less than errorAbsolute, specified by the setAbsoluteError method; the second requires
that the relative change of any two successive approximations to an x; be less than
ErrorRelative, specified by the setAbsoluteError method.

Here,

m
2

is the m-th approximation to x;. Let errorAbsolute be ¢;, and errorRelative be £5. The
criteria may be stated mathematically as follows:

Criterion 1:

|f (@) < &
Criterion 2:
-y
< €
" 2

”Convergence” is the satisfaction of either criterion.

Nonlinear Equations ZeroFunction class e 109

Constructor

ZeroFunction
public ZeroFunction()

Description

Creates an instance of the solver.

Methods

allConverged
public boolean allConverged()

Description

Returns true if the iterations for all of the roots have converged.

computeZeros
public double[] computeZeros(ZeroFunction.Function objectF, double[] guess)

Description
Returns the zeros of a univariate function.
Parameters
objectF — contains the function for which the zeros will be found.

guess — a double array containing an initial guess of the zeros. A zero will be found
for each point in guess.

getlterations
public int getIterations(int nRoot)

Description
Returns the number of iterations used to compute a root.
Parameter

nRoot — an int specifying the index of the root

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description

Sets first stopping criterion. A zero x[i] is accepted if | f(x[é])| is less than this tolerance.
Its default value is about 1.0e-8.

110 e ZeroFunction class JMSL

Parameter

errorAbsolute — a double value specifying the first stopping criterion

IllegalArgumentException is thrown if errorAbsolute is less than 0

setMaxlterations
public void setMaxIterations(int maxIterations)

Description

Sets the maximum number of iterations allowed per root. Its default value is 100.

Parameter

maxIterations — an int specifying the maximum number of iterations allowed per

ro0ot

IllegalArgumentException is thrown if maxIterations is less than zero.

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets second stopping criterion is the relative error. A zero x[i] is accepted if the relative

change of two successive approximations to x[i] is less than this tolerance. Its default

value is about 1.0e-8.
Parameter

errorRelative — a double value specifying the second stopping criterion

IllegalArgumentException is thrown if errorRelative is less than 0 or greater than 1

setSpread
public void setSpread(double spread)

Description
Sets the spread. See setSpreadTolerance.
Parameter

spread — is the new spread. Its default value is 1.0.

setSpreadTolerance
public void setSpreadTolerance(double spreadTolerance)

Nonlinear Equations ZeroFunction class

o111

Description

Sets the spread criteria for multiple zeros. If the zero x[i] has been computed and
|z[i] — z[j]| < spreadTolerance, where x[j] is a previously computed zero, then the
computation is restarted with a guess equal to x[i]+spread. The default value for
spreadTolerance is 1.0e-5.

Parameter

spreadTolerance — a double value specifying the spread tolerance

IllegalArgumentException is thrown if spreadTolerance is less than zero.

Example: Zeros of a Univariate Function

In this example 3 zeros of the sin function are found.
import com.imsl.math.x*;

public class ZeroFunctionEx1l {
public static void main(String args[]) {

ZeroFunction.Function fcn = new ZeroFunction.Function() {
public double f(double x) {
return Math.sin(x);
}
};

ZeroFunction zf = new ZeroFunction();

double guess([] {5, 18, -6};

double zeros[] = zf.computeZeros(fcn, guess);

for (int k = 0; k < zeros.length; k++) {
System.out.println(zeros[k]+" = "+(zeros[k]/Math.PI) + " pi");

}

Output

6.283185307179564 = 1.999999999999993 pi
18.84955592156295 = 6.0000000000077 pi
-6.283185307179641 = -2.0000000000000173 pi

ZeroFunction.Function interface

public interface com.imsl.math.ZeroFunction.Function

112 e ZeroFunction class JMSL

Public interface for the user supplied function to ZeroFunction.

Method

f
public double f(double x)

Description
Returns the value of the function at the given point.
Parameter

x — a double specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

ZeroSystem class

public class com.imsl.math.ZeroSystem implements Serializable, Cloneable
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.

ZeroSysten is based on the MINPACK subroutine HYBRD1, which uses a modification of M.J.D.
Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which uses a
finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes
or increasing residuals. For further description, see More et al. (1980).

A finite-difference method is used to estimate the Jacobian. Whenever the exact Jacobian can
be easily provided, objectF should implement ZeroSystem. Jacobian.

Constructor

ZeroSystem
public ZeroSystem(int n)

Description
Creates an object to find the zeros of a system of n equations.
Parameter

n — is the number of equations that the solver handles

Nonlinear Equations ZeroSystem class 113

Methods

setGuess
public void setGuess(double[] xguess)

Description
Sets the initial guess for the array x. The default is to set x to all zeros.
Parameter

xguess — a double array containing the initial guess

setMaxlterations
public void setMaxIterations(int maxIterations)

Description
Sets the maximum number of iterations allowed. The default value is 200.
Parameter

maxIterations — an int specifying the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to zero.

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets the relative error tolerance. The root is accepted if the relative error between two
successive approximations to this root is within errorRelative. The default is the square
root of the precision, about 1.0e-08.

Parameter

errorRelative — a double specifying the relative error tolerance

IllegalArgumentException is thrown if errorRelative is less than 0 or greater than 1.

solve

public double[] solve(ZeroSystem.Function objectF) throws
ZeroSystem.TooManyIterationsException,
ZeroSystem.ToleranceTooSmallException, ZeroSystem.DidNotConvergeException

Description
Solve a system of nonlinear equations using the Levenberg-Marquardt algorithm
Parameter

objectF — defines the function whose zero is to be found. If objectF implements a
Jacobian then its Jacobian is used. Otherwise a finite difference is computed.

114 e ZeroSystem class JMSL

Returns

a double array containing the solution

TooManyIterationsException is thrown if the maximum number of iterations is
exceeded

ToleranceTooSmallException is thrown if the error tolerance is too small

DidNotConvergeException is thrown if the algorithm does not converge

Example: Solve a System of Nonlinear Equations
A system of nonlinear equations is solved.

import com.imsl.math.x*;

public class ZeroSystemEx1l {
public static void main(String args[]) throws com.imsl.IMSLException {

ZeroSystem.Function fcn = new ZeroSystem.Function() {
public void f(double x[], double £[]1) {
£[0] = x[0] + Math.exp(x[0]-1.0) +
(x[1]+x[2]) *(x[1]+x[2]) - 27.0;
f[1] = Math.exp(x[1]-2.0)/x[0] + x[2]*x[2] - 10.0;
f[2] = x[2] + Math.sin(x[1]-2.0) + x[1]*x[1] - 7.0;

};

ZeroSystem zf = new ZeroSystem(3);

double guess[] = {4, 4, 4};

zf .setGuess(guess) ;

new PrintMatrix("zeros").print(zf.solve(fcn));

}
}
Output
zZeros

0
0 1
1 2
2 3

Nonlinear Equations ZeroSystem class ¢ 115

ZeroSystem.DidNotConvergeException class

static public class com.imsl.math.ZeroSystem.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge.

Constructors

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String message)

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String key, Object[] arguments)

ZeroSystem.Function interface

public interface com.imsl.math.ZeroSystem.Function

Public interface for user supplied function to ZeroSystem object.

Method

f
public void f(double[] x, double[] f)

Description
Returns the value of the function at the given point.
Parameters

x — a double array which contains the point at which the function is to be evaluated.
The contents of this array must not be altered by this function.

f — a double array which contains the value of the function at x.

116 e ZeroSystem class JMSL

ZeroSystem.Jacobian interface
public interface com.imsl.math.ZeroSystem.Jacobian implements

com.imsl.math.ZeroSystem.Function

Public interface for user supplied function to ZeroSystem object.

Method

jacobian
public void jacobian(double[] x, double[][] jac)

Description

Returns the value of the Jacobian at the given point.

Parameters
x — a double array which contains the point at which the Jacobian is to be
evaluated. The contents of this array must not be altered by this function.

jac — a double matrix which contains the value of the Jacobian at x. The value of
jac[i][j] is the derivative of {[i] with respect to x[j].

ZeroSystem.ToleranceTooSmallException class

static public class com.imsl.math.ZeroSystem.ToleranceTooSmallException extends
com.imsl.IMSLException

Tolerance too small

Constructor

ZeroSystem.ToleranceTooSmallException
public ZeroSystem.ToleranceTooSmallException(String key, Object[] arguments)

ZeroSystem.TooManylterationsException class

static public class com.imsl.math.ZeroSystem.TooManyIterationsException extends
com.imsl.IMSLException

Nonlinear Equations ZeroSystem class ¢ 117

Too many iterations.

Constructors

ZeroSystem.TooManylterationsException
public ZeroSystem.TooManyIterationsException()

ZeroSystem.TooManylterationsException
public ZeroSystem.TooManyIterationsException(Object[] arguments)

ZeroSystem.TooManylterationsException
public ZeroSystem.TooManyIterationsException(String key, Object[] arguments)

118 e ZeroSystem class JMSL

Chapter 8: Optimization

Types

Class MANUNICOIL. . . .ttt et ettt e et e e e ettt ettt et 121
class MinUnconMultiVar. e 127
class NonlinLeastSquareso 137
class DensSeLP 148
class LinearProgramming e 156
class QuadraticProgramming i 164
class MinConGenliin. e 169
class BoundedLeastSQUATESottt e 179
class MInConNLP o e 189

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min T

x € R" /(@)

where f: R™ — R is continuous and has derivatives of all orders required by the algorithms.
The functions for unconstrained minimization are grouped into three categories: univariate
functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified
interval. For discussion on unimodality, see Brent (1973).

The class MinUnconMultiVar finds the minimum of a multivariate function using a
quasi-Newton method. The default is to use a finite-difference approximation of the gradient of
f(z). Here, the gradient is defined to be the vector

119

_|0f(x) Of(x) of (z)
T 9z) Bxe T Oz,

Vf(x)

However, when the exact gradient can be easily provided, the gradient should be provided by
implementing the interface MinUnconMultiVar.Gradient.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The
most common application of the function is the nonlinear data-fitting problem where the user is
trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have
many local minima. Try different initial points and intervals to obtain a better local solution.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min f(x)

xr € R™
subjectto Ajx = by

where f: R™ — R, A; and A, are coeflicient matrices, and by and by are vectors. If f(z) is
linear, then the problem is a linear programming problem. If f(z) is quadratic, the problem is a
quadratic programming problem.

The class LinearProgramming uses a revised simplex method to solve small- to medium-sized
linear programming problems. No sparsity is assumed since the coefficients are stored in full
matrix form.

The class QuadraticProgramming is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite,
then QuadraticProgramming modifies it to be positive definite. In this case, output should be
interpreted with care because the problem has been changed slightly. Here, the Hessian of f(z)
is defined to be the n x n matrix

V3 (a) = [afaxf @)

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

SR T)
subjectto g; () =0 for i =1, 2, ..., my
gi(x) >0 for i=mi;+1, ..., m

120 JMSL

where f : R" = Rand g; : R" = R, fort=1,2,...,m.

The class MinConNLP uses a sequential equality constrained quadratic programming algorithm
to solve this problem. A more complete discussion of this algorithm can be found in the
documentation.

MinUncon class

public class com.imsl.math.MinUncon implements Serializable, Cloneable
Unconstrained minimization.

MinUncon uses two separate algorithms to compute the minimum depending on what the user
supplies as the function f.

If £ defines the function whose minimum is to be found MinUncon uses a safeguarded quadratic
interpolation method to find a minimum point of a univariate function. Both the code and the
underlying algorithm are based on the routine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

MinUncon finds the least value of a univariate function, f, where £ implements
MinUnconFunction f. Optional data include an initial estimate of the solution, and a positive
number bound, specified by the setBound method. Let o = zguess where xguess is specified
by the setGuess method and b = bound, then z is restricted to the interval [z¢ — b, zo + b].
Usually, the algorithm begins the search by moving from zy to © = xg + s, where s = step.
step is set by the setStep method. If setStep is not called then step is set to 0.1. step may
be positive or negative. The first two function evaluations indicate the direction to the
minimum point, and the search strides out along this direction until a bracket on a minimum
point is found or until x reaches one of the bounds zy & b. During this stage, the step length
increases by a factor of between two and nine per function evaluation; the factor depends on
the position of the minimum point that is predicted by quadratic interpolation of the three
most recent function values.

When an interval containing a solution has been found, we will have three points, x1, z2, and
x3, with z1 < ze < x3 and f(x2) < f(x1) and f(z2) < f(x3). There are three main ingredients
in the technique for choosing the new z from these three points. They are (i) the estimate of
the minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter ¢, that depends on the closeness of f to a quadratic, and (iii) whether x5 is
near the center of the range between x; and z3 or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least € from x5, and subject to being in the longer interval between x; and zs or zo
and x3 when x5 is particularly close to x; or x3. There is some elaboration, however, when the
distance between these points is close to the required accuracy; when the distance is close to
the machine precision; or when ¢ is relatively large.

The algorithm is intended to provide fast convergence when fhas a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

Optimization MinUncon class e 121

f(x) =241.001|z|

The algorithm can make ¢ large automatically in the pathological cases. In this case, it is usual
for a new value of z to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to fare
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the
routine claims to have achieved the required accuracy if it knows that there is a local minimum
point within distance § of x, where § = xacc, specified by the setAccuracy method even though
the rounding errors in f may cause the existence of other local minimum points nearby. This
difficulty is inevitable in minimization routines that use only function values, so high precision
arithmetic is recommended.

If £ implements MinUnconDerivative then MinUncon uses a descent method with either the
secant method or cubic interpolation to find a minimum point of a univariate function. It starts
with an initial guess and two endpoints. If any of the three points is a local minimum point and
has least function value, the routine terminates with a solution. Otherwise, the point with least
function value will be used as the starting point.

From the starting point, say z., the function value f. = f(z.), the derivative value g. = g(z.),
and a new point z,, defined by z,, = z. — g. are computed. The function f,, = f(z,), and the
derivative g, = g(x,) are then evaluated. If either f,, > f. or g, has the opposite sign of g.,
then there exists a minimum point between x. and x,; and an initial interval is obtained.
Otherwise, since . is kept as the point that has lowest function value, an interchange between
x, and x. is performed. The secant method is then used to get a new point

gnfgc)

Ts = ¢ _gc(
Tp — Tc

Let x,, < x5 and repeat this process until an interval containing a minimum is found or one of
the convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

|=Tc - xn| S Ee

Criterion 2:

|gc| < g

where €, = max {1.0, |x.|} £, € is a relative error tolerance and e, is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
Function and derivative are then evaluated at that point; and accordingly, a smaller interval
that contains a minimum point is chosen. A safeguarded method is used to ensure that the
interval reduces by at least a fraction of the previous interval. Another cubic interpolation is
then performed, and this procedure is repeated until one of the stopping criteria is met.

122 ¢ MinUncon class JMSL

Constructor

MinUncon
public MinUncon()

Description

Unconstrained minimum constructor for a smooth function of a single variable of type
double.

Methods

computeMin
public double computeMin(MinUncon.Function F)

Description

Return the minimum of a smooth function of a single variable of type double using
function values only or using function values and derivatives.

Parameter

F — defines the function whose minimum is to be found. If F implements Derivative
then derivatives are used. Otherwise, an attempt to find the minimum is made using
function values only.

Returns

a double scalar value containing the minimum of the input function

setAccuracy
public void setAccuracy(double xacc)

Description

Set the required absolute accuracy in the final value returned by member function
computeMin. If this member function is not called, the required accuracy is set to 1.0e-8.

Parameter

xacc — a doublescalar value specifying the required absolute accuracy in the final
value returned by member function computeMin.

setBound
public void setBound(double bound)

Description

Set the amount by which X may be changed from its initial value, xguess. If this member
function is not called, bound is set to 100.

Optimization MinUncon class e 123

Parameter

bound — a double scalar value specifying the amount by which X may be changed
from its initial value. In other words, X is restricted to the interval [xguess-bound,

xguess+bound)].

setDerivtol
public void setDerivtol(double gtol)
Description

Set the derivative tolerance used by member function computeMin to decide if the current
point is a local minimum. This is the second stopping criterion. x is returned as a solution
when G(x) is less than or equal to gtol. gtol should be nonnegative, otherwise zero will
be used. If this member function is not called, the derivative tolerance is set to 1.0e-8.

Parameter
gtol — a doublescalar value specifying the derivative tolerance used by member
function computeMin.

setGuess

public void setGuess(double xguess)
Description
Set the initial guess of the minimum point of the input function. If this member function
is not called, an initial guess of 0.0 is used.

Parameter
xguess — a double scalar value specifying the initial guess of the minimum point of
the input function

setStep
public void setStep(double step)

Description

Set the stepsize to use when changing x. If this member function is not called, step is set
to 0.1.

Parameter

step — a double scalar value specifying the order of magnitude estimate of the
required change in z when stepping towards the minimum

Example 1. Minimum of a smooth function

The minimum of e* — 5z is found using function evaluations only.

124 ¢ MinUncon class JMSL

import com.imsl.math.x*;

public class MinUnconEx1l {
public static void main(String args[]) {

MinUncon zf = new MinUncon();

zf .setGuess(0.0);

zf .setAccuracy(0.001);

MinUncon.Function fcn = new MinUncon.Function() {
public double f(double x) {

return Math.exp(x) - 5.*x;

}

};

System.out.println("Minimum is " + zf.computeMin(fcn));

Output

Minimum is 1.6094175999200253

Example 2: Minimum of a smooth function

The minimum of e® — 5z is found using function evaluations and first derivative evaluations.

import com.imsl.math.x*;

public class MinUnconEx2 implements MinUncon.Derivative {
public double f(double x) {
return Math.exp(x) - 5.*x;

}

public double g(double x) {

return Math.exp(x) - 5.;
}

public static void main(String args[]) {
int n = 1;
double xinit = 0.;
double x[] = {0.};
MinUncon zf = new MinUncon();
zf .setGuess (xinit);
zf .setAccuracy(.001);
MinUnconEx2 fcn = new MinUnconEx2();
x[0] = zf.computeMin(fcn);
for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);
}

Optimization

MinUncon class

e 125

Output

x[0] = 1.6100113162270329

MinUncon.Function interface

public interface com.imsl.math.MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Method

f
public double f(double x)

Description

Public interface for the smooth function of a single variable to be minimized.

Parameter

x — a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

MinUncon.Derivative interface

public interface com.imsl.math.MinUncon.Derivative implements
com.imsl.math.MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Method

g

126 ¢ MinUncon class

JMSL

public double g(double x)
Description
Public interface for the smooth function of a single variable to be minimized.
Parameter

x — a double, the point at which the derivative of the function is to be evaluated

Returns

a double, the value of the derivative of the function at x

MinUnconMultiVar class

public class com.imsl.math.MinUnconMultiVar implements Serializable, Cloneable
Unconstrained multivariate minimization.

Class MinUnconMultivar uses a quasi-Newton method to find the minimum of a function f(z)
of n variables. The problem is stated as follows:

SR F @)

Given a starting point x., the search direction is computed according to the formula

d= _B_lgc

where B is a positive definite approximation of the Hessian, and g, is the gradient evaluated at
Z.. A line search is then used to find a new point

Ty = Te+Ad, A >0

such that

f(z) < f(ze)+aghd, ac(0,0.5)

Finally, the optimality condition ||g(x)|| < € where ¢ is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

where s = x,, — z. and y = g, — g.. Another search direction is then computed to begin the
next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Optimization MinUnconMultiVar class e 127

In this implementation, the first stopping criterion for MinUnconMultivar occurs when the
norm of the gradient is less than the given gradient tolerance gradientTolerance. The second
stopping criterion for MinUnconMultivar occurs when the scaled distance between the last two
steps is less than the step tolerance stepTolerance.

Since by default, a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point. Supply gradient for a more accurate gradient evaluation
(setGradient).

Constructor

MinUnconMultiVar
public MinUnconMultiVar(int n)

Description
Unconstrained minimum constructor for a function of n variables of type double.
Parameter

n — An int scalar value which defines the number of variables of the function whose
minimum is to be found.

Methods

computeMin

public double[] computeMin(MinUnconMultiVar.Function F) throws
MinUnconMultiVar.FalseConvergenceException,
MinUnconMultiVar.MaxIterationsException,
MinUnconMultiVar.UnboundedBelowException

Description

Return the minimum point of a function of n variables of type double using a
finite-difference gradient or using a user-supplied gradient.

Parameter

F — defines the function whose minimum is to be found. F can be used to supply a
gradient of the function. If F implements Gradient then the user-supplied gradient
is used. Otherwise, an attempt to find the minimum is made using a finite-difference
gradient.

Returns

a double array containing the point at which the minimum of the input function occurs.

128 e MinUnconMultiVar class JMSL

getErrorStatus
public int getErrorStatus()

Description

Returns the non-fatal error status.

Returns

an int specifying the non-fatal error status:

Status

Meaning

1

The last global step failed to locate a lower point than
the current z value. The current £ may be an approxi-
mate local minimizer and no more accuracy is possible
or the step tolerance may be too large.

Relative function convergence; both the actual and
predicted relative reductions in the function are less
than or equal to the relative function convergence tol-
erance.

Scaled step tolerance satisfied; the current point may
be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or the step tolerance is too big.

getlterations
public int getIterations()

Description

Returns the number of iterations used to compute a minimum.

Returns

an int specifying the number of iterations used to compute the minimum.

setDigits

public void setDigits(double fdigit)

Description

Set the number of good digits in the function. If this member function is not called, fdigit

is set to 15.0.
Parameter

fdigit — a double scalar value specifying the number of good digits in the user

supplied function

IllegalArgumentException is thrown if fdigit is less than or equal to 0

Optimization

MinUnconMultiVar class

e 129

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

Description

Set the false convergence tolerance. If this member function is not called,
2.22044604925031308e-14 is used as the false convergence tolerance.

Parameter
falseConvergenceTolerance — a double scalar value specifying the false

convergence tolerance

IllegalArgumentException is thrown if falseConvergenceTolerance is less than or equal
to 0

setFscale
public void setFscale(double fscale)

Description

Set the function scaling value for scaling the gradient. If this member function is not
called, the value of this scalar is set to 1.0.

Parameter
fscale — a double scalar specifying the function scaling value for scaling the

gradient

IllegalArgumentException is thrown if fscale is less than or equal to 0.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description

Sets the gradient tolerance. This first stopping criterion for this optimizer is that the
norm of the gradient be less than the gradient tolerance. If this member function is not
called, the cube root of machine precision squared is used to compute the gradient.

Parameter
gradientTolerance — a double specifying the gradient tolerance used to compute

the gradient

I1llegalArgumentException is thrown if gradientTolerance is less than or equal to 0

setGuess
public void setGuess(double[] xguess)

130 ¢ MinUnconMultiVar class JMSL

Description
Set the initial guess of the minimum point of the input function. If this member function
is not called, the elements of this array are set to 0.0..
Parameter
xguess — a double array specifying the initial guess of the minimum point of the
input function

setlhess
public void setIhess(int ihess)

Description

Set the Hessian initialization parameter. If this member function is not called, ihess is set
to 0.0 and the Hessian is initialized to the identity matrix. If this member function is
called and ihess is set to anything other than 0.0, the Hessian is initialized to the diagonal
matrix containing max(abs(f(xguess)),fscale)*xscale*xscale

Parameter
ihess — an int scalar value specifying the Hessian initialization parameter. If ihess
= 0.0 the Hessian is initialized to the identity matrix. Otherwise, the Hessian is
initialized to the diagonal matrix containing max(abs(f(xguess)),fscale)*xscale*xscale
where xguess is the initial guess of the computed solution and xscale is the scaling
vector for the variables.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description
Set the maximum allowable stepsize to use. If this member function is not called,
maximum stepsize is set to a default value based on a scaled xguess.
Parameter
maximumStepsize — a nonnegative double value specifying the maximum allowable
stepsize

IllegalArgumentException is thrown if maximumStepsize is less than or equal to 0

setMaxlterations

public void setMaxIterations(int maxIterations)
Description
Set the maximum number of iterations allowed. If this member function is not called, the
maximum number of iterations is set to 100.

Optimization MinUnconMultiVar class e 131

Parameter

maxIterations — an int specifying the maximum number of iterations allowed

I1llegalArgumentException is thrown if maxIterations is less than or equal to 0

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description

Set the relative function tolerance. If this member function is not called, 3.66685e-11 is
used as the relative function tolerance.

Parameter
relativeTolerance — a double scalar value specifying the relative function

tolerance

IllegalArgumentException is thrown if relativeTolerance is less than or equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description

Set the scaled step tolerance to use when changing x. If this member function is not
called, the scaled step tolerance is set to 3.66685e-11.

The second stopping criterion for this optimizer is that the scaled distance between the
last two steps be less than the step tolerance.

Parameter

stepTolerance — a double scalar value specifying the scaled step tolerance. The
i-th component of the scaled step between two points x and y is computed as
abs(x(i)-y(i)) /max(abs(x(i)),1/xscale(i)) where xscale is the scaling vector for the
variables.

IllegalArgumentException is thrown if stepTolerance is less than or equal to 0

setXscale
public void setXscale(double[] xscale)

Description

Set the diagonal scaling matrix for the variables. If this member function is not called,
the elements of this array are set to 1.0..

Parameter

xscale — a double array specifying the diagonal scaling matrix for the variables

I1legalArgumentException is thrown if any of the elements of xscale is less than or
equal to 0

132 ¢ MinUnconMultiVar class JMSL

Example 1: Minimum of a multivariate function
The minimum of 100(zz — 2%)? + (1 — 21)? is found using function evaluations only.

import com.imsl.math.x*;

public class MinUnconMultiVarEx1l {
public static void main(String args[]) throws Exception {
MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MinUnconMultiVar.Function() {
public double f(double[] x) {
return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[01)) +
1. - x[0]) = (1. - x[0]);
}
b;

System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");

Output

Minimum point is (0.9999999672651304, 0.9999999330452095)

Example 2: Minimum of a multivariate function

The minimum of 100(z2 — 2%)? + (1 — 21)? is found using function evaluations and a user
supplied gradient.

import com.imsl.math.x*;
public class MinUnconMultiVarEx2 {

static class MyFunction implements MinUnconMultiVar.Gradient {
public double f(double[] x) {
return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
1. - x[0]) » (1. - x[0]);

}

public void gradient(double[] x, double[] gp) {
gpl0]l = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);
gpl1] = 200. * (x[1] - x[01*x[01);

}

}

public static void main(String args[]) throws Exception {
MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.setGuess(new double[]1{-1.2, 1.0});
double x[] = solver.computeMin(new MyFunction());

Optimization MinUnconMultiVar class

e 133

System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");

Output

Minimum point is (0.9999999668823014, 0.9999999322542452)

MinUnconMultiVar.Function interface

public interface com.imsl.math.MinUnconMultiVar.Function

Public interface for the user supplied function to the MinUnconMultiVar object.

Method

f
public double f(double[] x)

Description
Public interface for the multivariate function to be minimized.
Parameter

x — a double array, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

MinUnconMultiVar.Gradient interface

public interface com.imsl.math.MinUnconMultiVar.Gradient implements
com.imsl.math.MinUnconMultiVar.Function

Public interface for the user supplied gradient to the MinUnconMultiVar object.

134 ¢ MinUnconMultiVar class

JMSL

Method

gradient
public void gradient(double[] x, double[] gradient)

Description

Public interface for the gradient of the multivariate function to be minimized.

Parameters
x — a double array, the point at which the gradient of the function is to be evaluated

gradient — a double array, the value of the gradient of the function at x

MinUnconMultiVar.ApproximateMinimumException class

static public class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
extends com.imsl.IMSLException

Scaled step tolerance satisfied; the current point may be an approximate local solution, or the
algorithm is making very slow progress and is not near a solution, or the scaled step tolerance is

too big.

Constructors

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String message)

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String key, Object[]

arguments)

MinUnconMultiVar.FalseConvergenceException class

static public class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
extends com.imsl.IMSLException

False convergence error; the iterates appear to be converging to a noncritical point. Possibly
incorrect gradient information is used, or the function is discontinuous, or the other stopping
tolerances are too tight.

Optimization MinUnconMultiVar class e 135

Constructors

MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(String message)

MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(String key, Object[]

arguments)

MinUnconMultiVar.MaxIterationsException class

static public class com.imsl.math.MinUnconMultiVar.MaxIterationsException
extends com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String message)

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String key, Object[]

arguments)

MinUnconMultiVar.UnboundedBelowException class

static public class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
extends com.imsl.IMSLException

Five consecutive steps of the maximum allowable stepsize have been taken, either the function
is unbounded below, or has a finite asymptote in some direction or the maximum allowable step

size is too small.

136 ¢ MinUnconMultiVar class JMSL

Constructors

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String message)

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String key, Object[]
arguments)

NonlinLeastSquares class

public class com.imsl.math.NonlinlLeastSquares implements Serializable,
Cloneable

Nonlinear least squares.

NonlinLeastSquares is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

1 1«
min oF (2)" F(2) = 5 ;f (2)”

where m >n, F': R™ — R™, and f;(z) is the i-th component function of F(z). From a c