
V E R S I O N 4 . 0

User’s GuideNumerical Library
JMSL™

JMSL4_manualuser.qxd 4/3/06 2:49 PM Page 1

JMSL Numerical Library V.4.0
User's Guide

Trusted for Over 30 Years

TM

Visual Numerics Corporate Headquarters
2500 Wilcrest Drive
Houston, TX 77042

USA Contact Information
Toll Free: 800.222.4675
Houston, TX: 713.784.3131
Westminster, CO: 303.379.3040
Email: info@vni.com
Web site: www.vni.com

Visual Numerics has Offices Worldwide
USA • UK • France • Germany •Mexico
Japan • Korea • Taiwan
For contact information, please visit
www.vni.com/contact

© 1970-2006 Visual Numerics, Inc. All rights reserved.
Visual Numerics and PV-WAVE are registered trademarks of Visual Numerics, Inc. in the U.S. and other countries. IMSL,
JMSL, JWAVE, TS-WAVE and Knowledge in Motion are trademarks of Visual Numerics, Inc. All other company, product or
brand names are the property of their respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this document
is subject to the terms and conditions of a Visual Numerics Software License Agreement, including, without limitation, the Limited
Warranty and Limitation of Liability. If you do not accept the terms of the license agreement, you may not use this documentation
and should promptly return the product for a full refund. This documentation may not be copied or distributed in any
form without the express written consent of Visual Numerics..

C, C#, Java™, and Fortran
Application Development Tools

Contents

1 Linear Systems 1

Matrix class . 3

ComplexMatrix class . 7

LU class . 11

ComplexLU class . 15

Cholesky class . 19

QR class . 24

SVD class . 28

SingularMatrixException class . 32

2 Eigensystem Analysis 35

Eigen class . 37

SymEigen class . 40

3 Interpolation and Approximation 43

Spline class . 45

CsAkima class . 47

CsInterpolate class . 49

CsPeriodic class . 51

CsShape class . 53

CsSmooth class . 55

CsSmoothC2 class . 57

BsInterpolate class . 60

Contents Contents • i

BsLeastSquares class . 62

RadialBasis class . 65

4 Quadrature 73

Quadrature class . 74

HyperRectangleQuadrature class . 80

5 Differential Equations 85

OdeRungeKutta class . 86

6 Transforms 93

FFT class . 94

ComplexFFT class . 98

7 Nonlinear Equations 103

ZeroPolynomial class . 104

ZeroFunction class . 109

ZeroSystem class . 113

8 Optimization 119

MinUncon class . 121

MinUnconMultiVar class . 127

NonlinLeastSquares class . 137

DenseLP class . 148

LinearProgramming class . 156

QuadraticProgramming class . 164

MinConGenLin class . 169

BoundedLeastSquares class . 179

MinConNLP class . 189

9 Special Functions 213

Sfun class . 213

Bessel class . 229

JMath class . 234

ii • Contents JMSL

IEEE class . 243

Hyperbolic class . 245

10 Miscellaneous 251

Complex class . 251

Physical class . 272

EpsilonAlgorithm class . 283

11 Printing Functions 285

PrintMatrix class . 285

PrintMatrixFormat class . 290

12 Basic Statistics 297

Summary class . 297

Covariances class . 308

NormOneSample class . 317

NormTwoSample class . 323

Sort class . 334

Ranks class . 341

EmpiricalQuantiles class . 350

TableOneWay class . 353

TableTwoWay class . 357

TableMultiWay class . 363

13 Regression 373

LinearRegression class . 379

NonlinearRegression class . 392

UserBasisRegression class . 408

RegressionBasis interface . 410

SelectionRegression class . 411

StepwiseRegression class . 426

14 Analysis of Variance 439

Contents Contents • iii

ANOVA class . 439

ANOVAFactorial class . 446

MultipleComparisons class . 456

15 Categorical and Discrete Data Analysis 459

ContingencyTable class . 459

CategoricalGenLinModel class . 472

16 Nonparametric Statistics 499

SignTest class . 500

WilcoxonRankSum class . 503

17 Tests of Goodness of Fit 509

ChiSquaredTest class . 509

NormalityTest class . 515

18 Time Series and Forecasting 521

AutoCorrelation class . 523

CrossCorrelation class . 532

MultiCrossCorrelation class . 544

ARMA class . 558

Difference class . 582

GARCH class . 586

KalmanFilter class . 595

19 Multivariate Analysis 607

ClusterKMeans class . 609

Dissimilarities class . 620

ClusterHierarchical class . 625

FactorAnalysis class . 634

DiscriminantAnalysis class . 653

20 Probability Distribution Functions and Inverses 677

Cdf class . 679

iv • Contents JMSL

CdfFunction interface . 726

InverseCdf class . 727

21 Random Number Generation 731

Random class . 731

FaureSequence class . 747

MersenneTwister class . 751

MersenneTwister64 class . 756

RandomSequence interface . 760

22 Input/Output 761

AbstractFlatFile class . 761

FlatFile class . 809

Tokenizer class . 817

MPSReader class . 819

23 Finance 833

BasisPart interface . 834

Bond class . 835

DayCountBasis class . 875

Finance class . 877

24 Chart 2D 909

Chart class . 910

AbstractChartNode class . 915

ChartNode class . 935

Background class . 959

ChartTitle class . 960

Legend class . 960

Grid class . 961

Axis class . 962

AxisXY class . 964

Axis1D class . 966

Contents Contents • v

AxisLabel class . 971

AxisLine class . 972

AxisTitle class . 973

AxisUnit class . 973

MajorTick class . 974

MinorTick class . 974

Transform interface . 975

TransformDate class . 976

AxisR class . 977

AxisRLabel class . 979

AxisRLine class . 980

AxisRMajorTick class . 981

AxisTheta class . 982

GridPolar class . 983

Data class . 984

ChartFunction interface . 995

ChartSpline class . 996

Text class . 997

ToolTip class . 999

FillPaint class . 1001

Draw class . 1004

JFrameChart class . 1015

JPanelChart class . 1016

DrawPick class . 1018

PickEvent class . 1025

PickListener interface . 1026

JspBean class . 1027

ChartServlet class . 1030

DrawMap class . 1032

BoxPlot class . 1038

Contour class . 1049

vi • Contents JMSL

ErrorBar class . 1057

HighLowClose class . 1062

Candlestick class . 1069

CandlestickItem class . 1071

SplineData class . 1072

Bar class . 1075

BarItem class . 1081

BarSet class . 1082

Pie class . 1083

PieSlice class . 1087

Dendrogram class . 1088

Polar class . 1096

Heatmap class . 1098

Colormap interface . 1109

25 Chart 3D 1113

Chart3D class . 1113

JFrameChart3D class . 1117

ChartNode3D class . 1118

Background class . 1129

Canvas3DChart class . 1129

BufferedPaint class . 1133

ChartLights class . 1134

AmbientLight class . 1135

DirectionalLight class . 1135

PointLight class . 1137

AxisXYZ class . 1139

AxisBox class . 1141

Axis3D class . 1143

AxisLabel class . 1146

AxisLine class . 1147

AxisTitle class . 1148

Contents Contents • vii

MajorTick class . 1148

Surface class . 1149

Data class . 1160

ColorFunction interface . 1173

ColormapLegend class . 1173

26 Neural Nets 1177

Network class . 1220

FeedForwardNetwork class . 1229

Layer class . 1243

InputLayer class . 1245

HiddenLayer class . 1246

OutputLayer class . 1247

Node class . 1249

InputNode class . 1249

Perceptron class . 1250

OutputPerceptron class . 1251

Activation interface . 1252

Link class . 1254

Trainer interface . 1255

QuasiNewtonTrainer class . 1257

LeastSquaresTrainer class . 1266

EpochTrainer class . 1271

BinaryClassification class . 1277

MultiClassification class . 1317

ScaleFilter class . 1331

UnsupervisedNominalFilter class . 1340

UnsupervisedOrdinalFilter class . 1343

TimeSeriesFilter class . 1348

TimeSeriesClassFilter class . 1351

27 Miscellaneous 1355

viii • Contents JMSL

Messages class . 1355

Version class . 1356

Warning class . 1357

WarningObject class . 1358

IMSLException class . 1360

IMSLRuntimeException class . 1361

LicenseManagerException class . 1362

28 References 1365

Index i

0 • Contents JMSL

Chapter 1: Linear Systems

Types

class Matrix . 3
class ComplexMatrix. .7
class LU . 11
class ComplexLU . 15
class Cholesky . 19
class QR. .24
class SVD . 28
exception SingularMatrixException. .32

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified
n x n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each entry of
A and b must be specified by the user. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct
method for solving Ax = b factors the matrix A into a product of triangular matrices and solves
the resulting triangular systems of linear equations. Functions that use direct methods for
solving systems of linear equations all compute the solution to Ax = b.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two
triangular matrices. This can be done by a constructor of a class for solving the system of
linear equations Ax = b. The constructor of class LU computes the LU factorization of A.

Besides the basic matrix factorizations, such as LU and LLT , additional matrix factorizations
also are provided. For a real matrix A, its QR factorization can be computed using the class QR.

1

The class for computing the singular value decomposition (SVD) of a matrix is discussed in a
later section.

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the method inverse in
the classes for solving systems of linear equations. The inverse of a matrix need not be
computed if the purpose is to solve one or more systems of linear equations. Even with multiple
right-hand sides, solving a system of linear equations by computing the inverse and performing
matrix multiplication is usually more expensive than the method discussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector.
It is most economical to find the solution vectors by first factoring the coefficient matrix A into
products of triangular matrices. Then, the resulting triangular systems of linear equations are
solved for each right-hand side. When A is a real general matrix, access to the LU factorization
of A is computed by a constructor of LU. The solution xk for the k-th right-hand side vector, bk
is then found by two triangular solves, Lyk = bk and Uxk = yk. The method solve in class LU
is used to solve each right-hand side. These arguments are found in other functions for solving
systems of linear equations.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations
Am x nx = b, where m > n. A least-squares solution x minimizes the Euclidean length of the
residual vector r = Ax− b. The class QR computes a unique least-squares solution for x when
A has full column rank. If A is rank-deficient, then the base solution for some variables is
computed. These variables consist of the resulting columns after the interchanges. The QR
decomposition, with column interchanges or pivoting, is computed such that AP = QR. Here,
Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in magnitude,
and P is the permutation matrix determined by the pivoting. The base solution xB is obtained
by solving R(PT)x = QT b for the base variables. For details, see class QR. The QR factorization
of a matrix A such that AP = QR with P specified by the user can be computed using
keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = USV T . With q = min(m,n),
the factors Um x q and Vn x q are orthogonal matrices, and Sq x q is a nonnegative diagonal matrix
with nonincreasing diagonal terms. The class SVD computes the singular values of A by default.
Part or all of the U and V matrices, an estimate of the rank of A, and the generalized inverse of
A, also can be obtained.

2 • JMSL

Ill-Conditioning and Singularity

An m x n matrix A, is mathematically singular if there is an x 6= 0 such that Ax = 0. In this
case, the system of linear equations Ax = b does not have a unique solution. On the other
hand, a matrix A is numerically singular if it is ”close” to a mathematically singular matrix.
Such problems are called ill-conditioned. If the numerical results with an ill-conditioned
problem are unacceptable, users can either use more accuracy if it is available (for type float
accuracy switch to double) or they can obtain an approximate solution to the system. One form
of approximation can be obtained using the SVD of A: If q = min(m,n) and

A =
∑

q
i=1si,iuiv

T
i

then the approximate solution is given by the following:

xk =
∑

k
i=1ti,i

(
bTui

)
vi

The scalars ti,i are defined below.

ti,i =
{
s−1

i,i if si,i ≥ tol > 0
0 otherwise

The user specifies the value of tol. This value determines how ”close” the given matrix is to a
singular matrix. Further restrictions may apply to the number of terms in the sum, k ≤ q. For
example, there may be a value of k ≤ q such that the scalars

∣∣bTui

∣∣ , i > k are smaller than the
average uncertainty in the right-hand side b. This means that these scalars can be replaced by
zero; and hence, b is replaced by a vector that is within the stated uncertainty of the problem.

Matrix class

public class com.imsl.math.Matrix

Matrix manipulation functions.

Methods

add
static public double[][] add(double[][] a, double[][] b)

Description

Add two rectangular arrays, a + b.

Linear Systems Matrix class • 3

Parameters

a – a double rectangular array

b – a double rectangular array

Returns

a double rectangular array representing the matrix sum of the two arguments

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

checkMatrix
static public void checkMatrix(double[][] a)

Description

Check that all of the rows in the matrix have the same length.

Parameter

a – a double matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

checkSquareMatrix
static public void checkSquareMatrix(double[][] a)

Description

Check that the matrix is square.

Parameter

a – a double matrix

IllegalArgumentException This exception is thrown when the matrix is not square.

frobeniusNorm
static public double frobeniusNorm(double[][] a)

Description

Return the Frobenius norm of a matrix.

Parameter

a – a double rectangular array

4 • Matrix class JMSL

Returns

a double scalar value equal to the Frobenius norm of the matrix.

infinityNorm
static public double infinityNorm(double[][] a)

Description

Return the infinity norm of a matrix.

Parameter

a – a double rectangular array

Returns

a double scalar value equal to the maximum of the row sums of the absolute values of the
array elements

multiply
static public double[] multiply(double[] x, double[][] a)

Description

Return the product of the row array x and the rectangular array a.

Parameters

x – a double row array

a – a double rectangular matrix

Returns

a double matrix representing the product of the arguments, x*a.

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of the input matrix are not uniform, or (2) the number of elements in the input
vector is not equal to the number of rows of the matrix.

oneNorm
static public double oneNorm(double[][] a)

Description

Return the matrix one norm.

Parameter

a – a double rectangular array

Linear Systems Matrix class • 5

Returns

a double value equal to the maximum of the column sums of the absolute values of the
array elements

subtract
static public double[][] subtract(double[][] a, double[][] b)

Description

Subtract two rectangular arrays, a - b.

Parameters

a – a double rectangular array

b – a double rectangular array

Returns

a double rectangular array representing the matrix difference of the two arguments

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

transpose
static public double[][] transpose(double[][] a)

Description

Return the transpose of a matrix.

Parameter

a – a double matrix

Returns

a double matrix which is the transpose of the argument

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed
using the PrintMatrix class.

import com.imsl.math.*;

public class MatrixEx1 {
public static void main(String args[]) {

double nrm1;

6 • Matrix class JMSL

double a[][] = {
{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
{6., 3., 4., 3.}

};

// Get the 1 norm of matrix a
nrm1 = Matrix.oneNorm(a);

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm
p.print(a);
System.out.println("The 1 norm of the matrix is "+nrm1);

}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

The 1 norm of the matrix is 20.0

ComplexMatrix class

public class com.imsl.math.ComplexMatrix

Complex matrix manipulation functions.

Methods

add
static public Complex[][] add(Complex[][] a, Complex[][] b)

Description

Add two rectangular Complex arrays, a + b.

Linear Systems ComplexMatrix class • 7

Parameters

a – a Complex rectangular array

b – a Complex rectangular array

Returns

the Complex matrix sum of the two arguments

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

checkMatrix
static public void checkMatrix(Complex[][] a)

Description

Check that all of the rows in the Complex matrix have the same length.

Parameter

a – a Complex matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

checkSquareMatrix
static public void checkSquareMatrix(Complex[][] a)

Description

Check that the Complex matrix is square.

Parameter

a – a Complex matrix

IllegalArgumentException This exception is thrown when the matrix is not square..

frobeniusNorm
static public double frobeniusNorm(Complex[][] a)

Description

Return the Frobenius norm of a Complex matrix.

Parameter

a – a Complex rectangular matrix

8 • ComplexMatrix class JMSL

Returns

a double value equal to the Frobenius norm of the matrix

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

infinityNorm
static public double infinityNorm(Complex[][] a)

Description

Return the infinity norm of a Complex matrix.

Parameter

a – a Complex rectangular matrix

Returns

a double value equal to the maximum of the row sums of the absolute values of the array
elements.

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

multiply
static public Complex[] multiply(Complex[] x, Complex[][] a)

Description

Return the product of the row vector x and the rectangular array a, both Complex.

Parameters

x – a Complex row vector

a – a Complex rectangular matrix

Returns

a Complex vector containing the product of the arguments, x*A.

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of the input matrix are not uniform, or (2) the number of elements in the input
vector is not equal to the number of rows of the matrix.

oneNorm
static public double oneNorm(Complex[][] a)

Description

Return the Complex matrix one norm.

Linear Systems ComplexMatrix class • 9

Parameter

a – a Complex rectangular array

Returns

a double value equal to the maximum of the column sums of the absolute values of the
array elements

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix is not uniform.

subtract
static public Complex[][] subtract(Complex[][] a, Complex[][] b)

Description

Subtract two Complex rectangular arrays, a - b.

Parameters

a – a Complex rectangular array

b – a Complex rectangular array

Returns

the Complex matrix difference of the two arguments.

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of either of the input matrices are not uniform, or (2) the matrices are not the same
size.

transpose
static public Complex[][] transpose(Complex[][] a)

Description

Return the transpose of a Complex matrix.

Parameter

a – a Complex matrix

Returns

the Complex matrix transpose of the argument

IllegalArgumentException This exception is thrown when the lengths of the rows of
the input matrix are not uniform.

10 • ComplexMatrix class JMSL

Example: Print a Complex Matrix

A Complex matrix is initialized and printed.

import com.imsl.math.*;

public class ComplexMatrixEx1 {
public static void main(String args[]) {

Complex a[][] = {
{new Complex(1,3), new Complex(3,5), new Complex(7,9)},
{new Complex(8,7), new Complex(9,5), new Complex(1,9)},
{new Complex(2,9), new Complex(6,9), new Complex(7,3)},
{new Complex(5,4), new Complex(8,4), new Complex(5,9)}

};

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Complex Matrix");

// Print the matrix
p.print(a);

}
}

Output

A Complex Matrix
0 1 2

0 1+3i 3+5i 7+9i
1 8+7i 9+5i 1+9i
2 2+9i 6+9i 7+3i
3 5+4i 8+4i 5+9i

LU class

public class com.imsl.math.LU implements Serializable, Cloneable

LU factorization of a matrix of type double.

LU performs an LU factorization of a real general coefficient matrix. The condition method
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A−1||1. Since it is
expensive to compute ||A−1||1, the condition number is only estimated. The estimation

Linear Systems LU class • 11

algorithm is the same as used by LINPACK and is described in a paper by Cline et al. (1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates that
very small changes in A can cause very large changes in the solution x. Iterative refinement can
sometimes find the solution to such a system.

LU fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

Use the solve method to solve systems of equations. The determinant method can be called
to compute the determinant of the coefficient matrix.

LU is based on the LINPACK routine SGECO; see Dongarra et al. (1979). SGECO uses unscaled
partial pivoting.

Fields

factor
protected double[][] factor

LU factorization of A with partial pivoting

ipvt
protected int[] ipvt

Pivot sequence for the factorization

Constructor

LU
public LU(double[][] a) throws SingularMatrixException

Description

Creates the LU factorization of a square matrix of type double.
Parameter

a – the double square matrix to be factored

IllegalArgumentException is thrown when the row lengths of input matrix are not
equal (for example, the matrix edges are ”jagged”.)

SingularMatrixException is thrown when the input matrix is singular.

Methods

condition
public double condition(double[][] a)

12 • LU class JMSL

Description

Return an estimate of the reciprocal of the L1 condition number of a matrix.

Parameter

a – the double square matrix for which the reciprocal of the L1 condition number is
desired

Returns

a double value representing an estimate of the reciprocal of the L1 condition number of
the matrix

determinant
public double determinant()

Description

Return the determinant of the matrix used to construct this instance.

Returns

a double scalar containing the determinant of the matrix used to construct this instance

inverse
public double[][] inverse()

Description

Returns the inverse of the matrix used to construct this instance.

Returns

a double matrix representing the inverse of the matrix used to construct this instance

solve
public double[] solve(double[] b)

Description

Return the solution x of the linear system Ax = b using the LU factorization of A.

Parameter

b – a double array containing the right-hand side of the linear system

Returns

a double array containing the solution to the linear system of equations

solve
static public double[] solve(double[][] a, double[] b) throws
SingularMatrixException

Description

Solve ax=b for x using the LU factorization of a.

Linear Systems LU class • 13

Parameters

a – a double square matrix

b – a double column vector

Returns

a double column vector containing the solution to the linear system of equations

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of the input matrix are not uniform, and (2) the number of rows in the input matrix
is not equal to the number of elements in x.

SingularMatrixException is thrown when the matrix is singular.

solveTranspose
public double[] solveTranspose(double[] b)

Description

Return the solution x of the linear system AT = b.

Parameter

b – double array containing the right-hand side of the linear system

Returns

double array containing the solution to the linear system of equations

Example: LU Factorization of a Matrix

The LU Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The inverse, determinant, and condition number of the input matrix are also
computed.

import com.imsl.math.*;

public class LUEx1 {
public static void main(String args[]) throws SingularMatrixException {

double a[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double b[] = {12, 13, 14};

// Compute the LU factorization of A
LU lu = new LU(a);

// Solve Ax = b
double x[] = lu.solve(b);
new PrintMatrix("x").print(x);

14 • LU class JMSL

// Find the inverse of A.
double ainv[][] = lu.inverse();
new PrintMatrix("ainv").print(ainv);

// Find the condition number of A.
double condition = lu.condition(a);
System.out.println("condition number = "+condition);
System.out.println();

// Find the determinant of A.
double determinant = lu.determinant();
System.out.println("determinant = "+determinant);

}
}

Output

x
0

0 3
1 2
2 1

ainv
0 1 2

0 7 -3 -3
1 -1 0 1
2 -1 1 0

condition number = 0.015120274914089344

determinant = -0.9999999999999998

ComplexLU class

public class com.imsl.math.ComplexLU implements Serializable, Cloneable

LU factorization of a matrix of type Complex.

ComplexLU performs an LU factorization of a complex general coefficient matrix. ComplexLU’s
method condition estimates the condition number of the matrix. The LU factorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the
pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ (A) = ‖A‖1
∥∥A−1

∥∥
1
. Since it is

Linear Systems ComplexLU class • 15

expensive to compute
∥∥A−1

∥∥
1
, the condition number is only estimated. The estimation

algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates that
very small changes in A can cause very large changes in the solution x. Iterative refinement can
sometimes find the solution to such a system.

ComplexLU fails if U, the upper triangular part of the factorization, has a zero diagonal element.
This can occur only if A either is singular or is very close to a singular matrix.

The solve method can be used to solve systems of equations. The method determinant can be
called to compute the determinant of the coefficient matrix.

ComplexLU is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses
unscaled partial pivoting.

Fields

factor
protected Complex[][] factor

LU factorization of A with partial pivoting

ipvt
protected int[] ipvt

Pivot sequence for the factorization

Constructor

ComplexLU
public ComplexLU(Complex[][] a) throws SingularMatrixException

Description

Creates the LU factorization of a square matrix of type Complex.
Parameter

a – Complex square matrix to be factored

IllegalArgumentException is thrown when the row lengths of input matrix are not
equal (for example, the matrix edges are ”jagged”.)

SingularMatrixException is thrown when the input matrix is singular.

Methods

condition

16 • ComplexLU class JMSL

public double condition(Complex[][] a)

Description

Return an estimate of the reciprocal of the L1 condition number.

Parameter

a – a Complex matrix

Returns

a double scalar value representing the estimate of the reciprocal of the L1 condition
number of the matrix a

determinant
public Complex determinant()

Description

Return the determinant of the matrix used to construct this instance.

Returns

a Complex scalar containing the determinant of the matrix used to construct this instance

inverse
public Complex[][] inverse()

Description

Compute the inverse of a matrix of type Complex.

Returns

a Complex matrix containing the inverse of the matrix used to construct this object.

solve
public Complex[] solve(Complex[] b)

Description

Return the solution x of the linear system Ax = b using the LU factorization of A.

Parameter

b – Complex array containing the right-hand side of the linear system

Returns

Complex array containing the solution to the linear system of equations

solve
static public Complex[] solve(Complex[][] a, Complex[] b) throws
SingularMatrixException

Linear Systems ComplexLU class • 17

Description

Solve ax=b for x using the LU factorization of a.

Parameters

a – a Complex square matrix

b – a Complex column vector

Returns

a Complex column vector containing the solution to the linear system of equations.

IllegalArgumentException This exception is thrown when (1) the lengths of the rows
of the input matrix are not uniform, and (2) the number of rows in the input matrix
is not equal to the number of elements in x.

SingularMatrixException is thrown when the matrix is singular.

solveTranspose
public Complex[] solveTranspose(Complex[] b)

Description

Return the solution x of the linear system ATx = b.

Parameter

b – Complex array containing the right-hand side of the linear system

Returns

Complex array containing the solution to the linear system of equations

Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU decomposition
of the matrix is performed and the determinant and condition number of the matrix are
obtained.

import com.imsl.math.*;

public class ComplexLUEx1 {
public static void main(String args[]) throws SingularMatrixException {

double ar[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double br[] = {12, 13, 14};

Complex a[][] = new Complex[3][3];
Complex b[] = new Complex[3];

18 • ComplexLU class JMSL

for (int i = 0; i < 3; i++){
b[i] = new Complex(br[i]);
for (int j = 0; j < 3; j++) {

a[i][j] = new Complex(ar[i][j]);
}

}

// Compute the LU factorization of A
ComplexLU clu = new ComplexLU(a);

// Solve Ax = b
Complex x[] = clu.solve(b);
System.out.println("The solution is:");
System.out.println(" ");
new PrintMatrix("x").print(x);

// Find the condition number of A.
double condition = clu.condition(a);
System.out.println("The condition number = "+condition);
System.out.println();

// Find the determinant of A.
Complex determinant = clu.determinant();
System.out.println("The determinant = "+determinant);

}
}

Output

The solution is:

x
0

0 3
1 2
2 1

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

Cholesky class

public class com.imsl.math.Cholesky implements Serializable, Cloneable

Cholesky factorization of a matrix of type double.

Linear Systems Cholesky class • 19

Class Cholesky is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A and
final elements to the trailing part of A. During the decomposition only rows and columns
corresponding to the free elements are moved. The result of the decomposition is an upper
triangular matrix R and a permutation matrix P that satisfy PTAP = RTR, where P is
represented by ipvt.

The method update is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RTR, where R is an upper triangular matrix.
Given this factorization, downdate computes the factorization

A− xxT = R̃T R̃

downdate determines an orthogonal matrix U as the product GN . . . G1 of Givens rotations,
such that

U

[
R
0

]
=
[
R̃
xT

]
By multiplying this equation by its transpose and noting that UTU = I, the desired result

RTR− xxT = R̃T R̃

is obtained.

Let a be the solution of the linear system RTa = x and let

α =
√

1− ‖a‖22

The Givens rotations, Gi, are chosen such that

G1 · · ·GN

[
a
α

]
=
[

0
1

]
The Gi, are (N + 1) * (N + 1) matrices of the form

Gi =


Ii−1 0 0 0
0 ci 0 −si

0 0 IN−i 0
0 si 0 ci


where Ik is the identity matrix of order k; and ci = cos θi, si = sin θi for some θi.

The Givens rotations are then used to form

R̃, G1 · · · GN

[
R
0

]
=
[
R̃
x̃T

]
The matrix

R̃

20 • Cholesky class JMSL

is upper triangular and
x̃ = x

because

x =
(
RT 0

) [a
α

]
=
(
RT 0

)
UTU

[
a
α

]
=
(
R̃T x̃

)[0
1

]
= x̃

.

Constructor

Cholesky
public Cholesky(double[][] a) throws SingularMatrixException,
Cholesky.NotSPDException

Description

Create the Cholesky factorization of a symmetric positive definite matrix of type double.

Parameter

a – a double square matrix to be factored

IllegalArgumentException Thrown when the row lengths of matrix a are not equal (for
example, the matrix edges are ”jagged”.)

SingularMatrixException Thrown when the input matrix a is singular.

NotSPDException Thrown when the input matrix is not symmetric, positive definite.

Methods

downdate
public void downdate(double[] x) throws Cholesky.NotSPDException

Description

Downdates the factorization by subtracting a rank-1 matrix. The object will contain the
Cholesky factorization of a− x× xT , where a is the previously factored matrix.

Parameter

x – A double array which specifies the rank-1 matrix. x is not modified by this
function.

NotSPDException if a− x× xT is not symmetric positive-definite.

getR
public double[][] getR()

Linear Systems Cholesky class • 21

Description

Returns the R matrix that results from the Cholesky factorization. R is a lower triangular
matrix and A = RRT .

Returns

a double matrix which contains the R matrix that results from the Cholesky factorization

inverse
public double[][] inverse()

Description

Returns the inverse of this matrix

Returns

a double matrix containing the inverse

solve
public double[] solve(double[] b)

Description

Solve Ax = b where A is a positive definite matrix with elements of type double.

Parameter

b – a double array containing the right-hand side of the linear system

Returns

a double array containing the solution to the system of linear equations

update
public void update(double[] x)

Description

Updates the factorization by adding a rank-1 matrix. The object will contain the
Cholesky factorization of a+ x ∗XT = b, where a is the previously factored matrix.

Parameter

x – A double array which specifies the rank-1 matrix. x is not modified by this
function.

Example: Cholesky Factorization

The Cholesky Factorization of a matrix is performed as well as its inverse.

22 • Cholesky class JMSL

import com.imsl.math.*;

public class CholeskyEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

double a[][] = {
{ 1, -3, 2},
{-3, 10, -5},
{ 2, -5, 6}

};
double b[] = {27, -78, 64};

// Compute the Cholesky factorization of A
Cholesky cholesky = new Cholesky(a);

// Solve Ax = b
double x[] = cholesky.solve(b);
new PrintMatrix("x").print(x);

// Find the inverse of A.
double ainv[][] = cholesky.inverse();
new PrintMatrix("ainv").print(ainv);

}
}

Output

x
0

0 1
1 -4
2 7

ainv
0 1 2

0 35 8 -5
1 8 2 -1
2 -5 -1 1

Cholesky.NotSPDException class

static public class com.imsl.math.Cholesky.NotSPDException extends
com.imsl.IMSLException

The matrix is not symmetric, positive definite.

Linear Systems Cholesky class • 23

Constructor

Cholesky.NotSPDException
public Cholesky.NotSPDException()

QR class

public class com.imsl.math.QR implements Serializable, Cloneable

QR Decomposition of a matrix.

Class QR computes the QR decomposition of a matrix using Householder transformations. It is
based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

QR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The
Householder transformation for column k is of the form

I − uku
T
k

Pk

for k = 1, 2, . . ., min(number of rows of A, number of columns of A), where u has zeros in the
first k - 1 positions. The matrix Q is not produced directly by QR. Instead the information
needed to reconstruct the Householder transformations is saved. If the matrix Q is needed
explicitly, the method getQ can be called after QR. This method accumulates Q from its
factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array
A and the final columns to the end. Both initial and final columns are frozen in place during
the computation. Only free columns are pivoted. Pivoting is done on the free columns of
largest reduced norm.

Constructor

QR
public QR(double[][] a)

Description

Constructs the QR decomposition of a matrix with elements of type double.

Parameter

a – a double matrix to be factored

24 • QR class JMSL

IllegalArgumentException Thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”.)

Methods

getPermute
public int[] getPermute()

Description

Returns an integer vector containing information about the permutation of the elements
of the matrix during pivoting.

Returns

an int array containing the permutation information. The k-th element contains the
index of the column of the matrix that has been interchanged into the k-th column.

getQ
public double[][] getQ()

Description

Returns the orthogonal or unitary matrix Q.

Returns

a double matrix containing the accumulated orthogonal matrix Q from the QR
decomposition

getR
public double[][] getR()

Description

Returns the upper trapezoidal matrix R.

Returns

the upper trapezoidal double matrix R of the QR decomposition

getRank
public int getRank()

Description

Returns the rank of the matrix used to construct this instance.

Returns

an int specifying the rank of the matrix used to construct this instance

rank
public int rank(double tolerance)

Linear Systems QR class • 25

Description

Returns the rank of the matrix given an input tolerance.

Parameter

tolerance – a double scalar value used in determining the rank of the matrix

Returns

an int specifying the rank of the matrix

solve
public double[] solve(double[] b) throws SingularMatrixException

Description

Returns the solution to the least-squares problem Ax = b.

Parameter

b – a double array to be manipulated

Returns

a double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero

SingularMatrixException Thrown when the upper triangular matrix R resulting from
the QR factorization is singular.

solve
public double[] solve(double[] b, double tol) throws SingularMatrixException

Description

Returns the solution to the least-squares problem Ax = b using an input tolerance.

Parameters

b – a double array to be manipulated

tol – a double scalar value used in determining the rank of A

Returns

a double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero

SingularMatrixException Thrown when the upper triangular matrix R resulting from
the QR factorization is singular.

26 • QR class JMSL

Example: QR Factorization of a Matrix

The QR Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The rank of the input matrix is also computed.

import com.imsl.math.*;

public class QREx1 {
public static void main(String args[]) throws SingularMatrixException {

double a[][] = {
{1, 2, 4},
{1, 4, 16},
{1, 6, 36},
{1, 8, 64}

};
double b[] = {4.999, 9.001, 12.999, 17.001};

// Compute the QR factorization of A
QR qr = new QR(a);

// Solve Ax = b
double x[] = qr.solve(b);
new PrintMatrix("x").print(x);

// Print Q and R.
new PrintMatrix("Q").print(qr.getQ());
new PrintMatrix("R").print(qr.getR());

// Find the rank of A.
int rank = qr.getRank();
System.out.println("rank = "+rank);

}
}

Output

x
0

0 0.999
1 2
2 -0

Q
0 1 2 3

0 -0.053 -0.542 0.808 -0.224
1 -0.213 -0.657 -0.269 0.671
2 -0.478 -0.346 -0.449 -0.671
3 -0.85 0.393 0.269 0.224

R
0 1 2

Linear Systems QR class • 27

0 -75.26 -10.63 -1.594
1 0 -2.647 -1.153
2 0 0 0.359
3 0 0 0

rank = 3

SVD class

public class com.imsl.math.SVD

Singular Value Decomposition (SVD) of a rectangular matrix of type double.

SVD is based on the LINPACK routine SSVDC; see Dongarra et al. (1979).

Let n be the number of rows in A and let p be the number of columns in A. For any
n x p matrix A, there exists an n x n orthogonal matrix U and a p x p orthogonal matrix V
such that

UTAV =


[

Σ
0

]
if n ≥ p

[Σ 0] if n ≤ p

where Σ = diag(σ1, . . . , σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are called
the singular values of A. The columns of U are called the left singular vectors of A. The
columns of V are called the right singular vectors of A.

The estimated rank of A is the number of σk that is larger than a tolerance η. If τ is the
parameter tol in the program, then

η =
{
τ if τ > 0
|τ | ‖A‖∞ if τ < 0

The Moore-Penrose generalized inverse of the matrix is computed by partitioning the matricies
U, V and Σ as U = (U1, U2), V = (V1, V2) and Σ1 = diag(σ1, . . . , σk) where the ”1” matrices are
k by k. The Moore-Penrose generalized inverse is V1Σ−1

1 UT
1 .

Constructors

SVD
public SVD(double[][] a) throws SVD.DidNotConvergeException

28 • SVD class JMSL

Description

Construct the singular value decomposition of a rectangular matrix with default
tolerance. The tolerance used is 2.2204460492503e-14. This tolerance is used to determine
rank. A singular value is considered negligible if the singular value is less than or equal to
this tolerance.

Parameter

a – a double matrix for which the singular value decomposition is to be computed

IllegalArgumentException is thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”)

SVD
public SVD(double[][] a, double tol) throws SVD.DidNotConvergeException

Description

Construct the singular value decomposition of a rectangular matrix with a given
tolerance. If tol is positive, then a singular value is considered negligible if the singular
value is less than or equal to tol. If tol is negative, then a singular value is considered
negligible if the singular value is less than or equal to the absolute value of the product of
tol and the infinity norm of the input matrix. In the latter case, the absolute value of
tol generally contains an estimate of the level of the relative error in the data.

Parameters

a – a double matrix for which the singular value decomposition is to be computed

tol – a double scalar containing the tolerance used to determine when a singular
value is negligible

IllegalArgumentException is thrown when the row lengths of input matrix a are not
equal (for example, the matrix edges are ”jagged”)

DidNotConvergeException is thrown when the rank cannot be determined because
convergence was not obtained for all singular values

Methods

getInfo
public int getInfo()

Description

Returns convergence information about S, U, and V.

Linear Systems SVD class • 29

Returns

Convergence was obtained for the info, info+1, ..., min(nra,nca) singular values and their
corresponding vectors. Here, nra and nca represent the number of rows and columns of
the input matrix respectively.

getRank
public int getRank()

Description

Returns the rank of the matrix used to construct this instance.

Returns

an int scalar containing the rank of the matrix used to construct this instance. The
estimated rank of the input matrix is the number of singular values which are larger than
a tolerance.

getS
public double[] getS()

Description

Returns the singular values.

Returns

a double array containing the singular values of the matrix

getU
public double[][] getU()

Description

Returns the left singular vectors.

Returns

a double matrix containing the left singular vectors

getV
public double[][] getV()

Description

Returns the right singular vectors.

Returns

a double matrix containing the right singular vectors

inverse
public double[][] inverse()

30 • SVD class JMSL

Description

Compute the Moore-Penrose generalized inverse of a real matrix.

Returns

a double matrix containing the generalized inverse of the matrix used to construct this
instance

Example: Singular Value Decomposition of a Matrix

The singular value decomposition of a matrix is performed. The rank of the matrix is also
computed.

import com.imsl.math.*;

public class SVDEx1 {
public static void main(String args[]) throws SVD.DidNotConvergeException {

double a[][] = {
{1, 2, 1, 4},
{3, 2, 1, 3},
{4, 3, 1, 4},
{2, 1, 3, 1},
{1, 5, 2, 2},
{1, 2, 2, 3}

};

// Compute the SVD factorization of A
SVD svd = new SVD(a);

// Print U, S and V.
new PrintMatrix("U").print(svd.getU());
new PrintMatrix("S").print(svd.getS());
new PrintMatrix("V").print(svd.getV());

// Find the rank of A.
int rank = svd.getRank();
System.out.println("rank = "+rank);

}
}

Output

U
0 1 2 3 4 5

0 -0.38 0.12 0.439 -0.565 0.024 -0.573
1 -0.404 0.345 -0.057 0.215 0.809 0.119
2 -0.545 0.429 0.051 0.432 -0.572 0.04
3 -0.265 -0.068 -0.884 -0.215 -0.063 -0.306
4 -0.446 -0.817 0.142 0.321 0.062 -0.08
5 -0.355 -0.102 -0.004 -0.546 -0.099 0.746

Linear Systems SVD class • 31

S
0

0 11.485
1 3.27
2 2.653
3 2.089

V
0 1 2 3

0 -0.444 0.556 -0.435 0.552
1 -0.558 -0.654 0.277 0.428
2 -0.324 -0.351 -0.732 -0.485
3 -0.621 0.374 0.444 -0.526

rank = 4

SVD.DidNotConvergeException class

static public class com.imsl.math.SVD.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge

Constructors

SVD.DidNotConvergeException
public SVD.DidNotConvergeException(String message)

SVD.DidNotConvergeException
public SVD.DidNotConvergeException(String key, Object[] arguments)

SingularMatrixException class

public class com.imsl.math.SingularMatrixException extends
com.imsl.IMSLException

The matrix is singular.

32 • SingularMatrixException class JMSL

Constructor

SingularMatrixException
public SingularMatrixException()

Chapter 1. Linear Systems SingularMatrixException class • 33

34 • SingularMatrixException class JMSL

Chapter 2: Eigensystem Analysis

Types

class Eigen. .37
class SymEigen . 40

Usage Notes

An ordinary linear eigensystem problem is represented by the equation Ax = λx where A
denotes an n x n matrix. The value λ is an eigenvalue and x 6= 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have
chosen this factor so that x has Euclidean length one, and the component of x of largest
magnitude is positive. If x is a complex vector, this component of largest magnitude is scaled to
be real and positive. The entry where this component occurs can be arbitrary for eigenvectors
having nonunique maximum magnitude values.

Error Analysis and Accuracy

Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the
ordinary eigenvalue problem Ax = λx. Typically, the computed pair

x̃, λ̃

are an exact eigenvector-eigenvalue pair for a ”nearby” matrix A + E. Information about E is
known only in terms of bounds of the form ‖E‖2 ≤ f (n) ‖A‖2 ε. The value of f(n) depends on
the algorithm, but is typically a small fractional power of n. The parameter ε is the machine
precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

min
∣∣∣λ̃− λ∣∣∣ ≤ κ (X) ‖E‖2 for allλ inσ (A)

where σ(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of

35

eigenvectors, ‖·‖2 is Euclidean length, and κ(X) is the condition number of X defined as
κ (X) = ‖X‖2

∥∥X−1
∥∥

2
. If A is a real symmetric or complex Hermitian matrix, then its

eigenvector matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The accuracy of the computed eigenvalues

λ̃j

and eigenvectors

x̃j

can be checked by computing their performance index τ . The performance index is defined to be

τ = max
1≤j≤n

∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

nε ‖A‖2 ‖x̃j‖2

where ε is again the machine precision.

The performance index τ is related to the error analysis because

‖Ex̃j‖2 =
∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

where E is the ”nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an eigensystem
analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. This
is an arbitrary definition, but large values of τ can serve as a warning that there is a significant
error in the calculation.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large errors in
the eigenvalues even if τ is small. In particular, it is often difficult to recognize near multiple
eigenvalues or unstable mathematical problems from numerical results. This facet of the
eigenvalue problem is often difficult for users to understand. Suppose the accuracy of an
individual eigenvalue is desired. This can be answered approximately by computing the
condition number of an individual eigenvalue(see Golub and Van Loan 1989, pp. 344-345). For
matrices A, such that the computed array of normalized eigenvectors X is invertible, the
condition number of λi is

κj =
∥∥eT

j X
−1
∥∥ ,

the Euclidean length of the j-th row of X−1. Users can choose to compute this matrix using the
class LU in ”Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by κjε ‖A‖. To compute an approximate bound for the relative
accuracy of an eigenvalue, divide this bound by |λj |.

36 • JMSL

Eigen class

public class com.imsl.math.Eigen

Collection of Eigen System functions.

Eigen computes the eigenvalues and eigenvectors of a real matrix. The matrix is first balanced.
Orthogonal similarity transformations are used to reduce the balanced matrix to a real upper
Hessenberg matrix. The implicit double-shifted QR algorithm is used to compute the
eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such
that each has Euclidean length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is
based on the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the
EISPACK routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details,
some timing data, and credits are given in Hanson et al. (1990).

While the exact value of the performance index, τ , is highly machine dependent, the
performance of Eigen is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Smith et al. (1976, pages 124-125).

Constructors

Eigen
public Eigen(double[][] a) throws Eigen.DidNotConvergeException

Description

Constructs the eigenvalues and the eigenvectors of a real square matrix.

Parameter

a – is the double square matrix whose eigensystem is to be constructed

DidNotConvergeException is thrown when the algorithm fails to converge on the
eigenvalues of the matrix.

Eigen
public Eigen(double[][] a, boolean computeVectors) throws
Eigen.DidNotConvergeException

Description

Constructs the eigenvalues and (optionally) the eigenvectors of a real square matrix.

Eigensystem Analysis Eigen class • 37

Parameters

a – is the double square matrix whose eigensystem is to be constructed

computeVectors – is true if the eigenvectors are to be computed

DidNotConvergeException is thrown when the algorithm fails to converge on the
eigenvalues of the matrix.

Methods

getValues
public Complex[] getValues()

Description

Returns the eigenvalues of a matrix of type double.

Returns

a Complex array containing the eigenvalues of this matrix in descending order

getVectors
public Complex[][] getVectors()

Description

Returns the eigenvectors.

Returns

A Complex matrix containing the eigenvectors. The eigenvector corresponding to the j-th
eigenvalue is stored in the j-th column. Each vector is normalized to have Euclidean
length one.

performanceIndex
public double performanceIndex(double[][] a)

Description

Returns the performance index of a real eigensystem.

Parameter

a – a double matrix

Returns

A double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed. A performance index less than 1 is
considered excellent, 1 to 100 is good, while greater than 100 is considered poor.

38 • Eigen class JMSL

Example: Eigensystem Analysis

The eigenvalues and eigenvectors of a matrix are computed.

import com.imsl.math.*;

public class EigenEx1 {
public static void main(String args[]) throws
Eigen.DidNotConvergeException {

double a[][] = {
{ 8, -1, -5},
{-4, 4, -2},
{18, -5, -7}

};
Eigen eigen = new Eigen(a);
new PrintMatrix("Eigenvalues").print(eigen.getValues());
new PrintMatrix("Eigenvectors").print(eigen.getVectors());

}
}

Output

Eigenvalues
0

0 2+4i
1 2-4i
2 1

Eigenvectors
0 1 2

0 0.316-0.316i 0.316+0.316i 0.408
1 0.632 0.632 0.816
2 0-0.632i 0+0.632i 0.408

Eigen.DidNotConvergeException class

static public class com.imsl.math.Eigen.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge

Eigensystem Analysis Eigen class • 39

Constructors

Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException(String message)

Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException(String key, Object[] arguments)

SymEigen class

public class com.imsl.math.SymEigen

Computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix.
These transformations are accumulated. An implicit rational QR algorithm is used to compute
the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the eigenvalues
as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on the
EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines. Further details,
some timing data, and credits are given in Hanson et al. (1990).

Let M = the number of eigenvalues, λ = the array of eigenvalues, and xj is the associated
eigenvector with jth eigenvalue.

Also, let ε be the machine precision. The performance index, τ , is defined to be

τ = max
1≤j≤M

‖Axj − λjxj‖1
10Nε ‖A‖1 ‖xj‖1

While the exact value of τ is highly machine dependent, the performance of SymEigen is
considered excellent if τ < 1, good if 1 ≤ 100, and poor if τ > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al.
(1976, pages 124-125).

Constructors

SymEigen
public SymEigen(double[][] a)

Description

Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.

40 • SymEigen class JMSL

Parameter

a – is the symmetric matrix whose eigensystem is to be constructed.

SymEigen
public SymEigen(double[][] a, boolean computeVectors)

Description

Constructs the eigenvalues and (optionally) the eigenvectors for a real symmetric matrix.

Parameters

a – a double symmetric matrix whose eigensystem is to be constructed

computeVectors – a boolean, true if the eigenvectors are to be computed

IllegalArgumentException is thrown when the lengths of the rows of the input matrix
are not uniform.

Methods

getValues
public double[] getValues()

Description

Returns the eigenvalues

Returns

a double array containing the eigenvalues in descending order. If the algorithm fails to
converge on an eigenvalue, that eigenvalue is set to NaN.

getVectors
public double[][] getVectors()

Description

Return the eigenvectors of a symmetric matrix of type double.

Returns

a double array containing the eigenvectors. The j-th column of the eigenvector matrix
corresponds to the j-th eigenvalue. The eigenvectors are normalized to have Euclidean
length one. If the eigenvectors were not computed by the constructor, then null is
returned.

performanceIndex
public double performanceIndex(double[][] a)

Description

Returns the performance index of a real symmetric eigensystem.

Eigensystem Analysis SymEigen class • 41

Parameter

a – a double symmetric matrix

Returns

a double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed. A performance index less than 1 is
considered excellent, 1 to 100 is good, while greater than 100 is considered poor.

IllegalArgumentException is thrown when the lengths of the rows of the input matrix
are not uniform.

Example: Eigenvalues and Eigenvectors of a Symmetric Matrix

The eigenvalues and eigenvectors of a symmetric matrix are computed.

import com.imsl.math.*;

public class SymEigenEx1 {
public static void main(String args[]) {

double a[][] = {
{1, 1, 1},
{1, 1, 1},
{1, 1, 1}

};

SymEigen eigen = new SymEigen(a);
new PrintMatrix("Eigenvalues").print(eigen.getValues());
new PrintMatrix("Eigenvectors").print(eigen.getVectors());

}
}

Output

Eigenvalues
0

0 3
1 -0
2 -0

Eigenvectors
0 1 2

0 0.577 0.816 0
1 0.577 -0.408 -0.707
2 0.577 -0.408 0.707

42 • SymEigen class JMSL

Chapter 3: Interpolation and
Approximation

Types

class Spline . 45
class CsAkima . 47
class CsInterpolate .49
class CsPeriodic . 51
class CsShape. .53
class CsSmooth . 55
class CsSmoothC2 . 57
class BsInterpolate .60
class BsLeastSquares. .62
class RadialBasis . 65

This chapter contains classes to interpolate and approximate data with cubic splines.
Interpolation means that the fitted curve passes through all of the specified data points. An
approximation spline does not have to pass through any of the data points. An appoximating
curve can therefore be smoother than an interpolating curve.

Cubic splines are smooth C1 or C2 fourth-order piecewise-polynomial (pp) functions. For
historical and other reasons, cubic splines are the most heavily used pp functions.

This chapter contains four cubic spline interpolation classes and two approximation classes.
These classes are dervived from the base class Spline, which provides basic services, such as
spline evaluation and integration.‘

43

The chart shows how the six cubic splines in this chapter fit a single data set.

Class CsInterpolate allows the user to specify various endpoint conditions (such as the value
of the first and second derviatives at the right and left endpoints).

Class CsPeriodic is used to fit periodic (repeating) data. The sample data set used is not
periodic and so the curve does not pass through the final data point.

Class CsAkima keeps the shape of the data while minimizing oscillations.

Class CsShape keeps the shape of the data by preserving its convexity.

Class CsSmooth constructs a smooth spline from noisy data.

Class CsSmoothC2 constructs a smooth spline from noisy data using cross-validation and a
user-supplied smoothing parameter.

44 • JMSL

Spline class

abstract public class com.imsl.math.Spline implements Serializable, Cloneable

Spline represents and evaluates univariate piecewise polynomial splines.

A univariate piecewise polynomial (function) p(x) is specified by giving its breakpoint sequence
ξ ∈ Rn, the order k (degree k-1) of its polynomial pieces, and the k × (n− 1) matrix c of its
local polynomial coefficients. In terms of this information, the piecewise polynomial (ppoly)
function is given by

p(x) =
k∑

j=1

cji
(x− ξi)j−1

(j − 1)!
for ξi ≤ x ≤ ξi+1

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals.

Fields

breakPoint
protected double[] breakPoint

The breakpoint array of length n, where n is the number of piecewise polynomials.

coef
protected double[][] coef

Coefficients of the piecewise polynomials. This is an n by k array, where n is the number
of piecewise polynomials and k is the order (degree+1) of the piecewise polynomials.

coef[i] contains the coefficients for the piecewise polynomial valid in the interval
[x[k],x[k+1]).

EPSILON LARGE
static final protected double EPSILON LARGE

The largest relative spacing for double.

Constructor

Spline
public Spline()

Interpolation and Approximation Spline class • 45

Methods

copyAndSortData
protected void copyAndSortData(double[] xData, double[] yData)

Description

Copy and sort xData into breakPoint and yData into the first column of coef.

copyAndSortData
protected void copyAndSortData(double[] xData, double[] yData, double[]
weight)

Description

Copy and sort xData into breakPoint and yData into the first column of coef.

derivative
public double derivative(double x)

Description

Returns the value of the first derivative of the spline at a point.

Parameter

x – a double, the point at which the derivative is to be evaluated

Returns

a double containing the value of the first derivative of the spline at the point x

derivative
public double derivative(double x, int ideriv)

Description

Returns the value of the derivative of the spline at a point.

Parameters

x – a double, the point at which the derivative is to be evaluated

ideriv – an int specifying the derivative to be computed. If zero, the function value
is returned. If one, the first derivative is returned, etc.

Returns

a double containing the value of the derivative of the spline at the point x

getBreakpoints
public double[] getBreakpoints()

46 • Spline class JMSL

Description

Returns a copy of the breakpoints.

Returns

a double array containing a copy of the breakpoints

integral
public double integral(double a, double b)

Description

Returns the value of an integral of the spline.

Parameters

a – a double specifying the lower limit of integration

b – a double specifying the upper limit of integration

Returns

a double, the integral of the spline from a to b

value
public double value(double x)

Description

Returns the value of the spline at a point.

Parameter

x – a double, the point at which the spline is to be evaluated

Returns

a double giving the value of the spline at the point x

CsAkima class

public class com.imsl.math.CsAkima extends com.imsl.math.Spline

Extension of the Spline class to handle the Akima cubic spline.

Class CsAkima computes a C1 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth, say C4, function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

Interpolation and Approximation CsAkima class • 47

‖f − s‖[ξ0,ξn−1]
≤ C

∥∥∥f (2)
∥∥∥

[ξ0,ξn−1

|ξ|2

where

|ξ| := max
i=1,...,n−1

|ξi − ξi−1|

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The
method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are
not reproduced. (However, linear polynomials are reproduced.)

Constructor

CsAkima
public CsAkima(double[] xData, double[] yData)

Description

Constructs the Akima cubic spline interpolant to the given data points.

Parameters

xData – a double array containing the x-coordinates of the data. Values must be
distinct.

yData – a double array containing the y-coordinates of the data.

IllegalArgumentException This exception is thrown if the arrays xData and yData do
not have the same length.

Example: The Akima cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

import com.imsl.math.*;

public class CsAkimaEx1 {
public static void main(String args[]) {

int n = 11;
double x[] = new double[n];
double y[] = new double[n];

for (int k = 0; k < n; k++) {
x[k] = (double)k/(double)(n-1);
y[k] = Math.sin(15.0*x[k]);

}

48 • CsAkima class JMSL

CsAkima cs = new CsAkima(x, y);
double csv = cs.value(0.25);
System.out.println("The computed cubic spline value at point .25 is "
+ csv);

}
}

Output

The computed cubic spline value at point .25 is -0.478185519991867

CsInterpolate class

public class com.imsl.math.CsInterpolate extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points.

CsInterpolate computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions can be
automatically determined by the program, or explicitly specified by using the appropriate
constructor. Constructors are provided that allow setting specific values for first or second
derivative values at the endpoints, or for specifying conditions that correspond to the
”not-a-knot” condition (see de Boor 1978).

The ”not-a-knot” conditions require that the third derivative of the spline be continuous at the
second and next-to-last breakpoint. If n is 2 or 3, then the linear or quadratic interpolating
polynomial is computed, respectively.

If the data points arise from the values of a smooth, say, C4 function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn] ≤ C
∥∥∥f (4)

∥∥∥
[ξ0,ξn]

|ξ|4

where
|ξ| := max

i=0,...,n−1
|ξi+1 − ξi|

For more details, see de Boor (1978, pages 55-56).

Interpolation and Approximation CsInterpolate class • 49

Fields

FIRST DERIVATIVE
static final public int FIRST DERIVATIVE

NOT A KNOT
static final public int NOT A KNOT

SECOND DERIVATIVE
static final public int SECOND DERIVATIVE

Constructors

CsInterpolate
public CsInterpolate(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points. The interpolant satisfies
the ”not-a-knot” condition.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

CsInterpolate
public CsInterpolate(double[] xData, double[] yData, int typeLeft, double
valueLeft, int typeRight, double valueRight)

Description

Constructs a cubic spline that interpolates the given data points with specified derivative
endpoint conditions.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

typeLeft – An int denoting the type of condition at the left endpoint. This can be
NOT A KNOT, FIRST DERIVATIVE or SECOND DERIVATIVE.

50 • CsInterpolate class JMSL

valueLeft – A double value at the left endpoint. If typeLeft is NOT A KNOT this is
ignored, Otherwise, it is the value of the specified derivative.

typeRight – An int denoting the type of condition at the right endpoint. This can
be NOT A KNOT, FIRST DERIVATIVE or SECOND DERIVATIVE.

valueRight – A double value at the right endpoint.

Example: The cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

import com.imsl.math.*;

public class CsInterpolateEx1 {
public static void main(String args[]) {

int n = 11;
double x[] = new double[n];
double y[] = new double[n];

for (int k = 0; k < n; k++) {
x[k] = (double)k/(double)(n-1);
y[k] = Math.sin(15.0*x[k]);

}

CsInterpolate cs = new CsInterpolate(x, y);
double csv = cs.value(0.25);
System.out.println("The computed cubic spline value at point .25 is "
+ csv);

}
}

Output

The computed cubic spline value at point .25 is -0.5487725038121579

CsPeriodic class

public class com.imsl.math.CsPeriodic extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points with periodic boundary conditions.

Class CsPeriodic computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . n− 1. The breakpoints of the spline are the abscissas. The program enforces periodic

Interpolation and Approximation CsPeriodic class • 51

endpoint conditions. This means that the spline s satisfies s(a) = s(b), s ′ (a) = s ′ (b), and
s′′ (a) = s′′ (b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate
values corresponding to a and b are not equal, then a warning message is issued. The ordinate
value at b is set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C4) periodic function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above
spline interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn−1] ≤ C|f
(4)|[ξ0,ξn−1]|ξ|

4

where
|ξ| := max

i=1,...,n−1
|ξi − ξi−1|

For more details, see de Boor (1978, pages 320-322).

Constructor

CsPeriodic
public CsPeriodic(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points with periodic boundary
conditions.

Parameters

xData – A double array containing the x-coordinates of the data. There must be at
least 4 data points and values must be distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Example: The cubic spline interpolant with periodic boundary conditions

A cubic spline interpolant to a function is computed. The value of the spline at point 0.23 is
printed.

import com.imsl.math.*;

public class CsPeriodicEx1 {
public static void main(String args[]) {

int n = 11;
double x[] = new double[n];
double y[] = new double[n];

double h = 2.*Math.PI/15./10.;
for (int k = 0; k < n; k++) {

52 • CsPeriodic class JMSL

x[k] = h * (double)(k);
y[k] = Math.sin(15.0*x[k]);

}

CsPeriodic cs = new CsPeriodic(x, y);
double csv = cs.value(0.23);
System.out.println("The computed cubic spline value at point .23 is "
+ csv);

}
}

Output

The computed cubic spline value at point .23 is -0.3034014726064514

CsShape class

public class com.imsl.math.CsShape extends com.imsl.math.Spline

Extension of the Spline class to interpolate data points consistent with the concavity of the
data.

Class CsShape computes a cubic spline interpolant to n data points xi, fi for i = 0, . . . , n− 1.
For ease of explanation, we will assume that xi < xi+1, although it is not necessary for the user
to sort these data values. If the data are strictly convex, then the computed spline is convex,
C2, and minimizes the expression

∫ xn

x1

(g′′)2

over all convex C1 functions that interpolate the data. In the general case when the data have
both convex and concave regions, the convexity of the spline is consistent with the data and the
above integral is minimized under the appropriate constraints. For more information on this
interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this class is that it is not possible, a priori, to
predict the number of breakpoints of the resulting interpolant. In most cases, there will be
breakpoints at places other than data locations. The method is nonlinear; and although the
interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear
polynomials are reproduced.) This routine should be used when it is important to preserve the
convex and concave regions implied by the data.

Interpolation and Approximation CsShape class • 53

Constructor

CsShape
public CsShape(double[] xData, double[] yData) throws
CsShape.TooManyIterationsException, SingularMatrixException

Description

Construct a cubic spline interpolant which is consistent with the concavity of the data.
Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Example: The shape preserving cubic spline interpolant

A cubic spline interpolant to a function is computed consistent with the concavity of the data.
The spline value at 0.05 is printed.

import com.imsl.math.*;

public class CsShapeEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

double x[] = {0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00};
double y[] = {0.00, 0.90, 0.95, 0.90, 0.10, 0.05, 0.05, 0.20, 1.00};

CsShape cs = new CsShape(x, y);
double csv = cs.value(0.05);
System.out.println("The computed cubic spline value at point .05 is "
+ csv);

}
}

Output

The computed cubic spline value at point .05 is 0.5582312228648201

CsShape.TooManyIterationsException class

static public class com.imsl.math.CsShape.TooManyIterationsException extends
com.imsl.IMSLException

54 • CsShape class JMSL

Too many iterations.

Constructors

CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException()

CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException(Object[] arguments)

CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException(String key, Object[] arguments)

CsSmooth class

public class com.imsl.math.CsSmooth extends com.imsl.math.Spline

Extension of the Spline class to construct a smooth cubic spline from noisy data points.

Class CsSmooth is designed to produce a C2 cubic spline approximation to a data set in which
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic
spline with knots at all the data abscissas x = xData, but it does not interpolate the data
(xi, fi). The smoothing spline S is the unique C2 function that minimizes

b∫
a

S′′ (x)2 dx

subject to the constraint

n−1∑
i=0

|(S (xi)− fi)wi|2 ≤ σ

where σ is the smoothing parameter. The reader should consult Reinsch (1967) for more
information concerning smoothing splines. CsSmooth solves the above problem when the user
provides the smoothing parameter σ. CsSmoothC2 attempts to find the ”optimal” smoothing
parameter using the statistical technique known as cross-validation. This means that (in a very
rough sense) one chooses the value of σ so that the smoothing spline (Sσ) best approximates
the value of the data at xI , if it is computed using all the data except the i-th; this is true for
all i = 0, . . . , n− 1. For more information on this topic, we refer the reader to Craven and
Wahba (1979).

Interpolation and Approximation CsSmooth class • 55

Constructors

CsSmooth
public CsSmooth(double[] xData, double[] yData)

Description

Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. All of the points have equal weights.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

CsSmooth
public CsSmooth(double[] xData, double[] yData, double[] weight)

Description

Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. Weights are supplied by the user.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

weight – A double array containing the relative weights. This array must have the
same length as xData.

Example: The cubic spline interpolant to noisy data

A cubic spline interpolant to noisy data is computed using cross-validation to estimate the
smoothing parameter. The value of the spline at point 0.3010 is printed.

import com.imsl.math.*;
import com.imsl.stat.*;

public class CsSmoothEx1 {
public static void main(String args[]) {

int n = 300;
double x[] = new double[n];
double y[] = new double[n];
for (int k = 0; k < n; k++) {

x[k] = (3.0*k)/(n-1);
y[k] = 1.0/(0.1 + Math.pow(3.0*(x[k]-1.0),4));

56 • CsSmooth class JMSL

}

// Seed the random number generator
Random rn = new Random();
rn.setSeed(1234579L);
rn.setMultiplier(16807);

// Contaminate the data
for (int i = 0; i < n; i++) {

y[i] += 2.0 * rn.nextFloat() - 1.0;
}

// Smooth the data
CsSmooth cs = new CsSmooth(x, y);
double csv = cs.value(0.3010);
System.out.println("The computed cubic spline value at point .3010 is "
+ csv);

}
}

Output

The computed cubic spline value at point .3010 is 0.1078582256142388

CsSmoothC2 class

public class com.imsl.math.CsSmoothC2 extends com.imsl.math.Spline

Extension of the Spline class used to construct a spline for noisy data points using an alternate
method.

Class CsSmoothC2 is designed to produce a C2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is a natural
cubic spline with knots at all the data abscissas x, but it does not interpolate the data (xi, fi).
The smoothing spline Sσ is the unique C2 function that minimizes

b∫
a

s′′σ (x)2 dx

subject to the constraint

n−1∑
i=0

|sσ (xi)− fi|2 ≤ σ

Interpolation and Approximation CsSmoothC2 class • 57

.

Recommended values for σ depend on the weights, w. If an estimate for the standard deviation
of the error in the y-values is availiable, then wi should be set to this value and the smoothing
parameter should be choosen in the confidence interval corresponding to the left side of the
above inequality. That is,

n−
√

2n ≤ σ ≤ n+
√

2n

CsSmoothC2 is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de
Boor (1978, pages 235-243).

Constructors

CsSmoothC2
public CsSmoothC2(double[] xData, double[] yData, double sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967). All of the points have equal weights.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

sigma – A double value specifying the smoothing parameter. Sigma must not be
negative.

CsSmoothC2
public CsSmoothC2(double[] xData, double[] yData, double[] weight, double
sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967) with weights supplied by the user.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

weight – A double array containing the weights. The arrays xData and weight must
have the same length.

sigma – A double value specifying the smoothing parameter. Sigma must not be
negative.

58 • CsSmoothC2 class JMSL

Example: The cubic spline interpolant to noisy data with supplied weights

A cubic spline interpolant to noisy data is computed using supplied weights and smoothing
parameter. The value of the spline at point 0.3010 is printed.

import com.imsl.math.*;
import com.imsl.stat.*;

public class CsSmoothC2Ex1 {
public static void main(String args[]) {

// Set up a grid
int n = 300;
double x[] = new double[n];
double y[] = new double[n];
for (int k = 0; k < n; k++) {

x[k] = 3. * ((double)(k)/(double)(n-1));
y[k] = 1./(.1 + Math.pow(3.*(x[k]-1.),4));

}

// Seed the random number generator
Random rn = new Random();
rn.setSeed(1234579);
rn.setMultiplier(16807);

// Contaminate the data
for (int i = 0; i < n; i++) {

y[i] = y[i] + 2. * rn.nextFloat() - 1.;
}

// Set the weights
double sdev = 1./Math.sqrt(3.);
double weights[] = new double[n];
for (int i = 0; i < n; i++) {

weights[i] = sdev;
}

// Set the smoothing parameter
double smpar = (double)n;

// Smooth the data
CsSmoothC2 cs = new CsSmoothC2(x, y, weights, smpar);
double csv = cs.value(0.3010);
System.out.println("The computed cubic spline value at point .3010 is "
+ csv);

}
}

Output

The computed cubic spline value at point .3010 is 0.06458434076781128

Interpolation and Approximation CsSmoothC2 class • 59

BsInterpolate class

public class com.imsl.math.BsInterpolate extends com.imsl.math.BSpline

Extension of the BSpline class to interpolate data points.

Given the data points x = xData, f = yData, and n the number of elements in xData and
yData, the default action of BsInterpolate computes a cubic (order = 4) spline interpolant s
to the data using a default ”not-a-knot” knot sequence. Constructors are also provided that
allow the order and knot sequence to be specified. This algorithm is based on the routine
SPLINT by de Boor (1978, p. 204).

First, the xData vector is sorted and the result is stored in x. The elements of yData are
permuted appropriately and stored in f, yielding the equivalent data (xi, fi) for i = 0 to n-1.
The following preliminary checks are performed on the data, with k = order. We verify that

xi < xi+1 for i = 0, . . . , n− 2

ti < ti+k for i = 0, . . . , n− 1

ti < ti+1 for i = 0, . . . , n+ k − 2

The first test checks to see that the abscissas are distinct. The second and third inequalities
verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk−1 ≤ xi ≤ tn for i = 0
to n-1. This first inequality in the last check is necessary since the method used to generate the
entries of the interpolation matrix requires that the k possibly nonzero B-splines at xi,
Bj−k+1, ..., Bj where j satisfies tj ≤ xi < tj+1 be well-defined (that is, j − k + 1 ≥ 0).

Constructors

BsInterpolate
public BsInterpolate(double[] xData, double[] yData)

Description

Constructs a B-spline that interpolates the given data points. The computed B-spline will
be order 4 (cubic) and have a default ”not-a-knot” spline knot sequence.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

BsInterpolate

60 • BsInterpolate class JMSL

public BsInterpolate(double[] xData, double[] yData, int order)

Description

Constructs a B-spline that interpolates the given data points and order, using a default
”not-a-knot” spline knot sequence.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data.The arrays xData
and yData must have the same length.

order – An int denoting the order of the B-spline.

BsInterpolate
public BsInterpolate(double[] xData, double[] yData, int order, double[]
knot)

Description

Constructs a B-spline that interpolates the given data points, using the specified order
and knots.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data.The arrays xData
and yData must have the same length.

order – An int denoting the order of the spline.

knot – A double array containing the knot sequence for the B-spline.

Example: The B-spline interpolant

A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.

import com.imsl.math.*;

public class BsInterpolateEx1 {
public static void main(String args[]) {

int n = 11;
double x[] = new double[n];
double y[] = new double[n];

double h = 2.*Math.PI/15./10.;
for (int k = 0; k < n; k++) {

x[k] = h * (double)(k);
y[k] = Math.sin(15.0*x[k]);

}

Interpolation and Approximation BsInterpolate class • 61

BsInterpolate bs = new BsInterpolate(x, y);
double bsv = bs.value(0.23);
System.out.println("The computed B-spline value at point .23 is "
+ bsv);

}
}

Output

The computed B-spline value at point .23 is -0.3034183992767692

BsLeastSquares class

public class com.imsl.math.BsLeastSquares extends com.imsl.math.BSpline

Extension of the BSpline class to compute a least squares spline approximation to data points.

Let’s make the identifications

n = xData.length

x = xData

f = yData

m = nCoef

k = order

For convenience, we assume that the sequence x is increasing, although the class does not
require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through the
distinct xi

′s. In particular, the m + k knots will be generated in [x1, xn] with k knots stacked
at each of the extreme values. The interior knots will be equally spaced in the interval.

Once knots t and weights w are determined, then the spline least-squares fit to the data is
computed by minimizing over the linear coefficients aj

n−1∑
i=0

wi

[
fi −

m∑
j=1

ajBj(xi)
]2

where the Bj , j = 1, ...,m are a (B-spline) basis for the spline subspace.

This algorithm is based on the routine L2APPR by deBoor (1978, p. 255).

62 • BsLeastSquares class JMSL

Fields

nCoef
protected int nCoef

Number of B-spline coefficients.

weight
protected double[] weight

The weight array of length n, where n is the number of data points fit.

Constructors

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef)

Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef – An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline (whose default value is 4).

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order)

Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef – An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.

order – An int denoting the order of the spline.

Interpolation and Approximation BsLeastSquares class • 63

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order,
double[] weight, double[] knot)

Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

nCoef – An int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.

order – An int denoting the order of the spline.

weight – A double array containing the weights for the data. The arrays xData,
yData and weights must have the same length.

knot – A double array containing the knot sequence for the spline.

Example: The B-spline least squares fit

A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is printed.

import com.imsl.math.*;

public class BsLeastSquaresEx1 {
public static void main(String args[]) {

int n = 11;
double x[] = {0, 1, 2, 3, 4, 5, 8, 9, 10};
double y[] = {1.0, 0.8, 2.4, 3.1, 4.5, 5.8, 6.2, 4.9, 3.7};

BsLeastSquares bs = new BsLeastSquares(x, y, 5);
double bsv = bs.value(4.5);
System.out.println("The computed B-spline value at point 4.5 is "
+ bsv);

}
}

Output

The computed B-spline value at point 4.5 is 5.228554323596942

64 • BsLeastSquares class JMSL

RadialBasis class

public class com.imsl.math.RadialBasis implements Serializable, Cloneable

RadialBasis computes a least-squares fit to scattered data in Rd, where d is the dimension.
More precisely, we are given data points

x0, . . . , xn−1 ∈ Rd

and function values
f0, . . . , fn−1 ∈ R1

The radial basis fit to the data is a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error

n−1∑
i=0

wi (F (xi)− fi)
2

where w are the weights. Of course, we must restrict the functional form of F. Here we assume
it is a linear combination of radial functions:

F (x) ≡
m−1∑
j=0

αjφ(‖x− cj‖)

The cj are the centers.

A radial function, φ(r), maps [0,∞) into R1. The default radial function is the Hardy
multiquadric,

φ(r) ≡
√
r2 + δ2

with δ = 1. An alternate radial function is the Gaussian, e−ax2
.

By default, the centers are points in a Faure sequence, scaled to cover the box containing the
data.

Field

serialVersionUID
static final public long serialVersionUID

Constructor

RadialBasis
public RadialBasis(int nDim, int nCenters)

Interpolation and Approximation RadialBasis class • 65

Description

Creates a new instance of RadialBasis.

Parameters

nDim – is the number of dimensions.

nCenters – is the number of centers.

Methods

getANOVA
public ANOVA getANOVA()

Description

Returns the ANOVA statistics from the linear regression.

Returns

an ANOVA table and related statistics

getRadialFunction
public RadialBasis.Function getRadialFunction()

Description

Returns the radial function.

Returns

the current radial function.

gradient
public double[] gradient(double[] x)

Description

Returns the gradient of the radial basis approximation at a point.

Parameter

x – is a double array containing the locations of the data point at which the
approximation’s gradient is to be computed.

Returns

a double array, of length nDim containing the value of the gradient of the radial basis
approximation at x.

setRadialFunction
public void setRadialFunction(RadialBasis.Function radialFunction)

66 • RadialBasis class JMSL

Description

Sets the radial function.

Parameter

radialFunction – is the radial function.

update
public void update(double[] x, double f)

Description

Adds a data point with weight = 1.

Parameters

x – is a double array containing the locations of the data point.

f – is a double containing the function value at the data point.

update
public void update(double[] x, double f, double w)

Description

Adds a data point with a specified weight.

Parameters

x – is a double array containing the locations of the data point.

f – is a double containing the function value at the data point.

w – is a double containing the weight of this data point.

value
public double value(double[] x)

Description

Returns the value of the radial basis approximation at a point.

Parameter

x – is a double array containing the locations of the data point at which the
approximation is to be computed.

Returns

the value of the radial basis approximation at x.

Interpolation and Approximation RadialBasis class • 67

Example: Radial Basis Function Approximation

The function
e−‖~x‖

2/d

where d is the dimension, is evaluated at a set of randomly choosen points. Random noise is
added to the values and a radial basis approximated to the noisy data is computed. The radial
basis fit is then compared to the original function at another set of randomly choosen points.
Both the average error and the maximum error are computed and printed.

In this example, the dimension d=10. The function is sampled at 200 random points, in the
[−1, 1]d cube, to which what noise in the range [-0.2,0.2] is added. The error is computed at
1000 random points, also from the [−1, 1]d cube. The compute errors are less than the added
noise.

import com.imsl.math.*;
import java.util.Random;

public class RadialBasisEx1 {

public static void main(String args[]) {
int nDim = 10;

// Sample, with noise, the function at 100 randomly choosen points
int nData = 200;
double xData[][] = new double[nData][nDim];
double fData[] = new double[nData];
Random rand = new Random(234567L);
for (int k = 0; k < nData; k++) {

for (int i = 0; i < nDim; i++) {
xData[k][i] = 2.0*rand.nextDouble() - 1.0;

}
// noisy sample
fData[k] = fcn(xData[k]) + 0.20*(2.0*rand.nextDouble()-1.0);

}

// Compute the radial basis approximation using 25 centers
int nCenters = 25;
RadialBasis rb = new RadialBasis(nDim, nCenters);
rb.update(xData, fData);

// Compute the error at a randomly selected set of points
int nTest = 1000;
double maxError = 0.0;
double aveError = 0.0;
double x[] = new double[nDim];
for (int k = 0; k < nTest; k++) {

for (int i = 0; i < nDim; i++) {
x[i] = 2.0*rand.nextDouble() - 1.0;

}
double error = Math.abs(fcn(x)-rb.value(x));
aveError += error;
maxError = Math.max(error, maxError);
double f = fcn(x);

68 • RadialBasis class JMSL

}
aveError /= nTest;

System.out.println("average error is "+aveError);
System.out.println("maximum error is "+maxError);

}

// The function to approximate
static double fcn(double x[]) {

double sum = 0.0;
for (int k = 0; k < x.length; k++) {

sum += x[k]*x[k];
}
sum /= x.length;
return Math.exp(-sum);

}
}

Output

average error is 0.02619296746295321
maximum error is 0.13197595135821727

RadialBasis.Function interface

public interface com.imsl.math.RadialBasis.Function

Public interface for the user supplied function to the RadialBasis object.

Methods

f
public double f(double x)

Description

A radial basis function.

Parameter

x – a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

Interpolation and Approximation RadialBasis class • 69

g
public double g(double x)

Description

The derivative of the radial basis function.

Parameter

x – a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

RadialBasis.HardyMultiquadric class

static public class com.imsl.math.RadialBasis.HardyMultiquadric implements
com.imsl.math.RadialBasis.Function

The Hardy multiquadric basis function,
√
r2 + δ2.

Constructor

RadialBasis.HardyMultiquadric
public RadialBasis.HardyMultiquadric(double delta)

Description

Creates a Hardy multiquadric basis function.

Parameter

delta – is the parameter in the function definition.

Methods

f
public double f(double x)

g
public double g(double x)

70 • RadialBasis class JMSL

RadialBasis.Gaussian class

static public class com.imsl.math.RadialBasis.Gaussian implements
com.imsl.math.RadialBasis.Function

The Gaussian basis function, e−ax2
.

Constructor

RadialBasis.Gaussian
public RadialBasis.Gaussian(double a)

Methods

f
public double f(double x)

g
public double g(double x)

Chapter 3. Interpolation and Approximation RadialBasis class • 71

72 • RadialBasis class JMSL

Chapter 4: Quadrature

Types

class Quadrature. .74
class HyperRectangleQuadrature . 80

Usage Notes

Univariate Quadrature

Class Quadrature computes approximations to integrals of the form

∫ b

c

f (x)dx

Quadrature computes an estimated answer R. An optional value ErrorEstimate = E estimates
the error. These numbers are related as follows:

∣∣∣∣∣∣
b∫

a

f(x) dx−R

∣∣∣∣∣∣ ≤ E ≤ max

ε, ρ
∣∣∣∣∣∣

b∫
a

f(x) dx

∣∣∣∣∣∣


One situation that occasionally arises in univariate quadrature concerns the approximation of
integrals when only tabular data are given. The functions described above do not directly
address this question. However, the standard method for handling this problem is first to
interpolate the data, and then to integrate the interpolant. This can be accomplished by using
a JMSL spline interpolation class derived from com.imsl.math.Spline and the method
com.imsl.Spline.integral (a,b)

Multivariate Quadrature

The class HypercubeQuadrature computes an approximation to the integral of a function of n

73

variables over a hyper-rectangle.

∫ b1

a1

...

∫ bn

an

f (x1, ... , xn)dxn... dx1

Quadrature class

public class com.imsl.math.Quadrature implements Serializable, Cloneable

Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to
reduce the absolute error. It subdivides the interval [A, B] and uses a
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for
each subinterval is estimated by comparison with the k-point Gauss quadrature rule. The
subinterval with the largest estimated error is then bisected and the same procedure is applied
to both halves. The bisection process is continued until either the error criterion is satisfied,
roundoff error is detected, the subintervals become too small, or the maximum number of
subintervals allowed is reached. The Class Quadrature is based on the subroutine QAG by
Piessens et al. (1983).

Reference

Constructor

Quadrature
public Quadrature()

Description

Constructs a Quadrature object.

Methods

eval
public double eval(Quadrature.Function objectF, double a, double b)

Description

Returns the value of the integral from a to b.

Parameters

objectF – an implementation of Function containing the function to be integrated

74 • Quadrature class JMSL

a – a double specifying the lower limit of integration

b – a double specifying the upper limit of integration, either or both of a and b can
be Double.POSITIVE INFINITY or Double.NEGATIVE INFINITY

getErrorEstimate
public double getErrorEstimate()

Description

Returns an estimate of the relative error in the computed result.

Returns

a double specifying an estimate of the relative error in the computed result

getErrorStatus
public int getErrorStatus()

Description

Returns the non-fatal error status.

Returns

an int specifying the non-fatal error status:

Status Meaning
1 Maximum number of subdivisions allowed has been achieved.

One can allow more subdivisions by using setMaxSubinter-
vals. If this yields no improvement it is advised to analyze
the integrand in order to determine the integration difficul-
ties. If the position of a local difficulty can be determined
(e.g. singularity, discontinuity within the interval) one will
probably gain from splitting up the interval at this point and
calling the integrator on the subranges. If possible, an ap-
propriate special-purpose integrator should be used, which is
designed for handling the type of difficulty involved.

2 The occurrence of roundoff error is detected, which prevents
the requested tolerance from being achieved. The error may
be under-estimated.

3 Extremely bad integrand behavior occurs at some points of
the integration interval.

5 The algorithm does not converge. Roundoff error is detected
in the extrapolation table. It is presumed that the requested
tolerance cannot be achieved, and that the returned result is
the best that can be obtained.

6 The integral is probably divergent, or slowly convergent. It
must be noted that divergence can occur with any other status
value.

Quadrature Quadrature class • 75

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description

Sets the absolute error tolerance.

Parameter

errorAbsolute – a double scalar value specifying the absolute error

setExtrapolation
public void setExtrapolation(boolean doExtrapolation)

Description

If true, the epsilon-algorithm for extrapolation is enabled. The default is false
(extrapolation is not used).

Parameter

doExtrapolation – a boolean, true if the epsilon-algorithm for extrapolation is to
be enabled, false otherwise

setMaxSubintervals
public void setMaxSubintervals(int maxSubintervals)

Description

Sets the maximum number of subintervals allowed. The default value is 500.

Parameter

maxSubintervals – an int specifying the maximum number of subintervals to be
allowed. The default is 500.

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets the relative error tolerance.

Parameter

errorRelative – a double scalar value specifying the relative error

setRule
public void setRule(int rule)

76 • Quadrature class JMSL

Description

Set the Gauss-Kronrod rule.

Rule Data points used
1 7 - 15
2 10 - 21
3 15 - 31
4 20 - 41
5 25 - 51
6 30 - 61

The default is rule 3.

Parameter

rule – an int specifying the rule to be used. The default is 3.

Example 1: Integral
∫ 3

1 e2x dx

The integral
∫ 3

1
e2x dx is computed and compared to its expected value.

import com.imsl.math.*;

public class QuadratureEx1 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.exp(2.*x);
}

};

Quadrature q = new Quadrature();
double result = q.eval(fcn, 1.0, 3.0);

double expect = (Math.exp(6)-Math.exp(2))/2.;
System.out.println("result = "+result);
System.out.println("expect = "+expect);

}
}

Output

result = 198.01986869690225
expect = 198.01986869690222

Quadrature Quadrature class • 77

Example 2: Integral
∫∞

0 e−x dx

The integral
∫∞
0
e−x dx is computed and compared to its expected value.

import com.imsl.math.*;

public class QuadratureEx2 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.exp(-x);
}

};

Quadrature q = new Quadrature();
double result = q.eval(fcn, 0.0, Double.POSITIVE_INFINITY);

double expect = 1.;
System.out.println("result = "+result);
System.out.println("expect = "+expect);

}
}

Output

result = 0.999999999999999
expect = 1.0

Example 3: Integral of the entire real line

The integral
∫∞
−∞

x
4ex+9e−x dx is computed and compared to its expected value. This integral is

evaluated in Gradshteyn and Ryzhik (equation 3.417.1).

import com.imsl.math.*;

public class QuadratureEx3 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return x / (4*Math.exp(x)+9*Math.exp(-x));
}

};

Quadrature q = new Quadrature();
double result = q.eval(fcn, Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY);

78 • Quadrature class JMSL

double expect = Math.PI*Math.log(1.5)/12.;
System.out.println("result = "+result);
System.out.println("expect = "+expect);

}
}

Output

result = 0.10615051707662819
expect = 0.10615051707663337

Reference

Gradshteyn, I. S. and I. M. Ryzhik (1965), Table of Integrals, Series, and Products, Academic
Press, New York.

Example 4: Integral of an oscillatory function

The integral of cos(ax) for a = 104 is computed and compared to its expected value. Because
the function is highly oscillatory, the quadrature rule is set to 6. The relative error tolerance is
also set.

import com.imsl.math.*;

public class QuadratureEx4 {
public static void main(String args[]) {

final double a = 1.0e4;

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.cos(a*x);
}

};

Quadrature q = new Quadrature();
q.setRule(6);
q.setRelativeError(1.e-10);
double result = q.eval(fcn, 0.0, 1.0);

double expect = Math.sin(a)/a;
System.out.println("result = "+result);
System.out.println("expect = "+expect);
System.out.println("relative error = "+(expect-result)/expect);
System.out.println("relative error estimate = "+q.getErrorEstimate());

}

Quadrature Quadrature class • 79

}

Output

result = -3.05614388902526E-5
expect = -3.056143888882521E-5
relative error = -4.670545934003717E-11
relative error estimate = 1.0488375541870691E-8

Quadrature.Function interface

public interface com.imsl.math.Quadrature.Function

Public interface function for the Quadrature class.

Method

f
public double f(double x)

Description

Returns the value of the function at the given point.
Parameter

x – a double specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

HyperRectangleQuadrature class

public class com.imsl.math.HyperRectangleQuadrature implements Serializable,
Cloneable

HyperRectangleQuadrature integrates a function over a hypercube. This class is used to
evaluate integrals of the form:∫ bn−1

an−1

· · ·
∫ b0

a0

f(x0, . . . , xn−1) dx0 . . . dxn−1

80 • HyperRectangleQuadrature class JMSL

Integration of functions over hypercubes by Monte Carlo, in which the integral is evaluated as
the value of the function averaged over a sequence of randomly chosen points. Under mild
assumptions on the function, this method will converge like 1/

√
n, where n is the number of

points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at
which the function is to be evaluated. Randomly distributed points tend to be non-uniformly
distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A
low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by
com.imsl.stat.FaureSequence (p. 747) .

Constructors

HyperRectangleQuadrature
public HyperRectangleQuadrature(RandomSequence sequence)

Description

Constructs a HyperRectangleQuadrature object.

HyperRectangleQuadrature
public HyperRectangleQuadrature(int dim)

Description

Constructs a HyperRectangleQuadrature object.

Methods

eval
public double eval(HyperRectangleQuadrature.Function objectF)

Description

Returns the value of the integral over the unit cube.

Parameter

objectF – Function containing the function to be integrated

eval
public double eval(HyperRectangleQuadrature.Function objectF, double[] a,
double[] b)

Description

Returns the value of the integral over a cube.

Quadrature HyperRectangleQuadrature class • 81

Parameters

objectF – Function containing the function to be integrated

a – is a double specifying the lower limit of integration. If null all of the lower limits
default to 0.

b – is a double specifying the upper limit of integration. If null all of the upper
limits default to 1.

getErrorEstimate
public double getErrorEstimate()

Description

Returns an estimate of the relative error in the computed result.

Returns

a double specifying an estimate of the relative error in the computed result

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description

Sets the absolute error tolerance.

Parameter

errorAbsolute – a double scalar value specifying the absolute error

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets the relative error tolerance.

Parameter

errorRelative – a double scalar value specifying the relative error

Example: HyperRectangle Quadrature

This example evaluates the following multidimensional integral, with n=10.

∫ bn−1

an−1

· · ·
∫ b0

a0

 n∑
i=0

(−1)i
i∏

j=0

xj

 dx0 . . . dxn−1 =
1
3

[
1−

(
−1

2

)n]

82 • HyperRectangleQuadrature class JMSL

import com.imsl.math.*;

public class HyperRectangleQuadratureEx1 {
public static void main(String args[]) {

HyperRectangleQuadrature.Function fcn =
new HyperRectangleQuadrature.Function() {

public double f(double x[]) {
int sign = 1;
double sum = 0.0;
for (int i = 0; i < x.length; i++) {

double prod = 1.0;
for (int j = 0; j <= i; j++) {

prod *= x[j];
}
sum += sign * prod;
sign = -sign;

}
return sum;

}
};

HyperRectangleQuadrature q = new HyperRectangleQuadrature(10);
double result = q.eval(fcn);
System.out.println("result = "+result);

}
}

Output

result = 0.3331253832089543

HyperRectangleQuadrature.Function interface

public interface com.imsl.math.HyperRectangleQuadrature.Function

Public interface function for the HyperRectangleQuadrature class.

Method

f
public double f(double[] x)

Quadrature HyperRectangleQuadrature class • 83

Description

Returns the value of the function at the given point.

Parameter

x – a double array specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

84 • HyperRectangleQuadrature class JMSL

Chapter 5: Differential Equations

Type

class OdeRungeKutta . 86

Usage Notes

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent variables
called yi, one independent variable, t, and derivatives of the yi with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables yi at
a known value t = t0 are given. Values of yi(t) for t > 0 or t < t0 are required.

The OdeRungeKutta class solves the IVP for ODEs of the form

dyi

dt
= y′i = fi (t, y1, ... , yN) i = 1, ... , N

with yi = (t = t0) specified. Here, fi is a user-supplied function that must be evaluated at any
set of values (t, y1, . . . , yN), i = 1, . . . , N .

This problem statement is abbreviated by writing it as a system of first-order ODEs,

y (t) [y1 (t) , . . . , yN (t)]T , [f1 (t, y) , . . . , fN (t, y)]T

, so that the problem becomes y′ = f (t, y)with initial values y(t0).

The system

dy

dt
= y′ = f (t, y)

is said to be stiff if some of the eigenvalues of the Jacobian matrix

85

{∂y′i/∂yj}

are large and negative. This is frequently the case for differential equations modeling the
behavior of physical systems, such as chemical reactions proceeding to equilibrium where
subspecies effectively complete their reactions in different epochs. An alternate model concerns
discharging capacitors such that different parts of the system have widely varying decay rates
(or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers
such as OdeRungeKutta are inefficient, or else completely fail. Special methods are often
required. The most common inefficiency is that a large number of evaluations of f(t, y) (and
hence an excessive amount of computer time) are required to satisfy the accuracy and stability
requirements of the software.

OdeRungeKutta class

public class com.imsl.math.OdeRungeKutta implements Serializable, Cloneable

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method.

Class OdeRungeKutta finds an approximation to the solution of a system of first-order
differential equations of the form y0 = f(t, y) with given initial data. The routine attempts to
keep the global error proportional to a user-specified tolerance. This routine is efficient for
nonstiff systems where the derivative evaluations are not expensive.

OdeRungeKutta is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses
Runge-Kutta formulas of order five and six developed by J. H. Verner.

Fields

AFTER SUCCESSFUL STEP
static final public int AFTER SUCCESSFUL STEP

Used by method examineStep to indicate examining after a successful step

AFTER UNSUCCESSFUL STEP
static final public int AFTER UNSUCCESSFUL STEP

Used by method examineStep to indicate examining after an unsuccessful step

BEFORE STEP
static final public int BEFORE STEP

Used by method examineStep to indicate examining before the next step

86 • OdeRungeKutta class JMSL

Constructor

OdeRungeKutta
public OdeRungeKutta(OdeRungeKutta.Function function)

Description

Constructs an ODE solver to solve the initial value problem dy/dx = f(x,y)

Parameter

function – Implementation of interface Function that defines the right-hand side
function f(x,y)

Methods

examineStep
protected void examineStep(int state, double x, double[] y)

Description

Called before and after each internal step.

Parameters

state – an int, one of BEFORE STEP, AFTER SUCCESSFUL STEP or
AFTER UNSUCCESSFUL STEP.

x – double representing the indepenent variable.

y – double array containing the dependent variables.

setFloor
public void setFloor(double floor)

Description

Sets the value used in the norm computation.

Parameter

floor – double used in the norm computation, default value is 1.

IllegalArgumentException is thrown if floor is less than or equal to zero.

setInitialStepsize
public void setInitialStepsize(double stepsize)

Description

Sets the initial internal step size.

Differential Equations OdeRungeKutta class • 87

Parameter

stepsize – double specifying the initial internal step size.

IllegalArgumentException is thrown if stepsize is less than or equal to zero.

setMaximumStepsize
public void setMaximumStepsize(double stepsize)

Description

Sets the maximum internal step size.

Parameter

stepsize – Maximum internal step size. Default value is 2.

IllegalArgumentException is thrown if stepsize is less than or equal to 0.

setMaxSteps
public void setMaxSteps(int maxSteps)

Description

Sets the maximum number of internal steps allowed.

Parameter

maxSteps – int specifying the maximum number of internal steps allowed, default
value is 500

IllegalArgumentException is thrown if maxSteps is less than or equal to zero.

setMinimumStepsize
public void setMinimumStepsize(double stepsize)

Description

Sets the minimum internal step size.

Parameter

stepsize – Minimum internal step size. Default value is 0.

IllegalArgumentException is thrown if stepsize is less than or equal to 0.

setNorm
public void setNorm(int normMethod)

Description

Sets the switch for determining the error norm.

88 • OdeRungeKutta class JMSL

Parameter

normMethod – int specifying the switch for determining the error norm, default
value is 0. In the following, ei is the absolute value fo an estimate of the error in yi(t)

norm Constraint
0 Minimum of the absolute error and the relative error, equals the maxi-

mum of ei/max(|yi(t)|, 1)
1 Absolute error, equals max(ei)
2 Maximum of ei/max(|yi(t)|, f loor)

IllegalArgumentException is thrown if norm is is not 0, 1, or 2.

setScale
public void setScale(double scale)

Description

Sets the scaling factor.

Parameter

scale – double specifying the scaling factor, default value is 1.e0

IllegalArgumentException is thrown if scale is less than or equal to 0.

setTolerance
public void setTolerance(double tolerance)

Description

Sets the error tolerance.

Parameter

tolerance – double specifying the error tolerance. Default value is 1.0e-6.

IllegalArgumentException is thrown if tolerance less than or equal 0.

solve
public void solve(double x, double xEnd, double[] y) throws
OdeRungeKutta.ToleranceTooSmallException,
OdeRungeKutta.DidNotConvergeException

Description

Integrates the ODE system from x to xEnd. On all but the first call to solve, the value of
x must equal the value of xEnd for the previous call.

Differential Equations OdeRungeKutta class • 89

Parameters

x – double specifying the independent variable

xEnd – double specifying the value of x at which the solution is desired

y – On input, double array containing the initial values. On output, double array
containing the approximate solution.

DidNotConvergeException is thrown if the number of internal steps exceeds maxSteps
(default 500). This can be an indication that the ODE system is stiff. This exception
can also be thrown if the error tolerance condition could not be met.

ToleranceTooSmallException is thrown if the computation does not converge on some
step.

vnorm
protected double vnorm(double[] v, double[] y, double[] ymax)

Description

Returns the norm of a vector.

Parameters

v – double array containing the vector whose norm is to be computed

y – double array containing the values of the dependent variable

ymax – double array containing the maximum y values computed thus far

Returns

double scalar value representing the norm of the vector v

Example: Runge-Kutta-Verner ordinary differential equation solver

An ordinary differential equation problem is solved using a solver which implements the
Runge-Kutta-Verner method. The solution at time t=10 is printed.

import com.imsl.math.*;

public class OdeRungeKuttaEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

OdeRungeKutta.Function fcn = new OdeRungeKutta.Function() {
public void f(double t, double y[], double yprime[]) {

yprime[0] = 2. * y[0] * (1-y[1]);
yprime[1] = -y[1] * (1-y[0]);

}
};

double y[] = {1,3};
OdeRungeKutta q = new OdeRungeKutta(fcn);
int nsteps = 10;
for (int k = 0; k < nsteps; k++) {

90 • OdeRungeKutta class JMSL

q.solve(k, k+1, y);
}
System.out.println("Result = {"+y[0]+","+y[1]+"}");

}
}

Output

Result = {3.1443416765160768,0.3488265985196999}

OdeRungeKutta.Function interface

public interface com.imsl.math.OdeRungeKutta.Function

Public interface for user supplied function to OdeRungeKutta object.

Method

f
public void f(double x, double[] y, double[] yprime)

Description

Returns the value of the function at the given point.

Parameters

x – a double, the point at which the function is to be evaluated

y – a double array which contains the dependent variable values

yprime – a double array which contains the value of the function at (x,y)

OdeRungeKutta.ToleranceTooSmallException class

static public class com.imsl.math.OdeRungeKutta.ToleranceTooSmallException
extends com.imsl.IMSLException

Tolerance is too small.

Differential Equations OdeRungeKutta class • 91

Constructor

OdeRungeKutta.ToleranceTooSmallException
public OdeRungeKutta.ToleranceTooSmallException(String key, Object[]
arguments)

OdeRungeKutta.DidNotConvergeException class

static public class com.imsl.math.OdeRungeKutta.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge.

Constructors

OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException(String message)

OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException(String key, Object[] arguments)

92 • OdeRungeKutta class JMSL

Chapter 6: Transforms

Types

class FFT . 94
class ComplexFFT. 98

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform takes
approximately n2 operations where n is the number of points in the transform, while the FFT
(which computes the same values) takes approximately
n log n operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)
algorithm. Hence, these functions are most efficient for integers that are highly composite; that
is, integers that are a product of small primes.

For the two classes, FFT and ComplexFFT, a single instance can be used to transform multiple
sequences of the same length. In this situation, the constructor computes the initial setup once.
This may result in substantial computational savings. For more information on the use of these
classes consult the documentation under the appropriate class name.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham
1974) as

f̂ (ω) = (=f) (ω) =
∫ ∞

−∞
f (t)e−2πiωtdt

93

We begin by making the following approximation:

f̂ (ω) ≈
∫ T/2

−T/2

f (t)e−2πiωtdt

=
∫ T

0

f (t− T/2)e−2πiω(t−T/2)dt

= eπiωT

∫ T

0

f (t− T/2)e−2πiωtdt

If we approximate the last integral using the rectangle rule with spacing h = T/n , we have

f̂ (ω) ≈ eπiωTh
n−1∑
k=0

e−2πiωkhf (kh− T/2)

Finally, setting ω = j/T for j = 0, . . . , n− 1 yields

f̂ (j/T) ≈ eπijh
n−1∑
k=0

e−2πijk/nf (kh− T/2) = (−1)j
n−1∑
k=0

e−2πijk/nfh
k

where the vector fh = (f(−T/2), . . . , f((n− 1)h− T/2)) . Thus, after scaling the components
by (−1)h , the discrete Fourier transform, as computed in ComplexFFT (with input fh) is
related to an approximation of the continuous Fourier transform by the above formula.

FFT class

public class com.imsl.math.FFT implements Serializable, Cloneable

FFT functions.

Class FFT computes the discrete Fourier transform of a real vector of size n. The method used
is a variant of the Cooley-Tukey algorithm, which is most efficient when n is a product of small
prime factors. If n satisfies this condition, then the computational effort is proportional to n log
n.

The forward method computes the forward transform. If n is even, then the forward transform
is

q2m−1 =
n−1∑
k=0

pk cos
2πkm
n

m = 1, . . . , n/2

94 • FFT class JMSL

q2m−2 = −
n−1∑
k=0

pk sin
2πkm
n

m = 1, . . . , n/2− 1

q0 =
n−1∑
k=0

pk

If n is odd, qm is defined as above for m from 1 to (n - 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time intervals
of length δ seconds starting at time t0. That is, we have

pi := f (t0 + i∆) i = 0, 1, . . . , n− 1

We will assume that n is odd for the remainder of this discussion. The class FFT treats this
sequence as if it were periodic of period n. In particular, it assumes that f (t0) = f (t0 + n∆).
Hence, the period of the function is assumed to be T = n∆. We can invert the above transform
for p as follows:

pm =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1)m

n
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1)m

n


This formula is very revealing. It can be interpreted in the following manner. The coefficients q
produced by FFT determine an interpolating trigonometric polynomial to the data. That is, if
we define

g (t) =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1) (t− t0)

n∆
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1) (t− t0)

n∆



=
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1) (t− t0)

T
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1) (t− t0)

T


then we have

f (t0 + (i− 1) ∆) = g (t0 + (i− 1))∆

Now suppose we want to discover the dominant frequencies, forming the vector P of length (n
+ 1)/2 as follows:

Transforms FFT class • 95

P0 := |q0|

Pk :=
√
q22k−2 + q22k−1 k = 1, 2, . . . , (n− 1) /2

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk

corresponds to the energy level at frequency

k

T
=

k

n∆
k = 0, 1, . . . ,

n− 1
2

Furthermore, note that there are only (n+ 1)/2 ≈ T/(2∆) resolvable frequencies when n
observations are taken. This is related to the Nyquist phenomenon, which is induced by
discrete sampling of a continuous signal. Similar relations hold for the case when n is even.

If the backward method is used, then the backward transform is computed. If n is even, then
the backward transform is

qm = p0 + (−1)m
pn−1 + 2

n/2−1∑
k=0

p2k+1 cos
2π(k + 1)m

n
− 2

n/2−2∑
k=0

p2k+2 sin
2π(k + 1)m

n

If n is odd,

qm = p0 + 2
(n−3)/2∑

k=0

p2k+1 cos
2π(k + 1)m

n
− 2

(n−3)/2∑
k=0

p2k+2 sin
2π(k + 1)m

n

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

FFT is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

Constructor

FFT
public FFT(int n)

Description

Constructs an FFT object.

Parameter

n – is the length of the sequence to be transformed

96 • FFT class JMSL

Methods

backward
public double[] backward(double[] coef)

Description

Compute the real periodic sequence from its Fourier coefficients.
Parameter

coef – a double array containing the Fourier coefficients

Returns

a double array containing the periodic sequence

forward
public double[] forward(double[] seq)

Description

Compute the Fourier coefficients of a real periodic sequence.
Parameter

seq – a double array containing the sequence to be transformed

Returns

a double array containing the transformed sequence

Example: Fast Fourier Transform

The Fourier coefficients of a periodic sequence are computed. The coefficients are then used to
reproduce the periodic sequence.

import com.imsl.math.*;

public class FFTEx1 {
public static void main(String args[]) {

double x[] = {1, 2, 3, 4, 5, 6, 7, 8};
FFT fft = new FFT(x.length);

double y[] = fft.forward(x);
double z[] = fft.backward(y);
for (int i = 0; i < x.length; i++) {

z[i] = z[i] / x.length;
}

new PrintMatrix("x").print(x);
new PrintMatrix("y").print(y);
new PrintMatrix("z").print(z);

}
}

Transforms FFT class • 97

Output

x
0

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8

y
0

0 36
1 -4
2 9.657
3 -4
4 4
5 -4
6 1.657
7 -4

z
0

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8

ComplexFFT class

public class com.imsl.math.ComplexFFT implements Serializable, Cloneable

Complex FFT.

Class ComplexFFT computes the discrete complex Fourier transform of a complex vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N. This considerable savings has historically led people to refer to this
algorithm as the ”fast Fourier transform” or FFT.

Specifically, given an N-vector x, method forward returns

98 • ComplexFFT class JMSL

cm =
N−1∑
n=0

xne
−2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS

Finally, note that we can invert the Fourier transform as follows:

xn =
1
N

N−1∑
j=0

cme
2πinj/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized
inverse is implemented in backward. ComplexFFT is based on the complex FFT in FFTPACK.
The package, FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Specifically, given an N-vector c, backward returns

sm =
N∑

n=0

cne
2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS

Finally, note that we can invert the inverse Fourier transform as follows:

cn =
1
N

N−1∑
m=0

sme
−2πinm/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. backward is based on
the complex inverse FFT in FFTPACK. The package, FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

Constructor

ComplexFFT
public ComplexFFT(int n)

Transforms ComplexFFT class • 99

Description

Constructs a complex FFT object.

Parameter

n – is the array size that this object can handle.

Methods

backward
public Complex[] backward(Complex[] coef)

Description

Compute the complex periodic sequence from its Fourier coefficients.

Parameter

coef – Complex array of Fourier coefficients

Returns

Complex array containing the periodic sequence

forward
public Complex[] forward(Complex[] seq)

Description

Compute the Fourier coefficients of a complex periodic sequence.

Parameter

seq – is the Complex array containing the sequence to be transformed.

Returns

a Complex array containing the transformed sequence.

Example: Complex FFT

The Fourier coefficients of a complex periodic sequence are computed. Then the coefficients are
used to try to reproduce the periodic sequence.

import com.imsl.math.*;

public class ComplexFFTEx1 {
public static void main(String args[]) {

Complex x[] = {
new Complex(1,8),
new Complex(2,7),
new Complex(3,6),
new Complex(4,5),

100 • ComplexFFT class JMSL

new Complex(5,4),
new Complex(6,3),
new Complex(7,2),
new Complex(8,1)

};
ComplexFFT fft = new ComplexFFT(x.length);

Complex y[] = fft.forward(x);
Complex z[] = fft.backward(y);
for (int i = 0; i < x.length; i++) {

z[i] = Complex.divide(z[i], x.length);
}

new PrintMatrix("x").print(x);
new PrintMatrix("y").print(y);
new PrintMatrix("z").print(z);

}
}

Output

x
0

0 1+8i
1 2+7i
2 3+6i
3 4+5i
4 5+4i
5 6+3i
6 7+2i
7 8+1i

y
0

0 36+36i
1 5.657+13.657i
2 +8i
3 -2.343+5.657i
4 -4+4i
5 -5.657+2.343i
6 -8
7 -13.657-5.657i

z
0

0 1+8i
1 2+7i
2 3+6i
3 4+5i
4 5+4i
5 6+3i
6 7+2i

Transforms ComplexFFT class • 101

7 8+1i

102 • ComplexFFT class JMSL

Chapter 7: Nonlinear Equations

Types

class ZeroPolynomial . 104
class ZeroFunction . 109
class ZeroSystem . 113

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anz
nn+ an−1z

n−1 + · · ·+ a1z + a0

where an 6= 0. The class finds zeros of a polynomial with real or complex coefficients using
Aberth’s method.

Zeros of a Function

The class uses Muller’s method to find the real zeros of a real-valued function.

Root of System of Equations

A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, . . . , n

where x ∈ Rn, and fi : Rn → R. The ZeroSystem class uses a modified hybrid method due to
M.J.D. Powell to find the zero of a system of nonlinear equations.

103

ZeroPolynomial class

public class com.imsl.math.ZeroPolynomial implements Serializable, Cloneable

The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients,
Aberth’s method. This class is a Java translation of a Fortran code written by Dario Andrea
Bini, University of Pisa, Italy (bini@dm.unipi.it). Numerical computation of polynomial zeros
by means of Aberth’s method, Numerical Algorithms, 13 (1996), pp. 179-200. The original
Fortran code includes the following notice.

All the software contained in this library is protected by copyright Permission to use, copy,
modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or
modification of this software and in all copies of the supporting documentation for such
software.

THIS SOFTWARE IS BEING PROVIDED ”AS IS”, WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE
PUBLISHER, NOR ANY MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL
”NUMERICAL ALGORITHMS”, NOR ITS EDITOR-IN-CHIEF, BE LIABLE FOR ANY
ERROR IN THE SOFTWARE, ANY MISUSE OF IT OR ANY DAMAGE ARISING OUT
OF ITS USE. THE ENTIRE RISK OF USING THE SOFTWARE LIES WITH THE PARTY
DOING SO. ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE
TERMS OF THE ABOVE STATEMENT.

Field

EPSILON SMALL
static final public double EPSILON SMALL

The smallest relative spacing for doubles.

Constructor

ZeroPolynomial
public ZeroPolynomial()

Description

Creates an instance of the solver.

104 • ZeroPolynomial class JMSL

Methods

computeRoots
public Complex[] computeRoots(Complex[] coef) throws
ZeroPolynomial.DidNotConvergeException

Description

Computes the roots of the polynomial with Complex coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]

Parameter

coef – a Complex array containing the polynomial coefficients.

Returns

a Complex array containing the roots of the polynomial.

computeRoots
public Complex[] computeRoots(double[] coef) throws
ZeroPolynomial.DidNotConvergeException

Description

Computes the roots of the polynomial with real coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]

Parameter

coef – a double array containing the polynomial coefficients

Returns

a Complex array containing the roots of the polynomial

getRadius
public double getRadius(int index)

Description

Returns an a-posteriori absolute error bound on the root.

Parameter

index – an int specifying the (0-based) index of the root whose error bound is to be
returned

Nonlinear Equations ZeroPolynomial class • 105

Returns

a double representing the error bound on the index-th root. NaN is returned if the
corresponding root cannot be represented as floating point due to overflow or underflow
or if the roots have not yet been computed.

getRoot
public Complex getRoot(int index)

Description

Returns a zero of the polynomial.

Parameter

index – an int which specifies the (0-based) index of the root to be returned

Returns

a Complex which represents the index-th root of the polynomial

getRoots
public Complex[] getRoots()

Description

Returns the zeros of the polynomial.

Returns

a Complex array containing the roots of the polynomial

getStatus
public boolean getStatus(int index)

Description

Returns the error status of a root.

Parameter

index – an int representing the (0-based) index of the root whose error status is to
be returned

Returns

a boolean representing the error status on the index-th root. It is false if the
approximation of the index-th root has been carried out successfully, for example, the
computed approximation can be viewed as the exact root of a slightly perturbed
polynomial. It is true if more iterations are needed for the index-th root.

setMaxIterations
public void setMaxIterations(int maxIterations)

106 • ZeroPolynomial class JMSL

Description

Sets the maximum number of iterations allowed. The default value is 30.

Parameter

maxIterations – an int which specifies the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to zero.

Example 1: Zeros of a Polynomial

The zeros of a polynomial with real coefficients are computed.

import com.imsl.math.*;

public class ZeroPolynomialEx1 {
public static void main(String args[]) throws
ZeroPolynomial.DidNotConvergeException {

double coef[] = {-2, 4, -3, 1};

ZeroPolynomial zp = new ZeroPolynomial();
Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {
System.out.println("root = " + root[k]);
System.out.println(" radius = "+ zp.getRadius(k));
System.out.println(" status = "+ zp.getStatus(k));

}
}

}

Output

root = 0.9999999999999999-0.9999999999999997i
radius = 1.9197212602501468E-14
status = false

root = 1.0000000000000004+1.0000000000000002i
radius = 1.9618522761623435E-14
status = false

root = 1.0000000000000002-3.3087224502121107E-24i
radius = 2.5512925105887074E-14
status = false

Example 2: Zeros of a Polynomial with Complex Coefficients

The zeros of a polynomial with Complex coefficients are computed.

Nonlinear Equations ZeroPolynomial class • 107

import com.imsl.math.*;

public class ZeroPolynomialEx2 {
public static void main(String args[]) throws
ZeroPolynomial.DidNotConvergeException {

// Find zeros of z^3-(3+6i)*z^2+(-8+12i)*z+10
Complex coef[] = {

new Complex(10),
new Complex(-8, 12),
new Complex(-3, -6),
new Complex(1)

};

ZeroPolynomial zp = new ZeroPolynomial();
Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {
System.out.println("root = " + root[k]);
System.out.println(" radius = "+ zp.getRadius(k));
System.out.println(" status = "+ zp.getStatus(k));

}
}

}

Output

root = 1.0+1.0i
radius = 6.105673569140261E-14
status = false

root = 1.0000000000000002+2.0000000000000004i
radius = 1.9846776908049295E-13
status = false

root = 0.9999999999999992+2.999999999999999i
radius = 1.5275632034267045E-13
status = false

ZeroPolynomial.DidNotConvergeException class

static public class com.imsl.math.ZeroPolynomial.DidNotConvergeException
extends com.imsl.IMSLException

The iteration did not converge

108 • ZeroPolynomial class JMSL

Constructors

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String message)

ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException(String key, Object[]
arguments)

ZeroFunction class

public class com.imsl.math.ZeroFunction implements Serializable, Cloneable

Muller’s method to find the zeros of a univariate function, f(x).

ZeroFunction computes n real zeros of a real function f. Given a user-supplied function f(x)
and an n-vector of initial guesses x1, x2, . . . , xn, the routine uses Muller’s method to locate n
real zeros of f, that is, n real values of x for which f(x) = 0. The routine has two convergence
criteria: the first requires that

|f (xm
i)|

be less than errorAbsolute, specified by the setAbsoluteError method; the second requires
that the relative change of any two successive approximations to an xi be less than
ErrorRelative, specified by the setAbsoluteError method.

Here,

xm
i

is the m-th approximation to xi. Let errorAbsolute be ε1, and errorRelative be ε2. The
criteria may be stated mathematically as follows:

Criterion 1:

|f (xm
i)| < ε1

Criterion 2:

∣∣∣∣xm+1
i − xm

i

xm
i

∣∣∣∣ < ε2

”Convergence” is the satisfaction of either criterion.

Nonlinear Equations ZeroFunction class • 109

Constructor

ZeroFunction
public ZeroFunction()

Description

Creates an instance of the solver.

Methods

allConverged
public boolean allConverged()

Description

Returns true if the iterations for all of the roots have converged.

computeZeros
public double[] computeZeros(ZeroFunction.Function objectF, double[] guess)

Description

Returns the zeros of a univariate function.

Parameters

objectF – contains the function for which the zeros will be found.

guess – a double array containing an initial guess of the zeros. A zero will be found
for each point in guess.

getIterations
public int getIterations(int nRoot)

Description

Returns the number of iterations used to compute a root.

Parameter

nRoot – an int specifying the index of the root

setAbsoluteError
public void setAbsoluteError(double errorAbsolute)

Description

Sets first stopping criterion. A zero x[i] is accepted if |f(x[i])| is less than this tolerance.
Its default value is about 1.0e-8.

110 • ZeroFunction class JMSL

Parameter

errorAbsolute – a double value specifying the first stopping criterion

IllegalArgumentException is thrown if errorAbsolute is less than 0

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Sets the maximum number of iterations allowed per root. Its default value is 100.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed per
root

IllegalArgumentException is thrown if maxIterations is less than zero.

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets second stopping criterion is the relative error. A zero x[i] is accepted if the relative
change of two successive approximations to x[i] is less than this tolerance. Its default
value is about 1.0e-8.

Parameter

errorRelative – a double value specifying the second stopping criterion

IllegalArgumentException is thrown if errorRelative is less than 0 or greater than 1

setSpread
public void setSpread(double spread)

Description

Sets the spread. See setSpreadTolerance.

Parameter

spread – is the new spread. Its default value is 1.0.

setSpreadTolerance
public void setSpreadTolerance(double spreadTolerance)

Nonlinear Equations ZeroFunction class • 111

Description

Sets the spread criteria for multiple zeros. If the zero x[i] has been computed and
|x[i]− x[j]| < spreadTolerance, where x[j] is a previously computed zero, then the
computation is restarted with a guess equal to x[i]+spread. The default value for
spreadTolerance is 1.0e-5.
Parameter

spreadTolerance – a double value specifying the spread tolerance

IllegalArgumentException is thrown if spreadTolerance is less than zero.

Example: Zeros of a Univariate Function

In this example 3 zeros of the sin function are found.

import com.imsl.math.*;

public class ZeroFunctionEx1 {
public static void main(String args[]) {

ZeroFunction.Function fcn = new ZeroFunction.Function() {
public double f(double x) {

return Math.sin(x);
}

};

ZeroFunction zf = new ZeroFunction();
double guess[] = {5, 18, -6};
double zeros[] = zf.computeZeros(fcn, guess);
for (int k = 0; k < zeros.length; k++) {

System.out.println(zeros[k]+" = "+(zeros[k]/Math.PI) + " pi");
}

}
}

Output

6.283185307179564 = 1.999999999999993 pi
18.84955592156295 = 6.0000000000077 pi
-6.283185307179641 = -2.0000000000000173 pi

ZeroFunction.Function interface

public interface com.imsl.math.ZeroFunction.Function

112 • ZeroFunction class JMSL

Public interface for the user supplied function to ZeroFunction.

Method

f
public double f(double x)

Description

Returns the value of the function at the given point.

Parameter

x – a double specifying the point at which the function is to be evaluated

Returns

a double specifying the value of the function at x

ZeroSystem class

public class com.imsl.math.ZeroSystem implements Serializable, Cloneable

Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.

ZeroSystem is based on the MINPACK subroutine HYBRD1, which uses a modification of M.J.D.
Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which uses a
finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes
or increasing residuals. For further description, see More et al. (1980).

A finite-difference method is used to estimate the Jacobian. Whenever the exact Jacobian can
be easily provided, objectF should implement ZeroSystem.Jacobian.

Constructor

ZeroSystem
public ZeroSystem(int n)

Description

Creates an object to find the zeros of a system of n equations.

Parameter

n – is the number of equations that the solver handles

Nonlinear Equations ZeroSystem class • 113

Methods

setGuess
public void setGuess(double[] xguess)

Description

Sets the initial guess for the array x. The default is to set x to all zeros.

Parameter

xguess – a double array containing the initial guess

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Sets the maximum number of iterations allowed. The default value is 200.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to zero.

setRelativeError
public void setRelativeError(double errorRelative)

Description

Sets the relative error tolerance. The root is accepted if the relative error between two
successive approximations to this root is within errorRelative. The default is the square
root of the precision, about 1.0e-08.

Parameter

errorRelative – a double specifying the relative error tolerance

IllegalArgumentException is thrown if errorRelative is less than 0 or greater than 1.

solve
public double[] solve(ZeroSystem.Function objectF) throws
ZeroSystem.TooManyIterationsException,
ZeroSystem.ToleranceTooSmallException, ZeroSystem.DidNotConvergeException

Description

Solve a system of nonlinear equations using the Levenberg-Marquardt algorithm

Parameter

objectF – defines the function whose zero is to be found. If objectF implements a
Jacobian then its Jacobian is used. Otherwise a finite difference is computed.

114 • ZeroSystem class JMSL

Returns

a double array containing the solution

TooManyIterationsException is thrown if the maximum number of iterations is
exceeded

ToleranceTooSmallException is thrown if the error tolerance is too small

DidNotConvergeException is thrown if the algorithm does not converge

Example: Solve a System of Nonlinear Equations

A system of nonlinear equations is solved.

import com.imsl.math.*;

public class ZeroSystemEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

ZeroSystem.Function fcn = new ZeroSystem.Function() {
public void f(double x[], double f[]) {

f[0] = x[0] + Math.exp(x[0]-1.0) +
(x[1]+x[2])*(x[1]+x[2]) - 27.0;
f[1] = Math.exp(x[1]-2.0)/x[0] + x[2]*x[2] - 10.0;
f[2] = x[2] + Math.sin(x[1]-2.0) + x[1]*x[1] - 7.0;

}
};

ZeroSystem zf = new ZeroSystem(3);
double guess[] = {4, 4, 4};
zf.setGuess(guess);
new PrintMatrix("zeros").print(zf.solve(fcn));

}
}

Output

zeros
0

0 1
1 2
2 3

Nonlinear Equations ZeroSystem class • 115

ZeroSystem.DidNotConvergeException class

static public class com.imsl.math.ZeroSystem.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge.

Constructors

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String message)

ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException(String key, Object[] arguments)

ZeroSystem.Function interface

public interface com.imsl.math.ZeroSystem.Function

Public interface for user supplied function to ZeroSystem object.

Method

f
public void f(double[] x, double[] f)

Description

Returns the value of the function at the given point.

Parameters

x – a double array which contains the point at which the function is to be evaluated.
The contents of this array must not be altered by this function.

f – a double array which contains the value of the function at x.

116 • ZeroSystem class JMSL

ZeroSystem.Jacobian interface

public interface com.imsl.math.ZeroSystem.Jacobian implements
com.imsl.math.ZeroSystem.Function

Public interface for user supplied function to ZeroSystem object.

Method

jacobian
public void jacobian(double[] x, double[][] jac)

Description

Returns the value of the Jacobian at the given point.
Parameters

x – a double array which contains the point at which the Jacobian is to be
evaluated. The contents of this array must not be altered by this function.
jac – a double matrix which contains the value of the Jacobian at x. The value of
jac[i][j] is the derivative of f[i] with respect to x[j].

ZeroSystem.ToleranceTooSmallException class

static public class com.imsl.math.ZeroSystem.ToleranceTooSmallException extends
com.imsl.IMSLException

Tolerance too small

Constructor

ZeroSystem.ToleranceTooSmallException
public ZeroSystem.ToleranceTooSmallException(String key, Object[] arguments)

ZeroSystem.TooManyIterationsException class

static public class com.imsl.math.ZeroSystem.TooManyIterationsException extends
com.imsl.IMSLException

Nonlinear Equations ZeroSystem class • 117

Too many iterations.

Constructors

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException()

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException(Object[] arguments)

ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException(String key, Object[] arguments)

118 • ZeroSystem class JMSL

Chapter 8: Optimization

Types

class MinUncon. .121
class MinUnconMultiVar. .127
class NonlinLeastSquares . 137
class DenseLP . 148
class LinearProgramming . 156
class QuadraticProgramming . 164
class MinConGenLin. .169
class BoundedLeastSquares . 179
class MinConNLP . 189

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

where f : Rn → R is continuous and has derivatives of all orders required by the algorithms.
The functions for unconstrained minimization are grouped into three categories: univariate
functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified
interval. For discussion on unimodality, see Brent (1973).

The class MinUnconMultiVar finds the minimum of a multivariate function using a
quasi-Newton method. The default is to use a finite-difference approximation of the gradient of
f(x). Here, the gradient is defined to be the vector

119

∇f (x) =
[
∂f (x)
∂x1

,
∂f (x)
∂x2

, ... ,
∂f (x)
∂xn

]
However, when the exact gradient can be easily provided, the gradient should be provided by
implementing the interface MinUnconMultiVar.Gradient.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The
most common application of the function is the nonlinear data-fitting problem where the user is
trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have
many local minima. Try different initial points and intervals to obtain a better local solution.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to A1x = b1

where f : Rn → R, A1 and A2 are coefficient matrices, and b1 and b2 are vectors. If f(x) is
linear, then the problem is a linear programming problem. If f(x) is quadratic, the problem is a
quadratic programming problem.

The class LinearProgramming uses a revised simplex method to solve small- to medium-sized
linear programming problems. No sparsity is assumed since the coefficients are stored in full
matrix form.

The class QuadraticProgramming is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite,
then QuadraticProgramming modifies it to be positive definite. In this case, output should be
interpreted with care because the problem has been changed slightly. Here, the Hessian of f(x)
is defined to be the n x n matrix

∇2f (x) =
[

∂2

∂xi∂xj
f (x)

]

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to gi (x) = 0 for i = 1, 2, . . . , m1

gi (x) ≥ 0 for i = m1 + 1, . . . , m

120 • JMSL

where f : Rn → R and gi : Rn → R, for i = 1, 2, . . . ,m.

The class MinConNLP uses a sequential equality constrained quadratic programming algorithm
to solve this problem. A more complete discussion of this algorithm can be found in the
documentation.

MinUncon class

public class com.imsl.math.MinUncon implements Serializable, Cloneable

Unconstrained minimization.

MinUncon uses two separate algorithms to compute the minimum depending on what the user
supplies as the function f.

If f defines the function whose minimum is to be found MinUncon uses a safeguarded quadratic
interpolation method to find a minimum point of a univariate function. Both the code and the
underlying algorithm are based on the routine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

MinUncon finds the least value of a univariate function, f, where f implements
MinUnconFunction f. Optional data include an initial estimate of the solution, and a positive
number bound, specified by the setBound method. Let x0 = xguess where xguess is specified
by the setGuess method and b = bound, then x is restricted to the interval [x0 − b, x0 + b].
Usually, the algorithm begins the search by moving from x0 to x = x0 + s, where s = step.
step is set by the setStep method. If setStep is not called then step is set to 0.1. step may
be positive or negative. The first two function evaluations indicate the direction to the
minimum point, and the search strides out along this direction until a bracket on a minimum
point is found or until x reaches one of the bounds x0 ± b. During this stage, the step length
increases by a factor of between two and nine per function evaluation; the factor depends on
the position of the minimum point that is predicted by quadratic interpolation of the three
most recent function values.

When an interval containing a solution has been found, we will have three points, x1, x2, and
x3, with x1 < x2 < x3 and f(x2) ≤ f(x1) and f(x2) ≤ f(x3). There are three main ingredients
in the technique for choosing the new x from these three points. They are (i) the estimate of
the minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter ε, that depends on the closeness of f to a quadratic, and (iii) whether x2 is
near the center of the range between x1 and x3 or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least ε from x2, and subject to being in the longer interval between x1 and x2 or x2

and x3 when x2 is particularly close to x1 or x3. There is some elaboration, however, when the
distance between these points is close to the required accuracy; when the distance is close to
the machine precision; or when ε is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

Optimization MinUncon class • 121

f (x) = x+ 1.001 |x|

The algorithm can make ε large automatically in the pathological cases. In this case, it is usual
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to f are
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the
routine claims to have achieved the required accuracy if it knows that there is a local minimum
point within distance δ of x, where δ = xacc, specified by the setAccuracy method even though
the rounding errors in f may cause the existence of other local minimum points nearby. This
difficulty is inevitable in minimization routines that use only function values, so high precision
arithmetic is recommended.

If f implements MinUnconDerivative then MinUncon uses a descent method with either the
secant method or cubic interpolation to find a minimum point of a univariate function. It starts
with an initial guess and two endpoints. If any of the three points is a local minimum point and
has least function value, the routine terminates with a solution. Otherwise, the point with least
function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value gc = g(xc),
and a new point xn defined by xn = xc − gc are computed. The function fn = f(xn), and the
derivative gn = g(xn) are then evaluated. If either fn ≥ fc or gn has the opposite sign of gc,
then there exists a minimum point between xc and xn; and an initial interval is obtained.
Otherwise, since xc is kept as the point that has lowest function value, an interchange between
xn and xc is performed. The secant method is then used to get a new point

xs = xc − gc(
gn − gc

xn − xc
)

Let xn ← xs and repeat this process until an interval containing a minimum is found or one of
the convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

|xc − xn| ≤ εc

Criterion 2:

|gc| ≤ εg

where εc = max {1.0, |xc|} ε, ε is a relative error tolerance and εc is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
Function and derivative are then evaluated at that point; and accordingly, a smaller interval
that contains a minimum point is chosen. A safeguarded method is used to ensure that the
interval reduces by at least a fraction of the previous interval. Another cubic interpolation is
then performed, and this procedure is repeated until one of the stopping criteria is met.

122 • MinUncon class JMSL

Constructor

MinUncon
public MinUncon()

Description

Unconstrained minimum constructor for a smooth function of a single variable of type
double.

Methods

computeMin
public double computeMin(MinUncon.Function F)

Description

Return the minimum of a smooth function of a single variable of type double using
function values only or using function values and derivatives.

Parameter

F – defines the function whose minimum is to be found. If F implements Derivative
then derivatives are used. Otherwise, an attempt to find the minimum is made using
function values only.

Returns

a double scalar value containing the minimum of the input function

setAccuracy
public void setAccuracy(double xacc)

Description

Set the required absolute accuracy in the final value returned by member function
computeMin. If this member function is not called, the required accuracy is set to 1.0e-8.

Parameter

xacc – a doublescalar value specifying the required absolute accuracy in the final
value returned by member function computeMin.

setBound
public void setBound(double bound)

Description

Set the amount by which X may be changed from its initial value, xguess. If this member
function is not called, bound is set to 100.

Optimization MinUncon class • 123

Parameter

bound – a double scalar value specifying the amount by which X may be changed
from its initial value. In other words, X is restricted to the interval [xguess-bound,
xguess+bound].

setDerivtol
public void setDerivtol(double gtol)

Description

Set the derivative tolerance used by member function computeMin to decide if the current
point is a local minimum. This is the second stopping criterion. x is returned as a solution
when G(x) is less than or equal to gtol. gtol should be nonnegative, otherwise zero will
be used. If this member function is not called, the derivative tolerance is set to 1.0e-8.

Parameter

gtol – a doublescalar value specifying the derivative tolerance used by member
function computeMin.

setGuess
public void setGuess(double xguess)

Description

Set the initial guess of the minimum point of the input function. If this member function
is not called, an initial guess of 0.0 is used.

Parameter

xguess – a double scalar value specifying the initial guess of the minimum point of
the input function

setStep
public void setStep(double step)

Description

Set the stepsize to use when changing x. If this member function is not called, step is set
to 0.1.

Parameter

step – a double scalar value specifying the order of magnitude estimate of the
required change in x when stepping towards the minimum

Example 1: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations only.

124 • MinUncon class JMSL

import com.imsl.math.*;

public class MinUnconEx1 {
public static void main(String args[]) {

MinUncon zf = new MinUncon();
zf.setGuess(0.0);
zf.setAccuracy(0.001);
MinUncon.Function fcn = new MinUncon.Function() {

public double f(double x) {
return Math.exp(x) - 5.*x;

}
};
System.out.println("Minimum is " + zf.computeMin(fcn));

}
}

Output

Minimum is 1.6094175999200253

Example 2: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations and first derivative evaluations.

import com.imsl.math.*;

public class MinUnconEx2 implements MinUncon.Derivative {
public double f(double x) {

return Math.exp(x) - 5.*x;
}

public double g(double x) {
return Math.exp(x) - 5.;

}

public static void main(String args[]) {
int n = 1;
double xinit = 0.;
double x[] = {0.};
MinUncon zf = new MinUncon();
zf.setGuess(xinit);
zf.setAccuracy(.001);
MinUnconEx2 fcn = new MinUnconEx2();
x[0] = zf.computeMin(fcn);
for (int k = 0; k < n; k++) {

System.out.println("x["+k+"] = "+x[k]);
}

}
}

Optimization MinUncon class • 125

Output

x[0] = 1.6100113162270329

MinUncon.Function interface

public interface com.imsl.math.MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Method

f
public double f(double x)

Description

Public interface for the smooth function of a single variable to be minimized.

Parameter

x – a double, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

MinUncon.Derivative interface

public interface com.imsl.math.MinUncon.Derivative implements
com.imsl.math.MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Method

g

126 • MinUncon class JMSL

public double g(double x)

Description

Public interface for the smooth function of a single variable to be minimized.

Parameter

x – a double, the point at which the derivative of the function is to be evaluated

Returns

a double, the value of the derivative of the function at x

MinUnconMultiVar class

public class com.imsl.math.MinUnconMultiVar implements Serializable, Cloneable

Unconstrained multivariate minimization.

Class MinUnconMultivar uses a quasi-Newton method to find the minimum of a function f(x)
of n variables. The problem is stated as follows:

min
x ∈ Rn

f (x)

Given a starting point xc, the search direction is computed according to the formula

d = −B−1gc

where B is a positive definite approximation of the Hessian, and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + λd, λ > 0

such that

f (xn) ≤ f (xc) + αgT d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| ≤ ε where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

B ← B − BssTB

sTBs
+
yyT

yT s

where s = xn − xc and y = gn − gc. Another search direction is then computed to begin the
next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Optimization MinUnconMultiVar class • 127

In this implementation, the first stopping criterion for MinUnconMultivar occurs when the
norm of the gradient is less than the given gradient tolerance gradientTolerance. The second
stopping criterion for MinUnconMultivar occurs when the scaled distance between the last two
steps is less than the step tolerance stepTolerance.

Since by default, a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point. Supply gradient for a more accurate gradient evaluation
(setGradient).

Constructor

MinUnconMultiVar
public MinUnconMultiVar(int n)

Description

Unconstrained minimum constructor for a function of n variables of type double.

Parameter

n – An int scalar value which defines the number of variables of the function whose
minimum is to be found.

Methods

computeMin
public double[] computeMin(MinUnconMultiVar.Function F) throws
MinUnconMultiVar.FalseConvergenceException,
MinUnconMultiVar.MaxIterationsException,
MinUnconMultiVar.UnboundedBelowException

Description

Return the minimum point of a function of n variables of type double using a
finite-difference gradient or using a user-supplied gradient.

Parameter

F – defines the function whose minimum is to be found. F can be used to supply a
gradient of the function. If F implements Gradient then the user-supplied gradient
is used. Otherwise, an attempt to find the minimum is made using a finite-difference
gradient.

Returns

a double array containing the point at which the minimum of the input function occurs.

128 • MinUnconMultiVar class JMSL

getErrorStatus
public int getErrorStatus()

Description

Returns the non-fatal error status.

Returns

an int specifying the non-fatal error status:

Status Meaning
1 The last global step failed to locate a lower point than

the current x value. The current x may be an approxi-
mate local minimizer and no more accuracy is possible
or the step tolerance may be too large.

2 Relative function convergence; both the actual and
predicted relative reductions in the function are less
than or equal to the relative function convergence tol-
erance.

3 Scaled step tolerance satisfied; the current point may
be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or the step tolerance is too big.

getIterations
public int getIterations()

Description

Returns the number of iterations used to compute a minimum.

Returns

an int specifying the number of iterations used to compute the minimum.

setDigits
public void setDigits(double fdigit)

Description

Set the number of good digits in the function. If this member function is not called, fdigit
is set to 15.0.

Parameter

fdigit – a double scalar value specifying the number of good digits in the user
supplied function

IllegalArgumentException is thrown if fdigit is less than or equal to 0

Optimization MinUnconMultiVar class • 129

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

Description

Set the false convergence tolerance. If this member function is not called,
2.22044604925031308e-14 is used as the false convergence tolerance.

Parameter

falseConvergenceTolerance – a double scalar value specifying the false
convergence tolerance

IllegalArgumentException is thrown if falseConvergenceTolerance is less than or equal
to 0

setFscale
public void setFscale(double fscale)

Description

Set the function scaling value for scaling the gradient. If this member function is not
called, the value of this scalar is set to 1.0.

Parameter

fscale – a double scalar specifying the function scaling value for scaling the
gradient

IllegalArgumentException is thrown if fscale is less than or equal to 0.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description

Sets the gradient tolerance. This first stopping criterion for this optimizer is that the
norm of the gradient be less than the gradient tolerance. If this member function is not
called, the cube root of machine precision squared is used to compute the gradient.

Parameter

gradientTolerance – a double specifying the gradient tolerance used to compute
the gradient

IllegalArgumentException is thrown if gradientTolerance is less than or equal to 0

setGuess
public void setGuess(double[] xguess)

130 • MinUnconMultiVar class JMSL

Description

Set the initial guess of the minimum point of the input function. If this member function
is not called, the elements of this array are set to 0.0..

Parameter

xguess – a double array specifying the initial guess of the minimum point of the
input function

setIhess
public void setIhess(int ihess)

Description

Set the Hessian initialization parameter. If this member function is not called, ihess is set
to 0.0 and the Hessian is initialized to the identity matrix. If this member function is
called and ihess is set to anything other than 0.0, the Hessian is initialized to the diagonal
matrix containing max(abs(f(xguess)),fscale)*xscale*xscale

Parameter

ihess – an int scalar value specifying the Hessian initialization parameter. If ihess
= 0.0 the Hessian is initialized to the identity matrix. Otherwise, the Hessian is
initialized to the diagonal matrix containing max(abs(f(xguess)),fscale)*xscale*xscale
where xguess is the initial guess of the computed solution and xscale is the scaling
vector for the variables.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description

Set the maximum allowable stepsize to use. If this member function is not called,
maximum stepsize is set to a default value based on a scaled xguess.

Parameter

maximumStepsize – a nonnegative double value specifying the maximum allowable
stepsize

IllegalArgumentException is thrown if maximumStepsize is less than or equal to 0

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed. If this member function is not called, the
maximum number of iterations is set to 100.

Optimization MinUnconMultiVar class • 131

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description

Set the relative function tolerance. If this member function is not called, 3.66685e-11 is
used as the relative function tolerance.

Parameter

relativeTolerance – a double scalar value specifying the relative function
tolerance

IllegalArgumentException is thrown if relativeTolerance is less than or equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description

Set the scaled step tolerance to use when changing x. If this member function is not
called, the scaled step tolerance is set to 3.66685e-11.

The second stopping criterion for this optimizer is that the scaled distance between the
last two steps be less than the step tolerance.

Parameter

stepTolerance – a double scalar value specifying the scaled step tolerance. The
i-th component of the scaled step between two points x and y is computed as
abs(x(i)-y(i))/max(abs(x(i)),1/xscale(i)) where xscale is the scaling vector for the
variables.

IllegalArgumentException is thrown if stepTolerance is less than or equal to 0

setXscale
public void setXscale(double[] xscale)

Description

Set the diagonal scaling matrix for the variables. If this member function is not called,
the elements of this array are set to 1.0..

Parameter

xscale – a double array specifying the diagonal scaling matrix for the variables

IllegalArgumentException is thrown if any of the elements of xscale is less than or
equal to 0

132 • MinUnconMultiVar class JMSL

Example 1: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations only.

import com.imsl.math.*;

public class MinUnconMultiVarEx1 {
public static void main(String args[]) throws Exception {

MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MinUnconMultiVar.Function() {

public double f(double[] x) {
return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
(1. - x[0]) * (1. - x[0]);

}
});
System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");

}
}

Output

Minimum point is (0.9999999672651304, 0.9999999330452095)

Example 2: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations and a user
supplied gradient.

import com.imsl.math.*;

public class MinUnconMultiVarEx2 {

static class MyFunction implements MinUnconMultiVar.Gradient {
public double f(double[] x) {

return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
(1. - x[0]) * (1. - x[0]);

}
public void gradient(double[] x, double[] gp) {

gp[0] = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);
gp[1] = 200. * (x[1] - x[0]*x[0]);

}
}

public static void main(String args[]) throws Exception {
MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MyFunction());

Optimization MinUnconMultiVar class • 133

System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");
}

}

Output

Minimum point is (0.9999999668823014, 0.9999999322542452)

MinUnconMultiVar.Function interface

public interface com.imsl.math.MinUnconMultiVar.Function

Public interface for the user supplied function to the MinUnconMultiVar object.

Method

f
public double f(double[] x)

Description

Public interface for the multivariate function to be minimized.

Parameter

x – a double array, the point at which the function is to be evaluated

Returns

a double, the value of the function at x

MinUnconMultiVar.Gradient interface

public interface com.imsl.math.MinUnconMultiVar.Gradient implements
com.imsl.math.MinUnconMultiVar.Function

Public interface for the user supplied gradient to the MinUnconMultiVar object.

134 • MinUnconMultiVar class JMSL

Method

gradient
public void gradient(double[] x, double[] gradient)

Description

Public interface for the gradient of the multivariate function to be minimized.

Parameters

x – a double array, the point at which the gradient of the function is to be evaluated

gradient – a double array, the value of the gradient of the function at x

MinUnconMultiVar.ApproximateMinimumException class

static public class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
extends com.imsl.IMSLException

Scaled step tolerance satisfied; the current point may be an approximate local solution, or the
algorithm is making very slow progress and is not near a solution, or the scaled step tolerance is
too big.

Constructors

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String message)

MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(String key, Object[]
arguments)

MinUnconMultiVar.FalseConvergenceException class

static public class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
extends com.imsl.IMSLException

False convergence error; the iterates appear to be converging to a noncritical point. Possibly
incorrect gradient information is used, or the function is discontinuous, or the other stopping
tolerances are too tight.

Optimization MinUnconMultiVar class • 135

Constructors

MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(String message)

MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(String key, Object[]
arguments)

MinUnconMultiVar.MaxIterationsException class

static public class com.imsl.math.MinUnconMultiVar.MaxIterationsException
extends com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String message)

MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException(String key, Object[]
arguments)

MinUnconMultiVar.UnboundedBelowException class

static public class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
extends com.imsl.IMSLException

Five consecutive steps of the maximum allowable stepsize have been taken, either the function
is unbounded below, or has a finite asymptote in some direction or the maximum allowable step
size is too small.

136 • MinUnconMultiVar class JMSL

Constructors

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String message)

MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(String key, Object[]
arguments)

NonlinLeastSquares class

public class com.imsl.math.NonlinLeastSquares implements Serializable,
Cloneable

Nonlinear least squares.

NonlinLeastSquares is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

min
x∈Rn

1
2
F (x)T

F (x) =
1
2

m∑
i=1

fi (x)2

where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

min
xn∈Rn

‖F (xc) + J (xc) (xn − xc)‖2

subject to

‖xn − xc‖2 ≤ δc

to get a new point xn, which is computed as

xn = xc −
(
J (xc)

T
J (xc) + µcI

)−1

J (xc)
T
F (xc)

where µc = 0 if δc ≥
∥∥∥∥(J (xc)

T
J (xc)

)−1

J (xc)
T
F (xc)

∥∥∥∥
2

and µc > 0 otherwise. F (xc) and

J(xc) are the function values and the Jacobian evaluated at the current point xc. This

Optimization NonlinLeastSquares class • 137

procedure is repeated until the stopping criteria are satisfied. For more details, see Levenberg
(1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

A finite-difference method is used to estimate the Jacobian when the user supplied function, f,
defines the least-squares problem. Whenever the exact Jacobian can be easily provided, f
should implement NonlinLeastSquares.Jacobian.

Constructor

NonlinLeastSquares
public NonlinLeastSquares(int m, int n)

Description

Creates an object to solve a nonlinear least squares problem.

Parameters

m – is the number of functions

n – is the number of variables. n must be less than or equal to m.

Methods

getErrorStatus
public int getErrorStatus()

Description

Get information about the performance of NonlinLeastSquares.

Returns

an int specifying information about convergence.

138 • NonlinLeastSquares class JMSL

value meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point may

be an approximate local solution, or the algorithm is making
very slow progress and is not near a solution, or StepTolerance
is too big.

2 Scaled actual and predicted reductions in the function are less
than or equal to the relative function convergence tolerance
RelativeTolerance.

3 Iterates appear to be converging to a noncritical point. Incor-
rect gradient information, a discontinuous function, or stop-
ping tolerances being too tight may be the cause.

4 Five consecutive steps with the maximum stepsize have been
taken. Either the function is unbounded below, or has a finite
asymptote in some direction, or the maximum stepsize is too
small.

setAbsoluteTolerance
public void setAbsoluteTolerance(double absoluteTolerance)

Description

Set the absolute function tolerance. If this member function is not called, 1.0e-32 is used
as the absolute function tolerance.
Parameter

absoluteTolerance – a double scalar value specifying the absolute function
tolerance

IllegalArgumentException is thrown if absoluteTolerance is less than or equal to 0

setDigits
public void setDigits(int ngood)

Description

Set the number of good digits in the function. If this member function is not called, the
number of good digits is set to 7.
Parameter

ngood – an int specifying the number of good digits in the user supplied function
which defines the least-squares problem

IllegalArgumentException is thrown if ngood is less than or equal to 0

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

Optimization NonlinLeastSquares class • 139

Description

Set the false convergence tolerance. If this member function is not called, 100.0e-16 is
used as the false convergence tolerance.

Parameter

falseConvergenceTolerance – a double scalar value specifying the false
convergence tolerance

IllegalArgumentException is thrown if falseConvergenceTolerance is less than or equal
to 0

setFscale
public void setFscale(double[] fscale)

Description

Set the diagonal scaling matrix for the functions. If this member function is not called,
the identity is used.

Parameter

fscale – a double array specifying the diagonal scaling matrix for the functions

IllegalArgumentException is thrown if any of the elements of fscale is less than or
equal to 0

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description

Set the gradient tolerance used to compute the gradient. If this member function is not
called, the cube root of machine precision squared is used to compute the gradient.

Parameter

gradientTolerance – a double specifying the gradient tolerance used to compute
the gradient

IllegalArgumentException is thrown if gradientTolerance is less than or equal to 0

setGuess
public void setGuess(double[] xguess)

Description

Set the initial guess of the minimum point of the input function. If this member function
is not called, an initial guess of 0.0 is used.

140 • NonlinLeastSquares class JMSL

Parameter

xguess – a double array specifying the initial guess of the minimum point of the
input function

setInitialTrustRegion
public void setInitialTrustRegion(double initialTrustRegion)

Description

Set the initial trust region radius. If this member function is not called, a default is set
based on the initial scaled Cauchy step.

Parameter

initialTrustRegion – a double scalar value specifying the initial trust region
radius

IllegalArgumentException is thrown if initialTrustRegion is less than or equal to 0

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description

Set the maximum allowable stepsize to use. If this member function is not called,
maximum stepsize is set to a default value based on a scaled xguess.

Parameter

maximumStepsize – a nonnegative double value specifying the maximum allowable
stepsize

IllegalArgumentException is thrown if maximumStepsize is less than or equal to 0

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed. If this member function is not called, the
maximum number of iterations is set to 100.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Optimization NonlinLeastSquares class • 141

Description

Set the relative function tolerance. If this member function is not called, 1.0e-20 is used
as the relative function tolerance.

Parameter

relativeTolerance – a double scalar value specifying the relative function
tolerance

IllegalArgumentException is thrown if relativeTolerance is less than or equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description

Set the step tolerance used to step between two points. If this member function is not
called, the cube root of machine precision is used as the step tolerance.

Parameter

stepTolerance – a double scalar value specifying the step tolerance used to step
between two points

IllegalArgumentException is thrown if stepTolerance is less than or equal to 0

setXscale
public void setXscale(double[] xscale)

Description

Set the diagonal scaling matrix for the variables. If this member function is not called,
the identity is used.

Parameter

xscale – a double array specifying the diagonal scaling matrix for the variables

IllegalArgumentException is thrown if any of the elements of xscale is less than or
equal to 0

solve
public double[] solve(NonlinLeastSquares.Function F) throws
NonlinLeastSquares.TooManyIterationsException

Description

Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm
and a Jacobian.

Parameter

F – User supplied function that defines the least-squares problem. If F implements
Jacobian then its Jacobian is used. Otherwise, a finite difference Jacobian is used.

142 • NonlinLeastSquares class JMSL

Returns

a double array of length n containing the approximate solution

TooManyIterationsException is thrown if the number of iterations exceeds
MaxIterations. MaxIterations is set to 100 by default.

Example 1: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a finite-difference Jacobian.

import com.imsl.math.*;

public class NonlinLeastSquaresEx1 {
public static void main(String args[]) throws
NonlinLeastSquares.TooManyIterationsException {

NonlinLeastSquares.Function zsf = new NonlinLeastSquares.Function() {
public void f(double x[], double f[]) {

f[0] = 10. * (x[1] - x[0]*x[0]);
f[1] = 1. - x[0];

}
};

int m = 2;
int n = 2;
double xguess[] = {-1.2, 1.};
double xscale[] = {1., 1.};
double fscale[] = {1., 1.};
double x[] = new double[2];
NonlinLeastSquares zs = new NonlinLeastSquares(m,n);
zs.setGuess(xguess);
zs.setXscale(xscale);
zs.setFscale(fscale);
x = zs.solve(zsf);

for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);

}
}

}

Output

x[0] = 1.0
x[1] = 1.0

Optimization NonlinLeastSquares class • 143

Example 2: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a user-supplied Jacobian.

import com.imsl.math.*;

public class NonlinLeastSquaresEx2 {
public static void main(String args[]) throws
NonlinLeastSquares.TooManyIterationsException {

NonlinLeastSquares.Jacobian zsj = new NonlinLeastSquares.Jacobian() {
public void f(double x[], double f[]) {

f[0] = 10. * (x[1] - x[0]*x[0]);
f[1] = 1. - x[0];

}
public void jacobian(double x[], double fjac[][]) {

fjac[0][0] = -20.*x[0];
fjac[1][0] = 10.;
fjac[0][1] = -1.;
fjac[1][1] = 0.;

}
};

int m = 2;
int n = 2;
double xguess[] = {-1.2, 1.};
double xscale[] = {1., 1.};
double fscale[] = {1., 1.};
double x[] = new double[2];
NonlinLeastSquares zs = new NonlinLeastSquares(m,n);
zs.setGuess(xguess);
zs.setXscale(xscale);
zs.setFscale(fscale);
x = zs.solve(zsj);

for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);

}
}

}

Output

x[0] = 1.0
x[1] = 1.0

144 • NonlinLeastSquares class JMSL

NonlinLeastSquares.FalseConvergenceException class

static public class com.imsl.math.NonlinLeastSquares.FalseConvergenceException
extends com.imsl.IMSLException

The iterates appear to be converging to a non-critical point.

Constructors

NonlinLeastSquares.FalseConvergenceException
public NonlinLeastSquares.FalseConvergenceException(String message)

NonlinLeastSquares.FalseConvergenceException
public NonlinLeastSquares.FalseConvergenceException(String key, Object[]
arguments)

NonlinLeastSquares.RelativeFunctionConvergenceException
class

static public class
com.imsl.math.NonlinLeastSquares.RelativeFunctionConvergenceException extends
com.imsl.IMSLException

The scaled and predicted reductions in the function are less than or equal to the relative
function convergence tolerance.

Constructors

NonlinLeastSquares.RelativeFunctionConvergenceException
public NonlinLeastSquares.RelativeFunctionConvergenceException(String
message)

NonlinLeastSquares.RelativeFunctionConvergenceException
public NonlinLeastSquares.RelativeFunctionConvergenceException(String key,
Object[] arguments)

Optimization NonlinLeastSquares class • 145

NonlinLeastSquares.StepToleranceException class

static public class com.imsl.math.NonlinLeastSquares.StepToleranceException
extends com.imsl.IMSLException

Various possible errors involving the step tolerance.

Constructors

NonlinLeastSquares.StepToleranceException
public NonlinLeastSquares.StepToleranceException(String message)

NonlinLeastSquares.StepToleranceException
public NonlinLeastSquares.StepToleranceException(String key, Object[]
arguments)

NonlinLeastSquares.StepMaxException class

static public class com.imsl.math.NonlinLeastSquares.StepMaxException extends
com.imsl.IMSLException

Either the function is unbounded below, has a finite asymptote in some direction, or the
maximum stepsize is too small.

Constructors

NonlinLeastSquares.StepMaxException
public NonlinLeastSquares.StepMaxException(String message)

NonlinLeastSquares.StepMaxException
public NonlinLeastSquares.StepMaxException(String key, Object[] arguments)

146 • NonlinLeastSquares class JMSL

NonlinLeastSquares.TooManyIterationsException class

static public class com.imsl.math.NonlinLeastSquares.TooManyIterationsException
extends com.imsl.IMSLException

Too many iterations.

Constructors

NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException()

NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException(Object[] arguments)

NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException(String key, Object[]
arguments)

NonlinLeastSquares.Function interface

public interface com.imsl.math.NonlinLeastSquares.Function

Public interface for the user supplied function to the NonlinLeastSquares object.

Method

f
public void f(double[] x, double[] f)

Description

Public interface for the nonlinear least-squares function.

Parameters

x – a double array containing the point at which the function is to be evaluated.
The contents of this array must not be altered by this function.

f – a double array containing the returned value of the function at x.

Optimization NonlinLeastSquares class • 147

NonlinLeastSquares.Jacobian interface

public interface com.imsl.math.NonlinLeastSquares.Jacobian implements
com.imsl.math.NonlinLeastSquares.Function

Public interface for the user supplied function to the NonlinLeastSquares object.

Method

jacobian
public void jacobian(double[] x, double[][] jacobian)

Description

Public interface for the nonlinear least squares function.

Parameters

x – is a double array containing the point at which the Jacobian of the function is to
be evaluated

jacobian – is a double matrix containing the returned value of the Jacobian of the
function at x

DenseLP class

public class com.imsl.math.DenseLP implements Serializable, Cloneable

Solves a linear programming problem using an active set strategy.

Class DenseLP uses an active set strategy to solve linear programming problems, i.e., problems
of the form

min
x ∈ Rn

cTx

subject to

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

148 • DenseLP class JMSL

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively. Refer
to the following paper for further information:

Krogh, Fred, T. (2005), see An Algorithm for Linear Programming
http://mathalacarte.com/fkrogh/pub/lp.pdf

Constructors

DenseLP
public DenseLP(MPSReader mps)

Description

Constructor using an MPSReader object.

Parameter

mps – An MPSReader object specifying the Linear Programming problem.

IllegalArgumentException is thrown if the problem dimensions are not consistent.

DenseLP
public DenseLP(double[][] a, double[] b, double[] c)

Description

Constructor variables of type double.

Parameters

a – A double matrix with coefficients of the constraints.
b – A double array containing the right-hand side of the constraints.
c – A double array containing the coefficients of the objective function.

IllegalArgumentException is thrown if the dimensions of a, b.length, and c.length
are not consistent.

Methods

clone
public Object clone()

Description

Creates and returns a copy of this object.

getDualSolution
public double[] getDualSolution()

Optimization DenseLP class • 149

Description

Returns the dual solution.

Returns

a double array containing the dual solution of the linear programming problem.

getIterationCount
public int getIterationCount()

Description

Returns the iteration count.

Returns

an int scalar containing the iteration count.

getOptimalValue
public double getOptimalValue()

Description

Returns the optimal value of the objective function.

Returns

a double scalar containing the optimal value of the objective function.

getPrimalSolution
public double[] getPrimalSolution()

Description

Returns the solution x of the linear programming problem.

Returns

a double array containing the solution x of the linear programming problem.

setConstraintType
public void setConstraintType(int[] constraintType)

Description

Sets the types of general constraints in the matrix a.

Parameter

constraintType – an int array containing the types of general constraints. Let
ri = ai1x1 + ...+ainxn. Then the value of constraintType[i] signifies the following:

constraintType Constraint
0 ri = bi

1 ri ≤ bui

2 ri ≥ bi

3 bi ≤ ri ≤ bui

150 • DenseLP class JMSL

Default=0.

setLowerBound
public void setLowerBound(double[] lowerBound)

Description

Sets the lower bound, xl, on the variables. If there is no lower bound on a variable, then
1.0e30 should be set as the lower bound.

Parameter

lowerBound – a double array containing the lower bound on the variables. Default
= 0.

setRefinementType
public void setRefinementType(int iRefinement)

Description

Set the type of refinement used.

Parameter

iRefinement – An int scalar value which defines the type of refinement to be used.
The possible settings are:

iRefinement Action
0 No refinement. Always compute dual. Default.
1 Iterative refinement.
2 Use extended refinement. Iterate until no more progress.

If refinement is used, the coefficient matrices and other data are saved at the
beginning of the computation. When finished this data together with the solution
obtained is checked for consistency. If the discrepancy is too large, the solution
process is restarted using the problem data just after processing the equalities, but
with the final x values and final active set.

setUpperBound
public void setUpperBound(double[] upperBound)

Description

Sets the upper bound, xu, on the variables. If there is no upper bound on a variable, then
-1.0e30 should be set as the upper bound.

Optimization DenseLP class • 151

Parameter

upperBound – a double array containing the upper bound on the variables. The
default is no upper bound.

setUpperLimit
public void setUpperLimit(double[] upperLimit)

Description

Sets the upper limit of the constraints.

Parameter

upperLimit – a double array containing the upper limit, bu, of the constraints that
have both the lower and the upper bounds.

solve
final public void solve() throws DenseLP.BoundsInconsistentException,
DenseLP.NoAcceptablePivotException, DenseLP.ProblemUnboundedException

Description

Solves the problem using an active set method. solve must be invoked prior to calling
any of the ”get” methods.

BoundsInconsistentException is thrown if the bounds are inconsistent.

NoAcceptablePivotException is thrown if an acceptable pivot could not be found.

ProblemUnboundedException is thrown if there is no finite solution to the problem.

Example 1: Linear Programming

The linear programming problem in the standard form

min f(x) = −x1 − 3x2

subject to:

x1 + x2 + x3 = 1.5
x1 + x2 − x4 = 0.5
x1 + x5 = 1.0
x2 + x6 = 1.0
xi ≥ 0, for i = 1, . . . , 6

is solved.

import com.imsl.math.*;

public class DenseLPEx1 {

152 • DenseLP class JMSL

public static void main(String args[]) throws Exception {
double[][] a = {

{1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
{1.0, 1.0, 0.0, - 1.0, 0.0, 0.0},
{1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
{0.0, 1.0, 0.0, 0.0, 0.0, 1.0}

};
double[] b = {1.5, 0.5, 1.0, 1.0};
double[] c = {- 1.0, - 3.0, 0.0, 0.0, 0.0, 0.0};

DenseLP zf = new DenseLP(a, b, c);

zf.solve();
new PrintMatrix("Solution").print(zf.getPrimalSolution());

}
}

Output

Solution
0

0 0.5
1 1
2 0
3 1
4 0.5
5 0

Example 2: Linear Programming

The linear programming problem

min f(x) = −x1 − 3x2

subject to:

0.5 ≤ x1 + x2 ≤ 1.5
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0

is solved.

import com.imsl.math.*;

public class DenseLPEx2
{

public static void main(String[] args) throws Exception {

Optimization DenseLP class • 153

int[] constraintType = {3};
double[] upperBound = {1.0, 1.0};
double[][] a = {{1.0, 1.0}};
double[] b = {0.5};
double[] upperLimit = {1.5};
double[] c = {- 1.0, - 3.0};

DenseLP zf = new DenseLP(a, b, c);

zf.setUpperLimit(upperLimit);
zf.setConstraintType(constraintType);
zf.setUpperBound(upperBound);
zf.solve();
new PrintMatrix("Solution").print(zf.getPrimalSolution());
new PrintMatrix("Dual Solution").print(zf.getDualSolution());
System.out.println("Optimal Value = " + zf.getOptimalValue());

}
}

Output

Solution
0

0 0.5
1 1

Dual Solution
0

0 -1

Optimal Value = -3.5

DenseLP.WrongConstraintTypeException class

static public class com.imsl.math.DenseLP.WrongConstraintTypeException extends
com.imsl.IMSLException

Constructors

DenseLP.WrongConstraintTypeException
public DenseLP.WrongConstraintTypeException(String message)

154 • DenseLP class JMSL

DenseLP.WrongConstraintTypeException
public DenseLP.WrongConstraintTypeException(String key, Object[] arguments)

DenseLP.BoundsInconsistentException class

static public class com.imsl.math.DenseLP.BoundsInconsistentException extends
com.imsl.IMSLException

The bounds given are inconsistent.

Constructors

DenseLP.BoundsInconsistentException
public DenseLP.BoundsInconsistentException(String message)

DenseLP.BoundsInconsistentException
public DenseLP.BoundsInconsistentException(String key, Object[] arguments)

DenseLP.NoAcceptablePivotException class

static public class com.imsl.math.DenseLP.NoAcceptablePivotException extends
com.imsl.IMSLException

No acceptable pivot could be found.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

DenseLP.NoAcceptablePivotException
public DenseLP.NoAcceptablePivotException(String message)

Optimization DenseLP class • 155

DenseLP.NoAcceptablePivotException
public DenseLP.NoAcceptablePivotException(String key, Object[] arguments)

DenseLP.ProblemUnboundedException class

static public class com.imsl.math.DenseLP.ProblemUnboundedException extends
com.imsl.IMSLException

The problem is unbounded.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

DenseLP.ProblemUnboundedException
public DenseLP.ProblemUnboundedException(String message)

DenseLP.ProblemUnboundedException
public DenseLP.ProblemUnboundedException(String key, Object[] arguments)

LinearProgramming class

public class com.imsl.math.LinearProgramming implements Serializable, Cloneable

Linear programming problem using the revised simplex algorithm.

Class LinearProgramming uses a revised simplex method to solve linear programming
problems, i.e., problems of the form

min
x ∈ Rn

cTx

subject to

156 • LinearProgramming class JMSL

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively.

NOTE: This code is obsolete. For any new development one should use DenseLP instead.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

Constructor

LinearProgramming
public LinearProgramming(double[][] a, double[] b, double[] c)

Description

Constructor variables of type double.

Parameters

a – A double matrix with coefficients of the constraints

b – A double array containing the right-hand side of the constraints.

c – A double array containing the coefficients of the objective function.

IllegalArgumentException is thrown if the dimensions of a, b.length, and c.length
are not consistent.

Methods

clone
public Object clone()

Description

Creates and returns a copy of this object.

getDualSolution
public double[] getDualSolution()

Description

Returns the dual solution.

Optimization LinearProgramming class • 157

Returns

a double array containing the dual solution of the linear programming problem.

getOptimalValue
public double getOptimalValue()

Description

Returns the optimal value of the objective function.

Returns

a double scalar containing the optimal value of the objective function.

getPrimalSolution
public double[] getPrimalSolution()

Description

Returns the solution x of the linear programming problem.

Returns

a double array containing the solution x of the linear programming problem.

setConstraintType
public void setConstraintType(int[] constraintType)

Description

Sets the types of general constraints in the matrix a.

Parameter

constraintType – a int array containing the types of general constraints.

constraintType Constraint
0 ri = bi

1 ri ≤ bui

2 ri ≥ bi

3 bi ≤ ri ≤ bui

setLowerBound
public void setLowerBound(double[] lowerBound)

Description

Sets the lower bound on the variables. If there is no lower bound on a variable, then
1.0e30 should be set as the lower bound.

158 • LinearProgramming class JMSL

Parameter

lowerBound – a double array containing the lower bound on the variables.

setMaximumIteration
public void setMaximumIteration(int iterations)

Description

Sets the maximum number of iterations. Default is set to 10000.

Parameter

iterations – a int scalar specifying the maximum number of iterations.

setUpperBound
public void setUpperBound(double[] upperBound)

Description

Sets the upper bound on the variables. If there is no upper bound on a variable, then
-1.0e30 should be set as the upper bound.

Parameter

upperBound – a double array containing the upper bound on the variables.

setUpperLimit
public void setUpperLimit(double[] upperLimit)

Description

Sets the upper limit of the constraints.

Parameter

upperLimit – a double array containing the upper limit of the constraints that have
both the lower and the upper bounds.

solve
final public void solve() throws
LinearProgramming.BoundsInconsistentException,
LinearProgramming.NumericDifficultyException,
LinearProgramming.ProblemInfeasibleException,
LinearProgramming.ProblemUnboundedException, SingularMatrixException

Optimization LinearProgramming class • 159

Description

Solves the program using the revised simplex algorithm.

BoundsInconsistentException is thrown if the bounds are inconsistent.
ProblemInfeasibleException is thrown if there is no feasible solution to the problem.
ProblemUnboundedException is thrown if there is no finite solution to the problem.
NumericDifficultyException is thrown if there is a numerical problem during the

solution.

Example 1: Linear Programming

The linear programming problem in the standard form

min f(x) = −x1 − 3x2

subject to:

x1 + x2 + x3 = 1.5
x1 + x2 − x4 = 0.5
x1 + x5 = 1.0
x2 + x6 = 1.0
xi ≥ 0, for i = 1, . . . , 6

is solved.

import com.imsl.math.*;

public class LinearProgrammingEx1 {
public static void main(String args[]) throws Exception {

double[][] a = {
{1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
{1.0, 1.0, 0.0, -1.0, 0.0, 0.0},
{1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
{0.0, 1.0, 0.0, 0.0, 0.0, 1.0}

};
double[] b = {1.5, 0.5, 1.0, 1.0};
double[] c = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.solve();
new PrintMatrix("Solution").print(zf.getPrimalSolution());

}
}

Output

160 • LinearProgramming class JMSL

Solution
0

0 0.5
1 1
2 0
3 1
4 0.5
5 0

Example 2: Linear Programming

The linear programming problem

min f(x) = −x1 − 3x2

subject to:

0.5 ≤ x1 + x2 ≤ 1.5
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0

is solved.

import com.imsl.math.*;

public class LinearProgrammingEx2 {
public static void main(String args[]) throws Exception {

int[] constraintType = {3};
double[] upperBound = {1.0, 1.0};
double[][] a = {{1.0, 1.0}};
double[] b = {0.5};
double[] upperLimit = {1.5};
double[] c = {-1.0, -3.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.setUpperLimit(upperLimit);
zf.setConstraintType(constraintType);
zf.setUpperBound(upperBound);
zf.solve();
new PrintMatrix("Solution").print(zf.getPrimalSolution());
new PrintMatrix("Dual Solution").print(zf.getDualSolution());
System.out.println("Optimal Value = " + zf.getOptimalValue());

}
}

Optimization LinearProgramming class • 161

Output

Solution
0

0 0.5
1 1

Dual Solution
0

0 -1

Optimal Value = -3.5

LinearProgramming.WrongConstraintTypeException class

static public class
com.imsl.math.LinearProgramming.WrongConstraintTypeException extends
com.imsl.IMSLException

Constructors

LinearProgramming.WrongConstraintTypeException
public LinearProgramming.WrongConstraintTypeException(String message)

LinearProgramming.WrongConstraintTypeException
public LinearProgramming.WrongConstraintTypeException(String key, Object[]
arguments)

LinearProgramming.BoundsInconsistentException class

static public class com.imsl.math.LinearProgramming.BoundsInconsistentException
extends com.imsl.IMSLException

The bounds given are inconsistent.

162 • LinearProgramming class JMSL

Constructors

LinearProgramming.BoundsInconsistentException
public LinearProgramming.BoundsInconsistentException(String message)

LinearProgramming.BoundsInconsistentException
public LinearProgramming.BoundsInconsistentException(String key, Object[]
arguments)

LinearProgramming.NumericDifficultyException class

static public class com.imsl.math.LinearProgramming.NumericDifficultyException
extends com.imsl.IMSLException

Numerical difficulty occurred. (Moved to a vertex that is poorly condidtioned).

Constructors

LinearProgramming.NumericDifficultyException
public LinearProgramming.NumericDifficultyException(String message)

LinearProgramming.NumericDifficultyException
public LinearProgramming.NumericDifficultyException(String key, Object[]
arguments)

LinearProgramming.ProblemInfeasibleException class

static public class com.imsl.math.LinearProgramming.ProblemInfeasibleException
extends com.imsl.math.LinearProgramming.NumericDifficultyException

The problem is not feasible. The constraints are inconsistent.

Field

serialVersionUID
static final public long serialVersionUID

Optimization LinearProgramming class • 163

Constructors

LinearProgramming.ProblemInfeasibleException
public LinearProgramming.ProblemInfeasibleException()

LinearProgramming.ProblemInfeasibleException
public LinearProgramming.ProblemInfeasibleException(String message)

LinearProgramming.ProblemUnboundedException class

static public class com.imsl.math.LinearProgramming.ProblemUnboundedException
extends com.imsl.math.LinearProgramming.NumericDifficultyException

The problem is unbounded.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

LinearProgramming.ProblemUnboundedException
public LinearProgramming.ProblemUnboundedException()

LinearProgramming.ProblemUnboundedException
public LinearProgramming.ProblemUnboundedException(String message)

QuadraticProgramming class

public class com.imsl.math.QuadraticProgramming

Solves the convex quadratic programming problem subject to equality or inequality constraints.

Class QuadraticProgramming is based on M.J.D. Powell’s implementation of the Goldfarb and
Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general
linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

164 • QuadraticProgramming class JMSL

min
x∈Rn

gTx+
1
2
xTHx

subject to

A1x = b1

A2x ≥ b2

given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be positive
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is
not positive definite, a positive definite perturbation of H is used in place of H. For more
details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, then H + αI also should be used in
the definition of the Lagrange multipliers.

Field

EPSILON SMALL
static final public double EPSILON SMALL

The smallest relative spacing for doubles.

Constructor

QuadraticProgramming
public QuadraticProgramming(double[][] h, double[] g, double[][] aEquality,
double[] bEquality, double[][] aInequality, double[] bInequality) throws
QuadraticProgramming.InconsistentSystemException

Description

Solve a quadratic programming problem.

Parameters

h – is square array containing the Hessian. It must be positive definite.

g – contains the coefficients of the linear term of the objective function.

aEquality – is a rectangular matrix containing the equality constraints. It can be
null if there are no equality constraints.

bEquality – contains the right-side of the equality constraints. It can be null if
there are no equality constraints.

Optimization QuadraticProgramming class • 165

aInequality – is a rectangular matrix containing the inequality constraints. It can
be null if there are no inequality constraints.

bInequality – contains the right-side of the inequality constraints. It can be null if
there are no inequality constraints.

Methods

getDual
public double[] getDual()

Description

Returns the dual (Lagrange multipliers).

getSolution
public double[] getSolution()

Description

Returns the solution.

isNoMoreProgress
public boolean isNoMoreProgress()

Description

Returns true if due to computer rounding error, a change in the variables fail to improve
the objective function. Usually the solution is close to optimum.

Example 1: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − 2x1x2 − 2x3x4 − 2x0

subject to

x0 + x1 + x2 + x3 + x4 = 5

x2 − 2x3 − 2x4 = −3

import com.imsl.math.*;

public class QuadraticProgrammingEx1 {
public static void main(String args[]) throws

166 • QuadraticProgramming class JMSL

QuadraticProgramming.InconsistentSystemException {
double h[][] = {

{2, 0, 0, 0, 0},
{0, 2,-2, 0, 0},
{0,-2, 2, 0, 0},
{0, 0, 0, 2,-2},
{0, 0, 0,-2, 2},

};
double aeq[][] = {

{ 1, 1, 1, 1, 1},
{ 0, 0, 1,-2,-2}

};
double beq[] = {5, -3};
double g[] = {-2, 0, 0, 0, 0};

QuadraticProgramming qp =
new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual
new PrintMatrix("x").print(qp.getSolution());
new PrintMatrix("dual").print(qp.getDual());

}
}

Output

x
0

0 1
1 1
2 1
3 1
4 1

dual
0

0 0
1 -0
2 0
3 0
4 0

Example 2: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2

Optimization QuadraticProgramming class • 167

subject to

x0 + 2x1 − x2 = 4

x0 − x1 + x2 = −2

import com.imsl.math.*;

public class QuadraticProgrammingEx2 {
public static void main(String args[]) throws
QuadraticProgramming.InconsistentSystemException {

double h[][] = {
{2, 0, 0},
{0, 2, 0},
{0, 0, 2}

};
double aeq[][] = {{1, 2,-1}, {1,-1, 1}};
double beq[] = {4, -2};
double g[] = {0, 0, 0};

QuadraticProgramming qp =
new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual
new PrintMatrix("x").print(qp.getSolution());
new PrintMatrix("dual").print(qp.getDual());

}
}

Output

x
0

0 0.286
1 1.429
2 -0.857

dual
0

0 1.143
1 -0.571
2 0

168 • QuadraticProgramming class JMSL

QuadraticProgramming.InconsistentSystemException class

static public class
com.imsl.math.QuadraticProgramming.InconsistentSystemException extends
com.imsl.IMSLException

Inconsistent system.

Constructor

QuadraticProgramming.InconsistentSystemException
public QuadraticProgramming.InconsistentSystemException()

MinConGenLin class

public class com.imsl.math.MinConGenLin implements Serializable, Cloneable

Minimizes a general objective function subject to linear equality/inequality constraints.

The class MinConGenLin is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form

min f(x)

subject to

A1x = b1

A2x ≤ b2

xl ≤ x ≤ xu

given the vectors b1, b2, xl, and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x0, the initial guess, to satisfy

A1x = b1

Optimization MinConGenLin class • 169

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik
be the set of indices of active constraints. The following quadratic programming problem

min f
(
xk
)

+ dT∇ f
(
xk
)

+
1
2
dTBkd

subject to

ajd = 0, j ∈ Ik

ajd ≤ 0, j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or A2 or
a bound constraint on x. In the latter case, the aj = ej for the bound constraint xi ≤ (xu)i and
aj = −ei for the constraint −xi ≤ (xl)i. Here, ei is a vector with 1 as the i-th component, and
zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk is a positive definite
approximation to the second derivative ∇2f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point.
The new point xk+1 = xk + αkdk has to satisfy the conditions

f(xk + αkdk) ≤ f(xk) + 0.1αk(dk)T∇f(xk)

and

(dk)T∇f(xk + αkdk) ≥ 0.7(dk)T∇f(xk)

The main idea in forming the set Jk is that, if any of the equality constraints restricts the
step-length αk, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation BK , is updated by the BFGS formula, if the
condition

(
dK
)T ∇f (xk + αkdk

)
−∇f

(
xk
)
> 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion

∥∥∇f(xk)−AkλK
∥∥

2
≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

170 • MinConGenLin class JMSL

Constructor

MinConGenLin
public MinConGenLin(MinConGenLin.Function fcn, int nvar, int ncon, int neq,
double[] a, double[] b, double[] lowerBound, double[] upperBound)

Description

Constructor for MinConGenLin.

Parameters

fcn – A Function object, user-supplied function to evaluate the function to be
minimized.

nvar – A int scalar containing the number of variables.

ncon – A int scalar containing the number of linear constraints (excluding simple
bounds).

neq – A int scalar containing the number of linear equality constraints.

a – A double array containing the equality constraint gradients in the first neq rows
followed by the inequality constraint gradients. a.length = ncon * nvar

b – A double array containing the right-hand sides of the linear constraints.

lowerBound – A double array containing the lower bounds on the variables. Choose
a very large negative value if a component should be unbounded below or set
lowerBound[i] = upperBound[i] to freeze the i-th variable. lowerBound.length
= nvar

upperBound – A double array containing the upper bounds on the variables. Choose
a very large positive value if a component should be unbounded above.
upperBound.length = nvar

IllegalArgumentException is thrown if the dimensions of nvar, ncon, neq, a.length ,
b.length, lowerBound.length and upperBound.length are not consistent.

Methods

getFinalActiveConstraints
public int[] getFinalActiveConstraints()

Description

Returns the indices of the final active constraints.

Returns

a int array containing the indices of the final active constraints.

getFinalActiveConstraintsNum
public int getFinalActiveConstraintsNum()

Optimization MinConGenLin class • 171

Description

Returns the final number of active constraints.

Returns

a int scalar containing the final number of active constraints.

getLagrangeMultiplierEst
public double[] getLagrangeMultiplierEst()

Description

Returns the Lagrange multiplier estimates of the final active constraints.

Returns

a double array containing the Lagrange multiplier estimates of the final active
constraints.

getObjectiveValue
public double getObjectiveValue()

Description

Returns the value of the objective function.

Returns

a double scalar containing the value of the objective function.

getSolution
public double[] getSolution()

Description

Returns the computed solution.

Returns

a double array containing the computed solution.

setGuess
public void setGuess(double[] guess)

Description

Sets an initial guess of the solution.

Parameter

guess – a double array containing an initial guess.

setTolerance
public void setTolerance(double tolerance)

172 • MinConGenLin class JMSL

Description

Sets the nonnegative tolerance on the first order conditions at the calculated solution.

Parameter

tolerance – a double scalar containing the tolerance.

solve
final public void solve() throws
MinConGenLin.ConstraintsInconsistentException,
MinConGenLin.VarBoundsInconsistentException,
MinConGenLin.ConstraintsNotSatisfiedException,
MinConGenLin.EqualityConstraintsException

Description

Minimizes a general objective function subject to linear equality/inequality constraints.

Example 1: Linear Constrained Optimization

The problem

min f(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 2x2x3 − 2x4x5 − 2x1

subject to

x1 + x2 + x3 + x4 + x5 = 5

x3 − 2x4 − 2x5 = −3

0 ≤ x ≤ 10

is solved.

import com.imsl.math.*;

public class MinConGenLinEx1 {
public static void main(String args[]) throws Exception {

int neq = 2;
int ncon = 2;
int nvar = 5;
double a[] = {1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0};
double b[] = {5.0, -3.0};
double xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
double xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};

Optimization MinConGenLin class • 173

MinConGenLin.Function fcn = new MinConGenLin.Function() {
public double f(double[] x) {

return x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] +
x[4]*x[4] - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];

}
};

MinConGenLin zf =
new MinConGenLin(fcn, nvar, ncon, neq, a, b, xlb, xub);

zf.solve();
new PrintMatrix("Solution").print(zf.getSolution());

}
}

Output

Solution
0

0 1
1 1
2 1
3 1
4 1

Example 2: Linear Constrained Optimization

The problem

min f(x) = −x0x1x2

subject to

−x0 − 2x1 − 2x2 ≤ 0

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

174 • MinConGenLin class JMSL

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

import com.imsl.math.*;

public class MinConGenLinEx2 {

public static void main(String args[]) throws Exception {
int neq = 0;
int ncon = 2;
int nvar = 3;
double a[] = {-1.0, -2.0, -2.0, 1.0, 2.0, 2.0};
double xlb[] = {0.0, 0.0, 0.0};
double xub[] = {20.0, 11.0, 42.0};
double xguess[] = {10.0, 10.0, 10.0};
double b[] = {0.0, 72.0};

MinConGenLin.Gradient grad = new MinConGenLin.Gradient() {
public double f(double[] x) {

return -x[0] * x[1] * x[2];
}
public void gradient(double[] x, double[] g) {

g[0] = -x[1]*x[2];
g[1] = -x[0]*x[2];
g[2] = -x[0]*x[1];

}
};

MinConGenLin zf =
new MinConGenLin(grad, nvar, ncon, neq, a, b, xlb, xub);

zf.setGuess(xguess);
zf.solve();
new PrintMatrix("Solution").print(zf.getSolution());
System.out.println("Objective value = " + zf.getObjectiveValue());

}
}

Output

Solution
0

0 20
1 11
2 15

Objective value = -3300.0

Optimization MinConGenLin class • 175

MinConGenLin.Function interface

public interface com.imsl.math.MinConGenLin.Function

Public interface for the user-supplied function to evaluate the function to be minimized.

Method

f
public double f(double[] x)

Description

Public interface for the function to be minimized.

Parameter

x – a double array, the point at which the function is evaluated. x.length equals
the number of variables.

Returns

a double scalar, the function value at x

MinConGenLin.Gradient interface

public interface com.imsl.math.MinConGenLin.Gradient implements
com.imsl.math.MinConGenLin.Function

Public interface for the user-supplied function to compute the gradient.

Method

gradient
public void gradient(double[] x, double[] g)

Description

Public interface for the user-supplied function to compute the gradient at point x.

Parameters

x – a double array, the point at which the gradient is evaluated. x.length equals
the number of variables.

g – a double array, the values of the gradient of the objective function.

176 • MinConGenLin class JMSL

MinConGenLin.ConstraintsInconsistentException class

static public class com.imsl.math.MinConGenLin.ConstraintsInconsistentException
extends com.imsl.IMSLException

The equality constraints are inconsistent.

Constructors

MinConGenLin.ConstraintsInconsistentException
public MinConGenLin.ConstraintsInconsistentException(String message)

MinConGenLin.ConstraintsInconsistentException
public MinConGenLin.ConstraintsInconsistentException(String key, Object[]
arguments)

MinConGenLin.VarBoundsInconsistentException class

static public class com.imsl.math.MinConGenLin.VarBoundsInconsistentException
extends com.imsl.IMSLException

The equality constraints and the bounds on the variables are found to be inconsistent.

Constructors

MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(String message)

MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(String key, Object[]
arguments)

Optimization MinConGenLin class • 177

MinConGenLin.ConstraintsNotSatisfiedException class

static public class com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException
extends com.imsl.IMSLException

No vector x satisfies all of the constraints.

Constructors

MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(String message)

MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(String key, Object[]
arguments)

MinConGenLin.EqualityConstraintsException class

static public class com.imsl.math.MinConGenLin.EqualityConstraintsException
extends com.imsl.IMSLException

the variables are determined by the equality constraints.

Constructors

MinConGenLin.EqualityConstraintsException
public MinConGenLin.EqualityConstraintsException(String message)

MinConGenLin.EqualityConstraintsException
public MinConGenLin.EqualityConstraintsException(String key, Object[]
arguments)

178 • MinConGenLin class JMSL

BoundedLeastSquares class

public class com.imsl.math.BoundedLeastSquares implements Serializable,
Cloneable

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm.

Class BoundedLeastSquares uses a modified Levenberg-Marquardt method and an active set
strategy to solve nonlinear least-squares problems subject to simple bounds on the variables.
The problem is stated as follows:

min
1
2
F (x)T

F (x) =
1
2

m∑
i=1

fi (x)2

subject to
l ≤ x ≤ u

where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a ”free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = −
(
JTJ + µI

)−1
JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with respect
to the free variables. The search direction for the variables in IA is set to zero. The trust region
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are:

‖g (xi)‖ ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) > 0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set.
In the latter case, a variable that violates the optimality condition will be dropped out of IA.
For more details on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt
(1963). For more detail on the active set strategy, see Gill and Murray (1976).

Optimization BoundedLeastSquares class • 179

Constructor

BoundedLeastSquares
public BoundedLeastSquares(BoundedLeastSquares.Function function, int
mFunctions, int nVariables, int boundType, double[] lowerBound, double[]
upperBound)

Description

Constructor for BoundedLeastSquares.

Parameters

function – a Function object, user-supplied function to evaluate the function

mFunctions – a int scalar containing the number of functions

nVariables – a int scalar containing the number of variables

boundType – a int scalar containing the types of bounds on the variable

boundType Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on first variable, all other

variables will have the same bounds.

lowerBound – a double array containing the lower bounds on the variables

upperBound – a double array containing the upper bounds on the variables

IllegalArgumentException is thrown if the dimensions of mFunctions, nVariables,
boundType, lowerBound.length and upperBound.length are not consistent

Methods

getJacobian
public double[][] getJacobian()

Description

Returns the Jacobian at the approximate solution.

Returns

a mFunctions x nVariables double matrix containing the Jacobian at the approximate
solution

getResiduals
public double[] getResiduals()

180 • BoundedLeastSquares class JMSL

Description

Returns the residuals at the approximate solution.

Returns

a double array containing the residuals at the approximate solution

getSolution
public double[] getSolution()

Description

Returns the solution.

Returns

a double array containing the computed solution

setAbsoluteFcnTol
public void setAbsoluteFcnTol(double absoluteFcnTol)

Description

Sets the absolute function tolerance. If this member function is not called, a value of
Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0/3.0)), is used.

Parameter

absoluteFcnTol – a double scalar containing the absolute function tolerance

setDiagonalScalingMatrix
public void setDiagonalScalingMatrix(double[] diagonalScalingMatrix)

Description

Sets the diagonal scaling matrix for the functions. The i-th component of the array is a
positive scalar specifying the reciprocal magnitude of the i-th component function of the
problem. If this member function is not called, an initial scaling of 1.0 is used.

Parameter

diagonalScalingMatrix – a double array containing the diagonal scaling for the
functions

setGoodDigit
public void setGoodDigit(int goodDigit)

Description

Sets the number of good digits in the function. If this member function is not called, a
value of (int)(-Sfun.log10(2.2204460492503131e-16) + 0.1e0) is used.

Optimization BoundedLeastSquares class • 181

Parameter

goodDigit – a int scalar containing the number of good digits

setGradientTol
public void setGradientTol(double gradientTol)

Description

Sets the scaled gradient tolerance. If this member function is not called, a value of
Math.pow(2.2204460492503131e-16, 1.0e0/3.0e0) is used.

Parameter

gradientTol – a double scalar containing the scaled gradient tolerance

setGuess
public void setGuess(double[] guess)

Description

Sets the initial guess of the solution. If this member function is not called, an initial
scaling of 1.0 is used.

Parameter

guess – a double array containing an initial guess

setInternalScale
public void setInternalScale()

Description

Sets the internal variable scaling option. With this option, scaling for the variables is set
internally.

setJacobian
public void setJacobian(BoundedLeastSquares.Jacobian jacobian)

Description

Sets the Jacobian.

Parameter

jacobian – a Jacobian object to compute the Jacobian.

setMaximumFunctionEvals
public void setMaximumFunctionEvals(int evaluations)

Description

Sets the maximum number of function evaluations. If this member function is not called,
a value of 400 is used.

182 • BoundedLeastSquares class JMSL

Parameter

evaluations – a int scalar containing the maximum number of function evaluations

setMaximumIteration
public void setMaximumIteration(int iterations)

Description

Sets the maximum number of iterations. If this member function is not called, a value of
100 is used.

Parameter

iterations – a int scalar containing the maximum number of iterations

setMaximumJacobianEvals
public void setMaximumJacobianEvals(int evaluations)

Description

Sets the maximum number of Jacobian evaluations. If this member function is not called,
a value of 400 is used.

Parameter

evaluations – a int scalar containing the maximum number of Jacobian evaluations

setMaximumStepSize
public void setMaximumStepSize(double stepSize)

Description

Sets the maximum allowable step size.

Parameter

stepSize – a double scalar containing the maximum allowable step size

setRelativeFcnTol
public void setRelativeFcnTol(double relativeFcnTol)

Description

Sets the relative function tolerance. If this member function is not called, a value of
Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0) is used.

Parameter

relativeFcnTol – a double scalar containing the relative function tolerance

setScaledStepTol
public void setScaledStepTol(double scaledStepTol)

Optimization BoundedLeastSquares class • 183

Description

Sets the scaled step tolerance. If this member function is not called, a value of
Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0) is used.

Parameter

scaledStepTol – a double scalar containing the scaled step tolerance

setScalingVector
public void setScalingVector(double[] scalingVector)

Description

Sets the scaling vector for the variables. If this member function is not called, an initial
scaling of 1.0 is used.

Parameter

scalingVector – a double array containing the scaling vector for the variables

setTrustRegion
public void setTrustRegion(double trustRegion)

Description

Sets the size of initial trust region radius. If this member function is not called, the value
is based on the initial scaled Cauchy step.

Parameter

trustRegion – a double scalar containing the initial trust region radius

solve
final public void solve() throws
BoundedLeastSquares.FalseConvergenceException

Description

Solves a nonlinear least-squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm.

Example 1: Bounded Least Squares

The nonlinear least-squares problem

min
1
2

1∑
i=0

fi (x)2

−2 ≤ x0 ≤ 0.5

184 • BoundedLeastSquares class JMSL

−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved.

import com.imsl.math.*;

public class BoundedLeastSquaresEx1 {
public static void main(String args[]) throws Exception {

int m = 2;
int n = 2;
int ibtype = 0;
double[] xlb = {-2.0, -1.0};
double[] xub = {0.5, 2.0};

BoundedLeastSquares.Function rosbck =
new BoundedLeastSquares.Function() {

public void compute(double[] x, double[] f) {
f[0] = 10.0*(x[1] - x[0]*x[0]);
f[1] = 1.0 - x[0];

}
};

BoundedLeastSquares zf =
new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.solve();
new PrintMatrix("Solution").print(zf.getSolution());

}
}

Output

Solution
0

0 0.5
1 0.25

Example 2: Bounded Least Squares

The nonlinear least-squares problem

Optimization BoundedLeastSquares class • 185

min
1
2

1∑
i=0

fi (x)2

−2 ≤ x0 ≤ 0.5

−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved. An initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual
at the approximate solution is returned.

import com.imsl.math.*;

public class BoundedLeastSquaresEx2 {
public static void main(String args[]) throws Exception {

int m = 2;
int n = 2;
int ibtype = 0;
double[] xlb = {-2.0, -1.0};
double[] xub = {0.5, 2.0};
double[] xguess = {-1.2, 1.0};

BoundedLeastSquares.Function rosbck =
new BoundedLeastSquares.Function() {

public void compute(double[] x, double[] f) {
f[0] = 10.0*(x[1] - x[0]*x[0]);
f[1] = 1.0 - x[0];

}
};

BoundedLeastSquares.Jacobian jacob =
new BoundedLeastSquares.Jacobian() {

public void compute(double[] x, double[] fjac) {
fjac[0] = -20.0*x[0];
fjac[1] = 10.0;
fjac[2] = -1.0;
fjac[3] = 0.0;

}
};

BoundedLeastSquares zf =
new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.setJacobian(jacob);
zf.setGuess(xguess);
zf.solve();

186 • BoundedLeastSquares class JMSL

new PrintMatrix("Solution").print(zf.getSolution());
new PrintMatrix("Residuals").print(zf.getResiduals());

}
}

Output

Solution
0

0 0.5
1 0.25

Residuals
0

0 0
1 0.5

BoundedLeastSquares.Function interface

public interface com.imsl.math.BoundedLeastSquares.Function

Public interface for the user-supplied function to evaluate the function that defines the
least-squares problem.

Method

compute
public void compute(double[] x, double[] f)

Description

Public interface for the user-supplied function to evaluate the function that defines the
least-squares problem.

Parameters

x – a double array containing the point at which the function is to evaluated.
x.length = nVariables

f – a double array which contains the function values at point x. f.length =
mFunctions

Optimization BoundedLeastSquares class • 187

BoundedLeastSquares.Jacobian interface

public interface com.imsl.math.BoundedLeastSquares.Jacobian

Public interface for the user-supplied function to compute the Jacobian.

Method

compute
public void compute(double[] x, double[] fjac)

Description

Public interface for the user-supplied function to compute the Jacobian.

Parameters

x – a double array, the point at which the Jacobian is to evaluated. x.length =
nVariables

fjac – a double array, the computed Jacobian at the point x. point x. fjac.length
= mFunctions x nVariables

BoundedLeastSquares.FalseConvergenceException class

static public class com.imsl.math.BoundedLeastSquares.FalseConvergenceException
extends com.imsl.IMSLException

False convergence - The iterates appear to be converging to a noncritical point.

Constructors

BoundedLeastSquares.FalseConvergenceException
public BoundedLeastSquares.FalseConvergenceException(String message)

Description

Constructs an FalseConvergenceException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

188 • BoundedLeastSquares class JMSL

BoundedLeastSquares.FalseConvergenceException
public BoundedLeastSquares.FalseConvergenceException(String key, Object[]
arguments)

Description

Constructs an FalseConvergenceException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

MinConNLP class

public class com.imsl.math.MinConNLP implements Serializable, Cloneable

General nonlinear programming solver.

MinConNLP is based on the FORTRAN subroutine, DONLP2, by Peter Spellucci and licensed
from TU Darmstadt. MinConNLP uses a sequential equality constrained quadratic programming
method with an active set technique, and an alternative usage of a fully regularized mixed
constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the
”working sets”). It uses a slightly modified version of the Pantoja-Mayne update for the
Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize
algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details
may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

min
x ∈ Rn

f (x)

subject to

gj (x) = 0, for j = 1, . . . , me

gj (x) ≥ 0, for j = me + 1, . . . , m

Optimization MinConNLP class • 189

xl ≤ x ≤ xu

where all problem functions are assumed to be continuously differentiable. Although default
values are provided for optional input arguments, it may be necessary to adjust these values for
some problems. Through the use of member functions, MinConNLP allows for several parameters
of the algorithm to be adjusted to account for specific characteristics of problems. The
provides detailed descriptions of these parameters as well as strategies for maximizing the
performance of the algorithm. In addition, the following are a number of guidelines to consider
when using MinConNLP:

• A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See method setGuess.

• Gradient approximation methods can have an effect on the success of MinConNLP.
Selecting a higher order approximation method may be necessary for some problems. See
method setDifferentiationType.

• If a two sided constraint li ≤ gi (x) ≤ ui is transformed into two constraints, g2i (x) ≥ 0
and g2i+1 (x) ≥ 0, then choose del0 < 1/2 (ui − li) /max {1, ‖∇gi (x) ‖}, or at least try to
provide an estimate for that value. This will increase the efficiency of the algorithm. See
method setBindingThreshold.

• The parameter ierr provided in the interface to the user supplied function FCN can be
very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a floating
point exception, then setting ierr to true and returning without performing the
evaluation will avoid the exception. MinConNLP will then reduce the stepsize and try the
step again. Note, if ierr is set to true for the initial guess, then an error is issued.

The solver terminates if there is an error or if one of the following three terminations conditions
is satisfied. The method getTerminationCondition returns the termination condition index.

• Termination condition 10: Kuhn-Tucker conditions are satisfied.

||g(x)−||1 ≤ violationBound

||λ−||∞ ≤ multiplierError

||∇L(x, µ, λ)|| ≤ εx(1 + ||∇f(x)||)

|λT g(x)| ≤ violationBound× multiplierError×M

where L(x, µ, λ) = f(x)− λT g(x), M is the number of constraints, and εx = 10−5. The
notation y− means a vector whose negative elements are the same as the vector y, but
with zeros in place of y’s positive values.

• Termination condition 11: Computed correction is small.

d ≤ εx(||x||+ εx)

190 • MinConNLP class JMSL

||∇L(x, µ, λ)|| ≤ εx(1 + ||∇f(x)||)

||g(x)−||1 ≤ violationBound

||λ−||∞ ≤ multiplierError

where d is the computed correction for the current solution x.

• Termination condition 12: x is almost feasible, directional derivative is very small.
Further progress cannot be expected.

DΦ(x; d) ≥ −100(|Φ(x)|+ 1)εx

where Φ is the current penalty function, and DΦ is the directional derivative of Φ. This
usually occurs as a termination condition for ill-conditioned problems.

Note that one can use the JDK 1.4 JAVA Logging API to generate intermediate output for the
solver. Accumulated levels of detail correspond to JAVA’s CONFIG, FINE, FINER, and
FINEST logging levels with CONFIG yielding the smallest amount of information and FINEST
yielding the most. The levels of output yield the following:

Level Output
CONFIG One line of intermediate results is printed with each

iteration. A summary report is printed upon comple-
tion.

FINE Lines of intermediate results giving the most impor-
tant data for each step are printed after each step. A
summary report is printed upon completion.

FINER Lines of detailed intermediate results showing all pri-
mal and dual variables, the relevant values from the
working set, progress in the backtracking, etc. are
printed. A summary report is printed upon comple-
tion.

FINEST Lines of detailed intermediate results showing all pri-
mal and dual variables, the relevant values from the
working set, progress in the backtracking, the gradi-
ents in the working set, the quasi-Newton updated,
etc. are printed. A summary report is printed upon
completion.

Field

serialVersionUID
static final public long serialVersionUID

Optimization MinConNLP class • 191

Constructor

MinConNLP
public MinConNLP(int mTotalConstraints, int mEqualityConstraints, int
nVariables) throws IllegalArgumentException

Description

Nonlinear programming solver constructor.

Parameters

mTotalConstraints – An int scalar value which defines the total number of
constraints

mEqualityConstraints – An int scalar value which defines the number of equality
constraints

nVariables – An int scalar value which defines the number of variables.

Methods

getConstraintResiduals
public double[] getConstraintResiduals()

Description

Returns the constraint residuals.

Returns

a double array containing the constraint residuals.

getIterations
public int getIterations()

Description

Returns the actual number of iterations used.

Returns

the number of iterations used.

getLagrangeMultiplierEst
public double[] getLagrangeMultiplierEst()

Description

Returns the Lagrange multiplier estimates of the constraints.

192 • MinConNLP class JMSL

Returns

a double array containing the Lagrange multiplier estimates of the constraints.

getLogger
public Logger getLogger()

Description

Returns the logger object. Logger support requires JDK1.4. Use with earlier versions
returns null.

Returns

the logger object, if present, or null.

getMaximumTime
public long getMaximumTime()

Description

Returns the maximum time allowed for the solve step.

Returns

the maximum time, in milliseconds, to be allowed for the solve step. If less than or equal
to zero then no time limit is imposed. The default valus is -1 (no time limit).

getSolution
public double[] getSolution()

Description

Returns the solution. This is the same solution as returned by the solve method.

Returns

a double array containing the solution.

getTerminationCriterion
public int getTerminationCriterion()

Description

Returns the reason the solve step terminated.

Returns

an int that indicates the reason the solve method terminated.

getTolerance
public double getTolerance()

Description

Returns the desired precision of the solution.

Optimization MinConNLP class • 193

Returns

a double that is the the desired precision of the solution.

setBindingThreshold
public void setBindingThreshold(double del0)

Description

Set the binding threshold for constraints. In the initial phase of minimization a constraint
is considered binding if gi(x)

max(1,‖∇gi(x)‖) ≤ del0 i = Me + 1, . . . ,M

Good values are between .01 and 1.0. If del0 is chosen too small then identification of the
correct set of binding constraints may be delayed. Contrary, if del0 is too large, then the
method will often escape to the full regularized SQP method, using individual slack
variables for any active constraint, which is quite costly. For well scaled problems del0 =
1.0 is reasonable. If this member function is not called, del0 is set to .5 * tau0.

Parameter

del0 – a double scalar value specifying the binding threshold for constraints.

IllegalArgumentException is thrown if del0 is less than or equal to 0.0

setBoundViolationBound
public void setBoundViolationBound(double taubnd)

Description

Set the amount by which bounds may be violated during numerical differentiation. If this
member function is not called, taubnd is set to 1.0.

Parameter

taubnd – a double scalar value specifying the amount by which bounds may be
violated during numerical differentiation.

IllegalArgumentException is thrown if taubnd is less than or equal to 0.0

setDifferentiationType
public void setDifferentiationType(int idtype)

Description

Set the type of numerical differentiation to be used.

Parameter

idtype – an int scalar value specifying the type of numerical differentiation to be
used. If this member function is not called, idtype is set to 1.

194 • MinConNLP class JMSL

idtype Action
1 Use a forward difference quotient with discretization

stepsize 0.1
(
epsfcn1/2

)
componentwise relative. This

is the default value used.
2 Use the symmetric difference quotient with discretiza-

tion stepsize 0.1
(
epsfcn1/3

)
componentwise relative.

3 Use the sixth order approximation computing a
Richardson extrapolation of three symmetric differ-
ence quotient values. This uses a discretization step-
size 0.01

(
epsfcn1/7

)
IllegalArgumentException is thrown if idtype is less than or equal to 0 or greater than

or equal to 4.

setFunctionPrecision
public void setFunctionPrecision(double epsfcn)

Description

Set the relative precision of the function evaluation routine. If this member function is
not called, epsfcn is set to 2.2e-16.

Parameter

epsfcn – a double scalar value specifying the relative precision of the function
evaluation routine.

IllegalArgumentException is thrown if epsfcn is less than or equal to 0.0

setGradientPrecision
public void setGradientPrecision(double epsdif)

Description

Set the relative precision in gradients. If this member function is not called, epsdif is set
to 2.2e-16.

Parameter

epsdif – a double scalar value specifying the relative precision in gradients.

IllegalArgumentException is thrown if epsdif is less than or equal to 0.0

setGuess
public void setGuess(double[] xguess)

Optimization MinConNLP class • 195

Description

Set the initial guess of the minimum point of the input function. If this member function
is not called, the elements of this array are set to x, (with the smallest value of ‖x‖2) that
satisfies the bounds.

Parameter

xguess – a double array specifying the initial guess of the minimum point of the
input function

setMaximumTime
public void setMaximumTime(long maximumTime)

Description

Sets the maximum time allowed for the solve step.

Parameter

maximumTime – is the maximum time, in milliseconds, to be allowed for the solve
step. If less than or equal to zero then no time limit is imposed.

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed. If this member function is not called, the
maximum number of iterations is set to 200.

Parameter

maxIterations – an int specifying the maximum number of iterations allowed

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMultiplierError
public void setMultiplierError(double smallw)

Description

Set the error allowed in the multipliers. A negative multiplier of an inequality constraint
is accepted (as zero) if its absolute value is less than smallw. If this member function is
not called, it is set to e2 log ε/3.

Parameter

smallw – a double scalar value specifying the error allowed in the multipliers.

IllegalArgumentException is thrown if smallw is less than or equal to 0.0

setPenaltyBound
public void setPenaltyBound(double tau0)

196 • MinConNLP class JMSL

Description

Set the universal bound for describing how much the unscaled penalty-term may deviate
from zero. A small tau0 diminishes the efficiency of the solver because the iterates then
will follow the boundary of the feasible set closely. Conversely, a large tau0 may degrade
the reliability of the code. If this member function is not called, tau0 is set to 1.0.

Parameter

tau0 – a double scalar value specifying the universal bound for describing how much
the unscaled penalty-term may deviate from zero.

IllegalArgumentException is thrown if tau0 is less than or equal to 0.0

setScalingBound
public void setScalingBound(double scbnd)

Description

Set the scaling bound for the internal automatic scaling of the objective function. If this
member function is not called, scbnd is set to 1.0e4.

Parameter

scbnd – a double scalar value specifying the scaling variable for the problem
function.

IllegalArgumentException is thrown if scbnd is less than or equal to 0.0

setTolerance
public void setTolerance(double epsx)

Description

Set the desired precision of the solution.

Parameter

epsx – is the the desired precision of the solution. For a well scaled and
well-conditioned problem it essentially specifies a desired relative precision in the
solution. It should never be chosen less than the square root of the machine precision
since the control of progress in the method is based on the comparison of function
values usually taken from the constraining manifold where the objective function
varies like O(||xk − x∗||2). Even this requirement may be too strong. The default
value of 1.0e-5 is approximately the third root of the machine precision. The user
should be aware of the fact that the precision requirement is automatically relaxed if
the solver considers a problem ”singular”. If the precision seems to be too poor in
such a case a decrease of epsx might help. Default: 1.0e-5.

setViolationBound
public void setViolationBound(double delmin)

Optimization MinConNLP class • 197

Description

Set the scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| ≤ delmin, and gi(x) ≥ −delmin respectively. If this
member function is not called, delmin is set to
min(del0/10,max(epsdif,min(del0/10,max((1.e− 6)del0, smallw))).

Parameter

delmin – a double scalar value specifying the allowable constraint violations of the
final accepted result.

IllegalArgumentException is thrown if delmin is less than or equal to 0.0

setXlowerBound
public void setXlowerBound(double[] xlb)

Description

Set the lower bounds on the variables. If this member function is not called, the elements
of this array are set to -1.79e308.

Parameter

xlb – a double array specifying the lower bounds on the variables

setXscale
public void setXscale(double[] xscale)

Description

Set the internal scaling of the variables. The initial value given and the objective function
and gradient evaluations, however, are always given in the original unscaled variables.
The first internal variable is obtained by dividing the values x[i] by xscale[i]. If this
member function is not called, xscale[i] is set to 1.0.

Parameter

xscale – a double array specifying the internal scaling of the variables.

IllegalArgumentException is thrown if xscale is less than or equal to 0.0

setXupperBound
public void setXupperBound(double[] xub)

Description

Set the upper bounds on the variables. If this member function is not called, the elements
of this array are set to 1.79e308.

198 • MinConNLP class JMSL

Parameter

xub – a double array specifying the upper bounds on the variables

solve
public double[] solve(MinConNLP.Function F) throws
MinConNLP.ConstraintEvaluationException,
MinConNLP.ObjectiveEvaluationException,
MinConNLP.WorkingSetSingularException, MinConNLP.QPInfeasibleException,
MinConNLP.PenaltyFunctionPointInfeasibleException,
MinConNLP.LimitingAccuracyException, MinConNLP.TooManyIterationsException,
MinConNLP.BadInitialGuessException, MinConNLP.IllConditionedException,
MinConNLP.SingularException, MinConNLP.LinearlyDependentGradientsException,
MinConNLP.NoAcceptableStepsizeException,
MinConNLP.TerminationCriteriaNotSatisfiedException

Description

Solve a general nonlinear programming problem using the successive quadratic
programming algorithm with a finite-difference gradient or with a user-supplied gradient.

Parameter

F – defines the user-supplied function to evaluate the function at a given point. F
can be used to supply a gradient of the function. If F implements Gradient the
user-supplied gradient is used. Otherwise,an attempt to solve the problem is made
using a finite-difference gradient.

Returns

a double array containing the solution of the nonlinear programming problem.

Example 1: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a finite difference gradient.

import com.imsl.math.*;

public class MinConNLPEx1 implements MinConNLP.Function{

public double f(double[] x, int iact, boolean[] ierr){
double result;
ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);
return result;

} else {
switch (iact) {

case 1:
result = (x[0]-2.e0*x[1] + 1.e0);
return result;

Optimization MinConNLP class • 199

case 2:
result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);
return result;

default:
ierr[0] = true;
return 0.e0;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;
int me = 1;
int n = 2;
double xinit[] = {2., 2.};
double x[] = {0.};
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.setGuess(xinit);
MinConNLPEx1 fcn = new MinConNLPEx1();
x = minconnon.solve(fcn);
System.out.println("x is "+x[0] +" "+x[1]);

}
}

Output

x is 0.8228756555325116 0.9114378277662559

Example 2: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a user-supplied gradient.

import com.imsl.math.*;

public class MinConNLPEx2 implements MinConNLP.Gradient{

public double f(double[] x, int iact, boolean[] ierr){
double result;
ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);
return result;

} else {
switch (iact) {

case 1:
result = (x[0]-2.e0*x[1] + 1.e0);
return result;

case 2:
result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);

200 • MinConNLP class JMSL

return result;
default:

ierr[0] = true;
return 0.e0;

}
}

}

public void gradient(double[] x, int iact, double[] result){
if(iact == 0){

result[0] = 2.e0*(x[0]-2.e0);
result[1] = 2.e0*(x[1]-1.e0);
return;

} else {
switch (iact) {

case 1:
result[0] = 1.e0;

result[1] = -2.e0;
return;

case 2:
result[0] = -0.5e0*x[0];

result[1] = -2.e0*x[1];
return;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;
int me = 1;
int n = 2;
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.setGuess(new double[]{2.,2.});
MinConNLPEx2 grad = new MinConNLPEx2();
double x[] = minconnon.solve(grad);
System.out.println("x is "+x[0] +" "+x[1]);

}
}

Output

x is 0.8228756555325117 0.9114378277662558

Example 3: Solving a general nonlinear programming problem with log-
ging

A general nonlinear programming problem is solved using a finite difference gradient.
Intermediate output is captured in a file named MinConNLPlog.txt. The level of output

Optimization MinConNLP class • 201

requested is FINE.

import com.imsl.math.*;
import com.imsl.Messages;
import com.imsl.IMSLException;
import java.util.logging.Logger;
import java.util.logging.LogRecord;
import java.util.logging.Level;
import java.util.logging.Handler;

public class MinConNLPEx3 implements MinConNLP.Function{

public double f(double[] x, int iact, boolean[] ierr){
double result;
ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);
return result;

} else {
switch (iact) {

case 1:
result = (x[0]-2.e0*x[1] + 1.e0);
return result;

case 2:
result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);
return result;

default:
ierr[0] = true;
return 0.e0;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;
int me = 1;
int n = 2;
double xinit[] = {2., 2.};
double x[] = {0.};
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.setGuess(xinit);
MinConNLPEx3 fcn = new MinConNLPEx3();
Logger logger = minconnon.getLogger();
Handler h = new java.util.logging.FileHandler("MinConNLPlog.txt");
logger.addHandler(h);
logger.setLevel(Level.FINE);
h.setFormatter(new MinConNLP.Formatter());
x = minconnon.solve(fcn);
System.out.println("x is "+x[0] +" "+x[1]);

}
}

202 • MinConNLP class JMSL

Output

x is 0.8228756555325116 0.9114378277662559

Contents of the file MinConNLPlog.txt after execution:

ITSTEP= 1 FX= 0.0 UPSI= 5.0 B2N=-1.0 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 2 FX= 0.47222222222222204 UPSI= 0.8055555555555558 B2N=7.447602459741819E-16 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 3 FX= 1.2261822533163689 UPSI= 0.09653353175869195 B2N=3.3306690738754696E-16 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 4 FX= 1.393242278445973 UPSI= 1.2061157826948055E-4 B2N=1.336885555457667E-15 UMI= 0.0 NR= 2 SI= -1

N= 2 M= 2 ME= 1

EPSX= 1.0E-5 SIGSM= 1.4901161193847656E-8

STARTVALUE
0.02.0

EPS= 2.220446049250313E-16 TOL= 2.2250738585072014E-308 DEL0= 0.5 DELM= 5.0E-7 TAU0= 1.0
TAU= 0.1 SD= 0.1 SW= 5.4782007307014466E-33 RHO= 1.0E-6 RHO1=1.0E-10

SCFM= 10000.0 C1D= 0.01 EPDI= 2.220446049250313E-16
NRE= 2 ANAL= false

VBND= 1.0 EFCN= 2.220446049250313E-16 DIFF= 1
TERMINATION REASON:
KT-CONDITIONS SATISFIED, NO FURTHER CORRECTION COMPUTED
EVALUATIONS OF F 18
EVALUATIONS OF GRAD F 0
EVALUATIONS OF CONSTRAINTS 48
EVALUATIONS OF GRADS OF CONSTRAINTS 0
FINAL SCALING OF OBJECTIVE 1.0
NORM OF GRAD(F) 2.360902457120518
LAGRANGIAN VIOLATION 9.992007221626409E-16
FEASIBILITY VIOLATION 2.866595849582154E-13
DUAL FEASIBILITY VIOLATION 0.0
OPTIMIZER RUNTIME SEC S

OPTIMAL VALUE OF F = 1.3934649806887736

OPTIMAL SOLUTION X =
0.8228756555325116 0.9114378277662559
MULTIPLIERS ARE RELATIVE TO SCF=1
NR. CONSTRAINT NORMGRAD (OR 1) MULTIPLIER
1 -2.220446049250313E-16 2.23606797749979 -1.5944911588359063
2 -2.864375403532904E-13 1.8687312653198707 1.8465915320074269
EVALUATIONS OF RESTRICTIONS AND THEIR GRADIENTS
(24.0, 0.0)

Optimization MinConNLP class • 203

(24.0, 0.0)
LAST ESTIMATE OF CONDITION OF ACTIVE GRADIENTS 1.958467797854007
LAST ESTIMATE OF CONDITION OF APPROX. HESSIAN 1.3588763739672172
ITERATIVE STEPS TOTAL 4
OF RESTARTS 0
OF FULL REGULAR UPDATES 3
OF UPDATES 3
OF FULL REGULARIZED SQP-STEPS 0
FX= 1 SCF= 5.0 PSI= 1.8687312653198707 UPS= 1.8465915320074269

DEL= 5.0E-5 B20= 0.0 B2N= -1.0 NR= 2
SI= -1 U-= 0.0 C-R= 1.5365907428821477 C-D= 1.0
XN= 2.8284271247461903 DN= 1.0671873729054746 PHA= -1 CL= 0
SKM= 0.0 SIG= 1.0 CF+= 0.0 DIR= -5.0
DSC= 0.0 COS= 1.0 VIO= 0.0
UPD= 0 TK= 0.0 XSI= 0.0

FX= 2 SCF= 0.8055555555555558 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 7.447602459741819E-16 NR= 2

SI= -1 U-= 0.0 C-R= 1.4798927762262672 C-D= 1.0
XN= 1.7716909687891085 DN= 0.49125734684608885 PHA= 1 CL= 1
SKM= 1.4727272299765986 SIG= 1.0 CF+= 1.0 DIR= -0.6737373565183514
DSC= 1.4727272299765986 COS= 1.0 VIO= 0.9079593845004515
UPD= 1 TK= 0.24133378083025844 XSI= 0.0

FX= 3 SCF= 0.09653353175869195 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 3.3306690738754696E-16 NR= 2

SI= -1 U-= 0.0 C-R= 1.9355267257931226 C-D= 1.4591929871177434
XN= 1.302259296758884 DN= 0.07742644541830818 PHA= 1 CL= 1
SKM= 3.4500000422411627 SIG= 1.0 CF+= 2.0 DIR= -0.17617369749845635
DSC= 3.4500000422411627 COS= 1.0 VIO= 1.0000000000000002
UPD= 1 TK= 0.005994854450114255 XSI= 0.0

FX= 4 SCF= 1.2061157826948055E-4 PSI= 0.0 UPS= 0
DEL= 0.05 B20= 0.0 B2N= 1.336885555457667E-15 NR= 2

SI= -1 U-= 0.0 C-R= 1.958467797854007 C-D= 1.3588763739672172
XN= 1.2280376253662906 DN= 1.0192836585976224E-4 PHA= 2 CL= 1
SKM= 3.892584026079591 SIG= 1.0 CF+= 2.0 DIR= -2.468065092929623E-4
DSC= 3.892584026079591 COS= 1.0 VIO= 1.0000000000000002
UPD= 1 TK= 1.0389391766841544E-8 XSI= 0.0

MinConNLP.Function interface

public interface com.imsl.math.MinConNLP.Function

Public interface for the user supplied function to the MinConNLP object.

Method

f
public double f(double[] x, int iact, boolean[] ierr)

204 • MinConNLP class JMSL

Description

Compute the value of the function at the given point.

Parameters

x – an input double array, the point at which the objective function or constraint is
to be evaluated
iact – an input int value indicating whether evaluation of the objective function is
requested or evaluation of a constraint is requested. If iact is zero, then an objective
function evaluation is requested. If iact is nonzero then the value of iact indicates
the index of the constraint to evaluate. (1 indicates the first constraint, 2 indicates
the second, etc.)
ierr – an input/output boolean array of length 1. On input ierr[0] is set to false. If
an error or other undesirable condition occurs during evaluation, then ierr[0] should
be set to true. Setting ierr[0] to true will result in the step size being reduced and the
step being tried again. (If ierr[0] is set to true for xguess, then an error is issued.)

Returns

a double. If iact is zero, then the value of the objective function at x is returned. If iact
is nonzero, then the computed constraint value at the point x is returned.

MinConNLP.Gradient interface

public interface com.imsl.math.MinConNLP.Gradient implements
com.imsl.math.MinConNLP.Function

Public interface for the user supplied function to compute the gradient for MinConNLP object.

Method

gradient
public void gradient(double[] x, int iact, double[] result)

Description

Computes the value of the gradient of the function at the given point.

Parameters

x – an input double array, the point at which the gradient of the objective function
or gradient of a constraint is to be evaluated
iact – an input int value indicating whether evaluation of the objective function
gradient is requested or evaluation of a constraint gradient is requested. If iact is
zero, then an objective function gradient evaluation is requested. If iact is nonzero
then the value of iact indicates the index of the constraint gradient to evaluate. (1
indicates the first constraint, 2 indicates the second, etc.)

Optimization MinConNLP class • 205

result – a double array. If iact is zero, then the value of the objective function
gradient at x is returned in result. If iact is nonzero, then the computed gradient of
the requested constraint value at the point x is returned in result.

MinConNLP.ConstraintEvaluationException class

static public class com.imsl.math.MinConNLP.ConstraintEvaluationException
extends com.imsl.IMSLException

Constraint evaluation returns an error with current point.

Constructors

MinConNLP.ConstraintEvaluationException
public MinConNLP.ConstraintEvaluationException(String message)

MinConNLP.ConstraintEvaluationException
public MinConNLP.ConstraintEvaluationException(String key, Object[]
arguments)

MinConNLP.ObjectiveEvaluationException class

static public class com.imsl.math.MinConNLP.ObjectiveEvaluationException
extends com.imsl.IMSLException

Objective evaluation returns an error with current point.

Constructors

MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException(String message)

MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException(String key, Object[]
arguments)

206 • MinConNLP class JMSL

MinConNLP.NoAcceptableStepsizeException class

static public class com.imsl.math.MinConNLP.NoAcceptableStepsizeException
extends com.imsl.IMSLException

No acceptable stepsize in [SIGMA,SIGLA].

Constructors

MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException(String message)

MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException(String key, Object[]
arguments)

MinConNLP.WorkingSetSingularException class

static public class com.imsl.math.MinConNLP.WorkingSetSingularException extends
com.imsl.IMSLException

Working set is singular in dual extended QP.

Constructors

MinConNLP.WorkingSetSingularException
public MinConNLP.WorkingSetSingularException(String message)

MinConNLP.WorkingSetSingularException
public MinConNLP.WorkingSetSingularException(String key, Object[] arguments)

MinConNLP.QPInfeasibleException class

static public class com.imsl.math.MinConNLP.QPInfeasibleException extends
com.imsl.IMSLException

Optimization MinConNLP class • 207

QP problem seemingly infeasible.

Constructors

MinConNLP.QPInfeasibleException
public MinConNLP.QPInfeasibleException(String message)

MinConNLP.QPInfeasibleException
public MinConNLP.QPInfeasibleException(String key, Object[] arguments)

MinConNLP.PenaltyFunctionPointInfeasibleException class

static public class
com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException extends
com.imsl.IMSLException

Penalty function point infeasible.

Constructors

MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(String message)

MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(String key,
Object[] arguments)

MinConNLP.LimitingAccuracyException class

static public class com.imsl.math.MinConNLP.LimitingAccuracyException extends
com.imsl.IMSLException

Limiting accuracy reached for a singular problem.

208 • MinConNLP class JMSL

Constructors

MinConNLP.LimitingAccuracyException
public MinConNLP.LimitingAccuracyException(String message)

MinConNLP.LimitingAccuracyException
public MinConNLP.LimitingAccuracyException(String key, Object[] arguments)

MinConNLP.TooManyIterationsException class

static public class com.imsl.math.MinConNLP.TooManyIterationsException extends
com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

MinConNLP.TooManyIterationsException
public MinConNLP.TooManyIterationsException(String message)

MinConNLP.TooManyIterationsException
public MinConNLP.TooManyIterationsException(String key, Object[] arguments)

MinConNLP.TooMuchTimeException class

static public class com.imsl.math.MinConNLP.TooMuchTimeException extends
com.imsl.math.MinConNLP.TooManyIterationsException

Maximum time allowed for solve exceeded. This class extends TooManyIterationsException
to keep the solve method backward compatible.

Constructor

MinConNLP.TooMuchTimeException
public MinConNLP.TooMuchTimeException(long maximumTime)

Optimization MinConNLP class • 209

MinConNLP.BadInitialGuessException class

static public class com.imsl.math.MinConNLP.BadInitialGuessException extends
com.imsl.IMSLException

Penalty function point infeasible for original problem. Try new initial guess.

Constructors

MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException(String message)

MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException(String key, Object[] arguments)

MinConNLP.IllConditionedException class

static public class com.imsl.math.MinConNLP.IllConditionedException extends
com.imsl.IMSLException

Problem is singular or ill-conditioned.

Constructors

MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException(String message)

MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException(String key, Object[] arguments)

MinConNLP.SingularException class

static public class com.imsl.math.MinConNLP.SingularException extends
com.imsl.IMSLException

Problem is singular.

210 • MinConNLP class JMSL

Constructors

MinConNLP.SingularException
public MinConNLP.SingularException(String message)

MinConNLP.SingularException
public MinConNLP.SingularException(String key, Object[] arguments)

MinConNLP.LinearlyDependentGradientsException class

static public class com.imsl.math.MinConNLP.LinearlyDependentGradientsException
extends com.imsl.IMSLException

Working set gradients are linearly dependent.

Constructors

MinConNLP.LinearlyDependentGradientsException
public MinConNLP.LinearlyDependentGradientsException(String message)

MinConNLP.LinearlyDependentGradientsException
public MinConNLP.LinearlyDependentGradientsException(String key, Object[]
arguments)

MinConNLP.TerminationCriteriaNotSatisfiedException class

static public class
com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException extends
com.imsl.IMSLException

Termination criteria are not satisfied.

Constructors

MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(String message)

Optimization MinConNLP class • 211

MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(String key,
Object[] arguments)

MinConNLP.Formatter class

static public class com.imsl.math.MinConNLP.Formatter extends
java.util.logging.Formatter

Simple formatter for MinConNLP logging

Constructor

MinConNLP.Formatter
public MinConNLP.Formatter()

Method

format
public String format(LogRecord record)

212 • MinConNLP class JMSL

Chapter 9: Special Functions

Types

class Sfun . 213
class Bessel . 229
class JMath . 234
class IEEE . 243
class Hyperbolic . 245

Sfun class

public class com.imsl.math.Sfun

Collection of special functions.

Fields

EPSILON LARGE
static final public double EPSILON LARGE

The largest relative spacing for doubles.

EPSILON SMALL
static final public double EPSILON SMALL

The smallest relative spacing for doubles.

213

Methods

beta
static public double beta(double a, double b)

Description

Returns the value of the Beta function. The beta function is defined to be

β(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0

ta−1(1− t)b−1dt

See gamma for the definition of Γ (x).

The method beta requires that both arguments be positive.

Parameters

a – a double value

b – a double value

Returns

a double value specifying the Beta function

betaIncomplete
static public double betaIncomplete(double x, double p, double q)

Description

Returns the incomplete Beta function ratio. The incomplete beta function is defined to be

Ix(p, q) =
βx(p, q)
β(p, q)

=
1

β(p, q)

∫ x

0

tp−1(1− t)q−1dt for 0 ≤ x ≤ 1, p > 0, q > 0

See beta for the definition of β (p, q).

The parameters p and q must both be greater than zero. The argument x must lie in the
range 0 to 1. The incomplete beta function can underflow for sufficiently small x and
large p; however, this underflow is not reported as an error. Instead, the value zero is
returned as the function value.

The method betaIncomplete is based on the work of Bosten and Battiste (1974).

Parameters

x – a double value specifying the upper limit of integration It must be in the
interval [0,1] inclusive.

p – a double value specifying the first Beta parameter. It must be positive.

q – a double value specifying the second Beta parameter. It must be positive.

214 • Sfun class JMSL

Returns

a double value specifying the incomplete Beta function ratio

cot
static public double cot(double x)

Description

Returns the cotangent of a double.

Parameter

x – a double value

Returns

a double value specifying the cotangent of x. If x is NaN, the result is NaN.

erf
static public double erf(double x)

Description

Returns the error function of a double.

The error function method, erf(x), is defined to be

erf (x) =
2√
π

∫ x

0

e−t2dt

All values of x are legal.

Special Functions Sfun class • 215

Error FunctionError Function

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
x

-1.00

-0.60

-0.20

0.20

0.60

1.00
er

f(
x)

Parameter

x – a double value

Returns

a double value specifying the error function of x

216 • Sfun class JMSL

erfc
static public double erfc(double x)

Description

Returns the complementary error function of a double.

The complementary error function method, erfc (x), is defined to be

erfc (x) =
2√
π

∫ ∞

x

e−t2dt

The argument x must not be so large that the result underflows. Approximately, x should
be less than

[
−ln

(√
πs
)]1/2

where s = Double.MIN VALUE is the smallest representable positive floating-point
number.

Special Functions Sfun class • 217

Complementary Error Function Complementary Error Function

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
x

0.00

0.40

0.80

1.20

1.60

2.00

er
fc

(x
)

Parameter

x – a double value

Returns

a double value specifying the complementary error function of x

erfcInverse

218 • Sfun class JMSL

static public double erfcInverse(double x)

Description

Returns the inverse of the complementary error function.

The erfcinverse(x) method computes the inverse of the complementary error function
erfc x, defined in erfc.

erfcinverse(x) is defined for 0 < x < 2. If xmax < x < 2, then the answer will be less
accurate than half precision. Very approximately,

xmax ≈ 2−
√
ε/(4π)

where ε = machine precision (approximately 1.11e-16).

Special Functions Sfun class • 219

Inverse Complementary Error FunctionInverse Complementary Error Function

0.00 0.40 0.80 1.20 1.60 2.00
x

-4.00

-2.00

0.00

2.00

4.00
er

fc
In

ve
rs

e(
x)

Parameter

x – a double value, 0 ≤ x ≤ 2.

Returns

a double value specifying the inverse of the error function of x.

220 • Sfun class JMSL

erfInverse
static public double erfInverse(double x)

Description

Returns the inverse of the error function.

erfInverse(X) method computes the inverse of the error function erf x, defined in erf.

The method erfInverse(X) is defined for xmax < |x| < 1, then the answer will be less
accurate than half precision. Very approximately,

xmax ≈ 1−
√
ε/ (4π)

where ε is the machine precision (approximately 1.11e-16).

Special Functions Sfun class • 221

Inverse Error FunctionInverse Error Function

-1.00 -0.60 -0.20 0.20 0.60 1.00
x

-5.00

-3.00

-1.00

1.00

3.00

5.00
er

fI
n

ve
rs

e(
x)

Parameter

x – a double value

Returns

a double value specifying the inverse of the error function of x

222 • Sfun class JMSL

fact
static public double fact(int n)

Description

Returns the factorial of an integer.

Parameter

n – an int value

Returns

a double value specifying the factorial of n, n!. If x is negative, the result is NaN.

gamma
static public double gamma(double x)

Description

Returns the Gamma function of a double.

The gamma function, Γ(x), is defined to be

Γ (x) =
∫ ∞

0

tx−1e−tdt for x > 0

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. Also, the
argument x must be greater than −170.56 so that Γ(x) does not underflow, and x must be
less than 171.64 so that Γ(x) does not overflow. The underflow limit occurs first for
arguments that are close to large negative half integers. Even though other arguments
away from these half integers may yield machine-representable values of Γ(x), such
arguments are considered illegal. Users who need such values should use the log gamma.
Finally, the argument should not be so close to a negative integer that the result is less
accurate than half precision.

Special Functions Sfun class • 223

Parameter

x – a double value

Returns

a double value specifying the Gamma function of x. If x is a negative integer, the result
is NaN.

224 • Sfun class JMSL

log10
static public double log10(double x)

Description

Returns the common (base 10) logarithm of a double.

Parameter

x – a double value

Returns

a double value specifying the common logarithm of x

logBeta
static public double logBeta(double a, double b)

Description

Returns the logarithm of the Beta function.

Method logBeta computes lnβ (a, b) = lnβ (b, a). See beta for the definition of β (a, b).

logBeta is defined for a ¿ 0 and b ¿ 0. It returns accurate results even when a or b is very
small. It can overflow for very large arguments; this error condition is not detected except
by the computer hardware.

Parameters

a – a double value

b – a double value

Returns

a double value specifying the natural logarithm of the Beta function

logGamma
static public double logGamma(double x)

Description

Returns the logarithm of the Gamma function of the absolute value of a double.

Method logGamma computes ln |Γ(x)|. See gamma for the definition of Γ(x).

The gamma function is not defined for integers less than or equal to zero. Also, |x| must
not be so large that the result overflows. Neither should x be so close to a negative integer
that the accuracy is worse than half precision.

Special Functions Sfun class • 225

Log Gamma FunctionLog Gamma Function

-10.00 -6.00 -2.00 2.00 6.00 10.00
x

-20.00

-10.00

0.00

10.00

20.00
lo

gG
am

m
a(

x)

Parameter

x – a double value

Returns

a double value specifying the natural logarithm of the Gamma function of |x|. If x is a
negative integer, the result is NaN.

226 • Sfun class JMSL

poch
static public double poch(double a, double x)

Description

Returns a generalization of Pochhammer’s symbol.

Method poch evaluates Pochhammer’s symbol (a)n = (a)(a− 1) . . . (a− n+ 1) for n a
nonnegative integer. Pochhammer’s generalized symbol is defined to be

(a)x =
Γ (a+ x)

Γ (a)

See gamma for the definition of Γ(x).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with either
gamma or log gamma functions can be especially unreliable when a is large or x is small.

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is
sufficiently small. To insure that the result does not overflow or underflow, one can keep
the arguments a and a + x well within the range dictated by the gamma function method
gamma or one can keep |x| small whenever a is large. poch also works for a variety of
arguments outside these rough limits, but any more general limits that are also useful are
difficult to specify.

Parameters

a – a double value specifying the first argument

x – a double value specifying the second, differential argument

Returns

a double value specifying the generalized Pochhammer symbol, gamma(a+x)/gamma(a)

r9lgmc
static public double r9lgmc(double x)

Description

Returns the log gamma correction term for argument values greater than or equal to 10.0.

Parameter

x – a double value

Returns

a double value specifying the log gamma correction term.

sign
static public double sign(double x, double y)

Special Functions Sfun class • 227

Description

Returns the value of x with the sign of y.

Parameters

x – a double value

y – a double value

Returns

a double value specifying the absolute value of x and the sign of y

Example: The Special Functions

Various special functions are exercised. Their use in this example typifies the manner in which
other special functions in the Sfun class would be used.

import com.imsl.math.*;

public class SfunEx1 {
public static void main(String args[]) {

double result;

// Log base 10 of x
double x = 100.;
result = Sfun.log10(x);
System.out.println("The log base 10 of 100. is "+result);

// Factorial of 10
int n = 10;
result = Sfun.fact(n);
System.out.println("10 factorial is "+result);

// Gamma of 5.0
double x1 = 5.;
result = Sfun.gamma(x1);
System.out.println("The Gamma function at 5.0 is "+result);

// LogGamma of 1.85
double x2 = 1.85;
result = Sfun.logGamma(x2);
System.out.println("The logarithm of the absolute value of the " +
"Gamma function \n at 1.85 is " + result);

// Beta of (2.2, 3.7)
double a = 2.2;
double b = 3.7;
result = Sfun.beta(a, b);
System.out.println("Beta(2.2, 3.7) is "+result);

// LogBeta of (2.2, 3.7)
double a1 = 2.2;
double b1 = 3.7;

228 • Sfun class JMSL

result = Sfun.logBeta(a1, b1);
System.out.println("logBeta(2.2, 3.7) is "+result + "\n");

}
}

Output

The log base 10 of 100. is 2.0
10 factorial is 3628800.0
The Gamma function at 5.0 is 24.0
The logarithm of the absolute value of the Gamma function

at 1.85 is -0.05592381301965721
Beta(2.2, 3.7) is 0.045375983484708095
logBeta(2.2, 3.7) is -3.0927723120378947

Bessel class

public class com.imsl.math.Bessel

Collection of Bessel functions.

Methods

I
static public double[] I(double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the first kind with integer order and
real argument. The Bessel function In(x) is defined to be

In (x) =
1
π

∫ π

0

ex cos θ cos (n θ) d θ

The input x must satisfy |x| ≤ log(b) where b is the largest representable floating-point
number. The algorithm is based on a code due to Sookne (1973b), which uses backward
recursion.

Parameters

x – a double representing the argument of the Bessel functions to be evaluated

n – is the int order of the last element in the sequence

Special Functions Bessel class • 229

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.I[i] contains the value of the Bessel function of order i.

I
static public double[] I(double xnu, double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the first kind with real order and real
argument. The Bessel function Iv(x), is defined to be

Iν(x) =
1
π

∫ π

0

ex cos θ cos(νθ)d θ − sin(νπ)
π

∫ ∞

0

e−x cosh t−vtdt

Here, argument xnu is represented by ν in the above equation.

The input x must be nonnegative and less than or equal to log(b) (b is the largest
representable number). The argument ν= xnu must satisfy 0 ≤ ν ≤ 1.

This function is based on a code due to Cody (1983), which uses backward recursion.

Parameters

xnu – a double representing the lowest order desired. xnu must be at least zero and
less than 1

x – a double representing the argument of the Bessel functions to be evaluated

n – is the int order of the last element in the sequence

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.I[i] contains the value of the Bessel function of order i+xnu.

J
static public double[] J(double x, int n)

Description

Evaluates a sequence of Bessel functions of the first kind with integer order and real
argument. The Bessel function Jn(x), is defined to be

Jn (x) =
1
π

∫ π

0

cos (x sin θ − n θ) d θ

The algorithm is based on a code due to Sookne (1973b) that uses backward recursion
with strict error control.

Parameters

x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated

n – an int which specifies the order of the last element in the sequence

230 • Bessel class JMSL

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.J[i] contains the value of the Bessel function of order i at x for i=0 to n.

J
static public double[] J(double xnu, double x, int n)

Description

Evaluate a sequence of Bessel functions of the first kind with real order and real positive
argument. The Bessel function Jv(x), is defined to be

Jν(x) =
(x/2)ν

√
πΓ(ν + 1/2)

∫ π

0

cos (x cos θ) sin2ν θ d θ

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses
backward recursion.
Parameters

xnu – a double representing the lowest order desired. xnu must be at least zero and
less than 1.
x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated
n – an int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.J[I] contains the value of the Bessel function of order I+v at x for I=0 to n.

K
static public double[] K(double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the third kind with integer order and
real argument. This function uses exKν+k−1 for k = 1, . . . , n and ν = 0. For the definition
of Kv(x), see above.
Parameters

x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated
n – an int which specifies the order of the last element in the sequence

Returns

a double array of length n+1 containing the values of the function through the series

K
static public double[] K(double xnu, double x, int n)

Special Functions Bessel class • 231

Description

Evaluates a sequence of modified Bessel functions of the third kind with fractional order
and real argument. The Bessel function Kv(x) is defined to be

Kν(x) =
π

2
eνπi/2 [i Jν(ix)− Yν(ix)] for− π < arg x ≤ π

2
Currently, xnu (represented by ν in the above equation) is restricted to be less than one
in absolute value. A total of n values is stored in the result, K.
K[0] = Kv(x), K[1] = Kv+1(x), . . ., K[n− 1] = Kv+n−1(x).
This method is based on the work of Cody (1983).
Parameters

xnu – a double representing the fractional order of the function. xnu must be less
than one in absolute value.
x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated.
n – an int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.K[I] contains the value of the Bessel function of order I+v at x for I=0 to n.

scaledK
static public double[] scaledK(double v, double x, int n)

Description

Evaluate a sequence of exponentially scaled modified Bessel functions of the third kind
with fractional order and real argument. This function evaluates exKv+i−1(x), for
i=1,...,n where K is the modified Bessel function of the third kind. Currently, v is
restricted to be less than 1 in absolute value. A total of |n|+ 1 elements are returned in
the array. This code is particularly useful for calculating sequences for large x provided n
= x. (Overflow becomes a problem if n << x.) n must not be zero, and x must be greater
than zero. |v|must be less than 1. Also, when |n| is large compared with x, |v + n| must
not be so large that

exKν+n(x) ≈ ex Γ(|ν + n|
2(x/2)|ν+n|

overflows. The code is based on work of Cody (1983).
Parameters

v – a double representing the fractional order of the function. v must be less than
one in absolute value.
x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated.
n – an int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).

232 • Bessel class JMSL

Returns

a double array of length n+1 containing the values of the function through the series. If n
is positive, Bessel.K[I] contains ex times the value of the Bessel function of order I+v at
x for I=0 to n. If n is negative, Bessel.K[I] contains ex times the value of the Bessel
function of order v-I at x for I=0 to n.

Y
static public double[] Y(double xnu, double x, int n)

Description

Evaluate a sequence of Bessel functions of the second kind with real nonnegative order
and real positive argument. The Bessel function Yv(x) is defined to be

Yν(x) =
1
π

∫ π

0

cos(x sin θ − νθ)d θ

− 1
π

∫ ∞

0

[
eνt + e−νt cos (νπ)

]
e−x sinh t dt

The variable xnu (represented by νin the above equation) must satisfy 0 ≤ ν < 1. If this
condition is not met, then Y is set to NaN. In addition, x must be in [xm, xM] where
xm = 6(16−32) and xm = 169. If x < xm, then the largest representable number is
returned; and if x < xM , then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969;
NATS FUNPACK 1976). It uses a special series expansion for small arguments. For
moderate arguments, an analytic continuation in the argument based on Taylor series
with special rational minimax approximations providing starting values is employed. An
asymptotic expansion is used for large arguments.

Parameters

xnu – a double representing the lowest order desired. xnu must be at least zero and
less than 1

x – a double representing the argument for which the sequence of Bessel functions is
to be evaluated

n – an int such that n+1 elements will be evaluated in the sequence

Returns

a double array of length n+1 containing the values of the function through the series.
Bessel.K[I] contains the value of the Bessel function of order I+v at x for I=0 to n.

Example: The Bessel Functions

The Bessel functions I, J, and K are exercised for orders 0, 1, 2, and 3 at argument 10.e0.

Special Functions Bessel class • 233

import com.imsl.math.*;

public class BesselEx1 {
public static void main(String args[]) {

double x = 10.e0;
int hiorder = 4;
// Exercise some of the Bessel functions with argument 10.0
double bi[] = Bessel.I(x, hiorder);
double bj[] = Bessel.J(x, hiorder);
double bk[] = Bessel.K(x, hiorder);

System.out.println("Order Bessel.I Bessel.J" +
" Bessel.K");
for(int i = 0; i < 4; i++) {

System.out.println(i+" "+bi[i]+" "+bj[i]+" "+bk[i]);
}
System.out.println();

}
}

Output

Order Bessel.I Bessel.J Bessel.K
0 2815.7166284662553 -0.24593576445134832 1.7780062316167654E-5
1 2670.9883037012555 0.043472746168861535 1.8648773453825585E-5
2 2281.5189677260046 0.2546303136851206 2.150981700693277E-5
3 1758.3807166108538 0.05837937930518672 2.725270025659869E-5

JMath class

public final class com.imsl.math.JMath

Pure Java implementation of the standard java.lang.Math class. This Java code is based on C
code in the package fdlibm, which can be obtained from www.netlib.org.

Fields

E
static final public double E

PI

234 • JMath class JMSL

static final public double PI

Methods

abs
static public double abs(double x)

Description

Returns the absolute value of a double.

Parameter

x – a double

Returns

a double representing |x|.

abs
static public float abs(float x)

Description

Returns the absolute value of a float.

Parameter

x – a float

Returns

a float representing |x|.

abs
static public int abs(int x)

Description

Returns the absolute value of an int.

Parameter

x – an int

Returns

an int representing |x|.

abs
static public long abs(long x)

Description

Returns the absolute value of a long.

Special Functions JMath class • 235

Parameter

x – a long

Returns

a long representing |x|.

acos
static public double acos(double x)

Description

Returns the inverse (arc) cosine of a double.

Parameter

x – a double

Returns

a double representing the angle, in radians, whose cosine is x. It is in the range [0, π].

asin
static public double asin(double x)

Description

Returns the inverse (arc) sine of a double.

Parameter

x – a double

Returns

a double representing the angle, in radians, whose sine is x. It is in the range
[−π/2, π/2].

atan
static public double atan(double x)

Description

Returns the inverse (arc) tangent of a double.

Parameter

x – a double

Returns

a double representing the angle, in radians, whose tangent is x. It is in the range
[−π/2, π/2].

atan2
static public double atan2(double y, double x)

236 • JMath class JMSL

Description

Returns the angle corresponding to a Cartesian point.

Parameters

x – a double, the first argument

y – a double, the second argument

Returns

a double representing the angle, in radians, the the line from (0,0) to (x,y) makes with
the x-axis. It is in the range [−π, π].

ceil
static public double ceil(double x)

Description

Returns the value of a double rounded toward positive infinity to an integral value.

Parameter

x – a double

Returns

the smallest double, not less than x, that is an integral value

cos
static public double cos(double x)

Description

Returns the cosine of a double.

Parameter

x – a double, assumed to be in radians

Returns

a double, the cosine of x

exp
static public double exp(double x)

Description

Returns the exponential of a double. Special cases: e∞ is ∞, eNaN is NaN; e−∞ is 0, and
for finite argument, only e0 = 1 is exact.

Parameter

x – a double.

Special Functions JMath class • 237

Returns

a double representing ex.

floor
static public double floor(double x)

Description

Returns the value of a double rounded toward negative infinity to an integral value.

Parameter

x – a double

Returns

the smallest double, not greater than x, that is an integral value

IEEEremainder
static public double IEEEremainder(double x, double p)

Description

Returns the IEEE remainder from x divided by p. The IEEE remainder is
x%p = x− [x/p]× p as if in infinite precise arithmetic, where [x/p] is the (infinite bit)
integer nearest x/p (in half way case choose the even one).

Parameters

x – a double, the dividend

p – a double, the divisor

Returns

a double representing the remainder computed according to the IEEE 754 standard.

log
static public double log(double x)

Description

Returns the natural logarithm of a double.

Parameter

x – a double

Returns

a double representing the natural (base e) logarithm of x

max
static public double max(double x, double y)

238 • JMath class JMSL

Description

Returns the larger of two doubles.

Parameters

x – a double

y – a double

Returns

a double, the larger of x and y. This function considers -0.0 to be less than 0.0.

max
static public float max(float x, float y)

Description

Returns the larger of two floats.

Parameters

x – a float

y – a float

Returns

a float, the larger of x and y. This function considers -0.0f to be less than 0.0f.

max
static public int max(int x, int y)

Description

Returns the larger of two ints.

Parameters

x – an int

y – an int

Returns

an int, the larger of x and y

max
static public long max(long x, long y)

Description

Returns the larger of two longs.

Parameters

x – a long

y – a long

Special Functions JMath class • 239

Returns

a long, the larger of x and y

min
static public double min(double x, double y)

Description

Returns the smaller of two doubles.

Parameters

x – a double

y – a double

Returns

a double, the smaller of x and y. This function considers -0.0 to be less than 0.0.

min
static public float min(float x, float y)

Description

Returns the smaller of two floats.

Parameters

x – a float

y – a float

Returns

a float, the smaller of x and y. This function considers -0.0f to be less than 0.0f.

min
static public int min(int x, int y)

Description

Returns the smaller of two ints.

Parameters

x – an int

y – an int

Returns

an int representing the smaller of x and y

min
static public long min(long x, long y)

240 • JMath class JMSL

Description

Returns the smaller of two longs.

Parameters

x – a long

y – a long

Returns

a long, the smaller of x and y

pow
static public double pow(double x, double y)

Description

Returns x to the power y.

Parameters

x – a double, the base

y – a double, the exponent

Returns

a double, x to the power y

random
static public double random()

Description

Returns a random number from a uniform distribution.

Returns

a double representing a random number from a uniform distribution

rint
static public double rint(double x)

Description

Returns the value of a double rounded toward the closest integral value.

Parameter

x – a double

Returns

the double closest to x that is an integral value

round
static public long round(double x)

Special Functions JMath class • 241

Description

Returns the long closest to a given double.

Parameter

x – a double

Returns

the long closest to x

round
static public int round(float x)

Description

Returns the integer closest to a given float.

Parameter

x – a float

Returns

the int closest to x

sin
static public double sin(double x)

Description

Returns the sine of a double.

Parameter

x – a double, assumed to be in radians

Returns

a double, the sine of x

sqrt
static public double sqrt(double x)

Description

Returns the square root of a double.

Parameter

x – a double

Returns

a double representing the square root of x

tan
static public double tan(double x)

242 • JMath class JMSL

Description

Returns the tangent of a double.

Parameter

x – a double, assumed to be in radians

Returns

a double, the tangent of x

IEEE class

public class com.imsl.math.IEEE

Pure Java implementation of the IEEE 754 functions as specified in IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

This Java code is based on C code in the package fdlibm, which can be obtained from
www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify, and
distribute this software is freely granted, provided that this notice is preserved.

Methods

copysign
static public double copysign(double x, double y)

Description

Returns a value with the magnitude of x and with the sign bit of y. If y is NaN then
—x— is returned.

Parameters

x – a double from which the magnitude will be gleaned

y – a double from which the sign will be gleaned

Returns

a double value with magnitude x and sign of y

finite
static public boolean finite(double x)

Special Functions IEEE class • 243

Description

Finite number test on an argument of type double.

Parameter

x – the double which is to be tested

Returns

true if x is a finite number, false if x is a NaN or an infinity

ilogb
static public int ilogb(double x)

Description

Return the binary exponent of non-zero x.

Parameter

x – a double

Returns

an int representing the binary exponent of x. Special cases ilogb(0) =
-Integer.MAX VALUE and ilogb(∞) = ilogb(−∞) = ilogb(NaN) = Integer.MAX VALUE.

isNaN
static public boolean isNaN(double x)

Description

NaN test on an argument of type double.

Parameter

x – the double which is to be tested

Returns

true if x is a NaN, false otherwise

nextAfter
static public double nextAfter(double x, double y)

Description

Returns the next machine floating-point number next to x in the direction toward y.

Parameters

x – a double

y – a double

244 • IEEE class JMSL

Returns

a double which represents the value which is closest to x in the interval bounded by x
and y

scalbn
static public double scalbn(double x, int n)

Description

Returns 2n computed by exponent manipulation rather than by actually performing an
exponentiation or a multiplication.

Parameters

x – a double

n – an int representing the power to which 2 is raised

Returns

a double representing x2n.

unordered
static public boolean unordered(double x, double y)

Description

Unordered test on a pair of doubles. Tests whether either of a pair of doubles is a NaN.

Parameters

x – a double

y – a double

Returns

true if either x or y is a NaN, false otherwise

Hyperbolic class

public class com.imsl.math.Hyperbolic

Pure Java implementation of the hyperbolic functions and their inverses.

This Java code is based on C code in the package fdlibm, which can be obtained from
www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify, and
distribute this software is freely granted, provided that this notice is preserved.

Special Functions Hyperbolic class • 245

Methods

acosh
static public double acosh(double x)

Description

Returns the inverse hyperbolic cosine of its argument. Specifically,
acosh(1) returns +0
acosh(±∞) returns +∞
acosh(x) returns NaN, if |x| < 1.

Parameter

x – a double value representing the argument.

Returns

a double value representing the number whose hyperbolic cosine is x.

asinh
static public double asinh(double x)

Description

Returns the inverse hyperbolic sine of its argument. Specifically,
asinh(±0) returns ±∞
asinh(±∞) returns ±∞

Parameter

x – a double value representing the argument.

Returns

a double value representing the number whose hyperbolic sine is x.

atanh
static public double atanh(double x)

Description

Returns the inverse hyperbolic tangent of its argument. Specifically,
atanh(±0) returns ±0
atanh(±1) returns +∞
atanh(x) returns NaN, if |x| > 1.

Parameter

x – a double value representing the argument.

246 • Hyperbolic class JMSL

Returns

a double value representing the number whose hyperbolic tangent is x.

cosh
static public double cosh(double x)

Description

Returns the hyperbolic cosine of its argument. Specifically,
cosh(±0) returns 1.
cosh(±∞) returns +∞

Parameter

x – a double value representing the argument.

Returns

a double value representing the hyperbolic cosine of x.

expm1
static public double expm1(double x)

Description

Returns exp(x)-1, the exponential of x minus 1. Specifically,
expm1(±0) returns ±0
expm1(+∞) returns ±∞
expm1(−∞) returns -1.

Parameter

x – a double specifying the argument.

Returns

a double value representing exp(x)-1.

log1p
static public double log1p(double x)

Description

Returns log(1+x), the logarithm of (x plus 1). Specifically,
log1p(±0) returns ±0
log1p(−1) returns −∞
log1p(x) returns NaN, if x < −1.
log1p(±∞) returns ±∞

Parameter

x – a double value representing the argument.

Special Functions Hyperbolic class • 247

Returns

a double value representing log(1+x).

sinh
static public double sinh(double x)

Description

Returns the hyperbolic sine of its argument. Specifically,
sinh(±0) returns ±0
sinh(±∞) returns ±∞

Parameter

x – a double value representing the argument.

Returns

a double value representing the hyperbolic sine of x.

tanh
static public double tanh(double x)

Description

Returns the hyperbolic tangent of its argument. Specifically,
tanh(±0) returns ±0
tanh(±∞) returns ±1.

Parameter

x – a double value representing the argument.

Returns

a double value representing the hyperbolic tangent of x.

Example: The Hyperbolic Functions

The Hyperbolic functions are exercised with argument 0.

import com.imsl.math.*;

public class HyperbolicEx1 {
public static void main(String args[]) {

// Exercise the hyperbolic functions with argument 0.0
System.out.println("sinh(0.) is "+Hyperbolic.sinh(0.));
System.out.println("cosh(0.) is "+Hyperbolic.cosh(0.));
System.out.println("tanh(0.) is "+Hyperbolic.tanh(0.));
System.out.println("asinh(0.) is "+Hyperbolic.asinh(0.));
System.out.println("acosh(0.) is "+Hyperbolic.acosh(0.));

248 • Hyperbolic class JMSL

System.out.println("atanh(0.) is "+Hyperbolic.atanh(0.));
}

}

Output

sinh(0.) is 0.0
cosh(0.) is 1.0
tanh(0.) is 0.0
asinh(0.) is 0.0
acosh(0.) is NaN
atanh(0.) is 0.0

Chapter 9. Special Functions Hyperbolic class • 249

250 • Hyperbolic class JMSL

Chapter 10: Miscellaneous

Types

class Complex . 251
class Physical . 272
class EpsilonAlgorithm . 283

Complex class

public class com.imsl.math.Complex extends java.lang.Number implements
Serializable, Cloneable

Set of mathematical functions for complex numbers. It provides the basic operations (addition,
subtraction, multiplication, division) as well as a set of complex functions. The binary
operations have the form, where op is add, subtract, multiply or divide.

public static Complex op(Complex x, Complex y) // x op y
public static Complex op(Complex x, double y) // x op y
public static Complex op(double x, Complex y) // x op y

Complex objects are immutable. Once created there is no way to change their value. The
functions in this class follow the rules for complex arithmetic as defined C9x Annex G: IEC
559-compatible complex arithmetic. The API is not the same, but handling of infinities, NaNs,
and positive and negative zeros is intended to follow the same rules.

Fields

i
static final public Complex i

251

The imaginary unit. This constant is set to new Complex(0,1).

suffix
static public String suffix

String used in converting Complex to String. Default is i, but sometimes j is desired.
Note that this is set for the class, not for a particular instance of a Complex.

Constructors

Complex
public Complex()

Description

Constructs a Complex equal to zero.

Complex
public Complex(Complex z)

Description

Constructs a Complex equal to the argument.

Parameter

z – a Complex object

NullPointerException is thrown if z is null

Complex
public Complex(double re)

Description

Constructs a Complex with a zero imaginary part.

Parameter

re – a double value equal to the real part of the Complex object

Complex
public Complex(double re, double im)

Description

Constructs a Complex with real and imaginary parts given by the input arguments.

Parameters

re – a double value equal to the real part of the Complex object

im – a double value equal to the imaginary part of the Complex object

252 • Complex class JMSL

Methods

abs
static public double abs(Complex z)

Description

Returns the absolute value (modulus) of a Complex, —z—.

Parameter

z – a Complex object

Returns

a double value equal to the absolute value of the argument

acos
static public Complex acos(Complex z)

Description

Returns the inverse cosine (arc cosine) of a Complex, with branch cuts outside the interval
[-1,1] along the real axis.

Specifically, if z = x+iy,
acos(z̄) = acos(z).
acos(±0 + i0) returns π/2− i0.
acos(−∞+ i∞) returns 3π/4− i∞.
acos(+∞+ i∞) returns π/4− i∞.
acos(x+ i∞) returns π/2− i∞, for finite x.
acos(−∞+ iy) returns π − i∞, for positive-signed finite y.
acos(+∞+ iy) returns +0− i∞, for positive-signed finite y.
acos(±∞+ iNaN) returns NaN± i∞ (where the sign of the imaginary part of the result is
unspecified).
acos(±0 + iNaN) returns π/2 + iNaN.
acos(NaN + i∞) returns NaN− i∞.
acos(x+ iNaN) returns NaN + iNaN, for nonzero finite x.
acos(NaN + iy) returns NaN + iNaN, for finite y.
acos(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to the inverse (arc) cosine of the argument. The
real part of the result is in the interval [0, π].

acosh
static public Complex acosh(Complex z)

Miscellaneous Complex class • 253

Description

Returns the inverse hyperbolic cosine (arc cosh) of a Complex, with a branch cut at values
less than one along the real axis.

Specifically, if z = x+iy,
acosh(z̄) = acosh(z).
acosh(±0 + i0) returns +0 + iπ/2.
acosh(−∞+ i∞) returns +∞+ i3π/4.
acosh(+∞+ i∞) returns +∞+ iπ/4.
acosh(x+ i∞) returns +∞+ iπ/2, for finite x.
acosh(−∞+ iy) returns +∞+ iπ, for positive-signed finite y.
acosh(+∞+ iy) returns +∞+ i0, for positive-signed finite y.
acosh(NaN + i∞) returns +∞+ iNaN.
acosh(±∞+ iNaN) returns +∞+ iNaN.
acosh(x+ iNaN) returns NaN + iNaN, for finite x.
acosh(NaN + iy) returns NaN + iNaN, for finite y.
acosh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to the inverse (arc) hyperbolic cosine of the
argument. The real part of the result is non-negative and its imaginary part is in the
interval [−iπ, iπ].

add
static public Complex add(Complex x, Complex y)

Description

Returns the sum of two Complex objects, x+y.

Parameters

x – a Complex object

y – a Complex object

Returns

a newly constructed Complex initialized to x+y

add
static public Complex add(Complex x, double y)

Description

Returns the sum of a Complex and a double, x+y.

254 • Complex class JMSL

Parameters

x – a Complex object

y – a double value

Returns

a newly constructed Complex initialized to x+y

add
static public Complex add(double x, Complex y)

Description

Returns the sum of a double and a Complex, x+y.

Parameters

x – a double value

y – a Complex object

Returns

a newly constructed Complex initialized to x+y

argument
static public double argument(Complex z)

Description

Returns the argument (phase) of a Complex, in radians, with a branch cut along the
negative real axis.

Parameter

z – a Complex object

Returns

A double value equal to the argument (or phase) of a Complex. It is in the interval
[−π, π].

asin
static public Complex asin(Complex z)

Description

Returns the inverse sine (arc sine) of a Complex, with branch cuts outside the interval
[-1,1] along the real axis. The value of asin is defined in terms of the function asinh, by
asin(z) = −i asinh(iz).

Parameter

z – a Complex object

Miscellaneous Complex class • 255

Returns

A newly constructed Complex initialized to the inverse (arc) sine of the argument. The
real part of the result is in the interval [−π/2,+π/2].

asinh
static public Complex asinh(Complex z)

Description

Returns the inverse hyperbolic sine (arc sinh) of a Complex, with branch cuts outside the
interval [-i,i].

Specifically, if z = x+iy,
asinh(z̄) = asinh(z) and asinh is odd.
asinh(+0 + i0) returns 0 + i0.
asinh(∞+ i∞) returns +∞+ iπ/4.
asinh(x+ i∞) returns +∞+ iπ/2 for positive-signed finite x.
asinh(+∞+ iy) returns +∞+ i0 for positive-signed finite y.
asinh(NaN + i∞) returns ±∞+ iNaN (where the sign of the real part of the result is
unspecified).
asinh(+∞+ iNaN) returns +∞+ iNaN.
asinh(NaN + i0) returns NaN + i0.
asinh(NaN + iy) returns NaN + iNaN, for finite nonzero y.
asinh(x+ iNaN) returns NaN + iNaN, for finite x.
asinh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to the inverse (arc) hyperbolic sine of the
argument. Its imaginary part is in the interval [−iπ/2, iπ/2].

atan
static public Complex atan(Complex z)

Description

Returns the inverse tangent (arc tangent) of a Complex, with branch cuts outside the
interval [-i,i] along the imaginary axis. The value of atan is defined in terms of the
function atanh, by atan(z) = −i atanh(iz).

Parameter

z – a Complex object

256 • Complex class JMSL

Returns

A newly constructed Complex initialized to the inverse (arc) tangent of the argument. Its
real part is in the interval [−π/2, π/2].

atanh
static public Complex atanh(Complex z)

Description

Returns the inverse hyperbolic tangent (arc tanh) of a Complex, with branch cuts outside
the interval [-1,1] on the real axis.

Specifically, if z = x+iy,
atanh(z̄) = atanh(z) and atanh is odd.
atanh(+0 + i0) returns +0 + i0.
atanh(+∞+ i∞) returns +0 + iπ/2.
atanh(+∞+ iy) returns +0 + iπ/2, for finite positive-signed y.
atanh(x+ i∞) returns +0 + iπ/2, for finite positive-signed x.
atanh(+0 + iNaN) returns +0 + iNaN.
atanh(NaN + i∞) returns ±0 + ipi/2 (where the sign of the real part of the result is
unspecified).
atanh(+∞+ iNaN) returns +0 + iNaN.
atanh(NaN + iy) returns NaN + iNaN, for finite y.
atanh(x+ iNaN) returns NaN + iNaN, for nonzero finite x.
atanh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to the inverse (arc) hyperbolic tangent of the
argument. The imaginary part of the result is in the interval [−iπ/2, iπ/2].

byteValue
public byte byteValue()

Description

Returns the value of the real part as a byte.

Returns

a byte representing the value of the real part of a Complex object

compareTo
public int compareTo(Complex z)

Miscellaneous Complex class • 257

Description

Compares two Complex objects.

A lexagraphical ordering is used. First the real parts are compared in the sense of
Double.compareTo. If the real parts are unequal this is the return value. If the return
parts are equal then the comparison of the imaginary parts is returned.

Parameter

z – a Complex to be compared

Returns

The value 0 if z is equal to this Complex; a value less than 0 if this Complex is less than z;
and a value greater than 0 if this Complex is greater than z.

compareTo
public int compareTo(Object obj)

Description

Compares this Complex to another Object. If the Object is a Complex, this function
behaves like compareTo(Complex). Otherwise, it throws a ClassCastException (as
Complex objects are comparable only to other Complex objects).

Parameter

obj – an Object to be compared

Returns

an int, 0 if obj is equal to this Complex; a value less than 0 if this Complex is less than
obj; and a value greater than 0 if this Complex is greater than obj.

ClassCastException is thrown if obj is not a Complex object

conjugate
static public Complex conjugate(Complex z)

Description

Returns the complex conjugate of a Complex object.

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the complex conjugate of Complex argument, z

cos
static public Complex cos(Complex z)

258 • Complex class JMSL

Description

Returns the cosine of a Complex. The value of cos is defined in terms of the function cosh,
by cos(z) = cosh(iz).

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the cosine of the argument

cosh
static public Complex cosh(Complex z)

Description

Returns the hyperbolic cosh of a Complex.

If z = x+iy,
cosh(z̄) = cosh(z) and cosh is even.
cosh(+0 + i0) returns 1 + i0.
cosh(+0 + i∞) returns NaN± i0 (where the sign of the imaginary part of the result is
unspecified).
cosh(+∞+ i0) returns +∞+ i0.
cosh(+∞+ i∞) returns +∞+ iNaN.
cosh(x+ i∞) returns NaN + iNaN, for finite nonzero x.
cosh(+∞+ iy) returns +∞[cos(y) + i sin(y)], for finite nonzero y.
cosh(+0 + iNaN) returns NaN± i0 (where the sign of the imaginary part of the result is
unspecified).
cosh(+∞+ iNaN) returns +∞+ iNaN.
cosh(x+ iNaN) returns NaN + iNaN, for finite nonzero x.
cosh(NaN + i0) returns NaN± i0 (where the sign of the imaginary part of the result is
unspecified).
cosh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
cosh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the hyperbolic cosine of the argument

divide
static public Complex divide(Complex x, Complex y)

Description

Returns the result of a Complex object divided by a Complex object, x/y.

Miscellaneous Complex class • 259

Parameters

x – a Complex object representing the numerator

y – a Complex object representing the denominator

Returns

a newly constructed Complex initialized to x/y

divide
static public Complex divide(Complex x, double y)

Description

Returns the result of a Complex object divided by a double, x/y.

Parameters

x – a Complex object representing the numerator

y – a double representing the denominator

Returns

a newly constructed Complex initialized to x/y

divide
static public Complex divide(double x, Complex y)

Description

Returns the result of a double divided by a Complex object, x/y.

Parameters

x – a double value

y – a Complex object representing the denominator

Returns

a newly constructed Complex initialized to x/y

doubleValue
public double doubleValue()

Description

Returns the value of the real part as a double.

Returns

a double representing the value of the real part of a Complex object

equals
public boolean equals(Complex z)

260 • Complex class JMSL

Description

Compares with another Complex.

Note: To be useful in hashtables this method considers two NaN double values to be
equal. This is not according to IEEE specification.

Parameter

z – a Complex object

Returns

true if the real and imaginary parts of this object are equal to their counterparts in the
argument; false, otherwise

equals
public boolean equals(Object obj)

Description

Compares this object against the specified object.

Note: To be useful in hashtables this method considers two NaN double values to be
equal. This is not according to IEEE specification

Parameter

obj – the object to compare with

Returns

true if the objects are the same; false otherwise

exp
static public Complex exp(Complex z)

Description

Returns the exponential of a Complex z, exp(z).

Specifically, if z = x+iy,
exp(z̄) = exp(z).
exp(±0 + i0) returns 1 + i0.
exp(+∞+ i0) returns +∞+ i0.
exp(−∞+ i∞) returns ±0± i0 (where the signs of the real and imaginary parts of the
result are unspecified).
exp(+∞+ i∞) returns ±∞+ iNaN (where the sign of the real part of the result is
unspecified).
exp(x+ i∞) returns NaN + iNaN, for finite x.
exp(−∞+ iy) returns +0[cos(y) + i sin(y)], for finite y.
exp(+∞+ iy) returns +∞[cos(y) + i sin(y)], for finite nonzero y.
exp(−∞+ iNaN) returns ±0± i0 (where the signs of the real and imaginary parts of the
result are unspecified).
exp(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the result is

Miscellaneous Complex class • 261

unspecified).
exp(NaN + i0) returns NaN + i0.
exp(NaN + iy) returns NaN + iNaN, for all non-zero numbers y.
exp(x+ iNaN) returns NaN + iNaN, for finite x.

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the exponential of the argument

floatValue
public float floatValue()

Description

Returns the value of the real part as a float.

Returns

a float representing the value of the real part of a Complex object

hashCode
public int hashCode()

Description

Returns a hashcode for this Complex.

Returns

a hash code value for this object

imag
public double imag()

Description

Returns the imaginary part of a Complex object.

Returns

a double representing the imaginary part of a Complex object, z

imag
static public double imag(Complex z)

Description

Returns the imaginary part of a Complex object.

Parameter

z – a Complex object

262 • Complex class JMSL

Returns

a double representing the imaginary part of the Complex object, z

intValue
public int intValue()

Description

Returns the value of the real part as an int.

Returns

an int representing the value of the real part of a Complex object

log
static public Complex log(Complex z)

Description

Returns the logarithm of a Complex z, with a branch cut along the negative real axis.

Specifically, if z = x+iy,
log(z̄) = log(z).
log(0 + i0) returns −∞+ iπ.
log(+0 + i0) returns −∞+ i0.
log(−∞+ i∞) returns +∞+ i3π/4.
log(+∞+ i∞) returns +∞+ iπ/4.
log(x+ i∞) returns +∞+ iπ/2, for finite x.
log(−∞+ iy) returns +∞+ iπ, for finite positive-signed y.
log(+∞+ iy) returns +∞+ i0, for finite positive-signed y.
log(±∞+ iNaN) returns +∞+ iNaN.
log(NaN + i∞) returns +∞+ iNaN.
log(x+ iNaN) returns NaN + iNaN, for finite x.
log(NaN + iy) returns NaN + iNaN, for finite y.
log(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to the logarithm of the argument. Its imaginary
part is in the interval [−iπ, iπ].

longValue
public long longValue()

Description

Returns the value of the real part as a long.

Miscellaneous Complex class • 263

Returns

a long representing the value of the real part of a Complex object

multiply
static public Complex multiply(Complex x, Complex y)

Description

Returns the product of two Complex objects, x * y.

Parameters

x – a Complex object

y – a Complex object

Returns

a newly constructed Complex initialized to x× y

multiply
static public Complex multiply(Complex x, double y)

Description

Returns the product of a Complex object and a double, x * y.

Parameters

x – a Complex object

y – a double value

Returns

a newly constructed Complex initialized to x× y

multiply
static public Complex multiply(double x, Complex y)

Description

Returns the product of a double and a Complex object, x * y.

Parameters

x – a double value

y – a Complex object

Returns

a newly constructed Complex initialized to x× y

multiplyImag
static public Complex multiplyImag(Complex x, double y)

264 • Complex class JMSL

Description

Returns the product of a Complex object and a pure imaginary double, x * iy.

Parameters

x – a Complex object

y – a double value representing a pure imaginary

Returns

a newly constructed Complex initialized to x * iy

multiplyImag
static public Complex multiplyImag(double x, Complex y)

Description

Returns the product of a pure imaginary double and a Complex object, ix * y.

Parameters

x – a double value representing a pure imaginary

y – a Complex object

Returns

a newly constructed Complex initialized to ix× y.

negate
static public Complex negate(Complex z)

Description

Returns the negative of a Complex object, -z.

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the negative of the Complex argument, z

pow
static public Complex pow(Complex x, Complex y)

Description

Returns the Complex x raised to the Complex y power. The value of pow is defined in
terms of the functions exp and log, by pow(x, y) = exp(y log(x)).

Parameters

x – a Complex object

y – a Complex object

Miscellaneous Complex class • 265

Returns

a newly constructed Complex initialized to xy.

pow
static public Complex pow(Complex z, double x)

Description

Returns the Complex z raised to the x power, with a branch cut for the first parameter (z)
along the negative real axis.

Parameters

z – a Complex object

x – a double value

Returns

a newly constructed Complex initialized to z to the power x

real
public double real()

Description

Returns the real part of a Complex object.

Returns

a double representing the real part of a Complex object, z

real
static public double real(Complex z)

Description

Returns the real part of a Complex object.

Parameter

z – a Complex object

Returns

a double representing the real part of the Complex object, z

shortValue
public short shortValue()

Description

Returns the value of the real part as a short.

266 • Complex class JMSL

Returns

a short representing the value of the real part of a Complex object

sin
static public Complex sin(Complex z)

Description

Returns the sine of a Complex. The value of sin is defined in terms of the function sinh,
by sin(z) = −i sinh(iz).

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the sine of the argument

sinh
static public Complex sinh(Complex z)

Description

Returns the hyperbolic sine of a Complex.

If z = x+iy,
sinh(z̄) = sinh(z) and sinh is odd.
sinh(+0 + i0) returns +0 + i0.
sinh(+0 + i∞) returns ±0 + iNaN (where the sign of the real part of the result is
unspecified).
sinh(+∞+ i0) returns +∞+ i0.
sinh(+∞+ i∞) returns ±∞+ iNaN (where the sign of the real part of the result is
unspecified).
sinh(+∞+ iy) returns +∞[cos(y) + i sin(y)], for positive finite y.
sinh(x+ i∞) returns NaN + iNaN, for positive finite x.
sinh(+0 + iNaN) returns ±0 + iNaN (where the sign of the real part of the result is
unspecified).
sinh(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the result is
unspecified).
sinh(x+ iNaN) returns NaN + iNaN, for finite nonzero x.
sinh(NaN + i0) returns NaN + i0.
sinh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
sinh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Miscellaneous Complex class • 267

Returns

a newly constructed Complex initialized to the hyperbolic sine of the argument

sqrt
static public Complex sqrt(Complex z)

Description

Returns the square root of a Complex, with a branch cut along the negative real axis.

Specifically, if z = x+iy,
sqrt(z̄) = sqrt(z).
sqrt(±0 + i0) returns +0 + i0.
sqrt(−∞+ iy) returns +0 + i∞, for finite positive-signed y.
sqrt(+∞+ iy) returns +∞+ i0, for finite positive-signed y.
sqrt(x+ i∞) returns +∞+ i∞, for all x (including NaN).
sqrt(−∞+ iNaN) returns NaN± i∞ (where the sign of the imaginary part of the result is
unspecified).
sqrt(+∞+ iNaN) returns +∞+ iNaN.
sqrt(x+ iNaN) returns NaN + iNaN and optionally raises the invalid exception, for finite
x.
sqrt(NaN + iy) returns NaN + iNaN and optionally raises the invalid exception, for finite
y.
sqrt(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

A newly constructed Complex initialized to square root of z.

subtract
static public Complex subtract(Complex x, Complex y)

Description

Returns the difference of two Complex objects, x-y.

Parameters

x – a Complex object

y – a Complex object

Returns

a newly constructed Complex initialized to x-y

subtract
static public Complex subtract(Complex x, double y)

268 • Complex class JMSL

Description

Returns the difference of a Complex object and a double, x-y.

Parameters

x – a Complex object

y – a double value

Returns

a newly constructed Complex initialized to x-y

subtract
static public Complex subtract(double x, Complex y)

Description

Returns the difference of a double and a Complex object, x-y.

Parameters

x – a double value

y – a Complex object

Returns

a newly constructed Complex initialized to x-y

tan
static public Complex tan(Complex z)

Description

Returns the tangent of a Complex. The value of tan is defined in terms of the function
tanh, by tan(z) = −i tanh(iz).

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the tangent of the argument

tanh
static public Complex tanh(Complex z)

Miscellaneous Complex class • 269

Description

Returns the hyperbolic tanh of a Complex.

If z = x+iy,
tanh(z̄) = tanh(z) and tanh is odd.
tanh(+0 + i0) returns +0 + i0.
tanh(+∞+ iy) returns 1 + i0, for all positive-signed numbers y.
tanh(x+ i∞) returns NaN + iNaN, for finite x.
tanh(+∞+ iNaN) returns 1± i0 (where the sign of the imaginary part of the result is
unspecified).
tanh(NaN + i0) returns NaN + i0.
tanh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
tanh(x+ iNaN) returns NaN + iNaN, for finite x.
tanh(NaN + iNaN) returns NaN + iNaN.

Parameter

z – a Complex object

Returns

a newly constructed Complex initialized to the hyperbolic tangent of the argument

toString
public String toString()

Description

Returns a String representation for the specified Complex.

Returns

a String representation for this object

valueOf
static public Complex valueOf(String s) throws NumberFormatException

Description

Parses a String into a Complex.

Parameter

s – the String to be parsed

Returns

a newly constructed Complex initialized to the value represented by the String argument

NumberFormatException if the string does not contain a parsable Complex number

NullPointerException if the input argument is null

270 • Complex class JMSL

Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU decomposition
of the matrix is performed and the determinant and condition number of the matrix are
obtained.

import com.imsl.math.*;

public class ComplexEx1 {
public static void main(String args[]) throws SingularMatrixException {

double ar[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double br[] = {12, 13, 14};

Complex a[][] = new Complex[3][3];
Complex b[] = new Complex[3];

for (int i = 0; i < 3; i++){
b[i] = new Complex(br[i]);
for (int j = 0; j < 3; j++) {

a[i][j] = new Complex(ar[i][j]);
}

}

// Compute the LU factorization of A
ComplexLU clu = new ComplexLU(a);

// Solve Ax = b
Complex x[] = clu.solve(b);
System.out.println("The solution is:");
System.out.println(" ");
new PrintMatrix("x").print(x);

// Find the condition number of A.
double condition = clu.condition(a);
System.out.println("The condition number = "+condition);
System.out.println();

// Find the determinant of A.
Complex determinant = clu.determinant();
System.out.println("The determinant = "+determinant);

}
}

Output

The solution is:

Miscellaneous Complex class • 271

x
0

0 3
1 2
2 1

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

Physical class

public class com.imsl.math.Physical extends java.lang.Number implements
Serializable, Cloneable

Return the value of various mathematical and physical constants. The case of the String
specifying the name of the physical constant does not matter. The names ’PI’, ’Pi’, ’pI’ and ’pi’
are equivalent. The units of the physical constants are in SI units, (meter-kilogram-second).
The names allowed are as follows:

272 • Physical class JMSL

Name Description Value Reference
AMU Atomic mass unit 1.6605402E-27 kg [1]
ATM Standard atm pressure 1.01325E+5 N/m2 E[2]
AU Astronomical unit 1.496E+11 m []
Avogadro Avogadro’s number 6.0221367E+23 1/mole [1]
Boltzman Boltzman’s constant 1.380658E-23 J/K [1]
C Speed of light 2.997924580E+8 m/s E[1]
Catalan Catalan’s constant 0.915965... E[3]
E Base of natural logs 2.718... E[3]
ElectronCharge Electron change 1.60217733E-19 C [1]
ElectronMass Electron mass 9.1093897E-31 kg [1]
ElectronVolt Electron volt 1.60217733E-19 J [1]
Euler Euler’s constant gamma 0.577... E[3]
Faraday Faraday constant 9.6485309E+4 C/mole [1]
FineStructure Fine structure 7.29735308E-3 [1]
Gamma Euler’s constant 0.577... E[3]
Gas Gas constant 8.314510 J/mole/K [1]
Gravity Gravitational constant 6.67259E-11 Nm2/kg2 [1]
Hbar Planck constant / 2 pi 1.05457266E-34 J*s [1]
PerfectGasVolume Std vol ideal gas 2.241383E-2 m3/mole [*]
Pi Pi 3.141... E[3]
Planck Planck’s constant h 6.6260755E-34 J*s [1]
ProtonMass Proton mass 1.6726231E-27 kg [1]
Rydberg Rydberg’s constant 1.0973731534E+7 /m [1]
SpeedLight Speed of light 2.997924580E+8 m/s E[1]
StandardGravity Standard g 9.80665 m/s2 E[2]
StandardPressure Standard atm pressure 1.01325E+5 N/m2 E[2]
StefanBoltzmann Stefan-Boltzman 5.67051E-8 W/K4/m2 [1]
WaterTriple Triple point of water 2.7316E+2 K E[2]

The reference for constants are indicated by the code in the [] comment above.

[1] Cohen and Taylor (1986)
[2] Liepman (1964)
[3] Precomputed mathematical constants

The constants marked with an E before the [] are exact (to machine precision).

• Units strings have the form U1*U2*...*Um/V1/.../Vn, where Ui and Vi are the names of
basic units or are the names of basic units raised to a power. Examples are,
’METER*KILOGRAM/SECOND’, ’M*KG/S’, ’METER’, or ’M/KG2’. These strings are
case insensitive.

• The basic unit names allowed are as follows.

Units of time
day, hour = hr, min = minute, s = sec = second, year

Miscellaneous Physical class • 273

Units of frequency
Hertz = Hz

Units of mass
AMU, g = gram, lb = pound, ounce = oz, slug

Units of distance
Angstrom, AU, ft = feet = foot, in = inch, m = meter = metre, micron, mile, mill,
parsec, yard

Units of area
acre

Units of volume
l = liter = litre

Units of force
dyne, N = Newton, poundal

Units of energy
BTU(thermochemical), Erg, J = Joule

Units of work
W = watt

Units of pressure
ATM = atomosphere, bar, Pascal

Units of temperature
degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity
poise, stoke

Units of charge
Abcoulomb, C = Coulomb, statcoulomb

Units of current
A = ampere, abampere, statampere

Units of voltage
Abvolt, V = volt

Units of magnetic induction
T = Tesla, Wb = Weber

Other units
1, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. Note that the one or two
letter prefixes may only be used with one letter unit abbreviations.

A = atto = 1.E-18
F = femto = 1.E-15
P = pico = 1.E-12
N = nano = 1.E-9
U = micro = 1.E-6
M = milli = 1.E-3

274 • Physical class JMSL

C = centi = 1.E-2
D = deci = 1.E-1
DK = deca = 1.E+1
K = kilo = 1.E+3
myria = 1.E+4 (no single letter prefix; M means milli)
mega = 1.E+6 (no single letter prefix; M means milli)
G = giga = 1.E+9
T = tera = 1.E+12

Fields

CURRENT
static final protected int CURRENT

dim
protected int[] dim

LENGTH
static final protected int LENGTH

MASS
static final protected int MASS

TEMPERATURE
static final protected int TEMPERATURE

TIME
static final protected int TIME

value
protected double value

Constructors

Physical
public Physical()

Description

Constructs a new 0-valued, dimensionless object.

Miscellaneous Physical class • 275

Physical
public Physical(Physical copy)

Description

Constructs a copy of a Physical object.

Parameter

copy – Physical object from which a copy is made

Physical
public Physical(double value, String units)

Description

Constructs a new Physical object and initializes this object to a double value.

Parameters

value – double value to which the copy of the object is initialized

units – String specifying the unit

Physical
public Physical(double value, int length, int mass, int time, int current,
int temperature)

Description

Constructs a new Physical object and initializes this object to a double value along with
int values for length, mass, time, current, and temperature.

Parameters

value – double value to which this object is initialized

length – int value assigned to this object’s length

mass – int value assigned to this object’s mass

time – int value assigned to this object’s time

current – int value assigned to this object’s current

temperature – int value assigned to this object’s temperature

Methods

add
static public Physical add(Physical x, Physical y)

Description

Add two compatible Physical objects.

276 • Physical class JMSL

Parameters

x – Physical object which is to be added

y – Physical object which is to be added

Returns

Physical object which is the sum of x + y

IllegalArgumentException is thrown if x and y are not compatible

checkCompatibility
static public void checkCompatibility(Physical x, Physical y)

Description

Checks the compatibility of two Physical objects.

Parameters

x – a Physical object

y – a Physical object to be checked against x

IllegalArgumentException is thrown if the two Physical objects are incompatible

constant
static public Physical constant(String name)

Description

Returns the value of a constant, given its name.

Parameter

name – is a String representing the name of the constant to be returned

Returns

the Physical object containing the value of the constant, in its default units

IllegalArgumentException is thrown when the name given is undefined

constant
static public double constant(String name, String units)

Description

Returns the value of a constant, given its name, in the specified units.

Parameters

name – is a String representing the name of the constant to be returned.

units – is a String representing the units in which the constant is to be returned.

Miscellaneous Physical class • 277

Returns

a double containing the value of the constant in the specified units

IllegalArgumentException is thrown if the constant name is undefined

convert
static public Physical convert(Physical pOld, String unitsNew)

Description

Converts a value to a different set of units.

Parameters

pOld – a Physical object specifying the value to be converted

unitsNew – a String specifying the units to which pOld is to be converted

Returns

a Physical object containing the value of pOld converted to the new units

IllegalArgumentException is thrown if the new and old units are incompatible

defineConstant
static public void defineConstant(String name, Physical value)

Description

Defines a new constant.

Parameters

name – a String specifying the name of the constant to be defined

value – a Physical object defining the value of the new constant

definePrefix
static public void definePrefix(String name, double value)

Description

Defines a new prefix.

Parameters

name – a String specifying the name of the prefix to be defined

value – is the double value of the prefix

defineUnit
static public void defineUnit(String name, Physical value)

278 • Physical class JMSL

Description

Defines a new unit.

Parameters

name – a String specifying the name of the unit to be defined

value – a Physical object defining the value of one unit in terms of SI units

divide
static public Physical divide(Physical x, Physical y)

Description

Divide two Physical objects.

Parameters

x – Physical object which is the numerator

y – Physical object which is the divisor

Returns

Physical object which is the result of x/y

divide
static public Physical divide(Physical x, double y)

Description

Divide a Physical object by a double.

Parameters

x – Physical object which is the numerator

y – double object which is the divisor

Returns

Physical object which is the result of x/y

divide
static public Physical divide(double x, Physical y)

Description

Divide a double by a Physical object.

Parameters

x – double which is the numerator

y – Physical object which is the divisor

Miscellaneous Physical class • 279

Returns

Physical object which is the result of x/y

doubleValue
public double doubleValue()

Description

Returns the value of this dimensionless object.

Returns

the double value of the dimensionless object

IllegalArgumentException is thrown if the this object is not dimensionless

floatValue
public float floatValue()

Description

Returns the value of this dimensionless object.

Returns

the float value of the dimensionless object

IllegalArgumentException is thrown if the this object is not dimensionless

intValue
public int intValue()

Description

Returns the value of this dimensionless object.

Returns

the int value of the dimensionless object

IllegalArgumentException is thrown if the this object is not dimensionless

longValue
public long longValue()

Description

Returns the value of this dimensionless object.

280 • Physical class JMSL

Returns

the long value of the dimensionless object

IllegalArgumentException is thrown if the this object is not dimensionless

multiply
static public Physical multiply(Physical x, Physical y)

Description

Multiply two Physical objects.

Parameters

x – Physical object which is to be multiplied
y – Physical object which is to be multiplied

Returns

Physical object which is the product of x and y

multiply
static public Physical multiply(Physical x, double y)

Description

Multiply a Physical object and a double

Parameters

x – Physical object which is to be multiplied
y – double which is to be multiplied

Returns

Physical object which is the product of x and y

multiply
static public Physical multiply(double x, Physical y)

Description

Multiply a double and a Physical object

Parameters

x – double which is to be multiplied
y – Physical object which is to be multiplied

Returns

Physical object which is the product of x and y

negate
static public Physical negate(Physical x)

Miscellaneous Physical class • 281

Description

Negate a Physical object.

Parameter

x – Physical object which is to be negated

Returns

Physical object which has been negated

subtract
static public Physical subtract(Physical x, Physical y)

Description

Subtract two compatible Physical objects.

Parameters

x – Physical object

y – Physical object which is to be subtracted from x

Returns

Physical object which is the result of x - y

IllegalArgumentException is thrown if x and y are not compatible

toString
public String toString()

Description

Returns a String containing the value and units, if any.

Returns

a String specifying the value and units, if any, of this Physical object

unitsString
public String unitsString()

Description

Returns a String containing the units only.

Returns

a String specifying the units of this Physical object

282 • Physical class JMSL

Example: The Physical Constants

The value of the physical constant PI is printed.

import com.imsl.math.*;

public class PhysicalEx1 {
public static void main(String args[]) {

System.out.println("The value of the physical constant PI is " +
Physical.constant("PI"));

}
}

Output

The value of the physical constant PI is 3.141592653589793

EpsilonAlgorithm class

public class com.imsl.math.EpsilonAlgorithm

The class is used to determine the limit of a sequence of approximations, by means of the
Epsilon algorithm of P. Wynn. An estimate of the absolute error is also given. The condensed
Epsilon table is computed. Only those elements needed for the computation of the next
diagonal are preserved.

Constructors

EpsilonAlgorithm
public EpsilonAlgorithm()

Description

Initializes an EpsilonAlgorithm with a maximum table size of 50.

EpsilonAlgorithm
public EpsilonAlgorithm(int maxTableSize)

Description

Initializes an EpsilonAlgorithm.

Miscellaneous EpsilonAlgorithm class • 283

Parameter

maxTableSize – The maximum table size.

Methods

extrapolate
public double extrapolate(double x)

Description

Extrapolates the convergence limit of a sequence.

Parameter

x – is the next point in the original series.

Returns

an estimate of the limit of the series.

getErrorEstimate
public double getErrorEstimate()

Description

Returns the current error estimate.

284 • EpsilonAlgorithm class JMSL

Chapter 11: Printing Functions

Types

class PrintMatrix . 285
class PrintMatrixFormat . 290

PrintMatrix class

public class com.imsl.math.PrintMatrix

Matrix printing utilities.

Fields

FULL
static final public int FULL

This flag as the argument to setMatrixType, indicates that the full matrix is to be
printed.

LOWER TRIANGULAR
static final public int LOWER TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the lower triangular
elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

STRICT LOWER TRIANGULAR
static final public int STRICT LOWER TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the strict lower triangular
elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

285

STRICT UPPER TRIANGULAR
static final public int STRICT UPPER TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the strict upper
triangular elements of the matrix are to be printed. The matrix still must be a
rectangular matrix.

UPPER TRIANGULAR
static final public int UPPER TRIANGULAR

This flag as the argument to setMatrixType, indicates that only the upper triangular
elements of the matrix are to be printed. The matrix still must be a rectangular matrix.

Constructors

PrintMatrix
public PrintMatrix()

Description

Creates an instance of the PrintMatrix class.

PrintMatrix
public PrintMatrix(PrintStream out)

Description

Creates an instance of the PrintMatrix class with the specified PrintStream.

Parameter

out – a PrintStream

PrintMatrix
public PrintMatrix(String title)

Description

Creates a PrintMatrix object and sets its title.

Parameter

title – a String specifying the title

PrintMatrix
public PrintMatrix(PrintStream out, String title)

Description

Creates a PrintMatrix object with the specified PrintStream and sets its title.

286 • PrintMatrix class JMSL

Parameters

out – a PrintStream

title – a String specifying the title

Methods

print
public void print(Object array)

Description

Prints an nRows by nColumns matrix with specified format.

Parameter

array – a two-dimensional, non-empty, rectangular array

print
protected void print(String string)

Description

Print a string. This function can be overridden to print to something other than a
PrintStream.

Parameter

string – the String to be printed

print
public void print(PrintMatrixFormat pmf, Object array)

Description

Prints an nRows by nColumns matrix with specified format.

Parameters

pmf – a PrintMatrixFormat matrix format

array – a two-dimensional, non-empty, rectangular array

printHTML
public void printHTML(PrintMatrixFormat pmf, Object array, int nRows, int
nColumns)

Description

Prints an nRows by nColumns matrix with specified format for HTML output.

Printing Functions PrintMatrix class • 287

Parameters

pmf – a PrintMatrixFormat matrix format

nRows – an int specifying the number of rows in the matrix

nColumns – an int specifying the number of columns in the matrix

println
protected void println()

Description

Print a newline. This function can be overridden to print to something other than a
PrintStream.

setColumnSpacing
public PrintMatrix setColumnSpacing(int columnSpacing)

Description

Sets the number of spaces between columns. The default value is 2.

Parameter

columnSpacing – an int specifying the number of spaces between columns, default
is 2

Returns

the PrintMatrix object

setEqualColumnWidths
public PrintMatrix setEqualColumnWidths(boolean equalColumnWidths)

Description

Force all of the columns to have the same width.

Parameter

equalColumnWidths – a boolean which specifies that all column widths will be equal

Returns

the PrintMatrix object

setMatrixType
public PrintMatrix setMatrixType(int matrixType)

Description

Set matrix type.

288 • PrintMatrix class JMSL

Parameter

matrixType – int specifying the matrix type. Values for matrixType are:

0 FULL
1 UPPER TRIANGULAR
2 LOWER TRIANGULAR
3 STRICT UPPER TRIANGULAR
4 STRICT LOWER TRIANGULAR

Returns

the PrintMatrix object

setPageWidth
public PrintMatrix setPageWidth(int pageWidth)

Description

Sets the page width. The default value is the largest possible integer.

Parameter

pageWidth – an int specifying the page width, default is the largest possible integer

Returns

the PrintMatrix object

setTitle
public PrintMatrix setTitle(String title)

Description

Sets matrix title

Parameter

title – a String specifying the title of the matrix

Returns

the PrintMatrix object

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed
using the PrintMatrix class.

import com.imsl.math.*;

public class PrintMatrixEx1 {
public static void main(String args[]) {

Printing Functions PrintMatrix class • 289

double nrm1;
double a[][] = {

{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
{6., 3., 4., 3.}

};

// Get the 1 norm of matrix a
nrm1 = Matrix.oneNorm(a);

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm
p.print(a);
System.out.println("The 1 norm of the matrix is "+nrm1);

}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

The 1 norm of the matrix is 20.0

PrintMatrixFormat class

public class com.imsl.math.PrintMatrixFormat

This class can be used to customize the actions of PrintMatrix. By default, entries are
formatted using the default NumberFormat for the current default locale. As of JDK1.3, none
of these NumberFormat objects support scientific notation. To enable scientific notation, set
the NumberFormat property to null. There is no way to simultaneously support scientific
notation and locale-correct formatting.

290 • PrintMatrixFormat class JMSL

Fields

BEGIN COLUMN LABEL
static final public int BEGIN COLUMN LABEL

This flag as the type argument to format, indicates that the formatting string for ending
a column label is to be returned.

BEGIN COLUMN LABELS
static final public int BEGIN COLUMN LABELS

This flag as the type argument to format, indicates that the formatting string for
beginning a column label row is to be returned.

BEGIN ENTRY
static final public int BEGIN ENTRY

This flag as the type argument to format, indicates that the formatted string for
beginning an entry is to be returned.

BEGIN MATRIX
static final public int BEGIN MATRIX

This flag as the type argument to format, indicates that the formatting string for
beginning a matrix is to be returned.

BEGIN ROW
static final public int BEGIN ROW

This flag as the type argument to format, indicates that the formatting string for
beginning a row is to be returned.

BEGIN ROW LABEL
static final public int BEGIN ROW LABEL

This flag as the type argument to format, indicates that the formatting string for
beginning a row label is to be returned.

COLUMN LABEL
static final public int COLUMN LABEL

This flag as the type argument to format, indicates that the formatted string for a given
column label is to be returned.

END COLUMN LABEL
static final public int END COLUMN LABEL

This flag as the type argument to format, indicates that the formatting string for ending
a column label is to be returned.

Printing Functions PrintMatrixFormat class • 291

END COLUMN LABELS
static final public int END COLUMN LABELS

This flag as the type argument to format, indicates that the formatting string for ending
a column label row is to be returned.

END ENTRY
static final public int END ENTRY

This flag as the type argument to format, indicates that the formatted string for ending
an entry is to be returned.

END MATRIX
static final public int END MATRIX

This flag as the type argument to format, indicates that the formatting string for ending
a matrix is to be returned.

END ROW
static final public int END ROW

This flag as the type argument to format, indicates that the formatting string for ending
a row is to be returned.

END ROW LABEL
static final public int END ROW LABEL

This flag as the type argument to format, indicates that the formatting string for ending
a row label is to be returned.

ENTRY
static final public int ENTRY

This flag as the type argument to format, indicates that the formatted string for a given
entry is to be returned.

numberFormat
protected NumberFormat numberFormat

The NumberFormat to be used in formatting double and Complex entries.

ROW LABEL
static final public int ROW LABEL

This flag as the type argument to format, indicates that the formatted string for a given
row label is to be returned.

292 • PrintMatrixFormat class JMSL

Constructor

PrintMatrixFormat
public PrintMatrixFormat()

Description

Constructs a PrintMatrixFormat object.

Methods

format
public String format(int type, Object entry, int row, int col, ParsePosition
pos)

Description

Returns a formatted string.

Parameters

type – is the type of string requested.

type return value
BEGIN MATRIX Tag for the beginning of the matrix.
END MATRIX Tag for the end of the matrix.
BEGIN COLUMN LABELS Tag for the beginning of the column labels row.
END COLUMN LABELS Tag for the end of the column labels row.
BEGIN COLUMN LABEL Tag for the beginning of a column label.
END COLUMN LABEL Tag for the end of a column label.
COLUMN LABEL The label of the specified column.
BEGIN ROW Tag for the beginning of a row.
END ROW Tag for the end of a row.
BEGIN ROW LABEL Tag for the beginning of a row label.
END ROW LABEL Tag for the end of a row label.
ROW LABEL The label of the specified row.
ENTRY The row-col entry of the matrix

entry – is the entry to be formatted. This is only used if type equals ENTRY. For
other values of type, this can be set to null.
row – is the (0-based) row number of the element to be formatted. This is -1 if there
is no row number associated with this request.
col – is the (0-based) column number of the element to be formatted. This is -1 if
there is no column number associated with this request.
pos – is a ParsePosition object used to indicate the alignment center of the return
string. This is used only if type==ENTRY. If the entry is a double then the index
is the position of the decimal point. If the entry is an int then the index is the
position of the end of the formatted integer.

Printing Functions PrintMatrixFormat class • 293

Returns

is the String to be put into the printed table.

getNumberFormat
public NumberFormat getNumberFormat()

Description

Returns the NumberFormat to be used in formatting double and Complex entries.

setColumnLabels
public void setColumnLabels(String[] columnLabels)

Description

Turns on column labeling using the given labels.

Parameter

columnLabels – is an array of Strings to be used as column labels. If there are
more columns than labels, the labels are reused.

setFirstColumnNumber
public void setFirstColumnNumber(int firstColumnNumber)

Description

Turns on column labeling with index numbers and sets the index for the label of the first
column.

Parameter

firstColumnNumber – is the number for the first column label. This is usually 0 or
1. The default is 0.

setFirstRowNumber
public void setFirstRowNumber(int firstRowNumber)

Description

Turns on row labeling with index numbers and sets the index for the label of the first row.

Parameter

firstRowNumber – is the number for the first row label. This is usually 0 or 1. The
default is 0.

setNoColumnLabels
public void setNoColumnLabels()

294 • PrintMatrixFormat class JMSL

Description

Turns off column labels.

setNoRowLabels
public void setNoRowLabels()

Description

Turns off row labels.

setNumberFormat
public void setNumberFormat(NumberFormat numberFormat)

Description

Sets the NumberFormat to be used in formatting double and Complex entries.

Parameter

numberFormat – a NumberFormat or null. If null then numbers will be formatted
using java.lang.Integer.toString , or java.lang.Object.toString .

Example: Matrix Formatting

A simple matrix is printed using the default format with the PrintMatrix class. The
PrintMatrixFormat class is then used to change the default format.

import com.imsl.math.*;
import java.text.*;

public class PrintMatrixFormatEx1 {
public static void main(String args[]) {

double a[][] = {
{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
{6., 3., 4., 3.}

};

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix
p.print(a);

// Turn row and column labels off
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

// Print the matrix
p.print(mf, a);

Printing Functions PrintMatrixFormat class • 295

}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

A Simple Matrix

0 1 2 3
4 5 6 7
8 9 8 1
6 3 4 3

296 • PrintMatrixFormat class JMSL

Chapter 12: Basic Statistics

Types

class Summary . 297
class Covariances . 308
class NormOneSample . 317
class NormTwoSample . 323
class Sort . 334
class Ranks . 341
class EmpiricalQuantiles . 350
class TableOneWay . 353
class TableTwoWay. 357
class TableMultiWay. .363

Usage Notes

The methods/classes for the computations of basic statistics generally have relatively simple
arguments. Most of the methods/classes in this chapter allow for missing values. Missing value
codes can be set by using Double.NaN.

Several methods/classes in this chapter perform statistical tests. These methods in the classes
generally return a ”p-value” for the test. The p-value is between 0 and 1 and is the probability
of observing data that would yield a test statistic as extreme or more extreme under the
assumption of the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.

Summary class

public class com.imsl.stat.Summary implements Serializable, Cloneable

Computes basic univariate statistics.

297

For the data in x. Summary computes the sample mean, variance, minimum, maximum, and
ther basic statistics. It also computes confidence intervals for the mean and variance if the
sample is assumed to be from a normal population.

Missing values, that is, values equal to NaN (not a number), are excluded from the
computations. The sum of the weights is used only in computing the mean (of course, then the
weighted mean is used in computing the central moments). The definitions of some of the
statistics are given below in terms of a single variable x. The i-th datum is xi, with
corresponding weight wi. If weights are not specified, the wi are identically one. The
summation in each case is over the set of valid observations, based on the presence of missing
values in the data.

Number of nonmissing observations,

n =
∑

fi

Mean,

x̄w =
∑
fiwixi∑
fiwi

Variance,

s2w =
∑
fiwi (xi − x̄w)2

n− 1

Skewness,

∑
fiwi (xi − x̄w)3 /n

[
∑
fiwi (xi − x̄w)2 /n]3/2

Excess or Kurtosis,

∑
fiwi (xi − x̄w)4 /n

[
∑
fiwi (xi − x̄w)2 /n]2

− 3

Minimum,

xmin = min(xi)

Maximum,

xmax = max(xi)

298 • Summary class JMSL

Constructor

Summary
public Summary()

Description

Constructs a new summary statistics object.

Methods

confidenceMean
public double[] confidenceMean(double p)

Description

Returns the confidence interval for the mean (assuming normality).

Parameter

p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

Returns

a double array of length 2 which contains the lower and upper confidence limits for the
mean

confidenceVariance
public double[] confidenceVariance(double p)

Description

Returns the confidence interval for the variance (assuming normality).

Parameter

p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

Returns

a double array of length 2 which contains the lower and upper confidence limits for the
variance

getKurtosis
public double getKurtosis()

Description

Returns the kurtosis.

Basic Statistics Summary class • 299

Returns

a double representing the kurtosis

getMaximum
public double getMaximum()

Description

Returns the maximum.

Returns

a double representing the maximum

getMean
public double getMean()

Description

Returns the population mean.

Returns

a double representing the population mean

getMinimum
public double getMinimum()

Description

Returns the minimum.

Returns

a double representing the minimum

getSampleStandardDeviation
public double getSampleStandardDeviation()

Description

Returns the sample standard deviation.

Returns

a double representing the sample standard deviation

getSampleVariance
public double getSampleVariance()

Description

Returns the sample variance.

300 • Summary class JMSL

Returns

a double representing the sample variance

getSkewness
public double getSkewness()

Description

Returns the skewness.

Returns

a double representing the skewness

getStandardDeviation
public double getStandardDeviation()

Description

Returns the population standard deviation.

Returns

a double representing the population standard deviation

getVariance
public double getVariance()

Description

Returns the population variance.

Returns

a double representing the population variance

kurtosis
static public double kurtosis(double[] x)

Description

Returns the kurtosis of the given data set.

Parameter

x – a double array containing the data set whose kurtosis is to be found

Returns

a double, the kurtosis of the given data set

kurtosis
static public double kurtosis(double[] x, double[] weight)

Basic Statistics Summary class • 301

Description

Returns the kurtosis of the given data set and associated weights.

Parameters

x – a double array containing the data set whose kurtosis is to be found

weight – a double array containing the weights associated with the data points x

Returns

a double, the kurtosis of the given data set

maximum
static public double maximum(double[] x)

Description

Returns the maximum of the given data set.

Parameter

x – a double array containing the data set whose maximum is to be found

Returns

a double, the maximum of the given data set

mean
static public double mean(double[] x)

Description

Returns the mean of the given data set.

Parameter

x – a double array containing the data set whose mean is to be found

Returns

a double, the mean of the given data set

mean
static public double mean(double[] x, double[] weight)

Description

Returns the mean of the given data set with associated weights.

Parameters

x – a double array containing the data set whose mean is to be found

weight – a double array containing the weights associated with the data points x

302 • Summary class JMSL

Returns

a double, the mean of the given data set

median
static public double median(double[] x)

Description

Returns the median of the given data set.

Parameter

x – a double array containing the data set whose median is to be found

Returns

a double, the median of the given data set

minimum
static public double minimum(double[] x)

Description

Returns the minimum of the given data set.

Parameter

x – a double array containing the data set whose minimum is to be found

Returns

a double, the minimum of the given data set

mode
static public double mode(double[] x)

Description

Returns the mode of the given data set. Ties are broken at random.

Parameter

x – a double array containing the data set whose mode is to be found

Returns

a double, the mode of the given data set

sampleStandardDeviation
static public double sampleStandardDeviation(double[] x)

Description

Returns the sample standard deviation of the given data set.

Basic Statistics Summary class • 303

Parameter

x – a double array containing the data set whose sample standard deviation is to be
found

Returns

a double, the sample standard deviation of the given data set

sampleStandardDeviation
static public double sampleStandardDeviation(double[] x, double[] weight)

Description

Returns the sample standard deviation of the given data set and associated weights.

Parameters

x – a double array containing the data set whose sample standard deviation is to be
found

weight – a double array containing the weights associated with the data points x.

Returns

a double, the sample standard deviation of the given data set

sampleVariance
static public double sampleVariance(double[] x)

Description

Returns the sample variance of the given data set.

Parameter

x – a double array containing the data set whose sample variance is to be found

Returns

a double, the sample variance of the given data set

sampleVariance
static public double sampleVariance(double[] x, double[] weight)

Description

Returns the sample variance of the given data set and associated weights.

Parameters

x – a double array containing the data set whose sample variance is to be found

weight – a double array containing the weights associated with the data points x

304 • Summary class JMSL

Returns

a double, the sample variance of the given data set

skewness
static public double skewness(double[] x)

Description

Returns the skewness of the given data set.

Parameter

x – a double array containing the data set whose skewness is to be found

Returns

a double, the skewness of the given data set

skewness
static public double skewness(double[] x, double[] weight)

Description

Returns the skewness of the given data set and associated weights.

Parameters

x – a double array containing the data set whose skewness is to be found

weight – a double array containing the weights associated with the data points x

Returns

a double, the skewness of the given data set

standardDeviation
static public double standardDeviation(double[] x)

Description

Returns the population standard deviation of the given data set.

Parameter

x – a double array containing the data set whose standard deviation is to be found

Returns

a double, the population standard deviation of the given data set

standardDeviation
static public double standardDeviation(double[] x, double[] weight)

Description

Returns the population standard deviation of the given data set and associated weights.

Basic Statistics Summary class • 305

Parameters

x – a double array containing the data set whose standard deviation is to be found

weight – a double array containing the weights associated with the data points x

Returns

a double, the population standard deviation of the given data set

update
public void update(double x)

Description

Adds an observation to the Summary object.

Parameter

x – a double, the data observation to be added

update
public void update(double x, double weight)

Description

Adds an observation and associated weight to the Summary object.

Parameters

x – a double, the data observation to be added

weight – a double, the weight associated with the observation

variance
static public double variance(double[] x)

Description

Returns the population variance of the given data set.

Parameter

x – a double array containing the data set whose population variance is to be found

Returns

a double, the population variance of the given data set

variance
static public double variance(double[] x, double[] weight)

Description

Returns the population variance of the given data set and associated weights.

306 • Summary class JMSL

Parameters

x – a double array containing the data set whose population variance is to be found

weight – a double array containing the weights associated with the data points x

Returns

a double, the population variance of the given data set

Example: Summary Statistics

Summary statistics for a small data set are computed.

import com.imsl.stat.*;

public class SummaryEx1 {
static final double data1[] = {3, 6.4, 2, 1.6, -8, 12, -7,
6.4, 22, 1, 0, -3.2};

public static void main(String args[]) {
Summary summary = new Summary();
summary.update(data1);

System.out.println("The minimum is "+summary.getMinimum());
System.out.println();

System.out.println("The maximum is "+summary.getMaximum());
System.out.println();

System.out.println("The mean is "+summary.getMean());
System.out.println();

System.out.println("The variance is "+summary.getVariance());
System.out.println();

System.out.println("The sample variance is " +
summary.getSampleVariance());
System.out.println();

System.out.println("The standard deviation is " +
summary.getStandardDeviation());
System.out.println();

System.out.println("The skewness is "+summary.getSkewness());
System.out.println();

System.out.println("The kurtosis is "+summary.getKurtosis());
System.out.println();

double confmn[] = new double[2];
confmn = summary.confidenceMean(0.95);
System.out.println("The confidence Mean is {" + confmn[0] +
", " + confmn[1]+"}");
System.out.println();

Basic Statistics Summary class • 307

double confvr[] = new double[2];
confvr = summary.confidenceVariance(0.95);
System.out.println("The confidence Variance is {" + confvr[0] +
", " + confvr[1]+"}");

}
}

Output

The minimum is -8.0

The maximum is 22.0

The mean is 3.016666666666666

The variance is 61.70972222222223

The sample variance is 67.31969696969698

The standard deviation is 7.855553591073148

The skewness is 0.8632224134285833

The kurtosis is 0.5677060483851211

The confidence Mean is {-2.1964514686012353, 8.229784801934567}

The confidence Variance is {33.78261872720627, 194.0685332772439}

Covariances class

public class com.imsl.stat.Covariances implements Serializable, Cloneable

Computes the sample variance-covariance or correlation matrix.

Class covariances computes estimates of correlations, covariances, or sums of squares and
crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed
using the method of provisional means. Let xki denote the mean based on i observations for the
k-th variable, fi denote the frequency of the i-th observation, wi denote the weight of the i-th
observations, and cjki denote the sum of crossproducts (or sum of squares if j = k) based on i
observations. Then the method of provisional means finds new means and sums of
crossproducts as shown in the example below.

308 • Covariances class JMSL

The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, . . . , p

cjk0 = 0.0 for j, k = 1, . . . , p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of observation
i + 1, each new observation leads to the following updates for xki and cjki using the update
constant ri+1:

ri+1 =
fi+1wi+1

i+1∑
l=1

flwl

x̄k, i+1 = x̄ki + (xk, i+1 − x̄ki) ri+1

cjk, i+1 = cjki + fi+1wi+1 (xj, i+1 − x̄ji) (xk, i+1 − x̄ki) (1− ri+1)

The default value for weights and frequencies is 1. Means and variances are computed based on
the valid data for each variable or, if required, based on all the valid data for each pair of
variables.

Fields

CORRECTED SSCP MATRIX
static final public int CORRECTED SSCP MATRIX

Indicates corrected sums of squares and crossproducts matrix.

CORRELATION MATRIX
static final public int CORRELATION MATRIX

Indicates correlation matrix.

STDEV CORRELATION MATRIX
static final public int STDEV CORRELATION MATRIX

Indicates correlation matrix except for the diagonal elements which are the standard
deviations

VARIANCE COVARIANCE MATRIX
static final public int VARIANCE COVARIANCE MATRIX

Indicates variance-covariance matrix.

Basic Statistics Covariances class • 309

Constructor

Covariances
public Covariances(double[][] x)

Description

Constructor for Covariances.

Parameter

x – A double matrix containing the data.

IllegalArgumentException is thrown if x.length, and x[0].length are equal to 0.

Methods

compute
final public double[][] compute(int matrixType) throws
Covariances.NonnegativeFreqException,
Covariances.NonnegativeWeightException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Computes the matrix.

Parameter

matrixType – An int scalar indicating the type of matrix to compute. Uses class
member VARIANCE COVARIANCE MATRIX, CORRECTED SSCP MATRIX,
CORRELATION MATRIX, STDEV CORRELATION MATRIX for matrixType.

Returns

A double matrix containing computed result.

NonnegativeFreqException is thrown if the frequencies are negative.

NonnegativeWeightException is thrown if the weights sre negative.

TooManyObsDeletedException is thrown if more observations have been deleted than
were originally entered, i.e. the sum of frequencies has become negative.

MoreObsDelThanEnteredException is thrown if more observations are being deleted
from ”variance-covariance” matrix than were originally entered. The corresponding
row,column of the incidence matrix is less than zero.

DiffObsDeletedException is thrown if different observations are being deleted than
were originally entered.

310 • Covariances class JMSL

getIncidenceMatrix
public int[][] getIncidenceMatrix()

Description

Returns the incidence matrix.

Returns

An int matrix containing the incidence matrix. If method is 0, incidence matrix is 1× 1
and contains the number of valid observations; otherwise, incidence matrix is
x [0] .length× x [0] .length and contains the number of pairs of valid observations used in
calculating the crossproducts for covariance.

getMeans
public double[] getMeans()

Description

Returns the means of the variables in x.

Returns

A double array containing the means of the variables in x. The components of the array
correspond to the columns of x.

getNumRowMissing
public int getNumRowMissing()

Description

Returns the total number of observations that contain any missing values (Double.NaN).

Returns

An int scalar containing the total number of observations that contain any missing values
(Double.NaN).

getObservations
public int getObservations()

Description

Returns the sum of the frequencies.

Returns

An int scalar containing the sum of the frequencies. If missingValueMethod = 0,
observations with missing values are not included; otherwise, all observations are included
except for observations with missing values for the weight or the frequency.

getSumOfWeights
public double getSumOfWeights()

Basic Statistics Covariances class • 311

Description

Returns the sum of the weights of all observations.

Returns

A double scalar containing the sum of the weights of all observations. If
missingValueMethod = 0, observations with missing values are not included. Otherwise,
all observations are included except for observations with missing values for the weight or
the frequency.

setFrequencies
public void setFrequencies(double[] frequencies)

Description

Sets the frequency for each observation.

Parameter

frequencies – A double array of size x.length containing the frequency for each
observation. Default: frequencies[] = 1.

setMissingValueMethod
public void setMissingValueMethod(int missingValueMethod)

Description

Sets the method used to exclude missing values in x from the computations, where
Double.NaN is interpreted as the missing value code.

Parameter

missingValueMethod – An int scalar indicating the method to use. The methods
are as follows:

312 • Covariances class JMSL

missingValueMethod Action
0 The exclusion is listwise, default. (The entire row of

x is excluded if any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed from all valid pairs
and means, and variances are computed from all valid
data on the individual variables. Corrected crossprod-
ucts, covariances, and correlations are computed using
these quantities.

2 Raw crossproducts, means, and variances are com-
puted as in the case of method = 1. However, cor-
rected crossproducts and covariances are computed
only from the valid pairs of data. Correlations are
computed using these covariances and the variances
from all valid data.

3 Raw crossproducts, means, variances, and covariances
are computed as in the case of method = 2. Correla-
tions are computed using these covariances, but the
variances used are computed from the valid pairs of
data.

setWeights
public void setWeights(double[] weights)

Description

Sets the weight for each observation.

Parameter

weights – A double array of size x.length containing the weight for each
observation. Default: weights[] = 1.

Example: Covariances

This example illustrates the use of Covariances class for the first 50 observations in the Fisher
iris data (Fisher 1936). Note that the first variable is constant over the first 50 observations.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class CovariancesEx1 {
public static void main(String args[]) throws Exception {

double[][] x = {
{1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},

Basic Statistics Covariances class • 313

{1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
{1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
{1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2}, {1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2}, {1.0, 5.0, 3.3, 1.4, .2}

};
Covariances co = new Covariances(x);

PrintMatrix pm =
new PrintMatrix("Sample Variances-covariances Matrix");

NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
pm.setMatrixType(PrintMatrix.UPPER_TRIANGULAR);

pm.print(pmf, co.compute(Covariances.VARIANCE_COVARIANCE_MATRIX));
}

}

Output

Sample Variances-covariances Matrix
0 1 2 3 4

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1242 0.0992 0.0164 0.0103
2 0.1437 0.0117 0.0093
3 0.0302 0.0061
4 0.0111

314 • Covariances class JMSL

Covariances.NonnegativeFreqException class

static public class com.imsl.stat.Covariances.NonnegativeFreqException extends
com.imsl.IMSLException

Frequencies must be nonnegative.

Constructors

Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException(String message)

Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException(String key, Object[] arguments)

Covariances.NonnegativeWeightException class

static public class com.imsl.stat.Covariances.NonnegativeWeightException
extends com.imsl.IMSLException

Weights must be nonnegative.

Constructors

Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException(String message)

Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException(String key, Object[]
arguments)

Covariances.TooManyObsDeletedException class

static public class com.imsl.stat.Covariances.TooManyObsDeletedException
extends com.imsl.IMSLException

Basic Statistics Covariances class • 315

More observations have been deleted than were originally entered (the sum of frequencies has
become negative).

Constructors

Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException(String message)

Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException(String key, Object[]
arguments)

Covariances.MoreObsDelThanEnteredException class

static public class com.imsl.stat.Covariances.MoreObsDelThanEnteredException
extends com.imsl.IMSLException

More observations are being deleted from the output covariance matrix than were originally
entered (the corresponding row, column of the incidence matrix is less than zero).

Constructors

Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(String message)

Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(String key, Object[]
arguments)

Covariances.DiffObsDeletedException class

static public class com.imsl.stat.Covariances.DiffObsDeletedException extends
com.imsl.IMSLException

Different observations are being deleted from return matrix than were originally entered.

316 • Covariances class JMSL

Constructors

Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException(String message)

Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException(String key, Object[] arguments)

NormOneSample class

public class com.imsl.stat.NormOneSample implements Serializable, Cloneable

Computes statistics for mean and variance inferences using a sample from a normal population.

The statistics for mean and variance inferences are computed by using a sample from a normal
population, including methods for the confidence intervals and tests for both mean and
variance. The definitions of mean and variance are given below. The summation in each case is
over the set of valid observations, based on the presence of missing values in the data.

Method getMean, returns value

x̄ =
∑
xi

n

∆d
sZt

Method getStandardDeviation, returns value

s =

√∑
(xi − x̄)2

n− 1

The method getTTestStat returns the t statistic for the two-sided test concerning the
population mean which is given by

t =
x̄− µ0

s/
√
n

where s and x̄ are given above. This quantity has a T distribution with n - 1 degrees of
freedom. The method getTTestDF returns the degree of freedom.

The method getChiSquaredTestStat returns the chi-squared statistic for the two-sided test
concerning the population variance which is given by

Basic Statistics NormOneSample class • 317

χ2 =
(n− 1) s2

σ2
0

where s is given above. This quantity has a χ2 distribution with n - 1 degrees of freedom. The
method getChiSquaredTestDF returns the degrees of freedom.

Constructor

NormOneSample
public NormOneSample(double[] x)

Description

Constructor to compute statistics for mean and variance inferences using a sample from a
normal population.

Parameter

x – is a one-dimension double array containing the observations.

Methods

getChiSquaredTest
public double getChiSquaredTest()

Description

Returns the test statistic associated with the chi-squared test for variances. The
chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the null hypothesis value

as described in setChiSquaredTestNull.

Returns

a double containing the test statistic for the chi-squared test.

getChiSquaredTestDF
public int getChiSquaredTestDF()

Description

Returns the degrees of freedom associated with the chi-squared test for variances. The
chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the null hypothesis value

as described in setChiSquaredTestNull.

Returns

an int the degrees of freedom for the chi-squared test.

getChiSquaredTestP
public double getChiSquaredTestP()

318 • NormOneSample class JMSL

Description

Returns the probability of a larger chi-squared associated with the chi-squared test for
variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the null

hypothesis value as described in setChiSquaredTestNull.

Returns

a double containing the probability of a larger chi-squared for the chi-squared test for
variances.

getLowerCIMean
public double getLowerCIMean()

Description

Returns the lower confidence limit for the mean.

Returns

a double containing the lower confidence limit for the mean.

getLowerCIVariance
public double getLowerCIVariance()

Description

Returns the lower confidence limits for the variance.

Returns

a double containing the lower confidence limits for the variance.

getMean
public double getMean()

Description

Returns the mean of the sample.

Returns

a double containing the mean.

getStdDev
public double getStdDev()

Description

Returns the standard deviation of the sample.

Returns

a double containing the standard deviation of the sample.

getTTest
public double getTTest()

Basic Statistics NormOneSample class • 319

Description

Returns the test statistic associated with the t test. The t test is a test, against a
two-sided alternative, of the null hypothesis value described in setTTestNull.
Returns

a double containing the test statistic for the t test.

getTTestDF
public int getTTestDF()

Description

Returns the degrees of freedom associated with the t test for the mean. The t test is a test,
against a two-sided alternative, of the null hypothesis value described in setTTestNull.
Returns

an int containing the degrees of freedom for the t test.

getTTestP
public double getTTestP()

Description

Returns the probability associated with the t test of a larger t in absolute value. The t
test is a test, against a two-sided alternative, of the null hypothesis value described in
setTTestNull.
Returns

a double containing the probability for the t test.

getUpperCIMean
public double getUpperCIMean()

Description

Returns the upper confidence limit for the mean.
Returns

a double containing the upper confidence limit for the mean.

getUpperCIVariance
public double getUpperCIVariance()

Description

Returns the upper confidence limits for the variance.
Returns

a double the upper confidence limits for the variance.

setChiSquaredTestNull
public void setChiSquaredTestNull(double chiSqrTestNull)

320 • NormOneSample class JMSL

Description

Sets the null hypothesis value for the chi-squared test. The default is 1.0.

Parameter

chiSqrTestNull – double containing the null hypothesis value for the chi-squared
test.

setConfidenceMean
public void setConfidenceMean(double confidenceMean)

Description

Sets the confidence level (in percent) for a two-sided interval estimate of the mean.
Argument confidenceMean must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99.
For a one-sided confidence interval with confidence level c (at least 50 percent), set
confidenceMean=1.0-2.0 * (1.0 - c). If the confidence mean is not specified, a 95-percent
confidence interval is computed.

Parameter

confidenceMean – double containing the confidence level of the mean.

setConfidenceVariance
public void setConfidenceVariance(double confidenceVariance)

Description

Sets the confidence level (in percent) for two-sided interval estimate of the variances.
Argument confidenceVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or
0.99. For a one-sided confidence interval with confidence level c (at least 50 percent), set
confidenceVariance=1.0-2.0 * (1.0 - c). If the confidence mean is not specified, a
95-percent confidence interval is computed.

Parameter

confidenceVariance – double containing the confidence level of the variance.

setTTestNull
public void setTTestNull(double meanHypothesis)

Description

Sets the Null hypothesis value for t test for the mean. meanHypothesis=0.0 by default.

Parameter

meanHypothesis – double containing the hypothesis value.

Basic Statistics NormOneSample class • 321

Example 1: NormOneSample

This example uses data from Devore (1982, p335), which is based on data published in the
Journal of Materials. There are 15 observations. The hypothesis H0 : µ = 20.0 is tested. The
extremely large t value and the correspondingly small p-value provide strong evidence to reject
the null hypothesis.

import com.imsl.stat.*;

public class NormOneSampleEx1 {
public static void main(String args[]) {

double mean, stdev, lomean, upmean;
int df;
double t, pvalue;
double[] x = {

26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6

};

/* Perform Analysis*/

NormOneSample n1samp = new NormOneSample(x);

mean = n1samp.getMean();
stdev = n1samp.getStdDev();
lomean = n1samp.getLowerCIMean();
upmean = n1samp.getUpperCIMean();
n1samp.setTTestNull(20.0);
df = n1samp.getTTestDF();
t = n1samp.getTTest();
pvalue = n1samp.getTTestP();

/* Print results */

System.out.println("Sample Mean = "+ mean);
System.out.println("Sample Standard Deviation = "+ stdev);
System.out.println("95% CI for the mean is "+ lomean +" "+ upmean);
System.out.println("T Test results");
System.out.println("df = " + df);
System.out.println("t = " + t);
System.out.println("pvalue = " + pvalue);
System.out.println("");

/* CI variance */
double ciLoVar = n1samp.getLowerCIVariance();
double ciUpVar = n1samp.getUpperCIVariance();
System.out.println("CI variance is "+ciLoVar+" "+ciUpVar);
/*chi-squared test */
df = n1samp.getChiSquaredTestDF();
t = n1samp.getChiSquaredTest();
pvalue = n1samp.getChiSquaredTestP();

322 • NormOneSample class JMSL

System.out.println("Chi-squared Test results");
System.out.println("Chi-squared df = " + df);
System.out.println("Chi-squared t = " + t);
System.out.println("Chi-squared pvalue = " + pvalue);

}
}

Output

Sample Mean = 25.313333333333336
Sample Standard Deviation = 1.5788181233652814
95% CI for the mean is 24.43901299970965 26.187653666957022
T Test results
df = 14
t = 13.03408619922945
pvalue = 3.2147173811836183E-9

CI variance is 1.3360926049992239 6.199863467239496
Chi-squared Test results
Chi-squared df = 14
Chi-squared t = 34.89733333333332
Chi-squared pvalue = 0.0015223176141822004

NormTwoSample class

public class com.imsl.stat.NormTwoSample implements Serializable, Cloneable

Computes statistics for mean and variance inferences using samples from two normal
populations.

Class NormTwoSample computes statistics for making inferences about the means and variances
of two normal populations, using independent samples in x1 and x2. For inferences concerning
parameters of a single normal population, see class NormOneSample.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and σ2

2 be the
corresponding quantities of the second population. The function contains test confidence
intervals for difference in means, equality of variances, and the pooled variance.

The means and variances for the two samples are as follows:

x̄1 =
(∑

x1i/n1

)
, x̄2 =

(∑
x2i

)
/n2

and

Basic Statistics NormTwoSample class • 323

s21 =
∑

(x1i − x̄1)
2
/ (n1 − 1) , s22 =

∑
(x2i − x̄2)

2
/ (n2 − 1)

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, depends on
whether or not the variances of the two populations can be considered equal. If the variances
are equal and meanHypothesis equals 0, the test is the two-sample t-test, which is equivalent to
an analysis-of-variance test. The pooled variance for the difference-in-means test is as follows:

s2 =
(n1 − 1) s1 + (n2 − 1) s2

n1 + n2 − 2

The t statistic is as follows:

t =
x̄1 − x̄2 − µ0

s
√

(1/n1) + (1/n2)

Also, the confidence interval for the difference in means can be obtained by first assigning the
unequal variances flag to false. This can be done by calling the setUnequalVariances method.
The confidence interval can then be obtained by the getLowerCIDiff and getUpperCIDiff
methods.

If the population variances are not equal, the ordinary t statistic does not have a t distribution
and several approximate tests for the equality of means have been proposed. (See, for example,
Anderson and Bancroft 1952, and Kendall and Stuart 1979.) One of the earliest tests devised
for this situation is the Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A
procedure used in the getTTest, getLowerCIDiff and getUpperCIDiff methods assuming
unequal variances are specified is the Satterthwaite’s procedure, as suggested by H.F. Smith
and modified by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83). Use
setUnequalVariances true to obtain results assuming unequal variances.

The test statistic is

t′ = (x̄1 − x̄2 − µ0) /sd

where

sd =
√

(s21/n1) + (s22/n2)

Under the null hypothesis of µ1 − µ2 = c, this quantity has an approximate t distribution with
degrees of freedom df, given by the following equation:

df =
s4d

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

324 • NormTwoSample class JMSL

Inferences about Variances

The F statistic for testing the equality of variances is given by F = s2max/s
2
min, where s2max is

the larger of s21 and s22. If the variances are equal, this quantity has an F distribution with
n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide whether to use
the regular t-test or the modified t′ on a single set of data. The modified t′ (Satterthwaite’s
procedure) is the more conservative approach to use if there is doubt about the equality of the
variances.

Constructor

NormTwoSample
public NormTwoSample(double[] x, double[] y)

Description

Constructor to compute statistics for mean and variance inferences using samples from
two normal populations.

Parameters

x – is a double array containing the first sample.

y – is a double array containing the second sample.

Methods

downdateX
public void downdateX(double[] x)

Description

Removes the observations in x from the first sample.

Parameter

x – is a double array containing the values to remove from the first sample.

downdateY
public void downdateY(double[] y)

Description

Removes the observations in y from the second sample.

Basic Statistics NormTwoSample class • 325

Parameter

y – is a double array containing the values to remove from the second sample.

getChiSquaredTest
public double getChiSquaredTest()

Description

Returns the test statistic associated with the chi-squared test for common, or pooled,
variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the null

hypothesis value as described in setChiSquaredTestNull.

Returns

a double containing the test statistic for the chi-squared test.

getChiSquaredTestDF
public int getChiSquaredTestDF()

Description

Returns the degrees of freedom associated with the chi-squared test for the common, or
pooled, variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the

null hypothesis value as described in setChiSquaredTestNull.

Returns

an int containing the degrees of freedom for the chi-squared test.

getChiSquaredTestP
public double getChiSquaredTestP()

Description

Returns the probability of a larger chi-squared associated with the chi-squared test for
common, or pooled, variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0

where ω2
0 is the null hypothesis value as described in setChiSquaredTestNull.

Returns

a double containing the probability of a larger chi-squared for the chi-squared test for
variances.

getDiffMean
public double getDiffMean()

Description

Returns the difference in means, mean of x - mean of y.

326 • NormTwoSample class JMSL

Returns

a double containing the difference in mean.

getFTest
public double getFTest()

Description

Returns the F test value of the F test for equality of variances.

Returns

a double containing the F test value of the F test for equality of variances.

getFTestDFdenominator
public int getFTestDFdenominator()

Description

Returns the denominator degrees of freedom of the F test for equality of variances.

Returns

a int containing the denominator degrees of freedom.

getFTestDFnumerator
public int getFTestDFnumerator()

Description

Returns the numerator degrees of freedom of the F test for equality of variances.

Returns

a int containing the numerator degrees of freedom.

getFTestP
public double getFTestP()

Description

Returns the probability of a larger F in absolute value for the F test for equality of
variances, assuming equal variances.

Returns

a double containing the probability of a larger F in absolute value, assuming equal
variances.

getLowerCICommonVariance
public double getLowerCICommonVariance()

Description

Returns the lower confidence limits for the common, or pooled, variance.

Basic Statistics NormTwoSample class • 327

Returns

a double containing the lower confidence limits for the variance.

getLowerCIDiff
public double getLowerCIDiff()

Description

Returns the lower confidence limit for the mean of the first population minus the mean of
the second for equal or unequal variances depending on the value set by
setUnequalVariances. setUnequalVariances

Returns

a double containing the lower confidence limit for the mean of the first sample minus the
mean of the second sample.

getLowerCIRatioVariance
public double getLowerCIRatioVariance()

Description

Returns the approximate lower confidence limit for the ratio of the variance of the first
population to the second.

Returns

a double containing the approximate lower confidence limit variance.

getMeanX
public double getMeanX()

Description

Returns the mean of the first sample, x.

Returns

a double containing the mean.

getMeanY
public double getMeanY()

Description

Returns the mean of the second sample, y.

Returns

a double containing the mean.

getPooledVariance
public double getPooledVariance()

328 • NormTwoSample class JMSL

Description

Returns the Pooled variance for the two samples.
Returns

a double containing the Pooled variance for the two samples.

getStdDevX
public double getStdDevX()

Description

Returns the standard deviation of the first sample.
Returns

a double containing the standard deviation of the first sample.

getStdDevY
public double getStdDevY()

Description

Returns the standard deviation of the second sample.
Returns

a double containing the standard deviation of the second sample.

getTTest
public double getTTest()

Description

Returns the test statistic for the Satterthwaite’s approximation. The value returned will
be based on assumption of equal or unequal variances based on the the value set by
setUnequalVariances. setUnequalVariances
Returns

a double containing the test statistic for the t-test.

getTTestDF
public double getTTestDF()

Description

Returns the degrees of freedom for the Satterthwaite’s approximation for t-test for either
equal or unequal variances, depending on the value set by setUnequalVariances.
setUnequalVariances
Returns

an double containing the degrees of freedom for the t-test.

getTTestP
public double getTTestP()

Basic Statistics NormTwoSample class • 329

Description

Returns the approximate probability of a larger t for the Satterthwaite’s approximation
for equal or unequal variances. setUnequalVariances

Returns

a double containing the probability for the t-test.

getUpperCICommonVariance
public double getUpperCICommonVariance()

Description

Returns the upper confidence limits for the common, or pooled, variance.

Returns

a double containing the upper confidence limits for the variance.

getUpperCIDiff
public double getUpperCIDiff()

Description

Returns the upper confidence limit for the mean of the first population minus the mean of
the second for equal or unequal variances depending on the value set by
setUnequalVariances. setUnequalVariances

Returns

a double containing the upper confidence limit for the mean of the first sample minus the
mean of the second sample.

getUpperCIRatioVariance
public double getUpperCIRatioVariance()

Description

Returns the approximate upper confidence limit for the ratio of the variance of the first
population to the second.

Returns

a double containing the approximate upper confidence limit variance.

setChiSquaredTestNull
public void setChiSquaredTestNull(double varianceHypothesisValue)

Description

Sets the null hypothesis value for the chi-squared test. The default is 1.0.

330 • NormTwoSample class JMSL

Parameter

varianceHypothesisValue – a double containing the null hypothesis value for the
chi-squared test.

setConfidenceMean
public void setConfidenceMean(double confidenceMean)

Description

Sets the confidence level (in percent) for a two-sided interval estimate of the mean of x -
the mean of y, in percent. Argument confidenceMean must be between 0.0 and 1.0 and is
often 0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence level c (at
least 50 percent), set confidenceMean = 1.0− 2.0(1.0− c). If the confidence mean is not
specified, a 95-percent confidence interval is computed. Default: confidenceMean = .95

Parameter

confidenceMean – double containing the confidence level of the mean.

setConfidenceVariance
public void setConfidenceVariance(double confidenceVariance)

Description

Sets the confidence level (in percent) for two-sided interval estimate of the variances.
Under the assumption of equal variances, the pooled variance is used to obtain a
two-sided confidenceVariance percent confidence interval for the common variance with
getLowerCICommonVariance or getUpperCICommonVariance. Without making the
assumption of equal variances, setUnequalVariances , the ratio of the variances is of
interest. A two-sided confidenceVariance percent confidence interval for the ratio of the
variance of the first sample to that of the second sample is given by the
getLowerCIRatioVariance and getUpperCIRatioVariance. See setUnequalVariances
and getUpperCIRatioVariance. The confidence intervals are symmetric in probability.
Argument confidenceVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or
0.99. The default is 0.95.

Parameter

confidenceVariance – double containing the confidence level of the variance.

setTTestNull
public void setTTestNull(double meanHypothesis)

Description

Sets the Null hypothesis value for t-test for the mean. meanHypothesis=0.0 by default.

Basic Statistics NormTwoSample class • 331

Parameter

meanHypothesis – double containing the hypothesis value.

setUnequalVariances
public void setUnequalVariances(boolean eqVar)

Description

Specifies whether to return statistics based on equal or unequal variances. The default is
to return statistics for equal variances. if eqVar is True then statistics for unequal
variances will be returned.

Parameter

eqVar – a boolean containing a true or false value. A value of true will cause results
for unequal variances to be returned. A value of false will cause results for equal
variances to be returned.

update
public void update(double[] x, double[] y)

Description

Concatenates samples x and y to the samples provided in the constructor.

Parameters

x – is a double array containing updates to the first sample.

y – is a double array containing updates to the second sample.

updateX
public void updateX(double[] x)

Description

Concatenates the values in x to the first sample provided in the constructor.

Parameter

x – is a double array containing updates for the first sample.

updateY
public void updateY(double[] y)

Description

Concatenates the values in y to the second sample provided in the constructor.

Parameter

y – is a double array containing updates for the second sample.

332 • NormTwoSample class JMSL

Example 1: NormTwoSample

This example taken from Conover and Iman(1983, p294), involves scores on arithmetic tests of
two grade-school classes.

Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138
104 140
110 150
125 163

164
169

The question is whether a group taught by an experimental method has a higher mean score.
The difference in means and the t test are ouput. The variances of the two populations are
assumed to be equal. It is seen from the output that there is strong reason to believe that the
two means are different (t value of -4.804). Since the lower 97.5-percent confidence limit does
not include 0, the null hypothesis is that µ1 ≤ µ2 would be rejected at the 0.05 significance
level. (The closeness of the values of the sample variances provides some qualitative
substantiation of the assumption of equal variances.)

import com.imsl.stat.*;

public class NormTwoSampleEx1 {
public static void main(String args[]) {

double mean;
double x1[] = {72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0 };
double x2[] = {111.0, 118.0, 128.0, 138.0, 140.0, 150.0,
163.0, 164.0, 169.0 };

/* Perform Analysis for one sample x2*/
NormTwoSample n2samp = new NormTwoSample(x1,x2);
mean = n2samp.getDiffMean();

System.out.println("x1mean-x2mean = "+mean);
System.out.println("X1 mean ="+n2samp.getMeanX());
System.out.println("X2 mean ="+n2samp.getMeanY());

double pVar = n2samp.getPooledVariance();
System.out.println("pooledVar = " + pVar);

double loCI = n2samp.getLowerCIDiff();
double upCI = n2samp.getUpperCIDiff();
System.out.println("95% CI for the mean is " +
loCI + " " + upCI);

loCI = n2samp.getLowerCIDiff();
upCI = n2samp.getUpperCIDiff();

Basic Statistics NormTwoSample class • 333

System.out.println("95% CI for the ueq mean is " +
loCI + " " + upCI);

System.out.println("T Test Results");
double tDF = n2samp.getTTestDF();
double tT = n2samp.getTTest();
double tPval = n2samp.getTTestP();
System.out.println("T default = "+tDF);
System.out.println("t = "+tT);
System.out.println("p-value = "+tPval);

double stdevX = n2samp.getStdDevX();
double stdevY = n2samp.getStdDevY();
System.out.println("stdev x1 ="+stdevX);
System.out.println("stdev x2 ="+stdevY);

}
}

Output

x1mean-x2mean = -50.476190476190496
X1 mean =91.85714285714285
X2 mean =142.33333333333334
pooledVar = 434.6326530612244
95% CI for the mean is -73.01001962529507 -27.942361327085916
95% CI for the ueq mean is -73.01001962529507 -27.942361327085916
T Test Results
T default = 14.0
t = -4.8043615047163355
p-value = 2.8025836567727923E-4
stdev x1 =20.87605144201182
stdev x2 =20.826665599658526

Sort class

public class com.imsl.stat.Sort

A collection of sorting functions.

Class Sort contains ascending and descending methods for sorting elements of an array or a
matrix. The array ascending method sorts the elements of an array, A, into ascending order by
algebraic value. The array A is divided into two parts by picking a central element T of the
array. The first and last elements of A are compared with T and exchanged until the three
values appear in the array in ascending order. The elements of the array are rearranged until
all elements greater than or equal to the central element appear in the second part of the array
and all those less than or equal to the central element appear in the first part. The upper and

334 • Sort class JMSL

lower subscripts of one of the segments are saved, and the process continues iteratively on the
other segment. When one segment is finally sorted, the process begins again by retrieving the
subscripts of another unsorted portion of the array. On completion, Aj ≤ Ai for j < i. For
more details, see Singleton (1969), Griffin and Redish (1970), and Petro (1970).

The matrix ascending method sorts the rows of real matrix x using a particular row in x as the
keys. The sort is algebraic with the first key as the most significant, the second key as the next
most significant, etc. When x is sorted in ascending order, the resulting sorted array is such
that the following is true:

• For i = 0, 1, . . . ,n observations− 2, x[i][indices keys [0]] ≤ x[i+ 1][indices keys[0]]

• For k = 1, . . . ,n keys− 1, ifx[i][indices keys[j]] = x[i + 1][indices keys[j]] for
j = 0, 1, . . . , k − 1, then x[i][indices keys[k]] = x[i+ 1][indices keys[k]]

The observations also can be sorted in descending order.The rows of x containing the missing
value code NaN in at least one of the specified columns are considered as an additional group.
These rows are moved to the end of the sorted x. The sorting algorithm is based on a quicksort
method given by Singleton (1969) with modifications by Griffen and Redish (1970) and Petro
(1970).

All other methods in this class work off of the ascending methods.

Constructor

Sort
public Sort()

Methods

ascending
static public void ascending(double[] ra)

Description

Sort an array into ascending order.

Parameter

ra – double array to be sorted into ascending order

ascending
static public void ascending(int[] ra)

Description

Function to sort an integer array into ascending order.

Basic Statistics Sort class • 335

Parameter

ra – int array to be sorted into ascending order

ascending
static public void ascending(double[] ra, int[] iperm)

Description

Sort an array into ascending order.

Parameters

ra – double array to be sorted into ascending order

iperm – int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

ascending
static public void ascending(int[] ra, int[] iperm)

Description

Sort an array into ascending order.

Parameters

ra – int array to be sorted into ascending order

iperm – int array to be sorted using the same permutations applied to ra.
Typically, you would initialize this to 0, 1, ...

ascending
static public void ascending(double[][] ra, int nKeys, int[] iperm)

Description

Sort an array into ascending order by specified keys.

Parameters

ra – double array to be sorted into ascending order.

nKeys – int containing the first nKeys columns of ra to be used as the sorting keys.

iperm – int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

descending
static public void descending(double[] ra)

Description

Sort an array into descending order.

336 • Sort class JMSL

Parameter

ra – double array to be sorted into descending order

descending
static public void descending(double[] ra, int[] iperm)

Description

Sort an array into descending order.

Parameters

ra – double array to be sorted into descending order

iperm – int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

descending
static public void descending(double[][] ra, int nKeys, int[] iperm)

Description

Function to sort an array into descending order by specified keys.

Parameters

ra – double array to be sorted into descending order.

nKeys – int containing the first nKeys columns of ra to be used as the sorting keys.

iperm – int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Example 1: Sorting

An array is sorted by increasing value. A permutation array is also computed. Note that the
permutation array begins at 0 in this example.

import com.imsl.math.*;
import com.imsl.stat.*;

public class SortEx1 {
public static void main(String args[]) {

double ra[] = { 10., -9., 8., -7., 6., 5., 4., -3., -2., -1.};
int iperm[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, ra);
System.out.println();

Basic Statistics Sort class • 337

// Sort the array
Sort.ascending(ra, iperm);

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

// Print the array
pm.print(mf, ra);

pm = new PrintMatrix("The Resulting Permutation Array");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, iperm);

}
}

Output

The Input Array

10
-9
8
-7
6
5
4
-3
-2
-1

The Sorted Array - Lowest to Highest

-9
-7
-3
-2
-1
4
5
6
8
10

The Resulting Permutation Array

338 • Sort class JMSL

1
3
7
8
9
6
5
4
2
0

Example 2: Sorting

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as the keys.
There are two missing values (NaNs) in the keys. The observations containing these values are
moved to the end of the sorted array.

import com.imsl.math.*;
import com.imsl.stat.*;

public class SortEx2 {
public static void main(String args[]) {

int nKeys=2;
double x[][] = {{1.0, 1.0, 1.0},

{2.0, 1.0, 2.0},
{1.0, 1.0, 3.0},
{1.0, 1.0, 4.0},
{2.0, 2.0, 5.0},
{1.0, 2.0, 6.0},
{1.0, 2.0, 7.0},
{1.0, 1.0, 8.0},
{2.0, 2.0, 9.0},
{1.0, 1.0, 9.0}};

int iperm[] = new int[x.length];
x[4][1] = Double.NaN;
x[6][0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, x);
System.out.println();

try {
Sort.ascending(x, nKeys, iperm);
} catch (Exception e) {

Basic Statistics Sort class • 339

}

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

// Print the array
pm.print(mf, x);

pm = new PrintMatrix("The permutation array");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
pm.print(mf, iperm);

}
}

Output

The Input Array

1 1 1
2 1 2
1 1 3
1 1 4
2 ? 5
1 2 6
? 2 7
1 1 8
2 2 9
1 1 9

The Sorted Array - Lowest to Highest

1 1 1
1 1 9
1 1 3
1 1 4
1 1 8
1 2 6
2 1 2
2 2 9
? 2 7
2 ? 5

The permutation array

0

340 • Sort class JMSL

9
2
3
7
5
1
8
6
4

Ranks class

public class com.imsl.stat.Ranks

Compute the ranks, normal scores, or exponential scores for a vector of observations.

The class Ranks can be used to compute the ranks, normal scores, or exponential scores of the
data in X. Ties in the data can be resolved in four different ways, as specified by member
function setTieBreaker. The type of values returned can vary depending on the member
function called:

GetRanks: Ordinary Ranks

For this member function, the values output are the ordinary ranks of the data in X. If X[i] has
the smallest value among those in X and there is no other element in X with this value, then
getRanks(i) = 1. If both X[i] and X[j] have the same smallest value, then

if TieBreaker = 0, Ranks[i] = getRanks([j] = 1.5
if TieBreaker = 1, Ranks[i] = Ranks[j] = 2.0
if TieBreaker = 2, Ranks[i] = Ranks[j] = 1.0
if TieBreaker = 3, Ranks[i] = 1.0 and Ranks[j] = 2.0
or Ranks[i] = 2.0 and Ranks[j] = 1.0.

When the ties are resolved by use of function setRandom, different results may occur when
running the same program at different times unless the ”seed” of the random number generator
is set explicitly by use of Random method setSeed. Ordinarily, there is no need to call the
routine to set the seed, even if there are ties in the data.

getBlomScores: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order statistics
from a normal distribution. The simplest approximations are obtained by evaluating the inverse
cumulative normal distribution function, inverseNormal, at the ranks scaled into the open
interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the rank
ri(1 ≤ ri ≤ n, where n is the sample size is (ri − 3/8)/(n+ 1/4). The Blom normal score
corresponding to the observation with rank ri is

Basic Statistics Ranks class • 341

Φ−1

(
ri − 3/8
n+ 1/4

)
where Φ(·) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if X[i] equals X[j]
(within fuzz) and their value is the k-th smallest in the data set, the Blom normal scores are
determined for ranks of k and k + 1, and then these normal scores are averaged or selected in
the manner specified by TieBreaker, which is set by the method setTieBreaker. (Whether the
transformations are made first or ties are resolved first makes no difference except when
averaging is done.)

getTukeyScores: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is
(ri − 1/3)/(n+ 1/3). The Tukey normal score corresponding to the observation with rank ri is

Φ−1

(
ri − 1/3
n+ 1/3

)
Ties are handled in the same way as discussed above for the Blom normal scores.

getVanDerWaerdenScores: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation for
the rank ri is ri/(n+ 1). The Van der Waerden normal score corresponding to the observation
with rank ri is

Φ−1

(
ri

n+ 1

)
Ties are handled in the same way as discussed above for the Blom normal scores.

getNormalScores: Expected Value of Normal Order Statistics

The method getNormalScores returns the expected values of the normal order statistics. If the
value in X[i] is the k-th smallest, then the value getNormalScores[i] is E(Zk), where E(·) is
the expectation operator and Zk is the k-th order statistic in a sample of size NOBS from a
standard normal distribution. Ties are handled in the same way as discussed above for the
Blom normal scores.

getSavageScores: Savage Scores

The method getSavageScores returns the expected values of the exponential order statistics.
These values are called Savage scores because of their use in a test discussed by Savage (1956)
(see Lehman 1975). If the value in X[i] is the k-th smallest, then the i-th output value output is
E(Yk), where Yk is the k-th order statistic in a sample of size n from a standard exponential
distribution. The expected value of the k-th order statistic from an exponential sample of size n
is

342 • Ranks class JMSL

1
n

+
1

n− 1
+ . . .+

1
n− k + 1

Ties are handled in the same way as discussed above for the Blom normal scores.

Fields

TIE AVERAGE
static final public int TIE AVERAGE

In case of ties, use the average of the scores of the tied observations.

TIE HIGHEST
static final public int TIE HIGHEST

In case of ties, use the highest score in the group of ties.

TIE LOWEST
static final public int TIE LOWEST

In case of ties, use the lowest score in the group of ties.

TIE RANDOM
static final public int TIE RANDOM

In case of ties, use one of the group of ties chosen at random.

Constructor

Ranks
public Ranks()

Description

Constructor for the Ranks class.

Methods

expectedNormalOrderStatistic
static public double expectedNormalOrderStatistic(int i, int n)

Description

Returns the expected value of a normal order statistic.

Basic Statistics Ranks class • 343

Parameters

i – an int, the rank of the order statistic

n – an int, the sample size

Returns

a double, the expected value of the i-th order statistic in a sample of size n from the
standard normal distribution

getBlomScores
public double[] getBlomScores(double[] x)

Description

Gets the Blom version of normal scores for each observation.

Parameter

x – a double array which contains the observations to be ranked

Returns

a double array which contains the Blom version of normal scores for each observation in
x

getNormalScores
public double[] getNormalScores(double[] x)

Description

Gets the expected value of normal order statistics (for tied observations, the average of
the expected normal scores).

Parameter

x – a double array which contains the observations

Returns

a double array which contains the expected value of normal order statistics for the
observations in x (for tied observations, the average of the expected normal scores)

getRanks
public double[] getRanks(double[] x)

Description

Gets the rank for each observation.

Parameter

x – a double array which contains the observations to be ranked

344 • Ranks class JMSL

Returns

a double array which contains the rank for each observation in x

getSavageScores
public double[] getSavageScores(double[] x)

Description

Gets the Savage scores (the expected value of exponential order statistics).

Parameter

x – a double array which contains the observations

Returns

a double array which contains the Savage scores for the observations in x. (the expected
value of exponential order statistics)

getTukeyScores
public double[] getTukeyScores(double[] x)

Description

Gets the Tukey version of normal scores for each observation.

Parameter

x – a double array which contains the observations to be ranked

Returns

a double array which contains the Tukey version of normal scores for each observation in
x

getVanDerWaerdenScores
public double[] getVanDerWaerdenScores(double[] x)

Description

Gets the Van der Waerden version of normal scores for each observation.

Parameter

x – a double array which contains the observations to be ranked

Returns

a double array which contains the Van der Waerden version of normal scores for each
observation in x

setFuzz
public void setFuzz(double fuzz)

Basic Statistics Ranks class • 345

Description

Sets the fuzz factor used in determining ties.

Parameter

fuzz – a double which represents the fuzz factor

setRandom
public void setRandom(Random random)

Description

Sets the Random object.

Parameter

random – a Random object used in breaking ties

setTieBreaker
public void setTieBreaker(int iTie)

Description

Sets the tie breaker for Ranks.

Parameter

iTie – an int which represents the tie breaker

Example: Ranks

In this data from Hinkley (1977) note that the fourth and sixth observations are tied and that
the third and twentieth are tied.

import com.imsl.stat.*;
import com.imsl.math.*;

public class RanksEx1 {
public static void main(String args[]) {

double x[] = {
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

Ranks ranks = new Ranks();
double score[] = ranks.getRanks(x);
new PrintMatrix("The Ranks of the Observations - " +
"Ties Averaged").print(mf, score);

346 • Ranks class JMSL

System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(ranks.TIE_HIGHEST);
score = ranks.getBlomScores(x);
new PrintMatrix("The Blom Scores of the Observations - " +
"Highest Score used in Ties").print(mf, score);
System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(ranks.TIE_LOWEST);
score = ranks.getTukeyScores(x);
new PrintMatrix("The Tukey Scores of the Observations - " +
"Lowest Score used in Ties").print(mf, score);
System.out.println();

ranks = new Ranks();
ranks.setTieBreaker(ranks.TIE_RANDOM);
Random random = new Random();
random.setSeed(123457);
random.setMultiplier(16807);
ranks.setRandom(random);
score = ranks.getVanDerWaerdenScores(x);
new PrintMatrix("The Van Der Waerden Scores of the " +
"Observations - Ties untied by Random").print(mf, score);

}
}

Output

The Ranks of the Observations - Ties Averaged

5
18
6.5
11.5
21
11.5
2
15
29
24
27
28
16
23
3
17
13
1
4
6.5

Basic Statistics Ranks class • 347

26
19
10
14
30
25
9
20
8
22

The Blom Scores of the Observations - Highest Score used in Ties

-1.024
0.209
-0.776
-0.294
0.473
-0.294
-1.61
-0.041
1.61
0.776
1.176
1.361
0.041
0.668
-1.361
0.125
-0.209
-2.04
-1.176
-0.776
1.024
0.294
-0.473
-0.125
2.04
0.893
-0.568
0.382
-0.668
0.568

The Tukey Scores of the Observations - Lowest Score used in Ties

-1.02
0.208
-0.89
-0.381
0.471
-0.381
-1.599
-0.041

348 • Ranks class JMSL

1.599
0.773
1.171
1.354
0.041
0.666
-1.354
0.124
-0.208
-2.015
-1.171
-0.89
1.02
0.293
-0.471
-0.124
2.015
0.89
-0.566
0.381
-0.666
0.566

The Van Der Waerden Scores of the Observations - Ties untied by Random

-0.989
0.204
-0.753
-0.287
0.46
-0.372
-1.518
-0.04
1.518
0.753
1.131
1.3
0.04
0.649
-1.3
0.122
-0.204
-1.849
-1.131
-0.865
0.989
0.287
-0.46
-0.122
1.849
0.865
-0.552
0.372
-0.649
0.552

Basic Statistics Ranks class • 349

EmpiricalQuantiles class

public class com.imsl.stat.EmpiricalQuantiles implements Serializable,
Cloneable

Computes empirical quantiles.

The class EmpiricalQuantiles determines the empirical quantiles, as indicated in the array
qProp, from the data in x. The algorithm first checks to see if x is sorted; if x is not sorted, the
algorithm does either a complete or partial sort, depending on how many order statistics are
required to compute the quantiles requested. The algorithm returns the empirical quantiles
and, for each quantile, the two order statistics from the sample that are at least as large and at
least as small as the quantile. For a sample of size n, the quantile corresponding to the
proportion p is defined as

Q(p) = (1− f)x(j) + fx(j+1)

where j = bp(n+ 1)c, f = p(n+ 1)− j, and x(j), is the j-th order statistic, if 1 ≤ j ≤ n;
otherwise, the empirical quantile is the smallest or largest order statistic.

Constructor

EmpiricalQuantiles
public EmpiricalQuantiles(double[] x, double[] qProp)

Description

Constructor for EmpiricalQuantiles.

Parameters

x – A double array containing the data.

qProp – A double array containing the quantile proportions.

Methods

getQ
final public double[] getQ()

Description

Returns the empirical quantiles.

350 • EmpiricalQuantiles class JMSL

Returns

A double array containing the empirical quantiles. Q[i] corresponds to the empirical
quantile at proportion qProp[i]. The quantiles are determined by linear interpolation
between adjacent ordered sample values.

getTotalMissing
public int getTotalMissing()

Description

Returns the total number of missing values.

Returns

an int scalar value representing the total number of missing values (NaN) in input x.

getXHi
final public double[] getXHi()

Description

Returns the smallest element of x greater than or equal to the desired quantile.

Returns

A double array containing the smallest element of x greater than or equal to the desired
quantile.

getXLo
final public double[] getXLo()

Description

Returns the largest element of x less than or equal to the desired quantile.

Returns

A double array containing the largest element of x less than or equal to the desired
quantile.

Example 1: Empirical Quantiles

In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the
0.5 quantile corresponds to the sample median. The data are from Hinkley (1977) and
Velleman and Hoaglin (1981). They are the measurements (in inches) of precipitation in
Minneapolis/St. Paul during the month of March for 30 consecutive years.

import java.text.*;
import com.imsl.stat.*;

public class EmpiricalQuantilesEx1 {
public static void main(String args[]) {

Basic Statistics EmpiricalQuantiles class • 351

String fmt = "0.00";
DecimalFormat df = new DecimalFormat(fmt);

double[] x = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
2.05

};
double[] qProp = {0.01, 0.5, 0.90, 0.95, 0.99};

EmpiricalQuantiles eq = new EmpiricalQuantiles(x, qProp);
double [] Q = eq.getQ();
double [] XLo = eq.getXLo();
double [] XHi = eq.getXHi();
System.out.println(" Smaller Empirical Larger");
System.out.println(" Quantile Datum Quantile Datum");
for (int i = 0; i < qProp.length; i++)

System.out.println(df.format(qProp[i])+" "+df.format(XLo[i])+
" "+df.format(Q[i])+" "+df.format(XHi[i]));

}
}

Output

Smaller Empirical Larger
Quantile Datum Quantile Datum
0.01 0.32 0.32 0.32
0.50 1.43 1.47 1.51
0.90 3.00 3.08 3.09
0.95 3.37 3.99 4.75
0.99 4.75 4.75 4.75

EmpiricalQuantiles.ScaleFactorZeroException class

static public class com.imsl.stat.EmpiricalQuantiles.ScaleFactorZeroException
extends com.imsl.IMSLException

The computations cannot continue because a scale factor is zero.

Constructor

EmpiricalQuantiles.ScaleFactorZeroException
public EmpiricalQuantiles.ScaleFactorZeroException(int index)

352 • EmpiricalQuantiles class JMSL

Description

Constructs a ScaleFactorZeroException.

Parameter

index – An int which specifies the index of the scale factor array at which scale
factor is zero.

TableOneWay class

public class com.imsl.stat.TableOneWay implements Serializable, Cloneable

Tallies observations into a one-way frequency table.

Constructor

TableOneWay
public TableOneWay(double[] x, int nIntervals)

Description

Constructor for TableOneWay.

Parameters

x – A double array containing the observations.

nIntervals – An int scalar containing the number of intervals (bins).

Methods

getFrequencyTable
public double[] getFrequencyTable()

Description

Returns the one-way frequency table. nIntervals intervals of equal length are used with
the initial interval starting with the minimum value in x and the last interval ending with
the maximum value in x. The initial interval is closed on the left and the right. The
remaining intervals are open on the left and the closed on the right. Each interval is of
length (max-min)/nIntervals, where max is the maximum value of x and min is the
minimum value of x.

Returns

double array containing the one-way frequency table.

Basic Statistics TableOneWay class • 353

getFrequencyTable
public double[] getFrequencyTable(double lower bound, double upper bound)

Description

Returns a one-way frequency table using known bounds. The one-way frequency table is
computed using two semi-infinite intervals as the initial and last intervals. The initial
interval is closed on the right and includes lower bound as its right endpoint. The last
interval is open on the left and includes all values greater than upper bound. The
remaining nIntervals - 2 intervals are each of length (upper bound - lower bound)/
(nIntervals - 2) and are open on the left and closed on the right. nIntervals must
be greater than or equal to 3.

Parameters

lower bound – double specifies the right endpoint.

upper bound – double specifies the left endpoint.

Returns

double array containing the one-way frequency table.

getFrequencyTableUsingClassmarks
public double[] getFrequencyTableUsingClassmarks(double[] classmarks)

Description

Returns the one-way frequency table using class marks. Equally spaced class marks in
ascending order must be provided in the array classmarks of length nIntervals. The
class marks are the midpoints of each of the nIntervals. Each interval is assumed to
have length classmarks[1] - classmarks[0]. nIntervals must be greater than or
equal to 2.

Parameter

classmarks – double array containing either the cutpoints or the class marks.

Returns

double array containing the one-way frequency table.

getFrequencyTableUsingCutpoints
public double[] getFrequencyTableUsingCutpoints(double[] cutpoints)

Description

Returns the one-way frequency table using cutpoints. The cutpoints are boundaries that
must be provided in the array cutpoints of length nIntervals-1. This option allows
unequal interval lengths. The initial interval is closed on the right and includes the initial
cutpoint as its right endpoint. The last interval is open on the left and includes all values
greater than the last cutpoint. The remaining nIntervals-2 intervals are open on the left
and closed on the right. Argument nIntervals must be greater than or equal to 3 for
this option.

354 • TableOneWay class JMSL

Parameter

cutpoints – double array containing the cutpoints.

Returns

double array containing the one-way frequency table.

getMaximum
public double getMaximum()

Description

Returns maximum value of x.

Returns

a double containing the maximum data bound.

getMinimum
public double getMinimum()

Description

Returns the minimum value of x.

Returns

a double containing the minimum data bound.

Example: TableOneWay

The data for this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The
measurement (in inches) are for precipitation in Minneapolis/St. Paul during the month of
March for 30 consecutive years.

The first test uses the default tally method which may be appropriate when the range of data is
unknown. The minimum and maximum data bounds are displayed.

The second test computes the table usings known bounds, where the lower bound is 0.5 and the
upper bound is 4.5. The eight interior intervals each have width (4.5 - 0.5)/(10-2) = 0.5. The
10 intervals are (−∞, 0.5], (0.5,1.0],...,(4.0,4.5], and (4.5,∞].

In the third test, 10 class marks, 0.25, 0.75, 1.25,...,4.75, are input. This defines the class
intervals (0.0,0.5],(0.5,1.0],...,(4.0,4.5],(4.5,5.0]. Note that unlike the previous test, the initial
and last intervals are the same length as the remaining intervals.

In the fourth test, cutpoints, 0.5,1.0, 1.5, 2.0, ...,4.5, are input to define the same 10 intervals as
in the second test. Here again, the initial and last intervals are semi- infinite intervals.

import com.imsl.stat.*;

public class TableOneWayEx1 {
public static void main(String args[]) {

Basic Statistics TableOneWay class • 355

int nIntervals=10;
double table[];

double[] x={
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.9, 2.05

};
double cutPoints[] = { 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5};
double classMarks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
2.75, 3.25, 3.75, 4.25, 4.75};

TableOneWay fTbl = new TableOneWay(x, nIntervals);
//double[] table = new double[nIntervals];

table = fTbl.getFrequencyTable();

System.out.println("Example 1 ");
for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("--------------------------");
System.out.println("Lower bounds= "+fTbl.getMinimum());
System.out.println("Upper bounds= "+fTbl.getMaximum());
System.out.println("--------------------------");
/* getFrequencyTable using a set of known bounds */
table = fTbl.getFrequencyTable(0.5, 4.5);
for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("---------------------");

table = fTbl.getFrequencyTableUsingClassmarks(classMarks);
for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("--------------------");
table = fTbl.getFrequencyTableUsingCutpoints(cutPoints);
for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);
}

}

Output

Example 1
0 4.0
1 8.0
2 5.0

356 • TableOneWay class JMSL

3 5.0
4 3.0
5 1.0
6 3.0
7 0.0
8 0.0
9 1.0

Lower bounds= 0.32
Upper bounds= 4.75

0 2.0
1 7.0
2 6.0
3 6.0
4 4.0
5 2.0
6 2.0
7 0.0
8 0.0
9 1.0

0 2.0
1 7.0
2 6.0
3 6.0
4 4.0
5 2.0
6 2.0
7 0.0
8 0.0
9 1.0

0 2.0
1 7.0
2 6.0
3 6.0
4 4.0
5 2.0
6 2.0
7 0.0
8 0.0
9 1.0

TableTwoWay class

public class com.imsl.stat.TableTwoWay implements Serializable, Cloneable

Tallies observations into a two-way frequency table.

Basic Statistics TableTwoWay class • 357

Constructor

TableTwoWay
public TableTwoWay(double[] x, int xIntervals, double[] y, int yIntervals)

Description

Constructor for TableTwoWay.

Parameters

x – A double array containing the data for the first variable.
xIntervals – An int scalar containing the number of intervals (bins) for variable x.
y – A double array containing the data for the second variable.
yIntervals – An int scalar containing the number of intervals (bins) for variable y.

Methods

getFrequencyTable
public double[][] getFrequencyTable()

Description

Returns the two-way frequency table. Intervals of equal length are used. Let xmin and
xmax be the minimum and maximum values in x, respectively, with similiar meanings for
ymin and ymax. Then, the first row of the output table is the tally of observations with
the x value less than or equal to xmin + (xmax - xmin)/xIntervals, and the y value
less than or equal to ymin + (ymax - ymin)/yIntervals.

Returns

A two-dimensional double array containing the two-way frequency table.

getFrequencyTable
public double[][] getFrequencyTable(double xLowerBound, double xUpperBound,
double yLowerBound, double yUpperBound)

Description

Compute a two-way frequency table using intervals of equal length and user supplied
upper and lower bounds, xLowerBound, xUpperBound, yLowerBound, yUpperBound.
The first and last intervals for both variables are semi-infinite in length. xIntervals and
yIntervals must be greater than or equal to 3.

Parameters

xLowerBound – double specifies the right endpoint for x.
xUpperBound – double specifies the left endpoint for x.
yLowerBound – double specifies the right endpoint for y.
yUpperBound – double specifies the left endpoint for y.

358 • TableTwoWay class JMSL

Returns

A two dimensional double array containing the two-way frequency table.

getFrequencyTableUsingClassmarks
public double[][] getFrequencyTableUsingClassmarks(double[] cx, double[] cy)

Description

Returns the two-way frequency table using either cutpoints or class marks. Cutpoints are
boundaries and class marks are the midpoints of xIntervals and yIntervals. Equally
spaced class marks in ascending order must be provided in the arrays cx and cy. The
class marks are the midpoints of each interval. Each interval is taken to have length
cx[1] - cx[0] in the x direction and cy[1] - cy[0] in the y direction. The total
number of elements in the output table may be less than the number of observations of
input data. Arguments xIntervals and yIntervals must be greater than or equal to 2
for this option.

Parameters

cx – double array containing either the cutpoints or the class marks for x.

cy – double array containing either the cutpoints or the class marks for y.

Returns

A two dimensional double array containing the two-way frequency table.

getFrequencyTableUsingCutpoints
public double[][] getFrequencyTableUsingCutpoints(double[] cx, double[] cy)

Description

Returns the two-way frequency table using cutpoints. The cutpoints (boundaries) must
be provided in the arrays cx and cy, of length (xIntervals-1) and (yIntervals-1)
respectively. The first row of the output table is the tally of observations for which the x
value is less than or equal to cx[0], and the y value is less than or equal to cy[0]. This
option allows unequal interval lengths. Arguments cx and cy must be greater than or
equal to 2.

Parameters

cx – double array containing either the cutpoints or the class marks for x.

cy – double array containing either the cutpoints or the class marks for y.

Returns

A two dimensional double array containing the two-way frequency table.

getMaximumX
public double getMaximumX()

Description

Returns the maximum value of x.

Basic Statistics TableTwoWay class • 359

Returns

a double containing the maximum data bound for x.

getMaximumY
public double getMaximumY()

Description

Returns the maximum value of y.

Returns

a double containing the maximum data bound for y.

getMinimumX
public double getMinimumX()

Description

Returns the minimum value of x.

Returns

a double containing the minimum data bound for x.

getMinimumY
public double getMinimumY()

Description

Returns the minimum value of y.

Returns

a double containing the minimum data bound for y.

Example: TableTwoWay

The data for x in this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The
measurement (in inches) are for precipitation in Minneapolis/St. Paul during the month of
March for 30 consecutive years. The data for y were created by adding small integers to the
data in x.

The first test uses the default tally method which may be appropriate when the range of data is
unknown. The minimum and maximum data bounds are displayed.

The second test computes the table using known bounds, where the x lower, x upper, y lower, y
upper bounds are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for x and 1 to 2,
2 to 3 and so on for y.

In the third test, the class boundaries are input as the same intervals as in the second test. The
first element of cmx and cmy specify the first cutpoint between classes.

360 • TableTwoWay class JMSL

The fourth test uses the cutpoints tally option with cutpoints such that the intervals are
specified as in the previous tests.

import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class TableTwoWayEx1 {
public static void main(String args[]) {

int nx=5;
int ny=6;
double table[][];

double[] x={
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9,
2.05

};
double y[] = {

1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.9,
5.05

};

TableTwoWay fTbl = new TableTwoWay(x, nx, y, ny);

table = fTbl.getFrequencyTable();

System.out.println("Example 1 ");
System.out.println("Use Min and Max for bounds");
new PrintMatrix("counts").print(table);

System.out.println("--------------------------");
System.out.println("Lower xbounds= "+fTbl.getMinimumX());
System.out.println("Upper xbounds= "+fTbl.getMaximumX());
System.out.println("Lower ybounds= "+fTbl.getMinimumY());
System.out.println("Upper ybounds= "+fTbl.getMaximumY());
System.out.println("--------------------------");

double xlo = 1.0;
double xhi = 4.0;
double ylo = 2.0;
double yhi = 6.0;
System.out.println("");
System.out.println("Use Known bounds");
table = fTbl.getFrequencyTable(xlo, xhi,ylo, yhi);
new PrintMatrix("counts").print(table);

double cmx[] = { 0.5, 1.5, 2.5,3.5, 4.5};
double cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};

Basic Statistics TableTwoWay class • 361

table = fTbl.getFrequencyTableUsingClassmarks(cmx, cmy);
System.out.println("");
System.out.println("Use Class Marks");
new PrintMatrix("counts").print(table);

double cpx[] = {1,2,3,4};
double cpy[] = {2,3,4,5,6};
table = fTbl.getFrequencyTableUsingCutpoints(cpx, cpy);
System.out.println("");
System.out.println("Use Cutpoints");
new PrintMatrix("counts").print(table);

}
}

Output

Example 1
Use Min and Max for bounds

counts
0 1 2 3 4 5

0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

Lower xbounds= 0.32
Upper xbounds= 4.75
Lower ybounds= 1.47
Upper ybounds= 6.37

Use Known bounds
counts

0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Class Marks
counts

0 1 2 3 4 5
0 3 2 4 0 0 0

362 • TableTwoWay class JMSL

1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Cutpoints
counts

0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

TableMultiWay class

public class com.imsl.stat.TableMultiWay implements Serializable, Cloneable

Tallies observations into a multi-way frequency table.

The TableMultiWay class determines the distinct values in multivariate data and computes
frequencies for the data. This class accepts the data in the matrix x, but performs
computations only for the variables (columns) in the first nKeys columns of x or by the
variables specified in indkeys. In general, the variables for which frequencies should be
computed are discrete; they should take on a relatively small number of different values.
Variables that are continuous can be grouped first. TableMultiWay can be used to group
variables and determine the frequencies of groups.

When method getBalancedTable is called, the inner class BalancedTable fills the vector
values with the unique values in the vector of the variables and tallies the number of unique
values of each variable table. Each combination of one value from each variable forms a cell in a
multi-way table. The frequencies of these cells are entered in a table so that the first variable
cycles through its values exactly once, and the last variable cycles through its values most
rapidly. Some cells cannot correspond to any observations in the data; in other words, ”missing
cells” are included in table and have a value of 0. The frequency table is returned by the
BalancedTable method getTable.

When method getUnbalancedTable is called, an instance of inner class UnbalancedTable is
created, the frequency of each cell is entered in the unbalanced table so that the first variable
cycles through its values exactly once and the last variable cycles through its values most
rapidly. table is returned by UnbalancedTable method getTable. All cells have a frequency
of at least 1, i.e., there is no ”missing cell.” The array listCells, returned by method
getListCells can be considered ”parallel” to table because row i of listCells is the set of
nKeys values that describes the cell for which row i of table contains the corresponding
frequency.

Basic Statistics TableMultiWay class • 363

Field

serialVersionUID
static final public long serialVersionUID

Constructors

TableMultiWay
public TableMultiWay(double[][] x, int nKeys)

Description

Constructor for TableMultiWay.

Parameters

x – A double matrix containing the observations and variables.

nKeys – int array containing the variables(columns) for which computations are to
be performed.

Methods

getBalancedTable
public TableMultiWay.BalancedTable getBalancedTable()

Description

Returns an object containing the balanced table.

Returns

a TableBalanced object.

getGroups
public int[] getGroups()

Description

Returns the number of observations (rows) in each group. The number of groups is the
length of the returned array. A group contains observations in x that are equal with
respect to the method of comparison. If n contains the returned integer array, then the
first n[0] rows of the sorted x are group number 1. The next n[1] rows of the sorted x
are group number 2, etc. The last n[n.length - 1] rows of the sorted x are group
number n.length.

364 • TableMultiWay class JMSL

Returns

an int array containing the number of observations (row) in each group.

getUnbalancedTable
public TableMultiWay.UnbalancedTable getUnbalancedTable()

Description

Returns an object containing the unbalanced table.

Returns

a TableUnBalanced object.

setFrequencies
public void setFrequencies(double[] frequencies)

Example 1: TableMultiWay

The same data as used in SortEx2 is used in this example. It is a 10 x 3 matrix using Columns
0 and 1 as keys. There are two missing values (NaNs) in the keys. NaN is displayed as a ?.
Table MultiWay determines the number of groups of different observations.

import com.imsl.stat.*;
import com.imsl.math.*;

public class TableMultiWayEx1 {
public static void main (String args[]) {

int nKeys=2;
double x[][] = {{1.0, 1.0, 1.0},

{2.0, 1.0, 2.0},
{1.0, 1.0, 3.0},
{1.0, 1.0, 4.0},
{2.0, 2.0, 5.0},
{1.0, 2.0, 6.0},
{1.0, 2.0, 7.0},
{1.0, 1.0, 8.0},
{2.0, 2.0, 9.0},
{1.0, 1.0, 9.0}};

x[4][1] = Double.NaN;
x[6][0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, x);
System.out.println();

Basic Statistics TableMultiWay class • 365

TableMultiWay tbl = new TableMultiWay(x,nKeys);
int ngroups[] = tbl.getGroups();
System.out.println(" ngroups");
for (int i=0; i < ngroups.length; i++)

System.out.print(ngroups[i] + " ");
}

}

Output

The Input Array

1 1 1
2 1 2
1 1 3
1 1 4
2 ? 5
1 2 6
? 2 7
1 1 8
2 2 9
1 1 9

ngroups
5 1 1 1

Example 2: TableMultiWay

The table of frequencies for a data matrix of size 30 x 2 is output.

import com.imsl.stat.*;
import com.imsl.math.*;
import java.text.MessageFormat;

public class TableMultiWayEx2 {

public static void main(String args[]) {
int indkeys[]={0,1};
double x[][] = {

{0.5, 1.5}, {1.5, 3.5}, {0.5, 3.5}, {1.5, 2.5}, {1.5, 3.5},
{1.5, 4.5}, {0.5, 1.5}, {1.5, 3.5}, {3.5, 6.5}, {2.5, 3.5},
{2.5, 4.5}, {3.5, 6.5}, {1.5, 2.5}, {2.5, 4.5}, {0.5, 3.5},
{1.5, 2.5}, {1.5, 3.5}, {0.5, 3.5}, {0.5, 1.5}, {0.5, 2.5},
{2.5, 5.5}, {1.5, 2.5}, {1.5, 3.5}, {1.5, 4.5}, {4.5, 5.5},
{2.5, 4.5}, {0.5, 3.5}, {1.5, 2.5}, {0.5, 2.5}, {2.5, 5.5}

};

TableMultiWay tbl = new TableMultiWay(x,indkeys);

366 • TableMultiWay class JMSL

int nvalues[] = tbl.getBalancedTable().getNvalues();

double values[] = tbl.getBalancedTable().getValues();

System.out.println(" row values");
for (int i=0; i< nvalues[0]; i++)

System.out.print(values[i]+" ");
System.out.println("");
System.out.println("");
System.out.println(" column values");
for (int i=0; i< nvalues[1]; i++)

System.out.print(values[i+nvalues[0]]+" ");

double table[] = tbl.getBalancedTable().getTable();

System.out.println("");
System.out.println("");
System.out.println(" Table");

System.out.print(" ");
for (int i=0; i< nvalues[1]; i++)

System.out.print(values[i+nvalues[0]]+ " ");
System.out.println("");
for (int i=0; i< nvalues[0]; i++) {

System.out.print(values[i]+ " ");
for (int j=0; j<nvalues[1]; j++)

System.out.print(table[j +(nvalues[1]*i)]+ " ");

System.out.println(" ");
}

}
}

Output

row values
0.5 1.5 2.5 3.5 4.5

column values
1.5 2.5 3.5 4.5 5.5 6.5

Table
1.5 2.5 3.5 4.5 5.5 6.5

0.5 3.0 2.0 4.0 0.0 0.0 0.0
1.5 0.0 5.0 5.0 2.0 0.0 0.0
2.5 0.0 0.0 1.0 3.0 2.0 0.0
3.5 0.0 0.0 0.0 0.0 0.0 2.0
4.5 0.0 0.0 0.0 0.0 1.0 0.0

Basic Statistics TableMultiWay class • 367

Example 3: TableMultiWay

The unbalanced table of frequencies for a data matrix of size 4 x 3 is output.

import com.imsl.stat.*;
import com.imsl.math.*;

public class TableMultiWayEx3 {
public static void main(String args[]) {

int indkeys[] = {0,1};
double x[][] = {

{2.0, 5.0, 1.0}, {1.0, 5.0, 2.0},
{1.0, 6.0, 3.0}, {2.0, 6.0, 4.0}

};
double frq[] = {1.0, 2.0, 3.0, 4.0};

TableMultiWay tbl = new TableMultiWay(x,indkeys);
tbl.setFrequencies(frq);

int ncells = tbl.getUnbalancedTable().getNCells();
double listCells[] = tbl.getUnbalancedTable().getListCells();
double table[] = tbl.getUnbalancedTable().getTable();

PrintMatrix pm = new PrintMatrix("List Cells");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, listCells);
System.out.println();

pm = new PrintMatrix("Unbalanced Table");
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
// Print the array
pm.print(mf, table);
System.out.println();

}
}

Output

List Cells

1
5
1
6
2
5

368 • TableMultiWay class JMSL

2
6

Unbalanced Table

2
3
1
4

TableMultiWay.BalancedTable class

public class com.imsl.stat.TableMultiWay.BalancedTable

Tallies the number of unique values of each variable.

Methods

getNvalues
public int[] getNvalues()

Description

Returns an array of length nKeys containing in its i-th element (i=0,1,...nKeys-1), the
number of levels or categories of the i-th classification variable (column).

Returns

an int array containing the number of levels or for each variable (column) in x.

getTable
public double[] getTable()

Description

Returns an array containing the frequencies for each variable. The array is of length
nValues[0] x nValues[1] x ... x nValues[nKeys] containing the frequencies in the
cells of the table to be fit, where nValues contains the result from getNValues.

Empty cells are included in table, and each element of table is nonnegative. The cells of
table are sequenced so that the first variable cycles through its nValues[0] categories one
time, the second variable cycles through its nValues[1] categories nValues[0] times, the
third variable cycles through its nValues[2] categories nValues[0] * nValues[1] times,
etc., up to the nKeys-th variable, which cycles through its nValues[nKeys - 1]
categories nValues[0] * nValues[1] * ... * nValues[nKeys - 2] times.

Basic Statistics TableMultiWay class • 369

Returns

a double array containing the frequencies for each variable in x.

getValues
public double[] getValues()

Description

Returns the values of the classification variables. getValues returns an array of length
nValues[0] + nValues[1] + ... + nValues[nKeys - 1] The first nValues[0]
elements contain the values for the first classification variable. The next nValues[1]
contain the values for the second variable. The last nValues[nKeys - 1] positions
contain the values for the last classification variable, where nValues contains the result
from getNValues.

Returns

a double array containing the values of the classification variables.

TableMultiWay.UnbalancedTable class

public class com.imsl.stat.TableMultiWay.UnbalancedTable

Tallies the frequency of each cell in x.

Methods

getListCells
public double[] getListCells()

Description

Returns for each row, a list of the levels of nKeys corresponding classification variables
that describe a cell.

Returns

double array containing the list of levels of nKeys corresponding classification variables
that describe a cell.

getNCells
public int getNCells()

Description

Returns the number of non-empty cells.

370 • TableMultiWay class JMSL

Returns

an int containing the number of non-empty cells.

getTable
public double[] getTable()

Description

Returns the frequency for each cell.

Returns

double array containing the frequency for each cell.

Chapter 12. Basic Statistics TableMultiWay class • 371

372 • TableMultiWay class JMSL

Chapter 13: Regression

Types

class LinearRegression . 379
class NonlinearRegression . 392
class UserBasisRegression . 408
interface RegressionBasis . 410
class SelectionRegression. .411
class StepwiseRegression . 426

Usage Notes

The regression models in this chapter include the simple and multiple linear regression models,
the multivariate general linear model, and the nonlinear regression model. Functions for fitting
regression models, computing summary statistics from a fitted regression, computing
diagnostics, and computing confidence intervals for individual cases are provided. This chapter
also provides methods for building a model from a set of candidate variables.

Simple and Multiple Linear Regression

The simple linear regression model is

yi = β0 + β1xi + ε1 i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi’s are the settings of the independent (explanatory) variable, β0and β1 are the
intercept and slope parameters (respectively) and the ε1’s are independently distributed normal
errors, each with mean 0 and variance σ2.

The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + ε1 i = 1, 2, . . . , n

373

where the observed values of the yi’s constitute the responses or values of the dependent
variable; the xi1’s, xi2’s,. . . ,xik’s are the settings of the k independent (explanatory) variables;
β0, β1, . . . , βk are the regression coefficients; and the ε1’s are independently distributed normal
errors, each with mean 0 and variance σ2.

The class LinearRegression fits both the simple and multiple linear regression models using a
fast Given’s transformation and includes an option for excluding the intercept β0. The
responses are input in array y, and the independent variables are input in array x, where the
individual cases correspond to the rows and the variables correspond to the columns.

After the model has been fitted using the LinearRegression class, member ”get” methods
such as getCoefficientTTests() can be used to retrieve summary statistics. Predicted values,
confidence intervals, and case statistics for the fitted model can be obtained from inner class
LinearRegression.CaseStatistics.

No Intercept Model

Several functions provide the option for excluding the intercept from a model. In most practical
applications, the intercept should be included in the model. For functions that use the sums of
squares and crossproducts matrix as input, the no-intercept case can be handled by using the
raw sums of squares and crossproducts matrix as input in place of the corrected sums of
squares and crossproducts. The raw sums of squares and crossproducts matrix can be
computed as (x1, x2, . . . , xk, y)

T (x1, x2, . . . , xk, y).

Variable Selection

Variable selection can be performed by SelectionRegression, which computes all best-subset
regressions, or by StepwiseRegression , which computes stepwise regression. The method
used by SelectionRegression is generally preferred over that used by StepwiseRegression
because SelectionRegression implicitly examines all possible models in the search for a
model that optimizes some criterion while stepwise does not examine all possible models.
However, the computer time and memory requirements for SelectionRegression can be much
greater than that for StepwiseRegression when the number of candidate variables is large.

Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi; θ) + εi i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi’s are the known vectors of values of the independent (explanatory) variables, f
is a known function of an unknown regression parameter vector θ, and the εi’s are
independently distributed normal errors each with mean 0 and variance σ2.

374 • JMSL

Class NonlinearRegression performs the least-squares fit to the data for this model.

Weighted Least Squares

Classes throughout the chapter generally allow weights to be assigned to the observations. A
weight argument is used throughout to specify the weighting for particular rows of X.

Computations that relate to statistical inference-e.g., t tests, F tests, and confidence
intervals-are based on the multiple regression model except that the variance of εi is assumed
to equal σ2 times the reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to ni observations, the vector frequencies can
be used to specify the frequency for each row of X. Degrees of freedom for error are affected by
frequencies but are unaffected by weights.

Summary Statistics

Methods LinearRegression.getANOVA(), LinearRegression.getCoefficientTTests(),
NonlinearRegression.getR() and StepwiseRegression.getCoefficientVIF() can be used
to compute statistics related to a regression for each of the dependent variables fitted by the
indicated regression. The summary statistics include the model analysis of variance table,
sequential sums of squares and F-statistics, coefficient estimates, estimated standard errors,
t-statistics, variance inflation factors and estimated variance-covariance matrix of the estimated
regression coefficients.

The summary statistics are computed under the model y = Xβ + ε, where y is the n× 1 vector
of responses, X is the n× p matrix of regressors with rank (X) = r, is the p× 1 vector of
regression coefficients, and εis the n× 1 vector of errors whose elements are independently
normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights),
most of the computed summary statistics are output in the following variables:

ANOVA Class

The getANOVA() methods in several of the regression classes return an ANOVA object. Summary
statistics can be retrieved via specific ”get” methods or the ANOVA.getArray() method. This
returns a one-dimensional array. In StepwiseRegression, ANOVA.getArray() returns
Double.NaN for the last two elements of the array because they cannot be computed from the
input. The array contains statistics related to the analysis of variance. The sources of variation
examined are the regression, error, and total. The first 10 elements of the ANOVA.getArray()
and the notation frequently used for these is described in the following table (here, AOV =
ANOVA.getArray()):

Model Analysis of Variance Table

Regression • 375

Variation Src. Deg. of Freedom Sum of Squares Mean Square F p-value
Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]
Total DFT = AOV[2] SST = AOV[5]

If the model has an intercept (default), the total sum of squares is the sum of squares of the
deviations of yi from its (weighted) mean ȳ–the so-called corrected total sum of squares,
denoted by the following:

SST =
n∑

i=1

wi(yi − ȳ)2

If the model does not have an intercept (hasIntercept = false), the total sum of squares is
the sum of squares of yi-the so-called uncorrected total sum of squares, denoted by the following:

SST =
n∑

i=1

wiy
2
i

The error sum of squares is given as follows:

SSE =
n∑

i=1

wi (yi − ŷi)
2

The error degrees of freedom is defined by DFE = n− r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0 : β1 = β2 = . . . βk = 0, versus the
alternative that at least one coefficient is nonzero is given by F = s2 = MSR/s2. The p-value
associated with the test is the probability of an F larger than that computed under the
assumption of the model and the null hypothesis. A small p-value (less than 0.05) is customarily
used to indicate there is sufficient evidence from the data to reject the null hypothesis.

The remaining five elements in AOV frequently are displayed together with the actual analysis of
variance table. The quantities R-squared (R2 = AOV[10]) and adjusted R-squared

R2
a = (AOV[11])

are expressed as a percentage and are defined as follows:

R2 = 100 (SSR/SST) = 100 (1− SSE/SST)

R2
a = 100 max

{
0, 1− s2

SST/DFT

}

376 • JMSL

The square root of s2 (s = AOV[12]) is frequently referred to as the estimated standard
deviation of the model error.

The overall mean of the responses ȳ is output in AOV[13].

The coefficient of variation (CV = AOV[14]) is expressed as a percentage and defined by
CV = 100s/ȳ.

LinearRegression.CoefficientTTests

A nested class within the LinnearRegression and StepwiseRegression classes. The statistics
(estimated standard error, t statistic and p-value) associated with each coefficient can be
retrieved via associated ”get” methods.

getR()

Estimated variance-covariance matrix of the estimated regression coefficients.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by the
LinearRegression.CaseStatistics class for linear regression.

Statistics computed include predicted values, confidence intervals, and diagnostics for detecting
outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n× 1 vector of
responses, X is the n× p matrix of regressors with rank(X) = r, β is the p× 1vector of
regression coefficients, and εis the n× 1 vector of errors whose elements are independently
normally distributed with mean 0 and variance φ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), the
following five diagnostics are computed:

• leverage

• standardized residual

• jackknife residual

• Cook’s distance

• DFFITS

The definition of these terms is given in the discussion that follows:Let xi be a column vector
containing the elements of the i-th row of X. A case can be unusual either because of xi or
because of the response yi. The leverage hiis a measure of uniqueness of the xi. The leverage is
defined by

hi = [xT
i

(
XTWX

)−
xi]wi

where W = diag (w1, w2 . . . , wn) and
(
XTWT

)− denotes a generalized inverse of XTWT . The
average value of the hi’s is r/n. Regression functions declare xi unusual if hi > 2r/n. Hoaglin
and Welsch (1978) call a data point highly influential (i.e., a leverage point) when this occurs.

Regression • 377

Let ei denote the residual

yi − ŷi

for the i-th case. The estimated variance of ei is (1− hi)s2wi, where s2 is the residual mean
square from the fitted regression. The i-th standardized residual (also called the internally
studentized residual) is by definition

ri = ei

√
wi

s2 (1− hi)

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and its
predicted value, based on the data set in which the i-th case is deleted. This difference equals
ei/ (1− hi). The jackknife residual is obtained by standardizing this difference. The residual
mean square for the regression in which the i-th case is deleted is as follows:

s2i =
(n− r) s2 − wie

2
i / (1− hi)

n− r − 1

The jackknife residual is defined as

ti = ei

√
wi

s2i (1− hi)

and ti follows a ti distribution with n− r × 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case affects the
estimated regression coefficients. It is given as follows:

Di =
wihie

2
i

rs2 (1− hi)
2

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n - r) distribution, it
should be considered large. (This value is about 1. This statistic does not have an F
distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is
computed by the formula below.

DFFITSi = ei

√
wihi

s2i (1− hi)
2

Hoaglin and Welsch (1978) suggest that DFFITS greater than

378 • JMSL

2
√
r/n

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to satisfy the
regression model. The inclusion of squares and crossproducts of the variables

(
x1, x2, x

2
1, x

2
2, x1x2

)
is often needed. Logarithms of the independent variables are used also. (See Draper and Smith
1981, pp. 218-222; Box and Tidwell 1962; Atkinson 1985, pp. 177-180; Cook and Weisberg
1982, pp. 78-86.)

When the responses are described by a nonlinear function of the parameters, a transformation
of the model equation often can be selected so that the transformed model is linear in the
regression parameters. For example, by taking natural logarithms on both sides of the
equation, the exponential model

y = eβ0+β1x1ε

can be transformed to a model that satisfies the linear regression model provided the εi’s have a
log-normal distribution (Draper and Smith, pp. 222-225).

When the responses are nonnormal and their distribution is known, a transformation of the
responses can often be selected so that the transformed responses closely satisfy the regression
model, assumptions. The square-root transformation for counts with a Poisson distribution and
the arc-sine transformation for binomial proportions are common examples (Snedecor and
Cochran 1967, pp. 325-330; Draper and Smith, pp. 237-239).

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions. Use field
Double.NaN to retrieve NaN. Any element of the data matrix that is missing must be set to
Double.NaN. In fitting regression models, any observation containing NaN for the independent,
dependent, weight, or frequency variables is omitted from the computation of the regression
parameters.

LinearRegression class

public class com.imsl.stat.LinearRegression implements Serializable, Cloneable

Regression LinearRegression class • 379

Fits a multiple linear regression model with or without an intercept. If the constructor
argument hasIntercept is true, the multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi1’s, xi2’s, . . . , xik’s are the settings of the independent variables, β0, β1, . . . , βk

are the regression coefficients, and the ei’s are independently distributed normal errors each
with mean zero and variance σ2/wi. If hasIntercept is false, β0 is not included in the model.

LinearRegression computes estimates of the regression coefficients by minimizing the sum of
squares of the deviations of the observed response yi from the fitted response

ŷi

for the observations. This minimum sum of squares (the error sum of squares) is in the ANOVA
output and denoted by

SSE =
n∑

i=1

wi(yi − ŷi)2

In addition, the total sum of squares is output in the ANOVA table. For the case,
hasIntercept is true; the total sum of squares is the sum of squares of the deviations of yi

from its mean

ȳ

–the so-called corrected total sum of squares; it is denoted by

SST =
n∑

i=1

wi(yi − ȳ)2

For the case hasIntercept is false, the total sum of squares is the sum of squares of yi –the
so-called uncorrected total sum of squares; it is denoted by

SST =
n∑

i=1

y2
i

See Draper and Smith (1981) for a good general treatment of the multiple linear regression
model, its analysis, and many examples.

In order to compute a least-squares solution, LinearRegression performs an orthogonal
reduction of the matrix of regressors to upper triangular form. Givens rotations are used to
reduce the matrix. This method has the advantage that the loss of accuracy resulting from
forming the crossproduct matrix used in the normal equations is avoided, while not requiring
the storage of the full matrix of regressors. The method is described by Lawson and Hanson,
pages 207-212.

380 • LinearRegression class JMSL

From a general linear model fitted using the wi’s as the weights, inner class
com.imsl.stat.LinearRegression.CaseStatistics (p. 389) can also compute predicted
values, confidence intervals, and diagnostics for detecting outliers and cases that greatly
influence the fitted regression. Let xi be a column vector containing elements of the i-th row of
X. Let W = diag(w1, w2, ..., wn). The leverage is defined as

hi = [xT
i (XTWX)−xi]wi

(In the case of linear equality restrictions on β, the leverage is defined in terms of the reduced
model.) Put D = diag(d1, d2, ..., dk)with dj = 1 if the j-th diagonal element of R is positive and
0 otherwise. The leverage is computed as hi = (aTDa)wi where a is a solution to RTa = xi.
The estimated variance of

ŷi = xT
i β̂

is given by his
2/wi, where s2 = SSE/DFE. The computation of the remainder of the case

statistics follows easily from their definitions.

Let ei denote the residual
yi − ŷi

for the ith case. The estimated variance of ei is (1− hi)s2/wi where s2 is the residual mean
square from the fitted regression. The ith standardized residual (also called the internally
studentized residual) is by definition

ri = ei

√
wi

s2(1− hi)

and ri follows an approximate standard normal distribution in large samples.

The ith jackknife residual or deleted residual involves the difference between yi and its
predicted value based on the data set in which the ith case is deleted. This difference equals
ei/(1− hi). The jackknife residual is obtained by standardizing this difference. The residual
mean square for the regression in which the ith case is deleted is

s2i =
(n− r)s2 − wie

2
i /(1− hi)

n− r − 1

The jackknife residual is defined to be

ti = ei

√
wi

s2i (1− hi)

and ti follows a t distribution with n− r − 1degrees of freedom.

Cook’s distance for the ith case is a measure of how much an individual case affects the
estimated regression coefficients. It is given by

Di =
wihie

2
i

rs2(1− hi)2

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F (r, n− r) distribution, it
should be considered large. (This value is about 1. This statistic does not have an F
distribution.)

Regression LinearRegression class • 381

DFFITS, like Cook’s distance, is also a measure of influence. For the ith case, DFFITS is
computed by the formula

DFFITSi = ei

√
wihi

s2i (1− hi)2

Hoaglin and Welsch (1978) suggest that DFFITSigreater than

2
√
r/n

is large.

Often predicted values and confidence intervals are desired for combinations of settings of the
effect variables not used in computing the regression fit. This can be accomplished using a
single data matrix by including these settings of the variables as part of the data matrix and by
setting the response equal to Double.NaN. LinearRegression will omit the case when
performing the fit and a predicted value and confidence interval for the missing response will be
computed from the given settings of the effect variables.

Constructor

LinearRegression
public LinearRegression(int nVariables, boolean hasIntercept)

Description

Constructs a new linear regression object.

Parameters

nVariables – int number of variables in the regression
hasIntercept – boolean which indicates whether or not an intercept is in this
regression model

Methods

getANOVA
public ANOVA getANOVA()

Description

Get an analysis of variance table and related statistics.

Returns

an ANOVA table and related statistics

getCaseStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double
y)

382 • LinearRegression class JMSL

Description

Returns the case statistics for an observation.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the LinearRegression constructor.

y – a double representing the dependent (response) variable

Returns

the CaseStatistics for the observation.

getCaseStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double
y, double w)

Description

Returns the case statistics for an observation and a weight.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – a double representing the dependent (response) variable

w – a double representing the weight

Returns

the CaseStatistics for the observation.

getCaseStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double
y, int pred)

Description

Returns the case statistics for an observation and future response count for the desired
prediction interval.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – a double representing the dependent (response) variable

pred – an int representing the number of future responses for which the prediction
interval is desired on the average of the future responses.

Regression LinearRegression class • 383

Returns

the CaseStatistics for the observation.

getCaseStatistics
public LinearRegression.CaseStatistics getCaseStatistics(double[] x, double
y, double w, int pred)

Description

Returns the case statistics for an observation, weight, and future response count for the
desired prediction interval.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – a double representing the dependent (response) variable

w – a double representing the weight

pred – an int representing the number of future responses for which the prediction
interval is desired on the average of the future responses

Returns

the CaseStatistics for the observation.

getCoefficients
public double[] getCoefficients()

Description

Returns the regression coefficients.

Returns

a double array containing the regression coefficients. If hasIntercept is false its length
is equal to the number of variables. If hasIntercept is true then its length is the
number of variables plus one and the 0-th entry is the value of the intercept.

SingularMatrixException is thrown when the regression matrix is singular.

getCoefficientTTests
public LinearRegression.CoefficientTTests getCoefficientTTests()

Description

Returns statistics relating to the regression coefficients.

getR
public double[][] getR()

384 • LinearRegression class JMSL

Description

Returns a copy of the R matrix. R is the upper triangular matrix containing the R matrix
from a QR decomposition of the matrix of regressors.

Returns

a double matrix containing a copy of the R matrix

getRank
public int getRank()

Description

Returns the rank of the matrix.

Returns

the int rank of the matrix

update
public void update(double[] x, double y)

Description

Updates the regression object with a new observation.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – a double representing the dependent (response) variable

update
public void update(double[] x, double y, double w)

Description

Updates the regression object with a new observation and weight.

Parameters

x – a double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – a double representing the dependent (response) variable

w – a double representing the weight

Example: Linear Regression

The coefficients of a simple linear regression model, without an intercept, are computed.

Regression LinearRegression class • 385

import com.imsl.stat.*;

public class LinearRegressionEx1 {
public static void main(String args[]) {

// y = 4*x0 + 3*x1
LinearRegression r = new LinearRegression(2, false);
double c[] = {4, 3};
double x[][] = {{1, 5},{0, 2},{-1, 4}};

r.update(x[0], 1*c[0]+5*c[1]);
r.update(x[1], 0*c[0]+2*c[1]);
r.update(x[2], -1*c[0]+4*c[1]);
double coef[] = r.getCoefficients();
System.out.println("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");

}
}

Output

The computed regression coefficients are {4.0, 3.0}

Example2: Linear Regression

Selected case statistics of a simple linear regression model, with an intercept, are computed.

import com.imsl.stat.*;
import com.imsl.math.*;

public class LinearRegressionEx2 {
public static void main(String args[]) {

//
LinearRegression r = new LinearRegression(2, true);
double y[] = {3, 4, 5, 7, 7, 8, 9};
double x[][] = {{1, 1},{1, 2},{1, 3},{1,4},{1,5},{0,6},{1,7}};
double [][] results = new double[7][5];
double [] confint = new double[2];
r.update(x, y);
for (int k=0; k<7; k++){

LinearRegression.CaseStatistics cs = r.getCaseStatistics(x[k],y[k]);
cs.setEffects(-2);
results[k][0] = cs.getJackknifeResidual();
results[k][1] = cs.getCooksDistance();
results[k][2] = cs.getDFFITS();
confint = cs.getConfidenceInterval();
results[k][3] = confint[0];
results[k][4] = confint[1];

}
PrintMatrix p = new PrintMatrix("Selected Case Statistics");

386 • LinearRegression class JMSL

PrintMatrixFormat mf = new PrintMatrixFormat();
String labels[] = {"Jackknife Residual.","Cook’s D","DFFITS", "[Conf. Interval", "on the Mean]"};
mf.setColumnLabels(labels);
p.print(mf, results);

}
}

Output

Selected Case Statistics
Jackknife Residual. Cook’s D DFFITS [Conf. Interval on the Mean]

0 -0.343 0.045 -0.324 2.261 3.996
1 -0.327 0.018 -0.207 3.467 4.818
2 -0.338 0.011 -0.161 4.613 5.702
3 ? 0.276 ? 5.648 6.695
4 -0.418 0.024 -0.237 6.563 7.808
5 ? ? ? 6.736 9.264
6 -0.742 0.372 -0.996 8.201 10.227

LinearRegression.CoefficientTTests class

public class com.imsl.stat.LinearRegression.CoefficientTTests implements
Serializable

Contains statistics related to the regression coefficients.

Field

serialVersionUID
static final public long serialVersionUID

Methods

getCoefficient
public double getCoefficient(int i)

Description

Returns the estimate for a coefficient.

Regression LinearRegression class • 387

Parameter

i – an int which specifies the index of the coefficient whose estimate is to be
returned.

Returns

a double which contains the estimate for the i-th coefficient.

getPValue
public double getPValue(int i)

Description

Returns the p-value for the two-sided test.

Parameter

i – an int which specifies the index of the coefficient whose p-value is to be returned.

Returns

a double which contains the p-value for the i-th coefficient estimate.

getStandardError
public double getStandardError(int i)

Description

Returns the estimated standard error for a coefficient estimate.

Parameter

i – an int which specifies the index of the coefficient whose stardard error estimate
is to be returned.

Returns

a double which contains the estimated standard error for the i-th coefficient estimate.

getTStatistic
public double getTStatistic(int i)

Description

Returns the t-statistic for the test that the i-th coefficient is zero.

Parameter

i – an int specifying the index of the coefficient whose stardard error estimate is to
be returned.

Returns

a double which contains the estimated standard error for the i-th coefficient estimate.

388 • LinearRegression class JMSL

LinearRegression.CaseStatistics class

public class com.imsl.stat.LinearRegression.CaseStatistics

Inner Class CaseStatistics allows for the computation of predicted values, confidence
intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

Methods

getConfidenceInterval
public double[] getConfidenceInterval()

Description

Returns the Confidence Interval on the mean for an observation.

Returns

a double[2] array containing the Confidence Interval for the observation

getCooksDistance
public double getCooksDistance()

Description

Returns Cook’s Distance for an observation.

Returns

a double containing Cook’s Distance for an observation

getDFFITS
public double getDFFITS()

Description

Returns DFFITS for an observation.

Returns

a double containing the DFFITS value for an observation

getJackknifeResidual
public double getJackknifeResidual()

Description

Returns the Jackknife Residual for an observation.

Regression LinearRegression class • 389

Returns

a double containing the Jackknife Residual for an observation

getLeverage
public double getLeverage()

Description

Returns the Leverage for an observation.

Returns

a double containing the Leverage for an observation

getObservedResponse
public double getObservedResponse()

Description

Returns the observed response for an observation.

Returns

a double containing the observed response for an observation

getPredictedResponse
public double getPredictedResponse()

Description

Returns the predicted response for an observation.

Returns

a double containing the predicted response for an observation

getPredictionInterval
public double[] getPredictionInterval()

Description

Returns the Prediction Interval for an observation.

Returns

a double[2] array containing the Prediction Interval for the observation

getResidual
public double getResidual()

Description

Returns the Residual for an observation.

390 • LinearRegression class JMSL

Returns

a double containing the residual for an observation

getStandardizedResidual
public double getStandardizedResidual()

Description

Returns the Standardized Residual for an observation.

Returns

a double containing the Standardized Residual for an observation

setConLevelMean
public void setConLevelMean(double conpcm)

Description

Sets the confidence level for two-sided interval estimates on the mean, in percent.

Parameter

conpcm – a double used as the confidence level for two-sided interval estimates on
the mean, in percent. If this member function is not called, conpcm is set to .95.

setConLevelPred
public void setConLevelPred(double conpcp)

Description

Sets the confidence level for two-sided prediction intervals, in percent.

Parameter

conpcp – a double used as the confidence level for two-sided prediction intervals, in
percent. If this member function is not called, conpcp is set to .95.

setEffects
public void setEffects(int effects)

Description

Sets the effect option.

Parameter

effects – an int, the absolute value of which is used to specify the number of effects
(sources of variation) due to the model. The sign of effect specifies the following:

Regression LinearRegression class • 391

effects Meaning
< 0 Each effect corresponds to a single regressor (coefficient) in the

model.
> 0 Currently not used. This will result in an IllegalArgumentExcep-

tion being thrown.
0 There are no effects in the model. hasIntercept must be set to

true.

If this member function is not called, effects is set to -1.

NonlinearRegression class

public class com.imsl.stat.NonlinearRegression

Fits a multivariate nonlinear regression model using least squares. The nonlinear regression
model is

yi = f(xi; θ) + εi i = 1, 2, . . . , n

where the observed values of the yi constitute the responses or values of the dependent variable,
the known xi are vectors of values of the independent (explanatory) variables, θ is the vector of
p regression parameters, and the εiare independently distributed normal errors each with mean
zero and variance σ2. For this model, a least squares estimate of θ is also a maximum likelihood
estimate of θ.

The residuals for the model are

ei(θ) = yi − f(xi; θ) i = 1, 2, . . . , n

A value of θ that minimizes
n∑

i=1

[ei(θ)]2

is the least-squares estimate of θ calculated by this class. NonlinearRegression accepts these
residuals one at a time as input from a user-supplied function. This allows
NonlinearRegression to handle cases where nis so large that data cannot reside in an array
but must reside in a secondary storage device.

NonlinearRegression is based on MINPACK routines LMDIF and LMDER by More’ et al. (1980).
NonlinearRegression uses a modified Levenberg-Marquardt method to generate a sequence of
approximations to the solution. Let θ̂c be the current estimate of θ. A new estimate is given by

θ̂c + sc

where sc is a solution to
(J(θ̂c)TJ(θ̂c) + µcI)sc = J(θ̂c)T e(θ̂c)

392 • NonlinearRegression class JMSL

Here, J(θ̂c) is the Jacobian evaluated at θ̂c.

The algorithm uses a ”trust region” approach with a step bound of δ̂c. A solution of the
equations is first obtained for µc = 0. If ||sc||2 < δc, this update is accepted; otherwise, µc is set
to a positive value and another solution is obtained. The method is discussed by Levenberg
(1944), Marquardt (1963), and Dennis and Schnabel (1983, pages 129 - 147, 218 - 338).

Forward finite differences are used to estimate the Jacobian numerically unless the user
supplied function computes the derivatives. In this case the Jacobian is computed analytically
via the user-supplied function.

NonlinearRegression does not actually store the Jacobian but uses fast Givens
transformations to construct an orthogonal reduction of the Jacobian to upper triangular form.
The reduction is based on fast Givens transformations (see Golub and Van Loan 1983, pages
156-162, Gentleman 1974). This method has two main advantages: (1) the loss of accuracy
resulting from forming the crossproduct matrix used in the equations for sc is avoided, and (2)
the n x p Jacobian need not be stored saving space when n > p.

A weighted least squares fit can also be performed. This is appropriate when the variance of εi
in the nonlinear regression model is not constant but instead is σ2/wi. Here, wi are weights
input via the user supplied function. For the weighted case, NonlinearRegression finds the
estimate by minimizing a weighted sum of squares error.

Programming Notes

Nonlinear regression allows users to specify the model’s functional form. This added flexibility
can cause unexpected convergence problems for users who are unaware of the limitations of the
algorithm. Also, in many cases, there are possible remedies that may not be immediately
obvious. The following is a list of possible convergence problems and some remedies. There is
not a one-to-one correspondence between the problems and the remedies. Remedies for some
problems may also be relevant for the other problems.

• A local minimum is found. Try a different starting value. Good starting values often can
be obtained by fitting simpler models. For example, for a nonlinear function

f(x; θ) = θ1e
θ2x

good starting values can be obtained from the estimated linear regression coefficients
β̂0and β̂1 from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

θ1 = eβ̂0 and θ2 = β̂1

If an approximate linear model is unclear, then simplify the model by reducing the
number of nonlinear regression parameters. For example, some nonlinear parameters for
which good starting values are known could be set to these values. This simplifies the
approach to computing starting values for the remaining parameters.

• The estimate of θ is incorrectly returned as the same or very close to the initial estimate.

Regression NonlinearRegression class • 393

– The scale of the problem may be orders of magnitude smaller than the assumed
default of 1 causing premature stopping. For example, if the sums of squares for
error is less than approximately (2.22e−16)2, the routine stops. See Example 3,
which shows how to shut down some of the stopping criteria that may not be
relevant for your particular problem and which also shows how to improve the speed
of convergence by the input of the scale of the model parameters.

– The scale of the problem may be orders of magnitude larger than the assumed default
causing premature stopping. The information with regard to the input of the scale of
the model parameters in Example 3 is also relevant here. In addition, the maximum
allowable step size (com.imsl.stat.NonlinearRegression.setMaxStepsize (p.
??)) in Example 3 may need to be increased.

– The residuals are input with accuracy much less than machine accuracy causing
premature stopping because a local minimum is found. Again see Example 3 to see
generally how to change some default tolerances. If you cannot improve the precision
of the computations of the residual, you need to use method
com.imsl.stat.NonlinearRegression.setDigits (p. ??) to indicate the actual
number of good digits in the residuals.

• The model is discontinuous as a function of θ. There may be a mistake in the
user-supplied function. Note that the function f(x; θ) can be a discontinuous function of
x.

• The R matrix returned by getR is inaccurate. If only a function is supplied try providing
the com.imsl.stat.NonlinearRegression.Derivative (p. 407) . If the derivative is
supplied try providing only com.imsl.stat.NonlinearRegression.Function (p. 406) .

• Overflow occurs during the computations. Make sure the user-supplied functions do not
overflow at some value of θ.

• The estimate of θ is going to infinity. A parameterization of the problem in terms of
reciprocals may help.

• Some components of θ are outside known bounds. This can sometimes be handled by
making a function that produces artificially large residuals outside of the bounds (even
though this introduces a discontinuity in the model function).

Note that the solve method must be called prior to calling the ”get” member functions,
otherwise a null is returned.

Constructor

NonlinearRegression
public NonlinearRegression(int nparm)

Description

Constructs a new nonlinear regression object.

394 • NonlinearRegression class JMSL

Parameter

nparm – An int which specifies the number of unknown parameters in the regression.

Methods

getCoefficient
public double getCoefficient(int i)

Description

Returns the estimate for a coefficient.

Parameter

i – An int which specifies the index of a coefficient whose estimate is to be returned.

Returns

A double which contains the estimate for the i-th coefficient or null if solve has not
been called.

getCoefficients
public double[] getCoefficients()

Description

Returns the regression coefficients.

Returns

A double array containing the regression coefficients or null if solve has not been
called.

getDFError
public double getDFError()

Description

Returns the degrees of freedom for error.

Returns

A double which specifies the degrees of freedom for error or null if solve has not been
called.

getErrorStatus
public int getErrorStatus()

Description

Gets information about the performance of NonlinearRegression.

Regression NonlinearRegression class • 395

Returns

An int specifying information about convergence.

Value Description
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point

may be an approximate local solution, or the algo-
rithm is making very slow progress and is not near a
solution, or StepTolerance is too big.

2 Scaled actual and predicted reductions in the function
are less than or equal to the relative function conver-
gence tolerance RelativeTolerance.

3 Iterates appear to be converging to a noncritical point.
Incorrect gradient information, a discontinuous func-
tion, or stopping tolerances being too tight may be
the cause.

4 Five consecutive steps with the maximum stepsize
have been taken. Either the function is unbounded
below, or has a finite asymptote in some direction, or
the maxStepsize is too small.

getR
public double[][] getR()

Description

Returns a copy of the R matrix. R is the upper triangular matrix containing the R matrix
from a QR decomposition of the matrix of regressors.

Returns

A two dimensional double array containing a copy of the R matrix or null if solve has
not been called.

getRank
public int getRank()

Description

Returns the rank of the matrix.

Returns

An int which specifies the rank of the matrix or null if solve has not been called.

getSSE
public double getSSE()

Description

Returns the sums of squares for error.

396 • NonlinearRegression class JMSL

Returns

A double which contains the sum of squares for error or null if solve has not been
called.

setAbsoluteTolerance
public void setAbsoluteTolerance(double absoluteTolerance)

Description

Sets the absolute function tolerance.

Parameter

absoluteTolerance – A double scalar value specifying the absolute function
tolerance. The tolerance must be greater than or equal to zero. The default value is
4.93e-32.

IllegalArgumentException is thrown if absoluteTolerance is less than 0

setDigits
public void setDigits(int nGood)

Description

Sets the number of good digits in the residuals.

Parameter

nGood – An int specifying the number of good digits in the residuals. The number
of digits must be greater than zero. The default value is 15.

IllegalArgumentException is thrown if ngood is less than or equal to 0

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

Description

Sets the false convergence tolerance.

Parameter

falseConvergenceTolerance – A double scalar value specifying the false
convergence tolerance. The tolerance must be greater than or equal to zero. The
default value is 2.22e-14.

IllegalArgumentException is thrown if falseConvergenceTolerance is less than 0

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Regression NonlinearRegression class • 397

Description

Sets the gradient tolerance used to compute the gradient.

Parameter

gradientTolerance – A double specifying the gradient tolerance used to compute
the gradient. The tolerance must be greater than or equal to zero. The default value
is 6.055e-6.

IllegalArgumentException is thrown if gradientTolerance is less than 0

setGuess
public void setGuess(double[] thetaGuess)

Description

Sets the initial guess of the parameter values

Parameter

thetaGuess – A double array of initial values for the parameters. The default value
is an array of zeroes.

setInitialTrustRegion
public void setInitialTrustRegion(double initialTrustRegion)

Description

Sets the initial trust region radius.

Parameter

initialTrustRegion – A double scalar value specifying the initial trust region
radius. The initial trust radius must be greater than zero. If this member function is
not called, a default is set based on the initial scaled Cauchy step.

IllegalArgumentException is thrown if initialTrustRegion is less than or equal to 0

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Sets the maximum number of iterations allowed during optimization

Parameter

maxIterations – An int specifying the maximum number of iterations allowed
during optimization. The value must be greater than 0. The default value is 100.

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setMaxStepsize
public void setMaxStepsize(double maxStepsize)

398 • NonlinearRegression class JMSL

Description

Sets the maximum allowable stepsize.

Parameter

maxStepsize – A nonnegative double value specifying the maximum allowable
stepsize. The maximum allowable stepsize must be greater than zero. If this member
function is not called, maximum stepsize is set to a default value based on a scaled
theta.

IllegalArgumentException is thrown if maxStepsize is less than or equal to 0

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description

Sets the relative function tolerance

Parameter

relativeTolerance – A double scalar value specifying the relative function
tolerance. The relative function tolerance must be greater than or equal to zero. The
default value is 1.0e-20.

IllegalArgumentException is thrown if relativeTolerance is less than 0

setScale
public void setScale(double[] scale)

Description

Sets the scaling array for theta.

Parameter

scale – A double array containing the scaling values for the parameters (theta).
The elements of the scaling array must be greater than zero. scale is used mainly in
scaling the gradient and the distance between points. If good starting values of
thetaGuess are known and are nonzero, then a good choice is
scale[i]=1.0/thetaGuess[i]. Otherwise, if theta is known to be in the interval
(-10.e5, 10.e5), set scale[i]=10.e-5. By default, the elements of the scaling array
are set to 1.0.

IllegalArgumentException is thrown if any of the elements of scale is less than or
equal to 0

setStepTolerance
public void setStepTolerance(double stepTolerance)

Regression NonlinearRegression class • 399

Description

Sets the step tolerance used to step between two points.

Parameter

stepTolerance – A double scalar value specifying the step tolerance used to step
between two points. The step tolerance must be greater than or equal to zero. The
default value is 3.667e-11.

IllegalArgumentException is thrown if stepTolerance is less than 0

solve
public double[] solve(NonlinearRegression.Function F) throws
NonlinearRegression.TooManyIterationsException,
NonlinearRegression.NegativeFreqException,
NonlinearRegression.NegativeWeightException

Description

Solves the least squares problem and returns the regression coefficients.

Parameter

F – A NonlinearRegression.Function whose coefficients are to be computed.

Returns

A double array containing the regression coefficients.

TooManyIterationsException is thrown when the number of allowed iterations is
exceeded

NegativeFreqException is thrown when the specified frequency is negative

NegativeWeightException is thrown when the weight is negative

Example 1: Nonlinear Regression using Finite Differences

In this example a nonlinear model is fitted. The derivatives are obtained by finite differences.

import com.imsl.stat.*;
import com.imsl.math.*;

public class NonlinearRegressionEx1 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,
NonlinearRegression.NegativeFreqException,
NonlinearRegression.NegativeWeightException {
NonlinearRegression.Function f = new NonlinearRegression.Function() {

public boolean f(double theta[], int iobs, double frq[],
double wt[], double e[]){

400 • NonlinearRegression class JMSL

double ydata[] = {54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0,
16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};

double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};

boolean iend;
int nobs = 15;

if(iobs < nobs){
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);
} else {

iend = false;
}
return iend;

}
};

int nparm = 2;
double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
double coef[] = regression.solve(f);
System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();
System.out.println("The computed rank is "+rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are "+dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is "+sse);
double r[][] = regression.getR();
new PrintMatrix("R from the QR decomposition ").print(r);

}
}

Output

The computed regression coefficients are {58.606562944502656, -0.0395864473118334}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 49.45929986247174
R from the QR decomposition

0 1
0 1.874 1,139.928
1 0 1,139.798

Regression NonlinearRegression class • 401

Example 2: Nonlinear Regression with User-supplied Derivatives

In this example a nonlinear model is fitted. The derivatives are supplied by the user.

import com.imsl.stat.*;
import com.imsl.math.*;

public class NonlinearRegressionEx2 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,
NonlinearRegression.NegativeFreqException,
NonlinearRegression.NegativeWeightException {

NonlinearRegression.Derivative deriv =
new NonlinearRegression.Derivative() {

double ydata[] = {54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};

double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,
38.0, 45.0, 52.0, 53.0, 60.0, 65.0};

boolean iend;
int nobs = 15;

public boolean f(double theta[], int iobs, double frq[], double wt[],
double e[]){

if(iobs < nobs){
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);
} else {

iend = false;
}
return iend;

}

public boolean derivative(double theta[], int iobs, double frq[],
double wt[], double de[]){
if(iobs < nobs){

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
de[0] = -Math.exp(theta[1]*xdata[iobs]);
de[1] = -theta[0] * xdata[iobs] * Math.exp(theta[1]

* xdata[iobs]);
} else {

iend = false;
}
return iend;

}
};

int nparm = 2;

402 • NonlinearRegression class JMSL

double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
double coef[] = regression.solve(deriv);
System.out.println("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();
System.out.println("The computed rank is "+rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are "+dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is "+sse);
double r[][] = regression.getR();
new PrintMatrix("R from the QR decomposition ").print(r);

}
}

Output

The computed regression coefficients are {58.60656292541919, -0.039586447277524736}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 49.45929986247219
R from the QR decomposition

0 1
0 1.874 1,139.928
1 0 1,139.798

Example 3: Nonlinear Regression using Set Methods

In this example some nondefault tolerances and scales are used to fit a nonlinear model. The
data is 1.e-10 times the data of example 1. In order to fit this model without rescaling the data
we first set the absolute function tolerance to 0.0. The default value would have caused the
program to terminate after one iteration because the residual sum of squares is roughly 1.e-19.
We also set the relative function tolerance to 0.0. The gradient tolerance is properly scaled for
this problem so we leave it at “its default value. Finally, we set the elements of scale to be the
absolute value of the recipricol of the starting value.The derivatives are obtained by finite
differences.

import com.imsl.stat.*;

public class NonlinearRegressionEx3 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,
NonlinearRegression.NegativeFreqException,
NonlinearRegression.NegativeWeightException {

Regression NonlinearRegression class • 403

NonlinearRegression.Function f = new NonlinearRegression.Function() {

public boolean f(double theta[], int iobs, double frq[], double wt[],
double e[]){

double ydata[] = {54.e-10, 50.e-10, 45.e-10, 37.e-10, 35.e-10,
25.e-10, 20.e-10, 16.e-10, 18.e-10, 13.e-10, 8.e-10, 11.e-10,
8.e-10, 4.e-10, 6.e-10};

double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};

boolean iend;
int nobs = 15;
if(iobs < nobs){

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);
} else {

iend = false;
}
return iend;

}
};
int nparm = 2;
double theta[] = {6.e-9, -0.03};
double scale[] = new double[nparm];
double r[][] = new double[nparm][nparm];
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.setGuess(theta);
regression.setAbsoluteTolerance(0.0);
regression.setRelativeTolerance(0.0);
scale[0] = 1.0/Math.abs(theta[0]);
scale[1] = 1.0/Math.abs(theta[1]);
regression.setScale(scale);
double coef[] = regression.solve(f);
System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();
System.out.println("The computed rank is "+rank);
double dfe = regression.getDFError();
System.out.println("The degrees of freedom for error are "+dfe);
double sse = regression.getSSE();
System.out.println("The sums of squares for error is "+sse);
r = regression.getR();
System.out.println("R from the QR decomposition is "

+ r[0][0] + " " + r[0][1]);
System.out.println(" "

+ r[1][0] + " " + r[1][1]);
}

}

404 • NonlinearRegression class JMSL

Output

The computed regression coefficients are {5.7837836210879824E-9, -0.0396252538296399}
The computed rank is 2
The degrees of freedom for error are 13.0
The sums of squares for error is 5.166376610434158E-19
R from the QR decomposition is 1.873105632124423 5.7473458654105505E-9

0.0 5.837139910539398E-11

NonlinearRegression.NegativeFreqException class

static public class com.imsl.stat.NonlinearRegression.NegativeFreqException
extends com.imsl.IMSLException

A negative frequency was encountered.

Constructor

NonlinearRegression.NegativeFreqException
public NonlinearRegression.NegativeFreqException(int rowIndex, int
invocation, double value)

Description

Constructs a NegativeFreqException.

Parameters

rowIndex – An int which specifies the row index of X for which the frequency is
negative.

invocation – An int which specifies the invocation number at which the error
occurred. A 3 would indicate that the error occurred on the third invocation.

value – An double which represents the value of the frequency encountered.

NonlinearRegression.NegativeWeightException class

static public class com.imsl.stat.NonlinearRegression.NegativeWeightException
extends com.imsl.IMSLException

A negative weight was encountered.

Regression NonlinearRegression class • 405

Constructor

NonlinearRegression.NegativeWeightException
public NonlinearRegression.NegativeWeightException(int rowIndex, int
invocation, double value)

Description

Constructs a NegativeWeightException.

Parameters

rowIndex – An int which specifies the row index of X for which the weight is
negative.

invocation – An int which specifies the invocation number at which the error
occurred. A 3 would indicate that the error occurred on the third invocation.

value – An double which represents the value of the weight encountered.

NonlinearRegression.TooManyIterationsException class

static public class
com.imsl.stat.NonlinearRegression.TooManyIterationsException extends
com.imsl.IMSLException

The number of iterations has exceeded the maximum allowed.

Constructor

NonlinearRegression.TooManyIterationsException
public NonlinearRegression.TooManyIterationsException()

Description

Constructs a TooManyIterationsException.

NonlinearRegression.Function interface

public interface com.imsl.stat.NonlinearRegression.Function

Public interface for the user supplied function for NonlinearRegression.

406 • NonlinearRegression class JMSL

Method

f
public boolean f(double[] theta, int iobs, double[] frq, double[] wt,
double[] e)

Description

Computes the weight, frequency, and residual given the parameter vector theta for a
single observation.

Parameters

theta – An input double array containing the parameter values of the model. The
length of theta corresponds to the number of unknown parameters in the model.

iobs – An input int value indicating the observation index. The function is
evaluated at observation y[iobs].

frq – An output double array of length 1 containing the frequency for observation
y[iobs].

wt – An output double array of length 1 containing the weight for observation
y[iobs]. Use wt = 1.0 for equal weighting (unweighted least squares).

e – An output double array of length 1 which contains the error (residual) for
observation y[iobs].

Returns

A boolean value representing the completion indicator. true indicates iobs is less than
the number of observations. false indicates iobs is greater than or equal to the number
of observations and wt, freq, and e are not output.

NonlinearRegression.Derivative interface

public interface com.imsl.stat.NonlinearRegression.Derivative implements
com.imsl.stat.NonlinearRegression.Function

Public interface for the user supplied function to compute the derivative for
NonlinearRegression.

Method

derivative
public boolean derivative(double[] theta, int iobs, double[] frq, double[]
wt, double[] de)

Regression NonlinearRegression class • 407

Description

Computes the weight, frequency, and partial derivatives of the residual given the
parameter vector theta for a single observation.

Parameters

theta – An input double array which contains the parameter values of the
regression function. The length of theta corresponds to the number of unknown
parameters in the regression function.
iobs – An input int value indicating the observation index. The function is
evaluated at observation y[iobs].
frq – An output double array of length 1 containing the frequency for observation
y[iobs].
wt – An output double array of length 1 containing the weight for the observation
y[iobs]. Use wt = 1.0 for equal weighting (unweighted least squares).
de – An output double array containing the partial derivatives of the error
(residual) for observation y[iobs]. The length of de corresponds to the number of
unknown parameters in the regression function.

Returns

A boolean value representing the completion indicator. true indicates iobs is less than
the number of observations. false indicates iobs is greater than or equal to the number
of observations and wt, freq, and de are not output.

UserBasisRegression class

public class com.imsl.stat.UserBasisRegression

Generates summary statistics using user supplied functions in a nonlinear regression model

Constructor

UserBasisRegression
public UserBasisRegression(RegressionBasis basis, int nBasis, boolean
hasIntercept)

Description

Constructs a UserBasisRegression object

Parameters

basis – a RegressionBasis basis function supplied by the user
nBasis – an int which specifies the number of basis functions
hasIntercept – a boolean which specifies whether or not the model has an intercept

408 • UserBasisRegression class JMSL

Methods

getANOVA
public ANOVA getANOVA()

Description

Get an analysis of variance table and related statistics.

Returns

an ANOVA table and related statistics

getCoefficients
public double[] getCoefficients()

Description

Returns the regression coefficients.

Returns

A double array containing the regression coefficients. If hasIntercept is false its length is
equal to the number of variables. If hasIntercept is true then its length is the number of
variables plus one and the 0-th entry is the value of the intercept.

SingularMatrixException is thrown when the regression matrix is singular.

update
public void update(double x, double y, double w)

Description

Adds a new observation and associated weight to the RegressionBasis object.

Parameters

x – a double containing the independent (explanatory) variable.

y – a double containing the dependent (response) variable.

w – a double representing the weight

Example: Regression with User-supplied Basis Functions

In this example, we fit the function 1 + sin(x) + 7 * sin(3x) with no error introduced. The
function is evaluated at 90 equally spaced points on the interval [0, 6]. Four basis functions are
used, sin(kx) for k = 1,...,4 with no intercept.

import com.imsl.stat.*;
import com.imsl.math.*;

public class UserBasisRegressionEx1 {

Regression UserBasisRegression class • 409

public static void main(String args[]) {
class Basis1 implements RegressionBasis {

public double basis(int index, double x) {
return Math.sin((index+1)*x);

}
}

double coef[] = new double[4];
UserBasisRegression ubr =
new UserBasisRegression(new Basis1(), 4, false);

for (int k = 0; k < 90; k++) {
double x = 6.0*k/89.0;
double y = 1.0 + Math.sin(x) + 7.0*Math.sin(3.0*x);
ubr.update(x, y, 1.0);

}
coef = ubr.getCoefficients();
new PrintMatrix("The regression coefficients are:").print(coef);

}
}

Output

The regression coefficients are:
0

0 1.01
1 0.02
2 7.029
3 0.037

RegressionBasis interface

public interface com.imsl.stat.RegressionBasis

Public interface for user supplied function to UserBasisRegression object.

Method

basis
public double basis(int index, double x)

Description

Public interface for the nonlinear least-squares function.

410 • RegressionBasis interface JMSL

Parameters

index – an int which specifies the index of the basis function to be evaluated at x
x – a double, the point at which the function is to be evaluated

Returns

a double, the returned value of the function at x

SelectionRegression class

public class com.imsl.stat.SelectionRegression implements Serializable,
Cloneable

Selects the best multiple linear regression models.

Class SelectionRegression finds the best subset regressions for a regression problem with
three or more independent variables. Typically, the intercept is forced into all models and is not
a candidate variable. In this case, a sum of squares and crossproducts matrix for the
independent and dependent variables corrected for the mean is computed internally. Optionally,
SelectionRegression supports user-calculated sum-of-squares and crossproducts matrices; see
the description of the compute method.

”Best” is defined by using one of the following three criteria:

• R2 (in percent)

R2 = 100(1− SSEp

SST
)

• R2
a (adjusted R2)

R2
a = 100[1− (

n− 1
n− p

)
SSEp

SST
]

Note that maximizing the R2
a is equivalent to minimizing the residual mean squared error:

SSEp

(n− p)

• Mallow’s Cp statistic

Cp =
SSEp

s2k
+ 2p− n

Here, n is equal to the sum of the frequencies (or the number of rows in x if frequencies are not
specified in the compute method), and SST is the total sum of squares. k is the number of
candidate or independent variables, represented as the nCandidate argument in the
SelectionRegression constructor. SSEp is the error sum of squares in a model containing p
regression parameters including β0 (or p - 1 of the k candidate variables). Variable

S2
k

Regression SelectionRegression class • 411

is the error mean square from the model with all k variables in the model. Hocking (1972) and
Draper and Smith (1981, pp. 296-302) discuss these criteria.

Class SelectionRegression is based on the algorithm of Furnival and Wilson (1974). This
algorithm finds the maximum number of good saved candidate regressions for each possible
subset size. For more details, see method
com.imsl.stat.SelectionRegression.setMaximumGoodSaved (p. ??) . These regressions are
used to identify a set of best regressions. In large problems, many regressions are not
computed. They may be rejected without computation based on results for other subsets; this
yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather than
allow it to be calculated. This can be accomplished using the appropriate compute method.
Three situations in which the user may want to do this are as follows:

• The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts
matrix for the independent and dependent variables is required. Argument
nObservations must be set to 1 greater than the number of observations. Form ATA,
where A = [A, Y], to compute the raw sum of squares and crossproducts matrix.

• An intercept is a candidate variable. A raw (uncorrected) sum of squares and
crossproducts matrix for the constant regressor (= 1.0), independent, and dependent
variables is required for cov . In this case, cov contains one additional row and column
corresponding to the constant regressor. This row and column contain the sum of squares
and crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in cov are the same as in the previous case. Argument
nObservations must be set to 1 greater than the number of observations.

• There are m variables that must be forced into the models. A sum of squares and
crossproducts matrix adjusted for the m variables is required (calculated by regressing the
candidate variables on the variables to be forced into the model). Argument
nObservations must be set to m less than the number of observations.

Programming Notes

SelectionRegression can save considerable CPU time over explicitly computing all possible
regressions. However, the function has some limitations that can cause unexpected results for
users who are unaware of the limitations of the software.

• For k + 1 > − log2(ε), where ε is the largest relative spacing for double precision, some
results can be incorrect. This limitation arises because the possible models indicated (the
model numbers 1, 2, ..., 2k) are stored as floating-point values; for sufficiently large k, the
model numbers cannot be stored exactly. On many computers, this means
SelectionRegression (for k > 49) can produce incorrect results.

• SelectionRegression eliminates some subsets of candidate variables by obtaining lower
bounds on the error sum of squares from fitting larger models. First, the full model
containing all independent variables is fit sequentially using a forward stepwise procedure

412 • SelectionRegression class JMSL

in which one variable enters the model at a time, and criterion values and model numbers
for all the candidate variables that can enter at each step are stored. If linearly dependent
variables are removed from the full model, a ”VariablesDeleted” warning is issued. In this
case, some submodels that contain variables removed from the full model because of
linear dependency can be overlooked if they have not already been identified during the
initial forward stepwise procedure. If this warning is issued and you want the variables
that were removed from the full model to be considered in smaller models, you can rerun
the program with a set of linearly independent variables.

Fields

ADJUSTED R SQUARED CRITERION
static final public int ADJUSTED R SQUARED CRITERION

Indicates R2
a (adjusted R2) criterion regression.

MALLOWS CP CRITERION
static final public int MALLOWS CP CRITERION

Indicates Mallow’s Cp criterion regression.

R SQUARED CRITERION
static final public int R SQUARED CRITERION

Indicates R2 criterion regression.

Constructor

SelectionRegression
public SelectionRegression(int nCandidate)

Description

Constructs a new SelectionRegression object.

Parameter

nCandidate – An int containing the number of candidate variables (independent
variables). nCandidate must be greater than 2.

Methods

compute
public void compute(double[][] x, double[] y) throws
SelectionRegression.NoVariablesException,

Regression SelectionRegression class • 413

Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Computes the best multiple linear regression models.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables. The number of columns in x must be equal to the number of variables set
in the constructor.

y – A double array containing the observations of the dependent variable.

NoVariablesException if no variables can enter any model

Covariances.TooManyObsDeletedException more observations have been deleted than
were originally entered

Covariances.MoreObsDelThanEnteredException more observations are being deleted
from the output covariance matrix than were originally entered

Covariances.DiffObsDeletedException different observations are being deleted from
return matrix than were originally entered

compute
public void compute(double[][] cov, int nObservations) throws
SelectionRegression.NoVariablesException

Description

Computes the best multiple linear regression models using a user-supplied covariance
matrix.

Parameters

cov – A double matrix containing a variance-covariance or sum of squares and
crossproducts matrix, in which the last column must correspond to the dependent
variable. cov can be computed using the Covariances class.

nObservations – An int containing the number of observations used to compute
cov.

NoVariablesException if no variables can enter any model

compute
public void compute(double[][] x, double[] y, double[] weights) throws
SelectionRegression.NoVariablesException,
Covariances.NonnegativeWeightException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

414 • SelectionRegression class JMSL

Description

Computes the best weighted multiple linear regression models.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables. The number of columns in x must be equal to the number of variables set
in the constructor.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each of the observations.

NoVariablesException if no variables can enter any model

Covariances.NonnegativeWeightException weights must be nonnegative

Covariances.TooManyObsDeletedException more observations have been deleted than
were originally entered

Covariances.MoreObsDelThanEnteredException more observations are being deleted
from the output covariance matrix than were originally entered

Covariances.DiffObsDeletedException different observations are being deleted from
return matrix than were originally entered

compute
public void compute(double[][] x, double[] y, double[] weights, double[]
frequencies) throws SelectionRegression.NoVariablesException,
Covariances.NonnegativeFreqException,
Covariances.NonnegativeWeightException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Computes the best weighted multiple linear regression models using frequencies for each
observation.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables. The number of columns in x must be equal to the number of variables set
in the constructor.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each of the observations.

frequencies – A double array containing the frequency for each of the observations
of x.

NoVariablesException if no variables can enter any model

Covariances.NonnegativeFreqException frequencies must be nonnegative

Regression SelectionRegression class • 415

Covariances.NonnegativeWeightException weights must be nonnegative
Covariances.TooManyObsDeletedException more observations have been deleted than

were originally entered
Covariances.MoreObsDelThanEnteredException more observations are being deleted

from the output covariance matrix than were originally entered
Covariances.DiffObsDeletedException different observations are being deleted from

return matrix than were originally entered

getCriterionOption
public int getCriterionOption()

Description

Returns the criterion option used to calculate the regression estimates.

Returns

An int containing the criterion option.

getStatistics
public SelectionRegression.Statistics getStatistics()

Description

Returns a new Statistics object.

Returns

A Statistics object containing the Coefficient statistics.

setCriterionOption
public void setCriterionOption(int criterionOption)

Description

Sets the Criterion to be used. By default for all criteria, subset size 1,2, ..., k =
nCandidate are considered. However, for R2 the maximum number of subsets can be
restricted to maxSubset in the
com.imsl.stat.SelectionRegression.setMaximumSubsetSize (p. ??) method.

Criterion Option Description
R SQUARED CRITERION For R2, subset sizes 1, 2, ...,

maxSubset are examined. This
is the default with maxSubset
= nCandidate.

ADJUSTED R SQUARED CRITERION For Adjusted R2, subset sizes
1, 2, ..., nCandidate are exam-
ined.

MALLOWS CP CRITERION For Mallow’s Cp Subset sizes
1, 2, ..., nCandidate are exam-
ined.

416 • SelectionRegression class JMSL

Parameter

criterionOption – An int containing the criterion option used for the best subset
regression selection.

setMaximumBestFound
public void setMaximumBestFound(int maxFound)

Description

Sets the maximum number of best regressions to be found.

If the R2 criterion option is selected, the maxFound best regressions for each subset size
examined are reported. If the adjusted R2 or Mallow’s Cp criteria are selected, the
maxFound among all possible regressions are found.

Parameter

maxFound – An int containing the maximum number of best regressions to be
reported. Default: maxFound = 1.

setMaximumGoodSaved
public void setMaximumGoodSaved(int maxSaved)

Description

Sets the maximum number of good regressions for each subset size saved.

Argument maxSaved must be greater than or equal to maxFound. Normally, maxSaved
should be less than or equal to 10. It should never need be larger than maxSubset, the
maximum number of subsets for any subset size. Computing time required is inversely
related to maxSaved.

Parameter

maxSaved – An int containing the maximum number of good regressions saved for
each subset size. Default: maxSaved = maximum(10, maxSubset).

setMaximumSubsetSize
public void setMaximumSubsetSize(int maxSubset)

Description

Sets the maximum subset size if R2 criterion is used.

Parameter

maxSubset – An int containing the maximum subset size when R2 criterion is used.
Default: maxSubset = nCandidate.

Regression SelectionRegression class • 417

Example 1: SelectionRegression

This example uses a data set from Draper and Smith (1981, pp. 629-630). Class
SelectionRegression is invoked to find the best regression for each subset size using the R2

criterion.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class SelectionRegressionEx1 {

public static void main(String[] args) throws Exception {
double x[][] = { {7., 26., 6., 60.},

{1., 29., 15., 52.},
{11., 56., 8., 20.},
{11., 31., 8., 47.},
{7., 52., 6., 33.},
{11., 55., 9., 22.},
{3., 71., 17., 6.},
{1., 31., 22., 44.},
{2., 54., 18., 22.},
{21., 47., 4., 26},
{1., 40., 23., 34.},
{11., 66., 9., 12.},
{10.0, 68., 8., 12.}};

double y[] = { 78.5, 74.3, 104.3, 87.6,
95.9, 109.2, 102.7, 72.5,
93.1, 115.9, 83.8, 113.3, 109.4};

String criterionOption;
MessageFormat critMsg =

new MessageFormat("Regressions with {0} variable(s) ({1})");
MessageFormat critLabel =

new MessageFormat(" Criterion Variables");
MessageFormat coefMsg =

new MessageFormat("Best Regressions with {0} variable(s) ({1})");
MessageFormat coefLabel = new MessageFormat("Variable Coefficient" +

" Standard Error t-statistic p-value");
MessageFormat critData = new MessageFormat("{0} {1} {2} {3}" +

" {4} {5}");

SelectionRegression sr = new SelectionRegression(4);
sr.compute(x, y);
SelectionRegression.Statistics stats =

sr.getStatistics();

criterionOption = new String("R-squared");

for (int i=1; i <= 4 ; i++) {
double[] tmpCrit = stats.getCriterionValues(i);
int[][] indvar = stats.getIndependentVariables(i);

418 • SelectionRegression class JMSL

Object p[] = {new Integer(i), criterionOption};
System.out.println(critMsg.format(p));
Object p1[] = {null};
System.out.println(critLabel.format(p1));

for (int j=0; j< tmpCrit.length; j++) {
System.out.print(" "+tmpCrit[j]+" ");
for (int k = 0; k < indvar[j].length ; k++) {

System.out.print(indvar[j][k]+" ");
}
System.out.println("");

}
System.out.println("");

}

for (int i=0; i < 4; i++) {
System.out.println("");
Object p[] = {new Integer(i+1), criterionOption};
System.out.println(coefMsg.format(p));
Object p2[] = {null};
System.out.println(coefLabel.format(p2));

double[][] tmpCoef= stats.getCoefficientStatistics(i);
PrintMatrix pm = new PrintMatrix();
pm.setColumnSpacing(10);
PrintMatrixFormat tst = new PrintMatrixFormat();
tst.setNoColumnLabels();
tst.setNoRowLabels();
pm.print(tst, tmpCoef);
System.out.println("");
System.out.println("");

}
}

}

Output

Regressions with 1 variable(s) (R-squared)
Criterion Variables

67.45419641316093 4
66.6268257633294 2
53.39480238350336 1
28.587273122981173 3

Regressions with 2 variable(s) (R-squared)
Criterion Variables

97.86783745356321 1 2
97.24710477169315 1 4
93.52896406158075 3 4
68.00604079500503 2 4
54.81667488448235 1 3

Regression SelectionRegression class • 419

Regressions with 3 variable(s) (R-squared)
Criterion Variables

98.23354512004268 1 2 4
98.22846792190867 1 2 3
98.12810925873437 1 3 4
97.28199593862732 2 3 4

Regressions with 4 variable(s) (R-squared)
Criterion Variables

98.23756204076803 1 2 3 4

Best Regressions with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

4 -0.738 0.155 -4.775 0.001

Best Regressions with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.468 0.121 12.105 0
2 0.662 0.046 14.442 0

Best Regressions with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.452 0.117 12.41 0
2 0.416 0.186 2.242 0.052
4 -0.237 0.173 -1.365 0.205

Best Regressions with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1 1.551 0.745 2.083 0.071
2 0.51 0.724 0.705 0.501
3 0.102 0.755 0.135 0.896
4 -0.144 0.709 -0.203 0.844

420 • SelectionRegression class JMSL

Example 2: SelectionRegression

This example uses the same data set as the first example, but Mallow’s Cp statistic is used as
the criterion rather than R2. Note that when Mallow’s Cp statistic (or adjusted R2) is
specified, the method setMaximumBestFound is used to indicate the total number of ”best”
regressions (rather than indicating the number of best regressions per subset size, as in the case
of the R2 criterion). In this example, the three best regressions are found to be (1, 2), (1, 2, 4),
and (1, 2, 3).

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class SelectionRegressionEx2 {

public static void main(String[] args) throws Exception {
double x[][] = {

{7., 26., 6., 60.},
{1., 29., 15., 52.},
{11., 56., 8., 20.},
{11., 31., 8., 47.},
{7., 52., 6., 33.},
{11., 55., 9., 22.},
{3., 71., 17., 6.},
{1., 31., 22., 44.},
{2., 54., 18., 22.},
{21., 47., 4., 26},
{1., 40., 23., 34.},
{11., 66., 9., 12.},
{10.0, 68., 8., 12.}};

double y[] = { 78.5, 74.3, 104.3, 87.6,
95.9, 109.2, 102.7, 72.5,
93.1, 115.9, 83.8, 113.3,
109.4

};

String criterionOption;
MessageFormat critMsg =

new MessageFormat("Regressions with {0} variable(s) ({1})");
MessageFormat critLabel =

new MessageFormat(" Criterion Variables");
MessageFormat coefMsg = new MessageFormat("Best Regressions with" +

" {0} variable(s) ({1})");
MessageFormat coefLabel = new MessageFormat("Variable Coefficient" +

" Standard Error t-statistic p-value");
MessageFormat critData = new MessageFormat("{0} {1} {2} {3}" +

" {4} {5}");

SelectionRegression sr = new SelectionRegression(4);
sr.setCriterionOption(sr.MALLOWS_CP_CRITERION);
sr.setMaximumBestFound(3);
sr.compute(x, y);

Regression SelectionRegression class • 421

SelectionRegression.Statistics stats = sr.getStatistics();

criterionOption = new String("Mallows Cp");

for (int i=1; i <= 4; i++) {
double[] tmpCrit = stats.getCriterionValues(i);
int[][] indvar = stats.getIndependentVariables(i);

Object p[] = {new Integer(i), criterionOption};
System.out.println(critMsg.format(p));
Object p1[] = {null};
System.out.println(critLabel.format(p1));

for (int j=0; j< tmpCrit.length; j++) {
System.out.print(" "+tmpCrit[j]+" ");
for (int k = 0; k < indvar[j].length ; k++) {

System.out.print(indvar[j][k]+" ");
}
System.out.println("");

}
System.out.println("");

}

String tmp;
for (int i=0; i < 3; i++) {

System.out.println("");

double[][] tmpCoef= stats.getCoefficientStatistics(i);

Object p[] = {new Integer(tmpCoef.length), criterionOption};
System.out.println(coefMsg.format(p));

Object p2[] = {null};
System.out.println(coefLabel.format(p2));

PrintMatrix pm = new PrintMatrix();
pm.setColumnSpacing(10);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat tst = new PrintMatrixFormat();
tst.setNoColumnLabels();
tst.setNoRowLabels();
tst.setNumberFormat(nf);
pm.print(tst, tmpCoef);
System.out.println("");
System.out.println("");

}
}

}

Output

Regressions with 1 variable(s) (Mallows Cp)

422 • SelectionRegression class JMSL

Criterion Variables
138.73083349167865 4
142.48640693696262 2
202.54876912345225 1
315.15428414008386 3

Regressions with 2 variable(s) (Mallows Cp)
Criterion Variables

2.6782415983184293 1 2
5.4958508247586515 1 4
22.373111964697628 3 4
138.2259197546432 2 4
198.09465256959135 1 3

Regressions with 3 variable(s) (Mallows Cp)
Criterion Variables

3.0182334734873457 1 2 4
3.041279723064166 1 2 3
3.4968244423484762 1 3 4
7.337473995655984 2 3 4

Regressions with 4 variable(s) (Mallows Cp)
Criterion Variables

5.0 1 2 3 4

Best Regressions with 2 variable(s) (Mallows Cp)
Variable Coefficient Standard Error t-statistic p-value

1.0000 1.4683 0.1213 12.1047 0.0000
2.0000 0.6623 0.0459 14.4424 0.0000

Best Regressions with 3 variable(s) (Mallows Cp)
Variable Coefficient Standard Error t-statistic p-value

1.0000 1.4519 0.1170 12.4100 0.0000
2.0000 0.4161 0.1856 2.2418 0.0517
4.0000 -0.2365 0.1733 -1.3650 0.2054

Best Regressions with 3 variable(s) (Mallows Cp)
Variable Coefficient Standard Error t-statistic p-value

1.0000 1.6959 0.2046 8.2895 0.0000
2.0000 0.6569 0.0442 14.8508 0.0000
3.0000 0.2500 0.1847 1.3536 0.2089

Regression SelectionRegression class • 423

SelectionRegression.NoVariablesException class

static public class com.imsl.stat.SelectionRegression.NoVariablesException
extends com.imsl.IMSLException

No Variables can enter the model.

Constructor

SelectionRegression.NoVariablesException
public SelectionRegression.NoVariablesException()

Description

Constructs a NoVariablesException.

SelectionRegression.Statistics class

public class com.imsl.stat.SelectionRegression.Statistics implements
Serializable

Statistics contains statistics related to the regression coefficients.

Methods

getCoefficientStatistics
public double[][] getCoefficientStatistics(int regressionIndex)

Description

Returns the coefficients statistics for each of the best regressions found for each subset
considered.

The value set by method com.imsl.stat.SelectionRegression.setMaximumBestFound
(p. ??) determines the total number of best regressions to find. The number of best
regression is equal to (maxSubset x maxFound), if criterion R SQUARED CRITERION is
specified or it is equal to maxFound if either MALLOWS CP CRITERION or
ADJUSTED R SQUARED CRITERION is specified.

Each row contains statistics related to the regression coefficients of the best models. The
regressions are ordered so that the better regressions appear first. The statistic in the
columns are as follows (inferences are conditional on the selected model):

424 • SelectionRegression class JMSL

Column Description
0 variable number
1 coefficient estimate
2 estimated standard error of the estimate
3 t-statistic for the test that the coefficient is 0
4 p-value for the two-sided t test

Parameter

regressionIndex – An int which specifies the index of the best regression statistics
to return. There will be 0 to (maxSubset x maxFound - 1) best regressions if
R SQUARED CRITERION is specified or 0 to (maxFound - 1) if either
MALLOWS CP CRITERION or ADJUSTED R SQUARED CRITERION is specified.

Returns

A two-dimensional double array containing the regression statistics.

getCriterionValues
public double[] getCriterionValues(int numVariables)

Description

Returns an array containing the values of the best criterion for the number of variables
considered.

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

A double array with maxSubset rows and nCandidate columns containing the criterion
values.

getIndependentVariables
public int[][] getIndependentVariables(int numVariables)

Description

Returns the identification numbers for the independent variables for the number of
variables considered and in the same order as the criteria returned by
com.imsl.stat.SelectionRegression.Statistics.getCriterionValues (p. ??) .

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

An int matrix containing the identification numbers for the independent variables
considered.

Regression SelectionRegression class • 425

StepwiseRegression class

public class com.imsl.stat.StepwiseRegression implements Serializable,
Cloneable

Builds multiple linear regression models using forward selection, backward selection, or stepwise
selection.

Class StepwiseRegression builds a multiple linear regression model using forward selection,
backward selection, or forward stepwise (with a backward glance) selection.

Levels of priority can be assigned to the candidate independent variables using the
com.imsl.stat.StepwiseRegression.setLevels (p. ??) method. All variables with a
priority level of 1 must enter the model before variables with a priority level of 2. Similarly,
variables with a level of 2 must enter before variables with a level of 3, etc. Variables also can
be forced into the model (com.imsl.stat.StepwiseRegression.setForce (p. ??)). Note
that specifying ”force” without also specifying the levels will result in all variables being forced
into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a
sum-of-squares and crossproducts matrix for the independent and dependent variables
corrected for the mean is required. Other possibilities are as follows:

• The intercept is not in the model. A raw (uncorrected) sum-of-squares and crossproducts
matrix for the independent and dependent variables is required as input in cov.
Argument nObservations must be set to one greater than the number of observations.

• An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the constant regressor (=1), independent and dependent
variables are required for cov. In this case, cov contains one additional row and column
corresponding to the constant regressor. This row/column contains the sum-of-squares
and crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in cov are the same as in the previous case. Argument
nObservations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). StepwiseRegression uses
sweeps of the covariance matrix (input in cov, if the covariance matrix is specified, or generated
internally) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise
algorithm is also given by Kennedy and Gentle (1980, pp. 335-340). The advantage of stepwise
model building over all possible regression (com.imsl.stat.SelectionRegression (p. 411))
is that it is less demanding computationally when the number of candidate independent
variables is very large. However, there is no guarantee that the model selected will be the best
model (highest R2) for any subset size of independent variables.

426 • StepwiseRegression class JMSL

Fields

BACKWARD REGRESSION
static final public int BACKWARD REGRESSION

Indicates backward regression. An attempt is made to remove a variable from the model.
A variable is removed if its p-value exceeds pValueOut. During initialization, all
candidate independent variables enter the model.

FORWARD REGRESSION
static final public int FORWARD REGRESSION

Indicates forward regression. An attempt is made to add a variable to the model. A
variable is added if its p-value is less than pValueIn. During intitialization, only forced
variables enter the model.

STEPWISE REGRESSION
static final public int STEPWISE REGRESSION

Indicates stepwise regression. A backward step is attempted. After the backward step, a
forward step is attempted. This is a stepwise step. Any forced variables enter the model
during initialization.

Constructors

StepwiseRegression
public StepwiseRegression(double[][] x, double[] y) throws
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Creates a new instance of StepwiseRegression.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.
y – A double array containing the observations of the dependent variable.

Covariances.TooManyObsDeletedException is thrown if more observations have been
deleted than were originally entered, i.e. the sum of frequencies has become negative

Covariances.MoreObsDelThanEnteredException is thrown if more observations are
being deleted from ”variance-covariance” matrix than were originally entered. The
corresponding row,column of the incidence matrix is less than zero.

Covariances.DiffObsDeletedException is thrown if different observations are being
deleted than were originally entered

Regression StepwiseRegression class • 427

StepwiseRegression
public StepwiseRegression(double[][] cov, int nObservations)

Description

Creates a new instance of StepwiseRegression from a user-supplied variance-covariance
matrix.

Parameters

cov – A double matrix containing a variance-covariance or sum of squares and
crossproducts matrix, in which the last column must correspond to the dependent
variable. cov can be computed using the com.imsl.stat.Covariances (p. 308)
class.

nObservations – An int containing the number of observations associated with cov.

StepwiseRegression
public StepwiseRegression(double[][] x, double[] y, double[] weights) throws
Covariances.NonnegativeWeightException,
Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Creates a new instance of weighted StepwiseRegression.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each observation of x.

Covariances.NonnegativeWeightException is thrown if the weights are negative

Covariances.TooManyObsDeletedException is thrown if more observations have been
deleted than were originally entered, i.e. the sum of frequencies has become negative

Covariances.MoreObsDelThanEnteredException is thrown if more observations are
being deleted from ”variance-covariance” matrix than were originally entered. The
corresponding row,column of the incidence matrix is less than zero.

Covariances.DiffObsDeletedException is thrown if different observations are being
deleted than were originally entered

StepwiseRegression
public StepwiseRegression(double[][] x, double[] y, double[] weights,
double[] frequencies) throws Covariances.NonnegativeFreqException,
Covariances.NonnegativeWeightException,

428 • StepwiseRegression class JMSL

Covariances.TooManyObsDeletedException,
Covariances.MoreObsDelThanEnteredException,
Covariances.DiffObsDeletedException

Description

Creates a new instance of weighted StepwiseRegression using observation frequencies.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each observation of x.

frequencies – A double array containing the frequency for each row of x.

Covariances.NonnegativeFreqException is thrown if the frequencies are negative

Covariances.NonnegativeWeightException is thrown if the weights are negative

Covariances.TooManyObsDeletedException is thrown if more observations have been
deleted than were originally entered, i.e. the sum of frequencies has become negative

Covariances.MoreObsDelThanEnteredException is thrown if more observations are
being deleted from ”variance-covariance” matrix than were originally entered. The
corresponding row,column of the incidence matrix is less than zero.

Covariances.DiffObsDeletedException is thrown if different observations are being
deleted than were originally entered

Methods

compute
public void compute() throws StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Builds the multiple linear regression models using forward selection, backward selection,
or stepwise selection.

NoVariablesEnteredException is thrown if no variables entered the model. All elements
of {@link ANOVA} table are set to NaN

CyclingIsOccurringException is thrown if cycling occurs

getANOVA
public ANOVA getANOVA() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Regression StepwiseRegression class • 429

Description

Get an analysis of variance table and related statistics.

Returns

An {@link ANOVA} table and related statistics.

getCoefficientTTests
public StepwiseRegression.CoefficientTTests getCoefficientTTests() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns the student-t test statistics for the regression coefficients.

Returns

A {@link StepwiseRegression.CoefficientTTests} object containing statistics relating to
the regression coefficients.

getCoefficientVIF
public double[] getCoefficientVIF() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns the variance inflation factors for the final model in this invocation. The elements
are in the same order as the independent variables in x (or, if the covariance matrix is
specified, the elements are in the same order as the variables in cov). Each element
corresponding to a variable not in the model contains statistics for a model which includes
the variables of the final model and the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others can
be obtained from the i-th element for the returned array by the following formula:

1.0− 1.0
V IF

Returns

A double array containing the variance inflation factors for the final model in this
invocation.

getCovariancesSwept
public double[][] getCovariancesSwept() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

430 • StepwiseRegression class JMSL

Description

Returns the results after cov has been swept for the columns corresponding to the
variables in the model.

Returns

A double matrix containing the results after cov has been swept on the columns
corresponding to the variables in the model. The estimated variance-covariance matrix of
the estimated regression coefficients in the final model can be obtained by extracting the
rows and columns corresponding to the independent variables in the final model and
multiplying the elements of this matrix by the error mean square.

getHistory
public double[] getHistory() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns the stepwise regression history for the independent variables.

Returns

A double array containing the recent history of the independent variables. The last
element corresponds to the dependent variable.

history[i] Status of i-th Variable
0.0 This variable has never been added to the model.
0.5 This variable was added into the model during initialization.

k> 0.0 This variable was added to the model during the k-th step.
k< 0.0 This variable was deleted from model during the k-th step

getSwept
public double[] getSwept() throws
StepwiseRegression.NoVariablesEnteredException,
StepwiseRegression.CyclingIsOccurringException

Description

Returns an array containing information indicating whether or not a particular variable is
in the model.

Returns

A double array with information to indicate the independent variables in the model. The
last element corresponds to the dependent variable. A +1 in the i-th position indicates
that the variable is in the selected model. A -1 indicates that the variable is not in the
selected model.

setForce
public void setForce(int force)

Regression StepwiseRegression class • 431

Description

Forces independent variables into the model based on their level assigned from
setlevels.

Parameter

force – An int specifying the upper bound on the variables forced into the model.
Variables with levels 1, 2, ..., force are forced into the model as independent
variables.

setLevels
public void setLevels(int[] levels)

Description

Sets the levels of priority for variables entering and leaving the regression. Each variable
is assigned a positive value which indicates its level of entry into the model. A variable
can enter the model only after all variables with smaller nonzero levels of entry have
entered. Similarly, a variable can only leave the model after all variables with higher
levels of entry have left. Variables with the same level of entry compete for entry
(deletion) at each step. Argument levels[i]=0 means the i-th variable never enters the
model. Argument levels[i]=-1 means the i-th variable is the dependent variable. The
last element in levels must correspond to the dependent variable, except when the
variance-covariance or sum of squares and crossproducts matrix is supplied.

Parameter

levels – An int array containing the levels of entry into the model for each
variable. Default: 1, 1, ..., 1, -1 where -1 corresponds to the dependent variable.

setMethod
public void setMethod(int method)

Description

Specifies the stepwise selection method, forward, backward, or stepwise Regression.

Parameter

method – An int value between -1 and 1 specifying the stepwise selection method.
Fields FORWARD REGRESSION, BACKWARD REGRESSION, and STEPWISE REGRESSION
should be used. Default: STEPWISE REGRESSION.

setPValueIn
public void setPValueIn(double pValueIn)

Description

Defines the largest p-value for variables entering the model. Variables with p-value less
than pValueIn may enter the model. Backward regression does not use this value.

432 • StepwiseRegression class JMSL

Parameter

pValueIn – A double containing the largest p-value for variables entering the model.
Default: pValueIn = 0.05.

setPValueOut
public void setPValueOut(double pValueOut)

Description

Defines the smallest p-value for removing variables. Variables with p-values greater than
pValueOut may leave the model. pValueOut must be greater than or equal to pValueIn.
A common choice for pValueOut is 2*pValueIn. Forward regression does not use this
value.

Parameter

pValueOut – A double containing the smallest p-value for removing variables from
the model. Default: pValueOut = 0.10.

setTolerance
public void setTolerance(double tolerance)

Description

The tolerance used to detect linear dependence among the independent variables.

Parameter

tolerance – A double containing the tolerance used for detecting linear
dependence. Default: tolerance = 2.2204460492503e-16.

Example 1: StepwiseRegression

This example uses a data set from Draper and Smith (1981, pp. 629-630). Method compute is
invoked to find the best regression for each subset size using the R2 criterion. By default,
stepwise regression is performed.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.IMSLException.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class StepwiseRegressionEx1 {

public static void main(String[] args) throws Exception {
double x[][] = {

{7., 26., 6., 60.},
{1., 29., 15., 52.},
{11., 56., 8., 20.},
{11., 31., 8., 47.},

Regression StepwiseRegression class • 433

{7., 52., 6., 33.},
{11., 55., 9., 22.},
{3., 71., 17., 6.},
{1., 31., 22., 44.},
{2., 54., 18., 22.},
{21., 47., 4., 26},
{1., 40., 23., 34.},
{11., 66., 9., 12.},
{10.0, 68., 8., 12.}};

double y[] = {
78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7,
72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

StepwiseRegression sr = new StepwiseRegression(x,y);
sr.compute();

PrintMatrix pm = new PrintMatrix();
pm.setTitle("*** ANOVA *** "); pm.print(sr.getANOVA().getArray());

StepwiseRegression.CoefficientTTests coefT =
sr.getCoefficientTTests();

double coef[][] = new double[4][4];
for (int i=0; i<4; i++) {

coef[i][0] = coefT.getCoefficient(i);
coef[i][1] = coefT.getStandardError(i);
coef[i][2] = coefT.getTStatistic(i);
coef[i][3] = coefT.getPValue(i);

}
pm.setTitle("*** Coef *** "); pm.print(coef);
pm.setTitle("*** Swept *** "); pm.print(sr.getSwept());
pm.setTitle("*** History *** "); pm.print(sr.getHistory());
pm.setTitle("*** VIF *** "); pm.print(sr.getCoefficientVIF());
pm.setTitle("*** CovS *** "); pm.print(sr.getCovariancesSwept());

}
}

Output

*** ANOVA ***
0

0 2
1 10
2 12
3 2,641.001
4 74.762
5 2,715.763
6 1,320.5
7 7.476
8 176.627
9 0
10 97.247

434 • StepwiseRegression class JMSL

11 96.697
12 2.734
13 ?
14 ?

*** Coef ***
0 1 2 3

0 1.44 0.138 10.403 0
1 0.416 0.186 2.242 0.052
2 -0.41 0.199 -2.058 0.07
3 -0.614 0.049 -12.621 0

*** Swept ***
0

0 1
1 -1
2 -1
3 1
4 -1

*** History ***
0

0 2
1 0
2 0
3 1
4 0

*** VIF ***
0

0 1.064
1 18.78
2 3.46
3 1.064

*** CovS ***
0 1 2 3 4

0 0.003 -0.029 -0.946 0 1.44
1 -0.029 154.72 -142.8 0.907 64.381
2 -0.946 -142.8 142.302 0.07 -58.35
3 0 0.907 0.07 0 -0.614
4 1.44 64.381 -58.35 -0.614 74.762

StepwiseRegression.CyclingIsOccurringException class

static public class
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException extends
com.imsl.IMSLException

Regression StepwiseRegression class • 435

Cycling is occurring.

Constructor

StepwiseRegression.CyclingIsOccurringException
public StepwiseRegression.CyclingIsOccurringException(int nStep)

Description

Constructs a CyclingIsOccurringException.

Parameter

nStep – An int which specifies the number of steps taken.

StepwiseRegression.NoVariablesEnteredException class

static public class
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException extends
com.imsl.IMSLException

No Variables can enter the model.

Constructor

StepwiseRegression.NoVariablesEnteredException
public StepwiseRegression.NoVariablesEnteredException()

Description

Constructs a NoVariablesEnteredException.

StepwiseRegression.CoefficientTTests class

public class com.imsl.stat.StepwiseRegression.CoefficientTTests implements
Serializable

CoefficientTTests contains statistics related to the student-t test, for each regression
coefficient.

436 • StepwiseRegression class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Methods

getCoefficient
public double getCoefficient(int index)

Description

Returns the estimate for a coefficient of the independent variable.

Parameter

index – An int which specifies the index of the coefficient whose estimate is to be
returned. index must be between 1 and the number of independent variables.

Returns

A double which contains the estimate for the coefficient.

getPValue
public double getPValue(int index)

Description

Returns the p-value for the two-sided test H0 : β = 0 vs. H1 : β 6= 0.

Parameter

index – An int which specifies the index of the coefficient whose p-value is to be
returned. index must be between 1 and the number of independent variables.

Returns

A double which contains the estimated p-value for the coefficient.

getStandardError
public double getStandardError(int index)

Description

Returns the estimated standard error for a coefficient estimate.

Parameter

index – An int which specifies the index of the coefficient whose standard error
estimate is to be returned. index must be between 1 and the number of independent
variables.

Regression StepwiseRegression class • 437

Returns

A double which contains the estimated standard error for the coefficient.

getTStatistic
public double getTStatistic(int index)

Description

Returns the student-t test statistic for testing the i-th coefficient equal to zero
(βindex = 0).

Parameter

index – An int which specifies the index of the coefficient whose t-test statistic is to
be returned. index must be between 1 and the number of independent variables.

Returns

A double which contains the estimated t-test statistic for the coefficient.

438 • StepwiseRegression class JMSL

Chapter 14: Analysis of Variance

Types

class ANOVA. 439
class ANOVAFactorial . 446
class MultipleComparisons . 456

Usage Notes

The classes described in this chapter are for commonly-used experimental designs. Typically,
responses are stored in the input vector y in a pattern that takes advantage of the balanced
design structure. Consequently, the full set of model subscripts is not needed to identify each
response. The classes assume the usual pattern, which requires that the last model subscript
change most rapidly, followed by the model subscript next in line, and so forth, with the first
subscript changing at the slowest rate. This pattern is referred to as lexicographical ordering.

ANOVA class allows missing responses if confidence interval information is not requested.
Double.NaN (Not a Number) is the missing value code used by these classes. Any element of y
that is missing must be set to NaN. Other classes described in this chapter do not allow missing
responses because the classes generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, classes in this chapter
typically perform a test for lack of fit when n(n > 1) responses are available in each cell of the
experimental design.

ANOVA class

public class com.imsl.stat.ANOVA implements Serializable, Cloneable

Analysis of Variance table and related statistics.

439

Constructors

ANOVA
public ANOVA(double[][] y)

Description

Analyzes a one-way classification model.

Parameter

y – is a two-dimension double array containing the responses. The rows in y
correspond to observation groups. Each row of y can contain a different number of
observations.

ANOVA
public ANOVA(double dfr, double ssr, double dfe, double sse, double gmean)

Description

Construct an analysis of variance table and related statistics. Intended for use by the
LinearRegression class.

Parameters

dfr – a double scalar value representing the degrees of freedom for model

ssr – a double scalar value representing the sum of squares for model

dfe – a double scalar value representing the degrees of freedom for error

sse – a double scalar value representing the sum of squares for error

gmean – a double scalar value representing the grand mean. If the grand mean is not
known it may be set to not-a-number.

Methods

getAdjustedRSquared
public double getAdjustedRSquared()

Description

Returns the adjusted R-squared (in percent).

Returns

a double scalar value representing the adjusted R-squared (in percent)

getArray
public double[] getArray()

Description

Returns the ANOVA values as an array.

440 • ANOVA class JMSL

Returns

a double[15] array containing the following values:

index Value
0 Degrees of freedom for model
1 Degrees of freedom for error
2 Total degrees of freedom
3 Sum of squares for model
4 Sum of squares for error
5 Total sum of squares
6 Model mean square
7 Error mean square
8 F statistic
9 p-value
10 R-squared (in percent)
11 Adjusted R-squared (in percent)
12 Estimated standard deviation of the model error
13 Mean of the response (dependent variable)
14 Coefficient of variation (in percent)

getCoefficientOfVariation
public double getCoefficientOfVariation()

Description

Returns the coefficient of variation (in percent).

Returns

a double scalar value representing the coefficient of variation (in percent)

getDegreesOfFreedomForError
public double getDegreesOfFreedomForError()

Description

Returns the degrees of freedom for error.

Returns

a double scalar value representing the degrees of freedom for error

getDegreesOfFreedomForModel
public double getDegreesOfFreedomForModel()

Description

Returns the degrees of freedom for model.

Analysis of Variance ANOVA class • 441

Returns

a double scalar value representing the degrees of freedom for model

getDunnSidak
public double getDunnSidak(int i, int j)

Description

Computes the confidence interval of i-th mean - j-th mean, using the Dunn-Sidak method.

Parameters

i – is a int indicating the i-th member of the pair, µi

j – is a int indicating the j-th member of the pair, µj

Returns

the confidence intervals of i-th mean - j-th mean using the Dunn-Sidak method

getErrorMeanSquare
public double getErrorMeanSquare()

Description

Returns the error mean square.

Returns

a double scalar value representing the error mean square

getF
public double getF()

Description

Returns the F statistic.

Returns

a double scalar value representing the F statistic

getGroupInformation
public double[][] getGroupInformation()

Description

Returns information concerning the groups.

442 • ANOVA class JMSL

Returns

a two-dimension double array containing information concerning the groups. Row i
contains information pertaining to the i-th group. The information in the columns is as
follows:

Column Information
0 Group Number
1 Number of nonmissing observations
2 Group Mean
3 Group Standard Deviation

getMeanOfY
public double getMeanOfY()

Description

Returns the mean of the response (dependent variable).

Returns

a double scalar value representing the mean of the response (dependent variable)

getModelErrorStdev
public double getModelErrorStdev()

Description

Returns the estimated standard deviation of the model error.

Returns

a double scalar value representing the estimated standard deviation of the model error

getModelMeanSquare
public double getModelMeanSquare()

Description

Returns the model mean square.

Returns

a double scalar value representing the model mean square

getP
public double getP()

Description

Returns the p-value.

Analysis of Variance ANOVA class • 443

Returns

a double scalar value representing the p-value

getRSquared
public double getRSquared()

Description

Returns the R-squared (in percent).

Returns

a double scalar value representing the R-squared (in percent)

getSumOfSquaresForError
public double getSumOfSquaresForError()

Description

Returns the sum of squares for error.

Returns

a double scalar value representing the sum of squares for error

getSumOfSquaresForModel
public double getSumOfSquaresForModel()

Description

Returns the sum of squares for model.

Returns

a double scalar value representing the sum of squares for model

getTotalDegreesOfFreedom
public double getTotalDegreesOfFreedom()

Description

Returns the total degrees of freedom.

Returns

a double scalar value representing the total degrees of freedom

getTotalMissing
public int getTotalMissing()

Description

Returns the total number of missing values.

444 • ANOVA class JMSL

Returns

an int scalar value representing the total number of missing values (NaN) in input Y.
Elements of Y containing NaN (not a number) are omitted from the computations.

getTotalSumOfSquares
public double getTotalSumOfSquares()

Description

Returns the total sum of squares.

Returns

a double scalar value representing the total sum of squares

Example: ANOVA

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table
5.1, pages 165-179). The responses are plant weights for 6 plants of 3 different types - 3 normal,
2 off-types, and 1 aberrant. The 3 normal plant weights are 101, 105, and 94. The 2 off-type
plant weights are 84 and 88. The 1 aberrant plant weight is 32. Note in the results that for the
group with only one response, the standard deviation is undefined and is set to NaN (not a
number).

import com.imsl.stat.*;
import com.imsl.math.*;

public class ANOVAEx1 {
public static void main(String args[]) {

double y[][] = {
{101, 105, 94},
{84, 88},
{32}

};
ANOVA anova = new ANOVA(y);
double aov[] = anova.getArray();

System.out.println("Degrees Of Freedom For Model = "+ aov[0]);
System.out.println("Degrees Of Freedom For Error = "+ aov[1]);
System.out.println("Total (Corrected) Degrees Of Freedom = "+ aov[2]);
System.out.println("Sum Of Squares For Model = "+ aov[3]);
System.out.println("Sum Of Squares For Error = "+ aov[4]);
System.out.println("Total (Corrected) Sum Of Squares = "+ aov[5]);
System.out.println("Model Mean Square = "+ aov[6]);
System.out.println("Error Mean Square = "+ aov[7]);
System.out.println("F statistic = "+ aov[8]);
System.out.println("P value= "+ aov[9]);
System.out.println("R Squared (in percent) = "+ aov[10]);
System.out.println("Adjusted R Squared (in percent) = "+ aov[11]);
System.out.println("Model Error Standard deviation = "+ aov[12]);
System.out.println("Mean Of Y = "+ aov[13]);

Analysis of Variance ANOVA class • 445

System.out.println("Coefficient Of Variation (in percent) = "+ aov[14]);
System.out.println("Total number of missing values = " +
anova.getTotalMissing());

PrintMatrixFormat pmf = new PrintMatrixFormat();
String labels[] = { "Group", "N", "Mean", "Std. Deviation"};
pmf.setColumnLabels(labels);
pmf.setNumberFormat(null);
new PrintMatrix("Group Information").print(pmf,
anova.getGroupInformation());

}
}

Output

Degrees Of Freedom For Model = 2.0
Degrees Of Freedom For Error = 3.0
Total (Corrected) Degrees Of Freedom = 5.0
Sum Of Squares For Model = 3480.0
Sum Of Squares For Error = 70.0
Total (Corrected) Sum Of Squares = 3550.0
Model Mean Square = 1740.0
Error Mean Square = 23.333333333333332
F statistic = 74.57142857142857
P value= 0.002768882525349784
R Squared (in percent) = 98.02816901408451
Adjusted R Squared (in percent) = 96.71361502347418
Model Error Standard deviation = 4.83045891539648
Mean Of Y = 84.0
Coefficient Of Variation (in percent) = 5.750546327852952
Total number of missing values = 0

Group Information
Group N Mean Std. Deviation

0 0.0 3.0 100.0 5.5677643628300215
1 1.0 2.0 86.0 2.8284271247461903
2 2.0 1.0 32.0 NaN

ANOVAFactorial class

public class com.imsl.stat.ANOVAFactorial implements Serializable, Cloneable

Analyzes a balanced factorial design with fixed effects.

Class ANOVAFactorial performs an analysis for an n-way classification design with balanced
data. For balanced data, there must be an equal number of responses in each cell of the n-way
layout. The effects are assumed to be fixed effects. The model is an extension of the two-way

446 • ANOVAFactorial class JMSL

model to include n factors. The interactions (two-way, three-way, up to n-way) can be included
in the model, or some of the higher-way interactions can be pooled into error. setModelOrder
specifies the number of factors to be included in the highest-way interaction. For example, if
three-way and higher-way interactions are to be pooled into error, specify modelOrder = 2.
(By default, modelOrder = nSubscripts - 1 with the last subscript being the error
subscript.) PURE ERROR indicates there are repeated responses within the n-way cell;
POOL INTERACTIONS indicates otherwise.

Class ANOVAFactorial requires the responses as input into a single vector y in lexicographical
order, so that the response subscript associated with the first factor varies least rapidly,
followed by the subscript associated with the second factor, and so forth. Hemmerle (1967,
Chapter 5) discusses the computational method.

Fields

POOL INTERACTIONS
static final public int POOL INTERACTIONS

Indicates factor nSubscripts is not error.

PURE ERROR
static final public int PURE ERROR

Indicates factor nSubscripts is error.

Constructor

ANOVAFactorial
public ANOVAFactorial(int nSubscripts, int[] nLevels, double[] y)

Description

Constructor for ANOVAFactorial.

Parameters

nSubscripts – an int scalar containing the number of subscripts. Number of
factors in the model + 1 (for the error term).

nLevels – an int array of length nSubscripts containing the number of levels for
each of the factors for the first nSubscripts-1 elements. nLevels[nSubscripts-1]
is the number of observations per cell.

y – a double array of length nLevels[0] * nLevels[1] * ... *
nLevels[nSubscripts-1] containing the responses. y must not contain NaN for any
of its elements, i.e., missing values are not allowed.

IllegalArgumentException is thrown if nLevels.length, and y.length are not
consistent

Analysis of Variance ANOVAFactorial class • 447

Methods

compute
final public double compute()

Description

Analyzes a balanced factorial design with fixed effects.

Returns

a double scalar containing the p-value for the overall F test

getANOVATable
public double[] getANOVATable()

Description

Returns the analysis of variance table.

Returns

a double array containing the analysis of variance table. The analysis of variance
statistics are given as follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

getMeans
public double[] getMeans()

Description

Returns the subgroup means.

448 • ANOVAFactorial class JMSL

Returns

a double array containing the subgroup means

getTestEffects
public double[][] getTestEffects()

Description

Returns statistics relating to the sums of squares for the effects in the model.

Returns

a double matrix containing statistics relating to the sums of squares for the effects in the
model. Here,

NEF =
(
n

1

)
+
(
n

2

)
+ · · ·+

(
n

min(n, |model order|)

)
where n is given by nSubscripts if ANOVAFactorial.POOL INTERACTIONS is specified;
otherwise, nSubscripts - 1. Suppose the factors are A, B, C, and error. With
modelOrder = 3, rows 0 through NEF-1 would correspond to A, B, C, AB, AC, BC, and
ABC, respectively.

The columns of the output matrix are as follows:

Column Description
0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

setErrorIncludeType
public void setErrorIncludeType(int type)

Description

Sets error included type.

Parameter

type – an int scalar. ANOVAFactorial.PURE ERROR, the default option, indicates
factor nSubscripts is error. Its main effect and all its interaction effects are pooled
into the error with the other (modelOrder + 1)-way and higher-way interactions.
ANOVAFactorial.POOL INTERACTIONS indicates factor nSubscripts is not error.
Only (modelOrder + 1)-way and higher-way interactions are included in the error.

setModelOrder
public void setModelOrder(int modelOrder)

Description

Sets the number of factors to be included in the highest-way interaction in the model.

Analysis of Variance ANOVAFactorial class • 449

Parameter

modelOrder – an int scalar containing the number of factors to be included in the
highest-way interaction in the model. modelOrder must be in the interval [1,
nSubscripts - 1]. For example, a modelOrder of 1 indicates that a main effect
model will be analyzed, and a modelOrder of 2 indicates that two-way interactions
will be included in the model. Default: modelOrder = nSubscripts - 1

Example 1: Two-way Analysis of Variance

A two-way analysis of variance is performed with balanced data discussed by Snedecor and
Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains (in grams) of rats
that were fed diets varying in the source (A) and level (B) of protein. The model is

yijk = µ+ αi + βj + γij + εijk i = 1, 2; j = 1, 2, 3; k = 1, 2, ... , 10

where

2∑
i=1

αi = 0;
3∑

j=1

βj = 0;
2∑

i=1

γij = 0 for j = 1, 2, 3;

and

3∑
j=1

γij = 0 for j = 1, 2

The first responses in each cell in the two-way layout are given in the following table:

Protein Source (A)
Protein Level
(B)

Beef Cereal Pork

High 73, 102, 118, 104,
81, 107, 100, 87,
117, 111

98, 74, 56, 111, 95,
88, 82, 77, 86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120,
105

Low 90, 76, 90, 64, 86,
51, 72, 90, 95, 78

107, 95, 97, 80, 98,
74, 74, 67, 89, 58

49, 82, 73, 86, 81,
97, 106, 70, 61, 82

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx1 {
public static void main(String args[]) {

int nSubscripts = 3;

450 • ANOVAFactorial class JMSL

int[] nLevels = {3, 2, 10};
double[] y = {

73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,
90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,
98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0,
107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,
94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,
49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0

};
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(6);
ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

System.out.println("P-value = " + nf.format(af.compute()));
}

}

Output

P-value = 0.002299

Example 2: Two-way Analysis of Variance

In this example, the same model and data is fit as in the example 1, but additional information
is printed.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx2 {
public static void main(String args[]) {

int nSubscripts = 3, i;
int[] nLevels = {3, 2, 10};
double[] y = {

73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,
90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,
98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0,
107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,
94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,
49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0

};
String[] labels = {

"degrees of freedom for the model ",
"degrees of freedom for error ",
"total (corrected) degrees of freedom ",
"sum of squares for the model ",
"sum of squares for error ",

Analysis of Variance ANOVAFactorial class • 451

"total (corrected) sum of squares ",
"model mean square ",
"error mean square ",
"F-statistic ",
"p-value ",
"R-squared (in percent) ",
"Adjusted R-squared (in percent) ",
"est. standard deviation of the model error ",
"overall mean of y ",
"coefficient of variation (in percent) "

};
String[] rlabels = {"A", "B", "A*B"};
String[] mlabels = {

"grand mean ", "A1 ", "A2 ",
"A3 ", "B1 ", "B2 ",
"A1*B1 ", "A1*B2 ", "A2*B1 ",
"A2*B2 ", "A3*B1 ", "A3*B2 "

};
NumberFormat nf = NumberFormat.getInstance();
ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

nf.setMinimumFractionDigits(6);
System.out.println("P-value = " + nf.format(af.compute()));

nf.setMaximumFractionDigits(4);

System.out.println("\n * * * Analysis of Variance * * *");
double[] anova = af.getANOVATable();
for (i = 0; i < anova.length; i++) {

System.out.println(labels[i] + " " + nf.format(anova[i]));
}

System.out.println("\n * * * Variation Due to the " +
"Model * * *");
System.out.println("Source\tDF\tSum of Squares\tMean Square" +
"\tProb. of Larger F");
double[][] te = af.getTestEffects();
for (i = 0; i < te.length; i++) {

System.out.println(rlabels[i] + "\t" + nf.format(te[i][0]) + "\t" +
nf.format(te[i][1]) + "\t" + nf.format(te[i][2]) + "\t\t" +
nf.format(te[i][3]));

}

System.out.println("\n* * * Subgroup Means * * *");
double[] means = af.getMeans();
for (i = 0; i < means.length; i++) {

System.out.println(mlabels[i] + " " + nf.format(means[i]));
}

}
}

452 • ANOVAFactorial class JMSL

Output

P-value = 0.002299

* * * Analysis of Variance * * *
degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4,612.9333
sum of squares for error 11,586.0000
total (corrected) sum of squares 16,198.9333
model mean square 922.5867
error mean square 214.5556
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
A 2.0000 266.5333 0.6211 0.5411
B 1.0000 3,168.2667 14.7666 0.0003
A*B 2.0000 1,178.1333 2.7455 0.0732

* * * Subgroup Means * * *
grand mean 87.8667
A1 89.6000
A2 84.9000
A3 89.1000
B1 95.1333
B2 80.6000
A1*B1 100.0000
A1*B2 79.2000
A2*B1 85.9000
A2*B2 83.9000
A3*B1 99.5000
A3*B2 78.7000

Example 3: Three-way Analysis of Variance

This example performs a three-way analysis of variance using data discussed by John (1971, pp.
91 92). The responses are weights (in grams) of roots of carrots grown with varying amounts of
applied nitrogen (A), potassium (B), and phosphorus (C). Each cell of the three-way layout has
one response. Note that the ABC interactions sum of squares, which is 186, is given incorrectly
by John (1971, Table 5.2.) The three-way layout is given in the following table:

Analysis of Variance ANOVAFactorial class • 453

A0

B0 B1 B2

C0 88.76 91.41 97.85
C1 87.45 98.27 95.85
C2 86.01 104.20 90.09

A1

B0 B1 B2

C0 94.83 100.49 99.75
C1 84.57 97.20 112.30
C2 81.06 120.80 108.77

A2

B0 B1 B2

C0 99.90 100.23 104.50
C1 92.98 107.77 110.94
C2 94.72 118.39 102.87

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx3 {
public static void main(String args[]) {

int nSubscripts = 3, i;
int[] nLevels = {3, 3, 3};
double[] y = {88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75, 112.3, 108.77,
99.9, 92.98, 94.72, 100.23, 107.77, 118.39, 104.51, 110.94, 102.87};
String[] labels = {

"degrees of freedom for the model ",
"degrees of freedom for error ",
"total (corrected) degrees of freedom ",
"sum of squares for the model ",
"sum of squares for error ",
"total (corrected) sum of squares ",
"model mean square ",
"error mean square ",
"F-statistic ",
"p-value ",
"R-squared (in percent) ",
"Adjusted R-squared (in percent) ",
"est. standard deviation of the model error ",
"overall mean of y ",
"coefficient of variation (in percent) "

};
String[] rlabels = {"A", "B", "C", "A*B", "A*C", "B*C"};
NumberFormat nf = NumberFormat.getInstance();
ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

454 • ANOVAFactorial class JMSL

af.setErrorIncludeType(ANOVAFactorial.POOL_INTERACTIONS);
nf.setMinimumFractionDigits(6);
System.out.println("P-value = " + nf.format(af.compute()));

nf.setMaximumFractionDigits(4);

System.out.println("\n * * * Analysis of Variance * * *");
double[] anova = af.getANOVATable();
for (i = 0; i < anova.length; i++) {

System.out.println(labels[i] + " " + nf.format(anova[i]));
}

System.out.println("\n * * * Variation Due to the " +
"Model * * *");
System.out.println("Source\tDF\tSum of Squares\tMean Square" +
"\tProb. of Larger F");
double[][] te = af.getTestEffects();
for (i = 0; i < te.length; i++) {

StringBuffer sb = new StringBuffer(rlabels[i]);

int len = sb.length();
for(int j = 0; j < (8-len); j++) sb.append(’ ’);
sb.append(nf.format(te[i][0]));

len = sb.length();
for(int j = 0; j < (16-len); j++) sb.append(’ ’);
sb.append(nf.format(te[i][1]));

len = sb.length();
for(int j = 0; j < (32-len); j++) sb.append(’ ’);
sb.append(nf.format(te[i][2]));

len = sb.length();
for(int j = 0; j < (48-len); j++) sb.append(’ ’);
sb.append(nf.format(te[i][3]));

System.out.println(sb.toString());
}

}
}

Output

P-value = 0.008299

* * * Analysis of Variance * * *
degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2,395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2,581.5052

Analysis of Variance ANOVAFactorial class • 455

model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
A 2.0000 488.3675 10.5152 0.0058
B 2.0000 1,090.6564 23.4832 0.0004
C 2.0000 49.1485 1.0582 0.3911
A*B 4.0000 142.5853 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6238 6.3800 0.0131

MultipleComparisons class

public class com.imsl.stat.MultipleComparisons implements Serializable,
Cloneable

Performs Student-Newman-Keuls multiple comparisons test.

Class MultipleComparisons performs a multiple comparison analysis of means using the
Student-Newman-Keuls method. The null hypothesis is equality of all possible ordered subsets
of a set of means. This null hypothesis is tested using the Studentized range of each of the
corresponding subsets of sample means. The method is discussed in many elementary statistics
texts, e.g., Kirk (1982, pp. 123-125).

Constructor

MultipleComparisons
public MultipleComparisons(double[] means, int df, double stdError)

Description

Constructor for MultipleComparisons.

Parameters

means – A double array containing the means.

df – An int scalar containing the degrees of freedom associated with stdError.

stdError – A double scalar containing the effective estimated standard error of a
mean. In fixed effects models, stdError equals the estimated standard error of a

456 • MultipleComparisons class JMSL

mean. For example, in a one-way model stdError =
√
s2/n where s2 is the estimate

of σ2 and n is the number of responses in a sample mean. In models with random
components, use stdError = sedif/

√
2 where sedif is the estimated standard error of

the difference of two means.

Methods

compute
final public int[] compute()

Description

Performs Student-Newman-Keuls multiple comparisons test.

Returns

An int array , call it equalMeans indicating the size of the groups of means declared to
be equal. Value equalMeans[I] = J indicates the I-th smallest mean and the next J-1
larger means are declared equal. Value equalMeans[I] = 0 indicates no group of means
starts with the I-th smallest mean.

setAlpha
public void setAlpha(double alpha)

Description

Sets the significance level of the test

Parameter

alpha – A double scalar containing the significance level of test. alpha must be in
the interval [0.01, 0.10]. Default: alpha = 0.01

Example: Multiple Comparisons Test

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 123-125).
The results show that there are three groups of means with three separate sets of values: (36.7,
40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class MultipleComparisonsEx1 {
public static void main(String args[]) {

double[] means = {36.7, 48.7, 43.4, 47.2, 40.3};

/* Perform multiple comparisons tests */
MultipleComparisons mc = new MultipleComparisons(means, 45, 1.6970563);

new PrintMatrix("Size of Groups of Means").print(mc.compute());

Analysis of Variance MultipleComparisons class • 457

}
}

Output

Size of Groups of Means
0

0 3
1 3
2 3
3 0

458 • MultipleComparisons class JMSL

Chapter 15: Categorical and
Discrete Data Analysis

Types

class ContingencyTable . 459
class CategoricalGenLinModel . 472

Usage Notes

The ContingencyTable class computes many statistics of interest in a two-way table. Statistics
computed by this routine include the usual chi-squared statistics, measures of association,
Kappa, and many others.

The CategoricalGenLinModel class is concerned with generalized linear models in discrete
data. This routine may be used to compute estimates and associated statistics in probit,
logistic, minimum extreme value, Poisson, negative binomial (with known number of successes),
and logarithmic models. Classification variables as well as weights, frequencies, and additive
constants may be used so that quite general linear models can be fit. Residuals, a measure of
influence, the coefficient estimates, and other statistics are returned for each model fit. When
infinite parameter estimates are required, extended maximum likelihood estimation may be
used. Log-linear models may be fit through the use of Poisson regression models. Results from
Poisson regression models involving structural and sampling zeros will be identical to the
results obtained from the log-linear model but will be fit by a quasi-Newton algorithm rather
than through iterative proportional fitting.

ContingencyTable class

public class com.imsl.stat.ContingencyTable implements Serializable, Cloneable

459

Performs a chi-squared analysis of a two-way contingency table.

Class ContingencyTable computes statistics associated with an r × c contingency table. The
function computes the chi-squared test of independence, expected values, contributions to
chi-squared, row and column marginal totals, some measures of association, correlation,
prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and
the log odds ratio, and the kappa statistic (if the appropriate optional arguments are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the total
count in the table. Let pij = pi•pj• denote the predicted cell probabilities under the null
hypothesis of independence, where pi• and pj• are the row and column marginal relative
frequencies. Next, compute the expected cell counts as eij = npij .

Also required in the following are auv and buv for u, v = 1, . . . , n. Let (rs, cs) denote the row
and column response of observation s. Then, auv = 1, 0, or -1, depending on whether
ru < rv, ru = rv, or ru > rv, respectively. The buv are similarly defined in terms of the cs
variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij . The Pearson
chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to
chi-squared. It has (r - 1) (c - 1) degrees of freedom and tests the null hypothesis of
independence, i.e., H0 : pij = pi•pj•. The null hypothesis is rejected if the computed value of χ2

is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 = −2
∑
i,j

xij ln (xij/npij)

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same degrees of
freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample size:

phi, φ=
√
χ2/n

contingency coefficient, P=
√
χ2/ (n+ χ2)

Cramer′sV , V =
√
χ2/ (nmin (r, c))

Since these statistics do not depend on sample size and are large when the hypothesis of
independence is rejected, they can be thought of as measures of association and can be

460 • ContingencyTable class JMSL

compared across tables with different sized samples. While both P and V have a range between
0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 for any given table (see
Kendall and Stuart 1979, p. 587). The significance of all three statistics is the same as that of
the χ2 statistic, return value from the getChiSquared method.

The distribution of the χ2 statistic in finite samples approximates a chi-squared distribution.
To compute the exact mean and standard deviation of the χ2 statistic, Haldane (1939) uses the
multinomial distribution with fixed table marginals. The exact mean and standard deviation
generally differ little from the mean and standard deviation of the associated chi-squared
distribution.

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values are
reported. Estimates of the standard errors are computed in two ways. The first estimate, in
Column 1 of the return matrix from the getStatistics method, is asymptotically valid for
any value of the statistic. The second estimate, in Column 2 of the array, is only correct under
the null hypothesis of no association. The z-scores in Column 3 of statistics are computed using
this second estimate of the standard errors. The p-values in Column 4 are computed from this
z-score. See Brown and Benedetti (1977) for a discussion and formulas for the standard errors
in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row and column
categories. Class ContingencyTable also computes several measures of association for tables in
which the rows and column categories correspond to ranked observations. Two of these tests,
the product-moment correlation and the Spearman correlation, are correlation coefficients
computed using assigned scores for the row and column categories. The cell indices are used for
the product-moment correlation, while the average of the tied ranks of the row and column
marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are computed
like a correlation coefficient in the numerator. In all these measures, the numerator is computed
as the ”covariance” between the auv variables and buv variables defined above, i.e., as follows:

∑
u

∑
v

auvbuv

Recall that auv and buv can take values -1, 0, or 1. Since the product auvbuv = 1 only if auv

and buv are both 1 or are both -1, it is easy to show that this ”covariance” is twice the total
number of agreements minus the number of disagreements, where a disagreement occurs when
auvbuv = −1.

Kendall’s τb is computed as the correlation between the auv variables and the buv variables (see
Kendall and Stuart 1979, p. 593). In a rectangular table (r 6= c), Kendall’s τb cannot be 1.0 (if
all marginal totals are positive). For this reason, Stuart suggested a modification to the
denominator of τ in which the denominator becomes the largest possible value of the
”covariance.” This maximizing value is approximately n2m/(m− 1), where m = min (r, c).
Stuart’s τc uses this approximate value in its denominator. For large n, τc ≈ mτb/(m− 1).

Categorical and Discrete Data Analysis ContingencyTable class • 461

Gamma can be motivated in a slightly different manner. Because the ”covariance” of the auv

variables and the buv variables can be thought of as twice the number of agreements minus the
disagreements, 2(A - D), where A is the number of agreements and D is the number of
disagreements, Gamma is motivated as the probability of agreement minus the probability of
disagreement, given that either agreement or disagreement occurred. This is shown as
γ = (A−D)/(A+D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D
for rows can be thought of as the regression coefficient for predicting auv from buv. Moreover,
Somer’s D for rows is the probability of agreement minus the probability of disagreement, given
that the column variable, buv, is not 0. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and
Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any ordering
of the row or column variables. They are based entirely upon probabilities. Most are discussed
in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null
hypothesis of independence, choose the column with the highest column marginal probability
for all rows. In this case, the probability of misclassification for any row is 1 minus this
marginal probability. If independence is not assumed within each row, choose the column with
the highest row conditional probability. The probability of misclassification for the row
becomes 1 minus this conditional probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the
proportion of the probability of misclassification that is eliminated because the random
variables are not independent. It is estimated by

λc | r =
(1− p•m)− (1−

∑
i

pim)

1− p•m

where m is the index of the maximum estimated probability in the row (pim) or row margin
(p•m). A similar coefficient is defined for predicting the rows from the columns. The symmetric
version of the optimal prediction λ is obtained by summing the numerators and denominators
of λr|c and λc|r then dividing. Standard errors for these coefficients are given in Bishop et al.
(1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal
probabilities. One way to correct this is to use row conditional probabilities. The optimal
prediction λ∗ coefficients are defined as the corresponding λ coefficients in which first the row
(or column) marginals are adjusted to the same number of observations. This yields

λ∗c | r =

∑
i

maxj pj | i −maxj(
∑
i

pj | i)

R−maxj(
∑
i

pj | i)

462 • ContingencyTable class JMSL

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of
column j given row i.

λ∗r | c

is similarly defined.

Goodman and Kruskal τ : A second kind of prediction measure attempts to explain the
proportion of the explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows as follows:

n/2− (
∑

i

x2
i•)/ (2n)

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is computed
as the reduction of the total variation for rows accounted for by the columns, divided by the
total variation for the rows. To compute the reduction in the total variation of the rows
accounted for by the columns, note that the total variation for the rows within column j is
defined as follows:

qj = x•j/2− (
∑

i

x2
ij)/ (2xi•)

The total variation for rows within columns is the sum of the qj variables. Consistent with the
usual methods in the analysis of variance, the reduction in the total variation is given as the
difference between the total variation for rows and the total variation for rows within the
columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, p. 391) for
the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the
log-likelihood that is achieved by the most general model over the independence model, divided
by the marginal log-likelihood for the rows. This is given by the following equation:

Ur|c =

∑
i,j

xij log (xi•x•j/nxij)∑
i

xi• log (xi•/n)

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty
coefficient contains the same numerator as Ur|c and Uc|rbut averages the denominators of these
two statistics. Standard errors for U are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type
test that assumes the column variable is monotonically ordered. It tests the null hypothesis
that no row populations are identical, using average ranks for the column variable. The

Categorical and Discrete Data Analysis ContingencyTable class • 463

Kruskal-Wallis statistic for columns is similarly defined. Conover (1980) discusses the
Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend in
the row probabilities if it is assumed that the column variable is monotonically ordered. In this
test, the probabilities for row 1 are predicted by the column index using weighted simple linear
regression. This slope is given by

β̂ =

∑
j

x•j (x1j/x•j − x1•/n) (j − j̄)∑
j

x•j (j − j̄)2

where

j̄ =
∑

j

x•jj/n

is the average column index. An asymptotic test that the slope is 0 may then be obtained (in
large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is computed.
This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa
statistic, the rows and columns correspond to the responses of two judges. The judges agree
along the diagonal and disagree off the diagonal. Let

p0 =
∑

i

xii/n

denote the probability that the two judges agree, and let

pc =
∑

i

eii/n

denote the expected probability of agreement under the independence model. Kappa is then
given by (p0 − pc)/(1− pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency table. In
other words, it is a test of the null hypothesis H0 : θij = θji. The multiple degrees-of-freedom
version of the McNemar test with r (r - 1)/2 degrees of freedom is computed as follows:∑

i<j

(xij − xji)
2

(xij + xji)

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one
direction. The single degree-of-freedom test will be more powerful than the multiple
degrees-of-freedom test when this is the case. The test statistic is given as follows:

464 • ContingencyTable class JMSL

(∑
i<j

(xij − xji)

)2

∑
i<j

(xij + xji)

The exact probability can be computed by the binomial distribution.

Constructor

ContingencyTable
public ContingencyTable(double[][] table)

Description

Constructs and performs a chi-squared analysis of a two-way contingency table.

Parameter

table – A double matrix containing the observed counts in the contingency table.

Methods

getChiSquared
public double getChiSquared()

Description

Returns the Pearson chi-squared test statistic.

Returns

A double scalar containing the Pearson chi-squared test statistic.

getContingencyCoef
public double getContingencyCoef()

Description

Returns contingency coefficient.

Returns

A double scalar containing the contingency coefficient based on Pearson chi-squared
statistic.

getContributions
public double[][] getContributions()

Categorical and Discrete Data Analysis ContingencyTable class • 465

Description

Returns the contributions to chi-squared for each cell in the table.
Returns

A double matrix of size (table.length+1) * (table[0].length+1) containing the
contributions to chi-squared for each cell in the table. The last row and column contain
the total contribution to chi-squared for that row or column.

getCramersV
public double getCramersV()

Description

Returns Cramer’s V.
Returns

A double scalar containing the Cramer’s V based on Pearson chi-squared statistic.

getDegreesOfFreedom
public int getDegreesOfFreedom()

Description

Returns the degrees of freedom for the chi-squared tests associated with the table.
Returns

An int scalar containing the degrees of freedom for the chi-squared tests associated with
the table.

getExactMean
public double getExactMean()

Description

Returns exact mean.
Returns

A double scalar containing the exact mean based on Pearson’s chi-square statistic.

getExactStdev
public double getExactStdev()

Description

Returns exact standard deviation.
Returns

A double scalar containing the exact standard deviation based on Pearson’s chi-square
statistic.

getExpectedValues
public double[][] getExpectedValues()

466 • ContingencyTable class JMSL

Description

Returns the expected values of each cell in the table.

Returns

A double matrix of size (table.length+1) * (table[0].length+1) containing the
expected values of each cell in the table, under the null hypothesis. The marginal totals
are in the last row and column.

getGSquared
public double getGSquared()

Description

Returns the likelihood ratio G2 (chi-squared).

Returns

A double scalar containing the likelihood ratio G2 (chi-squared).

getGSquaredP
public double getGSquaredP()

Description

Returns the probability of a larger G2 (chi-squared).

Returns

A double scalar containing the probability of a larger G2 (chi-squared).

getP
public double getP()

Description

Returns the Pearson chi-squared p-value for independence of rows and columns.

Returns

A double scalar containing the Pearson chi-squared p-value for independence of rows and
columns.

getPhi
public double getPhi()

Description

Returns phi.

Returns

A double scalar containing the phi based on Pearson chi-squared statistic.

getStatistics
public double[][] getStatistics()

Categorical and Discrete Data Analysis ContingencyTable class • 467

Description

Returns the statistics associated with this table.

Returns

A double matrix of size 23 * 5 containing statistics associated with this table. Each row
corresponds to a statistic.

Row Statistics
0 gamma
1 Kendall’s τb
2 Stuart’s τc
3 Somers’ D for rows (given columns)
4 Somers’ D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal τ for rows (given columns)
8 Goodman and Kruskal τ for columns (given rows)
9 uncertainty coefficient U (symmetric)
10 uncertainty Ur|c (rows)
11 uncertainty Uc|r (columns)
12 optimal prediction λ (symmetric)
13 optimal prediction λr|c (rows)
14 optimal prediction λc|r (columns)
15 optimal prediction λ∗r|c (rows)
16 optimal prediction λ∗c|r (columns)
17 test for linear trend in row probabilities if table.length =

2. If table.length is not 2, a test for linear trend in column
probabilities if table[0].length = 2.

18 Kruskal-Wallis test for no row effect
19 Kruskal-Wallis test for no column effect
20 kappa (square tables only)
21 McNemar test of symmetry (square tables only)
22 McNemar one degree of freedom test of symmetry (square

tables only)

If a statistic cannot be computed, or if some value is not relevant for the computed
statistic, the entry is NaN (Not a Number).

The columns are as follows:

Column Value
0 estimated statistic
1 standard error for any parameter value
2 standard error under the null hypothesis
3 t value for testing the null hypothesis
4 p-value of the test in column 3

468 • ContingencyTable class JMSL

In the McNemar tests, column 0 contains the statistic, column 1 contains the chi-squared
degrees of freedom, column 3 contains the exact p-value (1 degree of freedom only), and
column 4 contains the chi-squared asymptotic p-value. The Kruskal-Wallis test is the
same except no exact p-value is computed.

Example 1: Contingency Table

The following example is taken from Kendall and Stuart (1979) and involves the distance vision
in the right and left eyes.

import com.imsl.stat.*;

public class ContingencyTableEx1 {
public static void main(String args[]) {

double[][] table = {
{821, 112, 85, 35},
{116, 494, 145, 27},
{72, 151, 583, 87},
{43, 34, 106, 331}

};
ContingencyTable ct = new ContingencyTable(table);
System.out.println("P-value = " + ct.getP());

}
}

Output

P-value = 0.0

Example 2: Contingency Table

The following example, which illustrates the use of Kappa and McNemar tests, uses the same
distance vision data as in Example 1.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ContingencyTableEx2 {
public static void main(String args[]) {

double[][] table = {
{821.0, 112.0, 85.0, 35.0},
{116.0, 494.0, 145.0, 27.0},
{72.0, 151.0, 583.0, 87.0},
{43.0, 34.0, 106.0, 331.0}

};

Categorical and Discrete Data Analysis ContingencyTable class • 469

String[] rlabels = {"Gamma", "Tau B", "Tau C", "D-Row", "D-Column",
"Correlation", "Spearman", "GK tau rows", "GK tau cols.", "U - sym.",
"U - rows", "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
"l-star-rows", "l-star-col.", "Lin. trend", "Kruskal row",
"Kruskal col.", "Kappa", "McNemar", "McNemar df=1"};
ContingencyTable ct = new ContingencyTable(table);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);

System.out.println("Pearson chi-squared statistic = " +
nf.format(ct.getChiSquared()));
System.out.println("p-value for Pearson chi-squared = " +
nf.format(ct.getP()));
System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());
System.out.println("G-squared statistic = " +
nf.format(ct.getGSquared()));
System.out.println("p-value for G-squared = " +
nf.format(ct.getGSquaredP()));
System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());

nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
PrintMatrix pm = new PrintMatrix("\n* * * Table Values * * *");
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
pm.print(pmf, table);

pm.setTitle("* * * Expected Values * * *");
pm.print(pmf, ct.getExpectedValues());

nf.setMinimumFractionDigits(4);
pmf.setNumberFormat(nf);
pm.setTitle("* * * Contributions to Chi-squared* * *");
pm.print(pmf, ct.getContributions());

nf.setMinimumFractionDigits(4);
System.out.println("* * * Chi-square Statistics * * *");
System.out.println("Exact mean = " + nf.format(ct.getExactMean()));
System.out.println("Exact standard deviation = " +
nf.format(ct.getExactStdev()));
System.out.println("Phi = " + nf.format(ct.getPhi()));
System.out.println("P = " + nf.format(ct.getContingencyCoef()));
System.out.println("Cramer’s V = " + nf.format(ct.getCramersV()));

System.out.println("\n stat. std. err. " +
"std. err.(Ho) t-value(Ho) p-value");
double[][] stat = ct.getStatistics();
for (int i = 0; i < stat.length; i++) {

StringBuffer sb = new StringBuffer(rlabels[i]);

int len = sb.length();
for(int j = 0; j < (13-len); j++) sb.append(’ ’);
sb.append(nf.format(stat[i][0]));

len = sb.length();
for(int j = 0; j < (24-len); j++) sb.append(’ ’);

470 • ContingencyTable class JMSL

sb.append(nf.format(stat[i][1]));

len = sb.length();
for(int j = 0; j < (36-len); j++) sb.append(’ ’);
sb.append(nf.format(stat[i][2]));

len = sb.length();
for(int j = 0; j < (50-len); j++) sb.append(’ ’);
sb.append(nf.format(stat[i][3]));

len = sb.length();
for(int j = 0; j < (63-len); j++) sb.append(’ ’);
sb.append(nf.format(stat[i][4]));

System.out.println(sb.toString());
}

}
}

Output

Pearson chi-squared statistic = 3,304.3684
p-value for Pearson chi-squared = 0.0000
degrees of freedom = 9
G-squared statistic = 2,781.0190
p-value for G-squared = 0.0000
degrees of freedom = 9

* * * Table Values * * *
0 1 2 3

0 821.00 112.00 85.00 35.00
1 116.00 494.00 145.00 27.00
2 72.00 151.00 583.00 87.00
3 43.00 34.00 106.00 331.00

* * * Expected Values * * *
0 1 2 3 4

0 341.69 256.92 298.49 155.90 1,053.00
1 253.75 190.80 221.67 115.78 782.00
2 289.77 217.88 253.14 132.21 893.00
3 166.79 125.41 145.70 76.10 514.00
4 1,052.00 791.00 919.00 480.00 3,242.00

* * * Contributions to Chi-squared* * *
0 1 2 3 4

0 672.3626 81.7416 152.6959 93.7612 1,000.5613
1 74.7802 481.8351 26.5189 68.0768 651.2109
2 163.6605 20.5287 429.8489 15.4625 629.5006
3 91.8743 66.6263 10.8183 853.7768 1,023.0957
4 1,002.6776 650.7317 619.8819 1,031.0772 3,304.3684

* * * Chi-square Statistics * * *

Categorical and Discrete Data Analysis ContingencyTable class • 471

Exact mean = 9.0028
Exact standard deviation = 4.2402
Phi = 1.0096
P = 0.7105
Cramer’s V = 0.5829

stat. std. err. std. err.(Ho) t-value(Ho) p-value
Gamma 0.7757 0.0123 0.0149 52.1897 0.0000
Tau B 0.6429 0.0122 0.0123 52.1897 0.0000
Tau C 0.6293 0.0121 ? 52.1897 0.0000
D-Row 0.6418 0.0122 0.0123 52.1897 0.0000
D-Column 0.6439 0.0122 0.0123 52.1897 0.0000
Correlation 0.6926 0.0128 0.0172 40.2669 0.0000
Spearman 0.6939 0.0127 0.0127 54.6614 0.0000
GK tau rows 0.3420 0.0123 ? ? ?
GK tau cols. 0.3430 0.0122 ? ? ?
U - sym. 0.3171 0.0110 ? ? ?
U - rows 0.3178 0.0110 ? ? ?
U - cols. 0.3164 0.0110 ? ? ?
Lambda-sym. 0.5373 0.0124 ? ? ?
Lambda-row 0.5374 0.0126 ? ? ?
Lambda-col. 0.5372 0.0126 ? ? ?
l-star-rows 0.5506 0.0136 ? ? ?
l-star-col. 0.5636 0.0127 ? ? ?
Lin. trend ? ? ? ? ?
Kruskal row 1,561.4859 3.0000 ? ? 0.0000
Kruskal col. 1,563.0303 3.0000 ? ? 0.0000
Kappa 0.5744 0.0111 0.0106 54.3583 0.0000
McNemar 4.7625 6.0000 ? ? 0.5746
McNemar df=1 0.9487 1.0000 ? 0.3459 0.3301

CategoricalGenLinModel class

public class com.imsl.stat.CategoricalGenLinModel

Analyzes categorical data using logistic, probit, Poisson, and other linear models.

Reweighted least squares is used to compute (extended) maximum likelihood estimates in some
generalized linear models involving categorized data. One of several models, including probit,
logistic, Poisson, logarithmic, and negative binomial models, may be fit for input point or
interval observations. (In the usual case, only point observations are observed.)

Let
γi = wi + xT

i β = wi + ηi

be the linear response where xi is a design column vector obtained from a row of x, β is the
column vector of coefficients to be estimated, and wi is a fixed parameter that may be input in
x. When some of the γi are infinite at the supremum of the likelihood, then extended maximum
likelihood estimates are computed. Extended maximum likelihood are computed as the finite
(but nonunique) estimates β̂ that optimize the likelihood containing only the observations with

472 • CategoricalGenLinModel class JMSL

finite γ̂i. These estimates, when combined with the set of indices of the observations such that
γ̂i is infinite at the supremum of the likelihood, are called extended maximum estimates. When
none of the optimal γ̂i are infinite, extended maximum likelihood estimates are identical to
maximum likelihood estimates. Extended maximum likelihood estimation is discussed in more
detail by Clarkson and Jennrich (1991). In CategoricalGenLinModel, observations with
potentially infinite

η̂i = xT
i β̂

are detected and removed from the likelihood if infin = 0. See below.

The models available in CategoricalGenLinModel are:

Model Name Parameterization Response PDF
MODEL0 (Poisson) λ = N × ew+η f(y) = λye−λ/y!

MODEL1 (Negative Binomial) θ = ew+η

1+ew+η f(y) =
(
S + y − 1

y − 1

)
θS(1− θ)y

MODEL2 (Logarithmic) θ = ew+η

1+ew+η f(y) = (1− θ)y/(y ln θ)

MODEL3 (Logistic) θ = ew+η

1+ew+η f(y) =
(
N
y

)
θy(1− θ)N−y

MODEL4 (Probit) θ = Φ(w + η) f(y) =
(
N
y

)
θy(1− θ)N−y

MODEL5 (Log-log) θ = 1− e−ew+η

f(y) =
(
N
y

)
θy(1− θ)N−y

Here Φ denotes the cumulative normal distribution, N and S are known parameters specified for
each observation via column ipar of x, and w is an optional fixed parameter specified for each
observation via column ifix of x. (By default N is taken to be 1 for model = 0, 3, 4 and 5 and
S is taken to be 1 for model = 1. By default w is taken to be 0.) Since the log-log model (model
= 5) probabilities are not symmetric with respect to 0.5, quantitatively, as well as qualitatively,
different models result when the definitions of ”success” and ”failure” are interchanged in this
distribution. In this model and all other models involving θ, θ is taken to be the probability of
a ”success.”

Note that each row vector in the data matrix can represent a single observation; or, through the
use of column ifrq of the matrix x, each vector can represent several observations. Also note
that classification variables and their products are easily incorporated into the models via the
usual regression-type specifications.

Computational Details

For interval observations, the probability of the observation is computed by summing the
probability distribution function over the range of values in the observation interval. For
right-interval observations, Pr(Y ≥ y) is computed as a sum based upon the equality
Pr(Y ≥ y) = 1− Pr(Y < y). Derivatives are computed similarly. CategoricalGenLinModel
allows three types of interval observations. In full interval observations, both the lower and the
upper endpoints of the interval must be specified. For right-interval observations, only the lower
endpoint need be given while for left-interval observations, only the upper endpoint is given.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 473

The computations proceed as follows:

• The input parameters are checked for consistency and validity.

• Estimates of the means of the ”independent” or design variables are computed. The
frequency of the observation in all but binomial distribution model is taken from column
ifrq of the data matrix x. In binomial distribution models, the frequency is taken as the
product of n = x[i][ipar] and x[i][ifrq]. In all cases these values default to 1.
Means are computed as

x̄ =
Σifixi

Σifi

• If init = 0, initial estimates of the coefficients are obtained (based upon the observation
intervals) as multiple regression estimates relating transformed observation probabilities
to the observation design vector. For example, in the binomial distribution models, θ for
point observations may be estimated as

θ̂ = x[i][irt]/x[i][ipar]

and, when model = 3, the linear relationship is given by(
ln(θ̂/(1− θ̂)) ≈ xβ

)
while if model = 4, (

Φ−1(θ̂) = xβ
)

For bounded interval observations, the midpoint of the interval is used for x[i][irt].
Right-interval observations are not used in obtaining initial estimates when the
distribution has unbounded support (since the midpoint of the interval is not defined).
When computing initial estimates, standard modifications are made to prevent illegal
operations such as division by zero.

Regression estimates are obtained at this point, as well as later, by use of linear regression.

• Newton-Raphson iteration for the maximum likelihood estimates is implemented via
iteratively reweighted least squares. Let

Ψ(xT
i β)

denote the log of the probability of the i-th observation for coefficients β. In the
least-squares model, the weight of the i-th observation is taken as the absolute value of
the second derivative of

Ψ(xT
i β)

with respect to
γi = xT

i β

(times the frequency of the observation), and the dependent variable is taken as the first
derivative Ψ with respect to γi, divided by the square root of the weight times the
frequency. The Newton step is given by

∆β =

(∑
i

|Ψ
′′
(γi)|xix

T
i

)−1∑
i

Ψ
′
(γi)xi

474 • CategoricalGenLinModel class JMSL

where all derivatives are evaluated at the current estimate of γ, and βn+1 = βn −∆β.
This step is computed as the estimated regression coefficients in the least-squares model.
Step halving is used when necessary to ensure a decrease in the criterion.

• Convergence is assumed when the maximum relative change in any coefficient update
from one iteration to the next is less than eps or when the relative change in the
log-likelihood from one iteration to the next is less than eps/100. Convergence is also
assumed after maxIterations or when step halving leads to a step size of less than .0001
with no increase in the log-likelihood.

• For interval observations, the contribution to the log-likelihood is the log of the sum of
the probabilities of each possible outcome in the interval. Because the distributions are
discrete, the sum may involve many terms. The user should be aware that data with wide
intervals can lead to expensive (in terms of computer time) computations.

• If setInfiniteEstimateMethod set to 0, then the methods of Clarkson and Jennrich
(1991) are used to check for the existence of infinite estimates in

ηi = xT
i β

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right censored with tj > 15 in a logistic model. If design matrix x is is
such that xjm = 1 and xim = 0 for all i 6= j, then the optimal estimate of βm occurs at

β̂m =∞

leading to an infinite estimate of both βm and ηj . In CategoricalGenLinModel, such
estimates may be ”computed.”

In all models fit by CategoricalGenLinModel , infinite estimates can only occur when
the optimal estimated probability associated with the left- or right-censored observation is
1. If setInfiniteEstimateMethod set to 0, left- or right- censored observations that have
estimated probability greater than 0.995 at some point during the iterations are excluded
from the log-likelihood, and the iterations proceed with a log-likelihood based upon the
remaining observations. This allows convergence of the algorithm when the maximum
relative change in the estimated coefficients is small and also allows for the determination
of observations with infinite

ηi = xT
i β

At convergence, linear programming is used to ensure that the eliminated observations
have infinite ηi. If some (or all) of the removed observations should not have been
removed (because their estimated ηi′s must be finite), then the iterations are restarted
with a log-likelihood based upon the finite ηi observations. See Clarkson and Jennrich
(1991) for more details.

When setInfiniteEstimateMethod is set to 1, no observations are eliminated during the
iterations. In this case, when infinite estimates occur, some (or all) of the coefficient
estimates β̂will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 475

When infinite estimates for the η̂i are detected, linear regression (see Chapter 2,
Regression;) is used at the convergence of the algorithm to obtain unique estimates β̂.
This is accomplished by regressing the optimal η̂i or the observations with finite η against
xβ, yielding a unique β̂(by setting coefficients β̂that are linearly related to previous
coefficients in the model to zero). All of the final statistics relating to β̂ are based upon
these estimates.

• Residuals are computed according to methods discussed by Pregibon (1981). Let `i(γi)
denote the log-likelihood of the i-th observation evaluated at γi. Then, the standardized
residual is computed as

ri =
`
′

i(γ̂i)√
`
′′
i (γ̂i)

where γ̂i is the value of γi when evaluated at the optimal β̂ and the derivatives here (and
only here) are with respect to γ rather than with respect to β. The denominator of this
expression is used as the ”standard error of the residual” while the numerator is the
”raw” residual.

Following Cook and Weisberg (1982), we take the influence of the i-th observation to be

`
′

i(γ̂i)T `
′′
(γ̂)−1`

′
(γ̂i)

This quantity is a one-step approximation to the change in the estimates when the i-th
observation is deleted. Here, the partial derivatives are with respect to β.

Programming Notes

• Classification variables are specified via setClassificationVariableColumn. Indicator
or dummy variables are created for the classification variables.

• To enhance precision ”centering” of covariates is performed if setModelIntercept is set
to 1 and (number of observations) - (number of rows in x missing one or more values) ¿ 1.
In doing so, the sample means of the design variables are subtracted from each
observation prior to its inclusion in the model. On convergence the intercept, its variance
and its covariance with the remaining estimates are transformed to the uncentered
estimate values.

• Two methods for specifying a binomial distribution model are possible. In the first
method, x[i][ifrq] contains the frequency of the observation while x[i][irt] is 0 or 1
depending upon whether the observation is a success or failure. In this case, N =
x[i][ipar] is always 1. The model is treated as repeated Bernoulli trials, and interval
observations are not possible.

A second method for specifying binomial models is to use x[i][irt] to represent the number
of successes in the x[i][ipar] trials. In this case, x[i][ifrq] will usually be 1, but it may be
greater than 1, in which case interval observations are possible.

Note that the solve method must be called prior to calling the ”get” member functions,
otherwise a null is returned.

476 • CategoricalGenLinModel class JMSL

Fields

MODEL0
static final public int MODEL0

Indicates an exponential function is used to model the distribution parameter. The
distribution of the response variable is Poisson. The lower bound of the response variable
is 0.

MODEL1
static final public int MODEL1

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is negative Binomial. The lower bound of the response variable is
0.

MODEL2
static final public int MODEL2

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is Logarithmic. The lower bound of the response variable is 1.

MODEL3
static final public int MODEL3

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

MODEL4
static final public int MODEL4

Indicates a probit function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

MODEL5
static final public int MODEL5

Indicates a log-log function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

Constructor

CategoricalGenLinModel
public CategoricalGenLinModel(double[][] x, int model)

Description

Constructs a new CategoricalGenLinModel.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 477

Parameters

x – A double input matrix containing the data where the number of rows in the
matrix is equal to the number of observations.

model – An int scalar which specifies the distribution of the response variable and
the function used to model the distribution parameter. Use one of the class members
from the following table. The lower bound given in the table is the minimum
possible value of the response variable:

Model Distribution Function Lower-bound
0 Poisson Exponential 0
1 Negative Binomial Logistic 0
2 Logarithmic Logistic 1
3 Binomial Logistic 0
4 Binomial Probit 0
5 Binomial Log-log 0

Let γ be the dot product of a row in the design matrix with the parameters (plus the
fixed parameter, if used). Then, the functions used to model the distribution
parameter are given by:

Name Function
Exponential eγ

Logistic eγ/(1 + eγ)
Probit Φ(γ) (where Φ is the normal cdf)
Log-log 1− e−γ

Methods

getCaseAnalysis
public double[][] getCaseAnalysis()

Description

Returns the case analysis.

Returns

A double matrix containing the case analysis or null if solve has not been called. The
matrix is nobs× 5 where nobs is the number of observations. The matrix contains:

Column Statistic
0 Prediction.
1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

478 • CategoricalGenLinModel class JMSL

Case studies are computed for all observations except where missing values prevent their
computation. The prediction in column 0 depends upon the model used as follows:

Model Prediction
0 The predicted mean for the observation.

1-4 The probability of a success on a single trial.

getClassificationVariableCounts
public int[] getClassificationVariableCounts() throws
CategoricalGenLinModel.ClassificationVariableException

Description

Returns the number of values taken by each classification variable.

Returns

An int array of length nclvar containing the number of values taken by each classification
variable where nclvar is the number of classification variables or null if solve has not
been called.

ClassificationVariableException is thrown when the number of values taken by each
classification variable has been set by the user to be less than or equal to 1

getClassificationVariableValues
public double[] getClassificationVariableValues() throws
CategoricalGenLinModel.ClassificationVariableException

Description

Returns the distinct values of the classification variables in ascending order.

Returns

A double array of length
∑nclvar

k=0 nclval[k] containing the distinct values of the
classification variables in ascending order where nclvar is the number of classification
variables and nclval[i] is the number of values taken by the i-th classification variable. A
null is returned if solve has not been called prior to calling this method.

ClassificationVariableException is thrown when the number of values taken by each
classification variable has been set by the user to be less than or equal to 1

getCovarianceMatrix
public double[][] getCovarianceMatrix()

Description

Returns the estimated asymptotic covariance matrix of the coefficients.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 479

Returns

A double matrix containing the estimated asymptotic covariance matrix of the
coefficients or null if solve has not been called. The covariance matrix is nCoef by nCoef
where nCoef is the number of coefficients in the model.

getDesignVariableMeans
public double[] getDesignVariableMeans()

Description

Returns the means of the design variables.

Returns

A double array of length nCoef containing the means of the design variables where nCoef
is the number of coefficients in the model or null if solve has not been called.

getExtendedLikelihoodObservations
public int[] getExtendedLikelihoodObservations()

Description

Returns a vector indicating which observations are included in the extended likelihood.

Returns

An int array of length nobs indicating which observations are included in the extended
likelihood where nobs is the number of observations. The values within the array are
interpreted as:

Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likelihood because it contains at least

one missing value in x.
2 Observation i is not in the likelihood. Its estimated parameter is

infinite.

A null is returned if solve has not been called prior to calling this method.

getHessian
public double[][] getHessian() throws
CategoricalGenLinModel.ClassificationVariableException,
CategoricalGenLinModel.ClassificationVariableLimitException,
CategoricalGenLinModel.ClassificationVariableValueException,
CategoricalGenLinModel.DeleteObservationsException

Description

Returns the Hessian computed at the initial parameter estimates.

480 • CategoricalGenLinModel class JMSL

Returns

A double matrix containing the Hessian computed at the input parameter estimates. The
Hessian matrix is nCoef by nCoef where nCoef is the number of coefficients in the model.
This member function will call solve to get the Hessian if the Hessian has not already
been computed.

ClassificationVariableException is thrown when the number of values taken by each
classification variable has been set by the user to be less than or equal to 1

ClassificationVariableLimitException is thrown when the sum of the number of
distinct values taken on by each classification variable exceeds the maximum allowed,
maxcl

DeleteObservationsException is thrown if the number of observations to be deleted
has grown too large

getLastParameterUpdates
public double[] getLastParameterUpdates()

Description

Returns the last parameter updates (excluding step halvings).

Returns

A double array of length nCoef containing the last parameter updates (excluding step
halvings) or null if solve has not been called.

getNRowsMissing
public int getNRowsMissing()

Description

Returns the number of rows of data in x that contain missing values in one or more
specific columns of x.

Returns

An int scalar representing the number of rows of data in x that contain missing values in
one or more specific columns of x or null if solve has not been called. The columns of x
included in the count are the columns containing the upper or lower endpoints of full
interval, left interval, or right interval observations. Also included are the columns
containing the frequency responses, fixed parameters, optional distribution parameters,
and interval type for each observation. Columns containing classification variables and
columns associated with each effect in the model are also included.

getOptimizedCriterion
public double getOptimizedCriterion()

Description

Returns the optimized criterion.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 481

Returns

A double scalar representing the optimized criterion or null if solve has not been called.
The criterion to be maximized is a constant plus the log-likelihood.

getParameters
public double[][] getParameters()

Description

Returns the parameter estimates and associated statistics.

Returns

An nCoef row by 4 column double matrix containing the parameter estimates and
associated statistics or null if solve has not been called. Here, nCoef is the number of
coefficients in the model. The statistics returned are as follows:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is zero.
3 ρ - value associated with the normal score in column 2.

getProduct
public double[] getProduct() throws
CategoricalGenLinModel.ClassificationVariableException,
CategoricalGenLinModel.ClassificationVariableLimitException,
CategoricalGenLinModel.ClassificationVariableValueException,
CategoricalGenLinModel.DeleteObservationsException

Description

Returns the inverse of the Hessian times the gradient vector computed at the input
parameter estimates.

Returns

A double array of length nCoef containing the inverse of the Hessian times the gradient
vector computed at the input parameter estimates. nCoef is the number of coefficients in
the model. This member function will call solve to get the product if the product has
not already been computed.

ClassificationVariableException is thrown when the number of values taken by each
classification variable has been set by the user to be less than or equal to 1

ClassificationVariableLimitException is thrown when the sum of the number of
distinct values taken on by each classification variable exceeds the maximum allowed,
maxcl

DeleteObservationsException is thrown if the number of observations to be deleted
has grown too large

482 • CategoricalGenLinModel class JMSL

setCensorColumn
public void setCensorColumn(int icen)

Description

Sets the column number in x which contains the interval type for each observation.

Parameter

icen – An int scalar which indicates the column number x which contains the
interval type code for each observation. The valid codes are interpreted as:

x[i][icen] Censoring
0 Point observation. The response is unique and is given

by x[i][irt].
1 Right interval. The response is greater than or equal

to x[i][irt] and less than or equal to the upper
bound, if any, of the distribution.

2 Left interval. The response is less than or equal to
x[i][ilt] and greater than or equal to the lower
bound of the distribution.

3 Full interval. The response is greater than or equal to
x[i][irt] but less than or equal to x[i][ilt].

If this member function is not called a censoring code of 0 is assumed.

IllegalArgumentException is thrown when icen is less than 0 or greater than or equal
to the number of columns of x

setClassificationVariableColumn
public void setClassificationVariableColumn(int[] indcl)

Description

Initializes an index vector to contain the column numbers in x that are classification
variables.

Parameter

indcl – An int vector which contains the column numbers in x that are
classification variables. By default this vector is not referenced.

IllegalArgumentException is thrown when an element of indcl is less than 0 or greater
than or equal to the number of columns of x

setConvergenceTolerance
public void setConvergenceTolerance(double eps)

Description

Set the convergence criterion.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 483

Parameter

eps – A double scalar specifying the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less than eps from
one iteration to the next or when the relative change in the log-likelihood,
getOptimizedCriterion, from one iteration to the next is less than eps/100. eps
must be greater than 0. If this member function is not called, eps = .001 is assumed.

IllegalArgumentException is thrown if eps is or equal to 0

setEffects
public void setEffects(int[] indef, int[] nvef)

Description

Initializes an index vector to contain the column numbers in x associated with each
effect.

Parameters

indef – An int vector of length
∑nef−1

k=0 nvef[k] where nef is the number of effects in
the model. indef contains the column numbers in x that are associated with each
effect. Member function setEffects(int [], nvef []) sets the number of
variables associated with each effect in the model. The first nvef[0] elements of
indef give the column numbers of the variables in the first effect. The next nvef[0]
elements give the column numbers of the variables in the second effect, etc. By
default this vector is not referenced.

nvef – An int vector of length nef where nef is the number of effects in the model.
nvef contains the number of variables associated with each effect in the model. By
default this vector is not referenced.

IllegalArgumentException is thrown when an element of indef is less than 0 or greater
than or equal to the number of columns of x or if an element of nvef is less than or
equal to 0

setExtendedLikelihoodObservations
public void setExtendedLikelihoodObservations(int[] iadds)

Description

Initializes a vector indicating which observations are to be included in the extended
likelihood.

Parameter

iadds – An int array of length nobs indicating which observations are included in
the extended likelihood where nobs is the number of observations. The values within
the array are interpreted as:

484 • CategoricalGenLinModel class JMSL

Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likelihood because it contains at least

one missing value in x .
2 Observation i is not in the likelihood. Its estimated parameter is

infinite.

If this member function is not called, iadds is set to all zeroes.

IllegalArgumentException is thrown when an element of iadds is not in the range [0,2]

setFixedParameterColumn
public void setFixedParameterColumn(int ifix)

Description

Sets the column number in x that contains a fixed parameter for each observation that is
added to the linear response prior to computing the model parameter.

Parameter

ifix – An int scalar which indicates the column number in x that contains a fixed
parameter for each observation that is added to the linear response prior to
computing the model parameter. The ”fixed” parameter allows one to test
hypothesis about the parameters via the log-likelihoods. By default the fixed
parameter is assumed to be zero.

IllegalArgumentException is thrown when ifix is less than 0 or greater than or equal
to the number of columns of x

setFrequencyColumn
public void setFrequencyColumn(int ifrq)

Description

Sets the column number in x that contains the frequency of response for each observation.

Parameter

ifrq – An int scalar which indicates the column number in x that contains the
frequency of response for each observation. By default a frequency of 1 for each
observation is assumed.

IllegalArgumentException is thrown when ifrq is less than 0 or greater than or equal
to the number of columns of x

setInfiniteEstimateMethod
public void setInfiniteEstimateMethod(int infin)

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 485

Description

Sets the method to be used for handling infinite estimates.

Parameter

infin – An int scalar which indicates the method to be used for handling infinite
estimates. The method value is interpreted as follows:

infin Method
0 Remove a right or left-censored observation from the

log-likelihood whenever the probability of the obser-
vation exceeds 0.995. At convergence, use linear pro-
gramming to check that all removed observations ac-
tually have an estimated linear response that is infi-
nite. Set iadds[i] for observation i to 2 if the linear
response is infinite. If not all removed observations
have infinite linear response, recompute the estimates
based upon the observations with estimated linear re-
sponse that is finite. This option is valid only for
censoring codes 1 and 2.

1 Iterate without checking for infinite estimates.

By default infin = 1.

IllegalArgumentException is thrown when infin is less than 0 or greater than 1

setInitialEstimates
public void setInitialEstimates(int init, double[] estimates)

Description

Sets the initial parameter estimates option.

Parameters

init – An input int indicating the desired initialization method for the initial
estimates of the parameters. If this method is not called, init is set to 0.

init Action
0 Unweighted linear regression is used to obtain initial esti-

mates.
1 The nCoef, number of coefficients, elements of estimates con-

tain initial estimates of the parameters. Use of this option
requires that the user know nCoef beforehand.

estimates – An input double array of length nCoef containing the initial estimates
of the parameters where nCoef is the number of estimated coefficients in the model.
(Used if init = 1.) If this member function is not called, unweighted linear
regression is used to obtain the initial estimates.

IllegalArgumentException is thrown when init is not in the range [0,1]

486 • CategoricalGenLinModel class JMSL

setLowerEndpointColumn
public void setLowerEndpointColumn(int irt)

Description

Sets the column number in x that contains the lower endpoint of the observation interval
for full interval and right interval observations.

Parameter

irt – An int scalar which indicates the column number in x that contains the lower
endpoint of the observation interval for full interval and right interval observations.
By default all observations are treated as ”point” observations and x[i][irt]
contains the observation point. If this member function is not called, the last column
of x is assumed to contain the ”point” observations.

IllegalArgumentException is thrown when irt is less than 0 or greater than or equal
to the number of columns of x

setMaxIterations
public void setMaxIterations(int maxIterations)

Description

Set the maximum number of iterations allowed.

Parameter

maxIterations – An int specifying the maximum number of iterations allowed.
maxIterations must be greater than 0. If this member function is not called, the
maximum number of iterations is set to 30.

IllegalArgumentException is thrown if maxIterations is less than or equal to 0

setModelIntercept
public void setModelIntercept(int intcep)

Description

Sets the intercept option.

Parameter

intcep – An int scalar which indicates whether or not the model has an intercept.
Input intcep is interpreted as follows:

Value Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 Intercept is automatically included in the model.

By default intcep = 1.

IllegalArgumentException is thrown when intcep is less than 0 or greater than 1

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 487

setObservationMax
public void setObservationMax(int nmax)

Description

Sets the maximum number of observations that can be handled in the linear
programming.

Parameter

nmax – An int scalar which sets the maximum number of observations that can be
handled in the linear programming. An illegal argument exception is thrown if nmax
is less than 0. If this member function is not called, nmax is set to the number of
observations.

IllegalArgumentException is thrown when nmax is less than 0

setOptionalDistributionParameterColumn
public void setOptionalDistributionParameterColumn(int ipar)

Description

Sets the column number in x that contains an optional distribution parameter for each
observation.

Parameter

ipar – An int scalar which indicates the column number in x that contains an
optional distribution parameter for each observation. The distribution parameter
values are interpreted as follows depending on the model chosen:

Model Meaning of x[i][ipar]
0 The Poisson parameter is given by x[i][ipar]× eρ.
1 The number of successes required in the negative binomial is given

by x[i][ipar].
2 x[i][ipar] is not used.
3-5 The number of trials in the binomial distribution is given by

x[i][ipar].

By default the distribution parameter is assumed to be 1.

IllegalArgumentException is thrown when ipar is less than 0 or greater than or equal
to the number of columns of x

setUpperBound
public void setUpperBound(int maxcl)

Description

Sets the upper bound on the sum of the number of distinct values taken on by each
classification variable.

488 • CategoricalGenLinModel class JMSL

Parameter

maxcl – An int scalar specifying the upper bound on the sum of the number of
distinct values taken on by each classification variable. If this member function is
not called, an upper bound of 1 is used.

IllegalArgumentException is thrown when maxcl is less than 1 and the number of
classification variables is greater than 0

setUpperEndpointColumn
public void setUpperEndpointColumn(int ilt)

Description

Sets the column number in x that contains the upper endpoint of the observation interval
for full interval and left interval observations.

Parameter

ilt – An int scalar which indicates the column number in x that contains the upper
endpoint of the observation interval for full interval and left interval observations.
By default all observations are treated as ”point” observations.

IllegalArgumentException is thrown when ilt is less than 0 or greater than or equal
to the number of columns of x

solve
public double[][] solve() throws
CategoricalGenLinModel.ClassificationVariableException,
CategoricalGenLinModel.ClassificationVariableLimitException,
CategoricalGenLinModel.ClassificationVariableValueException,
CategoricalGenLinModel.DeleteObservationsException

Description

Returns the parameter estimates and associated statistics for a CategoricalGenLinModel
object.

Returns

An nCoef row by 4 column double matrix containing the parameter estimates and
associated statistics. Here, nCoef is the number of coefficients in the model. The
statistics returned are as follows:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is zero.
3 ρ - value associated with the normal score in column 2.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 489

ClassificationVariableException is thrown when the number of values taken by each
classification variable has been set by the user to be less than or equal to 1

ClassificationVariableLimitException is thrown when the sum of the number of
distinct values taken on by each classification variable exceeds the maximum allowed,
maxcl

DeleteObservationsException is thrown if the number of observations to be deleted
has grown too large

Example: Mortality of beetles.

The first example is from Prentice (1976) and involves the mortality of beetles after exposure to
various concentrations of carbon disulphide. Both a logit and a probit fit are produced for
linear model µ+ βx. The data is given as

Covariate(x) N y
1.755 62 18
1.784 56 28
1.811 63 52
1.836 59 53
1.861 62 61
1.883 60 60

import java.io.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class CategoricalGenLinModelEx1 {
public static void main(String argv[]) throws Exception {

// Set up a PrintMatrix object for later use.
PrintMatrixFormat mf;
PrintMatrix p;
p = new PrintMatrix();
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

double[][] x = {
{1.69, 59.0, 6.0},
{1.724, 60.0, 13.0},
{1.755, 62.0, 18.0},
{1.784, 56.0, 28.0},
{1.811, 63.0, 52.0},
{1.836, 59.0, 53.0},
{1.861, 62.0, 61.0},

490 • CategoricalGenLinModel class JMSL

{1.883, 60.0, 60.0},
};
CategoricalGenLinModel CATGLM3, CATGLM4;
// MODEL3
CATGLM3 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL3);
CATGLM3.setLowerEndpointColumn(2);
CATGLM3.setOptionalDistributionParameterColumn(1);
CATGLM3.setInfiniteEstimateMethod(1);
CATGLM3.setModelIntercept(1);
int[] nvef = {1};
int[] indef = {0};
CATGLM3.setEffects(indef, nvef);
CATGLM3.setUpperBound(1);

System.out.println("MODEL3");
p.setTitle("Coefficient Statistics");
p.print(CATGLM3.solve());
System.out.println("Log likelihood " +
CATGLM3.getOptimizedCriterion());
p.setTitle("Asymptotic Coefficient Covariance");
p.setMatrixType(1);
p.print(CATGLM3.getCovarianceMatrix());
p.setMatrixType(0);
p.setTitle("Case Analysis");
p.print(CATGLM3.getCaseAnalysis());
p.setTitle("Last Coefficient Update");
p.print(CATGLM3.getLastParameterUpdates());
p.setTitle("Covariate Means");
p.print(CATGLM3.getDesignVariableMeans());
p.setTitle("Observation Codes");
p.print(CATGLM3.getExtendedLikelihoodObservations());
System.out.println("Number of Missing Values " +

CATGLM3.getNRowsMissing());

// MODEL4
CATGLM4 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL4);
CATGLM4.setLowerEndpointColumn(2);
CATGLM4.setOptionalDistributionParameterColumn(1);
CATGLM4.setInfiniteEstimateMethod(1);
CATGLM4.setModelIntercept(1);
CATGLM4.setEffects(indef, nvef);
CATGLM4.setUpperBound(1);
CATGLM4.solve();

System.out.println("MODEL4");
System.out.println("Log likelihood " +

CATGLM4.getOptimizedCriterion());
p.setTitle("Coefficient Statistics");
p.print(CATGLM4.getParameters());

}
}

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 491

Output

MODEL3
Coefficient Statistics

0 1 2 3
0 -60.757 5.188 -11.712 0
1 34.299 2.916 11.761 0

Log likelihood -18.77817904233396
Asymptotic Coefficient Covariance

0 1
0 26.912 -15.124
1 8.505

Case Analysis
0 1 2 3 4

0 0.058 2.593 1.792 0.267 1.448
1 0.164 3.139 2.871 0.347 1.093
2 0.363 -4.498 3.786 0.311 -1.188
3 0.606 -5.952 3.656 0.232 -1.628
4 0.795 1.89 3.202 0.269 0.59
5 0.902 -0.195 2.288 0.238 -0.085
6 0.956 1.743 1.619 0.198 1.077
7 0.979 1.278 1.119 0.138 1.143

Last Coefficient Update
0

0 0
1 0

Covariate Means
0

0 1.793
1 0

Observation Codes
0

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Number of Missing Values 0
MODEL4
Log likelihood -18.232354574384562

Coefficient Statistics
0 1 2 3

0 -34.944 2.641 -13.231 0
1 19.737 1.485 13.289 0

492 • CategoricalGenLinModel class JMSL

Example: Poisson Model.

In this example, the following data illustrate the Poisson model when all types of interval data
are present. The example also illustrates the use of classification variables and the detection of
potentially infinite estimates (which turn out here to be finite). These potential estimates lead
to the two iteration summaries. The input data is

ilt irt icen Class 1 Class 2
0 5 0 1 0
9 4 3 0 0
0 4 1 0 0
9 0 2 1 1
0 1 0 0 1

A linear model µ+ β1x1 + β2x2 is fit where x1 = 1 if the Class 1 variable is 0, x1 = 1,
otherwise, and the x2 variable is similarly defined

import java.io.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class CategoricalGenLinModelEx2 {
public static void main(String argv[]) throws Exception {

// Set up a PrintMatrix object for later use.
PrintMatrixFormat mf;
PrintMatrix p;
p = new PrintMatrix();
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();

double[][] x = {
{0.0, 5.0, 0.0, 1.0, 0.0},
{9.0, 4.0, 3.0, 0.0, 0.0},
{0.0, 4.0, 1.0, 0.0, 0.0},
{9.0, 0.0, 2.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 0.0, 1.0},

};
CategoricalGenLinModel CATGLM;
CATGLM = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL0);
CATGLM.setUpperEndpointColumn(0);
CATGLM.setLowerEndpointColumn(1);
CATGLM.setOptionalDistributionParameterColumn(1);
CATGLM.setCensorColumn(2);
CATGLM.setInfiniteEstimateMethod(0);

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 493

CATGLM.setModelIntercept(1);
int[] indcl = {3, 4};
CATGLM.setClassificationVariableColumn(indcl);
int[] nvef = {1, 1};
int[] indef = {3, 4};
CATGLM.setEffects(indef, nvef);
CATGLM.setUpperBound(4);

p.setTitle("Coefficient Statistics");
p.print(CATGLM.solve());
System.out.println("Log likelihood " +
CATGLM.getOptimizedCriterion());
p.setTitle("Asymptotic Coefficient Covariance");
p.setMatrixType(1);
p.print(CATGLM.getCovarianceMatrix());
p.setMatrixType(0);
p.setTitle("Case Analysis");
p.print(CATGLM.getCaseAnalysis());
p.setTitle("Last Coefficient Update");
p.print(CATGLM.getLastParameterUpdates());
p.setTitle("Covariate Means");
p.print(CATGLM.getDesignVariableMeans());
p.setTitle("Distinct Values For Each Class Variable");
p.print(CATGLM.getClassificationVariableValues());
System.out.println("Number of Missing Values " +

CATGLM.getNRowsMissing());
}

}

Output

Coefficient Statistics
0 1 2 3

0 -0.549 1.171 -0.469 0.64
1 0.549 0.61 0.9 0.368
2 0.549 1.083 0.507 0.612

Log likelihood -3.1146384925784414
Asymptotic Coefficient Covariance

0 1 2
0 1.372 -0.372 -1.172
1 0.372 0.172
2 1.172

Case Analysis
0 1 2 3 4

0 5 -0 2.236 1 -0
1 6.925 -0.412 2.108 0.764 -0.196
2 6.925 0.412 1.173 0.236 0.351
3 0 0 0 0 ?
4 1 -0 1 1 -0

494 • CategoricalGenLinModel class JMSL

Last Coefficient Update
0

0 -0
1 0
2 0

Covariate Means
0

0 0.6
1 0.6
2 0

Distinct Values For Each Class Variable
0

0 0
1 1
2 0
3 1

Number of Missing Values 0

CategoricalGenLinModel.ClassificationVariableException
class

static public class
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException extends
com.imsl.IMSLException

The ClassificationVariable vector has not been initialized.

Constructor

CategoricalGenLinModel.ClassificationVariableException
public CategoricalGenLinModel.ClassificationVariableException()

Description

Constructs a ClassificationVariableException.

Categorical and Discrete Data Analysis CategoricalGenLinModel class • 495

CategoricalGenLinModel.ClassificationVariableLimitException
class

static public class
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
extends com.imsl.IMSLException

The Classification Variable limit set by the user through setUpperBound has been exceeded.

Constructor

CategoricalGenLinModel.ClassificationVariableLimitException
public CategoricalGenLinModel.ClassificationVariableLimitException(int
maxcl)

Description

Constructs a ClassificationVariableLimitException.

Parameter

maxcl – An int which specifies the upper bound.

CategoricalGenLinModel.ClassificationVariableValueException
class

static public class
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException
extends com.imsl.IMSLException

The number of distinct values for each Classification Variable must be greater than 1.

Constructor

CategoricalGenLinModel.ClassificationVariableValueException
public CategoricalGenLinModel.ClassificationVariableValueException(int
index, int value)

Description

Constructs a ClassificationVariableValueException.

496 • CategoricalGenLinModel class JMSL

Parameters

index – An int which specifies the index of a classification variable.

value – An int which specifies the number of distinct values that can be taken by
this classification variable.

CategoricalGenLinModel.DeleteObservationsException class

static public class
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException extends
com.imsl.IMSLException

The number of observations to be deleted (set by setObservationMax) has grown too large.

Constructor

CategoricalGenLinModel.DeleteObservationsException
public CategoricalGenLinModel.DeleteObservationsException(int nmax)

Description

Constructs a DeleteObservationsException.

Parameter

nmax – An int which specifies the maximum number of observations that can be
handled in the linear programming as set by setObservationMax.

Chapter 15. Categorical and Discrete Data AnalysisCategoricalGenLinModel class • 497

498 • CategoricalGenLinModel class JMSL

Chapter 16: Nonparametric
Statistics

Types

class SignTest . 500
class WilcoxonRankSum . 503

Usage Notes

Much of what is considered nonparametric statistics is included in other chapters. Topics of
possible interest in other chapters are: nonparametric measures of location and scale (see
”Basic Statistics”), nonparametric measures in a contingency table (see ”Categorical and
Discrete Data Analysis”) and tests of goodness of fit and randomness (see ”Tests of Goodness
of Fit and Randomness”).

Missing Values

Most classes described in this chapter automatically handle missing values (NaN, ”Not a
Number”; see Double.NaN).

Tied Observations

The WilcoxonRankSum class described in this chapter contains a set method, setFuzz.
Observations that are within fuzz of each other in absolute value are said to be tied. If fuzz =
0.0, observations must be identically equal before they are considered to be tied. Other positive
values of fuzz allow for numerical imprecision or roundoff error.

499

SignTest class

public class com.imsl.stat.SignTest implements Serializable, Cloneable

Performs a sign test.

Class SignTest tests hypotheses about the proportion p of a population that lies below a value
q, where p corresponds to percentage and q corresponds to percentile in the setPercentage
and setPercentile methods, respectively. In continuous distributions, this can be a test that q
is the 100 p-th percentile of the population from which x was obtained. To carry out testing,
SignTest tallies the number of values above q in the number of positive differences
x[j − 1]− percentile for j = 1, 2, . . . , x.length. The binomial probability of the number of values
above q in the number of positive differences x[j − 1]− percentile for j = 1, 2, . . . , . . . , x.length
or more values above q is then computed using the proportion p and the sample size in x
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

• H0 : Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1 : Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

• H0 : Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1 : Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance level

• H0 : Pr(x = q) = p (the p-th quantile is q)
H1 : Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or greater than
or equal to 1 minus half the significance level

The assumptions are as follows:

• They are independent and identically distributed.

• Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and equal
to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For example, to perform
a matched sample test that the difference of the medians of y and z is 0.0, let p = 0.5, q = 0.0,
and xi = yi − zi in matched observations y and z. To test that the median difference is c, let q
= c.

Constructor

SignTest

500 • SignTest class JMSL

public SignTest(double[] x)

Description

Constructor for SignTest.

Parameter

x – A double array containing the data.

Methods

compute
final public double compute()

Description

Performs a sign test.

Returns

A double scalar containing the Binomial probability of getNumPositiveDev or more
positive differences in x.length - number of zero differences trials. Call this value
probability. If using default values, the null hypothesis is that the median equals 0.0.

getNumPositiveDev
public int getNumPositiveDev()

Description

Returns the number of positive differences.

Returns

An int scalar containing the number of positive differences x[j-1]-percentile for j = 1,
2, ..., x.length.

getNumZeroDev
public int getNumZeroDev()

Description

Returns the number of zero differences.

Returns

An int scalar containing the number of zero differences (ties) x[j-1]-percentile for j =
1, 2, ..., x.length.

setPercentage
public void setPercentage(double percentage)

Description

Sets the percentage percentile of the population.

Nonparametric Statistics SignTest class • 501

Parameter

percentage – A double scalar containing the value in the range (0, 1). percentile
is the 100 * percentage percentile of the population. Default: percentage = 0.5.

setPercentile
public void setPercentile(double percentile)

Description

Sets the hypothesized percentile of the population.

Parameter

percentile – A double scalar containing the hypothesized percentile of the
population from which x was drawn. Default: percentile = 0.0

Example 1: Sign Test

This example tests the hypothesis that at least 50 percent of a population is negative. Because
0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not rejected.

import java.text.*;
import com.imsl.stat.*;

public class SignTestEx1 {
public static void main(String args[]) {

double[] x = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,
22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0};
SignTest st = new SignTest(x);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(6);

System.out.println("Probability = " + nf.format(st.compute()));
}

}

Output

Probability = 0.179642

Example 2: Sign Test

This example tests the null hypothesis that at least 75 percent of a population is negative.
Because 0.923 < 0.95, the null hypothesis at the 5-percent level of significance is rejected.

502 • SignTest class JMSL

import java.text.*;
import com.imsl.stat.*;

public class SignTestEx2 {
public static void main(String args[]) {

double[] x = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,
22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0};
SignTest st = new SignTest(x);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(6);

st.setPercentage(0.75);
st.setPercentile(0.0);
System.out.println("Probability = " + nf.format(st.compute()));
System.out.println("Number of positive deviations = " +
st.getNumPositiveDev());
System.out.println("Number of ties = " + st.getNumZeroDev());

}
}

Output

Probability = 0.922543
Number of positive deviations = 12
Number of ties = 0

WilcoxonRankSum class

public class com.imsl.stat.WilcoxonRankSum implements Serializable, Cloneable

Performs a Wilcoxon rank sum test.

Class WilcoxonRankSum performs the Wilcoxon rank sum test for identical population
distribution functions. The Wilcoxon test is a linear transformation of the Mann-Whitney U
test. If the difference between the two populations can be attributed solely to a difference in
location, then the Wilcoxon test becomes a test of equality of the population means (or
medians) and is the nonparametric equivalent of the two-sample t-test. Class WilcoxonRankSum
obtains ranks in the combined sample after first eliminating missing values from the data. The
rank sum statistic is then computed as the sum of the ranks in the x sample. Three methods
for handling ties are used. (A tie is counted when two observations are within fuzz of each
other.) Method 1 uses the largest possible rank for tied observations in the smallest sample,
while Method 2 uses the smallest possible rank for these observations. Thus, the range of
possible rank sums is obtained.

Method 3 for handling tied observations between samples uses the average rank of the tied

Nonparametric Statistics WilcoxonRankSum class • 503

observations. Asymptotic standard normal scores are computed for the W score (based on a
variance that has been adjusted for ties) when average ranks are used (see Conover 1980, p.
217), and the probability associated with the two-sided alternative is computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its alternative) under the
assumptions 1 to 3 below, while the second line gives the hypothesis when assumption 4 is also
true. The rejection region is the same for both hypotheses and is given in terms of Method 3
for handling ties. If another method for handling ties is desired, another output statistic,
stat[0] or stat[3],should be used, where stat is the array containing the statistics returned
from the getStatistics method.

Test Null Hypothesis Alternative Hypothesis Action

1
H0 : Pr(x1 < x2) = 0.5
H0 : E(x1) = E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) 6= E(x2) Reject if stat[9] is

less than the signif-
icance level of the
test. Alternatively, re-
ject the null hypothesis
if stat[6] is too large
or too small.

2
H0 : Pr(x1 < x2) ≤ 0.5
H0 : E(x1) ≥ E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) < E(x2) Reject if stat[6] is

too small

3
H0 : Pr(x1 < x2) ≥ 0.5
H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 0.5
H1 : E(x1) > E(x2) Reject if stat[6] is

too large

Assumptions

• x and y contain random samples from their respective populations.

• All observations are mutually independent.

• The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or
equal to exists among the observations).

• If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for some
constant c(i.e., the distribution of y is, at worst, a translation of the distribution of x).

The p-value is calculated using the large-sample normal approximation. This approximate
calculation is only valid when the size of one or both samples is greater than 50. For smaller
samples, see the exact tables for the Wilcoxon Rank Sum Test.

Constructor

WilcoxonRankSum
public WilcoxonRankSum(double[] x, double[] y)

504 •WilcoxonRankSum class JMSL

Description

Constructor for WilcoxonRankSum.

Parameters

x – A double array containing the first sample.
y – A double array containing the second sample.

Methods

compute
final public double compute()

Description

Performs a Wilcoxon rank sum test.

Returns

A double scalar containing the two-sided p-value for the Wilcoxon rank sum statistic that
is computed with average ranks used in the case of ties.

getStatistics
public double[] getStatistics()

Description

Returns the statistics.

Returns

A double array of length 10 containing the following statistics:

Row Statistics
0 Wilcoxon W statistic (the sum of the ranks of the x observations)

adjusted for ties in such a manner that W is as small as possible
1 2 x E(W) - W, where E(W) is the expected value of W
2 probability of obtaining a statistic less than or equal to min{W,

2 x E(W) - W}
3 W statistic adjusted for ties in such a manner that W is as large

as possible
4 2 x E(W) - W, where E(W) is the expected value of W, adjusted

for ties in such a manner that W is as large as possible
5 probability of obtaining a statistic less than or equal to min{W,

2 x E(W) - W}, adjusted for ties in such a manner that W is as
large as possible

6 W statistic with average ranks used in case of ties
7 estimated standard error of Row 6 under the null hypothesis of

no difference
8 standard normal score associated with Row 6
9 two-sided p-value associated with Row 8

Nonparametric Statistics WilcoxonRankSum class • 505

setFuzz
public void setFuzz(double fuzz)

Description

Sets the nonnegative constant used to determine ties in computing ranks in the combined
samples.

Parameter

fuzz – A double scalar containing the nonnegative constant used to determine ties
in computing ranks in the combined samples. A tie is declared when two
observations in the combined sample are within fuzz of each other. Default:
fuzz = 100× 2.2204460492503131e− 16×max(|xi1|, |xj2|)

Example 1: Wilcoxon Rank Sum Test

The following example is taken from Conover (1980, p. 224). It involves the mixing time of two
mixing machines using a total of 10 batches of a certain kind of batter, five batches for each
machine. The null hypothesis is not rejected at the 5-percent level of significance.

import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;

public class WilcoxonRankSumEx1 {
public static void main(String args[]) {

double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(4);

// Trun off printing of warning messages.
Warning.setOut(null);

System.out.println("p-value = " + nf.format(wilcoxon.compute()));
}

}

Output

p-value = 0.1412

506 •WilcoxonRankSum class JMSL

Example 2: Wilcoxon Rank Sum Test

The following example uses the same data as in example 1. Now, all the statistics are displayed.

import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class WilcoxonRankSumEx2 {
public static void main(String args[]) {

double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};
String[] labels = {

"Wilcoxon W statistic",
"2*E(W) - W",
"p-value ",
"Adjusted Wilcoxon statistic",
"Adjusted 2*E(W) - W",
"Adjusted p-value ",
"W statistics for averaged ranks............",
"Standard error of W (averaged ranks) ",
"Standard normal score of W (averaged ranks) ",
"Two-sided p-value of W (averaged ranks) ... "

};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(3);

// Trun off printing of warning messages.
Warning.setOut(null);
wilcoxon.compute();
double[] stat = wilcoxon.getStatistics();

for (int i = 0; i < 10; i++) {
System.out.println(labels[i] + " " + nf.format(stat[i]));

}
}

}

Output

Wilcoxon W statistic 34.000
2*E(W) - W 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) 4.758

Nonparametric Statistics WilcoxonRankSum class • 507

Standard normal score of W (averaged ranks) 1.471
Two-sided p-value of W (averaged ranks) ... 0.141

508 •WilcoxonRankSum class JMSL

Chapter 17: Tests of Goodness of
Fit

Types

class ChiSquaredTest . 509
class NormalityTest . 515

Usage Notes

The classes in this chapter are used to test for goodness of fit. The goodness-of-fit tests are
described in Conover (1980). There is a goodness-of-fit test for general distributions and a
chi-squared test. The user supplies the hypothesized cumulative distribution function for the
test. There is a class that can be used to test specifically for the normal distribution.

The chi-squared goodness-of-fit test may be used with discrete as well as continuous
distributions. The chi-squared goodness-of-fit test allows for missing values (NaN, not a
number) in the input data.

ChiSquaredTest class

public class com.imsl.stat.ChiSquaredTest

Chi-squared goodness-of-fit test.

ChiSquaredTest performs a chi-squared goodness-of-fit test that a random sample of
observations is distributed according to a specified theoretical cumulative distribution. The
theoretical distribution, which may be continuous, discrete, or a mixture of discrete and
continuous distributions, is specified via a user-defined function F where F implements
CdfFuntion. Because the user is allowed to specify a range for the observations in the
setRange method, a test that is conditional upon the specified range is performed.

509

ChiSquaredTest can be constructed in two different ways. The intervals can be specified via
the array cutpoints. Otherwise, the number of cutpoints can be given and equiprobable
intervals computed by the constructor. The observations are divided into these intervals.
Regardless of the method used to obtain them, the intervals are such that the lower endpoint is
not included in the interval while the upper endpoint is always included. The user should
determine the cutpoints when the cumulative distribution function has discrete elements since
ChiSquaredTest cannot determine them in this case.

By default, the lower and upper endpoints of the first and last intervals are −∞ and +∞,
respectively. The method setRange can be used to change the range.

A tally of counts is maintained for the observations in x as follows:

If the cutpoints are specified by the user, the tally is made in the interval to which xi belongs,
using the user-specified endpoints.

If the cutpoints are determined by the class then the cumulative probability at xi, F (xi), is
computed using cdf.

The tally for xi is made in interval number bmF (x) + 1c, where m is the number of categories
and b.c is the function that takes the greatest integer that is no larger than the argument of the
function. If the cutpoints are specified by the user, the tally is made in the interval to which xi

belongs using the endpoints specified by the user. Thus, if the computer time required to
calculate the cumulative distribution function is large, user-specified cutpoints may be preferred
in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared
approximation may be suspect. A warning message to this effect is issued in this case, as well
as when an expected value is less than 5.

Constructors

ChiSquaredTest
public ChiSquaredTest(CdfFunction cdf, double[] cutpoints, int nParameters)
throws ChiSquaredTest.NotCDFException

Description

Constructor for the Chi-squared goodness-of-fit test.

Parameters

cdf – a CdfFunction object that implements the CdfFunction interface

cutpoints – a double array containing the cutpoints

nParameters – an int which specifies the number of parameters estimated in
computing the Cdf

ChiSquaredTest

510 • ChiSquaredTest class JMSL

public ChiSquaredTest(CdfFunction cdf, int nCutpoints, int nParameters)
throws ChiSquaredTest.NotCDFException, InverseCdf.DidNotConvergeException

Description

Constructor for the Chi-squared goodness-of-fit test

Parameters

cdf – a CdfFunction object that implements the CdfFunction interface

nCutpoints – an int, the number of cutpoints

nParameters – an int which specifies the number of parameters estimated in
computing the Cdf

Methods

getCellCounts
public double[] getCellCounts()

Description

Returns the cell counts.

Returns

a double array which contains the number of actual observations in each cell.

getChiSquared
public double getChiSquared() throws ChiSquaredTest.NotCDFException

Description

Returns the chi-squared statistic.

Returns

a double, the chi-squared statistic

getCutpoints
public double[] getCutpoints()

Description

Returns the cutpoints.

Returns

a double array which contains the cutpoints

getDegreesOfFreedom
public double getDegreesOfFreedom() throws ChiSquaredTest.NotCDFException

Description

Returns the degrees of freedom in chi-squared.

Tests of Goodness of Fit ChiSquaredTest class • 511

Returns

a double, the degrees of freedom in the chi-squared statistic

getExpectedCounts
public double[] getExpectedCounts()

Description

Returns the expected counts.

Returns

a double array which contains the number of expected observations in each cell.

getP
public double getP() throws ChiSquaredTest.NotCDFException

Description

Returns the p-value for the chi-squared statistic.

Returns

a double, the p-value for the chi-squared statistic

setCutpoints
public void setCutpoints(double[] cutpoints)

Description

Sets the cutpoints. The intervals defined by the cutpoints are such that the lower
endpoint is not included while the upper endpoint is included in the interval.

Parameter

cutpoints – a double array which contains the cutpoints

setRange
public void setRange(double lower, double upper) throws
ChiSquaredTest.NotCDFException

Description

Sets endpoints of the range of the distribution. Points outside of the range are ignored so
that distributions conditional on the range can be used. In this case, the point lower is
excluded from the first interval, but the point upper is included in the last interval. By
default, a range on the whole real line is used.

Parameters

lower – a double, the lower range limit

upper – a double, the upper range limit

512 • ChiSquaredTest class JMSL

update
public void update(double[] x, double[] freq) throws
ChiSquaredTest.NotCDFException

Description

Adds new observations to the test.

Parameters

x – a double array which contains the new observations to be added to the test

freq – a double array which contains the frequencies of the corresponding new
observations in x

Example: The Chi-squared Goodness-of-fit Test

In this example, a discrete binomial random sample of size 1000 with binomial parameter
p = 0.3 and binomial sample size 5 is generated via Random.nextBinomial. Random.setSeed is
first used to set the seed. After the ChiSquaredTest constructor is called, the random
observations are added to the test one at a time to simulate streaming data. The Chi-squared
statistic, p-value, and Degrees of freedom are then computed and printed.

import com.imsl.stat.*;

public class ChiSquaredTestEx1 {
public static void main(String args[]) {

// Seed the random number generator
Random rn = new Random();
rn.setSeed(123457);
rn.setMultiplier(16807);

// Construct a ChiSquaredTest object
CdfFunction bindf = new CdfFunction() {

public double cdf(double x) {
return Cdf.binomial((int)x, 5, 0.3);

}
};

double cutp[] = {0.5, 1.5, 2.5, 3.5, 4.5};
int nParameters = 0;
ChiSquaredTest cst = new ChiSquaredTest(bindf, cutp, nParameters);
for (int i = 0; i < 1000; i++) {

cst.update(rn.nextBinomial(5, 0.3), 1.0);
}

// Print goodness-of-fit test statistics
System.out.println("The Chi-squared statistic is "
+ cst.getChiSquared());
System.out.println("The P-value is "+cst.getP());
System.out.println("The Degrees of freedom are "
+ cst.getDegreesOfFreedom());

Tests of Goodness of Fit ChiSquaredTest class • 513

}
}

Output

The Chi-squared statistic is 4.79629666357389
The P-value is 0.44124295720552564
The Degrees of freedom are 5.0

ChiSquaredTest.NotCDFException class

static public class com.imsl.stat.ChiSquaredTest.NotCDFException extends
com.imsl.IMSLRuntimeException

The function is not a Cumulative Distribution Function (CDF).

Constructor

ChiSquaredTest.NotCDFException
public ChiSquaredTest.NotCDFException(String key, Object[] arguments)

ChiSquaredTest.NoObservationsException class

static public class com.imsl.stat.ChiSquaredTest.NoObservationsException
extends com.imsl.IMSLRuntimeException

There are no observations.

Constructor

ChiSquaredTest.NoObservationsException
public ChiSquaredTest.NoObservationsException(String key, Object[]
arguments)

514 • ChiSquaredTest class JMSL

ChiSquaredTest.DidNotConvergeException class

static public class com.imsl.stat.ChiSquaredTest.DidNotConvergeException
extends com.imsl.IMSLException

The iteration did not converge

Constructors

ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException(String message)

ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException(String key, Object[]
arguments)

NormalityTest class

public class com.imsl.stat.NormalityTest implements Serializable, Cloneable

Performs a test for normality.

Three methods are provided for testing normality: the Shapiro-Wilk W test, the Lilliefors test,
and the chi-squared test.

Shapiro-Wilk W Test

The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be one of the
best omnibus tests of normality. The function is based on the approximations and code given
by Royston (1982a, b, c). It can be used in samples as large as 2,000 or as small as 3. In the
Shapiro and Wilk test, W is given by

W =
(∑

aix(i)

)2

/
(∑

(xi − x̄)2
)

where x(i) is the i-th largest order statistic and x is the sample mean. Royston (1982) gives
approximations and tabled values that can be used to compute the coefficients ai, i = 1, . . . , n,
and obtains the significance level of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution in which both
the mean and variance are estimated. The one-sample, two-sided Kolmogorov-Smirnov statistic

Tests of Goodness of Fit NormalityTest class • 515

D is first computed. The p-values are then computed using an analytic approximation given by
Dallal and Wilkinson (1986). Because Dallal and Wilkinson give approximations in the range
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, the p-value is set to
0.50. Note that because parameters are estimated, p-values in Lilliefors test are not the same as
in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational message is
printed. A general reference for the Lilliefors test is Conover (1980). The original reference for
the test for normality is Lilliefors (1967).

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of freedom of the
test. Argument n finds the number of intervals into which the observations are to be divided.
The intervals are equiprobable except for the first and last interval, which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be performed
with class ChiSquaredTest.

Constructor

NormalityTest
public NormalityTest(double[] x)

Description

Constructor for NormalityTest.

Parameter

x – A double array containing the observations. x.length must be in the range
from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must be greater than 4
for the Lilliefors test.

Methods

ChiSquaredTest
final public double ChiSquaredTest(int n) throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description

Performs the chi-squared goodness-of-fit test.

Parameter

n – An int scalar containing the number of cells into which the observations are to
be tallied.

516 • NormalityTest class JMSL

Returns

A double scalar containing the p-value for the chi-squared goodness-of-fit test.

NoVariationInputException is thrown if there is no variation in the input data.

DidNotConvergeException is thrown if the iteration did not converge.

getChiSquared
public double getChiSquared()

Description

Returns the chi-square statistic for the chi-squared goodness-of-fit test.

Returns

A double scalar containing the chi-square statistic. Returns Double.NaN for other tests.

getDegreesOfFreedom
public double getDegreesOfFreedom()

Description

Returns the degrees of freedom for the chi-squared goodness-of-fit test.

Returns

A double scalar containing the degrees of freedom. Returns Double.NaN for other tests.

getMaxDifference
public double getMaxDifference()

Description

Returns the maximum absolute difference between the empirical and the theoretical
distributions for the Lilliefors test.

Returns

A double scalar containing the maximum absolute difference between the empirical and
the theoretical distributions. Returns Double.NaN for other tests.

getShapiroWilkW
public double getShapiroWilkW()

Description

Returns the Shapiro-Wilk W statistic for the Shapiro-Wilk W test.

Tests of Goodness of Fit NormalityTest class • 517

Returns

A double scalar containing the Shapiro-Wilk W statistic. Returns Double.NaN for other
tests.

LillieforsTest
final public double LillieforsTest() throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description

Performs the Lilliefors test.

Returns

A double scalar containing the p-value for the Lilliefors test. Probabilities less than 0.01
are reported as 0.01, and probabilities greater than 0.10 for the normal distribution are
reported as 0.5. Otherwise, an approximate probability is computed.

NoVariationInputException is thrown if there is no variation in the input data.

DidNotConvergeException is thrown if the iteration did not converge.

ShapiroWilkWTest
final public double ShapiroWilkWTest() throws
NormalityTest.NoVariationInputException, InverseCdf.DidNotConvergeException

Description

Performs the Shapiro-Wilk W test.

Returns

A double scalar containing the p-value for the Shapiro-Wilk W test.

NoVariationInputException is thrown if there is no variation in the input data.

DidNotConvergeException is thrown if the iteration did not converge.

Example: Shapiro-Wilk W Test

The following example is taken from Conover (1980, pp. 195, 364). The data consists of 50
two-digit numbers taken from a telephone book. The W test fails to reject the null hypothesis
of normality at the .05 level of significance.

import java.text.*;
import com.imsl.*;
import com.imsl.stat.*;

public class NormalityTestEx1 {
public static void main(String args[]) throws Exception {

double x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0,
73.0, 24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0, 29.0,

518 • NormalityTest class JMSL

43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0, 32.0, 44.0, 58.0,
66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0, 33.0, 48.0, 58.0, 68.0, 93.0,
35.0, 48.0, 59.0, 70.0, 97.0};

NormalityTest nt = new NormalityTest(x);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(4);

System.out.println("p-value = " + nf.format(nt.ShapiroWilkWTest()));
System.out.println("Shapiro Wilk W Statistic = " +
nf.format(nt.getShapiroWilkW()));

}
}

Output

p-value = 0.2309
Shapiro Wilk W Statistic = 0.9642

NormalityTest.NoVariationInputException class

static public class com.imsl.stat.NormalityTest.NoVariationInputException
extends com.imsl.IMSLException

There is no variation in the input data.

Constructors

NormalityTest.NoVariationInputException
public NormalityTest.NoVariationInputException(String message)

NormalityTest.NoVariationInputException
public NormalityTest.NoVariationInputException(String key, Object[]
arguments)

Chapter 17. Tests of Goodness of Fit NormalityTest class • 519

520 • NormalityTest class JMSL

Chapter 18: Time Series and
Forecasting

Types

class AutoCorrelation . 523
class CrossCorrelation . 532
class MultiCrossCorrelation . 544
class ARMA. 558
class Difference . 582
class GARCH. .586
class KalmanFilter. .595

Usage Notes

The classes in this chapter assume the time series does not contain any missing observations. If
missing values are present, they should be set to NaN (see Double.NaN), and the classes will
return an appropriate error message. To enable fitting of the model, the missing values must be
replaced by appropriate estimates.

General Methodology

A major component of the model identification step concerns determining if a given time series
is stationary. The sample correlation functions computed by the AutoCorrelation class methods
getAutoCorrelations and getPartialAutoCorrelations may be used to diagnose the
presence of nonstationarity in the data, as well as to indicate the type of transformation
required to induce stationarity.

The ”raw” data and sample correlation functions provide insight into the nature of the
underlying model. Typically, this information is displayed in graphical form via time series
plots, plots of the lagged data, and various correlation function plots.

521

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal
ARMA processes defined by

φ (B) (Wt − µ) = θ (B)At, t ∈ Z

where Z = . . . ,−2,−1, 0, 1, 2, . . . denotes the set of integers, B is the backward shift operator
defined by BkWt = Wt−k, µ is the mean of Wt, and the following equations are true:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, p ≥ 0

θ(B) = 1− θ1B − θ2B2 − · · · − θqB
q, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B)Wt = θ0 + θ(B)Ai, t ∈ Z

where θ0 is an overall constant defined by the following:

θ0 = µ

(
1−

p∑
i=1

φi

)

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of the
overall constant.

If the ”raw” data, {Zt}, are homogeneous and nonstationary, then differencing using the
Difference class induces stationarity, and the model is called ARIMA (AutoRegressive
Integrated Moving Average). Parameter estimation is performed on the stationary time series
Wt,= ∆dZt, where ∆d = (1−B)d is the backward difference operator with period 1 and order
d, d > 0.

Typically, the method of moments includes use of METHOD OF MOMENTS in a call to the compute
method in the ARMA class for preliminary parameter estimates. These estimates can be used
as initial values into the least-squares procedure by using LEAST SQUARES in a call to the
compute method in the ARMA class. Other initial estimates provided by the user can be used.
The least-squares procedure can be used to compute conditional or unconditional least-squares
estimates of the parameters, depending on the choice of the backcasting length. The parameter
estimates from either the method of moments or least-squares procedures can be used in the
forecast method. The functions for preliminary parameter estimation, least-squares
parameter estimation, and forecasting follow the approach of Box and Jenkins (1976, Programs
2-4, pp. 498-509).

522 • JMSL

AutoCorrelation class

public class com.imsl.stat.AutoCorrelation implements Serializable, Cloneable

Computes the sample autocorrelation function of a stationary time series.

AutoCorrelation estimates the autocorrelation function of a stationary time series given a
sample of n observations {Xt} for t = 1, 2, . . . ,n.

Let
µ̂ = xmean

be the estimate of the mean µ of the time series {Xt} where

µ̂ =

pa µ for µ known
1
n

n∑
t=1

Xt for µ unknown

The autocovariance function σ(k) is estimated by

σ̂ (k) =
1
n

n−k∑
t=1

(Xt − µ̂) (Xt+k − µ̂) , k=0,1,. . . ,K

where K = maximum lag. Note that σ̂(0) is an estimate of the sample variance. The
autocorrelation function ρ(k) is estimated by

ρ̂(k) =
σ̂(k)
σ̂(0)

, k = 0, 1, . . . ,K

Note that ρ̂(0) ≡ 1 by definition.

The standard errors of sample autocorrelations may be optionally computed according to the
getStandardErrors method argument stderrMethod. One method (Bartlett 1946) is based on a
general asymptotic expression for the variance of the sample autocorrelation coefficient of a
stationary time series with independent, identically distributed normal errors. The theoretical
formula is

var{ρ̂(k)} =
1
n

∞∑
i=−∞

[
ρ2(i) + ρ(i− k)ρ(i+ k)− 4ρ(i)ρ(k)ρ(i− k) + 2ρ2(i)ρ2(k)

]
where ρ̂(k) assumes µ is unknown. For computational purposes, the autocorrelations ρ(k) are
replaced by their estimates ρ̂(k) for |k| ≤ K, and the limits of summation are bounded because
of the assumption that ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample
autocorrelation coefficient of a random process with independent, identically distributed normal
errors. The theoretical formula is

Time Series and Forecasting AutoCorrelation class • 523

var{ρ̂(k)} =
n− k

n(n+ 2)

where µ is assumed to be equal to zero. Note that this formula does not depend on the
autocorrelation function.

The method getPartialAutoCorrelations estimates the partial autocorrelations of the
stationary time series given K = maximum lag sample autocorrelations ρ̂(k) for k=0,1,...,K.
Consider the AR(k) process defined by

Xt = φk1Xt−1 + φk2Xt−2 + · · ·+ φkkXt−k +At

where φkj denotes the j-th coefficient in the process. The set of estimates {φ̂kk} for k = 1, ..., K
is the sample partial autocorrelation function. The autoregressive parameters {φ̂kj} for j = 1,
..., k are approximated by Yule-Walker estimates for successive AR(k) models where k = 1, ...,
K. Based on the sample Yule-Walker equations

ρ̂(j) = φ̂k1ρ̂(j − 1) + φ̂k2ρ̂(j − 2) + · · ·+ φ̂kkρ̂(j − k), j = 1,2,. . . ,k

a recursive relationship for k=1, ..., K was developed by Durbin (1960). The equations are
given by

φ̂kk =


ρ̂(1) for k = 1
ρ̂(k) −

k−1P

j=1
φ̂k−1,j ρ̂(k−j)

1 −
k−1P

j=1
φ̂k−1,j ρ̂(j)

for k = 2, . . . ,K

and

φ̂kj =
{
φ̂k−1,j − φ̂kkφ̂k−1,k−j for j = 1, 2, . . . , k− 1
φ̂kk for j = k

This procedure is sensitive to rounding error and should not be used if the parameters are near
the nonstationarity boundary. A possible alternative would be to estimate {φkk} for successive
AR(k) models using least or maximum likelihood. Based on the hypothesis that the true
process is AR(p), Box and Jenkins (1976, page 65) note

var{φ̂kk} '
1
n

k ≥ p + 1

See Box and Jenkins (1976, pages 82-84) for more information concerning the partial
autocorrelation function.

Fields

BARTLETTS FORMULA
static final public int BARTLETTS FORMULA

Indicates standard error computation using Bartlett’s formula.

524 • AutoCorrelation class JMSL

MORANS FORMULA
static final public int MORANS FORMULA

Indicates standard error computation using Moran’s formula.

Constructor

AutoCorrelation
public AutoCorrelation(double[] x, int maximum lag)

Description

Constructor to compute the sample autocorrelation function of a stationary time series.

Parameters

x – a one-dimensional double array containing the stationary time series

maximum lag – an int containing the maximum lag of autocovariance,
autocorrelations, and standard errors of autocorrelations to be computed.
maximum lag must be greater than or equal to 1 and less than the number of
observations in x

Methods

getAutoCorrelations
public double[] getAutoCorrelations()

Description

Returns the autocorrelations of the time series x.

Returns

a double array of length maximum lag +1 containing the autocorrelations of the time
series x. The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximum lag.

getAutoCovariances
public double[] getAutoCovariances() throws
AutoCorrelation.NonPosVariancesException

Description

Returns the variance and autocovariances of the time series x.

Returns

a double array of length maximum lag +1 containing the variances and autocovariances of
the time series x. The 0-th element of the array contains the variance of the time series x.
The k-th element contains the autocovariance of lag k where k = 1, ..., maximum lag.

Time Series and Forecasting AutoCorrelation class • 525

NonPosVariancesException is thrown if the problem is ill-conditioned

getMean
public double getMean()

Description

Returns the mean of the time series x.

Returns

a double containing the mean

getPartialAutoCorrelations
public double[] getPartialAutoCorrelations()

Description

Returns the sample partial autocorrelation function of the stationary time series x.

Returns

a double array of length maximum lag containing the partial autocorrelations of the time
series x.

getStandardErrors
public double[] getStandardErrors(int stderrMethod)

Description

Returns the standard errors of the autocorrelations of the time series x. Method of
computation for standard errors of the autocorrelation is chosen by the stderrMethod
parameter. If stderrMethod is set to BARTLETTS FORMULA, Bartlett’s formula is used to
compute the standard errors of autocorrelations. If stderrMethod is set to
MORANS FORMULA, Moran’s formula is used to compute the standard errors of
autocorrelations.

Parameter

stderrMethod – an int specifying the method to compute the standard errors of
autocorrelations of the time series x

Returns

a double array of length maximum lag containing the standard errors of the
autocorrelations of the time series x

getVariance
public double getVariance()

Description

Returns the variance of the time series x.

526 • AutoCorrelation class JMSL

Returns

a double containing the variance of the time series x

setMean
public void setMean(double mean)

Description

Estimate mean of the time series x.

Parameter

mean – a double containing the estimate mean of the time series x.

Example 1: AutoCorrelation

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. This example computes the
estimated autocovariances, estimated autocorrelations, and estimated standard errors of the
autocorrelations using both Bartletts and Moran formulas.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class AutoCorrelationEx1 {
public static void main(String args[]) throws Exception {

double[] x = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
37.3, 73.9};

AutoCorrelation ac = new AutoCorrelation(x, 20);

new PrintMatrix("AutoCovariances are: ").print
(ac.getAutoCovariances());

System.out.println();
new PrintMatrix("AutoCorrelations are: ").print

(ac.getAutoCorrelations());
System.out.println("Mean = "+ac.getMean());
System.out.println();
new PrintMatrix("Standard Error using Bartlett are: ").print

(ac.getStandardErrors(ac.BARTLETTS_FORMULA));

Time Series and Forecasting AutoCorrelation class • 527

System.out.println();
new PrintMatrix("Standard Error using Moran are: ").print

(ac.getStandardErrors(ac.MORANS_FORMULA));
System.out.println();
new PrintMatrix("Partial AutoCovariances: ").print

(ac.getPartialAutoCorrelations());
ac.setMean(50);
new PrintMatrix("AutoCovariances are: ").print

(ac.getAutoCovariances());
System.out.println();
new PrintMatrix("AutoCorrelations are: ").print

(ac.getAutoCorrelations());
System.out.println();
new PrintMatrix("Standard Error using Bartlett are: ").print

(ac.getStandardErrors(ac.BARTLETTS_FORMULA));

}
}

Output

AutoCovariances are:
0

0 1,382.908
1 1,115.029
2 592.004
3 95.297
4 -235.952
5 -370.011
6 -294.255
7 -60.442
8 227.633
9 458.381
10 567.841
11 546.122
12 398.937
13 197.757
14 26.891
15 -77.281
16 -143.733
17 -202.048
18 -245.372
19 -230.816
20 -142.879

AutoCorrelations are:
0

0 1
1 0.806
2 0.428
3 0.069

528 • AutoCorrelation class JMSL

4 -0.171
5 -0.268
6 -0.213
7 -0.044
8 0.165
9 0.331
10 0.411
11 0.395
12 0.288
13 0.143
14 0.019
15 -0.056
16 -0.104
17 -0.146
18 -0.177
19 -0.167
20 -0.103

Mean = 46.976000000000006

Standard Error using Bartlett are:
0

0 0.035
1 0.096
2 0.157
3 0.206
4 0.231
5 0.229
6 0.209
7 0.178
8 0.146
9 0.134
10 0.151
11 0.174
12 0.191
13 0.195
14 0.196
15 0.196
16 0.196
17 0.199
18 0.205
19 0.209

Standard Error using Moran are:
0

0 0.099
1 0.098
2 0.098
3 0.097
4 0.097
5 0.096
6 0.095
7 0.095
8 0.094
9 0.094

Time Series and Forecasting AutoCorrelation class • 529

10 0.093
11 0.093
12 0.092
13 0.092
14 0.091
15 0.091
16 0.09
17 0.09
18 0.089
19 0.089

Partial AutoCovariances:
0

0 0.806
1 -0.635
2 0.078
3 -0.059
4 -0.001
5 0.172
6 0.109
7 0.11
8 0.079
9 0.079
10 0.069
11 -0.038
12 0.081
13 0.033
14 -0.035
15 -0.131
16 -0.155
17 -0.119
18 -0.016
19 -0.004

AutoCovariances are:
0

0 1,392.053
1 1,126.524
2 604.162
3 106.754
4 -225.882
5 -361.026
6 -286.57
7 -53.76
8 235.966
9 470.786
10 584.014
11 564.764
12 418.363
13 216.104
14 43.125
15 -63.468
16 -131.501
17 -189.063
18 -229.689

530 • AutoCorrelation class JMSL

19 -212.156
20 -121.569

AutoCorrelations are:
0

0 1
1 0.809
2 0.434
3 0.077
4 -0.162
5 -0.259
6 -0.206
7 -0.039
8 0.17
9 0.338
10 0.42
11 0.406
12 0.301
13 0.155
14 0.031
15 -0.046
16 -0.094
17 -0.136
18 -0.165
19 -0.152
20 -0.087

Standard Error using Bartlett are:
0

0 0.034
1 0.097
2 0.159
3 0.21
4 0.236
5 0.233
6 0.212
7 0.18
8 0.147
9 0.134
10 0.148
11 0.172
12 0.19
13 0.197
14 0.198
15 0.198
16 0.198
17 0.201
18 0.207
19 0.21

Time Series and Forecasting AutoCorrelation class • 531

AutoCorrelation.NonPosVariancesException class

static public class com.imsl.stat.AutoCorrelation.NonPosVariancesException
extends com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

AutoCorrelation.NonPosVariancesException
public AutoCorrelation.NonPosVariancesException(String message)

Description

Constructs an NonPosVariancesException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

AutoCorrelation.NonPosVariancesException
public AutoCorrelation.NonPosVariancesException(String key, Object[]
arguments)

Description

Constructs an NonPosVariancesException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

CrossCorrelation class

public class com.imsl.stat.CrossCorrelation implements Serializable, Cloneable

Computes the sample cross-correlation function of two stationary time series.

CrossCorrelation estimates the cross-correlation function of two jointly stationary time series
given a sample of n = x.length observations {Xt} and {Yt} for t = 1,2, ..., n.

Let
µ̂x = xmean

532 • CrossCorrelation class JMSL

be the estimate of the mean µX of the time series {Xt} where

µ̂X =

 µX for µX known
1
n

n∑
t=1

Xt for µX unknown

The autocovariance function of {Xt}, σX(k), is estimated by

σ̂X (k) =
1
n

n−k∑
t=1

(Xt − µ̂X) (Xt+k − µ̂X) , k=0,1,. . . ,K

where K = maximum lag. Note that σ̂X(0) is equivalent to the sample variance of x returned by
method getVarianceX. The autocorrelation function ρX(k) is estimated by

ρ̂X(k) =
σ̂X(k)
σ̂X(0)

, k = 0, 1, . . . ,K

Note that ρ̂x(0) ≡ 1 by definition. Let

µ̂Y = ymean, σ̂Y (k), andρ̂Y (k)

be similarly defined.

The cross-covariance function σXY (k) is estimated by

σ̂XY (k) =


1
n

n−k∑
t=1

(Xt − µ̂X)(Yt+k − µ̂Y) k = 0, 1, . . . ,K

1
n

n∑
t=1−k

(Xt − µ̂X)(Yt+k − µ̂Y) k = −1,−2, . . . ,−K

The cross-correlation function ρXY (k) is estimated by

ρ̂XY (k) =
σ̂XY (k)

[σ̂X(0)σ̂Y (0)]
1
2

k = 0,±1, . . . ,±K

The standard errors of the sample cross-correlations may be optionally computed according to
the getStandardErrors method argument stderrMethod. One method is based on a general
asymptotic expression for the variance of the sample cross-correlation coefficient of two jointly
stationary time series with independent, identically distributed normal errors given by Bartlet
(1978, page 352). The theoretical formula is

var {ρ̂XY (k)} = 1
n−k

∞∑
i=−∞

[ρX(i) + ρXY (i− k)ρXY (i+ k)

−2ρXY (k){ρX(i)ρXY (i+ k) + ρXY (−i)ρY (i+ k)}
+ρ2

XY (k){ρX(i) + 1
2ρ

2
X(i) + 1

2ρ
2
Y (i)}]

For computational purposes, the autocorrelations ρX(k) and ρY (k) and the cross-correlations
ρXY (k) are replaced by their corresponding estimates for |k| ≤ K, and the limits of summation
are equal to zero for all k such that |k| > K.

Time Series and Forecasting CrossCorrelation class • 533

A second method evaluates Bartlett’s formula under the additional assumption that the two
series have no cross-correlation. The theoretical formula is

var{ρ̂XY (k)} =
1

n− k

∞∑
i=−∞

ρX(i)ρY (i) k ≥ 0

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY (k) = σY X(−k) for k ≥ 0. This
result is used in the computation of the standard error of the sample cross-correlation for lag
k < 0. In general, the cross-covariance function is not symmetric about zero so both positive
and negative lags are of interest.

Fields

BARTLETTS FORMULA
static final public int BARTLETTS FORMULA

Indicates standard error computation using Bartlett’s formula.

BARTLETTS FORMULA NOCC
static final public int BARTLETTS FORMULA NOCC

Indicates standard error computation using Bartlett’s formula with the assumption of no
cross-correlation.

Constructor

CrossCorrelation
public CrossCorrelation(double[] x, double[] y, int maximum lag)

Description

Constructor to compute the sample cross-correlation function of two stationary time
series.

Parameters

x – A one-dimensional double array containing the first stationary time series.

y – A one-dimensional double array containing the second stationary time series.

maximum lag – An int containing the maximum lag of the cross-covariance and
cross-correlations to be computed. maximum lag must be greater than or equal to 1
and less than the minimum of the number of observations of x and y.

534 • CrossCorrelation class JMSL

Methods

getAutoCorrelationX
public double[] getAutoCorrelationX() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the autocorrelations of the time series x.

Returns

A double array of length maximum lag +1 containing the autocorrelations of the time
series x. The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximum lag.

getAutoCorrelationY
public double[] getAutoCorrelationY() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the autocorrelations of the time series y.

Returns

A double array of length maximum lag +1 containing the autocorrelations of the time
series y. The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximum lag.

getAutoCovarianceX
public double[] getAutoCovarianceX() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the autocovariances of the time series x.

Returns

A double array of length maximum lag +1 containing the variances and autocovariances
of the time series x. The 0-th element of the array contains the variance of the time series
x. The k-th element contains the autocovariance of lag k where k = 1, ..., maximum lag.

getAutoCovarianceY
public double[] getAutoCovarianceY() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the autocovariances of the time series y.

Time Series and Forecasting CrossCorrelation class • 535

Returns

A double array of length maximum lag +1 containing the variances and autocovariances
of the time series y. The 0-th element of the array contains the variance of the time series
x. The k-th element contains the autocovariance of lag k where k = 1, ..., maximum lag.

getCrossCorrelation
public double[] getCrossCorrelation() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the cross-correlations between the time series x and y.

Returns

A double array of length 2 * maximum lag +1 containing the cross-correlations between
the time series x and y. The cross-correlation between x and y at lag k, where k =
-maximum lag ,..., 0, 1,...,maximum lag, corresponds to output array indices 0, 1,...,
(2*maximum lag).

getCrossCovariance
public double[] getCrossCovariance()

Description

Returns the cross-covariances between the time series x and y.

Returns

A double array of length 2 * maximum lag +1 containing the cross-covariances between
the time series x and y. The cross-covariance between x and y at lag k, where k =
-maximum lag ,..., 0, 1,...,maximum lag, corresponds to output array indices 0, 1,...,
(2*maximum lag).

getMeanX
public double getMeanX()

Description

Returns the mean of the time series x.

Returns

A double containing the mean of the time series x.

getMeanY
public double getMeanY()

Description

Returns the mean of the time series y.

536 • CrossCorrelation class JMSL

Returns

A double containing the mean of the time series y.

getStandardErrors
public double[] getStandardErrors(int stderrMethod) throws
CrossCorrelation.NonPosVariancesException

Description

Returns the standard errors of the cross-correlations between the time series x and y.
Method of computation for standard errors of the cross-correlation is determined by the
stderrMethod parameter. If stderrMethod is set to BARTLETTS FORMULA, Bartlett’s
formula is used to compute the standard errors of cross-correlations. If stderrMethod is
set to BARTLETTS FORMULA NOCC, Bartlett’s formula is used to compute the
standard errors of cross-correlations, with the assumption of no cross-correlation.

Parameter

stderrMethod – An int specifying the method to compute the standard errors of
cross-correlations between the time series x and y.

Returns

A double array of length 2 * maximum lag + 1 containing the standard errors of the
cross-correlations between the time series x and y. The standard error of
cross-correlations between x and y at lag k, where k = -maximum lag,..., 0, 1,...,
maximum lag, corresponds to output array indices 0, 1,..., (2*maximum lag).

getVarianceX
public double getVarianceX() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the variance of time series x.

Returns

A double containing the variance of the time series x.

getVarianceY
public double getVarianceY() throws
CrossCorrelation.NonPosVariancesException

Description

Returns the variance of time series y.

Returns

A double containing the variance of the time series y.

setMeanX
public void setMeanX(double mean)

Time Series and Forecasting CrossCorrelation class • 537

Description

Estimate of the mean of time series x.

Parameter

mean – A double containing the estimate mean of the time series x.

setMeanY
public void setMeanY(double mean)

Description

Estimate of the mean of time series y.

Parameter

mean – A double containing the estimate mean of the time series y.

Example 1: CrossCorrelation

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533) where X is the input
gas rate in cubic feet/minute and Y is the percent CO2 in the outlet gas. The
CrossCorrelation methods getCrossCovariance and getCrossCorrelation are used to
compute the cross-covariances and cross-correlations between time series X and Y with lags
from -maximum lag = -10 through lag maximum lag = 10. In addition, the estimated standard
errors of the estimated cross-correlations are computed. In the first invocation of method
getStandardErrors stderrMethod = BARTLETTS FORMULA, the standard errors are based
on the assumption that autocorrelations and cross-correlations for lags greater than
maximum lag or less than -maximum lag are zero, In the second invocation of method
getStandardErrors with stderrMethod = BARTLETTS FORMULA NOCC, the standard
errors are based on the additional assumption that all cross-correlations for X and Y are zero.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class CrossCorrelationEx1 {

public static void main(String args[]) throws Exception {
double[] x2 = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
37.3, 73.9};

538 • CrossCorrelation class JMSL

double[] x = {-0.109, 0.0, 0.178, 0.339, 0.373, 0.441, 0.461,
0.348, 0.127, -0.18, -0.588, -1.055, -1.421, -1.52, -1.302,
-0.814, -0.475, -0.193, 0.088, 0.435, 0.771, 0.866, 0.875,
0.891, 0.987, 1.263, 1.775, 1.976, 1.934, 1.866, 1.832,
1.767, 1.608, 1.265, 0.79, 0.36, 0.115, 0.088, 0.331,
0.645, 0.96, 1.409, 2.67, 2.834, 2.812, 2.483, 1.929,
1.485, 1.214, 1.239, 1.608, 1.905, 2.023, 1.815, 0.535,
0.122, 0.009, 0.164, 0.671, 1.019, 1.146, 1.155,
1.112, 1.121, 1.223, 1.257, 1.157, 0.913, 0.62, 0.255,
-0.28, -1.08, -1.551, -1.799, -1.825, -1.456, -0.944,
-0.57, -0.431, -0.577, -0.96, -1.616, -1.875, -1.891,
-1.746, -1.474, -1.201, -0.927, -0.524, 0.04, 0.788, 0.943,
0.93, 1.006, 1.137, 1.198, 1.054, 0.595, -0.08, -0.314,
-0.288, -0.153, -0.109, -0.187, -0.255, -0.229, -0.007,
0.254, 0.33, 0.102, -0.423,
-1.139, -2.275, -2.594, -2.716, -2.51, -1.79, -1.346,
-1.081, -0.91, -0.876, -0.885, -0.8, -0.544, -0.416,
-0.271, 0.0, 0.403, 0.841, 1.285, 1.607, 1.746, 1.683,
1.485, 0.993, 0.648, 0.577, 0.577, 0.632, 0.747, 0.9,
0.993, 0.968, 0.79, 0.399, -0.161, -0.553, -0.603, -0.424,
-0.194, -0.049, 0.06, 0.161, 0.301, 0.517, 0.566, 0.56,
0.573, 0.592, 0.671, 0.933, 1.337, 1.46, 1.353, 0.772,
0.218,-0.237, -0.714, -1.099, -1.269, -1.175, -0.676,
0.033, 0.556, 0.643, 0.484, 0.109, -0.31, -0.697, -1.047,
-1.218, -1.183, -0.873, -0.336, 0.063, 0.084, 0.0, 0.001,
0.209, 0.556, 0.782, 0.858, 0.918, 0.862, 0.416, -0.336,
-0.959, -1.813, -2.378, -2.499, -2.473, -2.33, -2.053,
-1.739, -1.261, -0.569, -0.137, -0.024, -0.05, -0.135,
-0.276, -0.534, -0.871, -1.243, -1.439, -1.422, -1.175,
-0.813, -0.634, -0.582, -0.625, -0.713,
-0.848, -1.039, -1.346, -1.628, -1.619, -1.149,
-0.488, -0.16, -0.007, -0.092, -0.62, -1.086, -1.525,
-1.858, -2.029, -2.024, -1.961, -1.952, -1.794, -1.302,
-1.03, -0.918, -0.798, -0.867, -1.047, -1.123, -0.876,
-0.395, 0.185, 0.662, 0.709, 0.605, 0.501, 0.603, 0.943,
1.223, 1.249, 0.824, 0.102, 0.025, 0.382,
0.922, 1.032, 0.866, 0.527, 0.093, -0.458, -0.748,
-0.947, -1.029, -0.928, -0.645, -0.424, -0.276, -0.158,
-0.033, 0.102, 0.251, 0.28, 0.0, -0.493, -0.759, -0.824,
-0.74, -0.528, -0.204, 0.034, 0.204, 0.253, 0.195, 0.131,
0.017, -0.182, -0.262};
double[] y = {53.8, 53.6, 53.5, 53.5, 53.4, 53.1, 52.7, 52.4, 52.2,
52.0, 52.0, 52.4, 53.0, 54.0, 54.9, 56.0, 56.8, 56.8, 56.4,
55.7, 55.0, 54.3, 53.2, 52.3, 51.6, 51.2, 50.8, 50.5, 50.0,
49.2, 48.4, 47.9, 47.6, 47.5, 47.5, 47.6, 48.1, 49.0, 50.0,
51.1, 51.8, 51.9, 51.7, 51.2, 50.0, 48.3, 47.0, 45.8, 45.6,
46.0, 46.9, 47.8, 48.2, 48.3, 47.9, 47.2, 47.2,
48.1, 49.4, 50.6, 51.5, 51.6, 51.2, 50.5, 50.1, 49.8, 49.6,
49.4, 49.3, 49.2, 49.3, 49.7, 50.3, 51.3, 52.8, 54.4, 56.0,
56.9, 57.5, 57.3, 56.6, 56.0, 55.4, 55.4, 56.4, 57.2, 58.0,
58.4, 58.4, 58.1, 57.7, 57.0, 56.0, 54.7, 53.2, 52.1, 51.6,
51.0, 50.5,50.4, 51.0, 51.8, 52.4, 53.0, 53.4, 53.6, 53.7,
53.8, 53.8, 53.8, 53.3, 53.0, 52.9, 53.4, 54.6, 56.4, 58.0,
59.4, 60.2, 60.0, 59.4, 58.4, 57.6, 56.9, 56.4, 56.0, 55.7,
55.3, 55.0, 54.4, 53.7, 52.8, 51.6, 50.6, 49.4, 48.8, 48.5,
48.7, 49.2, 49.8, 50.4, 50.7, 50.9, 50.7, 50.5, 50.4, 50.2,

Time Series and Forecasting CrossCorrelation class • 539

50.4, 51.2, 52.3, 53.2, 53.9, 54.1, 54.0, 53.6, 53.2, 53.0,
52.8, 52.3,51.9, 51.6, 51.6, 51.4, 51.2, 50.7, 50.0, 49.4, 49.3,
49.7, 50.6, 51.8, 53.0, 54.0, 55.3, 55.9, 55.9, 54.6, 53.5,
52.4, 52.1, 52.3, 53.0, 53.8, 54.6, 55.4, 55.9, 55.9, 55.2,
54.4, 53.7, 53.6, 53.6, 53.2, 52.5, 52.0, 51.4, 51.0, 50.9,
52.4, 53.5, 55.6, 58.0, 59.5, 60.0, 60.4, 60.5, 60.2, 59.7,
59.0, 57.6, 56.4, 55.2, 54.5, 54.1, 54.1, 54.4,
55.5, 56.2, 57.0, 57.3, 57.4, 57.0, 56.4, 55.9, 55.5, 55.3,
55.2, 55.4, 56.0, 56.5, 57.1, 57.3, 56.8, 55.6, 55.0, 54.1,
54.3, 55.3, 56.4, 57.2, 57.8, 58.3, 58.6, 58.8, 58.8, 58.6,
58.0, 57.4, 57.0, 56.4, 56.3, 56.4, 56.4, 56.0, 55.2, 54.0,
53.0, 52.0,51.6, 51.6, 51.1, 50.4, 50.0, 50.0, 52.0, 54.0,
55.1, 54.5, 52.8, 51.4, 50.8, 51.2, 52.0, 52.8, 53.8, 54.5,
54.9, 54.9, 54.8, 54.4, 53.7, 53.3, 52.8, 52.6, 52.6, 53.0,
54.3, 56.0, 57.0, 58.0, 58.6, 58.5, 58.3, 57.8, 57.3, 57.0};
CrossCorrelation cc;

System.out.println("*****************************");
cc = new CrossCorrelation(x, y,10);
System.out.println("Mean = "+cc.getMeanX());
System.out.println("Mean = "+cc.getMeanY());
System.out.println("Xvariance = "+cc.getVarianceX());
System.out.println("Yvariance = "+cc.getVarianceY());
new PrintMatrix("CrossCovariances are: ").print

(cc.getCrossCovariance());
new PrintMatrix("CrossCorrelations are: ").print

(cc.getCrossCorrelation());
new PrintMatrix("Standard Errors using Bartlett are: ").print

(cc.getStandardErrors(cc.BARTLETTS_FORMULA));
new PrintMatrix("Standard Errors using Bartlett #2 are: ").print

(cc.getStandardErrors(cc.BARTLETTS_FORMULA_NOCC));
new PrintMatrix("AutoCovariances of X are: ").print

(cc.getAutoCovarianceX());
new PrintMatrix("AutoCovariances of Y are: ").print

(cc.getAutoCovarianceY());
new PrintMatrix("AutoCorrelations of X are: ").print

(cc.getAutoCorrelationX());
new PrintMatrix("AutoCorrelations of Y are: ").print

(cc.getAutoCorrelationY());
}

}

Output

Mean = -0.05683445945945951
Mean = 53.50912162162156
Xvariance = 1.1469379016503833
Yvariance = 10.218937066289259
CrossCovariances are:

0

540 • CrossCorrelation class JMSL

0 -0.405
1 -0.508
2 -0.614
3 -0.705
4 -0.776
5 -0.831
6 -0.891
7 -0.981
8 -1.125
9 -1.347
10 -1.659
11 -2.049
12 -2.482
13 -2.885
14 -3.165
15 -3.253
16 -3.131
17 -2.839
18 -2.453
19 -2.053
20 -1.695

CrossCorrelations are:
0

0 -0.118
1 -0.149
2 -0.179
3 -0.206
4 -0.227
5 -0.243
6 -0.26
7 -0.286
8 -0.329
9 -0.393
10 -0.484
11 -0.598
12 -0.725
13 -0.843
14 -0.925
15 -0.95
16 -0.915
17 -0.829
18 -0.717
19 -0.6
20 -0.495

Standard Errors using Bartlett are:
0

0 0.158
1 0.156
2 0.153
3 0.149
4 0.145
5 0.141
6 0.138
7 0.136

Time Series and Forecasting CrossCorrelation class • 541

8 0.132
9 0.124
10 0.108
11 0.087
12 0.064
13 0.047
14 0.044
15 0.048
16 0.049
17 0.048
18 0.053
19 0.072
20 0.094

Standard Errors using Bartlett #2 are:
0

0 0.163
1 0.162
2 0.162
3 0.162
4 0.162
5 0.161
6 0.161
7 0.161
8 0.161
9 0.16
10 0.16
11 0.16
12 0.161
13 0.161
14 0.161
15 0.161
16 0.162
17 0.162
18 0.162
19 0.162
20 0.163

AutoCovariances of X are:
0

0 1.147
1 1.092
2 0.957
3 0.782
4 0.609
5 0.467
6 0.365
7 0.298
8 0.261
9 0.244
10 0.239

AutoCovariances of Y are:
0

0 10.219
1 9.92

542 • CrossCorrelation class JMSL

2 9.157
3 8.099
4 6.949
5 5.871
6 4.961
7 4.252
8 3.736
9 3.376
10 3.132

AutoCorrelations of X are:
0

0 1
1 0.952
2 0.834
3 0.682
4 0.531
5 0.408
6 0.318
7 0.26
8 0.228
9 0.213
10 0.208

AutoCorrelations of Y are:
0

0 1
1 0.971
2 0.896
3 0.793
4 0.68
5 0.574
6 0.485
7 0.416
8 0.366
9 0.33
10 0.307

CrossCorrelation.NonPosVariancesException class

static public class com.imsl.stat.CrossCorrelation.NonPosVariancesException
extends com.imsl.IMSLException

The problem is ill-conditioned.

Time Series and Forecasting CrossCorrelation class • 543

Constructors

CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException(String message)

CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException(String key, Object[]
arguments)

MultiCrossCorrelation class

public class com.imsl.stat.MultiCrossCorrelation implements Serializable,
Cloneable

Computes the multichannel cross-correlation function of two mutually stationary multichannel
time series.

MultiCrossCorrelation estimates the multichannel cross-correlation function of two mutually
stationary multichannel time series. Define the multichannel time series X by

X = (X1, X2, . . . , Xp)

where
Xj = (X1j , X2j , . . . , Xnj)

T
, j = 1, 2, . . . , p

with n = x.length and p = x[0].length. Similarly, define the multichannel time series Y by

Y = (Y1, Y2, . . . , Yq)

where
Yj = (Y1j , Y2j , . . . , Ymj)

T
, j = 1, 2, . . . , q

with m = y.length and q = y[0].length. The columns of X and Y correspond to individual
channels of multichannel time series and may be examined from a univariate perspective. The
rows of X and Y correspond to observations of p-variate and q-variate time series, respectively,
and may be examined from a multivariate perspective. Note that an alternative
characterization of a multivariate time series X considers the columns to be observations of the
multivariate time series while the rows contain univariate time series. For example, see
Priestley (1981, page 692) and Fuller (1976, page 14).

Let µ̂X = xmean be the row vector containing the means of the channels of X. In particular,

µ̂X = (µ̂X1 , µ̂X2 , . . . , µ̂Xp)

where for j = 1, 2, ..., p

µ̂Xj
=

 µXj for µXj known
1
n

n∑
t=1

Xtj for µXj unknown

544 • MultiCrossCorrelation class JMSL

Let µ̂Y = ymean be similarly defined. The cross-covariance of lag k between channel i of X and
channel j of Y is estimated by

σ̂XiYj
(k) =


1
N

∑
t

(Xti − µ̂Xi
)(Yt+k,j − µ̂Yj

) k = 0, 1, . . . ,K
1
N

∑
t

(Xti − µ̂Xi)(Yt+k,j − µ̂Yj) k = −1,−2, . . . ,−K

where i = 1, ..., p, j = 1, ..., q, and K = maximum lag. The summation on t extends over all
possible cross-products with N equal to the number of cross-products in the sum.

Let σ̂X(0) = xvar, where xvar is the variance of X, be the row vector consisting of estimated
variances of the channels of X. In particular,

σ̂X(0) = (σ̂X1(0), σ̂X2(0), . . . , σ̂Xp
(0))

where

σ̂Xj
(0) =

1
n

n∑
t=1

(
Xtj − µ̂Xj

)2
, j=0,1,. . . ,p

Let σ̂Y (0) = yvar, where yvar is the variance of Y, be similarly defined. The cross-correlation
of lag k between channel i of X and channel j of Y is estimated by

ρ̂XjYj
(k) =

σ̂XjYj(k)

[σ̂Xi
(0)σ̂Xj

(0)]
1
2

k = 0,±1, . . . ,±K

Constructor

MultiCrossCorrelation
public MultiCrossCorrelation(double[][] x, double[][] y, int maximum lag)

Description

Constructor to compute the multichannel cross-correlation function of two mutually
stationary multichannel time series.

Parameters

x – A two-dimensional double array containing the first multichannel stationary
time series. Each row of x corresponds to an observation of a multivariate time series
and each column of x corresponds to a univariate time series.

y – A two-dimensional double array containing the second multichannel stationary
time series. Each row of y corresponds to an observation of a multivariate time series
and each column of y corresponds to a univariate time series.

maximum lag – An int containing the maximum lag of the cross-covariance and
cross-correlations to be computed. maximum lag must be greater than or equal to 1
and less than the minimum number of observations of x and y.

Time Series and Forecasting MultiCrossCorrelation class • 545

Methods

getCrossCorrelation
public double[][][] getCrossCorrelation() throws
MultiCrossCorrelation.NonPosVariancesException

Description

Returns the cross-correlations between the channels of x and y.

Returns

A double array of size 2 * maximum lag +1 by x[0].length by y[0].length containing
the cross-correlations between the time series x and y. The cross-correlation between
channel i of the x series and channel j of the y series at lag k, where k = -maximum lag, ...,
0, 1, ..., maximum lag, corresponds to output array element with index [k][i][j] where k=
0,1,...,(2*maximum lag), i = 1, ..., x[0].length, and j = 1, ..., y[0].length.

getCrossCovariance
public double[][][] getCrossCovariance() throws
MultiCrossCorrelation.NonPosVariancesException

Description

Returns the cross-covariances between the channels of x and y.

Returns

A double array of size 2 * maximum lag +1 by x[0].length by y[0].length containing
the cross-covariances between the time series x and y. The cross-covariances between
channel i of the x series and channel j of the y series at lag k where k = -maximum lag, ...,
0, 1, ..., maximum lag, corresponds to output array element with index [k][i][j] where k=
0,1,...,(2*maximum lag), i = 1, ..., x[0].length, and j = 1, ..., y[0].length.

getMeanX
public double[] getMeanX()

Description

Returns the mean of each channel of x.

Returns

A one-dimensional double containing the mean of each channel in the time series x.

getMeanY
public double[] getMeanY()

Description

Returns the mean of each channel of y.

546 • MultiCrossCorrelation class JMSL

Returns

A one-dimensional double containing the estimate mean of each channel in the time
series y.

getVarianceX
public double[] getVarianceX() throws
MultiCrossCorrelation.NonPosVariancesException

Description

Returns the variances of the channels of x.

Returns

A one-dimensional double containing the variances of each channel in the time series x.

getVarianceY
public double[] getVarianceY() throws
MultiCrossCorrelation.NonPosVariancesException

Description

Returns the variances of the channels of y.

Returns

A one-dimensional double containing the variances of each channel in the time series y.

setMeanX
public void setMeanX(double[] mean)

Description

Estimate of the mean of each channel of x.

Parameter

mean – A one-dimensional double containing the estimate of the mean of each
channel in time series x.

setMeanY
public void setMeanY(double[] mean)

Description

Estimate of the mean of each channel of y.

Parameter

mean – A one-dimensional double containing the estimate of the mean of each
channel in the time series y.

Time Series and Forecasting MultiCrossCorrelation class • 547

Example 1: MultiCrossCorrelation

Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along with data on
northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a
three-channel time series. Methods getCrossCovariance and getCrossCorrelation are used
to compute the cross-covariances and cross-correlations between X1 and Y and between X2 and
Y with lags from -maximum lag = -10 through lag maximum lag = 10.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.Matrix;

public class MultiCrossCorrelationEx1 {

public static void main(String args[]) throws Exception {
int i;
double x[][] = {{ 155.0, 66.0},
{ 113.0, 62.0},
{ 3.0, 66.0},
{ 10.0, 197.0},
{ 0.0, 63.0},
{ 0.0, 0.0},
{ 12.0, 121.0},
{ 86.0, 0.0},
{ 102.0, 113.0},
{ 20.0, 27.0},
{ 98.0, 107.0},
{ 116.0, 50.0},
{ 87.0, 122.0},
{ 131.0, 127.0},
{ 168.0, 152.0},
{ 173.0, 216.0},
{ 238.0, 171.0},
{ 146.0, 70.0},
{ 0.0, 141.0},
{ 0.0, 69.0},
{ 0.0, 160.0},
{ 0.0, 92.0},
{ 12.0, 70.0},
{ 0.0, 46.0},
{ 37.0, 96.0},
{ 14.0, 78.0},
{ 11.0, 110.0},
{ 28.0, 79.0},
{ 19.0, 85.0},
{ 30.0, 113.0},
{ 11.0, 59.0},
{ 26.0, 86.0},
{ 0.0, 199.0},
{ 29.0, 53.0},
{ 47.0, 81.0},
{ 36.0, 81.0},
{ 35.0, 156.0},

548 • MultiCrossCorrelation class JMSL

{ 17.0, 27.0},
{ 0.0, 81.0},
{ 3.0, 107.0},
{ 6.0, 152.0},
{ 18.0, 99.0},
{ 15.0, 177.0},
{ 0.0, 48.0},
{ 3.0, 70.0},
{ 9.0, 158.0},
{ 64.0, 22.0},
{ 126.0, 43.0},
{ 38.0, 102.0},
{ 33.0, 111.0},
{ 71.0, 90.0},
{ 24.0, 86.0},
{ 20.0, 119.0},
{ 22.0, 82.0},
{ 13.0, 79.0},
{ 35.0, 111.0},
{ 84.0, 60.0},
{ 119.0, 118.0},
{ 86.0, 206.0},
{ 71.0, 122.0},
{ 115.0, 134.0},
{ 91.0, 131.0},
{ 43.0, 84.0},
{ 67.0, 100.0},
{ 60.0, 99.0},
{ 49.0, 99.0},
{ 100.0, 69.0},
{ 150.0, 67.0},
{ 178.0, 26.0},
{ 187.0, 106.0},
{ 76.0, 108.0},
{ 75.0, 155.0},
{ 100.0, 40.0},
{ 68.0, 75.0},
{ 93.0, 99.0},
{ 20.0, 86.0},
{ 51.0, 127.0},
{ 72.0, 201.0},
{ 118.0, 76.0},
{ 146.0, 64.0},
{ 101.0, 31.0},
{ 61.0, 138.0},
{ 87.0, 163.0},
{ 53.0, 98.0},
{ 69.0, 70.0},
{ 46.0, 155.0},
{ 47.0, 97.0},
{ 35.0, 82.0},
{ 74.0, 90.0},
{ 104.0, 122.0},
{ 97.0, 70.0},
{ 106.0, 96.0},
{ 113.0, 111.0},

Time Series and Forecasting MultiCrossCorrelation class • 549

{ 103.0, 42.0},
{ 68.0, 97.0},
{ 67.0, 91.0},
{ 82.0, 64.0},
{ 89.0, 81.0},
{ 102.0, 162.0},
{ 110.0, 137.0}};

double y[][] = {{ 101.0},
{ 82.0},
{ 66.0},
{ 35.0},
{ 31.0},
{ 7.0},
{ 20.0},
{ 92.0},
{ 154.0},
{ 126.0},
{ 85.0},
{ 68.0},
{ 38.0},
{ 23.0},
{ 10.0},
{ 24.0},
{ 83.0},
{ 132.0},
{ 131.0},
{ 118.0},
{ 90.0},
{ 67.0},
{ 60.0},
{ 47.0},
{ 41.0},
{ 21.0},
{ 16.0},
{ 6.0},
{ 4.0},
{ 7.0},
{ 14.0},
{ 34.0},
{ 45.0},
{ 43.0},
{ 48.0},
{ 42.0},
{ 28.0},
{ 10.0},
{ 8.0},
{ 2.0},
{ 0.0},
{ 1.0},
{ 5.0},
{ 12.0},
{ 14.0},
{ 35.0},
{ 46.0},
{ 41.0},

550 • MultiCrossCorrelation class JMSL

{ 30.0},
{ 24.0},
{ 16.0},
{ 7.0},
{ 4.0},
{ 2.0},
{ 8.0},
{ 17.0},
{ 36.0},
{ 50.0},
{ 62.0},
{ 67.0},
{ 71.0},
{ 48.0},
{ 28.0},
{ 8.0},
{ 13.0},
{ 57.0},
{ 122.0},
{ 138.0},
{ 103.0},
{ 86.0},
{ 63.0},
{ 37.0},
{ 24.0},
{ 11.0},
{ 15.0},
{ 40.0},
{ 62.0},
{ 98.0},
{ 124.0},
{ 96.0},
{ 66.0},
{ 64.0},
{ 54.0},
{ 39.0},
{ 21.0},
{ 7.0},
{ 4.0},
{ 23.0},
{ 55.0},
{ 94.0},
{ 96.0},
{ 77.0},
{ 59.0},
{ 44.0},
{ 47.0},
{ 30.0},
{ 16.0},
{ 7.0},
{ 37.0},
{ 74.0}};

MultiCrossCorrelation mcc = new MultiCrossCorrelation(x, y, 10);

Time Series and Forecasting MultiCrossCorrelation class • 551

new PrintMatrix("Mean of X : ").print(mcc.getMeanX());
new PrintMatrix("Variance of X : ").print(mcc.getVarianceX());
new PrintMatrix("Mean of Y : ").print(mcc.getMeanY());
new PrintMatrix("Variance of Y : ").print(mcc.getVarianceY());
double[][][] ccv = new double[21][2][1];
double[][][] cc = new double[21][2][1];

ccv = mcc.getCrossCovariance();
System.out.println("Multichannel cross-covariance between X and Y");
for (i=0; i<21; i++) {

System.out.println("Lag K = "+(i-10));
new PrintMatrix("CrossCovariances : ").print(ccv[i]);

}
cc = mcc.getCrossCorrelation();
System.out.println("Multichannel cross-correlation between X and Y");
for (i=0; i<21; i++) {

System.out.println("Lag K = "+(i-10));
new PrintMatrix("CrossCorrelations : ").print(cc[i]);

}
}

}

Output

Mean of X :
0

0 63.43
1 97.97

Variance of X :
0

0 2,643.685
1 1,978.429

Mean of Y :
0

0 46.94

Variance of Y :
0

0 1,383.756

Multichannel cross-covariance between X and Y
Lag K = -10
CrossCovariances :

0
0 -20.512
1 70.713

Lag K = -9

552 • MultiCrossCorrelation class JMSL

CrossCovariances :
0

0 65.024
1 38.136

Lag K = -8
CrossCovariances :

0
0 216.637
1 135.578

Lag K = -7
CrossCovariances :

0
0 246.794
1 100.362

Lag K = -6
CrossCovariances :

0
0 142.128
1 44.968

Lag K = -5
CrossCovariances :

0
0 50.697
1 -11.809

Lag K = -4
CrossCovariances :

0
0 72.685
1 32.693

Lag K = -3
CrossCovariances :

0
0 217.854
1 -40.119

Lag K = -2
CrossCovariances :

0
0 355.821
1 -152.649

Lag K = -1
CrossCovariances :

0
0 579.653
1 -212.95

Lag K = 0
CrossCovariances :

0

Time Series and Forecasting MultiCrossCorrelation class • 553

0 821.626
1 -104.752

Lag K = 1
CrossCovariances :

0
0 810.131
1 55.16

Lag K = 2
CrossCovariances :

0
0 628.385
1 84.775

Lag K = 3
CrossCovariances :

0
0 438.272
1 75.963

Lag K = 4
CrossCovariances :

0
0 238.793
1 200.383

Lag K = 5
CrossCovariances :

0
0 143.621
1 282.986

Lag K = 6
CrossCovariances :

0
0 252.974
1 234.393

Lag K = 7
CrossCovariances :

0
0 479.468
1 223.034

Lag K = 8
CrossCovariances :

0
0 724.912
1 124.457

Lag K = 9
CrossCovariances :

0
0 924.971
1 -79.517

554 • MultiCrossCorrelation class JMSL

Lag K = 10
CrossCovariances :

0
0 922.759
1 -279.286

Multichannel cross-correlation between X and Y
Lag K = -10
CrossCorrelations :

0
0 -0.011
1 0.043

Lag K = -9
CrossCorrelations :

0
0 0.034
1 0.023

Lag K = -8
CrossCorrelations :

0
0 0.113
1 0.082

Lag K = -7
CrossCorrelations :

0
0 0.129
1 0.061

Lag K = -6
CrossCorrelations :

0
0 0.074
1 0.027

Lag K = -5
CrossCorrelations :

0
0 0.027
1 -0.007

Lag K = -4
CrossCorrelations :

0
0 0.038
1 0.02

Lag K = -3
CrossCorrelations :

0
0 0.114
1 -0.024

Time Series and Forecasting MultiCrossCorrelation class • 555

Lag K = -2
CrossCorrelations :

0
0 0.186
1 -0.092

Lag K = -1
CrossCorrelations :

0
0 0.303
1 -0.129

Lag K = 0
CrossCorrelations :

0
0 0.43
1 -0.063

Lag K = 1
CrossCorrelations :

0
0 0.424
1 0.033

Lag K = 2
CrossCorrelations :

0
0 0.329
1 0.051

Lag K = 3
CrossCorrelations :

0
0 0.229
1 0.046

Lag K = 4
CrossCorrelations :

0
0 0.125
1 0.121

Lag K = 5
CrossCorrelations :

0
0 0.075
1 0.171

Lag K = 6
CrossCorrelations :

0
0 0.132
1 0.142

Lag K = 7
CrossCorrelations :

556 • MultiCrossCorrelation class JMSL

0
0 0.251
1 0.135

Lag K = 8
CrossCorrelations :

0
0 0.379
1 0.075

Lag K = 9
CrossCorrelations :

0
0 0.484
1 -0.048

Lag K = 10
CrossCorrelations :

0
0 0.482
1 -0.169

MultiCrossCorrelation.NonPosVariancesException class

static public class
com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException extends
com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

MultiCrossCorrelation.NonPosVariancesException
public MultiCrossCorrelation.NonPosVariancesException(String message)

MultiCrossCorrelation.NonPosVariancesException
public MultiCrossCorrelation.NonPosVariancesException(String key, Object[]
arguments)

Time Series and Forecasting MultiCrossCorrelation class • 557

ARMA class

public class com.imsl.stat.ARMA implements Serializable, Cloneable

Computes least-square estimates of parameters for an ARMA model.

Class ARMA computes estimates of parameters for a nonseasonal ARMA model given a sample of
observations, {Wt}, for t = 1, 2, . . . , n, where n = z.length.

Two methods of parameter estimation, method of moments and least squares, are provided.
The user can choose a method using the setMethod method. If the user wishes to use the
least-squares algorithm, the preliminary estimates are the method of moments estimates by
default. Otherwise, the user can input initial estimates by using the setInitialEstimates
method. The following table lists the appropriate methods for both the method of moments
and least-squares algorithm:

Least Squares Both Method of Moment and Least Squares
setCenter

setARLags setMethod
setMALags setRelativeError
setBackcasting setMaxIterations
setConvergenceTolerance setMeanEstimate
setInitialEstimates getMeanEstimate
getResidual getAutocovariance
getSSResidual getVariance
getParamEstimatesCovariance getConstant

getAR
getMA

Method of Moments Estimation

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0,±1,±2, . . .}

Let µ̂ = zMean be the estimate of the mean µ of the time series {Zt}, where µ̂ equals the
following:

µ̂ =

 µ for µ known
1
n

n∑
t=1

Zt for µ unknown

The autocovariance function is estimated by

558 • ARMA class JMSL

σ̂ (k) =
1
n

n−k∑
t=1

(Zt − µ̂) (Zt+k − µ̂)

for k = 0, 1, . . . ,K, where K = p + q. Note that σ̂(0) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments estimates of
the autoregressive parameters using the extended Yule-Walker equations as follows:

Σ̂φ̂ = σ̂

where

φ̂ =
(
φ̂1, . . . , φ̂p

)T

Σ̂ij = σ̂ (|q + i− j|) , i, j = 1, . . . , p

σ̂i = σ̂ (q + i) , i = 1, . . . , p

The overall constant θ0 is estimated by the following:

θ̂0 =


µ̂ for p = 0

µ̂

(
1−

p∑
i=1

φ̂i

)
for p > 0

The moving average parameters are estimated based on a system of nonlinear equations given
K = p + q + 1 autocovariances, σ(k) for k = 1, . . . ,K, and p autoregressive parameters φi for
i = 1, . . . , p.

Let Z ′t = φ(B)Zt. The autocovariances of the derived moving average process Z ′t = θ(B)At are
estimated by the following relation:

σ̂′ (k) =


σ̂ (k) for p = 0
p∑

i=0

p∑
j=0

φ̂iφ̂j (σ̂ (|k + i− j|)) for p ≥ 1, φ̂0 ≡ −1

The iterative procedure for determining the moving average parameters is based on the relation

σ (k) =
{ (

1 + θ21 + . . . + θ2q
)
σ2

A for k = 0
(−θk + θ1θk+1 + . . . + θq−kθq)σ2

A for k ≥ 1

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, . . . , τq)T and f = (f0, f1, . . . , fq)T , where

Time Series and Forecasting ARMA class • 559

τj =
{
σA for j = 0
−θj/τ0 for j = 1, . . . , q

and

fj =
q−j∑
i=0

τiτi+j − σ̂′ (j) for j = 0, 1, . . . , q

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ i+1 = τ i −
(
T i
)−1

f i

The estimation procedure begins with the initial value

τ0 = (
√
σ̂′ (0) , 0, . . . , 0)T

and terminates at iteration i when either
∥∥f i
∥∥ is less than relativeError or i equals

iterations. The moving average parameter estimates are obtained from the final estimate of τ
by setting

θ̂j = −τj/τ0 for j = 1, . . . , q

The random shock variance is estimated by the following:

σ̂2
A =

 σ̂(0)−
p∑

i=1

φ̂iσ̂(i) for q = 0

τ2
0 for q ≥ 0

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs similar
computations.

Least-squares Estimation

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

φ(B)(Zt − µ) = θ(B)At for t ∈ {0,±1,±2, . . .}

where B is the backward shift operator, µ is the mean of Zt, and

φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − ... − φpB
lφ(p) for p ≥ 0

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − ... − θqB
lθ(q) for q ≥ 0

560 • ARMA class JMSL

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lφ(1) ≤ lφ(2) ≤ . . . ≤ lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q). Note
that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p

lθ(j) = j, 1 ≤ j ≤ q

Consider the sum-of-squares function

ST (µ, φ, θ) =
n∑

−T+1

[At]
2

where

[At] = E [At |(µ, φ, θ, Z)]

and T is the backward origin. The random shocks {At} are assumed to be independent and
identically distributed

N
(
0, σ2

A

)
random variables. Hence, the log-likelihood function is given by

l (µ, φ, θ, σA) = f (µ, φ, θ)− n ln (σA)− ST (µ, φ, θ)
2σ2

A

where f(µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At

required to initialize the model. The method of selecting these initial values usually introduces
transient bias into the model (Box and Jenkins 1976, pp. 210-211). For T =∞, this
dependency vanishes, and estimation problem concerns maximization of the unconditional
log-likelihood function. Box and Jenkins (1976, p. 213) argue that

S∞ (µ, φ, θ) /
(
2σ2

A

)
Time Series and Forecasting ARMA class • 561

dominates

l
(
µ, φ, θ, σ2

A

)
The parameter estimates that minimize the sum-of-squares function are called least-squares
estimates. For large n, the unconditional least-squares estimates are approximately equal to the
maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the unconditional
sum-of-squares function. The values of [AT] needed to compute the unconditional sum of
squares are computed iteratively with initial values of Zt obtained by back forecasting. The
residuals (including backcasts), estimate of random shock variance, and covariance matrix of
the final parameter estimates also are computed. ARIMA parameters can be computed by
using Difference with ARMA.

Forecasting

The Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA
model are computed given a sample of n = z.length, {Zt} for t = 1, 2, . . . , n.

Suppose the time series Zt is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0,±1, ±2, . . .}, where B is the backward shift operator, θ0 is the constant, and

φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − . . . − φpB
lφ(p)

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − . . . − θqB
lθ(q)

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lφ(1) ≤ lφ(2) ≤ . . . lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q). Note
that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p

lθ(j) = j, 1 ≤ j ≤ q

562 • ARMA class JMSL

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of the difference
equation

Ẑt (l) = θ0 + φ1

[
Zt+l−lφ(1)

]
+ . . . + φp

[
Zt+l−lφ(p)

]
+ [At+l]− θ1

[
At+l−lθ(1)

]
− ... − [At+l]− θ1

[
At+l−lθ(1)

]
− ...− θq

[
At+l−lθ(q)

]
where the following is true:

[Zt+k] =
{
Zt+k for k = 0, −1, −2, . . .
Ẑt (k) for k = 1, 2, . . .

[At+k] =
{
Zt+k − Ẑt+k−1 (1) for k = 0, −1, −2, ...
0 for k = 1, 2, ...

The 100(1− α) percent probability limits for Zt+l are given by

Ẑt (l)± z1/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

where z(1−α/2) is the 100(1− α/2) percentile of the standard normal distribution

σ2
A

and

{
ψ2

j

}
are the parameters of the random shock form of the difference equation. Note that the forecasts
are computed for lead times l = 1, 2, . . . , L at origins t = (n− b), (n− b+ 1), . . . , n, where
L = nPredict and b = backwardOrigin.

The Box-Jenkins forecasts minimize the mean-square error

E
[
Zt+l − Ẑt (l)

]2
Also, the forecasts can be easily updated according to the following equation:

Ẑt+1 (l) = Ẑt (l + 1) + ψlAt+1

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Time Series and Forecasting ARMA class • 563

Fields

LEAST SQUARES
static final public int LEAST SQUARES

Indicates autoregressive and moving average parameters are estimated by a least-squares
procedure.

METHOD OF MOMENTS
static final public int METHOD OF MOMENTS

Indicates autoregressive and moving average parameters are estimated by a method of
moments procedure.

Constructor

ARMA
public ARMA(int p, int q, double[] z)

Description

Constructor for ARMA.

Parameters

p – an int scalar containing the number of autoregressive (AR) parameters

q – an int scalar containing the number of moving average (MA) parameters

z – a double array containing the observations

IllegalArgumentException is thrown if p, q, and z.length are not consistent.

Methods

compute
final public void compute() throws ARMA.MatrixSingularException,
ARMA.TooManyCallsException, ARMA.IncreaseErrRelException,
ARMA.NewInitialGuessException, ARMA.IllConditionedException,
ARMA.TooManyITNException, ARMA.TooManyFcnEvalException,
ARMA.TooManyJacobianEvalException

Description

Computes least-square estimates of parameters for an ARMA model.

MatrixSingularException is thrown if the input matrix is singular

TooManyCallsException is thrown if the number of calls to the function has exceeded

IncreaseErrRelException is thrown if the bound for the relative error is too small

564 • ARMA class JMSL

NewInitialGuessException is thrown if the iteration has not made good progress

IllConditionedException is thrown if the problem is ill-conditioned

TooManyITNException is thrown if the maximum number of iterations exceeded

TooManyFcnEvalException is thrown if the maximum number of function evaluations
exceeded

TooManyJacobianEvalException is thrown if the maximum number of Jacobian
evaluations exceeded

forecast
final public double[][] forecast(int nPredict)

Description

Computes forecasts and their associated probability limits for an ARMA model.

Parameter

nPredict – an int scalar containing the maximum lead time for forecasts. nPredict
must be greater than 0.

Returns

a double matrix of dimensions of nPredict by backwardOrigin + 1 containing the
forecasts. Return NULL if the least-square estimates of parameters is not computed.

getAR
public double[] getAR()

Description

Returns the final autoregressive parameter estimates.

Returns

a double array of length p containing the final autoregressive parameter estimates

getAutoCovariance
public double[] getAutoCovariance()

Description

Returns the autocovariances of the time series z.

Returns

a double array containing the autocovariances of lag k, where k = 1, ..., p + q + 1

getConstant
public double getConstant()

Description

Returns the constant parameter estimate.

Time Series and Forecasting ARMA class • 565

Returns

a double scalar containing the constant parameter estimate

getDeviations
public double[] getDeviations()

Description

Returns the deviations from each forecast that give the confidence percent probability
limits.

Returns

a double array of length nPredict containing the deviations from each forecast that give
the confidence percent probability limits

getMA
public double[] getMA()

Description

Returns the final moving average parameter estimates.

Returns

a double array of length q containing the final moving average parameter estimates

getMeanEstimate
public double getMeanEstimate()

Description

Returns an update of the mean of the time series z.

Returns

a double scalar containing an update of the mean of the time series z. If the time series is
not centered about its mean, and least-squares algorithm is used, zMean is not used in
parameter estimation.

getParamEstimatesCovariance
public double[][] getParamEstimatesCovariance()

Description

Returns the covariances of parameter estimates.

Returns

a double matrix of dimensions of np by np, where np = p + q + 1 if z is centered about
zMean, and np = p + q if z is not centered, containing the covariances of parameter
estimates. The ordering of variables is zMean, ar, and ma.

getPsiWeights
public double[] getPsiWeights()

566 • ARMA class JMSL

Description

Returns the psi weights of the infinite order moving average form of the model.

Returns

a double array of length nPredict containing the psi weights of the infinite order moving
average form of the model.

getResidual
public double[] getResidual()

Description

Returns the residuals.

Returns

a double array of length z.length - Math.max(arLags[i]) + length containing the
residuals (including backcasts) at the final parameter estimate point in the first z.length
- Math.max(arLags[i]) + nb, where nb is the number of values backcast. This method
is only applicable using least-squares algorithm.

getSSResidual
public double getSSResidual()

Description

Returns the sum of squares of the random shock.

Returns

a double scalar containing the sum of squares of the random shock,
residual[0]2 + . . .+ residual[na− 1]2, where residual is the array return from the
getResidual method and na = residual.length . This method is only applicable using
least-squares algorithm.

getVariance
public double getVariance()

Description

Returns the variance of the time series z.

Returns

a double scalar containing the variance of the time series z

setARLags
public void setARLags(int[] arLags)

Description

Sets the order of the autoregressive parameters.

Time Series and Forecasting ARMA class • 567

Parameter

arLags – an int array of length p containing the order of the autoregressive
parameters. The elements of arLags must be greater than or equal to 1. Default:
arLags = [1, 2, ..., p]

setBackcasting
public void setBackcasting(int length, double tolerance)

Description

Sets backcasting option.

Parameters

length – an int scalar containing the maximum length of backcasting and must be
greater than or equal to 0. Default: length = 10.

tolerance – a double scalar containing the tolerance level used to determine
convergence of the backcast algorithm. Typically, tolerance is set to a fraction of
an estimate of the standard deviation of the time series. Default: tolerance = 0.01
* standard deviation of z.

setBackwardOrigin
public void setBackwardOrigin(int backwardOrigin)

Description

Sets the maximum backward origin.

Parameter

backwardOrigin – an int scalar specifying the maximum backward origin.
backwardOrigin must be greater than or equal to 0 and less than or equal to
z.length - Math.max(maxar, maxma), where
maxar = Math.max(arLags[i]), maxma = Math.max(maLags[j]), and forecasts at
origins z.length - backwardOrigin through z.length are generated. Default:
backwardOrigin = 0.

setCenter
public void setCenter(boolean center)

Description

Sets center option.

Parameter

center – a boolean scalar. If false is specified, the time series is not centered
about its mean, zMean. If true is specified, the time series is centered about its
mean. Default: center = true.

568 • ARMA class JMSL

setConfidence
public void setConfidence(double confidence)

Description

Sets the confidence percent probability limits of the forecasts.

Parameter

confidence – a double scalar specifying the confidence percent probability limits of
the forecasts. Typical choices for confidence are 0.90, 0.95, and 0.99. confidence
must be greater than 0.0 and less than 1.0. Default: confidence = 0.95.

setConvergenceTolerance
public void setConvergenceTolerance(double convergenceTolerance)

Description

Sets the tolerance level used to determine convergence of the nonlinear least-squares
algorithm.

Parameter

convergenceTolerance – a double scalar containing the tolerance level used to
determine convergence of the nonlinear least-squares algorithm.
convergenceTolerance represents the minimum relative decrease in sum of squares
between two iterations required to determine convergence. Hence,
convergenceTolerance must be greater than or equal to 0. The default value is
max(10−20, eps2/3), where eps = 2.2204460492503131e-16.

setInitialEstimates
public void setInitialEstimates(double[] ar, double[] ma)

Description

Sets preliminary estimates.

Parameters

ar – a double array of length p containing preliminary estimates of the
autoregressive parameters. ar is computed internally if this method is not used.
This method is only applicable using least-squares algorithm.

ma – a double array of length q containing preliminary estimates of the moving
average parameters. ma is computed internally if this method is not used. This
method is only applicable using least-squares algorithm.

setMALags
public void setMALags(int[] maLags)

Description

Sets the order of the moving average parameters.

Time Series and Forecasting ARMA class • 569

Parameter

maLags – an int array of length q containing the order of the moving average
parameters. The maLags elements must be greater than or equal to 1. Default:
maLags = [1, 2, ..., q]

setMaxIterations
public void setMaxIterations(int iterations)

Description

Sets the maximum number of iterations.

Parameter

iterations – an int scalar specifying the maximum number of iterations allowed in
the nonlinear equation solver used in both the method of moments and least-squares
algorithms. Default: interations = 200.

setMeanEstimate
public void setMeanEstimate(double zMean)

Description

Sets an initial estimate of the mean of the time series z.

Parameter

zMean – a double scalar containing an initial estimate of the mean of the time series
z. If the time series is not centered about its mean, and least-squares algorithm is
used, zMean is not used in parameter estimation.

setMethod
public void setMethod(int method)

Description

Sets the method to be used by the class.

Parameter

method – an int scalar specifying the method to be use. If ARMA.METHOD OF MOMENTS
is specified, the autoregressive and moving average parameters are estimated by a
method of moments procedure. If ARMA.LEAST SQUARES is specified, the
autoregressive and moving average parameters are estimated by a least-squares
procedure. Default method = ARMA.METHOD OF MOMENTS.

setRelativeError
public void setRelativeError(double relativeError)

Description

Sets the stopping criterion for use in the nonlinear equation solver.

570 • ARMA class JMSL

Parameter

relativeError – a double scalar containing the stopping criterion for use in the
nonlinear equation solver used in both the method of moments and least-squares
algorithms. Default: relativeError = 2.2204460492503131e-14.

Example 1: ARMA

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. The method of moments estimates

θ̂0, φ̂1, φ̂2, and θ̂1

for the ARMA(2, 1) model

zt = θ0 + φ1zt−1 + φ2zt−2 − θ1At−1 +At

where the errors At are independently normally distributed with mean zero and variance

σ2
A

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class ARMAEx1 {
public static void main(String args[]) throws Exception {

double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);
arma.setRelativeError(0.0);
arma.setMaxIterations(0);
arma.compute();

new PrintMatrix("AR estimates are: ").print(arma.getAR());
System.out.println();
new PrintMatrix("MA estimate is: ").print(arma.getMA());

}

Time Series and Forecasting ARMA class • 571

}

Output

AR estimates are:
0

0 1.244
1 -0.575

MA estimate is:
0

0 -0.124

Example 2: ARMA

The data for this example are the same as that for Example 1. Preliminary method of moments
estimates are computed by default, and the method of least squares is used to find the final
estimates. Note that at the end of the output, a warning message appears. In most cases, this
warning message can be ignored. There are three general reasons this warning can occur:

• Convergence is declared using the criterion based on tolerance, but the gradient of the
residual sum-of-squares function is nonzero. This occurs in this example. Either the
message can be ignored or tolerance can be reduced to allow more iterations and a
slightly more accurate solution.

• Convergence is declared based on the fact that a very small step was taken, but the
gradient of the residual sum-of-squares function was nonzero. This message can usually
be ignored. Sometimes, however, the algorithm is making very slow progress and is not
near a minimum.

• Convergence is not declared after 100 iterations.

Trying a smaller value for tolerance can help determine what caused the error message.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class ARMAEx2 {
public static void main(String args[]) throws Exception {

double[] arInit = {1.24426e0, -5.75149e-1};
double[] maInit = {-1.24094e-1};
double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

572 • ARMA class JMSL

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,
67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,
124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,
37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);
arma.setMethod(arma.LEAST_SQUARES);
arma.setInitialEstimates(arInit, maInit);
arma.setConvergenceTolerance(0.125);
arma.setMeanEstimate(46.976);
arma.compute();

new PrintMatrix("AR estimates are: ").print(arma.getAR());
System.out.println();
new PrintMatrix("MA estimate is: ").print(arma.getMA());

}
}

Output

AR estimates are:
0

0 1.393
1 -0.734

MA estimate is:
0

0 -0.137

Example 3: Forecasting

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. Method forecast in class ARMA
computes forecasts and 95-percent probability limits for the forecasts for an ARMA(2, 1) model
fit using the method of moments option. With backward origin = 3, forecast method
provides forecasts given the data through 1866, 1867, 1868, and 1869, respectively. The
deviations from the forecast for computing probability limits, and the psi weights can be used
to update forecasts when more data is available. For example, the forecast for the 102-nd
observation (year 1871) given the data through the 100-th observation (year 1869) is 77.21; and

Time Series and Forecasting ARMA class • 573

95-percent probability limits are given by 77.21± 56.30. After observation 101 (Z101 for year
1870) is available, the forecast can be updated by using

Ẑt (l)± zα/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation
101(Z101 − 83.72) to give the following:

77.21 + 1.37× (Z101 − 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now given
by the forecast ±33.22.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class ARMAEx3 {
public static void main(String args[]) throws Exception {

double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,
154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,
132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,
6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,
8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,
23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,
85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5, 124.3,
95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8, 54.8,
93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3, 37.3,
73.9};
PrintMatrixFormat pmf = new PrintMatrixFormat();

ARMA arma = new ARMA(2, 1, z);
arma.setRelativeError(0.0);
arma.setMaxIterations(0);
arma.compute();

System.out.println("Method of Moments initial estimates:");
new PrintMatrix("AR estimates are: ").print(arma.getAR());
System.out.println();
new PrintMatrix("MA estimate is: ").print(arma.getMA());
arma.setBackwardOrigin(3);

String[] labels = { "Forecast From 1866", "Forecast From 1867",
"Forecast From 1868", "Forecast From 1869"};
pmf.setColumnLabels(labels);
new PrintMatrix("forecasts: ").print(pmf, arma.forecast(12));

String[] devlabel = {"Dev. for prob. limits"};

574 • ARMA class JMSL

pmf.setColumnLabels(devlabel);
new PrintMatrix().print(pmf, arma.getDeviations());

pmf = new PrintMatrixFormat();
String[] psilabel = {"Psi"};
pmf.setColumnLabels(psilabel);
new PrintMatrix().print(pmf, arma.getPsiWeights());

}
}

Output

Method of Moments initial estimates:
AR estimates are:

0
0 1.244
1 -0.575

MA estimate is:
0

0 -0.124

forecasts:
Forecast From 1866 Forecast From 1867 Forecast From 1868 Forecast From 1869

0 18.283 16.615 55.189 83.72
1 28.918 32.019 62.761 77.209
2 41.01 45.827 61.892 63.461
3 49.939 54.15 56.457 50.099
4 54.094 56.562 50.194 41.38
5 54.128 54.778 45.527 38.217
6 51.782 51.17 43.322 39.296
7 48.842 47.707 43.263 42.458
8 46.533 45.474 44.458 45.772
9 45.352 44.686 45.978 48.076
10 45.21 44.991 47.183 49.037
11 45.713 45.823 47.807 48.908

Dev. for prob. limits
0 33.218
1 56.298
2 67.617
3 70.643
4 70.751
5 71.087
6 71.907
7 72.534
8 72.75
9 72.765
10 72.778
11 72.823

Time Series and Forecasting ARMA class • 575

Psi
0 1.368
1 1.127
2 0.616
3 0.118
4 -0.208
5 -0.326
6 -0.286
7 -0.169
8 -0.045
9 0.041
10 0.077
11 0.072

ARMA.TooManyCallsException class

static public class com.imsl.stat.ARMA.TooManyCallsException extends
com.imsl.IMSLException

The number of calls to the function has exceeded the maximum number of iterations.

Constructors

ARMA.TooManyCallsException
public ARMA.TooManyCallsException(String message)

Description

Constructs an TooManyCallsException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.TooManyCallsException
public ARMA.TooManyCallsException(String key, Object[] arguments)

Description

Constructs an TooManyCallsException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

576 • ARMA class JMSL

ARMA.IncreaseErrRelException class

static public class com.imsl.stat.ARMA.IncreaseErrRelException extends
com.imsl.IMSLException

The bound for the relative error is too small.

Constructors

ARMA.IncreaseErrRelException
public ARMA.IncreaseErrRelException(String message)

Description

Constructs an IncreaseErrRelException with the specified detail message. A detail
message is a String that describes this particular exception.
Parameter

message – the detail message

ARMA.IncreaseErrRelException
public ARMA.IncreaseErrRelException(String key, Object[] arguments)

Description

Constructs an IncreaseErrRelException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.
Parameters

key – the key of the error message in the resource bundle
arguments – an array containing arguments used within the error message string

ARMA.NewInitialGuessException class

static public class com.imsl.stat.ARMA.NewInitialGuessException extends
com.imsl.IMSLException

The iteration has not made good progress.

Constructors

ARMA.NewInitialGuessException

Time Series and Forecasting ARMA class • 577

public ARMA.NewInitialGuessException(String message)

Description

Constructs an NewInitialGuessException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.NewInitialGuessException
public ARMA.NewInitialGuessException(String key, Object[] arguments)

Description

Constructs an NewInitialGuessException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

ARMA.MatrixSingularException class

static public class com.imsl.stat.ARMA.MatrixSingularException extends
com.imsl.IMSLException

The input matrix is singular.

Constructors

ARMA.MatrixSingularException
public ARMA.MatrixSingularException(String message)

Description

Constructs an MatrixSingularException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.MatrixSingularException
public ARMA.MatrixSingularException(String key, Object[] arguments)

578 • ARMA class JMSL

Description

Constructs an MatrixSingularException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

ARMA.TooManyITNException class

static public class com.imsl.stat.ARMA.TooManyITNException extends
com.imsl.IMSLException

Maximum number of iterations exceeded.

Constructors

ARMA.TooManyITNException
public ARMA.TooManyITNException(String message)

Description

Constructs an TooManyITNException with the specified detail message. A detail message
is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.TooManyITNException
public ARMA.TooManyITNException(String key, Object[] arguments)

ARMA.TooManyFcnEvalException class

static public class com.imsl.stat.ARMA.TooManyFcnEvalException extends
com.imsl.IMSLException

Maximum number of function evaluations exceeded.

Time Series and Forecasting ARMA class • 579

Constructors

ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException(String message)

Description

Constructs an TooManyFcnEvalException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException(String key, Object[] arguments)

Description

Constructs an TooManyFcnEvalException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

ARMA.TooManyJacobianEvalException class

static public class com.imsl.stat.ARMA.TooManyJacobianEvalException extends
com.imsl.IMSLException

Maximum number of Jacobian evaluations exceeded.

Constructors

ARMA.TooManyJacobianEvalException
public ARMA.TooManyJacobianEvalException(String message)

Description

Constructs an TooManyJacobianEvalException with the specified detail message. A
detail message is a String that describes this particular exception.

580 • ARMA class JMSL

Parameter

message – the detail message

ARMA.TooManyJacobianEvalException
public ARMA.TooManyJacobianEvalException(String key, Object[] arguments)

Description

Constructs an TooManyJacobianEvalException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

ARMA.IllConditionedException class

static public class com.imsl.stat.ARMA.IllConditionedException extends
com.imsl.IMSLException

The problem is ill-conditioned.

Constructors

ARMA.IllConditionedException
public ARMA.IllConditionedException(String message)

Description

Constructs an IllConditionedException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

message – the detail message

ARMA.IllConditionedException
public ARMA.IllConditionedException(String key, Object[] arguments)

Description

Constructs an IllConditionedException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Time Series and Forecasting ARMA class • 581

Parameters

key – the key of the error message in the resource bundle

arguments – an array containing arguments used within the error message string

Difference class

public class com.imsl.stat.Difference implements Serializable, Cloneable

Differences a seasonal or nonseasonal time series.

Class Difference performs m = periods.length successive backward differences of period
si = periods[i− 1] and order di = orders[i− 1] for i = 1, . . . ,m on the n = z.length
observations {Zt} for t = 1, 2, . . . , n.

Consider the backward shift operator B given by

BkZt = Zt−k

for all k. Then, the backward difference operator with period s is defined by the following:

∆sZt = (1−Bs)Zt = Zt − Zt−s for s ≥ 0

Note that BsZt and ∆sZt are defined only for t = (s+ 1), . . . , n. Repeated differencing with
period s is simply

∆d
sZt = (1−Bs)d

Zt =
d∑

j=0

d!
j! (d− j)!

(−1)j
BsjZt

where d ≥ 0 is the order of differencing. Note that

∆d
sZt

is defined only for t = (sd+ 1), . . . , n.

The general difference formula used in the class Difference is given by

WT =
{

NaN for t = 1, . . . , nL

∆d1
s1

∆d2
s2
. . .∆dm

sm
Zt for t = nL + 1, . . . , n

where nL represents the number of observations ”lost” because of differencing and NaN
represents the missing value code. Note that

582 • Difference class JMSL

nL =
∑

j

sjdj

A homogeneous, stationary time series can be arrived at by appropriately differencing a
homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary application
of an appropriate transformation followed by differencing of a series can enable model
identification and parameter estimation in the class of homogeneous stationary autoregressive
moving average models.

Constructor

Difference
public Difference()

Description

Constructor for Difference.

Methods

compute
final public double[] compute(double[] z, int[] periods) throws
IllegalArgumentException

Description

Computes a Difference series.

Parameters

z – a double array containing the time series.

periods – an int array containing the periods at which z is to be differenced.

Returns

a double array containing the differenced series.

excludeFirst
public void excludeFirst(boolean exclude)

Description

If set to true, the observations lost due to differencing will be excluded. The differenced
series will be the length of the number of observations minus the number of observations
lost. If set to false, the observations lost due to differencing will be set to NaN (Not a
number) and included in the differenced series. The default is to set the lost observations
to NaN.

Time Series and Forecasting Difference class • 583

Parameter

exclude – a boolean specifying whether or not to exclude lost observations due to
differencing.

getObservationsLost
public int getObservationsLost()

Description

Returns the number of observations lost because of differencing the time series.

Returns

an int containing the number of observations lost because of differencing the time series
z.

setOrders
public void setOrders(int[] orders)

Description

Sets the orders for the Difference object

Parameter

orders – an int array of length equal to length of periods, containing the order of
each difference given in periods. The elements of orders must be greater than or
equal to 0.

Example 1: Difference

This example uses the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly
total number of international airline passengers from January 1949 through December 1960.
Difference is used to compute ...

Wt = ∆1∆12Zt = (Zt − Zt−12)− (Zt−1 − Zt−13)

for t= 14, 15, ...,24.

import com.imsl.stat.*;

public class DifferenceEx1 {
public static void main(String args[]) {

int periods[] = {1, 12};
int nLost;
double[] z = {

112.0,118.0,132.0,129.0,121.0,135.0,
148.0,148.0,136.0,119.0,104.0,118.0,
115.0,126.0,141.0,135.0,125.0,149.0,

584 • Difference class JMSL

170.0,170.0,158.00,133.0,114.0,140.0
};

Difference diff = new Difference();
double[] out = diff.compute(z, periods);
nLost = diff.getObservationsLost();

System.out.println("Observations Lost = " + nLost);

for (int i = 0; i < out.length; i++)
System.out.println(out[i]);

}
}

Output

Observations Lost = 13
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
5.0
1.0
-3.0
-2.0
10.0
8.0
0.0
0.0
-8.0
-4.0
12.0

Example 2: Difference

This example uses the same data as Example 1. The first number of lost observations are
excluded from W due to differencing, and the number of lost observations is also output.

import com.imsl.stat.*;

Time Series and Forecasting Difference class • 585

public class DifferenceEx2 {
public static void main(String args[]) {

int periods[] = {1, 12};
int nLost;
double[] z={

112.0,118.0,132.0,129.0,121.0,135.0,
148.0,148.0,136.0,119.0,104.0,118.0,
115.0,126.0,141.0,135.0,125.0,149.0,
170.0,170.0,158.00,133.0,114.0,140.0

};

Difference diff = new Difference();
diff.excludeFirst(true);
double[] out = diff.compute(z, periods);
nLost = diff.getObservationsLost();

System.out.println("The number of observation lost = "
+ nLost);
for (int i=0; i < out.length; i++)

System.out.println(out[i]);
}

}

Output

The number of observation lost = 13
5.0
1.0
-3.0
-2.0
10.0
8.0
0.0
0.0
-8.0
-4.0
12.0

GARCH class

public class com.imsl.stat.GARCH implements Serializable, Cloneable

Computes estimates of the parameters of a GARCH(p,q) model.

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is defined as

586 • GARCH class JMSL

yt = ztσt

σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i+

q∑
i=1

αiy
2
t−i

where zt’s are independent and identically distributed standard normal random variables,

σ > 0, βi ≥ 0, αi ≥ 0

and

p∑
i=1

βi +
q∑

i=1

αi < 1

The above model is denoted as GARCH(p, q). The p is the autoregressive lag and the q is the
moving average lag. When βi = 0, i = 1, 2, . . . , p, the above model reduces to ARCH(q) which
was proposed by Engle (1982). The nonnegativity conditions on the parameters implied a
nonnegative variance and the condition on the sum of the βi’s and αi’s is required for wide
sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often
found to appropriately account for conditional heteroskedasticity (Palm 1996). This finding is
similar to linear time series analysis based on ARMA models.

It is important to notice that for the above models positive and negative past values have a
symmetric impact on the conditional variance. In practice, many series may have strong
asymmetric influence on the conditional variance. To take into account this phenomena, Nelson
(1991) put forward Exponential GARCH (EGARCH). Lai (1998) proposed and studied some
properties of a general class of models that extended linear relationship of the conditional
variance in ARCH and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in GARCH(p,q). The
log-likelihood of the model for the observed series {Yt} with length m is

log(L) =
m

2
log(2π)− 1

2

m∑
t=1

y2
t /σ

2
t −

1
2

m∑
t=1

log σ2
t ,

where σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiy
2
t−i.

In the model, if q = 0, the model GARCH is singular such that the estimated Hessian matrix H
is singular.

Time Series and Forecasting GARCH class • 587

The initial values of the parameter array x[] entered in array xguess[] must satisfy certain
constraints. The first element of xguess refers to sigma and must be greater than zero and less
than maxSigma. The remaining p+q initial values must each be greater than or equal to zero
but less than one.

To guarantee stationarity in model fitting,

p+q∑
i=1

x(i) < 1,

is checked internally. The initial values should be selected from the values between zero and
one. The value of Akaike Information Criterion is computed by

2× log(L) + 2× (p + q + 1),

where log(L) is the value of the log-likelihood function at the estimated parameters.

In fitting the optimal model, the class com.imsl.math.MinConGenLin (p. 169) , is modified to
find the maximal likelihood estimates of the parameters in the model. Statistical inferences can
be performed outside of the class GARCH based on the output of the log-likelihood function
(getlogLikelihood method), the Akaike Information Criterion (getAkaike method), and the
variance-covariance matrix (getVarCovarMatrix method).

Constructor

GARCH
public GARCH(int p, int q, double[] y, double[] xguess)

Description

Constructor for GARCH.

Parameters

p – An int scalar containing the number of autoregressive (AR) parameters.

q – An int scalar containing the number of moving average (MA) parameters.

y – A double array containing the observed time series data.

xguess – A double array of length p + q + 1 containing the initial values for the
parameter array.

IllegalArgumentException is thrown if the dimensions of y, and xguess are not
consistent.

588 • GARCH class JMSL

Methods

compute
final public void compute() throws GARCH.ConstrInconsistentException,
GARCH.EqConstrInconsistentException, GARCH.NoVectorXException,
GARCH.TooManyIterationsException, GARCH.VarsDeterminedException

Description

Computes estimates of the parameters of a GARCH(p,q) model.

ConstrInconsistentException is thrown if the equality constraints are inconsistent.

EqConstrInconsistentException is thrown if the equality constraints and the bounds
on the variables are found to be inconsistent.

NoVectorXException is thrown if no vector X satisfies all of the constraints.

TooManyIterationsException is thrown if the number of function evaluations exceeded
1000.

VarsDeterminedException is thrown if the variables are determined by the equality
constraints.

getAkaike
public double getAkaike()

Description

Returns the value of Akaike Information Criterion evaluated at the estimated parameter
array.

Returns

a double scalar containing the value of Akaike Information Criterion evaluated at the
estimated parameter array.

getAR
public double[] getAR()

Description

Returns the estimated values of autoregressive (AR) parameters.

Returns

a double array of size p containing the estimated values of autoregressive (AR)
parameters.

getLogLikelihood
public double getLogLikelihood()

Description

Returns the value of Log-likelihood function evaluated at the estimated parameter array.

Time Series and Forecasting GARCH class • 589

Returns

a double scalar containing the value of Log-likelihood function evaluated at the estimated
parameter array.

getMA
public double[] getMA()

Description

Returns the estimated values of moving average (MA) parameters.

Returns

a double array of size q containing the estimated values of moving average (MA)
parameters.

getSigma
public double getSigma()

Description

Returns the estimated value of sigma squared.

Returns

a double scalar containing the estimated value of sigma squared.

getVarCovarMatrix
public double[][] getVarCovarMatrix()

Description

Returns the variance-covariance matrix.

Returns

a double matrix of size p + q + 1 by p + q + 1 containing the variance-covariance
matrix.

getX
public double[] getX()

Description

Returns the estimated parameter array, x.

Returns

a double array of size p + q + 1 containing the estimated values of sigma squared, the
AR parameters, and the MA parameters.

setMaxSigma
public void setMaxSigma(double maxSigma)

590 • GARCH class JMSL

Description

Sets the value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients.

Parameter

maxSigma – A double scalar containing the value of the upperbound on the first
element (sigma) of the array of returned estimated coefficients. Default = 10.

Example: GARCH

The data for this example are generated to follow a GARCH(p,q) process by using a random
number generation function sgarch. The data set is analyzed and estimates of sigma, the AR
parameters, and the MA parameters are returned. The values of the Log-likelihood function
and the Akaike Information Criterion are returned.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class GARCHEx1 {
static private void sgarch(int p, int q, int m, double[] x, double[] y,
double[] z, double[] y0, double[] sigma) {

int i, j, l;
double s1, s2, s3;
Random rand = new Random(182198625L);

rand.setMultiplier(16807);
for (i = 0; i < m+1000; i++) z[i] = rand.nextNormal();

l = Math.max(p, q);
l = Math.max(l, 1);
for(i =0; i <l; i++) y0[i] = z[i] * x[0];

/* COMPUTE THE INITIAL VALUE OF SIGMA */
s3 = 0.0;
if (Math.max(p, q) >= 1) {

for(i =1; i <(p +q +1); i++) s3 += x[i];
}
for(i =0;i <l;i++) sigma[i] = x[0] / (1.0 - s3);
for(i =l;i <(m +1000); i++) {

s1 = 0.0;
s2 = 0.0;
if (q >= 1) {

for(j =0;j <q;j++) s1+=x[j +1]*y0[i -j -1]*y0[i -j -1];
}
if (p >= 1) {

for(j =0;j <p;j++) s2+=x[q +1 +j]*sigma[i -j -1];
}
sigma[i] = x[0] + s1 + s2;
y0[i] = z[i] * Math.sqrt(sigma[i]);

}
/*

Time Series and Forecasting GARCH class • 591

* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
*/

for(i =0;i <m;i++) y[i] = y0[1000 + i];
return;

}

public static void main(String args[]) throws Exception {
int n, p, q, m;
double[] x = {1.3, 0.2, 0.3, 0.4};
double[] xguess = {1.0, 0.1, 0.2, 0.3};
double[] y = new double[1000];
double[] wk1 = new double[2000];
double[] wk2 = new double[2000];
double[] wk3 = new double[2000];
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(3);

m = 1000;
p = 2;
q = 1;
n = p+q+1;
sgarch(p, q, m, x, y, wk1, wk2, wk3);

GARCH garch = new GARCH(p, q, y, xguess);
garch.compute();

System.out.println("Sigma estimate is " + nf.format(garch.getSigma()));
System.out.println();
new PrintMatrix("AR estimate is ").print(garch.getAR());
new PrintMatrix("MR estimate is ").print(garch.getMA());
System.out.println("Log-likelihood function value is " +
nf.format(garch.getLogLikelihood()));
System.out.println("Akaike Information Criterion value is " +
nf.format(garch.getAkaike()));

}
}

Output

Sigma estimate is 1.692

AR estimate is
0

0 0.245
1 0.337

MR estimate is
0

0 0.31

592 • GARCH class JMSL

Log-likelihood function value is -2,707.072
Akaike Information Criterion value is 5,422.144

GARCH.VarsDeterminedException class

static public class com.imsl.stat.GARCH.VarsDeterminedException extends
com.imsl.IMSLException

The variables are determined by the equality constraints.

Constructors

GARCH.VarsDeterminedException
public GARCH.VarsDeterminedException(String message)

GARCH.VarsDeterminedException
public GARCH.VarsDeterminedException(String key, Object[] arguments)

GARCH.TooManyIterationsException class

static public class com.imsl.stat.GARCH.TooManyIterationsException extends
com.imsl.IMSLException

Number of function evaluations exceeded 1000.

Constructors

GARCH.TooManyIterationsException
public GARCH.TooManyIterationsException(String message)

GARCH.TooManyIterationsException
public GARCH.TooManyIterationsException(String key, Object[] arguments)

Time Series and Forecasting GARCH class • 593

GARCH.NoVectorXException class

static public class com.imsl.stat.GARCH.NoVectorXException extends
com.imsl.IMSLException

No vector X satisfies all of the constraints.

Constructors

GARCH.NoVectorXException
public GARCH.NoVectorXException(String message)

GARCH.NoVectorXException
public GARCH.NoVectorXException(String key, Object[] arguments)

GARCH.EqConstrInconsistentException class

static public class com.imsl.stat.GARCH.EqConstrInconsistentException extends
com.imsl.IMSLException

The equality constraints and the bounds on the variables are found to be inconsistent.

Constructors

GARCH.EqConstrInconsistentException
public GARCH.EqConstrInconsistentException(String message)

GARCH.EqConstrInconsistentException
public GARCH.EqConstrInconsistentException(String key, Object[] arguments)

GARCH.ConstrInconsistentException class

static public class com.imsl.stat.GARCH.ConstrInconsistentException extends
com.imsl.IMSLException

The equality constraints are inconsistent.

594 • GARCH class JMSL

Constructors

GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException(String message)

GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException(String key, Object[] arguments)

KalmanFilter class

public class com.imsl.stat.KalmanFilter implements Serializable, Cloneable

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Class KalmanFilter is based on a recursive algorithm given by Kalman (1960), which has come
to be known as the Kalman filter. The underlying model is known as the state-space model.
The model is specified stage by stage where the stages generally correspond to time points at
which the observations become available. KalmanFilter avoids many of the computations and
storage requirements that would be necessary if one were to process all the data at the end of
each stage in order to estimate the state vector. This is accomplished by using previous
computations and retaining in storage only those items essential for processing of future
observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in y using
method update) be the nk × 1 vector of observations that become available at time k. The
subscript k is used here rather than t, which is more customary in time series, to emphasize
that the model is expressed in stages k = 1, 2, . . . and that these stages need not correspond to
equally spaced time points. In fact, they need not correspond to time points of any kind. The
observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, . . .

Here, Zk (input in z using method update) is an nk × q known matrix and bk is the q × 1 state
vector. The state vector bk is allowed to change with time in accordance with the state equation

bk+1 = Tk+1bk + wk+1 k = 1, 2, . . .

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition matrix
Tk+1 (the identity matrix by default, or optionally using method setTransitionMatrix),
which is assumed known. It is assumed that the q-dimensional wks(k = 1, 2, . . .) are
independently distributed multivariate normal with mean vector 0 and variance-covariance

Time Series and Forecasting KalmanFilter class • 595

matrix σ2Qk, that the nk-dimensional eks(k = 1, 2, . . .) are independently distributed
multivariate normal with mean vector 0 and variance-covariance matrix σ2Rk, and that the
wks and eks are independent of each other. Here, µ1is the mean of b1 and is assumed known,
σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations
y1, y2, . . . , yj by

β̂k|j

By definition, the mean squared error matrix for

β̂k|j

is

σ2Ck|j = E(β̂k|j − bk)(β̂k|j − bk)T

At the time of the k-th invocation, we have

β̂k|k−1

and

Ck|k−1 , which were computed from the k-1-st invocation, input in b and covb, respectively.
During the k-th invocation, KalmanFilter computes the filtered estimate

β̂k|k

along with Ck|k . These quantities are given by the update equations:

β̂k|k = β̂k|k−1 + Ck|k−1Z
T
k H

−1
k vk

Ck|k = Ck|k−1 − Ck|k−1Z
T
k H

−1
k ZkCk|k−1

where

vk = yk − Zkβ̂k|k−1

and where

Hk = Rk + ZkCk|k−1Z
T
k

596 • KalmanFilter class JMSL

Here, vk (stored in getPredictionError) is the one-step-ahead prediction error, and σ2Hk is
the variance-covariance matrix for vk. Hk is obtained from method getCovV. The ”start-up
values” needed on the first invocation of KalmanFilter are

β̂1|0 = µ1

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation are
completed by KalmanFilter computing the one-step-ahead estimate

β̂k+1|k

along with Ck+1|k given by the prediction equations:

β̂k+1|k = Tk+1β̂k|k

Ck+1|k = Tk+1Ck|kT
T
k+1 +Qk+1

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time
point, KalmanFilter can be used twice for each time point-first without methods
SetTransitionMatrix and setQ to produce

β̂k|k

and Ck|k , and second without method update to produce

β̂k+1|k

and Ck+1|k (Without methods SetTransitionMatrix and setQ, the prediction equations are
skipped. Without method update, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate of

β̂k|j

is needed where k > j + 1. At time j, KalmanFilter is invoked with method update to compute

β̂j+1|j

Subsequent invocations of KalmanFilter without method update can compute

β̂j+2|j , β̂j+3|j , . . . , β̂k|j

Computations for

Time Series and Forecasting KalmanFilter class • 597

β̂k|j

and Ck|j assume the variance-covariance matrices of the errors in the observation equation and
state equation are known up to an unknown positive scalar multiplier, σ2. The maximum
likelihood estimate of σ2 based on the observations y1, y2, . . . , ym, is given by

σ̂2 = SS/N

where

N =
∑m

k=1
nk and SS =

∑m

k=1
vT

k H
−1
k vk

N and SS are input arguments rank and SumofSquares. Updated values are obtained from
methods getRank and getSumofSquares

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices exactly. The
earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may be
known functions of an unknown parameter vector θ. In this case, KalmanFilter can be used in
conjunction with an optimization class (see MinUnconMultiVar, JMSL Math package), to
obtain a maximum likelihood estimate of θ. The natural logarithm of the likelihood function
for y1, y2, . . . , ym differs by no more than an additive constant from

L(θ, σ2; y1, y2, . . . , ym) = −1
2
N lnσ2 − 1

2

m∑
k=1

ln[det(Hk)]− 1
2
σ−2

m∑
k=1

vT
k H

−1
k vk

(Harvey 1981, page 14, equation 2.21).

Here,

∑m

k=1
ln[det(Hk)]

(input in logDeterminant, updated by getLogDeterminant) is the natural logarithm of the
determinant of V where σ2V is the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, . . . , ym) over all θ and σ2 produces maximum likelihood
estimates. Equivalently, minimization of −2Lc(θ; y1, y2, . . . , ym) where

Lc(θ; y1, y2, . . . , ym) = −1
2
N ln

(
SS

N

)
− 1

2

m∑
k=1

ln[det(Hk)]

produces maximum likelihood estimates

598 • KalmanFilter class JMSL

θ̂ and σ̂2 = SS/N

Minimization of −2Lc(θ; y1, y2, . . . , ym) instead of −2L(θ, σ2; y1, y2, . . . , ym), reduces the
dimension of the minimization problem by one. The two optimization problems are equivalent
since

σ̂2(θ) = SS(θ)/N

minimizes −2L(θ, σ2; y1, y2, . . . , ym) for all θ, consequently,

σ̂
2
(θ)

can be substituted for σ2 in L(θ, σ2; y1, y2, . . . , ym) to give a function that differs by no more
than an additive constant from Lc(θ; y1, y2, . . . , ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for
singular distributions described by Rao (1973, pages 527-528) is used. The necessary changes in
the preceding discussion are as follows:

• Replace H−1
k by a generalized inverse.

• Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

• Replace N by
∑m

k=1 rank (Hk)

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas and
Harville (1988) and Harvey (1981, pages 111-113).

Constructor

KalmanFilter
public KalmanFilter(double[] b, double[] covb, int rank, double
sumOfSquaress, double logDeterminant)

Description

Constructor for KalmanFilter.

Parameters

b – A double array containing the estimated state vector. b is the estimated state
vector at time k given the observations through time k-1.

covb – A double array of size b.length by b.length such that covb * σ2 is the
mean squared error matrix for b.

rank – An int scalar containing the rank of the variance-covariance matrix for all
the observations.

Time Series and Forecasting KalmanFilter class • 599

sumOfSquaress – A double scalar containing the generalized sum of squares.

logDeterminant – A double scalar containing the natural log of the product of the
nonzero eigenvalues of P where P * σ2 is the variance-covariance matrix of the
observations.

IllegalArgumentException is thrown if the dimensions of b, and covb are not
consistent.

Methods

filter
final public void filter()

Description

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

getCovB
public double[] getCovB()

Description

Returns the mean squared error matrix for b divided by sigma squared.

Returns

a double array of size b.length by b.length such that covb * σ2 is the mean squared
error matrix for b.

getCovV
public double[][] getCovV()

Description

Returns the variance-covariance matrix of v divided by sigma squared.

Returns

a double matrix containing a y.length by y.length matrix such that covv * σ2 is the
variance-covariance matrix of the one-step-ahead prediction error, getPredictionError.

getLogDeterminant
public double getLogDeterminant()

Description

Returns the natural log of the product of the nonzero eigenvalues of P where P * sigma2

is the variance-covariance matrix of the observations.

600 • KalmanFilter class JMSL

Returns

a double scalar containing the natural log of the product of the nonzero eigenvalues of P
where P * σ2 is the variance-covariance matrix of the observations. In the usual case when
P is nonsingular, logDeterminant is the natural log of the determinant of P.

getPredictionError
public double[] getPredictionError()

Description

Returns the one-step-ahead prediction error.

Returns

a double array of size y.length containing the one-step-ahead prediction error.

getRank
public int getRank()

Description

Returns the rank of the variance-covariance matrix for all the observations.

Returns

An int scalar containing the rank of the variance-covariance matrix for all the
observations.

getStateVector
public double[] getStateVector()

Description

Returns the estimated state vector at time k + 1 given the observations through time k.

Returns

a double array containing the estimated state vector at time k + 1 given the observations
through time k.

getSumOfSquares
public double getSumOfSquares()

Description

Returns the generalized sum of squares.

Returns

a double scalar containing the generalized sum of squares. The estimate of σ2 is given by
sumOfSquares / rank.

setQ
public void setQ(double[][] q)

Time Series and Forecasting KalmanFilter class • 601

Description

Sets the Q matrix.

Parameter

q – A double matrix containing the b.length by b.length matrix such that q * σ2

is the variance-covariance matrix of the error vector in the state equation. Default:
There is no error term in the state equation.

setTolerance
public void setTolerance(double tolerance)

Description

Sets the tolerance used in determining linear dependence.

Parameter

tolerance – A double scalar containing the tolerance used in determining linear
dependence. Default: tolerance = 100.0*2.2204460492503131e-16.

setTransitionMatrix
public void setTransitionMatrix(double[][] t)

Description

Sets the transition matrix.

Parameter

t – A double matrix containing the b.length by b.length transition matrix in the
state equation. Default: t = identity matrix

update
public void update(double[] y, double[][] z, double[][] r)

Description

Performs computation of the update equations.

Parameters

y – A double array containing the observations.

z – A double matrix containing the y.length by b.length matrix relating the
observations to the state vector in the observation equation.

r – A double matrix containing the y.length by y.length matrix such that r * σ2

is the variance-covariance matrix of errors in the observation equation. σ2 is a
positive unknown scalar. Only elements in the upper triangle of r are referenced.

602 • KalmanFilter class JMSL

Example: Kalman Filter

KalmanFilter is used to compute the filtered estimates and one-step-ahead estimates for a
scalar problem discussed by Harvey (1981, pages 116-117). The observation equation and state
equation are given by

yk = bk + ek

bk+1 = bk + wk+1

k = 1, 2, 3, 4

where the eks are identically and independently distributed normal with mean 0 and variance
σ2, the wks are identically and independently distributed normal with mean 0 and variance
4σ2, and b1 is distributed normal with mean 4 and variance 16σ2. Two KalmanFilter objects
are needed for each time point in order to compute the filtered estimate and the one-step-ahead
estimate. The first object does not use the methods SetTransitionMatrix and setQ so that
the prediction equations are skipped in the computations. The update equations are skipped in
the computations in the second object.

This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117)
contains a misprint for the value v4 that he gives as 1.197. The correct value of v4 = 1.003 is
computed by KalmanFilter.

import java.text.*;
import com.imsl.stat.*;
import java.text.MessageFormat;

public class KalmanFilterEx1 {
static private final MessageFormat mf =

new MessageFormat("{0}/{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}");

public static void main(String args[]) {
int nobs = 4;
int rank = 0;
double logDeterminant = 0.0;
double ss = 0.0;
double[] b = {4};
double[] covb = {16};
double[][] q = {{4}};
double[][] r = {{1}};
double[][] t = {{1}};
double[][] z = {{1}};
double[] ydata = {4.4, 4.0, 3.5, 4.6};

Object argFormat[] =
{"k", "j", "b", "cov(b)", "rank", "ss", "ln(det)", "v", "cov(v)"};

System.out.println(mf.format(argFormat));

for (int i = 0; i < nobs; i++) {

Time Series and Forecasting KalmanFilter class • 603

double y[] = {ydata[i]};
KalmanFilter kalman =
new KalmanFilter(b, covb, rank, ss, logDeterminant);
kalman.update(y, z, r);
kalman.filter();
b = kalman.getStateVector();
covb = kalman.getCovB();
rank = kalman.getRank();
ss = kalman.getSumOfSquares();
logDeterminant = kalman.getLogDeterminant();
double v[] = kalman.getPredictionError();
double covv[][] = kalman.getCovV();
argFormat[0] = new Integer(i);
argFormat[1] = new Integer(i);
argFormat[2] = new Double(b[0]);
argFormat[3] = new Double(covb[0]);
argFormat[4] = new Integer(rank);
argFormat[5] = new Double(ss);
argFormat[6] = new Double(logDeterminant);
argFormat[7] = new Double(v[0]);
argFormat[8] = new Double(covv[0][0]);
System.out.println(mf.format(argFormat));

kalman = new KalmanFilter(b, covb, rank, ss, logDeterminant);
kalman.setTransitionMatrix(t);
kalman.setQ(q);
kalman.filter();
b = kalman.getStateVector();
covb = kalman.getCovB();
rank = kalman.getRank();
ss = kalman.getSumOfSquares();
logDeterminant = kalman.getLogDeterminant();
argFormat[0] = new Integer(i+1);
argFormat[1] = new Integer(i);
argFormat[2] = new Double(b[0]);
argFormat[3] = new Double(covb[0]);
argFormat[4] = new Integer(rank);
argFormat[5] = new Double(ss);
argFormat[6] = new Double(logDeterminant);
argFormat[7] = new Double(v[0]);
argFormat[8] = new Double(covv[0][0]);
System.out.println(mf.format(argFormat));

}
}

}

Output

k/j b cov(b) rank ss ln(det) v cov(v)
0/0 4.376 0.941 1 0.009 2.833 0.4 17
1/0 4.376 4.941 1 0.009 2.833 0.4 17
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941

604 • KalmanFilter class JMSL

2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.26 8.141 1.003 5.829
4/3 4.428 4.828 4 0.26 8.141 1.003 5.829

Chapter 18. Time Series and Forecasting KalmanFilter class • 605

606 • KalmanFilter class JMSL

Chapter 19: Multivariate Analysis

Types

class ClusterKMeans. .609
class Dissimilarities . 620
class ClusterHierarchical . 625
class FactorAnalysis . 634
class DiscriminantAnalysis . 653

Usage Notes

Cluster Analysis

ClusterKMeans performs a K-means cluster analysis. Basic K-means clustering attempts to
find a clustering that minimizes the within-cluster sums-of-squares. In this method of clustering
the data, matrix X is grouped so that each observation (row in X) is assigned to one of a fixed
number, K, of clusters. The sum of the squared difference of each observation about its assigned
cluster’s mean is used as the criterion for assignment. In the basic algorithm, observations are
transferred from one cluster or another when doing so decreases the within-cluster
sums-of-squared differences. When no transfer occurs in a pass through the entire data set, the
algorithm stops. ClusterKMeans is one implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use ClusterKMeans to obtain the
optimal clustering. The clustering is then evaluated by functions described in ”Basic
Statistics,” and/or other chapters in this manual. Often, K-means clustering with more than
one value of K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion of the function
ClusterKMeans assumes the clustering is to be performed on the observations, which
correspond to the rows of the input data matrix. If variables, rather than observations, are to
be clustered, the data matrix should first be transposed. In the documentation for
ClusterKMeans, the words ”observation” and ”variable” are interchangeable.

Principal Components

607

The idea in principal components is to find a small number of linear combinations of the
original variables that maximize the variance accounted for in the original data. This amounts
to an eigensystem analysis of the covariance (or correlation) matrix. In addition to the
eigensystem analysis, when the principal component model is used, FactorAnalysis computes
standard errors for the eigenvalues. Correlations of the original variables with the principal
component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in assumptions, often
serve the same ends. Unlike principal components in which linear combinations yielding the
highest possible variances are obtained, factor analysis generally obtains linear combinations of
the observed variables according to a model relating the observed variable to hypothesized
underlying factors, plus a random error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to be independent
of the factors. Additionally, in the common factor model, the unique errors are assumed to be
mutually independent. The factor analysis model is expressed in the following equation:

x− µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means, Λ is the p× k
matrix of factor loadings, f is the k vector of hypothesized underlying random factors, e is the
p vector of hypothesized unique random errors, p is the number of variables in the observed
variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was
expensive on early computers, quick (but dirty) algorithms that made the calculations possible
were developed. One result is the many factor extraction methods available today. Generally
speaking, in the exploratory or model building phase of a factor analysis, a method of factor
extraction that is not computationally intensive (such as principal components, principal factor,
or image analysis) is used. If desired, a computationally intensive method is then used to
obtain the final factors.

Discriminant Analysis

The class DiscriminantAnalysis allows linear or quadratic discrimination and the use of
either reclassification, split sample, or the leaving-out-one methods in order to evaluate the
rule. Moreover, DiscriminantAnalysis can be executed in an online mode, that is, one or
more observations can be added to the rule during each invocation of DiscriminantAnalysis.

The mean vectors for each group of observations and an estimate of the common covariance
matrix for all groups are input to DiscriminantAnalysis. These estimates can be computed
via routine DiscriminantAnalysis. Output from DiscriminantAnalysis are linear
combinations of the observations, which at most separate the groups. These linear
combinations may subsequently be used for discriminating between the groups. Their use in
graphically displaying differences between the groups is possibly more important, however.

608 • JMSL

ClusterKMeans class

public class com.imsl.stat.ClusterKMeans implements Serializable, Cloneable

Perform a K-means (centroid) cluster analysis.

ClusterKMeans is an implementation of Algorithm AS 136 by Hartigan and Wong (1979). It
computes K-means (centroid) Euclidean metric clusters for an input matrix starting with initial
estimates of the K cluster means. It allows for missing values (coded as NaN, not a number)
and for weights and frequencies.

Let p denote the number of variables to be used in computing the Euclidean distance between
observations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the
observations so as to minimize the total within-cluster sums of squares. In this case, the total
sums of squares within each cluster is computed as the sum of the centered sum of squares over
all nonmissing values of each variable. That is,

φ =
K∑

i=1

p∑
j=1

ni∑
m=1

fνimwνimδνim,j (xνim,j − x̄ij)
2

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix X; ni

is the number of rows of X assigned to group i; f denotes the frequency of the observation; w
denotes its weight; d is zero if the j-th variable on observation νim is missing, otherwise δ is one;
and x̄ij is the average of the nonmissing observations for variable j in group i. This method
sequentially processes each observation and reassigns it to another cluster if doing so results in
a decrease in the total within-cluster sums of squares. See Hartigan and Wong (1979) or
Hartigan (1975) for details.

Constructor

ClusterKMeans
public ClusterKMeans(double[][] x, double[][] cs)

Description

Constructor for ClusterKMeans.

Parameters

x – A double matrix containing the observations to be clustered.

cs – A double matrix containing the cluster seeds, i.e. estimates for the cluster
centers.

IllegalArgumentException is thrown if x.length, x[0].length are equal 0, or
cs.length is less than 1.

Multivariate Analysis ClusterKMeans class • 609

Methods

compute
final public double[][] compute() throws
ClusterKMeans.NoConvergenceException,
ClusterKMeans.ClusterNoPointsException

Description

Computes the cluster means.

Returns

A double matrix containing computed result.

NonnegativeFreqException is thrown if a frequency is negative.

NonnegativeWeightException is thrown if a weight is negative.

NoConvergenceException is thrown if convergence did not occur within the maximum
number of iterations.

ClusterNoPointsException is thrown if the cluster seed yields a cluster with no points.

getClusterCounts
public int[] getClusterCounts()

Description

Returns the number of observations in each cluster.

Returns

An int array containing the number of observations in each cluster.

getClusterMembership
public int[] getClusterMembership()

Description

Returns the cluster membership for each observation.

Returns

An int array containing the cluster membership for each observation. Cluster
membership 1 indicates the observation belongs to cluster 1, cluster membership 2
indicates the observation belongs to cluster 2, etc.

getClusterSSQ
public double[] getClusterSSQ()

Description

Returns the within sum of squares for each cluster.

610 • ClusterKMeans class JMSL

Returns

A double array containing the within sum of squares for each cluster.

setFrequencies
public void setFrequencies(double[] frequencies) throws
ClusterKMeans.NonnegativeFreqException

Description

Sets the frequency for each observation.

Parameter

frequencies – A double array of size x.length containing the frequency for each
observation. Default: frequencies[] = 1.

setMaxIterations
public void setMaxIterations(int iterations)

Description

Sets the maximum number of iterations.

Parameter

iterations – An int scalar specifying the maximum number of iterations. Default:
interations = 30.

setWeights
public void setWeights(double[] weights) throws
ClusterKMeans.NonnegativeWeightException

Description

Sets the weight for each observation.

Parameter

weights – A double array of size x.length containing the weight for each
observation. Default: weights[] = 1.

Example: K-means Cluster Analysis

This example performs K-means cluster analysis on Fisher’s iris data. The initial cluster seed
for each iris type is an observation known to be in the iris type.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.*;

Multivariate Analysis ClusterKMeans class • 611

public class ClusterKMeansEx1 {
public static void main(String argv[]) throws Exception {

double[][] x = {
{ 5.100, 3.500, 1.400, 0.200},
{ 4.900, 3.000, 1.400, 0.200},
{ 4.700, 3.200, 1.300, 0.200},
{ 4.600, 3.100, 1.500, 0.200},
{ 5.000, 3.600, 1.400, 0.200},
{ 5.400, 3.900, 1.700, 0.400},
{ 4.600, 3.400, 1.400, 0.300},
{ 5.000, 3.400, 1.500, 0.200},
{ 4.400, 2.900, 1.400, 0.200},
{ 4.900, 3.100, 1.500, 0.100},
{ 5.400, 3.700, 1.500, 0.200},
{ 4.800, 3.400, 1.600, 0.200},
{ 4.800, 3.000, 1.400, 0.100},
{ 4.300, 3.000, 1.100, 0.100},
{ 5.800, 4.000, 1.200, 0.200},
{ 5.700, 4.400, 1.500, 0.400},
{ 5.400, 3.900, 1.300, 0.400},
{ 5.100, 3.500, 1.400, 0.300},
{ 5.700, 3.800, 1.700, 0.300},
{ 5.100, 3.800, 1.500, 0.300},
{ 5.400, 3.400, 1.700, 0.200},
{ 5.100, 3.700, 1.500, 0.400},
{ 4.600, 3.600, 1.000, 0.200},
{ 5.100, 3.300, 1.700, 0.500},
{ 4.800, 3.400, 1.900, 0.200},
{ 5.000, 3.000, 1.600, 0.200},
{ 5.000, 3.400, 1.600, 0.400},
{ 5.200, 3.500, 1.500, 0.200},
{ 5.200, 3.400, 1.400, 0.200},
{ 4.700, 3.200, 1.600, 0.200},
{ 4.800, 3.100, 1.600, 0.200},
{ 5.400, 3.400, 1.500, 0.400},
{ 5.200, 4.100, 1.500, 0.100},
{ 5.500, 4.200, 1.400, 0.200},
{ 4.900, 3.100, 1.500, 0.200},
{ 5.000, 3.200, 1.200, 0.200},
{ 5.500, 3.500, 1.300, 0.200},
{ 4.900, 3.600, 1.400, 0.100},
{ 4.400, 3.000, 1.300, 0.200},
{ 5.100, 3.400, 1.500, 0.200},
{ 5.000, 3.500, 1.300, 0.300},
{ 4.500, 2.300, 1.300, 0.300},
{ 4.400, 3.200, 1.300, 0.200},
{ 5.000, 3.500, 1.600, 0.600},
{ 5.100, 3.800, 1.900, 0.400},
{ 4.800, 3.000, 1.400, 0.300},
{ 5.100, 3.800, 1.600, 0.200},
{ 4.600, 3.200, 1.400, 0.200},
{ 5.300, 3.700, 1.500, 0.200},
{ 5.000, 3.300, 1.400, 0.200},
{ 7.000, 3.200, 4.700, 1.400},
{ 6.400, 3.200, 4.500, 1.500},

612 • ClusterKMeans class JMSL

{ 6.900, 3.100, 4.900, 1.500},
{ 5.500, 2.300, 4.000, 1.300},
{ 6.500, 2.800, 4.600, 1.500},
{ 5.700, 2.800, 4.500, 1.300},
{ 6.300, 3.300, 4.700, 1.600},
{ 4.900, 2.400, 3.300, 1.000},
{ 6.600, 2.900, 4.600, 1.300},
{ 5.200, 2.700, 3.900, 1.400},
{ 5.000, 2.000, 3.500, 1.000},
{ 5.900, 3.000, 4.200, 1.500},
{ 6.000, 2.200, 4.000, 1.000},
{ 6.100, 2.900, 4.700, 1.400},
{ 5.600, 2.900, 3.600, 1.300},
{ 6.700, 3.100, 4.400, 1.400},
{ 5.600, 3.000, 4.500, 1.500},
{ 5.800, 2.700, 4.100, 1.000},
{ 6.200, 2.200, 4.500, 1.500},
{ 5.600, 2.500, 3.900, 1.100},
{ 5.900, 3.200, 4.800, 1.800},
{ 6.100, 2.800, 4.000, 1.300},
{ 6.300, 2.500, 4.900, 1.500},
{ 6.100, 2.800, 4.700, 1.200},
{ 6.400, 2.900, 4.300, 1.300},
{ 6.600, 3.000, 4.400, 1.400},
{ 6.800, 2.800, 4.800, 1.400},
{ 6.700, 3.000, 5.000, 1.700},
{ 6.000, 2.900, 4.500, 1.500},
{ 5.700, 2.600, 3.500, 1.000},
{ 5.500, 2.400, 3.800, 1.100},
{ 5.500, 2.400, 3.700, 1.000},
{ 5.800, 2.700, 3.900, 1.200},
{ 6.000, 2.700, 5.100, 1.600},
{ 5.400, 3.000, 4.500, 1.500},
{ 6.000, 3.400, 4.500, 1.600},
{ 6.700, 3.100, 4.700, 1.500},
{ 6.300, 2.300, 4.400, 1.300},
{ 5.600, 3.000, 4.100, 1.300},
{ 5.500, 2.500, 4.000, 1.300},
{ 5.500, 2.600, 4.400, 1.200},
{ 6.100, 3.000, 4.600, 1.400},
{ 5.800, 2.600, 4.000, 1.200},
{ 5.000, 2.300, 3.300, 1.000},
{ 5.600, 2.700, 4.200, 1.300},
{ 5.700, 3.000, 4.200, 1.200},
{ 5.700, 2.900, 4.200, 1.300},
{ 6.200, 2.900, 4.300, 1.300},
{ 5.100, 2.500, 3.000, 1.100},
{ 5.700, 2.800, 4.100, 1.300},
{ 6.300, 3.300, 6.000, 2.500},
{ 5.800, 2.700, 5.100, 1.900},
{ 7.100, 3.000, 5.900, 2.100},
{ 6.300, 2.900, 5.600, 1.800},
{ 6.500, 3.000, 5.800, 2.200},
{ 7.600, 3.000, 6.600, 2.100},
{ 4.900, 2.500, 4.500, 1.700},
{ 7.300, 2.900, 6.300, 1.800},

Multivariate Analysis ClusterKMeans class • 613

{ 6.700, 2.500, 5.800, 1.800},
{ 7.200, 3.600, 6.100, 2.500},
{ 6.500, 3.200, 5.100, 2.000},
{ 6.400, 2.700, 5.300, 1.900},
{ 6.800, 3.000, 5.500, 2.100},
{ 5.700, 2.500, 5.000, 2.000},
{ 5.800, 2.800, 5.100, 2.400},
{ 6.400, 3.200, 5.300, 2.300},
{ 6.500, 3.000, 5.500, 1.800},
{ 7.700, 3.800, 6.700, 2.200},
{ 7.700, 2.600, 6.900, 2.300},
{ 6.000, 2.200, 5.000, 1.500},
{ 6.900, 3.200, 5.700, 2.300},
{ 5.600, 2.800, 4.900, 2.000},
{ 7.700, 2.800, 6.700, 2.000},
{ 6.300, 2.700, 4.900, 1.800},
{ 6.700, 3.300, 5.700, 2.100},
{ 7.200, 3.200, 6.000, 1.800},
{ 6.200, 2.800, 4.800, 1.800},
{ 6.100, 3.000, 4.900, 1.800},
{ 6.400, 2.800, 5.600, 2.100},
{ 7.200, 3.000, 5.800, 1.600},
{ 7.400, 2.800, 6.100, 1.900},
{ 7.900, 3.800, 6.400, 2.000},
{ 6.400, 2.800, 5.600, 2.200},
{ 6.300, 2.800, 5.100, 1.500},
{ 6.100, 2.600, 5.600, 1.400},
{ 7.700, 3.000, 6.100, 2.300},
{ 6.300, 3.400, 5.600, 2.400},
{ 6.400, 3.100, 5.500, 1.800},
{ 6.000, 3.000, 4.800, 1.800},
{ 6.900, 3.100, 5.400, 2.100},
{ 6.700, 3.100, 5.600, 2.400},
{ 6.900, 3.100, 5.100, 2.300},
{ 5.800, 2.700, 5.100, 1.900},
{ 6.800, 3.200, 5.900, 2.300},
{ 6.700, 3.300, 5.700, 2.500},
{ 6.700, 3.000, 5.200, 2.300},
{ 6.300, 2.500, 5.000, 1.900},
{ 6.500, 3.000, 5.200, 2.000},
{ 6.200, 3.400, 5.400, 2.300},
{ 5.900, 3.000, 5.100, 1.800}};

double[][] cs = {{ 5.100, 3.500, 1.400, 0.200},
{ 7.000, 3.200, 4.700, 1.400},
{ 6.300, 3.300, 6.000, 2.500}};

ClusterKMeans kmean = new ClusterKMeans(x, cs);

double[][] cm = kmean.compute();
double[] wss = kmean.getClusterSSQ();
int[] ic = kmean.getClusterMembership();
int[] nc = kmean.getClusterCounts();

614 • ClusterKMeans class JMSL

PrintMatrix pm = new PrintMatrix ("Cluster Means");

PrintMatrixFormat pmf = new PrintMatrixFormat();
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
pmf.setNumberFormat(nf);
pm.print (pmf, cm);

new PrintMatrix("Cluster Membership").print(ic);
new PrintMatrix("Sum of Squares").print(wss);
new PrintMatrix("Number of observations").print(nc);

}
}

Output

Cluster Means
0 1 2 3

0 5.0060 3.4280 1.4620 0.2460
1 5.9016 2.7484 4.3935 1.4339
2 6.8500 3.0737 5.7421 2.0711

Cluster Membership
0

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1

Multivariate Analysis ClusterKMeans class • 615

21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 2
51 2
52 3
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2
64 2
65 2
66 2
67 2
68 2
69 2
70 2
71 2
72 2
73 2
74 2
75 2
76 2

616 • ClusterKMeans class JMSL

77 3
78 2
79 2
80 2
81 2
82 2
83 2
84 2
85 2
86 2
87 2
88 2
89 2
90 2
91 2
92 2
93 2
94 2
95 2
96 2
97 2
98 2
99 2
100 3
101 2
102 3
103 3
104 3
105 3
106 2
107 3
108 3
109 3
110 3
111 3
112 3
113 2
114 2
115 3
116 3
117 3
118 3
119 2
120 3
121 2
122 3
123 2
124 3
125 3
126 2
127 2
128 3
129 3
130 3
131 3
132 3

Multivariate Analysis ClusterKMeans class • 617

133 2
134 3
135 3
136 3
137 3
138 2
139 3
140 3
141 3
142 2
143 3
144 3
145 3
146 2
147 3
148 3
149 2

Sum of Squares
0

0 15.151
1 39.821
2 23.879

Number of observations
0

0 50
1 62
2 38

ClusterKMeans.NoConvergenceException class

static public class com.imsl.stat.ClusterKMeans.NoConvergenceException extends
com.imsl.IMSLException

Convergence did not occur within the maximum number of iterations.

Constructors

ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException(String message)

ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException(String key, Object[] arguments)

618 • ClusterKMeans class JMSL

ClusterKMeans.ClusterNoPointsException class

static public class com.imsl.stat.ClusterKMeans.ClusterNoPointsException
extends com.imsl.IMSLException

There is a cluster with no points

Constructors

ClusterKMeans.ClusterNoPointsException
public ClusterKMeans.ClusterNoPointsException(String message)

ClusterKMeans.ClusterNoPointsException
public ClusterKMeans.ClusterNoPointsException(String key, Object[]
arguments)

ClusterKMeans.NonnegativeFreqException class

static public class com.imsl.stat.ClusterKMeans.NonnegativeFreqException
extends com.imsl.IMSLException

Frequencies must be nonnegative.

Constructors

ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException(String message)

ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException(String key, Object[]
arguments)

Multivariate Analysis ClusterKMeans class • 619

ClusterKMeans.NonnegativeWeightException class

static public class com.imsl.stat.ClusterKMeans.NonnegativeWeightException
extends com.imsl.IMSLException

Weights must be nonnegative.

Constructors

ClusterKMeans.NonnegativeWeightException
public ClusterKMeans.NonnegativeWeightException(String message)

ClusterKMeans.NonnegativeWeightException
public ClusterKMeans.NonnegativeWeightException(String key, Object[]
arguments)

Dissimilarities class

public class com.imsl.stat.Dissimilarities implements Serializable, Cloneable

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.

Class Dissimilarities computes an upper triangular matrix (excluding the diagonal) of
dissimilarities (or similarities) between the columns or rows of a matrix. Nine different distance
measures can be computed. For the first three measures, three different scaling options can be
employed. The distance matrix computed is generally used as input to clustering or
multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed between the
columns of the matrix. If distances between the rows of the matrix are desired, set iRow to 1
when calling the Dissimilarities constructor.

For distanceMethod = 0 to 2, each row of x is first scaled according to the value of
distanceScale. The scaling parameters are obtained from the values in the row scaled as
either the standard deviation of the row or the row range; the standard deviation is computed
from the unbiased estimate of the variance. If distanceScale is 0, no scaling is performed, and
the parameters in the following discussion are all 1.0. Once the scaling value (if any) has been
computed, the distance between column i and column j is computed via the difference vector
zk = (xk−yk)

sk
, i = 1, . . . , ndstm, where xk denotes the k-th element in the i-th column, yk

denotes the corresponding element in the j-th column, and ndstm is the number of rows if
differencing columns and the number of columns if differencing rows. For given zi, the metrics 0
to 2 are defined as:

620 • Dissimilarities class JMSL

distanceMethod Metric
0 Euclidean distance (L2norm)
1 Sum of the absolute differences (L1 norm)
2 Maximum difference (L∞ norm)

Distance measures corresponding to distanceMethod = 3 to 8 do not allow for scaling.

distanceMethod Metric
3 Mahalanobis distance
4 Absolute value of the cosine of the angle between the vec-

tors
5 Angle in radians (0, pi) between the lines through the

origin defined by the vectors
6 Correlation coefficient
7 Absolute value of the correlation coefficient
8 Number of exact matches, where xi = yi.

For the Mahalanobis distance, any variable used in computing the distance measure that is
(numerically) linearly dependent upon the previous variables in the indexArray vector is
omitted from the distance measure.

Constructors

Dissimilarities
public Dissimilarities(double[][] x, int distanceMethod, int distanceScale,
int iRow) throws Dissimilarities.ScaleFactorZeroException,
Dissimilarities.ZeroNormException,
Dissimilarities.NoPositiveVarianceException

Description

Constructor for Dissimilarities.

Parameters

x – A double matrix containing the data input matrix.
distanceMethod – An int identifying the method to be used in computing the
dissimilarities or similarities. Acceptable values of distanceMethod are 0, 1, 2, ..., 8.
See above for a description of these methods.
distanceScale – An int containing the scaling option.

distanceScale Method
0 No scaling is performed.
1 Scale each column (row if iRow=1) by the standard devi-

ation of the column (row).
2 Scale each column (row if iRow=1) by the range of the

column (row).

Multivariate Analysis Dissimilarities class • 621

iRow – An int identifying whether distances are computed between rows or columns
of x. If iRow = 1, distances are computed between the rows of x. Otherwise,
distances between the columns of x are computed.

IllegalArgumentException thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”)

ScaleFactorZeroException thrown when computations cannot continue because a scale
factor is zero

NoPositiveVarianceException thrown when no variable has positive variance
ZeroNormException is thrown when the Euclidean norm of a column is equal to zero

Dissimilarities
public Dissimilarities(double[][] x, int distanceMethod, int distanceScale,
int iRow, int[] indexArray) throws
Dissimilarities.ScaleFactorZeroException,
Dissimilarities.ZeroNormException,
Dissimilarities.NoPositiveVarianceException

Description

Constructor for Dissimilarities.

Parameters

x – A double matrix containing the data input matrix.
distanceMethod – An int identifying the method to be used in computing the
dissimilarities or similarities. Acceptable values of distanceMethod are 0, 1, 2, ..., 8.
See above for a description of these methods.
distanceScale – An int containing the scaling option.

distanceScaleMethod
0 No scaling is performed
1 Scale each column (row if iRow=1) by the standard deviation of the

column (row).
2 Scale each column (row if iRow=1) by the range of the column (row)

iRow – An int identifying whether distances are computed between rows or columns
of x. If iRow=1, distances are computed between the rows of x. Otherwise, distances
between the columns of x are computed.
indexArray – An int array containing the indices of the rows (columns if iRow is 1)
to be used in computing the distance measure.

IllegalArgumentException thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”)

ScaleFactorZeroException thrown when computations cannot continue because a scale
factor is zero

NoPositiveVarianceException thrown when no variable has positive variance.
ZeroNormException is thrown when the Euclidean norm of a column is equal to zero

622 • Dissimilarities class JMSL

Method

getDistanceMatrix
final public double[][] getDistanceMatrix()

Description

Returns the distance matrix.

Returns

A double matrix containing the distance matrix.

Example: Dissimilarities

The following example illustrates the use of Dissimilarities for computing the Euclidean
distance between the rows of a matrix:

import java.io.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class DissimilaritiesEx1 {
public static void main(String argv[]) throws Exception {

double[][] x = {
{ 1., 1.},
{ 1., 0.},
{ 1., -1.},
{ 1., 2.}};

int distanceMethod = 0;
int distanceScale = 0;
int iRow = 1;

Dissimilarities dist =
new Dissimilarities(x, distanceMethod, distanceScale, iRow);

double[][] distanceMatrix = dist.getDistanceMatrix();

for (int i=0;i<distanceMatrix.length;i++){
for (int j=0;j<distanceMatrix[0].length;j++)

System.out.print(distanceMatrix[i][j]+", ");
System.out.println();

}
}

}

Output

0.0, 1.0, 2.0, 1.0,
0.0, 0.0, 1.0, 2.0,

Multivariate Analysis Dissimilarities class • 623

0.0, 0.0, 0.0, 3.0,
0.0, 0.0, 0.0, 0.0,

Dissimilarities.ScaleFactorZeroException class

static public class com.imsl.stat.Dissimilarities.ScaleFactorZeroException
extends com.imsl.IMSLException

The computations cannot continue because a scale factor is zero.

Constructor

Dissimilarities.ScaleFactorZeroException
public Dissimilarities.ScaleFactorZeroException(int index)

Description

Constructs a ScaleFactorZeroException.

Parameter

index – An int which specifies the index of the scale factor array at which scale
factor is zero.

Dissimilarities.ZeroNormException class

static public class com.imsl.stat.Dissimilarities.ZeroNormException extends
com.imsl.IMSLException

The computations cannot continue because the Euclidean norm of the column is equal to zero.

Constructor

Dissimilarities.ZeroNormException
public Dissimilarities.ZeroNormException(int index)

Description

Constructs a ZeroNormException.

624 • Dissimilarities class JMSL

Parameter

index – An int which specifies the column index for which the norm has been found
to be zero.

Dissimilarities.NoPositiveVarianceException class

static public class com.imsl.stat.Dissimilarities.NoPositiveVarianceException
extends com.imsl.IMSLException

No variable has positive variance. The Mahalanobis distances cannot be computed.

Constructor

Dissimilarities.NoPositiveVarianceException
public Dissimilarities.NoPositiveVarianceException()

Description

Constructs a NoPositiveVarianceException.

ClusterHierarchical class

public class com.imsl.stat.ClusterHierarchical implements Serializable,
Cloneable

Performs a hierarchical cluster analysis from a distance matrix.

Class ClusterHierarchical conducts a hierarchical cluster analysis based upon a distance
matrix, or by appropriate use of the argument transform, based upon a similarity matrix.
Only the upper triangular part of the dist matrix is required as input.

Hierarchical clustering in ClusterHierarchical proceeds as follows:

Initially, each data point is considered to be a cluster, numbered 1 to n = npt, where npt is the
number of rows in dist.

• If the data matrix contains similarities, they are converted to distances by the method
specified by the argument transform. Set k = 1.

• A search is made of the distance matrix to find the two closest clusters. These clusters are
merged to form a new cluster, numbered n + k. The cluster numbers of the two clusters

Multivariate Analysis ClusterHierarchical class • 625

joined at this stage are saved as Right Sons and Left Sons, and the distance measure
between the two clusters is stored as Cluster Level.

• Based upon the method of clustering, updating of the distance measure in the row and
column of dist corresponding to the new cluster is performed.

• Set k = k + 1. If k is less than n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have
been joined. The argument method specifies how the distance of the cluster just merged with
each of the remaining clusters will be updated. Class ClusterHierarchical allows five
methods for computing the distances. To understand these measures, suppose in the following
discussion that clusters A and B have just been joined to form cluster Z, and interest is in
computing the distance of Z with another cluster called C.

Z

dist

A B C

626 • ClusterHierarchical class JMSL

method Description
0 Single linkage (minimum distance). The distance from

Z to C is the minimum of the distances (A to C, B to
C).

1 Complete linkage (maximum distance). The distance
from Z to C is the maximum of the distances (A to C,
B to C).

2 Average-distance-within-clusters method. The dis-
tance from Z to C is the average distance of all objects
that would be within the cluster formed by merging
clusters Z and C. This average may be computed ac-
cording to formulas given by Anderberg (1973, page
139).

3 Average-distance-between-clusters method. The dis-
tance from Z to C is the average distance of objects
within cluster Z to objects within cluster C. This av-
erage may be computed according to methods given
by Anderberg (1973, page 140).

4 Ward’s method: Clusters are formed so as to minimize
the increase in the within-cluster sums of squares.
The distance between two clusters is the increase
in these sums of squares if the two clusters were
merged. A method for computing this distance from
a squared Euclidean distance matrix is given by An-
derberg (1973, pages 142-145).

In general, single linkage will yield long thin clusters while complete linkage will yield clusters
that are more spherical. Average linkage and Ward’s linkage tend to yield clusters that are
similar to those obtained with complete linkage.

Function Class ClusterHierarchical produces a unique representation of the binary cluster
tree via the following three conventions; the fact that the tree is unique should aid in
interpreting the clusters. First, when two clusters are joined and each cluster contains two or
more data points, the cluster that was initially formed with the smallest level becomes the left
son. Second, when a cluster containing more than one data point is joined with a cluster
containing a single data point, the cluster with the single data point becomes the right son.
Finally, when two clusters containing only one object are joined, the cluster with the smallest
cluster number becomes the right son.

Comments

• The clusters corresponding to the original data points are numbered from 1 to npt, where
npt is the number of rows in dist. The npt - 1 clusters formed by merging clusters are
numbered npt + 1 to npt + (npt - 1).

• Raw correlations, if used as similarities, should be made positive and transformed to a

Multivariate Analysis ClusterHierarchical class • 627

distance measure. One such transformation can be performed by setting argument
transform, with transform = 2.

• The user may cluster either variables or observations with ClusterHierarchical since a
dissimilarity matrix, not the original data, is used. Class
com.imsl.stat.Dissimilarities (p. 620) may be used to compute the matrix dist for
either the variables or observations.

Constructor

ClusterHierarchical
public ClusterHierarchical(double[][] dist, int method, int transform)

Description

Constructor for ClusterHierarchical.

Parameters

dist – A double symmetric matrix containing the distance (or similarity) matrix.
On input, only the upper triangular part needs to be present. ClusterHierarchical
saves the upper triangular part of dist in the lower triangle. On return, the upper
triangular part of dist is restored, and the matrix is made symmetric.

method – An int identifying the clustering method to be used.

method Description
0 Single linkage (minimum distance).
1 Complete linkage (maximum distance).
2 Average distance within (average distance between

objects within the merged cluster).
3 Average distance between (average distance between

objects in the two clusters).
4 Ward’s method (minimize the within-cluster sums of

squares). For Ward’s method, the elements of dist
are assumed to be Euclidean distances.

transform – An int identifying the type of transformation applied to the measures
in dist.

transform Description
0 No transformation is required. The elements of dist

are distances.
1 Convert similarities to distances by multiplication by

-1.0.
2 Convert similarities (usually correlations) to distances

by taking the reciprocal of the absolute value.

IllegalArgumentException is thrown when the row lengths of input matrix a are not
equal (i.e. the matrix edges are ”jagged”)

628 • ClusterHierarchical class JMSL

Methods

getClusterLeftSons
final public int[] getClusterLeftSons()

Description

Returns the left sons of each merged cluster.

Returns

An int array containing the left sons of each merged cluster.

getClusterLevel
final public double[] getClusterLevel()

Description

Returns the level at which the clusters are joined.

Returns

A double array containing the level at which the clusters are joined. Element [k-1]
contains the distance (or similarity) level at which cluster npt + k was formed. If the
original data in dist was transformed, the inverse transformation is applied to the
returned values.

getClusterMembership
final public int[] getClusterMembership(int nClusters)

Description

Returns the cluster membership of each observation.

Parameter

nClusters – An int which specifies the desired number of clusters.

Returns

An int array containing the cluster membership of each observation.

getClusterRightSons
final public int[] getClusterRightSons()

Description

Returns the right sons of each merged cluster.

Returns

An int array containing the right sons of each merged cluster.

getObsPerCluster
final public int[] getObsPerCluster(int nClusters)

Multivariate Analysis ClusterHierarchical class • 629

Description

Returns the number of observations in each cluster.

Parameter

nClusters – An int which specifies the desired number of clusters.

Returns

An int array containing the number of observations in each cluster.

Example 1: ClusterHierarchical

This example illustrates a typical usage of ClusterHierarchical. The Fisher iris data is
clustered. First the distance between irises is computed using the class Dissimilarities. The
resulting distance matrix is then clustered using ClusterHierarchical, and cluster
memberships for 5 clusters are computed.

import java.io.*;
import com.imsl.stat.*;
import com.imsl.math.*;

public class ClusterHierarchicalEx1 {
public static void main(String argv[]) throws Exception {

double[][] irisData = {
{ 5.1, 3.5, 1.4, .2},
{ 4.9, 3.0, 1.4, .2},
{ 4.7, 3.2, 1.3, .2},
{ 4.6, 3.1, 1.5, .2},
{ 5.0, 3.6, 1.4, .2},
{ 5.4, 3.9, 1.7, .4},
{ 4.6, 3.4, 1.4, .3},
{ 5.0, 3.4, 1.5, .2},
{ 4.4, 2.9, 1.4, .2},
{ 4.9, 3.1, 1.5, .1},
{ 5.4, 3.7, 1.5, .2},
{ 4.8, 3.4, 1.6, .2},
{ 4.8, 3.0, 1.4, .1},
{ 4.3, 3.0, 1.1, .1},
{ 5.8, 4.0, 1.2, .2},
{ 5.7, 4.4, 1.5, .4},
{ 5.4, 3.9, 1.3, .4},
{ 5.1, 3.5, 1.4, .3},
{ 5.7, 3.8, 1.7, .3},
{ 5.1, 3.8, 1.5, .3},
{ 5.4, 3.4, 1.7, .2},
{ 5.1, 3.7, 1.5, .4},
{ 4.6, 3.6, 1.0, .2},
{ 5.1, 3.3, 1.7, .5},
{ 4.8, 3.4, 1.9, .2},
{ 5.0, 3.0, 1.6, .2},
{ 5.0, 3.4, 1.6, .4},
{ 5.2, 3.5, 1.5, .2},

630 • ClusterHierarchical class JMSL

{ 5.2, 3.4, 1.4, .2},
{ 4.7, 3.2, 1.6, .2},
{ 4.8, 3.1, 1.6, .2},
{ 5.4, 3.4, 1.5, .4},
{ 5.2, 4.1, 1.5, .1},
{ 5.5, 4.2, 1.4, .2},
{ 4.9, 3.1, 1.5, .2},
{ 5.0, 3.2, 1.2, .2},
{ 5.5, 3.5, 1.3, .2},
{ 4.9, 3.6, 1.4, .1},
{ 4.4, 3.0, 1.3, .2},
{ 5.1, 3.4, 1.5, .2},
{ 5.0, 3.5, 1.3, .3},
{ 4.5, 2.3, 1.3, .3},
{ 4.4, 3.2, 1.3, .2},
{ 5.0, 3.5, 1.6, .6},
{ 5.1, 3.8, 1.9, .4},
{ 4.8, 3.0, 1.4, .3},
{ 5.1, 3.8, 1.6, .2},
{ 4.6, 3.2, 1.4, .2},
{ 5.3, 3.7, 1.5, .2},
{ 5.0, 3.3, 1.4, .2},
{ 7.0, 3.2, 4.7, 1.4},
{ 6.4, 3.2, 4.5, 1.5},
{ 6.9, 3.1, 4.9, 1.5},
{ 5.5, 2.3, 4.0, 1.3},
{ 6.5, 2.8, 4.6, 1.5},
{ 5.7, 2.8, 4.5, 1.3},
{ 6.3, 3.3, 4.7, 1.6},
{ 4.9, 2.4, 3.3, 1.0},
{ 6.6, 2.9, 4.6, 1.3},
{ 5.2, 2.7, 3.9, 1.4},
{ 5.0, 2.0, 3.5, 1.0},
{ 5.9, 3.0, 4.2, 1.5},
{ 6.0, 2.2, 4.0, 1.0},
{ 6.1, 2.9, 4.7, 1.4},
{ 5.6, 2.9, 3.6, 1.3},
{ 6.7, 3.1, 4.4, 1.4},
{ 5.6, 3.0, 4.5, 1.5},
{ 5.8, 2.7, 4.1, 1.0},
{ 6.2, 2.2, 4.5, 1.5},
{ 5.6, 2.5, 3.9, 1.1},
{ 5.9, 3.2, 4.8, 1.8},
{ 6.1, 2.8, 4.0, 1.3},
{ 6.3, 2.5, 4.9, 1.5},
{ 6.1, 2.8, 4.7, 1.2},
{ 6.4, 2.9, 4.3, 1.3},
{ 6.6, 3.0, 4.4, 1.4},
{ 6.8, 2.8, 4.8, 1.4},
{ 6.7, 3.0, 5.0, 1.7},
{ 6.0, 2.9, 4.5, 1.5},
{ 5.7, 2.6, 3.5, 1.0},
{ 5.5, 2.4, 3.8, 1.1},
{ 5.5, 2.4, 3.7, 1.0},
{ 5.8, 2.7, 3.9, 1.2},
{ 6.0, 2.7, 5.1, 1.6},

Multivariate Analysis ClusterHierarchical class • 631

{ 5.4, 3.0, 4.5, 1.5},
{ 6.0, 3.4, 4.5, 1.6},
{ 6.7, 3.1, 4.7, 1.5},
{ 6.3, 2.3, 4.4, 1.3},
{ 5.6, 3.0, 4.1, 1.3},
{ 5.5, 2.5, 4.0, 1.3},
{ 5.5, 2.6, 4.4, 1.2},
{ 6.1, 3.0, 4.6, 1.4},
{ 5.8, 2.6, 4.0, 1.2},
{ 5.0, 2.3, 3.3, 1.0},
{ 5.6, 2.7, 4.2, 1.3},
{ 5.7, 3.0, 4.2, 1.2},
{ 5.7, 2.9, 4.2, 1.3},
{ 6.2, 2.9, 4.3, 1.3},
{ 5.1, 2.5, 3.0, 1.1},
{ 5.7, 2.8, 4.1, 1.3},
{ 6.3, 3.3, 6.0, 2.5},
{ 5.8, 2.7, 5.1, 1.9},
{ 7.1, 3.0, 5.9, 2.1},
{ 6.3, 2.9, 5.6, 1.8},
{ 6.5, 3.0, 5.8, 2.2},
{ 7.6, 3.0, 6.6, 2.1},
{ 4.9, 2.5, 4.5, 1.7},
{ 7.3, 2.9, 6.3, 1.8},
{ 6.7, 2.5, 5.8, 1.8},
{ 7.2, 3.6, 6.1, 2.5},
{ 6.5, 3.2, 5.1, 2.0},
{ 6.4, 2.7, 5.3, 1.9},
{ 6.8, 3.0, 5.5, 2.1},
{ 5.7, 2.5, 5.0, 2.0},
{ 5.8, 2.8, 5.1, 2.4},
{ 6.4, 3.2, 5.3, 2.3},
{ 6.5, 3.0, 5.5, 1.8},
{ 7.7, 3.8, 6.7, 2.2},
{ 7.7, 2.6, 6.9, 2.3},
{ 6.0, 2.2, 5.0, 1.5},
{ 6.9, 3.2, 5.7, 2.3},
{ 5.6, 2.8, 4.9, 2.0},
{ 7.7, 2.8, 6.7, 2.0},
{ 6.3, 2.7, 4.9, 1.8},
{ 6.7, 3.3, 5.7, 2.1},
{ 7.2, 3.2, 6.0, 1.8},
{ 6.2, 2.8, 4.8, 1.8},
{ 6.1, 3.0, 4.9, 1.8},
{ 6.4, 2.8, 5.6, 2.1},
{ 7.2, 3.0, 5.8, 1.6},
{ 7.4, 2.8, 6.1, 1.9},
{ 7.9, 3.8, 6.4, 2.0},
{ 6.4, 2.8, 5.6, 2.2},
{ 6.3, 2.8, 5.1, 1.5},
{ 6.1, 2.6, 5.6, 1.4},
{ 7.7, 3.0, 6.1, 2.3},
{ 6.3, 3.4, 5.6, 2.4},
{ 6.4, 3.1, 5.5, 1.8},
{ 6.0, 3.0, 4.8, 1.8},
{ 6.9, 3.1, 5.4, 2.1},

632 • ClusterHierarchical class JMSL

{ 6.7, 3.1, 5.6, 2.4},
{ 6.9, 3.1, 5.1, 2.3},
{ 5.8, 2.7, 5.1, 1.9},
{ 6.8, 3.2, 5.9, 2.3},
{ 6.7, 3.3, 5.7, 2.5},
{ 6.7, 3.0, 5.2, 2.3},
{ 6.3, 2.5, 5.0, 1.9},
{ 6.5, 3.0, 5.2, 2.0},
{ 6.2, 3.4, 5.4, 2.3},
{ 5.9, 3.0, 5.1, 1.8}};

Dissimilarities dist = new Dissimilarities(irisData, 0, 1, 1);
double[][] distanceMatrix = dist.getDistanceMatrix();
ClusterHierarchical clink = new ClusterHierarchical(

dist.getDistanceMatrix(),2,0);

int nClusters = 5;
int[] iclus = clink.getClusterMembership(nClusters);
int[] nclus = clink.getObsPerCluster(nClusters);
System.out.println("Cluster Membership");
for (int i=0;i<15;i++){

for (int j=0;j<10;j++)
System.out.print(iclus[i*10+j]+" ");

System.out.println();
}

System.out.println("Observations Per Cluster");
for (int i=0;i<nClusters;i++)

System.out.print(nclus[i]+" ");
System.out.println();

}
}

Output

Cluster Membership
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
3 3 3 4 3 4 3 4 3 4
4 3 4 3 4 3 4 4 4 4
3 3 3 3 3 3 3 3 3 4
4 4 4 3 4 3 3 4 4 4
4 3 4 4 4 4 4 3 4 4
2 3 2 3 2 1 4 1 3 2
2 3 2 3 3 2 3 2 1 4
2 3 1 3 2 1 3 3 3 1
1 2 3 3 3 1 2 3 3 2
2 2 3 2 2 2 3 3 2 3
Observations Per Cluster

Multivariate Analysis ClusterHierarchical class • 633

8 19 44 29 50

FactorAnalysis class

public class com.imsl.stat.FactorAnalysis implements Serializable, Cloneable

Performs Principal Component Analysis or Factor Analysis on a covariance or correlation
matrix.

Class FactorAnalysis computes principal components or initial factor loading estimates for a
variance-covariance or correlation matrix using exploratory factor analysis models.

Models available are the principal component model for factor analysis and the common factor
model with additions to the common factor model in alpha factor analysis and image analysis.
Methods of estimation include principal components, principal factor, image analysis,
unweighted least squares, generalized least squares, and maximum likelihood.

For the principal component model there are methods to compute the characteristic roots,
characteristic vectors, standard errors for the characteristic roots, and the correlations of the
principal component scores with the original variables. Principal components obtained from
correlation matrices are the same as principal components obtained from standardized (to unit
variance) variables.

The principal component scores are the elements of the vector y = ΓTx where Γ is the matrix
whose columns are the characteristic vectors (eigenvectors) of the sample covariance (or
correlation) matrix and x is the vector of observed (or standardized) random variables. The
variances of the principal component scores are the characteristic roots (eigenvalues) of the
covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick (1939) and are
given more recently by Kendall, Stuart, and Ord (1983, page 331). These variances are
computed either for variance-covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized) variables are
the same as the unrotated factor loadings obtained for the principal components model for
factor analysis when a correlation matrix is input.

In the factor analysis model used for factor extraction, the basic model is given as
Σ = ΛΛT + Ψ where Σ is the p× p population covariance matrix. Λ is the p× k matrix of
factor loadings relating the factors f to the observed variables x, and Ψ is the p× p matrix of
covariances of the unique errors e. Here, p represents the number of variables and k is the
number of factors. The relationship between the factors, the unique errors, and the observed
variables is given as x = Λf + e where, in addition, it is assumed that the expected values of e,
f, and x are zero. (The sample means can be subtracted from x if the expected value of x is not
zero.) It is also assumed that each factor has unit variance, the factors are independent of each
other, and that the factors and the unique errors are mutually independent. In the common

634 • FactorAnalysis class JMSL

factor model, the elements of the vector of unique errors e are also assumed to be independent
of one another so that the matrix Ψ is diagonal. This is not the case in the principal
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is optimized and the
amount of computer effort required to obtain estimates. Generally speaking, the least-squares
and maximum likelihood methods, which use iterative algorithms, require the most computer
time with the principal factor, principal component, and the image methods requiring much
less time since the algorithms in these methods are not iterative. The algorithm in alpha factor
analysis is also iterative, but the estimates in this method generally require somewhat less
computer effort than the least-squares and maximum likelihood estimates. In all algorithms one
eigensystem analysis is required on each iteration.

Fields

ALPHA FACTOR ANALYSIS
static final public int ALPHA FACTOR ANALYSIS

Indicates alpha factor analysis.

CORRELATION MATRIX
static final public int CORRELATION MATRIX

Indicates correlation matrix.

GENERALIZED LEAST SQUARES
static final public int GENERALIZED LEAST SQUARES

Indicates generalized least squares method.

IMAGE FACTOR ANALYSIS
static final public int IMAGE FACTOR ANALYSIS

Indicates image factor analysis.

MAXIMUM LIKELIHOOD
static final public int MAXIMUM LIKELIHOOD

Indicates maximum likelihood method.

PRINCIPAL COMPONENT MODEL
static final public int PRINCIPAL COMPONENT MODEL

Indicates principal component model.

PRINCIPAL FACTOR MODEL
static final public int PRINCIPAL FACTOR MODEL

Indicates principal factor model.

Multivariate Analysis FactorAnalysis class • 635

UNWEIGHTED LEAST SQUARES
static final public int UNWEIGHTED LEAST SQUARES

Indicates unweighted least squares method.

VARIANCE COVARIANCE MATRIX
static final public int VARIANCE COVARIANCE MATRIX

Indicates variance-covariance matrix.

Constructor

FactorAnalysis
public FactorAnalysis(double[][] cov, int matrixType, int nf)

Description

Constructor for FactorAnalysis.

Parameters

cov – A double matrix containing the covariance or correlation matrix.

matrixType – An int scalar indicating the type of matrix that is input. Uses class
member VARIANCE COVARIANCE MATRIX, CORRELATION MATRIX for matrixType.

nf – An int scalar indicating the number of factors in the model. If nf is not known
in advance, several different values of nf should be used, and the most reasonable
value kept in the final solution. Since, in practice, the non-iterative methods often
lead to solutions which differ little from the iterative methods, it is usually suggested
that a non-iterative method be used in the initial stages of the factor analysis, and
that the iterative methods be used once issues such as the number of factors have
been resolved.

IllegalArgumentException is thrown if x.length, and x[0].length are equal to 0.

Methods

getCorrelations
public double[][] getCorrelations() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

636 • FactorAnalysis class JMSL

Description

Returns the correlations of the principal components.

Returns

An double matrix containing the correlations of the principal components with the
observed/standardized variables. If a covariance matrix is input to the constructor, then
the correlations are with the observed variables. Otherwise, the correlations are with the
standardized (to a variance of 1.0) variables. Only valid for the principal components
model.

getFactorLoadings
public double[][] getFactorLoadings() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the unrotated factor loadings.

Returns

A double matrix containing the unrotated factor loadings.

getParameterUpdates
public double[] getParameterUpdates() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the parameter updates.

Returns

A double array containing the parameter updates when convergence was reached (or the
iterations terminated). The parameter updates are only meaningful for the common
factor model. The parameter updates are set to 0.0 for the principal component model.

getPercents

Multivariate Analysis FactorAnalysis class • 637

public double[] getPercents() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the cumulative percent of the total variance explained by each principal
component. Valid for the principal component model.

Returns

An double array containing the total variance explained by each principal component.

getStandardErrors
public double[] getStandardErrors() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the estimated asymptotic standard errors of the eigenvalues.

Returns

An double array containing the estimated asymptotic standard errors of the eigenvalues.

getStatistics
public double[] getStatistics() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns statistics.

638 • FactorAnalysis class JMSL

Returns

A double array (Stat) containing output statistics. Stat is not defined and is set to NaN
when the method used to obtain the estimates, is the principal component method,
principal factor method, image factor analysis method, or alpha analysis method.

i Stat[i]
0 Value of the function minimum.
1 Tucker reliability coefficient.
2 Chi-squared test statistic for testing that the number

of factors in the model are adequate for the data.
3 Degrees of freedom in chi-squared. This is computed

as
((nvar−nf)2−nvar−nf)/2where nvar is the number
of variables and nf is the number of factors in the
model.

4 Probability of a greater chi-squared statistic.
5 Number of iterations.

getValues
public double[] getValues() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the eigenvalues.

Returns

A double array containing the eigenvalues of the matrix from which the factors were
extracted ordered from largest to smallest. If Alpha Factor analysis is used, then the first
nf positions of the array contain the Alpha coefficients. Here, nf is the number of factors
in the model. If the algorithm fails to converge for a particular eigenvalue, that eigenvalue
is set to NaN. Note that the eigenvalues are usually not the eigenvalues of the input
matrix cov. They are the eigenvalues of the input matrix cov when the principal
component method is used.

getVariances
public double[] getVariances() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,

Multivariate Analysis FactorAnalysis class • 639

FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Gets the unique variances.

Returns

A double array of length nvar containing the unique variances, where nvar is the number
of variables.

getVectors
public double[][] getVectors() throws FactorAnalysis.RankException,
FactorAnalysis.NoDegreesOfFreedomException,
FactorAnalysis.NotSemiDefiniteException,
FactorAnalysis.NotPositiveSemiDefiniteException,
FactorAnalysis.NotPositiveDefiniteException,
FactorAnalysis.SingularException, FactorAnalysis.BadVarianceException,
FactorAnalysis.EigenvalueException,
FactorAnalysis.NonPositiveEigenvalueException

Description

Returns the eigenvectors.

Returns

A double matrix containing the eigenvectors of the matrix from which the factors were
extracted. The j-th column of the eigenvector matrix corresponds to the j-th eigenvalue.
The eigenvectors are normalized to each have Euclidean length equal to one. Also, the
sign of each vector is set so that the largest component in magnitude (the first of the
largest if there are ties) is made positive. Note that the eigenvectors are usually not the
eigenvectors of the input matrix cov. They are the eigenvectors of the input matrix cov
when the principal component method is used.

setConvergenceCriterion1
public void setConvergenceCriterion1(double eps)

Description

Sets the convergence criterion used to terminate the iterations.

Parameter

eps – A double used to terminate the iterations. For the least squares and and
maximum likelihood methods convergence is assumed when the relative change in
the criterion is less than eps. For alpha factor analysis, convergence is assumed
when the maximum change (relative to the variance) of a uniqueness is less than
eps. eps is not referenced for the other estimation methods. If this member function
is not called, eps is set to 0.0001.

640 • FactorAnalysis class JMSL

setConvergenceCriterion2
public void setConvergenceCriterion2(double epse)

Description

Sets the convergence criterion used to switch to exact second derivatives.

Parameter

epse – A double used to switch to exact second derivatives. When the largest
relative change in the unique standard deviation vector is less than epse exact
second derivative vectors are used. If this member function is not called, epse is set
to 0.1. Not referenced for principal component, principal factor, image factor, or
alpha factor methods.

setDegreesOfFreedom
public void setDegreesOfFreedom(int ndf)

Description

Sets the number of degrees of freedom.

Parameter

ndf – An int value specifying the number of degrees of freedom in the input matrix.
If this member function is not called 100 degrees of freedom are assumed.

setFactorLoadingEstimationMethod
public void setFactorLoadingEstimationMethod(int methodType)

Description

Sets the factor loading estimation method.

Parameter

methodType – An int scalar indicating the method to be applied for obtaining the
factor loadings. Use class member PRINCIPAL COMPONENT MODEL,
PRINCIPAL FACTOR MODEL, UNWEIGHTED LEAST SQUARES,
GENERALIZED LEAST SQUARES, MAXIMUM LIKELIHOOD, IMAGE FACTOR ANALYSIS, or
ALPHA FACTOR ANALYSIS for methodType. If this member function is not called, the
PRINCIPAL COMPONENT MODEL is used.
For the principal component and principal factor methods, the factor loading
estimates are computed as

Γ̂∆̂−1/2

where Γ and the diagonal matrix ∆ are the eigenvalues and eigenvectors of a matrix.
In the principal component model, the eigensystem analysis is performed on the
sample covariance (correlation) matrix S while in the principal factor model the
matrix (S −Ψ) is used. If the unique error variances Ψ are not known in the
principal factor model, then they are estimated. This is achieved by calling the

Multivariate Analysis FactorAnalysis class • 641

member function setVarianceEstimationMethod and setting init to 0. If the
principal component model is used, the error variances are set to 0.0 automatically.
The basic idea in the principal component method is to find factors that maximize
the variance in the original data that is explained by the factors. Because this
method allows the unique errors to be correlated, some factor analysts insist that the
principal component method is not a factor analytic method. Usually however, the
estimates obtained via the principal component model and other models in factor
analysis will be quite similar.
It should be noted that both the principal component and the principal factor
methods give different results when the correlation matrix is used in place of the
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead to
different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and passed in through member
function setVariances. In practice, the estimates of these parameters produced by
calling the member function setVarianceEstimationMethod and setting init to 0
are often used. In either case, the resulting adjusted covariance (correlation) matrix

(S − Ψ̂)

may not yield the nf positive eigenvalues required for nf factors to be obtained. If
this occurs, the user must either lower the number of factors to be estimated or give
new unique error variance values.
For the least-squares and maximum likelihood methods an iterative algorithm is
used to obtain the estimates (see Joreskog 1977). As with the principal factor model,
the user may either input the initial unique error variances or allow the algorithm to
compute initial estimates. Unlike the principal factor method, the code then
optimizes the criterion function with respect to both Ψ and Γ. (In the principal
factor method, Ψ is assumed to be known. Given Ψ, estimates for Λ may be
obtained.)
The major differences between the estimation methods described in this member
function are in the criterion function that is optimized. Let S denote the sample
covariance (correlation) matrix, and let Σ denote the covariance matrix that is to be
estimated by the factor model. In the unweighted least-squares method, also called
the iterated principal factor method or the minres method (see Harman 1976, page
177), the function minimized is the sum of the squared differences between S and Σ.
This is written as Φul = .5trace((S − Σ)2).
Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {Φml = trace(Σ−1S)− log(|Σ−1S|)}. while generalized least squares
optimizes the function Φgs = trace(ΣS−1 − I)2.
In all three methods, a two-stage optimization procedure is used. This proceeds by
first solving the likelihood equations for Λ in terms of Ψ and substituting the
solution into the likelihood. This gives a criterion Φ(Ψ,Λ(Ψ)), which is optimized
with respect to Ψ. In the second stage, the estimates

Λ̂

642 • FactorAnalysis class JMSL

are obtained from the estimates for Ψ.
The generalized least-squares and the maximum likelihood methods allow for the
computation of a statistic for testing that nf common factors are adequate to fit the
model. This is a chi-squared test that all remaining parameters associated with
additional factors are zero. If the probability of a larger chi-squared is small (see
stat[4] under getStatistics) so that the null hypothesis is rejected, then
additional factors are needed (although these factors may not be of any practical
importance). Failure to reject does not legitimize the model. The statistic stat[2]
is a likelihood ratio statistic in maximum likelihood estimates. As such, it
asymptotically follows a chi-squared distribution with degrees of freedom given in
stat[3].
The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in stat[1] when
the maximum likelihood or generalized least-squares methods are used. This
coefficient is an estimate of the ratio of explained to the total variation in the data.
It is computed as follows:

ρ =
mMo −mMk

mMo − 1

m = d− 2p+ 5
6
− 2k

6

Mo =
−ln(|S|)
p(p− 1)/2

Mk =
Φ

((p− k)2 − p− k)/2
where |S| is the determinant of cov, p is the number of variables, k is the number of
factors, Φ is the optimized criterion, and d is the number of degrees of freedom.
The term ”image analysis” is used here to denote the noniterative image method of
Kaiser (1963). It is not the image factor analysis discussed by Harman (1976, page
226). The image method (as well as the alpha factor analysis method) begins with
the notion that only a finite number from an infinite number of possible variables
have been measured. The image factor pattern is calculated under the assumption
that the ratio of the number of factors to the number of observed variables is near
zero so that a very good estimate for the unique error variances (for standardized
variables) is given as one minus the squared multiple correlation of the variable
under consideration with all variables in the covariance matrix.
First, the matrix D2 = (diag(S−1))−1 is computed where the operator ”diag” results
in a matrix consisting of the diagonal elements of its argument, and S is the sample
covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the
matrix D−1SD−1 are computed. Finally, the unrotated image factor pattern matrix
is computed as A = DΓ[(Λ− I)2Λ−1]1/2.
The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-loading
estimates to maximize the correlation between the factors and the complete universe
of variables of interest. The basic idea in this method is as follows: only a finite
number of variables out of a much larger set of possible variables is observed. The
population factors are linearly related to this larger set while the observed factors

Multivariate Analysis FactorAnalysis class • 643

are linearly related to the observed variables. Let f denote the factors obtainable
from a finite set of observed random variables, and let ξ denote the factors
obtainable from the universe of observable variables. Then, the alpha method
attempts to find factor-loading estimates so as to maximize the correlation between f
and ξ. In order to obtain these estimates, the iterative algorithm of Kaiser and
Caffrey (1965) is used.

setMaxIterations
public void setMaxIterations(int maxit)

Description

Sets the maximum number of iterations in the iterative procedure.
Parameter

maxit – An int used as the maximum number of iterations allowed during the
iterative portion of the algorithm. If this member function is not called, maxit is set
to 60. Not referenced for factor loading methods principal component, principal
factor, or image factor methods.

setMaxStep
public void setMaxStep(int maxstp)

Description

Sets the maximum number of step halvings allowed during an iteration.
Parameter

maxstp – An int used as the maximum number of step halvings allowed during an
iteration. If this member function is not called, maxstp is set to 8. Not referenced for
principal component, principal factor, image factor, or alpha factor methods.

setVarianceEstimationMethod
public void setVarianceEstimationMethod(int init)

Description

Sets the variance estimation method.
Parameter

init – An int used to designate the method to be applied for obtaining the initial
estimates of the unique variances. If this member function is not called, init is set
to 1.

init Method
0 Initial estimates are taken as the constant 1-

nf/(2*nvar) divided by the diagonal elements of the
inverse of input matrix cov, where nvar is the num-
ber of variables.

1 Initial estimates are input by the user in vector uniq
(setVariances).

644 • FactorAnalysis class JMSL

Note that when the factor loading estimation method is
PRINCIPAL COMPONENT MODEL, the initial estimates in uniq are reset to 0.0.

setVariances
public void setVariances(double[] uniq)

Description

Sets the variances.

Parameter

uniq – A double array of length nvar containing the unique variances, where nvar is
the number of variables. If this member function is not called, the elements of uniq
are set to 0.0. If the iterative methods fail for the unique variances used, new initial
estimates should be tried. These may be obtained by use of another factoring
method (use the final estimates from the new method as initial estimates in the old
method). Another alternative is to call member function
setVarianceEstimationMethod and set the input argument to 0. This will cause
the initial unique variances to be estimated by the code.

Example: Principal Components

This example illustrates the use of the FactorAnalysis class for a nine-variable matrix. The
PRINCIPAL COMPONENT MODEL is selected and the input matrix type selected is a
CORRELATION MATRIX.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class FactorAnalysisEx1 {
public static void main(String args[]) throws Exception {

double[][] corr = {
{1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
{0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
{0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
{0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
{0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409},
{0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472},
{0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68},
{0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47},
{0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}

};
FactorAnalysis pc = new FactorAnalysis(corr, FactorAnalysis.CORRELATION_MATRIX, 9);
pc.setFactorLoadingEstimationMethod(pc.PRINCIPAL_COMPONENT_MODEL);
pc.setDegreesOfFreedom(100);
NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();

Multivariate Analysis FactorAnalysis class • 645

pmf.setNumberFormat(nf);
new PrintMatrix("Eigenvalues").print(pmf, pc.getValues());
new PrintMatrix("Percents").print(pmf, pc.getPercents());
new PrintMatrix("Standard Errors").print(pmf, pc.getStandardErrors());
new PrintMatrix("Eigenvectors").print(pmf, pc.getVectors());
new PrintMatrix("Unrotated Factor Loadings").print(pmf, pc.getFactorLoadings());

}
}

Output

Eigenvalues
0

0 4.6769
1 1.2640
2 0.8444
3 0.5550
4 0.4471
5 0.4291
6 0.3102
7 0.2770
8 0.1962

Percents
0

0 0.5197
1 0.6601
2 0.7539
3 0.8156
4 0.8653
5 0.9130
6 0.9474
7 0.9782
8 1.0000

Standard Errors
0

0 0.6498
1 0.1771
2 0.0986
3 0.0879
4 0.0882
5 0.0890
6 0.0944
7 0.0994
8 0.1113

Eigenvectors
0 1 2 3 4 5 6 7 8

0 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974 0.1735 -0.1240 -0.0488
1 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002 0.1386 -0.3032 -0.0079
2 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511 0.0099 -0.0406 -0.0997

646 • FactorAnalysis class JMSL

3 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152 -0.4022 -0.1178 0.7060
4 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796 0.7295 0.0075 0.0046
5 0.3455 0.4553 0.1825 0.1114 0.1202 0.0696 -0.3742 0.0925 -0.6780
6 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355 -0.2854 -0.3408 -0.1089
7 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969 0.1862 -0.1623 0.0505
8 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498 -0.0251 0.8521 0.1225

Unrotated Factor Loadings
0 1 2 3 4 5 6 7 8

0 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224 0.0966 -0.0652 -0.0216
1 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312 0.0772 -0.1596 -0.0035
2 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990 0.0055 -0.0214 -0.0442
3 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755 -0.2240 -0.0620 0.3127
4 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177 0.4063 0.0039 0.0021
5 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456 -0.2084 0.0487 -0.3003
6 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853 -0.1589 -0.1794 -0.0482
7 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290 0.1037 -0.0854 0.0224
8 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981 -0.0140 0.4485 0.0543

Example: Factor Analysis

This example illustrates the use of the FactorAnalysis class. The following data were originally
analyzed by Emmett(1949). There are 211 observations on 9 variables. Following Lawley and
Maxwell (1971), three factors will be obtained by the method of maximum likelihood.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;

public class FactorAnalysisEx2 {
public static void main(String args[]) throws Exception {

double[][] cov = {
{1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
{0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
{0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
{0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
{0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409},
{0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472},
{0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68},
{0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47},
{0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}

};
FactorAnalysis fl =
new FactorAnalysis(cov, FactorAnalysis.VARIANCE_COVARIANCE_MATRIX, 3);

fl.setConvergenceCriterion1(.000001);
fl.setConvergenceCriterion2(.01);
fl.setFactorLoadingEstimationMethod(fl.MAXIMUM_LIKELIHOOD);
fl.setVarianceEstimationMethod(0);
fl.setMaxStep(10);
fl.setDegreesOfFreedom(210);

Multivariate Analysis FactorAnalysis class • 647

NumberFormat nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(4);
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(nf);
new PrintMatrix("Unique Error Variances").print

(pmf, fl.getVariances());
new PrintMatrix("Unrotated Factor Loadings").print

(pmf, fl.getFactorLoadings());
new PrintMatrix("Eigenvalues").print(pmf, fl.getValues());
new PrintMatrix("Statistics").print(pmf, fl.getStatistics());

}
}

Output

Unique Error Variances
0

0 0.4505
1 0.4271
2 0.6166
3 0.2123
4 0.3805
5 0.1769
6 0.3995
7 0.4615
8 0.2309

Unrotated Factor Loadings
0 1 2

0 0.6642 -0.3209 0.0735
1 0.6888 -0.2471 -0.1933
2 0.4926 -0.3022 -0.2224
3 0.8372 0.2924 -0.0354
4 0.7050 0.3148 -0.1528
5 0.8187 0.3767 0.1045
6 0.6615 -0.3960 -0.0777
7 0.4579 -0.2955 0.4913
8 0.7657 -0.4274 -0.0117

Eigenvalues
0

0 0.0626
1 0.2295
2 0.5413
3 0.8650
4 0.8937
5 0.9736
6 1.0802
7 1.1172
8 1.1401

648 • FactorAnalysis class JMSL

Statistics
0

0 0.0350
1 1.0000
2 7.1494
3 12.0000
4 0.8476
5 5.0000

FactorAnalysis.RankException class

static public class com.imsl.stat.FactorAnalysis.RankException extends
com.imsl.IMSLException

Rank of covariance matrix error.

Constructors

FactorAnalysis.RankException
public FactorAnalysis.RankException(String message)

FactorAnalysis.RankException
public FactorAnalysis.RankException(String key, Object[] arguments)

FactorAnalysis.NotPositiveSemiDefiniteException class

static public class
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException extends
com.imsl.IMSLException

Covariance matrix not positive semi-definite.

Constructors

FactorAnalysis.NotPositiveSemiDefiniteException
public FactorAnalysis.NotPositiveSemiDefiniteException(String message)

Multivariate Analysis FactorAnalysis class • 649

FactorAnalysis.NotPositiveSemiDefiniteException
public FactorAnalysis.NotPositiveSemiDefiniteException(String key, Object[]
arguments)

FactorAnalysis.NotSemiDefiniteException class

static public class com.imsl.stat.FactorAnalysis.NotSemiDefiniteException
extends com.imsl.IMSLException

Hessian matrix not semi-definite.

Constructors

FactorAnalysis.NotSemiDefiniteException
public FactorAnalysis.NotSemiDefiniteException(String message)

FactorAnalysis.NotSemiDefiniteException
public FactorAnalysis.NotSemiDefiniteException(String key, Object[]
arguments)

FactorAnalysis.NotPositiveDefiniteException class

static public class com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException
extends com.imsl.IMSLException

Covariance matrix not positive definite.

Constructors

FactorAnalysis.NotPositiveDefiniteException
public FactorAnalysis.NotPositiveDefiniteException(String message)

FactorAnalysis.NotPositiveDefiniteException
public FactorAnalysis.NotPositiveDefiniteException(String key, Object[]
arguments)

650 • FactorAnalysis class JMSL

FactorAnalysis.SingularException class

static public class com.imsl.stat.FactorAnalysis.SingularException extends
com.imsl.IMSLException

Covariance matrix singular error.

Constructors

FactorAnalysis.SingularException
public FactorAnalysis.SingularException(String message)

FactorAnalysis.SingularException
public FactorAnalysis.SingularException(String key, Object[] arguments)

FactorAnalysis.BadVarianceException class

static public class com.imsl.stat.FactorAnalysis.BadVarianceException extends
com.imsl.IMSLException

Bad variance error.

Constructors

FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException(String message)

FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException(String key, Object[] arguments)

FactorAnalysis.EigenvalueException class

static public class com.imsl.stat.FactorAnalysis.EigenvalueException extends
com.imsl.IMSLException

Eigenvalue error.

Multivariate Analysis FactorAnalysis class • 651

Constructors

FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException(String message)

FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException(String key, Object[] arguments)

FactorAnalysis.NonPositiveEigenvalueException class

static public class com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException
extends com.imsl.IMSLException

Non positive eigenvalue error.

Constructors

FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(String message)

FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(String key, Object[]
arguments)

FactorAnalysis.NoDegreesOfFreedomException class

static public class com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException
extends com.imsl.IMSLException

No degrees of freedom error.

Constructors

FactorAnalysis.NoDegreesOfFreedomException
public FactorAnalysis.NoDegreesOfFreedomException(String message)

652 • FactorAnalysis class JMSL

FactorAnalysis.NoDegreesOfFreedomException
public FactorAnalysis.NoDegreesOfFreedomException(String key, Object[]
arguments)

DiscriminantAnalysis class

public class com.imsl.stat.DiscriminantAnalysis implements Serializable,
Cloneable

Performs a linear or a quadratic discriminant function analysis among several known groups
and the use of either reclassification, split sample, or the leaving-out-one methods in order to
evaluate the rule.

Class DiscriminantAnalysis performs discriminant function analysis using either linear or
quadratic discrimination. The output from DiscriminantAnalysis includes a measure of
distance between the groups, a table summarizing the classification results, a matrix containing
the posterior probabilities of group membership for each observation, and the within-sample
means and covariance matrices. The linear discriminant function coefficients are also computed.

All observations are input during one call to DiscriminantAnalysis, a method of operation
that has the advantage of simplicity.

The first step in the algorithm is the initialization step. The variables means, classication
table, and covariances are initialized to zero, and other program parameters are set. The
next step begins by adding all observations in x to the means and the factorizations of the
covariance matrices. It continues by computing some statistics of interest if requested: the
linear discriminant functions, the prior probabilities, the log of the determinant of each of the
covariance matrices, a test statistic for testing that all of the within-group covariance matrices
are equal, and a matrix of Mahalanobis distances between the groups. The matrix of
Mahalanobis distances is computed via the pooled covariance matrix when linear discrimination
is specified, the row covariance matrix is used when the discrimination is quadratic. Covariance
matrices are defined as follows. Let Ni denote the sum of the frequencies of the observations in
group i, and let Mi denote the number of observations in group i. Then, if Si denotes the
within-group i covariance matrix,

Si =
1

Ni − 1

Mi∑
j=1

wjfj(xj − x)(xj − x)T

where wj is the weight of the j-th observation in group i, fj is its frequency, xj is the j-th
observation column vector (in group i), and x denotes the mean vector of the observations in
group i. The mean vectors are computed as

x =
1
Wi

Mi∑
j=1

wjfjxj

Multivariate Analysis DiscriminantAnalysis class • 653

where

Wi =
Mi∑
j=1

wjfj

Given the means and the covariance matrices, the linear discriminant function for group i is
computed as:

zi = ln(pi)− 0.5xi
TS−1

p xi + xTS−1
p xi

where ln(pi) is the natural log of the prior probability for the i-th group, x is the observation to
be classified, and Sp denotes the pooled covariance matrix.

Let S denote either the pooled covariance matrix or one of the within-group covariance matrices
Si. (S will be the pooled covariance matrix in linear discrimination, and Si otherwise.) The
Mahalanobis distance between group i and group j is computed as:

D2
ij = (xi − xj)TS−1(xi − xj)

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as
follows (Morrison 1976, page 252):

γ = C−1
k∑

i=1

ni{ln(|Sp|)− ln(|Si|)}

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the
number of groups, and

C−1 = 1− 2p2 + 3p− 1
6(p+ 1)(k − 1)

(
k∑

i=1

1
ni
− 1

Σjnj

)

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group i is computed
using the prior probabilities and the sample mean vectors and estimated covariance matrices
under a multivariate normal assumption. Under quadratic discrimination, the within-group
covariance matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to group i is

q̂i(x) =
e−

1
2 D2

i (x)∑k
j=1 e

− 1
2 D2

j (x)

where

D2
i (x) =

{
(x− xi)TS−1

i (x− xi) + ln |Si| − 2ln(pi) LINEAR or QUADRATIC
(x− xi)TS−1

p (x− xi)− 2ln(pi) LINEAR, POOLED

For the leaving-out-one method of classification, the sample mean vector and sample covariance
matrices in the formula for

D2
i (x)

654 • DiscriminantAnalysis class JMSL

are adjusted so as to remove the observation x from their computation. For linear
discrimination, the linear discriminant function coefficients are actually used to compute the
same posterior probabilities.

Using the posterior probabilities, each observation in X is classified into a group; the result is
tabulated in the matrix returned by getClassTable and saved in the vector returned by
getClassMembership. The clasification table is not altered at this stage if X[i][groupIndex]
contains a group number that is out of range. If the reclassification method is specified, then all
observations with no missing values in the nVariables classification variables are classified.
When the leaving-out-one method is used, observations with invalid group numbers, weights,
frequencies or classification variables are not classified. Regardless of the frequency, a 1 is
added (or subtracted) from the classification table for each row of X that is classified and
contains a valid group number. When the leaving-out-one method is used, adjustment is made
to the posterior probabilities to remove the effect of the observation in the classification rule. In
this adjustment, each observation is presumed to have a weight of weights[i], and a frequency
of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Finally, upon completion, the covariance matrices are computed from their LU factorizations.

Fields

LEAVE OUT ONE
static final public int LEAVE OUT ONE

Indicates leave-out-one as the Classicfication Method.

LINEAR
static final public int LINEAR

Indicates a linear discrimination method.

POOLED
static final public int POOLED

Indicates Pooled covariances computed.

POOLED GROUP
static final public int POOLED GROUP

Indicates Pooled, group covariances computed.

PRIOR EQUAL
static final public int PRIOR EQUAL

Indicates prior probability type is to be prior equal.

PRIOR PROPORTIONAL

Multivariate Analysis DiscriminantAnalysis class • 655

static final public int PRIOR PROPORTIONAL
Indicates prior probability type is to be prior proportional.

QUADRATIC
static final public int QUADRATIC

Indicates a quadratic discrimination method.

RECLASSIFICATION
static final public int RECLASSIFICATION

Indicates reclassification as the classicfication method.

Constructor

DiscriminantAnalysis
public DiscriminantAnalysis(int nVariables, int nGroups)

Description

Constructor for DiscriminantAnalysis.

Parameters

nVariables – An int representing the number of variables to be used in the
discrimination.

nGroups – An int representing the number of groups in the data.

Methods

getClassMembership
public int[] getClassMembership()

Description

Returns the group number to which the observation was classified.

Returns

An int array containing the group to which the observation was classified. If an
observation has an invalid group number, frequency, or weight when the leaving-out-one
method has been specified, then the observation is not classified and the corresponding
elements of the array are set to zero.

getClassTable
public double[][] getClassTable()

Description

Returns the classification table.

656 • DiscriminantAnalysis class JMSL

Returns

A nGroups× nGroups double array containing the classification table. Each observation
that is classified and has a group number equal to 1.0, 2.0, ..., nGroups is entered into the
table. The rows of the table correspond to the known group membership. The columns
refer to the group to which the observation was classified.

getCoefficients
public double[][] getCoefficients()

Description

Returns the linear discriminant function coefficients.

Returns

A double array containing the linear discriminant function coefficients. The first column
of the array contains the constant term, and the remaining columns contain the variable
coefficients. The i-th row of the returned array corresponds to group i. The coefficients
are always computed as linear discriminant function coefficients even when quadratic
discrimination is specified.

getCovariance
public double[][][] getCovariance()

Description

Returns the array of covariances.

Returns

A nV ariables× nV ariables× g double array containing the covariances. Here,
g = nGroups+ 1 unless pooled only covariance matrices are computed, in which case
g=1. When pooled only covariance matrices are computed, the within-group covariance
matrices are not computed. The pooled covariance matrix is always computed and is
returned as the g-th covariance matrix.

getGroupCounts
public int[] getGroupCounts()

Description

Returns the group counts.

Returns

An int array of length nGroups containing the number of observations in each group.

getMahalanobis
public double[][] getMahalanobis()

Description

Returns the Mahalanobis distances between the group means.

Multivariate Analysis DiscriminantAnalysis class • 657

Returns

A nGroups× nGroups double array containing the Mahalanobis distances between the
group means. For linear discrimination, the Mahalanobis distance

D2
ij

between group means i and j is computed using the within covariance matrix for group i
in place of the pooled covariance matrix.

getMeans
public double[][] getMeans()

Description

Returns the variable means.

Returns

A double array containing the variable means. The i-th row of the returned array
contains the group i variable means.

getNRowsMissing
public int getNRowsMissing()

Description

Returns the number of rows of data encountered containing missing values (NaN).

Returns

A int representing the number of rows of data encountered containing missing values
(NaN) for the classification, group, weight, and/or frequency variables. If a row of data
contains a missing value (NaN) for any of these variables, that row is excluded from the
computations.

getPrior
public double[] getPrior()

Description

Returns the prior probabilities.

Returns

A double vector of length nGroups containing the prior probabilities for each group.

getProbability
public double[][] getProbability()

Description

Returns the posterior probabilities for each observation.

658 • DiscriminantAnalysis class JMSL

Returns

A x.length× nGroups double array containing the posterior probabilities for each
observation.

getStatistics
public double[] getStatistics()

Description

Returns statistics.

Returns

A double array (stat) containing output statistics.

I STAT[I]
0 Sum of the degrees of freedom for the within-

covariance matrices.
1 Chi-squared statistic.
2 The degrees of freedom in the chi-squared sta-

tistic.
3 Probability of a greater chi-squared, respec-

tively, of a test of the homogeneity of the
within-covariance matrices. (Not computed
when the pooled only covariance matrix is
computed).

4 thru 4+nGroups Log of the determinant of each group’s covari-
ance matrix. (Not computed when the pooled
only covariance matrix is computed) and of
the pooled covariance matrix.

Last nGroups + 1 elements Sum of the weights within each group.
Last element Sum of the weights in all groups.

setClassificationMethod
public void setClassificationMethod(int method)

Description

Sets the classification method.

Parameter

method – A int scalar indicating the method of classification. Use class member
RECLASSIFICATION or LEAVE OUT ONE. If this member function is not called, the
RECLASSIFICATION method is used.

setCovarianceComputation
public void setCovarianceComputation(int type)

Multivariate Analysis DiscriminantAnalysis class • 659

Description

Sets the type of covariance matrices to be computed.

Parameter

type – An int scalar indicating the type of covariance matrices to be computed. Use
class member POOLED or POOLED GROUP. If this member function is not called, the
POOLED GROUP type is used.

setDiscriminationMethod
public void setDiscriminationMethod(int method)

Description

Sets the discrimination method.

Parameter

method – An int scalar indicating the method of discrimination. Use class member
LINEAR or QUADRATIC. If this member function is not called, the LINEAR method is
used.

setPrior
public void setPrior(double[] prior)

Description

Sets the prior probabilities.

Parameter

prior – A double vector of length nGroups containing the prior probabilities for
each group. The elements of prior should sum to 1.0. If this member function is not
called, the elements of prior are set so as to be equal if PRIOR EQUAL is set or they
are set to be proportional to the sample size in each group if PRIOR PROPORTIONAL is
set.

setPrior
public void setPrior(int type)

Description

Sets the type of prior probabilities to be computed.

Parameter

type – An int scalar indicating the type of prior probabilities to be computed. Use
class member PRIOR EQUAL or PRIOR PROPORTIONAL. If this member function is not
called, the PRIOR EQUAL type is used.

660 • DiscriminantAnalysis class JMSL

update
public void update(double[][] x) throws
DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

Parameter

x – a double matrix containing the observations. The first nVariables columns
correspond to the variables, and the last column (column nVariables) contains the
group numbers. The groups must be numbered 1,2, ..., nGroups.

update
public void update(double[][] x, int groupIndex) throws
DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

Parameters

x – A double matrix containing the observations. The first nVariables columns
correspond to the variables, excluding the groupIndex column.

groupIndex – An int containing the column index of x in which the group numbers
are stored. The groups must be numbered 1,2, ..., nGroups.

update
public void update(double[][] x, double[] frequencies, double[] weights)
throws DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

Parameters

x – A double matrix containing the observations. The first nVariables columns
correspond to the variables, and the last column (column nVariables) contains the
group numbers. The groups must be numbered 1,2, ..., nGroups.

Multivariate Analysis DiscriminantAnalysis class • 661

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

update
public void update(double[][] x, int groupIndex, int[] varIndex) throws
DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

Parameters

x – A double matrix containing the observations. The columns indicated in
varIndex correspond to the variables, and groupIndex column contains the group
numbers.

groupIndex – An int containing the column index of x in which the group numbers
are stored. The groups must be numbered 1,2, ..., nGroups.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

update
public void update(double[][] x, int groupIndex, double[] frequencies,
double[] weights) throws DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

Parameters

x – A double matrix containing the observations. The first nVariables columns
correspond to the variables, excluding the groupIndex column.

groupIndex – An int containing the column index of x in which the group numbers
are stored. The groups must be numbered 1,2, ..., nGroups.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

update
public void update(double[][] x, int groupIndex, int[] varIndex, double[]
frequencies, double[] weights) throws

662 • DiscriminantAnalysis class JMSL

DiscriminantAnalysis.SumOfWeightsNegException,
DiscriminantAnalysis.EmptyGroupException,
DiscriminantAnalysis.CovarianceSingularException

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

Parameters

x – A double matrix containing the observations. The columns indicated in
varIndex correspond to the variables, and groupIndex column contains the group
numbers.

groupIndex – An int containing the column index of x in which the group numbers
are stored. The groups must be numbered 1,2, ..., nGroups.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

Example: Discriminant Analysis

This example uses linear discrimination with equal prior probabilities on Fisher’s (1936) iris
data. This example illustrates the use of the DiscriminantAnalysis class.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class DiscriminantAnalysisEx1 {
public static void main(String args[]) throws Exception {

double[][] xorig = {
{1.0, 5.1, 3.5, 1.4, .2},
{1.0, 4.9, 3.0, 1.4, .2},
{1.0, 4.7, 3.2, 1.3, .2},
{1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2},
{1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3},
{1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2},
{1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1},
{1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2},
{1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4},
{1.0, 5.1, 3.5, 1.4, .3},

Multivariate Analysis DiscriminantAnalysis class • 663

{1.0, 5.7, 3.8, 1.7, .3},
{1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2},
{1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2},
{1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2},
{1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4},
{1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2},
{1.0, 4.7, 3.2, 1.6, .2},
{1.0, 4.8, 3.1, 1.6, .2},
{1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1},
{1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2},
{1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2},
{1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2},
{1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3},
{1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2},
{1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4},
{1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2},
{1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2},
{1.0, 5.0, 3.3, 1.4, .2},
{2.0, 7.0, 3.2, 4.7, 1.4},
{2.0, 6.4, 3.2, 4.5, 1.5},
{2.0, 6.9, 3.1, 4.9, 1.5},
{2.0, 5.5, 2.3, 4.0, 1.3},
{2.0, 6.5, 2.8, 4.6, 1.5},
{2.0, 5.7, 2.8, 4.5, 1.3},
{2.0, 6.3, 3.3, 4.7, 1.6},
{2.0, 4.9, 2.4, 3.3, 1.0},
{2.0, 6.6, 2.9, 4.6, 1.3},
{2.0, 5.2, 2.7, 3.9, 1.4},
{2.0, 5.0, 2.0, 3.5, 1.0},
{2.0, 5.9, 3.0, 4.2, 1.5},
{2.0, 6.0, 2.2, 4.0, 1.0},
{2.0, 6.1, 2.9, 4.7, 1.4},
{2.0, 5.6, 2.9, 3.6, 1.3},
{2.0, 6.7, 3.1, 4.4, 1.4},
{2.0, 5.6, 3.0, 4.5, 1.5},
{2.0, 5.8, 2.7, 4.1, 1.0},
{2.0, 6.2, 2.2, 4.5, 1.5},
{2.0, 5.6, 2.5, 3.9, 1.1},
{2.0, 5.9, 3.2, 4.8, 1.8},
{2.0, 6.1, 2.8, 4.0, 1.3},
{2.0, 6.3, 2.5, 4.9, 1.5},
{2.0, 6.1, 2.8, 4.7, 1.2},

664 • DiscriminantAnalysis class JMSL

{2.0, 6.4, 2.9, 4.3, 1.3},
{2.0, 6.6, 3.0, 4.4, 1.4},
{2.0, 6.8, 2.8, 4.8, 1.4},
{2.0, 6.7, 3.0, 5.0, 1.7},
{2.0, 6.0, 2.9, 4.5, 1.5},
{2.0, 5.7, 2.6, 3.5, 1.0},
{2.0, 5.5, 2.4, 3.8, 1.1},
{2.0, 5.5, 2.4, 3.7, 1.0},
{2.0, 5.8, 2.7, 3.9, 1.2},
{2.0, 6.0, 2.7, 5.1, 1.6},
{2.0, 5.4, 3.0, 4.5, 1.5},
{2.0, 6.0, 3.4, 4.5, 1.6},
{2.0, 6.7, 3.1, 4.7, 1.5},
{2.0, 6.3, 2.3, 4.4, 1.3},
{2.0, 5.6, 3.0, 4.1, 1.3},
{2.0, 5.5, 2.5, 4.0, 1.3},
{2.0, 5.5, 2.6, 4.4, 1.2},
{2.0, 6.1, 3.0, 4.6, 1.4},
{2.0, 5.8, 2.6, 4.0, 1.2},
{2.0, 5.0, 2.3, 3.3, 1.0},
{2.0, 5.6, 2.7, 4.2, 1.3},
{2.0, 5.7, 3.0, 4.2, 1.2},
{2.0, 5.7, 2.9, 4.2, 1.3},
{2.0, 6.2, 2.9, 4.3, 1.3},
{2.0, 5.1, 2.5, 3.0, 1.1},
{2.0, 5.7, 2.8, 4.1, 1.3},
{3.0, 6.3, 3.3, 6.0, 2.5},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 7.1, 3.0, 5.9, 2.1},
{3.0, 6.3, 2.9, 5.6, 1.8},
{3.0, 6.5, 3.0, 5.8, 2.2},
{3.0, 7.6, 3.0, 6.6, 2.1},
{3.0, 4.9, 2.5, 4.5, 1.7},
{3.0, 7.3, 2.9, 6.3, 1.8},
{3.0, 6.7, 2.5, 5.8, 1.8},
{3.0, 7.2, 3.6, 6.1, 2.5},
{3.0, 6.5, 3.2, 5.1, 2.0},
{3.0, 6.4, 2.7, 5.3, 1.9},
{3.0, 6.8, 3.0, 5.5, 2.1},
{3.0, 5.7, 2.5, 5.0, 2.0},
{3.0, 5.8, 2.8, 5.1, 2.4},
{3.0, 6.4, 3.2, 5.3, 2.3},
{3.0, 6.5, 3.0, 5.5, 1.8},
{3.0, 7.7, 3.8, 6.7, 2.2},
{3.0, 7.7, 2.6, 6.9, 2.3},
{3.0, 6.0, 2.2, 5.0, 1.5},
{3.0, 6.9, 3.2, 5.7, 2.3},
{3.0, 5.6, 2.8, 4.9, 2.0},
{3.0, 7.7, 2.8, 6.7, 2.0},
{3.0, 6.3, 2.7, 4.9, 1.8},
{3.0, 6.7, 3.3, 5.7, 2.1},
{3.0, 7.2, 3.2, 6.0, 1.8},
{3.0, 6.2, 2.8, 4.8, 1.8},
{3.0, 6.1, 3.0, 4.9, 1.8},
{3.0, 6.4, 2.8, 5.6, 2.1},
{3.0, 7.2, 3.0, 5.8, 1.6},

Multivariate Analysis DiscriminantAnalysis class • 665

{3.0, 7.4, 2.8, 6.1, 1.9},
{3.0, 7.9, 3.8, 6.4, 2.0},
{3.0, 6.4, 2.8, 5.6, 2.2},
{3.0, 6.3, 2.8, 5.1, 1.5},
{3.0, 6.1, 2.6, 5.6, 1.4},
{3.0, 7.7, 3.0, 6.1, 2.3},
{3.0, 6.3, 3.4, 5.6, 2.4},
{3.0, 6.4, 3.1, 5.5, 1.8},
{3.0, 6.0, 3.0, 4.8, 1.8},
{3.0, 6.9, 3.1, 5.4, 2.1},
{3.0, 6.7, 3.1, 5.6, 2.4},
{3.0, 6.9, 3.1, 5.1, 2.3},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 6.8, 3.2, 5.9, 2.3},
{3.0, 6.7, 3.3, 5.7, 2.5},
{3.0, 6.7, 3.0, 5.2, 2.3},
{3.0, 6.3, 2.5, 5.0, 1.9},
{3.0, 6.5, 3.0, 5.2, 2.0},
{3.0, 6.2, 3.4, 5.4, 2.3},
{3.0, 5.9, 3.0, 5.1, 1.8}};
int i, j, jj, k;
int ipermu[] = {2, 3, 4, 5, 1};
double temp;
double x[][];

x = new double[xorig.length][xorig[0].length];

for (i = 0; i< xorig.length; i++) {
for (j = 1; j < xorig[0].length; j++) {

x[i][j-1] = xorig[i][j];
}

}
for (i = 0; i< xorig.length; i++) {

x[i][4] = xorig[i][0];
}

int nvar = x[0].length -1;

DiscriminantAnalysis da = new DiscriminantAnalysis(nvar, 3);
da.setCovarianceComputation(da.POOLED);
da.setClassificationMethod(da.RECLASSIFICATION);
da.update(x);
new PrintMatrix("Xmean are: ").print(da.getMeans());
new PrintMatrix("Coef: ").print(da.getCoefficients());
new PrintMatrix("Counts: ").print(da.getGroupCounts());
new PrintMatrix("Stats: ").print(da.getStatistics());
new PrintMatrix("ClassMembership: ").print(da.getClassMembership());
new PrintMatrix("ClassTable: ").print(da.getClassTable());
double cov[][][] = da.getCovariance();
for (i= 0; i<cov.length;i++) {

new PrintMatrix("Covariance Matrix "+i+" : ").print(cov[i]);
}
new PrintMatrix("Prior : ").print(da.getPrior());
new PrintMatrix("PROB: ").print(da.getProbability());
new PrintMatrix("MAHALANOBIS: ").print(da.getMahalanobis());
System.out.println("nrmiss = " + da.getNRowsMissing());

666 • DiscriminantAnalysis class JMSL

}

}

Output

Xmean are:
0 1 2 3

0 5.006 3.428 1.462 0.246
1 5.936 2.77 4.26 1.326
2 6.588 2.974 5.552 2.026

Coef:
0 1 2 3 4

0 -86.308 23.544 23.588 -16.431 -17.398
1 -72.853 15.698 7.073 5.211 6.434
2 -104.368 12.446 3.685 12.767 21.079

Counts:
0

0 50
1 50
2 50

Stats:
0

0 147
1 ?
2 ?
3 ?
4 ?
5 ?
6 ?
7 -9.959
8 50
9 50
10 50
11 150

ClassMembership:
0

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1

Multivariate Analysis DiscriminantAnalysis class • 667

11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2
64 2
65 2
66 2

668 • DiscriminantAnalysis class JMSL

67 2
68 2
69 2
70 3
71 2
72 2
73 2
74 2
75 2
76 2
77 2
78 2
79 2
80 2
81 2
82 2
83 3
84 2
85 2
86 2
87 2
88 2
89 2
90 2
91 2
92 2
93 2
94 2
95 2
96 2
97 2
98 2
99 2
100 3
101 3
102 3
103 3
104 3
105 3
106 3
107 3
108 3
109 3
110 3
111 3
112 3
113 3
114 3
115 3
116 3
117 3
118 3
119 3
120 3
121 3
122 3

Multivariate Analysis DiscriminantAnalysis class • 669

123 3
124 3
125 3
126 3
127 3
128 3
129 3
130 3
131 3
132 3
133 2
134 3
135 3
136 3
137 3
138 3
139 3
140 3
141 3
142 3
143 3
144 3
145 3
146 3
147 3
148 3
149 3

ClassTable:
0 1 2

0 50 0 0
1 0 48 2
2 0 1 49

Covariance Matrix 0 :
0 1 2 3

0 0.265 0.093 0.168 0.038
1 0.093 0.115 0.055 0.033
2 0.168 0.055 0.185 0.043
3 0.038 0.033 0.043 0.042

Prior :
0

0 0.333
1 0.333
2 0.333

PROB:
0 1 2

0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0

670 • DiscriminantAnalysis class JMSL

7 1 0 0
8 1 0 0
9 1 0 0

10 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0
14 1 0 0
15 1 0 0
16 1 0 0
17 1 0 0
18 1 0 0
19 1 0 0
20 1 0 0
21 1 0 0
22 1 0 0
23 1 0 0
24 1 0 0
25 1 0 0
26 1 0 0
27 1 0 0
28 1 0 0
29 1 0 0
30 1 0 0
31 1 0 0
32 1 0 0
33 1 0 0
34 1 0 0
35 1 0 0
36 1 0 0
37 1 0 0
38 1 0 0
39 1 0 0
40 1 0 0
41 1 0 0
42 1 0 0
43 1 0 0
44 1 0 0
45 1 0 0
46 1 0 0
47 1 0 0
48 1 0 0
49 1 0 0
50 0 1 0
51 0 0.999 0.001
52 0 0.996 0.004
53 0 1 0
54 0 0.996 0.004
55 0 0.999 0.001
56 0 0.986 0.014
57 0 1 0
58 0 1 0
59 0 1 0
60 0 1 0
61 0 0.999 0.001
62 0 1 0

Multivariate Analysis DiscriminantAnalysis class • 671

63 0 0.994 0.006
64 0 1 0
65 0 1 0
66 0 0.981 0.019
67 0 1 0
68 0 0.96 0.04
69 0 1 0
70 0 0.253 0.747
71 0 1 0
72 0 0.816 0.184
73 0 1 0
74 0 1 0
75 0 1 0
76 0 0.998 0.002
77 0 0.689 0.311
78 0 0.993 0.007
79 0 1 0
80 0 1 0
81 0 1 0
82 0 1 0
83 0 0.143 0.857
84 0 0.964 0.036
85 0 0.994 0.006
86 0 0.998 0.002
87 0 0.999 0.001
88 0 1 0
89 0 1 0
90 0 0.999 0.001
91 0 0.998 0.002
92 0 1 0
93 0 1 0
94 0 1 0
95 0 1 0
96 0 1 0
97 0 1 0
98 0 1 0
99 0 1 0
100 0 0 1
101 0 0.001 0.999
102 0 0 1
103 0 0.001 0.999
104 0 0 1
105 0 0 1
106 0 0.049 0.951
107 0 0 1
108 0 0 1
109 0 0 1
110 0 0.013 0.987
111 0 0.002 0.998
112 0 0 1
113 0 0 1
114 0 0 1
115 0 0 1
116 0 0.006 0.994
117 0 0 1
118 0 0 1

672 • DiscriminantAnalysis class JMSL

119 0 0.221 0.779
120 0 0 1
121 0 0.001 0.999
122 0 0 1
123 0 0.097 0.903
124 0 0 1
125 0 0.003 0.997
126 0 0.188 0.812
127 0 0.134 0.866
128 0 0 1
129 0 0.104 0.896
130 0 0 1
131 0 0.001 0.999
132 0 0 1
133 0 0.729 0.271
134 0 0.066 0.934
135 0 0 1
136 0 0 1
137 0 0.006 0.994
138 0 0.193 0.807
139 0 0.001 0.999
140 0 0 1
141 0 0 1
142 0 0.001 0.999
143 0 0 1
144 0 0 1
145 0 0 1
146 0 0.006 0.994
147 0 0.003 0.997
148 0 0 1
149 0 0.018 0.982

MAHALANOBIS:
0 1 2

0 0 89.864 179.385
1 89.864 0 17.201
2 179.385 17.201 0

nrmiss = 0

DiscriminantAnalysis.SumOfWeightsNegException class

static public class com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException
extends com.imsl.IMSLException

The sum of the weights have become negative.

Multivariate Analysis DiscriminantAnalysis class • 673

Constructors

DiscriminantAnalysis.SumOfWeightsNegException
public DiscriminantAnalysis.SumOfWeightsNegException(String message)

DiscriminantAnalysis.SumOfWeightsNegException
public DiscriminantAnalysis.SumOfWeightsNegException(String key, Object[]
arguments)

DiscriminantAnalysis.EmptyGroupException class

static public class com.imsl.stat.DiscriminantAnalysis.EmptyGroupException
extends com.imsl.IMSLException

There are no observations in a group. Cannot compute statistics.

Constructors

DiscriminantAnalysis.EmptyGroupException
public DiscriminantAnalysis.EmptyGroupException(String message)

DiscriminantAnalysis.EmptyGroupException
public DiscriminantAnalysis.EmptyGroupException(String key, Object[]
arguments)

DiscriminantAnalysis.CovarianceSingularException class

static public class
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException extends
com.imsl.IMSLException

The variance-Covariance matrix is singular.

Constructors

DiscriminantAnalysis.CovarianceSingularException

674 • DiscriminantAnalysis class JMSL

public DiscriminantAnalysis.CovarianceSingularException(String message)

DiscriminantAnalysis.CovarianceSingularException
public DiscriminantAnalysis.CovarianceSingularException(String key, Object[]
arguments)

Chapter 19. Multivariate Analysis DiscriminantAnalysis class • 675

676 • DiscriminantAnalysis class JMSL

Chapter 20: Probability
Distribution Functions
and Inverses

Types

class Cdf . 679
interface CdfFunction . 726
class InverseCdf . 727

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz
(1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the methods/classes described
in this chapter are written for standard forms of statistical distributions. Hence, the number of
parameters for any given distribution may be fewer than the number often associated with the
distribution. Also, the methods relating to the normal distribution, Cdf.normal and
Cdf.inverseNormal, are for a normal distribution with mean equal to zero and variance equal
to one. For other means and variances, it is very easy for the user to standardize the variables
by subtracting the mean and dividing by the square root of the variance.

The distribution function for the (real, single-valued) random variable X is the function F
defined for all real x by

F (x) = Prob(X ≤ x)

where Prob(·) denotes the probability of an event. The distribution function is often called the
cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less
than the left endpoint and 1 for values greater than the right endpoint. The methods in the
Cdf classes described in this chapter return the correct values for the distribution functions

677

when values outside of the range of the random variable are input, but warning error conditions
are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on
specific values is called the probability function, defined by

p(x) = Prob(X = x)

The CDF for a discrete random variable is

F (x) =
∑
A

p(k)

where A is set such that k ≤ x. Since the distribution function is a step function, its inverse
does not exist uniquely.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful
because the probability of any given point is 0. For such distributions, the useful analog is the
probability density function (PDF). The integral of the PDF is the probability over the interval,
if the continuous random variable X has PDF f, then

Prob(a ≤ X ≤ b) =
∫ b

a

f(x) dx

The relationship between the CDF and the PDF is

F (x) =
∫ x

−∞
f(t) dt

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the
support of the distribution. The ”inverse” methods in the Cdf class compute the inverses of the
distribution functions, that is, given F(x), they compute, x. The inverses are defined only over
the open interval (0,1).

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be
input to an inverse function, it is often impossible to achieve good accuracy because of the
nature of the representation of numeric values. In this case, it may be better to work with the

678 • JMSL

complementary distribution function (one minus the distribution function). If the distribution
is symmetric about some point (as the normal distribution, for example) or is reflective about
some point (as the beta distribution, for example), the complementary distribution function has
a simple relationship with the distribution function. For example, to evaluate the standard
normal distribution at 4.0, using the normal method in the Cdf class directly, the result to six
places is 0.999968. Only two of those digits are really useful, however. A more useful result may
be 1.000000 minus this value, which can be obtained to six places as 3.16712e-05 by evaluating
normal at -4.0. For the normal distribution, the two values are related by Φ(x) = 1− Φ(−x),
where Φ(·) is the normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right, so evaluating beta at 0.7,
0.999953 is obtained. A more precise result is obtained by evaluating beta with parameters 10
and 2 at 0.3. This yields 4.72392e-5.

Many of the algorithms used by the classes in this chapter are discussed by Abramowitz and
Stegun (1964). The algorithms make use of various expansions and recursive relationships and
often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments. However, if the input to
one of the distribution functions in this chapter is outside the range of the random variable, an
error is issued.

Cdf class

public final class com.imsl.stat.Cdf

Cumulative probability distribution functions, probability density functions, and their inverses.

Methods

beta
static public double beta(double x, double pin, double qin)

Description

Evaluates the beta cumulative probability distribution function.

Method beta evaluates the distribution function of a beta random variable with
parameters pin and qin. This function is sometimes called the incomplete beta ratio and,
with p = pin and q = qin, is denoted by Ix(p, q). It is given by

Ix (p, q) =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0

tp−1 (1− t)q−1
dt

where Γ(·) is the gamma function. The value of the distribution function Ix(p, q) is the
probability that the random variable takes a value less than or equal to x.

Probability Distribution Functions and Inverses Cdf class • 679

The integral in the expression above is called the incomplete beta function and is denoted
by βx(p, q). The constant in the expression is the reciprocal of the beta function (the
incomplete function evaluated at one) and is denoted by βx(p, q).

beta uses the method of Bosten and Battiste (1974).

Beta Distribution FunctionBeta Distribution Function

0.00 0.20 0.40 0.60 0.80 1.00
x

0.00

0.20

0.40

0.60

0.80

1.00

b
e

ta
(x

,p
,q

)

 p q
0.5 0.5
0.5 3.0
1.0 1.0

3.0 7.0

Parameters

x – a double, the argument at which the function is to be evaluated.

680 • Cdf class JMSL

pin – a double, the first beta distribution parameter.

qin – a double, the second beta distribution parameter.

Returns

a double, the probability that a beta random variable takes on a value less than or equal
to x.

betaMean
static public double betaMean(double pin, double qin)

Description

Evaluates the mean of the beta cumulative probability distribution function

Parameters

pin – a double, the first beta distribution parameter.

qin – a double, the second beta distribution parameter.

Returns

a double, the mean of the beta distribution function.

betaProb
static public double betaProb(double x, double pin, double qin)

Description

Evaluates the beta probability density function.

Parameters

x – a double, the argument at which the function is to be evaluated.

pin – a double, the first beta distribution parameter.

qin – a double, the second beta distribution parameter.

Returns

a double, the value of the probability density function at x.

betaVariance
static public double betaVariance(double pin, double qin)

Description

Evaluates the variance of the beta cumulative probability distribution function

Parameters

pin – a double, the first beta distribution parameter.

qin – a double, the second beta distribution parameter.

Probability Distribution Functions and Inverses Cdf class • 681

Returns

a double, the variance of the beta distribution function.

binomial
static public double binomial(int k, int n, double p)

Description

Evaluates the binomial cumulative probability distribution function.

Method binomial evaluates the distribution function of a binomial random variable with
parameters n and p. It does this by summing probabilities of the random variable taking
on the specific values in its range. These probabilities are computed by the recursive
relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k
is not greater than n times p, and are computed backward from n, otherwise. The
smallest positive machine number, ε, is used as the starting value for summing the
probabilities, which are rescaled by (1− p)nε if forward computation is performed and by
pnε if backward computation is done. For the special case of p = 0, binomial is set to 1;
and for the case p = 1, binomial is set to 1 if k = n and to 0 otherwise.

Parameters

k – the int argument for which the binomial distribution function is to be evaluated.

n – the int number of Bernoulli trials.

p – a double scalar value representing the probability of success on each trial.

Returns

a double scalar value representing the probability that a binomial random variable takes
a value less than or equal to k. This value is the probability that k or fewer successes
occur in n independent Bernoulli trials, each of which has a p probability of success.

binomialProb
static public double binomialProb(int k, int n, double p)

Description

Evaluates the binomial probability density function.

Method binomialProb evaluates the probability that a binomial random variable with
parameters n and p takes on the value k. It does this by computing probabilities of the
random variable taking on the values in its range less than (or the values greater than) k.
These probabilities are computed by the recursive relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

682 • Cdf class JMSL

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k
is not greater than n× p, and are computed backward from n, otherwise. The smallest
positive machine number, ε, is used as the starting value for computing the probabilities,
which are rescaled by (1− p)nε if forward computation is performed and by pnε if
backward computation is done.

For the special case of p = 0, binomialProb is set to 0 if k is greater than 0 and to 1
otherwise; and for the case p = 1, binomialProb is set to 0 if k is less than n and to 1
otherwise.

Binomial Probablity FunctionBinomial Probablity Function

0 1 2 3 4 5 6 7 8 9 10
k

0.00

0.10

0.20

0.30

0.40

P
ro

b
ab

lit
y

n=10 p=0.5

n=10 p=0.2

Probability Distribution Functions and Inverses Cdf class • 683

Parameters

k – the int argument for which the binomial distribution function is to be evaluated.

n – the int number of Bernoulli trials.

p – a double scalar value representing the probability of success on each trial.

Returns

a double scalar value representing the probability that a binomial random variable takes
a value equal to k.

bivariateNormal
static public double bivariateNormal(double x, double y, double rho)

Description

Evaluates the bivariate normal cumulative probability distribution function. Let (X,Y)
be a bivariate normal variable with mean (0, 0) and variance-covariance matrix[

1 ρ
ρ 1

]
This method computes the probability that X ≤ x and Y ≤ y.

684 • Cdf class JMSL

Bivariate Normal Distribution FunctionBivariate Normal Distribution Function

-5.00 -3.00 -1.00 1.00 3.00 5.00
x

0.00

0.20

0.40

0.60

0.80

1.00

biv
ar

iat
eN

or
ma

l(x
,y,

.9)
 y

 0.0
 1.0
 2.0
 3.0

Parameters

x – is the x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

y – is the y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

rho – is the correlation coefficient.

Probability Distribution Functions and Inverses Cdf class • 685

Returns

the probability that a bivariate normal random variable (X,Y) with correlation rho
satisfies X ≤ x and Y ≤ y.

chi
static public double chi(double chsq, double df)

Description

Evaluates the chi-squared cumulative probability distribution function.

Method chi evaluates the distribution function, F, of a chi-squared random variable with
df degrees of freedom, that is, with v = df, and x = chsq,

F (x) =
1

2ν/2Γ (ν/2)

∫ x

0

e−t/2tν/2−1dt

where Γ(·) is the gamma function. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

For v > 65, chi uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.17) to the normal distribution, and method normal is used to evaluate the
normal distribution function.

For v ≤ 65, chi uses series expansions to evaluate the distribution function. If
x < max(v/2, 26), chi uses the series 6.5.29 in Abramowitz and Stegun (1964), otherwise,
it uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun.

686 • Cdf class JMSL

Chi-Squared Distribution FunctionChi-Squared Distribution Function

0.00 5.00 10.00 15.00 20.00 25.00 30.00
x

0.00

0.20

0.40

0.60

0.80

1.00
ch

i(x
,ν

)

 ν
 2

10
20

Parameters

chsq – a double scalar value representing the argument at which the function is to
be evaluated.

df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Probability Distribution Functions and Inverses Cdf class • 687

Returns

a double scalar value representing the probability that a chi-squared random variable
takes a value less than or equal to chsq.

chiMean
static public double chiMean(double df)

Description

Evaluates the mean of the chi-squared cumulative probability distribution function

Parameter

df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Returns

a double, the mean of the chi-squared distribution function.

chiProb
static public double chiProb(double chsq, double df)

Description

Evaluates the chi-squared probability density function

Parameters

chsq – a double scalar value representing the argument at which the function is to
be evaluated.
df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Returns

a double scalar value, the value of the probability density function at chsq.

chiVariance
static public double chiVariance(double df)

Description

Evaluates the variance of the chi-squared cumulative probability distribution function

Parameter

df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Returns

a double, the variance of the chi-squared distribution function.

discreteUniform
static public double discreteUniform(int x, int n)

688 • Cdf class JMSL

Description

Evaluates the discrete uniform cumulative probability distribution function.

Parameters

x – an int scalar value representing the argument at which the function is to be
evaluated. x should be a value between the lower limit 0 and upper limit n

n – an int scalar value representing the upper limit of the discrete uniform
distribution.

Returns

a double scalar value representing the probability that a discrete uniform random
variable takes a value less than or equal to x.

discreteUniformProb
static public double discreteUniformProb(int x, int n)

Description

Evaluates the discrete uniform probability density function.

Parameters

x – an int argument for which the discrete uniform probability density function is to
be evaluated. x should be a value between the lower limit 0 and upper limit n

n – an int scalar value representing the upper limit of the discrete uniform
distribution.

Returns

a double scalar value representing the probability that a discrete uniform random
variable takes a value equal to x.

exponential
static public double exponential(double x, double scale)

Description

Evaluates the exponential cumulative probability distribution function.

Method exponential is a special case of the gamma distribution function, which
evaluates the distribution function, F, with scale parameter b and shape parameter a,
used in the gamma distribution function equal to 1.0. That is,

F (x) =
1

Γ (a)

∫ x

0

e−t/bdt

where Γ(·) is the gamma function. (The gamma function is the integral from 0 to ∞ of
the same integrand as above). The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.

Probability Distribution Functions and Inverses Cdf class • 689

If x is less than or equal to 1.0, gamma uses a series expansion. Otherwise, a continued
fraction expansion is used. (See Abramowitz and Stegun, 1964.)

Exponential Distribution FunctionExponential Distribution Function

0.00 2.00 4.00 6.00 8.00 10.00
x

0.00

0.20

0.40

0.60

0.80

1.00
ex

po
ne

nti
al(

x,s
ca

le)

 scale
 0.5
 1.0
 1.5
 2.0

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

scale – a double scalar value representing the scale parameter, b .

690 • Cdf class JMSL

Returns

a double scalar value representing the probability that an exponential random variable
takes on a value less than or equal to x.

exponentialProb
static public double exponentialProb(double x, double scale)

Description

Evaluates the exponential probability density function

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

scale – a double scalar value representing the scale parameter.

Returns

a double scalar value, the value of the probability density function at x.

extremeValue
static public double extremeValue(double x, double mu, double beta)

Description

Evaluates the extreme value cumulative probability distribution function.

Method extremeValue, also known as the Gumbel minimum distribution, evaluates the
extreme value distribution function, F, of a uniform random variable with location
parameter µ and shape parameter β; that is,

F (x) =
∫ x

0

1− e−e
x−µ

β
dt

The case where µ = 0 and β = 1 is called the standard Gumbel distribution.

Random numbers are generated by evaluating uniform variates ui, equating the
continuous distribution function, and then solving for xi by first computing
xi−µ

β = log(−log(1− ui)).

Probability Distribution Functions and Inverses Cdf class • 691

Extreme Value Distribution FunctionExtreme Value Distribution Function

0.00 2.00 4.00 6.00 8.00
x

0.00

0.20

0.40

0.60

0.80

1.00

ex
tre

me
Va

lue
(x,

mu
,2.

0)
 mu

 0.0
 1.0
 2.0
 3.0

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

mu – a double scalar value representing the location parameter, µ.

beta – a double scalar value representing the scale parameter, β

692 • Cdf class JMSL

Returns

a double scalar value representing the probability that an extreme value random variable
takes on a value less than or equal to x.

extremeValueProb
static public double extremeValueProb(double x, double mu, double beta)

Description

Evaluates the extreme value probability density function.

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

mu – a double scalar value representing the location parameter.

beta – a double scalar value representing the scale parameter.

Returns

a double scalar value representing the probability density function at x.

F
static public double F(double x, double dfn, double dfd)

Description

Evaluates the F cumulative probability distribution function.

F evaluates the distribution function of a Snedecor’s F random variable with dfn
numerator degrees of freedom and dfd denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then using the
function beta. If X is an F variate with v1 and v2 degrees of freedom and
Y = v1X/(v2 + v1X), then Y is a beta variate with parameters p = v1/2 and q = v2/2. F
also uses a relationship between F random variables that can be expressed as follows:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)

Probability Distribution Functions and Inverses Cdf class • 693

F Distribution FunctionF Distribution Function

0.00 4.00 8.00 12.00 16.00 20.00
x

0.00

0.20

0.40

0.60

0.80

1.0
f(

x,
ν1

,ν
2)

 ν1 ν2
 5 2

 5 10
10 5

 5 20

Parameters

x – a double, the argument at which the function is to be evaluated.

dfn – a double, the numerator degrees of freedom. It must be positive.

dfd – a double, the denominator degrees of freedom. It must be positive.

694 • Cdf class JMSL

Returns

a double, the probability that an F random variable takes on a value less than or equal to
x.

FProb
static public double FProb(double x, double dfn, double dfd)

Description

Evaluates the F probability density function.

The probability density function of the F distribution is

f (x, dfn, dfd) =
Γ(v1+v2

2)(v1
v2

)
v1
2 x

v1
2

Γ(v1
2)Γ(v2

2)(1 + v1x
v2

)
v1+v2

2

where v1 and v2 are the shape parameters dfn and dfd and Γ is the gamma function,

Γ(a) =
∫ ∞

0

ta−1e−tdt

.

Parameters

x – a double, the argument at which the function is to be evaluated.

dfn – a double, the numerator degrees of freedom. It must be positive.

dfd – a double, the denominator degrees of freedom. It must be positive.

Returns

a double, the value of the probability density function at x.

gamma
static public double gamma(double x, double a)

Description

Evaluates the gamma cumulative probability distribution function.

Method gamma evaluates the distribution function, F, of a gamma random variable with
shape parameter a; that is,

F (x) =
1

Γ (a)

∫ x

0

e−tta−1dt

where Γ(·) is the gamma function. (The gamma function is the integral from 0 to ∞ of
the same integrand as above). The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive), or even as a three-parameter distribution in which

Probability Distribution Functions and Inverses Cdf class • 695

the third parameter c is a location parameter. In the most general case, the probability
density function over (c,∞) is

f (t) =
1

baΓ (a)
e−(t−c)/b (x− c)a−1

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0
can be obtained from gamma by setting X = (t0 − c)/b.
If X is less than a or if X is less than or equal to 1.0, gamma uses a series expansion.
Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)

696 • Cdf class JMSL

Gamma Distribution FunctionGamma Distribution Function

0.00 4.00 8.00 12.00 16.00 20.00
x

0.00

0.20

0.40

0.60

0.80

1.00
ga

m
m

a(
x,

α)

 α
 0.5

 1.0
 5.0

10.0

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.
a – a double scalar value representing the shape parameter. This must be positive.

Returns

a double scalar value representing the probability that a gamma random variable takes

Probability Distribution Functions and Inverses Cdf class • 697

on a value less than or equal to x.

gammaProb
static public double gammaProb(double x, double a, double b)

Description

Evaluates the gamma probability density function.

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.
a – a double scalar value representing the shape parameter. This must be positive.
b – a double scalar value representing the scale parameter. This must be positive.

Returns

a double scalar value, the probability density function at x.

geometric
static public double geometric(int x, double p)

Description

Evaluates the discrete geometric cumulative probability distribution function.

Parameters

x – an int scalar value representing the argument at which the function is to be
evaluated
p – an double scalar value representing the probability parameter for each
independent trial (the probability of success for each independent trial).

Returns

a double scalar value representing the probability that a geometric random variable takes
a value less than or equal to x. The return value is the probability that up to x trials
would be observed before observing a success.

geometricProb
static public double geometricProb(int x, double p)

Description

Evaluates the discrete geometric probability density function.

Method geometricProb evaluates the geometric distribution for the number of trials
before the first success.

Parameters

x – the int argument for which the geometric probability function is to be evaluated
p – a double scalar value representing the probability parameter of the geometric
distribution (the probability of success for each independent trial)

698 • Cdf class JMSL

Returns

a double scalar value representing the probability that a geometric random variable takes
a value equal to x.

hypergeometric
static public double hypergeometric(int k, int sampleSize, int
defectivesInLot, int lotSize)

Description

Evaluates the hypergeometric cumulative probability distribution function.

Method hypergeometric evaluates the distribution function of a hypergeometric random
variable with parameters n, l, and m. The hypergeometric random variable X can be
thought of as the number of items of a given type in a random sample of size n that is
drawn without replacement from a population of size l containing m items of this type.
The probability function is

Pr (X = j) =

(
m
j

) (
l−m
n−j

)
(l
n)

for j = i, i+ 1, i+ 2, . . . , min (n,m)

where i = max(0, n− l +m).

If k is greater than or equal to i and less than or equal to min(n,m), hypergeometric
sums the terms in this expression for j going from i up to k. Otherwise, hypergeometric
returns 0 or 1, as appropriate. So, as to avoid rounding in the accumulation,
hypergeometric performs the summation differently depending on whether or not k is
greater than the mode of the distribution, which is the greatest integer less than or equal
to (m+ 1)(n+ 1)/(l + 2).

Parameters

k – an int, the argument at which the function is to be evaluated.

sampleSize – an int, the sample size, n.

defectivesInLot – an int, the number of defectives in the lot, m.

lotSize – an int, the lot size, l.

Returns

a double, the probability that a hypergeometric random variable takes a value less than
or equal to k.

hypergeometricProb
static public double hypergeometricProb(int k, int sampleSize, int
defectivesInLot, int lotSize)

Probability Distribution Functions and Inverses Cdf class • 699

Description

Evaluates the hypergeometric probability density function.

Method hypergeometricProb evaluates the probability density function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable X can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l containing
m items of this type. The probability density function is:

Pr (X = k) =
(m
k)
(
l−m
n−k

)
(l
n)

for k = i, i+ 1, i+ 2 . . . , min (n,m)

where i = max(0, n - l + m). hypergeometricProb evaluates the expression using log
gamma functions.

Parameters

k – an int, the argument at which the function is to be evaluated.

sampleSize – an int, the sample size, n.

defectivesInLot – an int, the number of defectives in the lot, m.

lotSize – an int, the lot size, l.

Returns

a double, the probability that a hypergeometric random variable takes on a value equal
to k.

inverseBeta
static public double inverseBeta(double p, double pin, double qin)

Description

Evaluates the inverse of the beta cumulative probability distribution function.

Method inverseBeta evaluates the inverse distribution function of a beta random
variable with parameters pin and qin, that is, with P = p, p = pin, and q = qin, it
determines x (equal to inverseBeta (p, pin, qin)), such that

P =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0

tp−1 (1− t)q−1
dt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P.

Parameters

p – a double, the probability for which the inverse of the beta CDF is to be
evaluated.

pin – a double, the first beta distribution parameter.

qin – a double, the second beta distribution parameter.

700 • Cdf class JMSL

Returns

a double, the probability that a beta random variable takes a value less than or equal to
this returned value is p.

inverseChi
static public double inverseChi(double p, double df)

Description

Evaluates the inverse of the chi-squared cumulative probability distribution function.
Method inverseChi evaluates the inverse distribution function of a chi-squared random
variable with df degrees of freedom, that is, with P = p and v = df, it determines x (equal
to inverseChi(p, df)), such that

P =
1

2ν/2Γ (ν/2)

∫ x

0

e−t/2tν/2−1dt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P.
For v < 40, inverseChi uses bisection, if v ≥ 2 or P > 0.98, or regula falsi to find the
point at which the chi-squared distribution function is equal to P. The distribution
function is evaluated using chi.
For 40 ≤ v < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun
1964, equation 26.4.18) to the normal distribution is used, and inverseNormal is used to
evaluate the inverse of the normal distribution function. For v ≥ 100, the ordinary
Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.
Parameters

p – a double scalar value representing the probability for which the inverse
chi-squared function is to be evaluated.
df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Returns

a double scalar value. The probability that a chi-squared random variable takes a value
less than or equal to this returned value is p.

inverseDiscreteUniform
static public int inverseDiscreteUniform(double p, int n)

Description

Returns the inverse of the discrete uniform cumulative probability distribution function.
Parameters

p – a double scalar value representing the probability for which the inverse discrete
uniform function is to be evaluated
n – an int scalar value representing the upper limit of the discrete uniform
distribution

Probability Distribution Functions and Inverses Cdf class • 701

Returns

a double scalar value. The probability that a discrete uniform random variable takes a
value less than or equal to this returned value is p.

inverseExponential
static public double inverseExponential(double p, double scale)

Description

Evaluates the inverse of the exponential cumulative probability distribution function.

Method inverseExponential evaluates the inverse distribution function of a gamma
random variable with scale parameter =b and shape parameter a=1.0, that is, it
determines x = inverseExponential(p, 1.0)), such that

P =
1

Γ (a)

∫ x

o

e−t/bdt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P. See the documentation for routine gamma for further
discussion of the gamma distribution.

inverseExponential uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using method gamma.

Parameters

p – a double scalar value representing the probability at which the function is to be
evaluated.

scale – a double scalar value representing the scale parameter.

Returns

a double scalar value. The probability that an exponential random variable takes a value
less than or equal to this returned value is p.

inverseExtremeValue
static public double inverseExtremeValue(double p, double mu, double beta)

Description

Returns the inverse of the extreme value cumulative probability distribution function.

Parameters

p – a double scalar value representing the probability for which the inverse extreme
value function is to be evaluated.

mu – a double scalar value representing the location parameter.

beta – a double scalar value representing the scale parameter.

702 • Cdf class JMSL

Returns

a double scalar value. The probability that an extreme value random variable takes a
value less than or equal to this returned value is p.

inverseF
static public double inverseF(double p, double dfn, double dfd)

Description

Returns the inverse of the F cumulative probability distribution function.

Method inverseF evaluates the inverse distribution function of a Snedecor’s F random
variable with dfn numerator degrees of freedom and dfd denominator degrees of freedom.
The function is evaluated by making a transformation to a beta random variable and then
using inverseBeta. If X is an F variate with v1 and v2 degrees of freedom and
Y = v1X/(v2 + v1X), then Y is a beta variate with parameters p = v1/2 and q = v2/2. If
P ≤ 0.5, inverseF uses this relationship directly, otherwise, it also uses a relationship
between X random variables that can be expressed as follows, using f, which is the F
cumulative distribution function:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)

Parameters

p – a double, the probability for which the inverse of the F distribution function is
to be evaluated. Argument p must be in the open interval (0.0, 1.0).

dfn – a double, the numerator degrees of freedom. It must be positive.

dfd – a double, the denominator degrees of freedom. It must be positive.

Returns

a double, the probability that an F random variable takes a value less than or equal to
this returned value is p.

inverseGamma
static public double inverseGamma(double p, double a)

Description

Evaluates the inverse of the gamma cumulative probability distribution function.

Method inverseGamma evaluates the inverse distribution function of a gamma random
variable with shape parameter a, that is, it determines x = inverseGamma(p, a)), such
that

P =
1

Γ (a)

∫ x

o

e−tta−1dt

Probability Distribution Functions and Inverses Cdf class • 703

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P. See the documentation for routine gamma for further
discussion of the gamma distribution.

inverseGamma uses bisection and modified regula falsi to invert the distribution function,
which is evaluated using method gamma.

Parameters

p – a double scalar value representing the probability at which the function is to be
evaluated.

a – a double scalar value representing the shape parameter. This must be positive.

Returns

a double scalar value. The probability that a gamma random variable takes a value less
than or equal to this returned value is p.

inverseGeometric
static public double inverseGeometric(double r, double p)

Description

Returns the inverse of the discrete geometric cumulative probability distribution function.

Parameters

r – a double scalar value representing the probability for which the inverse
geometric function is to be evaluated

p – an int scalar value representing the probability parameter for each independent
trial (the probability of success for each independent trial).

Returns

a double scalar value. The probability that a geometric random variable takes a value
less than or equal to this returned value is r.

inverseLogNormal
static public double inverseLogNormal(double p, double mu, double sigma)

Description

Returns the inverse of the standard lognormal cumulative probability distribution
function.

Parameters

p – a double scalar value representing the probability for which the inverse
lognormal function is to be evaluated.

mu – a double scalar value representing the location parameter.

sigma – a double scalar value representing the shape parameter. sigma must be a
positive.

704 • Cdf class JMSL

Returns

a double scalar value. The probability that a standard lognormal random variable takes a
value less than or equal to this returned value is p.

inverseNoncentralchi
static public double inverseNoncentralchi(double p, double df, double alam)

Description

Evaluates the inverse of the noncentral chi-squared cumulative probability distribution
function.

Method inverseNoncentralchi evaluates the inverse distribution function of a
noncentral chi-squared random variable with df degrees of freedom and noncentrality
parameter alam, that is, with P = p, ν = df, and λ = alam, it determines
c0 =inverseNoncentralchi(p, df, alam)), such that

P =
∞∑

i=0

e−λ/2 (λ/2)i

i!

∫ c0

0

x(ν+2i)/2−1e−x/2

2(ν+2i)/2Γ
(

ν+2i
2

)dx
where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to c0 is P .

Method inverseNoncentralchi uses bisection and modified regula falsi to invert the
distribution function, which is evaluated using noncentralchi. See noncentralchi for
an alternative definition of the noncentral chi-squared random variable in terms of normal
random variables.

Parameters

p – a double scalar value representing the probability for which the inverse
noncentral chi-squared distribution function is to be evaluated. p must be in the
open interval (0.0, 1.0).

df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5. but less than or equal to 200,000.

alam – a double scalar value representing the noncentrality parameter. This must be
nonnegative, and alam + df must be less than or equal to 200,000.

Returns

a double scalar value. The probability that a noncentral chi-squared random variable
takes a value less than or equal to this returned value is p.

inverseNoncentralstudentsT
static public double inverseNoncentralstudentsT(double p, int idf, double
delta)

Probability Distribution Functions and Inverses Cdf class • 705

Description

Evaluates the inverse of the noncentral Student’s t cumulative probability distribution
function.

Method inverseNoncentralstudentsT evaluates the inverse distribution function of a
noncentral t random variable with idf degrees of freedom and noncentrality parameter
delta; that is, with P = p, ν = idf , δ = delta, it determines
t0 =inverseNoncentralstudentsT(p, idf, delta)), such that

P =
∫ t0

−∞

νν/2e−δ2/2

√
πΓ (ν/2) (ν + x2)(ν+1)/2

∞∑
i=0

Γ ((ν + i+ 1) /2)
(
δi

i!

)(
2x2

ν + x2

)i/2

dx

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to t0 is P. See noncentralstudentsT for an alternative definition in
terms of normal and chi-squared random variables. The method
inverseNoncentralstudentsT uses bisection and modified regula falsi to invert the
distribution function, which is evaluated using noncentralstudentsT.

Parameters

p – a double scalar value representing the probability for which the function is to be
evaluated.

idf – an int scalar value representing the number of degrees of freedom. This must
be positive.

delta – a double scalar value representing the noncentrality parameter.

Returns

a double scalar value. The probability that a noncentral Student’s t random variable
takes a value less than or equal to this returned value is p.

inverseNormal
static public double inverseNormal(double p)

Description

Evaluates the inverse of the normal (Gaussian) cumulative probability distribution
function.

Method inverseNormal evaluates the inverse of the distribution function, Φ, of a
standard normal (Gaussian) random variable, that is, inverseNormal(p) = Φ− 1(p),
where

Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of 0 and a variance of 1.

706 • Cdf class JMSL

Parameter

p – a double scalar value representing the probability at which the function is to be
evaluated.

Returns

a double scalar value. The probability that a standard normal random variable takes a
value less than or equal to this returned value is p.

inverseRayleigh
static public double inverseRayleigh(double p, double alpha)

Description

Returns the inverse of the Rayleigh cumulative probability distribution function.

Parameters

p – a double scalar value representing the probability for which the inverse Rayleigh
function is to be evaluated.

alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value. The probability that a Rayleigh random variable takes a value less
than or equal to this returned value is p.

inverseStudentsT
static public double inverseStudentsT(double p, double df)

Description

Returns the inverse of the Student’s t cumulative probability distribution function.

inverseStudentsT evaluates the inverse distribution function of a Student’s t random
variable with df degrees of freedom. Let v = df. If v equals 1 or 2, the inverse can be
obtained in closed form, if v is between 1 and 2, the relationship of a t to a beta random
variable is exploited and inverseBeta is used to evaluate the inverse; otherwise the
algorithm of Hill (1970) is used. For small values of v greater than 2, Hill’s algorithm
inverts an integrated expansion in 1/(1 + t2/v) of the t density. For larger values, an
asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Parameters

p – a double scalar value representing the probability for which the inverse Student’s
t function is to be evaluated.

df – a double scalar value representing the number of degrees of freedom. This must
be at least one.

Probability Distribution Functions and Inverses Cdf class • 707

Returns

a double scalar value. The probability that a Student’s t random variable takes a value
less than or equal to this returned value is p.

inverseUniform
static public double inverseUniform(double p, double aa, double bb)

Description

Returns the inverse of the uniform cumulative probability distribution function.

Parameters

p – a double scalar value representing the probability for which the inverse uniform
function is to be evaluated.

aa – a double scalar value representing the minimum value.

bb – a double scalar value representing the maximum value.

Returns

a double scalar value. The probability that a uniform random variable takes a value less
than or equal to this returned value is p.

inverseWeibull
static public double inverseWeibull(double p, double gamma, double alpha)

Description

Returns the inverse of the Weibull cumulative probability distribution function.

Parameters

p – a double scalar value representing the probability for which the inverse Weibull
function is to be evaluated.

gamma – a double scalar value representing the shape parameter.

alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value. The probability that a Weibull random variable takes a value less
than or equal to this returned value is p.

logNormal
static public double logNormal(double x, double mu, double sigma)

708 • Cdf class JMSL

Description

Evaluates the standard lognormal cumulative probability distribution function.

F (x) =
1

xσ
√

2π

∫
1
t
e−

ln t−µ2

2σ2

Log Normal Distribution FunctionLog Normal Distribution Function

0.00 2.00 4.00 6.00 8.00 10.00
x

0.00

0.10

0.20

0.30

0.40

log
No

rm
al(

x,3
.5,

sig
ma

)

 sigma
 0.5
 1.0
 1.5
 2.0

Probability Distribution Functions and Inverses Cdf class • 709

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

mu – a double scalar value representing the location parameter.

sigma – a double scalar value representing the shape parameter. sigma must be a
positive.

Returns

a double scalar value representing the probability that a standard lognormal random
variable takes a value less than or equal to x.

logNormalProb
static public double logNormalProb(double x, double mu, double sigma)

Description

Evaluates the standard lognormal probability density function.

F (x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

mu – a double scalar value representing the scale parameter.

sigma – a double scalar value representing the shape parameter. sigma must be a
positive.

Returns

a double scalar value representing the probability density function at x.

noncentralchi
static public double noncentralchi(double chsq, double df, double alam)

Description

Evaluates the noncentral chi-squared cumulative probability distribution function.

Method noncentralchi evaluates the distribution function, F, of a noncentral
chi-squared random variable with df degrees of freedom and noncentrality parameter
alam, that is, with ν = df, λ = alam, and χ = chsq,

F (x) =
∞∑

i=0

e−λ/2 (λ/2)i

i!

∫ x

0

t(ν+2i)/2−1e−t/2

2(ν+2i)/2Γ
(

ν+2i
2

)dt

710 • Cdf class JMSL

where Γ(·) is the gamma function. This is a series of central chi-squared distribution
functions with Poisson weights. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function
above, or alternatively and equivalently, as the sum of squares of independent normal
random variables. If the Yi have independent normal distributions with means µi and
variances equal to one and

X =
n∑

i=1

Yi
2

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

n∑
i=1

µi
2

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the
same as the chi-squared distribution.

noncentralchi determines the point at which the Poisson weight is greatest, and then
sums forward and backward from that point, terminating when the additional terms are
sufficiently small or when a maximum of 1000 terms have been accumulated. The
recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is used to speed the
evaluation of the central chi-squared distribution functions.

Probability Distribution Functions and Inverses Cdf class • 711

Noncentral Chi-Squared Distribution FunctionNoncentral Chi-Squared Distribution Function

0.00 10.00 20.00 30.00 40.00 50.00
x

0.00

0.20

0.40

0.60

0.80

1.00

no
nc

en
tra

l c
hi(

x,2
0.,

ala
m)

 alam
 0.0
 5.0
 10.0

Parameters

chsq – a double scalar value representing the argument at which the function is to
be evaluated.
df – a double scalar value representing the number of degrees of freedom. This must
be at least 0.5.
alam – a double scalar value representing the noncentrality parameter. This must be
nonnegative, and alam + df must be less than or equal to 200,000.

712 • Cdf class JMSL

Returns

a double scalar value representing the probability that a chi-squared random variable
takes a value less than or equal to chsq.

noncentralstudentsT
static public double noncentralstudentsT(double t, int idf, double delta)

Description

Evaluates the noncentral Student’s t cumulative probability distribution function.

Method noncentralstudentsT evaluates the distribution function F of a noncentral t
random variable with idf degrees of freedom and noncentrality parameter delta; that is,
with ν = idf , δ = delta, and t0 = t,

F (t0) =
∫ t0

−∞

νν/2e−δ2/2

√
πΓ (ν/2) (ν + x2)(ν+1)/2

∞∑
i=0

Γ ((ν + i+ 1) /2)
(
δi

i!

)(
2x2

ν + x2

)i/2

dx

where Γ(·) is the gamma function. The value of the distribution function at the point t0 is
the probability that the random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or
alternatively and equivalently, as the ratio of a normal random variable and an
independent chi-squared random variable. If w has a normal distribution with mean δ and
variance equal to one, u has an independent chi-squared distribution with ν degrees of
freedom, and

x = w/
√
u/ν

then x has a noncentral t distribution with ν degrees of freedom and noncentrality
parameter δ.

The distribution function of the noncentral t can also be expressed as a double integral
involving a normal density function (see, for example, Owen 1962, page 108). The method
noncentralstudentsT uses the method of Owen (1962, 1965), which uses repeated
integration by parts on that alternate expression for the distribution function.

Probability Distribution Functions and Inverses Cdf class • 713

Noncentral Student's t Distribution FunctionNoncentral Student's t Distribution Function

-10.00 -5.00 0.00 5.00 10.00 15.00 20.00
x

0.00

0.20

0.40

0.60

0.80

1.00

no
nc

en
tra

lst
ud

en
tsT

(x,
20

,de
lta

)
 delta

 0.0
 5.0
 10.0

Parameters

t – a double scalar value representing the argument at which the function is to be
evaluated.

idf – an int scalar value representing the number of degrees of freedom. This must
be positive.

delta – a double scalar value representing the noncentrality parameter.

714 • Cdf class JMSL

Returns

a double scalar value representing the probability that a noncentral Student’s t random
variable takes a value less than or equal to t.

normal
static public double normal(double x)

Description

Evaluates the normal (Gaussian) cumulative probability distribution function.

Method normal evaluates the distribution function, Φ, of a standard normal (Gaussian)
random variable, that is,

Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.

The standard normal distribution (for which normal is the distribution function) has
mean of 0 and variance of 1. The probability that a normal random variable with mean µ
and variance σ2 is less than y is given by normal evaluated at (y − µ)/σ.

Φ(x) is evaluated by use of the complementary error function, erfc. The relationship is:

Φ(x) = erfc(−x/
√

2.0)/2

Probability Distribution Functions and Inverses Cdf class • 715

Normal Distribution FunctionNormal Distribution Function

-4.00 -2.00 0.00 2.00 4.00
x

0.00

0.20

0.40

0.60

0.80

1.00

n
o

rm
al

(x
)

Parameter

x – a double scalar value representing the argument at which the function is to be
evaluated.

Returns

a double scalar value representing the probability that a normal variable takes a value

716 • Cdf class JMSL

less than or equal to x.

poisson
static public double poisson(int k, double theta)

Description

Evaluates the Poisson cumulative probability distribution function.

poisson evaluates the distribution function of a Poisson random variable with parameter
theta. theta, which is the mean of the Poisson random variable, must be positive. The
probability function (with θ = theta) is

f(x) = e−θθx/x! for x = 0, 1, 2, . . .

The individual terms are calculated from the tails of the distribution to the mode of the
distribution and summed. poisson uses the recursive relationship

f (x+ 1) = f (x) (θ/ (x+ 1)), for x = 0, 1, 2, . . . k − 1

with f(0) = e−θ.

Parameters

k – the int argument for which the Poisson distribution function is to be evaluated.

theta – a double scalar value representing the mean of the Poisson distribution.

Returns

a double scalar value representing the probability that a Poisson random variable takes a
value less than or equal to k.

poissonProb
static public double poissonProb(int k, double theta)

Description

Evaluates the Poisson probability density function.

Method poissonProb evaluates the probability density function of a Poisson random
variable with parameter theta. theta, which is the mean of the Poisson random variable,
must be positive. The probability function (with θ = theta) is

f(x) = e−θ θk/k!, for k = 0, 1, 2, . . .

poissonProb evaluates this function directly, taking logarithms and using the log gamma
function.

Probability Distribution Functions and Inverses Cdf class • 717

Poisson Probability FunctionPoisson Probability Function

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
k

0.00

0.10

0.20

0.30

0.40

P
ro

b
ab

ili
ty

T = 1

T = 5

Parameters

k – the int argument for which the Poisson probability function is to be evaluated.

theta – a double scalar value representing the mean of the Poisson distribution.

Returns

a double scalar value representing the probability that a Poisson random variable takes a

718 • Cdf class JMSL

value equal to k.

Rayleigh
static public double Rayleigh(double x, double alpha)

Description

Evaluates the Rayleigh cumulative probability distribution function.

Method Rayleigh is a special case of Weibull distribution function where the shape
parameter gamma is 2.0; that is,

F (x) = 1− e−
x2

2α2

where alpha is the scale parameter.

Probability Distribution Functions and Inverses Cdf class • 719

Rayleigh Distribution FunctionRayleigh Distribution Function

0.00 1.00 2.00 3.00 4.00 5.00 6.00
x

0.00

0.20

0.40

0.60

0.80

1.00

Ra
yle

igh
(x,

alp
ha

)
 alpha

 0.25
 0.75
 1.0
 1.5

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.
alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value representing the probability that a Rayleigh random variable takes

720 • Cdf class JMSL

a value less than or equal to x.

RayleighProb
static public double RayleighProb(double x, double alpha)

Description

Evaluates the Rayleigh probability density function.

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.

alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value representing the probability density function at x.

studentsT
static public double studentsT(double t, double df)

Description

Evaluates the Student’s t cumulative probability distribution function.

Method studentsT evaluates the distribution function of a Student’s t random variable
with df degrees of freedom. If the square of t is greater than or equal to df, the
relationship of a t to an f random variable (and subsequently, to a beta random variable)
is exploited, and routine beta is used. Otherwise, the method described by Hill (1970) is
used. If df is not an integer, if df is greater than 19, or if df is greater than 200, a
Cornish-Fisher expansion is used to evaluate the distribution function. If df is less than
20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964,
equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a
series given by Hill (1970) that converges well for large values of t is used.

Probability Distribution Functions and Inverses Cdf class • 721

Student's t Distribution FunctionStudent's t Distribution Function

-4.00 -2.00 0.00 2.00 4.00
x

0.00

0.20

0.40

0.60

0.80

1.00
st

ud
en

ts
(t

,ν
)

 ν
 1

20

Parameters

t – a double scalar value representing the argument at which the function is to be
evaluated

df – a double scalar value representing the number of degrees of freedom. This must
be at least one.

722 • Cdf class JMSL

Returns

a double scalar value representing the probability that a Student’s t random variable
takes a value less than or equal to t.

uniform
static public double uniform(double x, double aa, double bb)

Description

Evaluates the uniform cumulative probability distribution function.

Method uniform evaluates the distribution function, F, of a uniform random variable
with location parameter aa and scale parameter bb; that is,

f(x)=


0, if x < aa

x−aa
bb−aa , if aa ≤ x ≤ bb

1, if x > bb

Probability Distribution Functions and Inverses Cdf class • 723

Uniform Distribution FunctionUniform Distribution Function

1.00 3.00 5.00 7.00 9.00 11.00
x

0.00

0.20

0.40

0.60

0.80

1.00

un
ifo

rm
(x,

aa
,bb

)
 aa bb

 1.5 4.5
 1.5 7.5
 1.5 10.5

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated.

aa – a double scalar value representing the location parameter.

bb – a double scalar value representing the scale parameter.

724 • Cdf class JMSL

Returns

a double scalar value representing the probability that a uniform random variable takes a
value less than or equal to x.

Weibull
static public double Weibull(double x, double gamma, double alpha)

Description

Evaluates the Weibull cumulative probability distribution function.

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.

gamma – a double scalar value representing the shape parameter.

alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value representing the probability that a Weibull random variable takes a
value less than or equal to x.

WeibullProb
static public double WeibullProb(double x, double gamma, double alpha)

Description

Evaluates the Weibull probability density function.

Parameters

x – a double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.

gamma – a double scalar value representing the shape parameter.

alpha – a double scalar value representing the scale parameter.

Returns

a double scalar value, the probability density function at x.

Example: The Cumulative Distribution Functions

Various cumulative distribution functions are exercised. Their use in this example typifies the
manner in which other functions in the Cdf class would be used.

import com.imsl.stat.*;

public class CdfEx1 {
public static void main(String args[]) {

double x, prob, result;

Probability Distribution Functions and Inverses Cdf class • 725

int p, q, k, n;
// Beta
x =.5;
p = 12;
q = 12;
result = Cdf.beta(x, p, q);
System.out.println("beta(.5, 12, 12) is "+result);

// Inverse Beta
x =.5;
p = 12;
q = 12;
result = Cdf.inverseBeta(x, p, q);
System.out.println("inversebeta(.5, 12, 12) is "+result);

// binomial
k = 3;
n = 5;
prob = .95;
result = Cdf.binomial(k, n, prob);
System.out.println("binomial(3, 5, .95) is "+result);

// Chi
x = .15;
n = 2;
result = Cdf.chi(x, n);
System.out.println("chi(.15, 2) is "+result);

// Inverse Chi
prob = .99;
n = 2;
result = Cdf.inverseChi(prob, n);
System.out.println("inverseChi(.99, 2) is "+result);

}
}

Output

beta(.5, 12, 12) is 0.5000000000000016
inversebeta(.5, 12, 12) is 0.4999999999999991
binomial(3, 5, .95) is 0.02259250000000004
chi(.15, 2) is 0.07225651367144711
inverseChi(.99, 2) is 9.210340371976306

CdfFunction interface

public interface com.imsl.stat.CdfFunction

726 • CdfFunction interface JMSL

Public interface for the user-supplied cumulative distribution function to be used by InverseCdf
and ChiSquaredTest.

Method

cdf
public double cdf(double p)

Description

Public interface for the user-supplied cumulative distribution function to be used by
InverseCdf.

Parameter

p – a double scalar value representing the point at which the inverse CDF is desired.

Returns

a double scalar value representing the probability that a random variable for this CDF
takes a value less than or equal to this value is p.

InverseCdf class

public class com.imsl.stat.InverseCdf implements Serializable

Inverse of user-supplied cumulative distribution function.

Class InverseCdf evaluates the inverse of a continuous, strictly monotone function. Its most
obvious use is in evaluating inverses of continuous distribution functions that can be defined by
a user-supplied function, which implements the InverseCdf interface. The inverse is computed
using regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and
Bjorck 1974). A maximum of 100 iterations are performed.

Constructor

InverseCdf
public InverseCdf(CdfFunction cdf)

Description

Constructor for the inverse of a user-supplied cummulative distribution function.

Parameter

cdf – is a CdfFunction object that contains the user-supplied function to be
inverted. The cdf function must be continuous and strictly monotone.

Probability Distribution Functions and Inverses InverseCdf class • 727

Methods

eval
public double eval(double p, double guess) throws
InverseCdf.DidNotConvergeException

Description

Evaluates the inverse CDF function.

Parameters

p – a double scalar value representing the point at which the inverse CDF is desired

guess – a double scalar value representing an initial estimate of the inverse at p

Returns

a double scalar value representing the inverse of the CDF at the point p. Cdf(inverseCdf)
is ”close” to p.

setTolerance
public void setTolerance(double tolerance)

Description

Sets the tolerance to be used as the convergence criterion.

Parameter

tolerance – a double scalar value representing the convergence criterion. When the
relative change from one iteration to the next is less than tolerance, convergence is
assumed. The default value for tolerance is 0.0001.

Example: Inverse of a User-Supplied Cumulative Distribution Function

In this example, InverseCdf is used to compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to the computed point.

import com.imsl.stat.*;

public class InverseCdfEx1 implements CdfFunction {
public double cdf(double x) {

return Cdf.normal(x);
}

public static void main(String args[]) throws
InverseCdf.DidNotConvergeException {

double x1, p;

p = 0.9;;
InverseCdfEx1 invcdf = new InverseCdfEx1();
InverseCdf inv = new InverseCdf(invcdf);

728 • InverseCdf class JMSL

inv.setTolerance(1.0e-10);
x1 = inv.eval(p, 0.0);
System.out.println("The 90th percentile of a standard normal is "+x1);

}
}

Output

The 90th percentile of a standard normal is 1.2815515655446006

InverseCdf.DidNotConvergeException class

static public class com.imsl.stat.InverseCdf.DidNotConvergeException extends
com.imsl.IMSLException

The iteration did not converge

Constructors

InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException(String message)

InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException(String key, Object[] arguments)

Chapter 20. Probability Distribution Functions and Inverses InverseCdf class • 729

730 • InverseCdf class JMSL

Chapter 21: Random Number
Generation

Types

class Random. .731
class FaureSequence . 747
class MersenneTwister . 751
class MersenneTwister64 .756
interface RandomSequence .760

Random class

public class com.imsl.stat.Random extends java.util.Random implements
Serializable, Cloneable

Generate uniform and non-uniform random number distributions.

The non-uniform distributions are generated from a uniform distribution. By default, this class
uses the uniform distribution generated by the base class java.util.Random . If the multiplier
is set in this class then a multiplicative congruential method is used. The form of the generator
is

xi ≡ cxi−1mod(231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 − 1 (which is a prime), then the generator will have a maximal period of 231 − 2.
There are several other considerations, however. See Knuth (1981) for a good general
discussion. Possible values for c are 16807, 397204094, and 950706376. The selection is made by
the method setMultiplier. Evidence suggests that the performance of 950706376 is best among
these three choices (Fishman and Moore 1982).

Alternatively, one can select a 32-bit or 64-bit Mersenne Twister generator by first instantiating

731

com.imsl.stat.MersenneTwister (p. 751) or com.imsl.stat.MersenneTwister64 (p. 756) .
These generators have a period of 219937 − 1 and a 623-dimensional equidistribution property.
See Matsumoto et al. 1998 for details.

The generation of uniform (0,1) numbers is done by the method nextDouble.

Constructors

Random
public Random()

Description

Constructor for the Random number generator class.

Random
public Random(Random.BaseGenerator baseGenerator)

Description

Constructor for the Random number generator class with an alternate basic number
generator.

Parameter

baseGenerator – is used to override the method next.

Random
public Random(long seed)

Description

Constructor for the Random number generator class with supplied seed.

Parameter

seed – a long which represents the random number generator seed

Methods

next
protected int next(int bits)

Description

Generates the next pseudorandom number. If an alternate base generator was set in the
constructor, its next method is used. If the multiplier is set then the multiplicative
congruential method is used. Otherwise, super.next(bits) is used.

732 • Random class JMSL

Parameter

bits – is the number of random bits required.

Returns

the next pseudorandom value from this random number generator’s sequence.

nextBeta
public double nextBeta(double p, double q)

Description

Generate a pseudorandom number from a beta distribution.

Method nextBeta generates pseudorandom numbers from a beta distribution with
parameters p and q, both of which must be positive. The probability density function is

f (x) =
Γ (p+ q)
Γ (p) Γ (q)

xp−1 (1− x)q−1
for 0 ≤ x ≤ 1

where Γ(·) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1
or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Johnk (1964) is used;
if either p or q is less than 1 and the other is greater than 1, the method of Atkinson
(1979) is used; if both p and q are greater than 1, algorithm BB of Cheng (1978), which
requires very little setup time, is used.

The value returned is less than 1.0 and greater than ε, where ε is the smallest positive
number such that 1.0− ε is less than 1.0.

Parameters

p – a double, the first beta distribution parameter, p ¿ 0

q – a double, the second beta distribution parameter, q ¿ 0

Returns

a double, a pseudorandom number from a beta distribution

nextBinomial
public int nextBinomial(int n, double p)

Description

Generate a pseudorandom number from a binomial distribution.

nextBinomial generates pseudorandom numbers from a binomial distribution with
parameters n and p. n and p must be positive, and p must be less than 1. The probability
function (with n = n and p = p) is

f (x) = (n
x) px (1− p)n−x

Random Number Generation Random class • 733

for x = 0, 1, 2, . . . , n.

The algorithm used depends on the values of n and p. If np < 10 or if p is less than a
machine epsilon, the inverse CDF technique is used; otherwise, the BTPE algorithm of
Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an
acceptance/rejection method using a composition of four regions. (TPE equals Triangle,
Parallelogram, Exponential, left and right.)

Parameters

n – an int, the number of Bernoulli trials.

p – a double, the probability of success on each trial, 0 < p < 1.

Returns

an int, the pseudorandom number from a binomial distribution.

nextCauchy
public double nextCauchy()

Description

Generates a pseudorandom number from a Cauchy distribution. The probability density
function is

f (x) =
1

π(1 + x2)

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1)
deviate, u, as tan [π (u− .5)]. Rather than evaluating a tangent directly, however,
nextCauchy generates two uniform (-1, 1) deviates, x1 and x2. These values can be
thought of as sine and cosine values. If

x2
1 + x2

2

is less than or equal to 1, then x1/x2 is delivered as the Cauchy deviate; otherwise, x1

and x2 are rejected and two new uniform (-1, 1) deviates are generated. This method is
also equivalent to taking the ratio of two independent normal deviates.

Deviates from the Cauchy distribution with median t and first quartile t - s, that is, with
density

f (x) =
s

π
[
s2 + (x− t)2

]
can be obtained by scaling the output from nextCauchy. To do this, first scale the output
from nextCauchy by S and then add T to the result.

734 • Random class JMSL

Returns

a double, a pseudorandom number from a Cauchy distribution

nextChiSquared
public double nextChiSquared(double df)

Description

Generates a pseudorandom number from a Chi-squared distribution.

nextChiSquared generates pseudorandom numbers from a chi-squared distribution with
df degrees of freedom. If df is an even integer less than 17, the chi-squared deviate r is
generated as

r = −2 ln
(

n

Π
i=1
ui

)
where n = df/2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If df is an odd integer less than 17, the chi-squared deviate is generated in
the same way, except the square of a normal deviate is added to the expression above. If
df is greater than 16 or is not an integer, and if it is not too large to cause overflow in the
gamma random number generator, the chi-squared deviate is generated as a special case
of a gamma deviate, using nextGamma. If overflow would occur in nextGamma, the
chi-squared deviate is generated in the manner described above, using the logarithm of
the product of uniforms, but scaling the quantities to prevent underflow and overflow.

Parameter

df – a double which specifies the number of degrees of freedom. It must be positive.

Returns

a double, a pseudorandom number from a Chi-squared distribution.

nextExponential
public double nextExponential()

Description

Generates a pseudorandom number from a standard exponential distribution. The
probability density function is f(x) = e−x; for x > 0.

nextExponential uses an antithetic inverse CDF technique; that is, a uniform random
deviate U is generated and the inverse of the exponential cumulative distribution function
is evaluated at 1.0 - U to yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using
nextExponential and then multiplying the result by θ.

Random Number Generation Random class • 735

Returns

a double which specifies a pseudorandom number from a standard exponential
distribution

nextExponentialMix
public double nextExponentialMix(double theta1, double theta2, double p)

Description

Generate a pseudorandom number from a mixture of two exponential distributions. The
probability density function is

f (x) =
p

θ
e−x/θ1 +

1− p
θ2

e−x/θ2 for x > 0

where p = p, θ1 = theta1, and θ2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is
interpretable as a probability; and nextExponentialMix with probability p generates an
exponential deviate with mean θ1, and with probability 1 - p generates an exponential
with mean θ2. When p is greater than 1, but less than θ1/(θ1 − θ2), then either an
exponential deviate with mean θ2 or the sum of two exponentials with means θ1 and θ2 is
generated. The probabilities are q = p− (p− 1)θ1/θ2 and 1 - q, respectively, for the single
exponential and the sum of the two exponentials.

Parameters

theta1 – a double which specifies the mean of the exponential distribution that has
the larger mean.

theta2 – a double which specifies the mean of the exponential distribution that has
the smaller mean. theta2 must be positive and less than or equal to theta1.

p – a double which specifies the mixing parameter. It must satisfy
0 ≤ p ≤ theta1/(theta1− theta2).

Returns

a double, a pseudorandom number from a mixture of the two exponential distributions.

nextExtremeValue
public double nextExtremeValue(double mu, double beta)

Description

Generate a pseudorandom number from an extreme value distribution.

Parameters

mu – a double scalar value representing the location parameter.

beta – a double scalar value representing the scale parameter.

736 • Random class JMSL

Returns

a double pseudorandom number from an extreme value distribution

nextF
public double nextF(double dfn, double dfd)

Description

Generate a pseudorandom number from the F distribution.

Parameters

dfn – a double, the numerator degrees of freedom. It must be positive.

dfd – a double, the denominator degrees of freedom. It must be positive.

Returns

a double, a pseudorandom number from an F distribution

nextGamma
public double nextGamma(double a)

Description

Generates a pseudorandom number from a standard gamma distribution.

Method nextGamma generates pseudorandom numbers from a gamma distribution with
shape parameter a. The probability density function is

P =
1

Γ (a)

∫ x

o

e−tta−1dt

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; and for the special case of a = 1.0, exponential deviates (from method
nextExponential) are used. Otherwise, if a is less than 1.0, an acceptance-rejection
method due to Ahrens, described in Ahrens and Dieter (1974), is used; if a is greater than
1.0, a ten-region rejection procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, nextGamma generates pseudorandom
deviates from an Erlang distribution with no modifications required.

Parameter

a – a double, the shape parameter of the gamma distribution. It must be positive.

Returns

a double, a pseudorandom number from a standard gamma distribution

nextGeometric
public int nextGeometric(double p)

Random Number Generation Random class • 737

Description

Generate a pseudorandom number from a geometric distribution.

nextGeometric generates pseudorandom numbers from a geometric distribution with
parameter p, where P =p is the probability of getting a success on any trial. A geometric
deviate can be interpreted as the number of trials until the first success (including the
trial in which the first success is obtained). The probability function is

f(x) = P (1− P)x−1

for x = 1, 2, . . . and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than
log(Ui)/log(1− P), where the Ui are independent uniform (0, 1) random numbers (see
Knuth, 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 - P)/P. Such
deviates can be obtained by subtracting 1 from each element returned value.

Parameter

p – a double, the probability of success on each trial, 0 < p ≤ 1.

Returns

an int, a pseudorandom number from a geometric distribution.

nextHypergeometric
public int nextHypergeometric(int n, int m, int l)

Description

Generate a pseudorandom number from a hypergeometric distribution.

Method nextHypergeometric generates pseudorandom numbers from a hypergeometric
distribution with parameters n, m, and l. The hypergeometric random variable x can be
thought of as the number of items of a given type in a random sample of size n that is
drawn without replacement from a population of size l containing m items of this type.
The probability function is

f (x) =
(m
x)
(
l−m
n−x

)
(l
n)

for x = max(0, n− l +m), 1, 2, . . . ,min(n,m).

If the hypergeometric probability function with parameters n, m, and l evaluated at n - l
+ m (or at 0 if this is negative) is greater than the machine epsilon, and less than 1.0
minus the machine epsilon, then nextHypergeometric uses the inverse CDF technique.
The method recursively computes the hypergeometric probabilities, starting at
x = max(0, n− l+m) and using the ratio f (x = x + 1)/f(x = x) (see Fishman 1978, page
457).

738 • Random class JMSL

If the hypergeometric probability function is too small or too close to 1.0, then
nextHypergeometric generates integer deviates uniformly in the interval [1, l − i], for
i = 0, 1, . . .; and at the I-th step, if the generated deviate is less than or equal to the
number of special items remaining in the lot, the occurrence of one special item is tallied
and the number of remaining special items is decreased by one. This process continues
until the sample size or the number of special items in the lot is reached, whichever comes
first. This method can be much slower than the inverse CDF technique. The timing
depends on n. If n is more than half of l (which in practical examples is rarely the case),
the user may wish to modify the problem, replacing n by l - n, and to consider the
deviates to be the number of special items not included in the sample.

Parameters

n – an int which specifies the number of items in the sample, n ¿ 0
m – an int which specifies the number of special items in the population, or lot, m ¿ 0
l – an int which specifies the number of items in the lot, l ¿ max(n,m)

Returns

an int which specifies the number of special items in a sample of size n drawn without
replacement from a population of size l that contains m such special items.

nextLogarithmic
public int nextLogarithmic(double a)

Description

Generate a pseudorandom number from a logarithmic distribution.

Method nextLogarithmic generates pseudorandom numbers from a logarithmic
distribution with parameter a. The probability function is

f (x) = − ax

x ln (1− a)

for x = 1, 2, 3, . . ., and 0 < a < 1.

The methods used are described by Kemp (1981) and depend on the value of a. If a is
less than 0.95, Kemp’s algorithm LS, which is a ”chop-down” variant of an inverse CDF
technique, is used. Otherwise, Kemp’s algorithm LK, which gives special treatment to the
highly probable values of 1 and 2, is used.

Parameter

a – a double which specifies the parameter of the logarithmic distribution,
0 < a < 1.0.

Returns

an int, a pseudorandom number from a logarithmic distribution.

nextLogNormal
public double nextLogNormal(double mean, double stdev)

Random Number Generation Random class • 739

Description

Generate a pseudorandom number from a lognormal distribution.

Method nextLogNormal generates pseudorandom numbers from a lognormal distribution
with parameters mean and stdev. The scale parameter in the underlying normal
distribution, stdev, must be positive. The method is to generate normal deviates with
mean mean and standard deviation stdev and then to exponentiate the normal deviates.

With µ = mean and σ = stdev, the probability density function for the lognormal
distribution is

f (x) =
1

σx
√

2π
exp

[
− 1

2σ2
(lnx− µ)2

]
for x > 0

The mean and variance of the lognormal distribution are exp(µ+ σ2/2) and
exp(2µ+ 2σ2)− exp(2µ+ σ2), respectively.

Parameters

mean – a double which specifies the mean of the underlying normal distribution

stdev – a double which specifies the standard deviation of the underlying normal
distribution. It must be positive.

Returns

a double, a pseudorandom number from a lognormal distribution

nextMultivariateNormal
public double[] nextMultivariateNormal(int k, Cholesky matrix)

Description

Generate pseudorandom numbers from a multivariate normal distribution.

nextMultivariateNormal generates pseudorandom numbers from a multivariate normal
distribution with mean vector consisting of all zeroes and variance-covariance matrix
whose Cholesky factor (or ”square root”) is matrix; that is, matrix is an upper triangular
matrix such that the transpose of matrix times matrix is the variance-covariance matrix.
First, independent random normal deviates with mean 0 and variance 1 are generated,
and then the matrix containing these deviates is post-multiplied by matrix.

Deviates from a multivariate normal distribution with means other than zero can be
generated by using nextMultivariateNormal and then by adding the means to the
deviates.

Parameters

k – an int which specifies the length of the multivariate normal vectors

matrix – is the Cholesky factorization of the variance-covariance matrix of order k

740 • Random class JMSL

Returns

a double array which contains the pseudorandom numbers from a multivariate normal
distribution

nextNegativeBinomial
public int nextNegativeBinomial(double rk, double p)

Description

Generate a pseudorandom number from a negative binomial distribution.

Method nextNegativeBinomial generates pseudorandom numbers from a negative
binomial distribution with parameters rk and p. rk and p must be positive and p must be
less than 1. The probability function with (r = rk and p = p) is

f (x) =
(
r + x− 1

x

)
(1− p)r

px

for x = 0, 1, 2,

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r successes are
obtained, where p is the probability of getting a success on any trial. In this form, the
random variable takes values r, r + 1, r + 2, . . . and can be obtained from the negative
binomial random variable defined above by adding r to the negative binomial variable.
This latter form is also equivalent to the sum of r geometric random variables defined as
taking values 1, 2, 3,

If rp/(1 - p) is less than 100 and (1− p)r is greater than the machine epsilon,
nextNegativeBinomial uses the inverse CDF technique; otherwise, for each negative
binomial deviate, nextNegativeBinomial generates a gamma (r, p/(1 - p)) deviate y and
then generates a Poisson deviate with parameter y.

Parameters

rk – a double which specifies the negative binomial parameter, rk ¿ 0

p – a double which specifies the probability of success on each trial. It must be
greater than machine precision and less than one.

Returns

an int which specifies the pseudorandom number from a negative binomial distribution.
If rk is an integer, the deviate can be thought of as the number of failures in a sequence of
Bernoulli trials before rk successes occur.

nextNormal
public double nextNormal()

Random Number Generation Random class • 741

Description

Generate a pseudorandom number from a standard normal distribution using an inverse
CDF method. In this method, a uniform (0,1) random deviate is generated, then the
inverse of the normal distribution function is evaluated at that point using
inverseNormal. This method is slower than the acceptance/rejection technique used in
the nextNormalAR to generate standard normal deviates. Deviates from the normal
distribution with mean xm and standard deviation xstd can be obtained by scaling the
output from nextNormal. To do this first scale the output of nextNormal by xstd and
then add xm to the result.

Returns

a double which represents a pseudorandom number from a standard normal distribution

nextNormalAR
public double nextNormalAR()

Description

Generate a pseudorandom number from a standard normal distribution using an
acceptance/rejection method.

nextNormalAR generates pseudorandom numbers from a standard normal (Gaussian)
distribution using an acceptance/rejection technique due to Kinderman and Ramage
(1976). In this method, the normal density is represented as a mixture of densities over
which a variety of acceptance/rejection methods due to Marsaglia (1964), Marsaglia and
Bray (1964), and Marsaglia, MacLaren, and Bray (1964) are applied. This method is
faster than the inverse CDF technique used in nextNormal to generate standard normal
deviates.

Deviates from the normal distribution with mean xm and standard deviation xstd can be
obtained by scaling the output from nextNormalAR. To do this first scale the output of
nextNormalAR by xstd and then add xm to the result.

Returns

a double which represents a pseudorandom number from a standard normal distribution

nextPoisson
public int nextPoisson(double theta)

Description

Generate a pseudorandom number from a Poisson distribution.

Method nextPoisson generates pseudorandom numbers from a Poisson distribution with
parameter theta. theta, which is the mean of the Poisson random variable, must be
positive. The probability function (with θ = theta) is

f(x) = e−θ θx/x!

for x = 0, 1, 2, . . .

742 • Random class JMSL

If theta is less than 15, nextPoisson uses an inverse CDF method; otherwise the PTPE
method of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used.

The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two
negative exponentials. In each region except the triangle, acceptance/rejection is used.
The execution time of the method is essentially insensitive to the mean of the Poisson.

Parameter

theta – a double which specifies the mean of the Poisson distribution, theta ¿ 0

Returns

an int, a pseudorandom number from a Poisson distribution

nextRayleigh
public double nextRayleigh(double alpha)

Description

Generate a pseudorandom number from a Rayleigh distribution.

Method nextRayleigh generates pseudorandom numbers from a Rayleigh distribution
with scale parameter alpha.

Parameter

alpha – a double which specifies the scale parameter of the Rayleigh distribution

Returns

a double, a pseudorandom number from a Rayleigh distribution

nextStudentsT
public double nextStudentsT(double df)

Description

Generate a pseudorandom number from a Student’s t distribution.

nextStudentsT generates pseudo-random numbers from a Student’s t distribution with
df degrees of freedom, using a method suggested by Kinderman, Monahan, and Ramage
(1977). The method (”TMX” in the reference) involves a representation of the t density
as the sum of a triangular density over (-2, 2) and the difference of this and the t density.
The mixing probabilities depend on the degrees of freedom of the t distribution. If the
triangular density is chosen, the variate is generated as the sum of two uniforms;
otherwise, an acceptance/rejection method is used to generate a variate from the
difference density.

For degrees of freedom less than 100, nextStudentsT requires approximately twice the
execution time as nextNormalAR, which generates pseudorandom normal deviates. The
execution time of nextStudentsT increases very slowly as the degrees of freedom increase.
Since for very large degrees of freedom the normal distribution and the t distribution are
very similar, the user may find that the difference in the normal and the t does not
warrant the additional generation time required to use nextStudentsT instead of
nextNormalAR.

Random Number Generation Random class • 743

Parameter

df – a double which specifies the number of degrees of freedom. It must be positive.

Returns

a double, a pseudorandom number from a Student’s t distribution

nextTriangular
public double nextTriangular()

Description

Generate a pseudorandom number from a triangular distribution on the interval (0,1).
The probability density function is f(x) = 4x, for 0 ≤ x ≤ .5, and f(x) = 4(1− x), for
.5 < x ≤ 1. nextTriangular uses an inverse CDF technique.

Returns

a double, a pseudorandom number from a triangular distribution on the interval (0,1)

nextVonMises
public double nextVonMises(double c)

Description

Generate a pseudorandom number from a von Mises distribution.

Method nextVonMises generates pseudorandom numbers from a von Mises distribution
with parameter c, which must be positive. With c = C, the probability density function is

f (x) =
1

2πI0 (c)
exp [c cos (x)] for − π < x < π

where I0(c) is the modified Bessel function of the first kind of order 0. The probability
density equals 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as
the majorizing distribution. It is due to Best and Fisher (1979).

Parameter

c – a double which specifies the parameter of the von Mises distribution,
c > 7.4× 10−9.

Returns

a double, a pseudorandom number from a von Mises distribution

nextWeibull
public double nextWeibull(double a)

744 • Random class JMSL

Description

Generate a pseudorandom number from a Weibull distribution.

Method nextWeibull generates pseudorandom numbers from a Weibull distribution with
shape parameter a. The probability density function is

f (x) = AxA−1e−xA

for x ≥ 0

nextWeibull uses an antithetic inverse CDF technique to generate a Weibull variate; that
is, a uniform random deviate U is generated and the inverse of the Weibull cumulative
distribution function is evaluated at 1.0 - u to yield the Weibull deviate.

Deviates from the two-parameter Weibull distribution, with shape parameter a and scale
parameter b, can be generated by using nextWeibull and then multiplying the result by b.

The Rayleigh distribution with probability density function,

r (x) =
1
α2
x e(−x2/2α2) for x ≥ 0

is the same as a Weibull distribution with shape parameter a equal to 2 and scale
parameter b equal to.

√
2α

hence, nextWeibull and simple multiplication can be used to generate Rayleigh deviates.

Parameter

a – a double which specifies the shape parameter of the Weibull distribution, a ¿ 0

Returns

a double, a pseudorandom number from a Weibull distribution

setMultiplier
public void setMultiplier(int multiplier)

Description

Sets the multiplier for a linear congruential random number generator. If a multiplier is
set then the linear congruential generator, defined in the base class java.util.Random, is
replaced by the generator
seed = (multiplier*seed) mod (231 − 1)
See Donald Knuth, The Art of Computer Programming, Volume 2, for guidelines in
choosing a multiplier. Some possible values are 16807, 397204094, 950706376.

Parameter

multiplier – an int which represents the random number generator multiplier

setSeed
public void setSeed(long seed)

Random Number Generation Random class • 745

Description

Sets the seed.

Parameter

seed – a long which represents the random number generator seed

skip
public void skip(int n)

Description

Resets the seed to skip ahead in the base linear congruential generator. This method can
be used only if a linear congruential multiplier is explicitly defined by a call to
setMultiplier. The method skips ahead in the deviates returned by the protected method
next. The public methods use next(int) as their source of uniform random deviates.
Some methods call it more than once. For instance, each call to nextDouble calls it twice.

Parameter

n – is the number of random deviates to skip.

Example: Random Number Generation

In this example, a discrete normal random sample of size 1000 is generated via
Random.nextGaussian. Random.setSeed is first used to set the seed. After the
ChiSquaredTest constructor is called, the random observations are added to the test one at a
time to simulate streaming data. The Chi-squared test is performed using Cdf.normal as the
cumulative distribution function object to see how well the random numbers fit the normal
distribution.

import com.imsl.stat.*;
import com.imsl.math.*;

public class RandomEx1 implements CdfFunction {
public double cdf(double x) {

return Cdf.normal(x);
}

public static void main(String args[]) throws
InverseCdf.DidNotConvergeException {

int i,j;
double tmp[][];
int nObservations = 1000;
Random r = new Random(123457L);
ChiSquaredTest test =
new ChiSquaredTest(new RandomEx1(), 10, 0);
for (int k = 0; k < nObservations; k++) {

test.update(r.nextNormal(), 1.0);
}

double p = test.getP();

746 • Random class JMSL

System.out.println("The P-value is "+p);

}
}

Output

The P-value is 0.5518855965158243

Random.BaseGenerator interface

public interface com.imsl.stat.Random.BaseGenerator

Base pseudorandom number.

Method

next
public int next(int bits)

Description

Generates the next pseudorandom number.

Parameter

bits – random bits

Returns

the next pseudorandom value from this random number generator’s sequence.

FaureSequence class

public class com.imsl.stat.FaureSequence implements Serializable,
com.imsl.stat.RandomSequence, Cloneable

Generates the low-discrepancy Faure sequence.

Discrepancy measures the deviation from uniformity of a point set.

Random Number Generation FaureSequence class • 747

The discrepancy of the point set x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is

D(d)
n = sup

E

∣∣∣∣A(E;n)
n

− λ(E)
∣∣∣∣ ,

where the supremum is over all subsets of [0, 1]d of the form

E = [0, t1)× · · · × [0, td) , 0 ≤ tj ≤ 1, 1 ≤ j ≤ d,

λ is the Lebesque measure, and A(E;n) is the number of the xj contained in E.

The sequence x1, x2, . . . of points in [0, 1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that

D(d)
n ≤ c(d) (log n)d

n

for all n > 1.

Generalized Faure sequences can be defined for any prime base b ≥ d. The lowest bound for the
discrepancy is obtained for the smallest prime b ≥ d, so the base defaults to the smallest prime
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, . . ., is computed as follows:

Write the positive integer n in its b-ary expansion,

n =
∞∑

i=0

ai(n)bi

where ai(n) are integers, 0 ≤ aj(n) < b.

The j-th coordinate of xn is

x(j)
n =

∞∑
k=0

∞∑
d=0

c
(j)
kd ad(n)b−k−1, 1 ≤ j ≤ d

The generator matrix for the series, c(j)kd , is defined to be

c
(j)
kd = jd−kckd

and ckd is an element of the Pascal matrix,

ckd =
{ d!

c!(d−c)! k ≤ d
0 k > d

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It
can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into
the integer given by its b-ary expansion. The sequence computed by this function is ~x(G(n)),
where ~x is the generalized Faure sequence.

748 • FaureSequence class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Constructors

FaureSequence
public FaureSequence(int dim)

Description

Creates a Faure sequence with the default base. The base defaults to the smallest prime
equal to or greater than dim.

Parameter

dim – is the dimension of the sequence.

FaureSequence
public FaureSequence(int dim, int base, int nSkip)

Description

Creates a Faure sequence.

Parameters

dim – is the dimension of the sequence.

base – is the base of the sequence, as described above. It must be at least as large as
dim.

nSkip – is the number of initial points to skip. If negative then basem/2−1, where m
is the number of digits needed to represent the Integer.MAX VALUE in the base,
points are skipped.

Methods

clone
public Object clone()

Description

Returns a copy of this object.

getBase
public int getBase()

Random Number Generation FaureSequence class • 749

Description

Returns the base.

getCount
public long getCount()

getDimension
public int getDimension()

Description

Returns the dimension of the sequence.

getSkip
public int getSkip()

Description

Returns the number of points skipped at the beginning of the sequence.

nextDouble
public double nextDouble()

Description

Returns the first value of the next point in the sequence. This method is intended for use
when dim is 1.

Returns

a double array, the next sequence value.

nextPoint
public double[] nextPoint()

Description

Returns the next point in the sequence.

Returns

a double array, the next point in the sequence.

nextPrime
static public int nextPrime(int n)

Description

Returns the smallest prime greater than or equal to n.

Parameter

n – is the first number to try as a prime.

750 • FaureSequence class JMSL

Returns

a prime greater than or equal to n. If n is less than or equal to 2 then 2 is returned.

Example: FaureSequence

In this example, ten points of the Faure sequence are computed. The points are in a
four-dimensional cube.

import com.imsl.stat.FaureSequence;
import com.imsl.math.PrintMatrix;

public class FaureSequenceEx1 {
public static void main(String args[]) {

FaureSequence seq = new FaureSequence(4);
double x[][] = new double[10][];
for (int k = 0; k < 10; k++) {

x[k] = seq.nextPoint();
}
new PrintMatrix("Faure Sequence").print(x);

}
}

Output

Faure Sequence
0 1 2 3

0 0.201 0.275 0.533 0.694
1 0.401 0.475 0.733 0.894
2 0.601 0.675 0.933 0.094
3 0.801 0.875 0.133 0.294
4 0.841 0.115 0.573 0.934
5 0.041 0.315 0.773 0.134
6 0.241 0.515 0.973 0.334
7 0.441 0.715 0.173 0.534
8 0.641 0.915 0.373 0.734
9 0.681 0.155 0.613 0.374

MersenneTwister class

public class com.imsl.stat.MersenneTwister implements
com.imsl.stat.Random.BaseGenerator, Cloneable, Serializable

Random Number Generation MersenneTwister class • 751

A 32-bit Mersenne Twister generator. MersenneTwister generates uniform pseudorandom
32-bit numbers with a period of 219937 − 1 and a 623-dimensional equidistribution property. See
Matsumoto et al. 1998 for details. The series of random numbers can be generated using a seed
for initialization or by using an array of type int. One can also save the state of the generator
at initialization to be re-used later. This generator can be used to generate non-uniform
distributions by creating an com.imsl.stat.Random (p. 731) object using an instance of this
class as an argument to the constructor.

This Java code was translated from the the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji
Nishimura and Makoto Matsumoto.

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• The names of its contributors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/m̃-mat/MT/emt.html

email: m-mat@math.sci.hiroshima-u.ac.jp

752 • MersenneTwister class JMSL

Constructors

MersenneTwister
public MersenneTwister(int seed)

Description

Constructor for the MersenneTwister class with supplied seed.

Parameter

seed – an int which represents the seed used to initialize the 32-bit Mersenne
Twister generator

Methods

clone
public Object clone()

Description

Returns a clone of this object.

Returns

an Object which is a clone of this MersenneTwister object

next
public int next(int bits)

Description

Generates the next pseudorandom number.

Parameter

bits – is the number of random bits required.

Returns

the next pseudorandom value from this random number generator’s sequence

nextDouble
public double nextDouble()

Description

Generates the next pseudorandom, uniformly distributed double value from this random
number generator’s sequence. Only the first 32 bits of the double are pseudorandom.

Random Number Generation MersenneTwister class • 753

Returns

the next pseudorandom, uniformly distributed double value from this random number
generator’s sequence

nextFloat
public float nextFloat()

Description

Generates the next pseudorandom, uniformly distributed float value from this random
number generator’s sequence.

Returns

the next pseudorandom, uniformly distributed float value from this random number
generator’s sequence

nextInt
public int nextInt()

Description

Generates the next pseudorandom number.

Returns

the next pseudorandom value from this random number generator’s sequence. They are
uniformly distributed among all 32-bit integer values, both positive and negative.

Example: Mersenne Twister Random Number Generation

In this example, four simulation streams are generated. The first series is generated with the
seed used for initialization. The second series is generated using an array for initialization. The
third series is obtained by resetting the generator back to the state it had at the beginning of
the second stream. Therefore, the second and third streams are identical. The fourth stream is
obtained by resetting the generator back to its original, uninitialized state, and having it
reinitialize using the seed. The first and fourth streams are therefore the same.

import com.imsl.stat.*;
import java.io.IOException;
import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.FileInputStream;
import java.io.ObjectInputStream;

public class MersenneTwisterEx1 {

public static void main(String args[]) {

int nr = 4;
double[] r = new double[nr];
int s = 123457;

754 • MersenneTwister class JMSL

/* Initialize MersenneTwister with a seed */
MersenneTwister mt1 = new MersenneTwister(s);
MersenneTwister mt2 = (MersenneTwister) mt1.clone();
/* Save the state of MersenneTwister */
try{

FileOutputStream fos = new FileOutputStream("mt");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(mt1);
oos.close();
fos.close();

} catch (IOException e) {
}
Random rndm = new Random(mt1);

/* Get the next five random numbers */
for (int k=0; k < nr; k++) {

r[k] = rndm.nextDouble();
}

System.out.println(" First Stream Output");
System.out.println(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the cloned copy against the original */
Random rndm2 = new Random(mt2);
for (int k=0; k < nr; k++) {

r[k] = rndm2.nextDouble();
}

System.out.println("\n Clone Stream Output");
System.out.println(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the serialized copy against the original */
try{

FileInputStream fis = new FileInputStream("mt");
ObjectInputStream ois = new ObjectInputStream(fis);
mt2=(MersenneTwister) ois.readObject();

} catch (IOException e1){
} catch (java.lang.ClassNotFoundException e2) {
}
Random rndm3 = new Random(mt2);
for (int k=0; k < nr; k++) {

r[k] = rndm3.nextDouble();
}
System.out.println("\n Serialized Stream Output");
System.out.println(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

}
}

Output

First Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

Random Number Generation MersenneTwister class • 755

Clone Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

Serialized Stream Output
0.43474506366564114 0.013851109283287921 0.49560038426424047 0.7012807898922319

MersenneTwister64 class

public class com.imsl.stat.MersenneTwister64 implements
com.imsl.stat.Random.BaseGenerator, Cloneable, Serializable

A 64-bit Mersenne Twister generator. MersenneTwister64 generates uniform pseudorandom
64-bit numbers with a period of 219937 − 1 and a 623-dimensional equidistribution property. See
Matsumoto et al. 1998 for details. Since 64-bit numbers are generated, all of the bits of both
nextFloat and nextDouble are pseudorandom. The series of random numbers can be
generated using a seed for initialization or by using an array of type long. One can also save
the state of the generator at initialization to be re-used later. This generator can be used to
generate non-uniform distributions by creating an com.imsl.stat.Random (p. 731) object
using an instance of this class as an argument to the constructor.

This Java code was translated from the the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji
Nishimura and Makoto Matsumoto.

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• The names of its contributors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

756 • MersenneTwister64 class JMSL

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/m̃-mat/MT/emt.html

email: m-mat@math.sci.hiroshima-u.ac.jp

Constructors

MersenneTwister64
public MersenneTwister64(long seed)

Description

Constructor for the MersenneTwister64 class with supplied seed.

Parameter

seed – a long which represents the seed used to initialize the 64-bit Mersenne
Twister generator.

Methods

clone
public Object clone()

Description

Returns a clone of this object.

Returns

an Object which is a clone of this MersenneTwister64 object

next
public int next(int bits)

Description

Generates the next pseudorandom number.

Parameter

bits – is the number of random bits required.

Random Number Generation MersenneTwister64 class • 757

Returns

the next pseudorandom value from this random number generator’s sequence.

nextDouble
public double nextDouble()

Description

Generates the next pseudorandom, uniformly distributed double value from this random
number generator’s sequence.

Returns

the next pseudorandom, uniformly distributed double value from this random number
generator’s sequence.

nextFloat
public float nextFloat()

Description

Generates the next pseudorandom, uniformly distributed float value from this random
number generator’s sequence.

Returns

the next pseudorandom, uniformly distributed float value from this random number
generator’s sequence.

nextLong
public long nextLong()

Description

Generates the next pseudorandom, uniformly distributed long value from this random
number generator’s sequence.

Returns

the next pseudorandom, uniformly distributed long value from this random number
generator’s sequence.

Example: Mersenne Twister Random Number Generation

In this example, four simulation streams are generated. The first series is generated with the
seed used for initialization. The second series is generated using an array for initialization. The
third series is obtained by resetting the generator back to the state it had at the beginning of
the second stream. Therefore, the second and third streams are identical. The fourth stream is
obtained by resetting the generator back to its original, uninitialized state, and having it
reinitialize using the seed. The first and fourth streams are therefore the same.

758 • MersenneTwister64 class JMSL

import com.imsl.stat.*;
import java.io.IOException;
import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.io.FileInputStream;
import java.io.ObjectInputStream;

public class MersenneTwister64Ex1 {

public static void main(String args[]) {
long key[] = {0x123L, 0x234L, 0x345L, 0x456L};

int nr = 4;
double[] r = new double[nr];
long s = 123457;
/* Initialize MersenneTwister64 with a seed */
MersenneTwister64 mt1 = new MersenneTwister64(s);
MersenneTwister64 mt2 = (MersenneTwister64) mt1.clone();
/* Save the state of MersenneTwister64 */
try{

FileOutputStream fos = new FileOutputStream("mt");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(mt1);
oos.close();
fos.close();

} catch (IOException e) {
}
Random rndm = new Random(mt1);

/* Get the next five random numbers */
for (int k=0; k < nr; k++) {

r[k] = rndm.nextDouble();
}

System.out.println(" First Stream Output");
System.out.println(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the cloned copy against the original */
Random rndm2 = new Random(mt2);
for (int k=0; k < nr; k++) {

r[k] = rndm2.nextDouble();
}

System.out.println("\n Clone Stream Output");
System.out.println(+r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the serialized copy against the original */
try{

FileInputStream fis = new FileInputStream("mt");
ObjectInputStream ois = new ObjectInputStream(fis);
mt2=(MersenneTwister64) ois.readObject();

} catch (IOException e1){
} catch (java.lang.ClassNotFoundException e2) {
}
Random rndm3 = new Random(mt2);
for (int k=0; k < nr; k++) {

Random Number Generation MersenneTwister64 class • 759

r[k] = rndm3.nextDouble();
}
System.out.println("\n Serialized Stream Output");
System.out.println(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

}
}

Output

First Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

Clone Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

Serialized Stream Output
0.5799165508168153 0.7101593787073387 0.5456686378667656 0.516359030432273

RandomSequence interface

public interface com.imsl.stat.RandomSequence

Interface implemented by generators of random or quasi-random multidimension sequences.

Methods

getDimension
public int getDimension()

Description

Returns the dimension of the sequence.

nextPoint
public double[] nextPoint()

Description

Returns the next multidimensional point in the sequence.

Returns

a double array of length dimension.

760 • RandomSequence interface JMSL

Chapter 22: Input/Output

Types

class AbstractFlatFile . 761
class FlatFile . 809
class Tokenizer . 817
class MPSReader . 819

AbstractFlatFile class

abstract public class com.imsl.io.AbstractFlatFile implements
java.sql.ResultSet

Reads a text or binary file as a ResultSet.

In Java, the result of a database query is normally returned as a ResultSet object. This class
is intended to support reading of text or binary flat files and returning them as a ResultSet.

A flat file is a rectangular data set where each row is an observation and each column is a
variable. The data type in any one column is the same for all of the rows.

Constructor

AbstractFlatFile
public AbstractFlatFile()

Description

Initializes an AbstractFlatFile. Since AbstractFlatFile is abstract, it cannot be directly
instantiated.

761

Methods

absolute
public boolean absolute(int row) throws SQLException

Description

Moves the cursor to the given row number in this ResultSet object.

Parameter

row – an int which specifies a row, of the ResultSet object, where the cursor is to
be moved

Returns

a boolean whose value is true if the cursor is on the result set; false otherwise

SQLException is always thrown since only forward operations are allowed

afterLast
public void afterLast() throws SQLException

Description

Moves the cursor to the end of this ResultSet object, just after the last row. This
method has no effect if the result set contains no rows.

SQLException is always thrown since this method has not been implemented

beforeFirst
public void beforeFirst() throws SQLException

Description

Moves the cursor to the front of this ResultSet object, just before the first row. This
method has no effect if the result set contains no rows.

SQLException is always thrown since only forward operations are allowed

beginGet
protected void beginGet()

Description

This method should be called at the start of every getType method. It closes any
InputStreams or Readers created by get methods in this object. It also resets the
wasNull flag to false.

cancelRowUpdates
public void cancelRowUpdates() throws SQLException

762 • AbstractFlatFile class JMSL

Description

Cancels the updates made to the current row in this ResultSet object. Since updates are
not allowed, this method always throws an SQLException.

SQLException is always thrown since updates are not allowed

clearWarnings
public void clearWarnings() throws SQLException

Description

Clears all warnings reported on this ResultSet object. After this method is called, the
method getWarnings returns null until a new warning is reported for this ResultSet
object.

SQLException if a database access error occurs

close
public void close() throws SQLException

Description

Releases this ResultSet object’s database and JDBC resources immediately instead of
waiting for this to happen when it is automatically closed.

SQLException if a database access error occurs

deleteRow
public void deleteRow() throws SQLException

Description

Deletes the current row from this ResultSet object and from the underlying database.
Since updates are not allowed, this method always throws an SQLException.

SQLException is always thrown since updates are not allowed

doGetBytes
abstract protected byte[] doGetBytes(int columnIndex) throws SQLException

Description

Implements the actual getBytes(). The bytes represent the raw values returned by the
driver.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Input/Output AbstractFlatFile class • 763

Returns

a byte array representation of the column value; if the value is SQL null, the value
returned is null

SQLException if a database access error occurs

doNext
abstract protected boolean doNext() throws SQLException

Description

Implements the operations on the file required by the method next().

Returns

a boolean, true if the new current row is valid; false if there are no more rows

SQLException if a database access error occurs

findColumn
public int findColumn(String columnName) throws SQLException

Description

Maps the given ResultSet column name to its ResultSet column index.

Parameter

columnName – a String specifying the name of the column

Returns

an int specifying the column index of the given column name

SQLException if the ResultSet object does not contain columnName or a database access
error occurs

findColumnName
protected String findColumnName(int columnIndex) throws SQLException

Description

Maps the given columnIndex into its column name.

Parameter

columnIndex – an int specifying the index of a column for which the name is to be
found

764 • AbstractFlatFile class JMSL

Returns

a String containing the name of the column

SQLException if a database access error occurs

first
public boolean first() throws SQLException

Description

Moves the cursor to the first row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is on the result set; false otherwise

SQLException is always thrown since only forward operations are allowed

getArray
public Array getArray(int columnIndex) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as an Array object in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a Array object representing an SQL Array value in the specified column

SQLException is always thrown since this method is not implemented

getArray
public Array getArray(String columnName) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as an Array object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Input/Output AbstractFlatFile class • 765

Returns

an Array object representing the SQL ARRAY value in the specified column

SQLException if a database access error occurs

getAsciiStream
public InputStream getAsciiStream(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
stream of ASCII characters. The value can then be read in chunks from the stream. This
method is particularly suitable for retrieving large LONGVARCHAR values. The JDBC driver
will do any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any
other column. The next call to a getType method implicitly closes the stream. Also, a
stream may return 0 when the method InputStream.available is called whether there is
data available or not.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.io.InputStream that delivers the database column value as a stream of one-byte
ASCII characters; if the value is SQL NULL, the value returned is null

SQLException if a database access error occurs

getAsciiStream
public InputStream getAsciiStream(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
stream of ASCII characters. The value can then be read in chunks from the stream. This
method is particularly suitable for retrieving large LONGVARCHAR values. The JDBC driver
will do any necessary conversion from the database format into ASCII.

Note: All the data in the returned stream must be read prior to getting the value of any
other column. The next call to a getType method implicitly closes the stream. Also, a
stream may return 0 when the method available is called whether there is data
available or not.

Parameter

columnName – a String which specifies the SQL name of the column

766 • AbstractFlatFile class JMSL

Returns

a java.io.InputStream that delivers the database column value as a stream of one-byte
ASCII characters. If the value is SQL NULL, the value returned is null.

SQLException if a database access error occurs

getBigDecimal
public BigDecimal getBigDecimal(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.math.BigDecimal with full precision.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.math.BigDecimal object that contains the column value; if the value is SQL
NULL, the value returned is null in the Java programming language

SQLException if a conversion or database access error occurs

getBigDecimal
public BigDecimal getBigDecimal(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.math.BigDecimal with full precision.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.math.BigDecimal object that contains the column value; if the value is SQL
NULL, the value returned is null in the Java programming language

SQLException if a database access error occurs

getBinaryStream
public InputStream getBinaryStream(int columnIndex) throws SQLException

Input/Output AbstractFlatFile class • 767

Description

Gets the value of the designated column in the current row of this ResultSet object as a
binary stream of uninterpreted bytes. The value can then be read in chunks from the
stream. This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any
other column. The next call to a getType method implicitly closes the stream. Also, a
stream may return 0 when the method InputStream.available is called whether there is
data available or not.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.io.InputStream that delivers the database column value as a stream of
uninterpreted bytes; if the value is SQL NULL, the value returned is null

SQLException if a database access error occurs

getBinaryStream
public InputStream getBinaryStream(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
stream of uninterpreted bytes. The value can then be read in chunks from the stream.
This method is particularly suitable for retrieving large LONGVARBINARY values.

Note: All the data in the returned stream must be read prior to getting the value of any
other column. The next call to a getType method implicitly closes the stream. Also, a
stream may return 0 when the method available is called whether there is data
available or not.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.io.InputStream that delivers the database column value as a stream of
uninterpreted bytes; if the value is SQL NULL, the result is null

SQLException if a database access error occurs

getBlob
public Blob getBlob(int columnIndex) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Blob object in the Java programming language.

768 • AbstractFlatFile class JMSL

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a Blob object representing the SQL BLOB value in the specified column

SQLException if a database access error occurs

getBlob
public Blob getBlob(String columnName) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Blob object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a Blob object representing the SQL BLOB value in the specified column

SQLException if a database access error occurs

getBoolean
public boolean getBoolean(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
boolean in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a boolean representation of the column value; if the value is SQL NULL, the value
returned is false

SQLException if a conversion or database access error occurs

getBoolean
public boolean getBoolean(String columnName) throws SQLException

Input/Output AbstractFlatFile class • 769

Description

Gets the value of the designated column in the current row of this ResultSet object as a
boolean in the Java programming language.
Parameter

columnName – a String which specifies the SQL name of the column

Returns

a boolean representation of the column value; if the value is SQL NULL, the value
returned is false

SQLException if a database access error occurs

getByte
public byte getByte(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
byte in the Java programming language.
Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a byte representation of the column value; if the value is SQL NULL, the value returned is
0

SQLException if a conversion or database access error occurs

getByte
public byte getByte(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
byte in the Java programming language.
Parameter

columnName – a String which specifies the SQL name of the column

Returns

a byte representation of the column value; if the value is SQL NULL, the value returned is
0

SQLException if a database access error occurs

getBytes
public byte[] getBytes(int columnIndex) throws SQLException

770 • AbstractFlatFile class JMSL

Description

Gets the value of the designated column in the current row of this ResultSet object as a
byte array in the Java programming language. The bytes represent the raw values
returned by the driver.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a byte array representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a database access error occurs

getBytes
public byte[] getBytes(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
byte array in the Java programming language. The bytes represent the raw values
returned by the driver.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a byte array representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a database access error occurs

getCharacterStream
public Reader getCharacterStream(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.io.Reader object.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Input/Output AbstractFlatFile class • 771

Returns

a java.io.Reader object that contains the column value; if the value is SQL NULL, the
value returned is null in the Java programming language.

SQLException if a database access error occurs

getCharacterStream
public Reader getCharacterStream(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.io.Reader object.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.io.Reader object that contains the column value; if the value is SQL NULL, the
value returned is null in the Java programming language

SQLException if a database access error occurs

getClob
public Clob getClob(int columnIndex) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Clob object in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a Clob object representing an SQL Clob value in the specified column

SQLException if a database access error occurs

getClob
public Clob getClob(String columnName) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Clob object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

772 • AbstractFlatFile class JMSL

Returns

a Clob object representing the SQL CLOB value in the specified column

SQLException if a database access error occurs

getColumnClass
public Class getColumnClass(int columnIndex) throws SQLException

Description

Returns the class of the items in the specified column. The default implementation
returns the Class set using getColumnClass. If no class type is set the default
implementation returns Object.class.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a Class object used to specify the class of the data in the column

SQLException if a database access error occurs

getColumnCount
abstract public int getColumnCount() throws SQLException

Description

Returns the number of columns in this ResultSet object.

Returns

an int which specifies the number of columns

SQLException if a database access error occurs

getConcurrency
public int getConcurrency() throws SQLException

Description

Returns the concurrency mode of this ResultSet object.

Returns

an int which specifies whether concurrency is read only or for update processes as well.
Always returns CONCUR READ ONLY.

SQLException if a database access error occurs

getCursorName
public String getCursorName() throws SQLException

Input/Output AbstractFlatFile class • 773

Description

Gets the name of the SQL cursor used by this ResultSet object. The default
implementation throws a SQLException.

Returns

a String which specifies the SQL name for this ResultSet object’s cursor.

SQLException is always thrown since updates are not allowed

getDate
public Date getDate(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Date object in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.sql.Date representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a conversion or database access error occurs

getDate
public Date getDate(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Date object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.sql.Date representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a database access error occurs

getDate
public Date getDate(int columnIndex, Calendar cal) throws SQLException

774 • AbstractFlatFile class JMSL

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Date object in the Java programming language. This method uses the
given calendar to construct an appropriate millisecond value for the date if the underlying
database does not store timezone information.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

cal – the java.util.Calendar object to use in constructing the date

Returns

the column value as a java.sql.Date object; if the value is SQL NULL, the value returned
is null in the Java programming language

SQLException if a database access error occurs

getDate
public Date getDate(String columnName, Calendar cal) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Date object in the Java programming language. This method uses the
given calendar to construct an appropriate millisecond value for the date if the underlying
database does not store timezone information.

Parameters

columnName – a String which specifies the SQL name of the column

cal – the java.util.Calendar object to use in constructing the date

Returns

the column value as a java.sql.Date object; if the value is SQL NULL, the value returned
is null in the Java programming language

SQLException if a database access error occurs

getDouble
public double getDouble(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
double in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Input/Output AbstractFlatFile class • 775

Returns

a double representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a conversion or database access error occurs

getDouble
public double getDouble(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
double in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a double representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a database access error occurs

getFetchDirection
public int getFetchDirection() throws SQLException

Description

Returns the fetch direction for this ResultSet object.

Returns

an int which specifies the current fetch direction for this ResultSet object. Always
returns FETCH FORWARD.

SQLException if a database access error occurs

getFetchSize
public int getFetchSize() throws SQLException

Description

Returns the fetch size for this ResultSet object.

Returns

an int which specifies the current fetch size for this ResultSet object

SQLException if a database access error occurs

getFloat
public float getFloat(int columnIndex) throws SQLException

776 • AbstractFlatFile class JMSL

Description

Gets the value of the designated column in the current row of this ResultSet object as a
float in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a float representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a conversion or database access error occurs

getFloat
public float getFloat(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
float in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a float representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a database access error occurs

getInt
public int getInt(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an
int in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

an int representation of the column value; if the value is SQL NULL, the value returned is
0

SQLException if a conversion or database access error occurs

Input/Output AbstractFlatFile class • 777

getInt
public int getInt(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an
int in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a int representation of the column value; if the value is SQL NULL, the value returned is 0

SQLException if a database access error occurs

getLong
public long getLong(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
long in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a long representation of the column value; if the value is SQL NULL, the value returned is
0

SQLException if a conversion or database access error occurs

getLong
public long getLong(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
long in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

778 • AbstractFlatFile class JMSL

Returns

a long representation of the column value; if the value is SQL NULL, the value returned is
0

SQLException if a database access error occurs

getMetaData
public ResultSetMetaData getMetaData() throws SQLException

Description

Retrieves the number, types and properties of this ResultSet object’s columns.

Returns

a ResultSetMetaData which provides a description of this ResultSet object’s columns

SQLException if a database access error occurs

getObject
abstract public Object getObject(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an
Object in the Java programming language.

This method will return the value of the given column as a Java object. The type of the
Java object will be the default Java object type corresponding to the column’s SQL type,
following the mapping for built-in types specified in the JDBC specification.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.lang.Object representation of the column value

SQLException if a database access error occurs

getObject
public Object getObject(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an
Object in the Java programming language.

This method will return the value of the given column as a Java object. The type of the
Java object will be the default Java object type corresponding to the column’s SQL type,
following the mapping for built-in types specified in the JDBC specification.

Input/Output AbstractFlatFile class • 779

This method may also be used to read datatabase-specific abstract data types. In the
JDBC 2.0 API, the behavior of the method getObject is extended to materialize data of
SQL user-defined types. When a column contains a structured or distinct value, the
behavior of this method is as if it were a call to: getObject(columnIndex,
this.getStatement().getConnection().getTypeMap()).

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.lang.Object representation of the column value

SQLException if a database access error occurs

getObject
public Object getObject(int columnIndex, Map map) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as an Object in the Java programming language. This method uses the given Map object
for the custom mapping of the SQL structured or distinct type that is being retrieved.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

map – a java.util.Map object that contains the mapping from SQL type names to
classes in the Java programming language

Returns

an Object in the Java programming language representing the SQL value

SQLException is always thrown since this method has not been implimented

getObject
public Object getObject(String columnName, Map map) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as an Object in the Java programming language. This method uses the specified Map
object for custom mapping if appropriate.

Parameters

columnName – a String which specifies the SQL name of the column

map – a java.util.Map object that contains the mapping from SQL type names to
classes in the Java programming language

780 • AbstractFlatFile class JMSL

Returns

an Object representing the SQL value in the specified column

SQLException is always thrown since this method is not implemented

getRef
public Ref getRef(int columnIndex) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Ref object in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a Ref object representing the SQL REF value in the specified column

SQLException is always thrown since this method has not been implimented

getRef
public Ref getRef(String columnName) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a Ref object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a Ref object representing the SQL REF value in the specified column

SQLException is always thrown since this method is not implemented

getRow
public int getRow() throws SQLException

Description

Retrieves the current row number. The first row is number 1, the second number 2, and
so on.

Input/Output AbstractFlatFile class • 781

Returns

an int which specifies the current row number; 0 if there is no current row

SQLException if a database access error occurs

getShort
public short getShort(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
short in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a short representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a conversion or database access error occurs

getShort
public short getShort(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
short in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a short representation of the column value; if the value is SQL NULL, the value returned
is 0

SQLException if a database access error occurs

getStatement
public Statement getStatement() throws SQLException

Description

Returns the Statement object that produced this ResultSet object. Since there is not
statement, this method always throws an SQLException.

782 • AbstractFlatFile class JMSL

Returns

the Statment object that produced this ResultSet object or null if the result set was
produced some other way

SQLException is always thrown since updates are not allowed

getString
public String getString(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
String in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a String representation of the column value; if the value is SQL NULL, the value returned
is null

SQLException if a database access error occurs

getString
public String getString(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
String in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a String representation of the column value; if the value is SQL NULL, the value returned
is null

SQLException if a database access error occurs

getTime
public Time getTime(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Time object in the Java programming language.

Input/Output AbstractFlatFile class • 783

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.sql.Time representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a conversion or database access error occurs

getTime
public Time getTime(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Time object in the Java programming language.

Parameter

columnName – a String which specifies the SQL name of the column

Returns

a java.sql.Time representation of the column value; if the value is SQL NULL, the value
returned is null

SQLException if a database access error occurs

getTime
public Time getTime(int columnIndex, Calendar cal) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Time object in the Java programming language. This method uses the
given calendar to construct an appropriate millisecond value for the time if the underlying
database does not store timezone information.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

cal – the java.util.Calendar object to use in constructing the time

Returns

the column value as a java.sql.Time object; if the value is SQL NULL, the value returned
is null in the Java programming language

SQLException if a database access error occurs

784 • AbstractFlatFile class JMSL

getTime
public Time getTime(String columnName, Calendar cal) throws SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Time object in the Java programming language. This method uses the
given calendar to construct an appropriate millisecond value for the time if the underlying
database does not store timezone information.

Parameters

columnName – a String which specifies the SQL name of the column

cal – the java.util.Calendar object to use in constructing the time

Returns

the column value as a java.sql.Time object; if the value is SQL NULL, the value returned
is null in the Java programming language

SQLException if a database access error occurs

getTimestamp
public Timestamp getTimestamp(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Timestamp object in the Java programming language.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.sql.Timestamp representation of the column value; if the value is SQL NULL, the
value returned is null

SQLException if a conversion or database access error occurs

getTimestamp
public Timestamp getTimestamp(String columnName) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as a
java.sql.Timestamp object.

Parameter

columnName – a String which specifies the SQL name of the column

Input/Output AbstractFlatFile class • 785

Returns

a java.sql.Timestamp representation of the column value; if the value is SQL NULL, the
value returned is null

SQLException if a database access error occurs

getTimestamp
public Timestamp getTimestamp(int columnIndex, Calendar cal) throws
SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Timestamp object in the Java programming language. This method uses
the given calendar to construct an appropriate millisecond value for the timestamp if the
underlying database does not store timezone information.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

cal – the java.util.Calendar object to use in constructing the timestamp

Returns

the column value as a java.sql.Timestamp object; if the value is SQL NULL, the value
returned is null in the Java programming language

SQLException if a database access error occurs

getTimestamp
public Timestamp getTimestamp(String columnName, Calendar cal) throws
SQLException

Description

Returns the value of the designated column in the current row of this ResultSet object
as a java.sql.Timestamp object in the Java programming language. This method uses
the given calendar to construct an appropriate millisecond value for the timestamp if the
underlying database does not store timezone information.

Parameters

columnName – a String which specifies the SQL name of the column

cal – the java.util.Calendar object to use in constructing the timestamp

786 • AbstractFlatFile class JMSL

Returns

the column value as a java.sql.Timestamp object; if the value is SQL NULL, the value
returned is null in the Java programming language

SQLException if a database access error occurs

getType
public int getType() throws SQLException

Description

Returns the type of this ResultSet object. The type is determined by the Statement
object hat created the result set.

Returns

an int which specifies the type of this ResultSet object. Always returns
TYPE FORWARD ONLY.

SQLException if a database access error occurs

getURL
public URL getURL(int columnIndex) throws SQLException

Description

Retrieves the value of the designated column in the current row of this ResultSet object
as a java.net.URL object.

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

Returns

a java.net.URL object that contains the column value; if the value is SQL NULL, the
value returned is null in the Java programming language

SQLException if a conversion or database access error occurs

getURL
public URL getURL(String columnName) throws SQLException

Description

Retrieves the value of the designated column in the current row of this ResultSet object
as a java.net.URL object.

Parameter

columnName – a String which specifies the SQL name of the column

Input/Output AbstractFlatFile class • 787

Returns

a java.net.URL object that contains the column value; if the value is SQL NULL, the
value returned is null in the Java programming language

SQLException if a database access error occurs

getWarnings
public SQLWarning getWarnings() throws SQLException

Description

Returns the first warning reported by calls on this ResultSet object. Subsequent
warnings on this ResultSet object will be chained to the SQLWarning object that this
method returns.

The warning chain is automatically cleared each time a new row is read.

Note: This warning chain only covers warnings caused by ResultSet methods. Any
warning caused by Statement methods (such as reading OUT parameters) will be
chained on the Statement object.

Returns

the first SQLWarning object reported or null

SQLException if a database access error occurs

insertRow
public void insertRow() throws SQLException

Description

Inserts the contents of the insert row into this ResultSet object and into the database.
Since updates are not allowed, this method always throws an SQLException.

SQLException is always thrown since updates are not allowed

isAfterLast
public boolean isAfterLast() throws SQLException

Description

Indicates whether the cursor is after the last row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is after the last row; false if the cursor is at
any other position or the ResultSet contains no rows

SQLException if a database access error occurs

isBeforeFirst
public boolean isBeforeFirst() throws SQLException

788 • AbstractFlatFile class JMSL

Description

Indicates whether the cursor is before the first row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is before the first row; false if the cursor is
at any other position or the ResultSet contains no rows

SQLException if a database access error occurs

isFirst
public boolean isFirst() throws SQLException

Description

Indicates whether the cursor is on the first row of this ResultSet object.

Returns

a boolean whose value is true if the cursor is on the first row; false otherwise

SQLException if a database access error occurs

isLast
public boolean isLast() throws SQLException

Description

Indicates whether the cursor is on the last row of this ResultSet object. Note: Calling
the method isLast may be expensive because the JDBC driver might need to fetch ahead
one row in order to determine whether the current row is the last row in the result set.

Returns

a boolean whose value is true if the cursor is on the last row; false otherwise

SQLException if a database access error occurs

last
public boolean last() throws SQLException

Description

Moves the cursor to the last row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is on the result set; false otherwise

SQLException is always thrown since this method has not been implemented

moveToCurrentRow
public void moveToCurrentRow() throws SQLException

Input/Output AbstractFlatFile class • 789

Description

Moves the cursor to the remembered cursor position, usually the current row. Since
updates are not allowed, this method always throws an SQLException.

SQLException is always thrown since updates are not allowed

moveToInsertRow
public void moveToInsertRow() throws SQLException

Description

Moves the cursor to the insert row. Since updates are not allowed, this method always
throws an SQLException.

SQLException is always thrown since updates are not allowed

next
public boolean next() throws SQLException

Description

Moves the cursor down one row from its current position. A ResultSet cursor is initially
positioned before the first row; the first call to the method next makes the first row the
current row; the second call makes the second row the current row, and so on.

If an input stream is open for the current row, a call to the method next will implicitly
close it. A ResultSet object’s warning chain is cleared when a new row is read.

Returns

a boolean, true if the new current row is valid; false if there are no more rows

SQLException if a database access error occurs

previous
public boolean previous() throws SQLException

Description

Moves the cursor to the previous row in this ResultSet object.

Returns

a boolean whose value is true if the cursor is on the result set; false otherwise

SQLException is always thrown since only forward operations are allowed

refreshRow
public void refreshRow() throws SQLException

790 • AbstractFlatFile class JMSL

Description

Refreshes the current row with its most recent value in the database. Since updates are
not allowed, this method always throws an SQLException.

SQLException is always thrown since updates are not allowed

relative
public boolean relative(int rows) throws SQLException

Description

Moves the cursor a relative number of rows, either positive or negative.

Parameter

rows – an int which specifies the number of rows in the ResultSet object to
advance or regress

Returns

a boolean whose value is true if the cursor is on the result set; false otherwise

SQLException is always thrown since only forward operations are allowed

rowDeleted
public boolean rowDeleted() throws SQLException

Description

Indicates whether a row has been deleted. Since updates are not allowed, this always
returns false.

Returns

a boolean which indicates whether a row has been deleted. Always returns false since
updates are not allowed.

SQLException if a database access error occurs

rowInserted
public boolean rowInserted() throws SQLException

Description

Indicates whether the current row has had an insertion. Since updates are not allowed,
this always returns false.

Input/Output AbstractFlatFile class • 791

Returns

a boolean which indicates whether the current row had an insertion. Always returns
false since updates are not allowed.

SQLException if a database access error occurs

rowUpdated
public boolean rowUpdated() throws SQLException

Description

Indicates whether the current row has been updated. Since updates are not allowed, this
always returns false.

Returns

a boolean which indicates whether a row has been updated. Always returns false since
updates are not allowed.

SQLException if a database access error occurs

setColumnClass
protected void setColumnClass(int columnIndex, Class columnClass)

Description

Sets a column class.

Parameters

columnIndex – an int specifying the index of a column

columnClass – a Class object used to specify the class of the data in the column

setColumnName
protected void setColumnName(int columnIndex, String columnName)

Description

Sets a column name. A subclass can define its own mechanism for naming columns. An
alternate mechanism would require overriding the methods findColumn and
findColumnName.

Parameters

columnIndex – an int specifying the column index of the column to be named

columnName – a String specifying the name of the column

setFetchDirection
public void setFetchDirection(int direction) throws SQLException

792 • AbstractFlatFile class JMSL

Description

Gives a hint as to the direction in which the rows in this ResultSet object will be
processed.

Parameter

direction – an int which specifies the expected direction this ResultSet object is
to be processed

SQLException if the fetch direction is not FETCH FORWARD

setFetchSize
public void setFetchSize(int rows) throws SQLException

Description

Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed for this ResultSet object. If the fetch size specified
is zero, the JDBC driver ignores the value and is free to make its own best guess as to
what the fetch size should be. The default value is set by the Statement object that
created the result set. The fetch size may be changed at any time.

Parameter

rows – an int which specifies the number of rows to fetch

SQLException if a database access error occurs or the condition 0 = rows =
this.getMaxRows() is not satisfied

setWarning
protected void setWarning(SQLWarning warning)

Description

Sets a SQLWarning.

Parameter

warning – a SQLWarning that is to be added to this object.

updateArray
public void updateArray(int column, Array x) throws SQLException

Description

Updates the designated column with an Array value. Since updates are not allowed, this
method always throws an SQLException.

Input/Output AbstractFlatFile class • 793

Parameters

column – an int which specifies the column. The first column is 1, the second is 2, ...

x – a java.sql.Array which specifies the new column value

SQLException is always thrown since updates are not allowed

updateArray
public void updateArray(String columnName, Array x) throws SQLException

Description

Updates the designated column with an Array value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Array which specifies the new column value

SQLException is always thrown since updates are not allowed

updateAsciiStream
public void updateAsciiStream(int columnIndex, InputStream x, int length)
throws SQLException

Description

Updates the designated column with an ascii stream value. Since updates are not allowed,
this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a InputStream which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateAsciiStream
public void updateAsciiStream(String columnName, InputStream x, int length)
throws SQLException

Description

Updates the designated column with an ascii stream value. Since updates are not allowed,
this method always throws an SQLException.

794 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – a InputStream which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateBigDecimal
public void updateBigDecimal(int columnIndex, BigDecimal x) throws
SQLException

Description

Updates the designated column with a java.math.BigDecimal value. Since updates are
not allowed, this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a java.math.BigDecimal which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBigDecimal
public void updateBigDecimal(String columnName, BigDecimal x) throws
SQLException

Description

Updates the designated column with a java.sql.BigDecimal value. Since updates are
not allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.BigDecimal which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBinaryStream
public void updateBinaryStream(int columnIndex, InputStream x, int length)
throws SQLException

Description

Updates the designated column with a binary stream value. Since updates are not
allowed, this method always throws an SQLException.

Input/Output AbstractFlatFile class • 795

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a InputStream which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateBinaryStream
public void updateBinaryStream(String columnName, InputStream x, int length)
throws SQLException

Description

Updates the designated column with a binary stream value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a InputStream which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateBlob
public void updateBlob(int column, Blob x) throws SQLException

Description

Updates the designated column with an java.sql.Blob value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

column – an int which specifies the column. The first column is 1, the second is 2, ...

x – a java.sql.Blob which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBlob
public void updateBlob(String columnName, Blob x) throws SQLException

Description

Updates the designated column with an java.sql.Blob value. Since updates are not
allowed, this method always throws an SQLException.

796 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Blob which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBoolean
public void updateBoolean(int columnIndex, boolean x) throws SQLException

Description

Updates the designated column with a boolean value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a boolean which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBoolean
public void updateBoolean(String columnName, boolean x) throws SQLException

Description

Updates the designated column with a boolean value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a boolean which specifies the new column value

SQLException is always thrown since updates are not allowed

updateByte
public void updateByte(int columnIndex, byte x) throws SQLException

Description

Updates the designated column with a byte value. Since updates are not allowed, this
method always throws an SQLException.

Input/Output AbstractFlatFile class • 797

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a byte which specifies the new column value

SQLException is always thrown since updates are not allowed

updateByte
public void updateByte(String columnName, byte x) throws SQLException

Description

Updates the designated column with a byte value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a byte which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBytes
public void updateBytes(int columnIndex, byte[] x) throws SQLException

Description

Updates the designated column with a byte array value. Since updates are not allowed,
this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a byte which specifies the new column value

SQLException is always thrown since updates are not allowed

updateBytes
public void updateBytes(String columnName, byte[] x) throws SQLException

Description

Updates the designated column with a byte value. Since updates are not allowed, this
method always throws an SQLException.

798 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – a byte which specifies the new column value

SQLException is always thrown since updates are not allowed

updateCharacterStream
public void updateCharacterStream(int columnIndex, Reader x, int length)
throws SQLException

Description

Updates the designated column with a character stream value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a Reader which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateCharacterStream
public void updateCharacterStream(String columnName, Reader reader, int
length) throws SQLException

Description

Updates the designated column with a character stream value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

reader – a Reader which specifies the new column value

length – an int which specifies the stream length

SQLException is always thrown since updates are not allowed

updateClob
public void updateClob(int column, Clob x) throws SQLException

Description

Updates the designated column with an java.sql.Clob value. Since updates are not
allowed, this method always throws an SQLException.

Input/Output AbstractFlatFile class • 799

Parameters

column – an int which specifies the column. The first column is 1, the second is 2, ...

x – a java.sql.Clob which specifies the new column value

SQLException is always thrown since updates are not allowed

updateClob
public void updateClob(String columnName, Clob x) throws SQLException

Description

Updates the designated column with an java.sql.Clob value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Clob which specifies the new column value

SQLException is always thrown since updates are not allowed

updateDate
public void updateDate(int columnIndex, Date x) throws SQLException

Description

Updates the designated column with a java.sql.Date value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a java.sql.Date which specifies the new column value

SQLException is always thrown since updates are not allowed

updateDate
public void updateDate(String columnName, Date x) throws SQLException

Description

Updates the designated column with a java.sql.Date value. Since updates are not
allowed, this method always throws an SQLException.

800 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Date which specifies the new column value

SQLException is always thrown since updates are not allowed

updateDouble
public void updateDouble(int columnIndex, double x) throws SQLException

Description

Updates the designated column with a double value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a double which specifies the new column value

SQLException is always thrown since updates are not allowed

updateDouble
public void updateDouble(String columnName, double x) throws SQLException

Description

Updates the designated column with a double value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a double which specifies the new column value

SQLException is always thrown since updates are not allowed

updateFloat
public void updateFloat(int columnIndex, float x) throws SQLException

Description

Updates the designated column with a float value. Since updates are not allowed, this
method always throws an SQLException.

Input/Output AbstractFlatFile class • 801

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a float which specifies the new column value

SQLException is always thrown since updates are not allowed

updateFloat
public void updateFloat(String columnName, float x) throws SQLException

Description

Updates the designated column with a float value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a float which specifies the new column value

SQLException is always thrown since updates are not allowed

updateInt
public void updateInt(int columnIndex, int x) throws SQLException

Description

Updates the designated column with an int value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – an int which specifies the new column value

SQLException is always thrown since updates are not allowed

updateInt
public void updateInt(String columnName, int x) throws SQLException

Description

Updates the designated column with an int value. Since updates are not allowed, this
method always throws an SQLException.

802 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – an int which specifies the new column value

SQLException is always thrown since updates are not allowed

updateLong
public void updateLong(int columnIndex, long x) throws SQLException

Description

Updates the designated column with a long value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a long which specifies the new column value

SQLException is always thrown since updates are not allowed

updateLong
public void updateLong(String columnName, long x) throws SQLException

Description

Updates the designated column with a long value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a long which specifies the new column value

SQLException is always thrown since updates are not allowed

updateNull
public void updateNull(int columnIndex) throws SQLException

Description

Gives a nullable column a null value. Since updates are not allowed, this method always
throws an SQLException.

Input/Output AbstractFlatFile class • 803

Parameter

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

SQLException is always thrown since updates are not allowed

updateNull
public void updateNull(String columnName) throws SQLException

Description

Updates the designated column with a null value. Since updates are not allowed, this
method always throws an SQLException.

Parameter

columnName – a String which specifies the SQL name of the column

SQLException is always thrown since updates are not allowed

updateObject
public void updateObject(int columnIndex, Object x) throws SQLException

Description

Updates the designated column with an Object value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – an Object which specifies the new column value

SQLException is always thrown since updates are not allowed

updateObject
public void updateObject(String columnName, Object x) throws SQLException

Description

Updates the designated column with an Object value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Object which specifies the new column value

SQLException is always thrown since updates are not allowed

804 • AbstractFlatFile class JMSL

updateObject
public void updateObject(int columnIndex, Object x, int scale) throws
SQLException

Description

Updates the designated column with an Object value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – an Object which specifies the new column value

scale – for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types, this is
the number of digits after the decimal point. For all other types this value will be
ignored.

SQLException is always thrown since updates are not allowed

updateObject
public void updateObject(String columnName, Object x, int scale) throws
SQLException

Description

Updates the designated column with an Object value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – an Object which specifies the new column value

scale – for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types, this is
the number of digits after the decimal point. For all other types this value will be
ignored.

SQLException is always thrown since updates are not allowed

updateRef
public void updateRef(int column, Ref x) throws SQLException

Description

Updates the designated column with an java.sql.Ref value. Since updates are not
allowed, this method always throws an SQLException.

Input/Output AbstractFlatFile class • 805

Parameters

column – an int which specifies the column. The first column is 1, the second is 2, ...
x – a java.sql.Ref which specifies the new column value

SQLException is always thrown since updates are not allowed

updateRef
public void updateRef(String columnName, Ref x) throws SQLException

Description

Updates the designated column with an java.sql.Ref value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column
x – a java.sql.Ref which specifies the new column value

SQLException is always thrown since updates are not allowed

updateRow
public void updateRow() throws SQLException

Description

Updates the underlying database with the new contents of the current row of this
ResultSet object. Since updates are not allowed, this method always throws an
SQLException.

SQLException is always thrown since updates are not allowed

updateShort
public void updateShort(int columnIndex, short x) throws SQLException

Description

Updates the designated column with a short value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...
x – a short which specifies the new column value

SQLException is always thrown since updates are not allowed

updateShort
public void updateShort(String columnName, short x) throws SQLException

806 • AbstractFlatFile class JMSL

Description

Updates the designated column with a short value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a short which specifies the new column value

SQLException is always thrown since updates are not allowed

updateString
public void updateString(int columnIndex, String x) throws SQLException

Description

Updates the designated column with a String value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a String which specifies the new column value

SQLException is always thrown since updates are not allowed

updateString
public void updateString(String columnName, String x) throws SQLException

Description

Updates the designated column with a String value. Since updates are not allowed, this
method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a String which specifies the new column value

SQLException is always thrown since updates are not allowed

updateTime
public void updateTime(int columnIndex, Time x) throws SQLException

Description

Updates the designated column with a java.sql.Time value. Since updates are not
allowed, this method always throws an SQLException.

Input/Output AbstractFlatFile class • 807

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a java.sql.Time which specifies the new column value

SQLException is always thrown since updates are not allowed

updateTime
public void updateTime(String columnName, Time x) throws SQLException

Description

Updates the designated column with a java.sql.Time value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Time which specifies the new column value

SQLException is always thrown since updates are not allowed

updateTimestamp
public void updateTimestamp(int columnIndex, Timestamp x) throws
SQLException

Description

Updates the designated column with a java.sql.Timestamp value. Since updates are not
allowed, this method always throws an SQLException.

Parameters

columnIndex – an int which specifies the column. The first column is 1, the second
is 2, ...

x – a java.sql.Timestamp which specifies the new column value

SQLException is always thrown since updates are not allowed

updateTimestamp
public void updateTimestamp(String columnName, Timestamp x) throws
SQLException

Description

Updates the designated column with a java.sql.Timestamp value. Since updates are not
allowed, this method always throws an SQLException.

808 • AbstractFlatFile class JMSL

Parameters

columnName – a String which specifies the SQL name of the column

x – a java.sql.Timestamp which specifies the new column value

SQLException is always thrown since updates are not allowed

wasNull
public boolean wasNull() throws SQLException

Description

Reports whether the last column read had a value of SQL NULL. Note that you must first
call one of the getType methods on a column to try to read its value and then call the
method wasNull to see if the value read was SQL NULL.

Returns

a boolean, true if the last column value read was SQL NULL and false otherwise

SQLException if a database access error occurs

AbstractFlatFile.FlatFileSQLException class

static protected class com.imsl.io.AbstractFlatFile.FlatFileSQLException
extends java.sql.SQLException

A SQLException thrown by the AbstractFlatFile class.

FlatFile class

public class com.imsl.io.FlatFile extends com.imsl.io.AbstractFlatFile

Reads a text file as a ResultSet.

FlatFile extends AbstractFlatFile to handle text flat files.

As the file is read, it is split into lines using the java.io.BufferedReader.readLine method.
Each line is then split into tokens using a Tokenizer. Finally, each token string is converted into
an Object using a Parser.

Parser is an interface defined within this class for converting a String into an Object. Parser
objects for standard types are defined as static members of this class. By default, for each
column its class is used to select one of these predefined parsers to parse that column.

Input/Output FlatFile class • 809

Fields

PARSE BYTE
static final public FlatFile.Parser PARSE BYTE

Implements a Parser that converts a String to a Byte.

PARSE DOUBLE
static final public FlatFile.Parser PARSE DOUBLE

Implements a Parser that converts a String to a Double.

PARSE FLOAT
static final public FlatFile.Parser PARSE FLOAT

Implements a Parser that converts a String to a Float.

PARSE INTEGER
static final public FlatFile.Parser PARSE INTEGER

Implements a Parser that converts a String to a Integer.

PARSE LONG
static final public FlatFile.Parser PARSE LONG

Implements a Parser that converts a String to a Long.

PARSE SHORT
static final public FlatFile.Parser PARSE SHORT

Implements a Parser that converts a String to a Short.

Constructors

FlatFile
public FlatFile(BufferedReader reader) throws IOException

Description

Creates a FlatFile with the CSV tokenizer. The CSV Tokenizer is for reading comma
separated value files.

Parameter

reader – is the stream to be read.

FlatFile
public FlatFile(String filename) throws IOException

810 • FlatFile class JMSL

Description

Creates a FlatFile from a CSV file. A CSV file is a comma separated value file.

Parameter

filename – is the name of the file to be read.

FlatFile
public FlatFile(BufferedReader reader, Tokenizer tokenizer) throws
IOException

Description

Creates a FlatFile from a BufferedReader.

Parameters

reader – is the stream to be read.
tokenizer – splits a text line into tokens, one per column.

FlatFile
public FlatFile(String filename, Tokenizer tokenizer) throws IOException

Description

Creates a FlatFile from a file with the default tokenizer.

Parameters

filename – is the name of the file to be read.
tokenizer – is the Tokenizer used to split lines into token strings.

Methods

doGetBytes
protected byte[] doGetBytes(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row as a byte array.

Parameter

columnIndex – the first column is 1, the second is 2, ...

Returns

the column value; if the value is SQL NULL, the value returned is null

SQLException if a database access error occurs

doNext
protected boolean doNext() throws SQLException

Input/Output FlatFile class • 811

Description

Moves the cursor down one row from its current position. A ResultSet cursor is initially
positioned before the first row; the first call to the method next makes the first row the
current row; the second call makes the second row the current row, and so on.

Returns

true if the new current row is valid; false if there are no more rows

SQLException if a database access error occurs

getColumnCount
public int getColumnCount() throws SQLException

Description

Returns the number of columns in this ResultSet object.

Returns

the number of columns

SQLException if a database access error occurs

getObject
public Object getObject(int columnIndex) throws SQLException

Description

Gets the value of the designated column in the current row of this ResultSet object as an
Object in the Java programming language.

This method will return the value of the given column as a Java object. The type of the
Java object will be the default Java object type corresponding to the column’s SQL type,
following the mapping for built-in types specified in the JDBC specification.

This method may also be used to read datatabase-specific abstract data types. In the
JDBC 2.0 API, the behavior of method getObject is extended to materialize data of SQL
user-defined types. When a column contains a structured or distinct value, the behavior
of this method is as if it were a call to: getObject(columnIndex,
this.getStatement().getConnection().getTypeMap()).

Parameter

columnIndex – the first column is 1, the second is 2, ...

Returns

a java.lang.Object holding the column value

SQLException if a database access error occurs

readLine
protected String readLine() throws IOException

812 • FlatFile class JMSL

Description

Reads and returns a line from the input.

setColumnClass
protected void setColumnClass(int columnIndex, Class columnClass)

setColumnParser
protected void setColumnParser(int columnIndex, FlatFile.Parser
columnParser)

Description

Sets the Parser for the specified column.

Parameters

columnIndex – the column index of the column

columnParser – is the Parser to be used to parse entries in the specified column.

setDateColumnParser
protected void setDateColumnParser(int columnIndex, String pattern, Locale
locale)

Description

Creates for a pattern string and sets the Parser for the specified column.

Parameters

pattern – is used to construct a java.text.SimpleDateFormat object used to parse
the column.

locale – is the Locale for the date format Parser.

Example: Fisher Iris Data Set

The Fisher iris data set is frequently used as a sample statistical data set. This example reads
the data set in a CVS (comma separated value) format.

The first few lines of the data set are as follows:

Species,Sepal Length,Sepal Width,Petal Length,Petal Width
1.0, 5.1, 3.5, 1.4, .2
1.0, 4.9, 3.0, 1.4, .2
1.0, 4.7, 3.2, 1.3, .2
1.0, 4.6, 3.1, 1.5, .2
1.0, 5.0, 3.6, 1.4, .2
1.0, 5.4, 3.9, 1.7, .4

Input/Output FlatFile class • 813

The first line contains the column names, with a comma as the separator. The rest of the lines
contain double data, one observation per line, with comma as a separator.

The class FlatFileEx1 extends com.imsl.io.FlatFile . The FlatFileEx1 constructor
constructs a BufferedReader object and calls the com.imsl.io.FlatFile constructor. It then
reads the line containing the column names. The column names are parsed and used to set the
column names in com.imsl.io.FlatFile. All of the columns are also set to type Double.

The class FlatFileEx1 is used in the method main. The data set is assumed to be in a file
called ”FisherIris.csv” in the same location as the example class file, so the
getResourceAsStream can be used to open the file as a stream. A com.imsl.stat.Summary is
created and used to compute statistics for the ”Sepal Width” column.

import com.imsl.io.FlatFile;
import com.imsl.stat.Summary;
import java.io.*;
import java.sql.SQLException;
import java.util.StringTokenizer;

public class FlatFileEx1 extends FlatFile {
public FlatFileEx1(InputStream is) throws IOException {

super(new BufferedReader(new InputStreamReader(is)));
String line = readLine();
StringTokenizer st = new StringTokenizer(line, ",");
for (int j = 0; st.hasMoreTokens(); j++) {

setColumnName(j+1, st.nextToken().trim());
setColumnClass(j, Double.class);

}
}

public static void main(String[] args) throws SQLException, IOException {
InputStream is = FlatFileEx1.class.getResourceAsStream("FisherIris.csv");
FlatFileEx1 iris = new FlatFileEx1(is);

Summary summary = new Summary();
while (iris.next()) {

summary.update(iris.getDouble("Sepal Width"));
}

System.out.println("Sepal Width mean " + summary.getMean());
System.out.println("Sepal Width variance " + summary.getVariance());

}
}

Output

Sepal Width mean 3.057333333333334
Sepal Width variance 0.18871288888888907

814 • FlatFile class JMSL

Reference

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The Annals of
Eugenics, 7, 179-188.

Example: Space Separated Data

This example reads a set of stock prices in a space separated form.

The first few lines of the data set are as follows:

Date Open High Low Close Volume
28-Apr-03 3.3 3.34 3.27 3.33 37224400
25-Apr-03 3.35 3.38 3.25 3.26 57117400
24-Apr-03 3.32 3.40 3.30 3.38 47019800
23-Apr-03 3.34 3.44 3.30 3.37 63243800
22-Apr-03 3.24 3.38 3.22 3.36 67392500

The first line contains the column names, with a comma as the separator. The rest of the lines
contain data, one day per line. The first column is Date data and the last column is int data.
All of the rest is double data. The data’s class is set for each column. The parser is explicitly
set for the date column, because it cannot be guessed by FlatFile. The date’s locale is set to
US, so that the example will work with a different default locale.

A Tokenizer is created and used that counts multiple separators (spaces) as one separator.

The class FlatFileEx2 extends com.imsl.io.FlatFile. The FlatFileEx2 constructor reads
the line containing the column names, parses the names, and sets the column names.

The class FlatFileEx2 is used in the method main. The data set is assumed to be in a file
called ”SUNW.txt” in the same location as the example class file, so the getResourceAsStream
method can be used to open the file as a stream. Some of the columns are printed out for each
stock price.

import com.imsl.io.*;
import java.text.DateFormat;
import java.io.*;
import java.sql.SQLException;
import java.util.StringTokenizer;
import java.sql.Date;

public class FlatFileEx2 extends FlatFile {
static DateFormat dateFormat = DateFormat.getDateInstance();

public FlatFileEx2(BufferedReader br, Tokenizer tokenizer) throws IOException {
super(br, tokenizer);
String line = readLine();
StringTokenizer st = new StringTokenizer(line, " ", false);
for (int j = 0; st.hasMoreTokens(); j++) {

setColumnName(j+1, st.nextToken().trim());

Input/Output FlatFile class • 815

}
setColumnClass(1, Date.class); // Date
setDateColumnParser(1, "dd-MMM-yy", java.util.Locale.US);
setColumnClass(2, Double.class); // Open
setColumnClass(3, Double.class); // High
setColumnClass(4, Double.class); // Low
setColumnClass(5, Double.class); // Close
setColumnClass(6, Integer.class); // Volume

}

public static void main(String[] args) throws SQLException, IOException {
InputStream is = FlatFileEx2.class.getResourceAsStream("SUNW.txt");
BufferedReader br = new BufferedReader(new InputStreamReader(is));
Tokenizer tokenizer = new Tokenizer(" ", (char)0, true);
FlatFileEx2 reader = new FlatFileEx2(br, tokenizer);

while (reader.next()) {
Date date = reader.getDate("Date");
double close = reader.getDouble("Close");
int volume = reader.getInt("Volume");
System.out.println(dateFormat.format(date) + " " + close + " " + volume);

}
}

}

Output

Apr 28, 2003 3.33 37224400
Apr 25, 2003 3.26 57117400
Apr 24, 2003 3.38 47019800
Apr 23, 2003 3.37 63243800
Apr 22, 2003 3.36 67392500
Apr 21, 2003 3.28 58523800
Apr 17, 2003 3.24 101856900
Apr 16, 2003 3.32 54912900
Apr 15, 2003 3.35 33604200
Apr 14, 2003 3.29 38851800
Apr 11, 2003 3.31 38424000
Apr 10, 2003 3.37 38608500
Apr 9, 2003 3.28 50669700
Apr 8, 2003 3.31 46106400
Apr 7, 2003 3.36 47462900
Apr 4, 2003 3.34 48689900
Apr 3, 2003 3.48 38304400
Apr 2, 2003 3.49 48510200
Apr 1, 2003 3.36 38823800
Mar 31, 2003 3.26 38949300
Mar 28, 2003 3.42 27186700
Mar 27, 2003 3.56 40054700
Mar 26, 2003 3.5 30952400
Mar 25, 2003 3.45 63787600

816 • FlatFile class JMSL

Mar 24, 2003 3.45 34645400
Mar 21, 2003 3.72 53745900
Mar 20, 2003 3.65 47358500
Mar 19, 2003 3.57 51280600
Mar 18, 2003 3.55 51727400
Mar 17, 2003 3.53 69296600
Mar 14, 2003 3.24 59278900
Mar 13, 2003 3.31 58360700
Mar 12, 2003 3.08 71790300
Mar 11, 2003 3.21 42498400

FlatFile.Parser interface

public interface com.imsl.io.FlatFile.Parser

Defines a method that parses a String into an Object.

Method

parse
public Object parse(String input) throws SQLException

Description

Parse a String into an Object.

Parameter

input – is the String to be parsed.

Returns

the value of the String as an Object.

Tokenizer class

public class com.imsl.io.Tokenizer

Breaks a line into tokens.

The Tokenizer divides a line into tokens separated by deliminators. There can be any number
of deliminators set. All of the deliminators are treated equally.

Input/Output Tokenizer class • 817

There can be at most one quote character set. If it is set then deliminators inside of a quoted
string are treated as part of the string and not as deliminators. The quotes are not returned as
part of the token. To escape a quote, repeat it.

Constructor

Tokenizer
public Tokenizer(String deliminators, char quote, boolean
mergeMultipleDeliminators)

Description

Creates a Tokenizer.

Parameters

deliminators – is a String containing the deliminator characters.

quote – is a char containing the quote character. If 0 then quoting is disabled.

mergeMultipleDeliminators – is true if multiple consecutive deliminators are to be
treated as a single deliminator.

Methods

countTokens
public int countTokens()

Description

Returns the number of times that the nextToken method can be called without
generating an exception.

hasMoreTokens
public boolean hasMoreTokens()

Description

Returns true if a call to nextToken will not generate an exception.

nextToken
public String nextToken()

Description

Returns the next token.

818 • Tokenizer class JMSL

Returns

the next token.

NoSuchElementException if there are no more tokens to be returned.

parse
public void parse(String line)

Description

Sets the line to be tokenized. Any tokens left from the previous line are discarded.

Parameter

line – is the line to be tokenized.

MPSReader class

public class com.imsl.io.MPSReader implements Serializable

Reads a linear programming problem from an MPS file.

An MPS file defines a linear or quadratic programming problem. Linear programming problems
read using this class are assumed to be of the form:

min
x ∈ Rn

cTx

subject to

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively.

The following table helps map this notation into the use of MPSReader.

C Objective
A Constraint matrix
bl Lower Range
bu Upper Range
xl Lower Bound
xu Upper Bound

Input/Output MPSReader class • 819

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper
values will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a
particular constraint or bound has no lower limit, then the corresponding entry in the structure
is set to negative machine infinity. If the upper limit is missing, then the corresponding entry in
the structure is set to positive machine infinity.

MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted
by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1.
With the exception of the NAME section, the rest of this line is ignored. Lines with a ’*’ or ’$’
in column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

Field Number Columns Content
1 2-3 Indicator
2 5-12 Name
3 15-22 Name
4 25-36 Value
5 40-47 Name
6 50-61 Value

The format limits MPS names to 8 characters and values to 12 characters. The names in fields
2, 3 and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are
significant.

The sections in an MPS file are as follows:

NAME

ROWS

COLUMNS

RHS

RANGES (optional)

BOUNDS (optional)

QUADRATIC (optional)

ENDATA

Sections must occur in the above order.

MPS keywords, section names and indicator values, are case insensitive. Row, column and set
names are case sensitive.

NAME Section

820 • MPSReader class JMSL

The NAME section contains the single line. A problem name can occur anywhere on the line
after NAME and before columns 62. The problem name is truncated to 8 characters.

ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and
field 2 contains the row name. Row type values are not case sensitive. Row names are case
sensitive. The following row types are allowed:

Row Type Meaning
E Equality constraint
L Less than or equal constraint
G Greater than or equal constraint
N Objective of a free row

COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix.
The row names here must have been defined in the ROWS section.

Field Contents
2 Column name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name
’MARKER’ (with the quotes) in field 3 and the marker type in field 4 or 5.

Marker type ’INTORG’ (with the quotes) begins an integer group. The marker type ’INTEND’
(with the quotes) ends this group. The variables corresponding to the columns defined within
this group are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more
than one RHS set, distinguished by the RHS set name. The row names here must be defined in
the ROWS section.

Field Contents
2 RHS name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Input/Output MPSReader class • 821

Note: Fields 5 and 6 are optional.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more
than one range set, distinguished by the range set name. The row names here must have been
defined in the ROWS section.

Field Contents
2 Range set name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints.
The two-sided constraint for row i depends on the range value, ri, defined in this section. The
right-hand side value, bi , is defined in the RHS section. The two-sided constraints for row i are
given in the following table:

Row Type Lower Constraint Upper Constraint
G bi bi + |ri|
L bi − |ri| bi
E bi +min(0, ri) bi +max(0, ri)

BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are
0 ≤ xi ≤ ∞. The bounds can also be used to indicate that a variable must be an integer.

More than one bound can be set for a single variable. For example, to set 2 ≤ xi ≤ 6 use a LO
bound with value 2 to set 2 ≤ xi and an UP bound with value 6 to add the condition xi ≤ 6.

An MPS file can contain more than one bounds set, distinguished by the bound set name.

Field Contents
1 Bounds type
2 Bounds set name
3 Column name
4 Value for the entry whose set and column are given by fields 2 and 3
5 Column name
6 Value for the entry whose set and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

The bound types are as follows. Here bi are the bound values defined in this section, the xi are
the variables, and I is the set of integers.

822 • MPSReader class JMSL

Bound Type Definintion Formula
LO Lower bound bi ≤ xi

UP Upper bound xi ≤ bi
FX Fixed Variable xi = bi
FR Free variable −∞ ≤ xi ≤ ∞
MI Lower bound is minus infinity −∞ ≤ xi

PL Upper bound is positive infinity xi ≤ ∞
BV Binary variable (variable must be 0 or 1) xi ∈ {0, 1}
UI Upper bound and integer xi ≤ bi and xi ∈ I
LI Lower bound and integer bi ≤ xi and xi ∈ I
SC Semicontinuous 0 or bi ≤ xi

The bound type names are not case sensitive.

If the bound type is UP or UI and bi ≤ xi then the lower bound is set to −∞.

ENDATA Section

The ENDATA section ends the MPS file.

Fields

BINARY VARIABLE
static final public int BINARY VARIABLE

Variable must be either 0 or 1.

CONTINUOUS VARIABLE
static final public int CONTINUOUS VARIABLE

Variable is a real number.

INTEGER VARIABLE
static final public int INTEGER VARIABLE

Variable must be an integer.

Constructor

MPSReader
public MPSReader()

Input/Output MPSReader class • 823

Methods

getLowerBound
public double getLowerBound(int iVariable)

Description

Returns the lower bound for a variable.

Parameter

iVariable – is the number of the variable.

getLowerRange
public double getLowerRange(int iRow)

Description

Returns the lower range value for a constraint equation.

Parameter

iRow – is the row number of the equation.

getName
public String getName()

Description

Returns the name of the MPS problem. This is the value of the NAME field.

getNameBounds
public String getNameBounds()

Description

Returns the name of the BOUNDS set. An MPS file can contain multiple sets of
BOUNDS, but only one is retained by this reader. Returns null if there is no BOUNDS
set.

getNameColumn
public String getNameColumn(int iColumn) throws
MPSReader.InvalidMPSFileException

Description

Returns the name of a constraint column. Constraint column names are also variable
names.

824 • MPSReader class JMSL

Parameter

iColumn – is the number of the column.

getNameObjective
public String getNameObjective()

Description

Returns the name of the free row containing the objective.

getNameRanges
public String getNameRanges()

Description

Returns the name of the RANGES set. An MPS file can contain multiple sets of
RANGES, but only one is retained by this reader. Returns null if there is no RANGES
set.

getNameRHS
public String getNameRHS()

Description

Returns the name of the RHS section.

getNameRow
public String getNameRow(int iRow)

Description

Returns the name of a contraint row.

getNumberOfBinaryConstraints
public int getNumberOfBinaryConstraints()

Description

Returns the number of binary constraints. An binary constraint is the requirment that a
variable be either 0 or 1. Binary constraints are also integer contraints.

getNumberOfColumns
public int getNumberOfColumns()

Description

Returns the number of columns in the constraint matrix.

getNumberOfIntegerConstraints
public int getNumberOfIntegerConstraints()

Input/Output MPSReader class • 825

Description

Returns the number of integer constraints. An integer constraint is the requirment that a
variable be an integer.

getNumberOfNonZeros
public int getNumberOfNonZeros()

Description

Returns the number of nonzeros in the constraint matrix.

getNumberOfRows
public int getNumberOfRows()

Description

Returns the number of rows in the constraint matrix.

getObjective
public MPSReader.Row getObjective()

Description

Returns the objective as a Row.

getObjectiveCoefficients
public double[] getObjectiveCoefficients()

Description

Returns the coefficents of the objective row.

getRow
public MPSReader.Row getRow(int iRow)

Description

Returns a row of the constraint matrix or a free row.

Parameter

iRow – is the number of the row.

getRowCoefficients
public double[] getRowCoefficients(int iRow)

Description

Returns the coefficents of a row.

826 • MPSReader class JMSL

Parameter

iRow – is the number of the row.

getTypeVariable
public int getTypeVariable(int iVariable)

Description

Returns the type of a variable. The variable types are CONTINUOUS VARIABLE,
BINARY VARIABLE or INTEGER VARIABLE.

Parameter

iVariable – is the number of the variable.

getUpperBound
public double getUpperBound(int iVariable)

Description

Returns the upper bound for a variable.

Parameter

iVariable – is the number of the variable.

getUpperRange
public double getUpperRange(int iRow)

Description

Returns the upper range value for a constraint equation.

Parameter

iRow – is the row number of the equation.

processCommand
protected String processCommand(String command, String line) throws
IOException, MPSReader.InvalidMPSFileException

Description

Process a section of the MPS file.

Returns

the next line to be processed. This line was read, but was not part of the section being
processed.

read
public void read(Reader reader) throws IOException,
MPSReader.InvalidMPSFileException

Input/Output MPSReader class • 827

Description

Reads and parses the MPS file.

setNameBounds
public void setNameBounds(String nameBounds)

Description

Sets the name of the BOUNDS set to be used. An MPS file can contain multiple sets of
BOUNDS, but only one is retained by this reader. If not set name is set, then the first set
in the file is used.

setNameObjective
public void setNameObjective(String nameObjective)

Description

Sets the name of the free row containing the objective. An MPS file can contain free rows,
but only one is retained by this reader as the objective. If not set name is set, then the
first free row in the file is used as the objective.

setNameRanges
public void setNameRanges(String nameRanges)

Description

Sets the name of the RANGES set to be used. An MPS file can contain multiple sets of
RANGES, but only one is retained by this reader. If not set name is set, then the first set
in the file is used.

setNameRHS
public void setNameRHS(String nameRHS)

Description

Sets the name of the RHS set to be used. An MPS file can contain multiple sets of RHS
values, but only one is retained by this reader. If not set name is set, then the first set in
the file is used.

Example: Reading an MPS file.

This example reads the data for a linear programming problem from an MPS file.

import com.imsl.io.MPSReader;
import java.io.*;
import java.util.Iterator;

public class MPSReaderEx1 {
static public void main(String arg[]) throws IOException, MPSReader.InvalidMPSFileException {

828 • MPSReader class JMSL

InputStream stream = MPSReaderEx1.class.getResourceAsStream("testprob.mps");
Reader reader = new InputStreamReader(stream);
MPSReader mps = new MPSReader();
mps.read(reader);

System.out.println("Name " + mps.getName());
System.out.println("RHS " + mps.getNameRHS());
System.out.println("BOUNDS " + mps.getNameBounds());
System.out.println("RANGES " + mps.getNameRanges());

int nRows = mps.getNumberOfRows();
System.out.println("NumberOfConstraints " + nRows);
for (int i = 0; i < nRows; i++) {

System.out.println(" " +
mps.getLowerRange(i) +
" <= row[" + i + "] = " +
mps.getNameRow(i) +
" <= " + mps.getUpperRange(i));

}

int nColumns = mps.getNumberOfColumns();
System.out.println("NumberOfColumns " + nColumns);
for (int i = 0; i < nColumns; i++) {

System.out.println(" " +
mps.getLowerBound(i) +
" <= var[" + i + "] = " +
mps.getNameColumn(i) +
" <= " + mps.getUpperBound(i));

}

System.out.println("NumberOfNonZeros " + mps.getNumberOfNonZeros());
for (int iRow = 0; iRow < nRows; iRow++) {

System.out.println(" row "+mps.getNameRow(iRow));
Iterator iter = mps.getRow(iRow).iterator();
while (iter.hasNext()) {

MPSReader.Element elem = (MPSReader.Element)iter.next();
int iColumn = elem.getColumn();
String nameColumn = mps.getNameColumn(iColumn);
System.out.println(" "+nameColumn+": "+elem.getValue());

}
}

}
}

Output

Name TESTPROB
RHS RHS1
BOUNDS BND1
RANGES null
NumberOfConstraints 3

-Infinity <= row[0] = LIM1 <= 5.0

Input/Output MPSReader class • 829

10.0 <= row[1] = LIM2 <= Infinity
7.0 <= row[2] = MYEQN <= 7.0

NumberOfColumns 3
0.0 <= var[0] = XONE <= 4.0
-1.0 <= var[1] = YTWO <= 1.0
0.0 <= var[2] = ZTHREE <= Infinity

NumberOfNonZeros 6
row LIM1

XONE: 1.0
YTWO: 1.0

row LIM2
XONE: 1.0
ZTHREE: 1.0

row MYEQN
YTWO: -1.0
ZTHREE: 1.0

MPSReader.InvalidMPSFileException class

static public class com.imsl.io.MPSReader.InvalidMPSFileException extends
com.imsl.IMSLException

The MPS file is invalid.

Constructors

MPSReader.InvalidMPSFileException
public MPSReader.InvalidMPSFileException(String message)

MPSReader.InvalidMPSFileException
public MPSReader.InvalidMPSFileException(String key, Object[] arguments)

MPSReader.Row class

public class com.imsl.io.MPSReader.Row implements Serializable

A row either in the constraint matrix or a free row.

830 • MPSReader class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Methods

getCoefficients
public double[] getCoefficients()

Description

Returns the coeffients of this row as a dense array.

getName
public String getName()

Description

Returns the name of this row.

getNumberOfNonZeros
public int getNumberOfNonZeros()

Description

Returns the number of nonzero elements in this row.

iterator
public Iterator iterator()

Description

Returns an iterator over the elements in this row. This is used to retrieve the coeffients in
a sparse form.

MPSReader.Element class

static public class com.imsl.io.MPSReader.Element implements Serializable

An element in the sparse contraint matrix.

Input/Output MPSReader class • 831

Field

serialVersionUID
static final public long serialVersionUID

Methods

getColumn
public int getColumn()

Description

Returns the column index.

getValue
public double getValue()

Description

Returns the value of the element.

832 • MPSReader class JMSL

Chapter 23: Finance

Types

interface BasisPart . 834
class Bond. 835
class DayCountBasis .875
class Finance . 877

Usage Notes

Users can perform financial computations by using pre-defined data types. Most of the financial
functions require one or more of the following:

• Date

• Number of payments per year

• A variable to indicate when payments are due

• Day count basis

The Bond class provides constants to indicate the number of payments for each year.

Class member Meaning
Bond.ANNUAL One payment per year (Annual payment)
Bond.SEMIANNUAL Two payments per year (Semi-annual payment)
Bond.QUARTERLY Four payments per year (Quarterly payment)

The Finance class provides constants to indicate when payments are due.

Class member Meaning
Finance.AT END OF PERIOD Payments are due at the end of the period
Finance.AT BEGINNING OF PERIOD Payments are due at the beginning of the period

833

The DayCountBasis class provides constants to indicate the type of day count basis. Day count
basis is the method for computing the number of days between two dates.

Class member Day count basis
DayCountBasis.BasisNASD US (NASD) 30/360
DayCountBasis.BasisActualActual Actual/Actual
DayCountBasis.BasisActual360 Actual/360
DayCountBasis.BasisActual365 Actual/365
DayCountBasis.Basis30e360 European 30/360

Additional Information

In preparing the finance and bond functions we incorporated standards used by SIA Standard
Securities Calculation Methods.

More detailed information on finance and bond functionality can be found in the following
manuals:

• SIA Standard Securities Calculation Methods 1993, vols. 1 and 2, Third Edition

• Microsoft Excel 5, Worksheet Function Reference.

BasisPart interface

public interface com.imsl.finance.BasisPart

Component of com.imsl.finance.DayCountBasis (p. 875) . The day count basis consists of a
month basis and a yearly basis. Each of these components implements this interface.

Methods

daysBetween
public int daysBetween(GregorianCalendar date1, GregorianCalendar date2)

Description

Returns the number of days from date1 to date2.

Parameters

date1 – a GregorianCalendar which specifies the initial date

date2 – a GregorianCalendar which specifies the final date

834 • BasisPart interface JMSL

Returns

an int indicating the number of days from date1 to date2.

daysInPeriod
public double daysInPeriod(GregorianCalendar date, int frequency)

Description

Returns the number of days in a coupon period.

Parameters

date – a GregorianCalendar which specifies the final date of the coupon period

frequency – is the number of coupon periods per year. This is typically 1, 2 or 4.

Returns

an int which specifies the number of days in the coupon period

getDaysInYear
public int getDaysInYear(GregorianCalendar settlement, GregorianCalendar
maturity)

Description

Returns the number of days in the year.

Parameters

settlement – a GregorianCalendar date which specifies the settlement date

maturity – a GregorianCalendar date which specifies the maturity date

Returns

an int which specifies the number of days in the year

Bond class

public class com.imsl.finance.Bond

Collection of bond functions.

Definitions

rate is an annualized rate of return based on the par value of the bills.

yield is an annualized rate based on the purchase price and reflects the actual yield to maturity.

coupons are interest payments on a bond.

Finance Bond class • 835

redemption is the amount a bond pays at maturity.

frequency is the number of times a year that a bond makes interest payments.

basis is the method used to calculate dates. For example, sometimes computations are done
assuming 360 days in a year.

issue is the day a bond is first sold.

settlement is the day a purchaser aquires a bond.

maturity is the day a bond’s principal is repaid.

Discount Bonds

Discount bonds, also called zero-coupon bonds, do not pay interest during the life of the
security, instead they sell at a discount to their value at maturity. The discount bond methods
all have settlement, maturity, basis and redemption as arguments. In the following list these
common arguments are omitted.

• price = pricedisc(rate)

• price = priceyield(yield)

• price = pricemat(issue, rate, yield)

• rate = disc(price)

• yield = yielddisc(price)

A related method is accrintm, which returns the interest that has accumulated on the discount
bond.

Treasury Bills

US Treasury bills are a special case of discount bonds. The basis is fixed for treasury bills and
the redemption value is assumed to be $100. So these functions have only settlement and
maturity as common arguments.

• price = tbillprice(rate)

• yield = tbillyield(price)

• yield = tbilleq(rate)

Interest Paying Bonds

Most bonds pay interest periodically. The interest paying bond methods all have settlement,
maturity, basis and frequency as arguments. Again supressing the common arguments,

836 • Bond class JMSL

• price = price(rate, yield, redemption)

• yield = yield(rate, price, redemption)

• redemption = received(price, rate)

A related method is accrint, which returns the interest that has accumulated at settlement from
the previous coupon date.

Coupon days

In this diagram, the settlement date is shown as a hollow circle and the adjacent coupon dates
are shown as filled circles.

• coupppcd is the coupon date immediately prior to the settlement date.

• coupncd is the coupon date immediately after the settlement date.

Finance Bond class • 837

• coupdaybs is the number of days from the immediately prior coupon date to the
settlement date.

• coupdaysnc is the number of days from the settlement date to the next coupon date.

• coupdays is the number of days between these two coupon dates.

A related method is coupnum, which returns the number of coupons payable between
settlement and maturity.

Another related method is yearfrac, which returns the fraction of the year between two days.

Duration

Duration is used to measure the sensitivity of a bond to changes in interest rates. Convexity is
a measure of the sensitivity of duration.

• duration

• modified duration

• convexity

Fields

ANNUAL
static final public int ANNUAL

Coupon payments are made annually.

QUARTERLY
static final public int QUARTERLY

Coupon payments are made quarterly.

SEMIANNUAL
static final public int SEMIANNUAL

Coupon payments are made semiannually.

Constructor

Bond
public Bond()

838 • Bond class JMSL

Methods

accrint
static public double accrint(GregorianCalendar issue, GregorianCalendar
firstCoupon, GregorianCalendar settlement, double rate, double par, int
frequency, DayCountBasis basis)

Description

Returns the interest which has accrued on a security that pays interest periodically. In
the equation below, Ai represents the number of days which have accrued for the ith
quasi-coupon period within the odd period. (The quasi-coupon periods are periods
obtained by extending the series of equal payment periods to before or after the actual
payment periods.) NC represents the number of quasi-coupon periods within the odd
period, rounded to the next highest integer. (The odd period is a period between
payments that differs from the usual equally spaced periods at which payments are made.)
NLi represents the length of the normal ith quasi-coupon period within the odd period.
NLi is expressed in days. Function accrint can be found by solving the following:

par

(
rate

frequency

NC∑
i=1

Ai

NLi

)

Parameters

issue – a GregorianCalendar issue date of the security

firstCoupon – a GregorianCalendar date of the security’s first interest date

settlement – a GregorianCalendar settlement date of the security

rate – a double which specifies the security’s annual coupon rate

par – a double which specifies the security’s par value

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the accrued interest

accrintm
static public double accrintm(GregorianCalendar issue, GregorianCalendar
maturity, double rate, double par, DayCountBasis basis)

Finance Bond class • 839

Description

Returns the interest which has accrued on a security that pays interest at maturity.

= par × rate × A

D

In the above equation, A represents the number of days starting at issue date to maturity
date and D represents the annual basis.

Parameters

issue – a GregorianCalendar issue date of the security

maturity – a GregorianCalendar date of the security’s maturity

rate – a double which specifies the security’s annual coupon rate

par – a double which specifies the security’s par value

basis – a DayCountBasis object which contains the type of day count basis to use.
see DayCountBasis

Returns

a double which specifies the accrued interest

amordegrc
static public double amordegrc(double cost, GregorianCalendar issue,
GregorianCalendar firstPeriod, double salvage, int period, double rate,
DayCountBasis basis)

Description

Returns the depreciation for each accounting period. This method is similar to amorlinc.
However, in this method a depreciation coefficient based on the asset life is applied during
the evaluation of the function.

Parameters

cost – a double which specifies the cost of the asset

issue – a GregorianCalendar issue date of the asset

firstPeriod – a GregorianCalendar date of the end of the first period

salvage – a double which specifies the asset’s salvage value at the end of the life of
the asset

period – an int which specifies the period

rate – a double which specifies the rate of depreciation

basis – a DayCountBasis object which contains the type of day count basis to use.
see DayCountBasis.

840 • Bond class JMSL

Returns

a double which specifies the depreciation

amorlinc
static public double amorlinc(double cost, GregorianCalendar issue,
GregorianCalendar firstPeriod, double salvage, int period, double rate,
DayCountBasis basis)

Description

Returns the depreciation for each accounting period. This method is similar to
amordegrc, except that amordegrc has a depreciation coefficient that is applied during
the evaluation that is based on the asset life.

Parameters

cost – a double which specifes the cost of the asset

issue – a GregorianCalendar issue date of the asset

firstPeriod – a GregorianCalendar date of the end of the first period

salvage – a double which specifies the asset’s salvage value at the end of the life of
the asset

period – an int which specifies the period

rate – a double which specifies the rate of depreciation

basis – a DayCountBasis object which contains the type of day count basis to use.
see DayCountBasis.

Returns

a double which specifies the depreciation

convexity
static public double convexity(GregorianCalendar settlement,
GregorianCalendar maturity, double coupon, double yield, int frequency,
DayCountBasis basis)

Description

Returns the convexity for a security. Convexity is the sensitivity of the duration of a
security to changes in yield. It is computed using the following:

1
(q×frequency)2

{
n∑

t=1
t (t+ 1)

(
coupon

frequency

)
q−t + n (n+ 1) q−n

}
(

n∑
t=1

(
coupon

frequency

)
q−t + q−n

)
where n is calculated from coupnum, and q = 1 + yield

frequency .

Finance Bond class • 841

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

coupon – a double which specifies the security’s annual coupon rate

yield – a double which specifires the security’s annual yield

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the convexity for a security

coupdaybs
static public int coupdaybs(GregorianCalendar settlement, GregorianCalendar
maturity, int frequency, DayCountBasis basis)

Description

Returns the number of days starting with the beginning of the coupon period and ending
with the settlement date. For a good discussion on day count basis, see SIA Standard
Securities Calculation Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

an int which specifies the number of days from the beginning of the coupon period to the
settlement date

coupdays
static public double coupdays(GregorianCalendar settlement,
GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the number of days in the coupon period containing the settlement date. For a
good discussion on day count basis, see SIA Standard Securities Calculation Methods
1993, vol. 1, pages 17-35.

842 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

an int which specifies the number of days in the coupon period that contains the
settlement date

coupdaysnc
static public int coupdaysnc(GregorianCalendar settlement, GregorianCalendar
maturity, int frequency, DayCountBasis basis)

Description

Returns the number of days starting with the settlement date and ending with the next
coupon date. For a good discussion on day count basis, see SIA Standard Securities
Calculation Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

an int which specifies the number of days from the settlement date to the next coupon
date

coupncd
static public GregorianCalendar coupncd(GregorianCalendar settlement,
GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the first coupon date which follows the settlement date. For a good discussion on
day count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, pages
17-35.

Finance Bond class • 843

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis

Returns

an int which specifies the next coupon date after the settlement date

coupnum
static public int coupnum(GregorianCalendar settlement, GregorianCalendar
maturity, int frequency, DayCountBasis basis)

Description

Returns the number of coupons payable between the settlement date and the maturity
date. For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

an int which specifies the number of coupons payable between the settlement date and
maturity date

couppcd
static public GregorianCalendar couppcd(GregorianCalendar settlement,
GregorianCalendar maturity, int frequency, DayCountBasis basis)

Description

Returns the coupon date which immediately precedes the settlement date. For a good
discussion on day count basis, see SIA Standard Securities Calculation Methods 1993, vol.
1, pages 17-35.

844 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis

Returns

an int which specifies the previous coupon date before the settlement date

disc
static public double disc(GregorianCalendar settlement, GregorianCalendar
maturity, double price, double redemption, DayCountBasis basis)

Description

Returns the implied interest rate of a discount bond. The discount rate is the interest
rate implied when a security is sold for less than its value at maturity in lieu of interest
payments. It is computed using the following:

redemption − price
price

× B

DSM

In the equation above, B represents the number of days in a year based on the annual
basis and DSM represents the number of days starting with the settlement date and
ending with the maturity date.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

price – a double which specifies the security’s price per $100 face value

redemption – a double which specifies the security’s redemption value per $100 face
value

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the discount rate for a security

duration
static public double duration(GregorianCalendar settlement,
GregorianCalendar maturity, double coupon, double yield, int frequency,
DayCountBasis basis)

Finance Bond class • 845

Description

Returns the Macauley’s duration of a security where the security has periodic interest
payments. The Macauley’s duration is the weighted-average time to the payments, where
the weights are the present value of the payments. It is computed using the following:


DSC

E 100

(1+ yield
freq)(N−1+ DSC

E) +
N∑

k=1

((
100×coupon

freq×(1+ yield
freq)(k−1+ DSC

E)

)(
k − 1 + DSC

E

))
100

(1+ yield
freq)N−1+ DSC

E
+

N∑
k=1

(
100×coupon

freq×(1+ yield
freq)k−1+ DSC

E

)
 1

freq

In the equation above, DSC represents the number of days starting with the settlement
date and ending with the next coupon date. E represents the number of days within the
coupon period. N represents the number of coupons payable from the settlement date to
the maturity date. freq represents the frequency of the coupon payments annually.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

coupon – a double which specifies the security’s annual coupon rate

yield – a double which specifies the security’s annual yield

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the annual duration of a security with periodic interest payments

intrate
static public double intrate(GregorianCalendar settlement, GregorianCalendar
maturity, double investment, double redemption, DayCountBasis basis)

Description

Returns the interest rate of a fully invested security. It is computed using the following:

redemption − investment
investment

× B

DSM
In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days in the period starting with the settlement
date and ending with the maturity date.

846 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

investment – a double which specifies the amount invested

redemption – a double which specifies the amount to be received at maturity

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the interest rate for a fully invested security

mduration
static public double mduration(GregorianCalendar settlement,
GregorianCalendar maturity, double coupon, double yield, int frequency,
DayCountBasis basis)

Description

Returns the modified Macauley duration for a security with an assumed par value of
$100. It is computed using the following:

duration
1 + yield

frequency

where duration is calculated from mduration.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

coupon – a double which specifies the security’s annual coupon rate

yield – a double which specifies the security’s annual yield

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the modified Macauley duration for a security with an assumed
par value of $100

price
static public double price(GregorianCalendar settlement, GregorianCalendar
maturity, double rate, double yield, double redemption, int frequency,
DayCountBasis basis)

Finance Bond class • 847

Description

Returns the price, per $100 face value, of a security that pays periodic interest. It is
computed using the following:

redemption(
1 + yield

frequency

)(N−1+DSC
E)

+
N∑

k=1

100× rate
frequency(

1 + yield
frequency

)(k−1+DSC
E)
−
(

100× rate
frequency

× A

E

)

In the above equation, DSC represents the number of days in the period starting with the
settlement date and ending with the next coupon date. E represents the number of days
within the coupon period. N represents the number of coupons payable in the timeframe
from the settlement date to the redemption date. A represents the number of days in the
timeframe starting with the beginning of coupon period and ending with the settlement
date.

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
rate – a double which specifies the security’s annual coupon rate
yield – a double which specifies the security’s annual yield
redemption – a double which specifies the security’s redemption value per $100 face
value
frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly
basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the price per $100 face value of a security that pays periodic
interest

pricedisc
static public double pricedisc(GregorianCalendar settlement,
GregorianCalendar maturity, double rate, double redemption, DayCountBasis
basis)

Description

Returns the price of a discount bond given the discount rate. It is computed using the
following:

redemption − rate × redemption × DSM
B

In the equation above, DSM represents the number of days starting at the settlement
date and ending with the maturity date. B represents the number of days in a year based
on the annual basis.

848 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

rate – a double which specifies the security’s discount rate

redemption – a double which specifies the security’s redemption value per $100 face
value

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the price per $100 face value of a discounted security

pricemat
static public double pricemat(GregorianCalendar settlement,
GregorianCalendar maturity, GregorianCalendar issue, double rate, double
yield, DayCountBasis basis)

Description

Returns the price, per $100 face value, of a discount bond. It is computed using the
following:

100 +
(
DIM

B × rate× 100
)

1 +
(
DSM

B × yield
) − A

B
× rate × 100

In the equation above, B represents the number of days in a year based on the annual
basis. DSM represents the number of days in the period starting with the settlement date
and ending with the maturity date. DIM represents the number of days in the period
starting with the issue date and ending with the maturity date. A represents the number
of days in the period starting with the issue date and ending with the settlement date.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

issue – a GregorianCalendar issue date of the security

rate – a double which specifies the security’s interest rate at issue date

yield – a double which specifies the security’s annual yield

basis – a DayCountBasis object which contains the type of day count basis to use.
see DayCountBasis

Finance Bond class • 849

Returns

a double which specifies the price per $100 face value of a security that pays interest at
maturity

priceyield
static public double priceyield(GregorianCalendar settlement,
GregorianCalendar maturity, double yield, double redemption, DayCountBasis
basis)

Description

Returns the price of a discount bond given the yield. It is computed using the following:

redemption
1 +

(
DSM

B

)
yield

In the equation above, DSM represents the number of days starting at the settlement
date and ending with the maturity date. B represents the number of days in a year based
on the annual basis.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

yield – a double which specifies the security’s yield

redemption – a double which specifies the security’s redemption value per $100 face
value

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis

Returns

a double which specifies the price per $100 face value of a discounted security

received
static public double received(GregorianCalendar settlement,
GregorianCalendar maturity, double investment, double rate, DayCountBasis
basis)

Description

Returns the amount one receives when a fully invested security reaches the maturity date.
It is computed using the following:

investment
1−

(
rate × DIM

B

)
In the equation above, B represents the number of days in a year based on the annual
basis, and DIM represents the number of days in the period starting with the issue date
and ending with the maturity date.

850 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security
maturity – a GregorianCalendar maturity date of the security
investment – a double which specifies the amount invested in the security
rate – a double which specifies the security’s rate at issue date
basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the amount received at maturity for a fully invested security

tbilleq
static public double tbilleq(GregorianCalendar settlement, GregorianCalendar
maturity, double rate)

Description

Returns the bond-equivalent yield of a Treasury bill. It is computed using the following:
If DSM <= 182

365× rate
360− rate ×DSM

otherwise,

−DSM
365 +

√(
DSM
365

)2 − (2× DSM
365 − 1

)
× rate×DSM

rate×DSM−360

DSM
365 − 0.5

In the above equation, DSM represents the number of days starting at settlement date to
maturity date.
Parameters

settlement – a GregorianCalendar settlement date of the Treasury bill
maturity – a GregorianCalendar maturity date of the Treasury bill. The maturity
cannot be more than a year after the settlement.
rate – a double which specifies the Treasury bill’s discount rate at issue date. The
discount rate is an annualized rate of return based on the par value of the bills. The
discount rate is calculated on a 360-day basis (twelve 30-day months).

Returns

a double which specifies the bond-equivalent yield for the Treasury bill. This is an
annualized rate based on the purchase price of the bills and reflects the actual yield to
maturity.

tbillprice
static public double tbillprice(GregorianCalendar settlement,
GregorianCalendar maturity, double rate)

Finance Bond class • 851

Description

Returns the price, per $100 face value, of a Treasury bill. It is computed using the
following:

100
(

1− rate ×DSM
360

)
In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Parameters

settlement – a GregorianCalendar settlement date of the Treasury bill

maturity – a GregorianCalendar maturity date of the Treasury bill. The maturity
cannot be more than a year after the settlement

rate – a double which specifies the Treasury bill’s discount rate at issue date. The
discount rate is an annualized rate of return based on the par value of the bills. The
discount rate is calculated on a 360-day basis (twelve 30-day months).

Returns

a double which specifies the price per $100 face value for the Treasury bill

tbillyield
static public double tbillyield(GregorianCalendar settlement,
GregorianCalendar maturity, double price)

Description

Returns the yield of a Treasury bill. It is computed using the following:

100− price
price

× 360
DSM

In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Parameters

settlement – a GregorianCalendar settlement date of the Treasury bill

maturity – a GregorianCalendar maturity date of the Treasury bill. The maturity
cannot be more than a year after the settlement.

price – a double which specifies the Treasury bill’s price per $100 face value

852 • Bond class JMSL

Returns

a double which specifies the yield for the Treasury bill. This is an annualized rate based
on the purchase price of the bills and reflects the actual yield to maturity.

yearfrac
static public double yearfrac(GregorianCalendar start, GregorianCalendar
end, DayCountBasis basis)

Description

Returns the fraction of a year represented by the number of whole days between two
dates. It is computed using the following:

A/D

where A equals the number of days from start to end, D equals annual basis.

Parameters

start – a GregorianCalendar start date of the security

end – a GregorianCalendar end date of the security

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the annual yield of a security that pays interest at maturity

yield
static public double yield(GregorianCalendar settlement, GregorianCalendar
maturity, double rate, double price, double redemption, int frequency,
DayCountBasis basis)

Description

Returns the yield of a security that pays periodic interest. If there is one coupon period
use the following:(

redemption
100 + rate

frequency

)
−
[
price
100 +

(
A
E ×

rate
frequency

)]
price
100 +

(
A
E ×

rate
frequency

) × frequency × E
DSR

In the equation above, DSR represents the number of days in the period starting with the
settlement date and ending with the redemption date. E represents the number of days
within the coupon period. A represents the number of days in the period starting with
the beginning of coupon period and ending with the settlement date.

If there is more than one coupon period use the following:

Finance Bond class • 853

price − redemption(
1+yield

frequency

)N−1+DSC
E

−

 N∑
k=1

100× rate
frequency(

1+yield
frequency

) k−1+DSC
E

+ 100× rate
frequency

× A

E

In the equation above, DSC represents the number of days in the period from the
settlement to the next coupon date. E represents the number of days within the coupon
period.N represents the number of coupons payable in the period starting with the
settlement date and ending with the redemption date. A represents the number of days in
the period starting with the beginning of the coupon period and ending with the
settlement date.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

rate – a double which specifies the security’s annual coupon rate

price – a double which specifies the security’s price per $100 face value

redemption – a double which specifies the security’s redemption value per $100 face
value

frequency – an int which specifies the number of coupon payments per year;
ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for quarterly

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the yield of a security that pays periodic interest

yielddisc
static public double yielddisc(GregorianCalendar settlement,
GregorianCalendar maturity, double price, double redemption, DayCountBasis
basis)

Description

Returns the annual yield of a discount bond. It is computed using the following:

redemption − price
price

× B

DSM

In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days starting with the settlement date and
ending with the maturity date.

854 • Bond class JMSL

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

price – a double which specifies the security’s price per $100 face value

redemption – a double which specifies the security’s redemption value per $100 face
value

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the annual yield for a discounted security

yieldmat
static public double yieldmat(GregorianCalendar settlement,
GregorianCalendar maturity, GregorianCalendar issue, double rate, double
price, DayCountBasis basis)

Description

Returns the annual yield of a security that pays interest at maturity. It is computed using
the following: [

1 +
(
DIM

B × rate
)]
−
[
price
100 +

(
A
B × rate

)]
price
100 +

(
A
B × rate

) × B

DSM

In the equation above, DIM represents the number of days in the period starting with the
issue date and ending with the maturity date. DSM represents the number of days in the
period starting with the settlement date and ending with the maturity date. A represents
the number of days in the period starting with the issue date and ending with the
settlement date. B represents the number of days in a year based on the annual basis.

Parameters

settlement – a GregorianCalendar settlement date of the security

maturity – a GregorianCalendar maturity date of the security

issue – a GregorianCalendar issue date of the security

rate – a double which specifies the security’s interest rate at date of issue

price – a double the security’s price per $100 face value

basis – a DayCountBasis object which contains the type of day count basis to use.
See DayCountBasis.

Returns

a double which specifies the annual yield of a security that pays interest at maturity

Finance Bond class • 855

Example: Accrued Interest - Periodic Payments

In this example, the accrued interest is calculated for a bond which pays interest semiannually.
The day count basis used is 30/360.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class accrintEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar issue = parse("10/1/91");
GregorianCalendar firstCoupon = parse("3/31/92");
GregorianCalendar settlement = parse("11/3/91");
double rate = .06;
double par = 1000.;
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double accrint = Bond.accrint(issue, firstCoupon, settlement, rate,
par, freq, dcb);
System.out.println("The accrued interest is " +accrint);

}
}

Output

The accrued interest is 5.333333333333334

Example: Accrued Interest - Payment at Maturity

In this example, the accrued interest is calculated for a bond which pays at maturity. The day
count basis used is 30/360.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class accrintmEx1 {
static final DateFormat dateFormat =

856 • Bond class JMSL

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar issue = parse("10/1/91");
GregorianCalendar settlement = parse("11/3/91");
double rate = .06;
double par = 1000.;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double accrintm = Bond.accrintm(issue, settlement, rate, par, dcb);
System.out.println("The accrued interest is " +accrintm);

}
}

Output

The accrued interest is 5.333333333333334

Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an asset.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class amordegrcEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
double cost = 2400.;
GregorianCalendar issue = parse("11/1/92");
GregorianCalendar firstPeriod = parse("11/30/93");
double salvage = 300.;
int period = 2;
double rate = .15;
DayCountBasis dcb = DayCountBasis.BasisNASD;

Finance Bond class • 857

double amordegrc = Bond.amordegrc(cost, issue, firstPeriod,
salvage, period, rate, dcb);
System.out.println("The depreciation for the second accounting " +
"period is " +amordegrc);

}
}

Output

The depreciation for the second accounting period is 334.0

Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an asset.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class amorlincEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
double cost = 2400.;
GregorianCalendar issue = parse("11/1/92");
GregorianCalendar firstPeriod = parse("11/30/93");
double salvage = 300.;
int period = 2;
double rate = .15;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double amorlinc = Bond.amorlinc(cost, issue, firstPeriod,
salvage, period, rate, dcb);
System.out.println("The depreciation for the second accounting " +
"period is " +amorlinc);

}
}

Output

858 • Bond class JMSL

The depreciation for the second accounting period is 360.0

Example: Convexity for a Security

The convexity of a 10 year bond which pays interest semiannually is returned in this example.

Output

Example: Days - Beginning of Period to Settlement Date

In this example, the settlement date is 11/11/86. The number of days from the beginning of
the coupon period to the settlement date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupdaybsEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupdaybs = Bond.coupdaybs(settlement, maturity, freq, dcb);
System.out.println("The number of days from the beginning of the" +
"\ncoupon period to the settlement date is " + coupdaybs);

}
}

Output

The number of days from the beginning of the
coupon period to the settlement date is 71

Finance Bond class • 859

Example: Days in the Settlement Date Period

In this example, the settlement date is 11/11/86. The number of days in the coupon period
containing this date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupdaysEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double coupdays = Bond.coupdays(settlement, maturity, freq, dcb);
System.out.println("The number of days in the coupon period that " +
"contains the settlement date is " + coupdays);

}
}

Output

The number of days in the coupon period that contains the settlement date is 182.5

Example: Days - Settlement Date to Next Coupon Date

In this example, the settlement date is 11/11/86. The number of days from this date to the
next coupon date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupdaysncEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {

860 • Bond class JMSL

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupdaysnc = Bond.coupdaysnc(settlement, maturity, freq, dcb);
System.out.println("The number of days from the settlement date " +
"to the next coupon date is " +coupdaysnc);

}
}

Output

The number of days from the settlement date to the next coupon date is 110

Example: Next Coupon Date After the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this date is
returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupncdEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
GregorianCalendar coupncd = Bond.coupncd(settlement, maturity,
freq, dcb);
System.out.println("The next coupon date after the settlement date is "
+ dateFormat.format(coupncd.getTime()));

}

Finance Bond class • 861

}

Output

The next coupon date after the settlement date is 3/1/87

Example: Number of Payable Coupons

In this example, the settlement date is 11/11/86. The number of payable coupons between this
date and the maturity date is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class coupnumEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupnum = Bond.coupnum(settlement, maturity, freq, dcb);
System.out.println("The number of coupons payable between the " +
"\nsettlement date and the maturity date is " + coupnum);

}
}

Output

The number of coupons payable between the
settlement date and the maturity date is 25

862 • Bond class JMSL

Example: Previous Coupon Date Before the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this date is
returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class couppcdEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");
GregorianCalendar maturity = parse("3/1/99");
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
GregorianCalendar couppcd = Bond.couppcd(settlement, maturity,
freq, dcb);
System.out.println("The previous coupon date before the settlement " +
"date is " + dateFormat.format(couppcd.getTime()));

}
}

Output

The previous coupon date before the settlement date is 9/1/86

Example: Discount Rate for a Security

In this example, the discount rate for a security is returned.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class discEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {

Finance Bond class • 863

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("2/15/92");
GregorianCalendar maturity = parse("6/10/92");
double price = 97.975;
double redemption = 100.;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double disc = Bond.disc(settlement, maturity, price, redemption, dcb);
System.out.println("The discount rate for the security is " +disc);

}
}

Output

The discount rate for the security is 0.06371767241379328

Example: Duration of a Security with Periodic Payments

The annual duration of a 10 year bond which pays interest semiannually is returned in this
example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class durationEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double coupon = .075;
double yield = .09;
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double duration = Bond.duration(settlement, maturity, coupon,
yield, freq, dcb);
System.out.println("The annual duration of the bond with" +

864 • Bond class JMSL

"\nsemiannual interest payments is " + duration);
}

}

Output

The annual duration of the bond with
semiannual interest payments is 7.041953377972151

Example: Interest Rate of a Fully Invested Security

The discount rate of a 10 year bond is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class intrateEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double investment = 7000.;
double redemption = 10000.;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double intrate = Bond.intrate(settlement, maturity, investment,
redemption, dcb);
System.out.println("The interest rate of the bond is " +intrate);

}
}

Output

The interest rate of the bond is 0.042833672351744644

Finance Bond class • 865

Example: Modified Macauley Duration of a Security with Periodic Pay-
ments

The modified Macauley duration of a 10 year bond which pays interest semiannually is returned
in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class mdurationEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double coupon = .075;
double yield = .09;
int freq = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double mduration = Bond.mduration(settlement, maturity,
coupon, yield, freq, dcb);
System.out.println("The modified Macauley duration of the bond" +
"\nwith semiannual interest payments is " + mduration);

}
}

Output

The modified Macauley duration of the bond
with semiannual interest payments is 6.738711366480527

Example: Price of a Security

The price per $100 face value of a 10 year bond which pays interest semiannually is returned in
this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

866 • Bond class JMSL

public class priceEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double rate = .06;
double yield = .07;
double redemption = 105.;
int frequency = Bond.SEMIANNUAL;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double price = Bond.price(settlement, maturity, rate, yield,
redemption, frequency, dcb);
System.out.println("The price of the bond is " +price);

}
}

Output

The price of the bond is 95.40662777118231

Example: Price of a Discounted Security

The price per $100 face value of a discounted 1 year bond is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class pricediscEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

Finance Bond class • 867

GregorianCalendar maturity = parse("7/1/86");
double rate = .05;
double redemption = 100.;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double pricedisc = Bond.pricedisc(settlement, maturity,
rate, redemption, dcb);
System.out.println("The price of the discounted bond is " +pricedisc);

}
}

Output

The price of the discounted bond is 95.0

Example: Price of a Security that Pays at Maturity

The price per $100 face value of 1 year bond that pays interest at maturity is returned in this
example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class pricematEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("8/1/85");
GregorianCalendar maturity = parse("7/1/86");
GregorianCalendar issue = parse("7/1/85");
double rate = .05;
double yield = .05;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double pricemat = Bond.pricemat(settlement, maturity, issue,
rate, yield, dcb);
System.out.println("The price of the bond is " +pricemat);

}
}

868 • Bond class JMSL

Output

The price of the bond is 99.98173970783533

Price of a Discounted Security

The price of a discounted 1 year bond is returned in this example.

priceyieldEx1

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class priceyieldEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s)
throws ParseException {

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double yield = 0.010055244588347783;
double redemption = 105.;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double priceyield = Bond.priceyield(settlement, maturity,
yield, redemption, dcb);
System.out.println("The price of the discounted bond is "
+ priceyield);

}
}

Output

The price of the discounted bond is 95.40663

Finance Bond class • 869

Example: Amount Received at Maturity for a Fully Invested Security

The amount to be received at maturity for a 10 year bond is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class receivedEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double investment = 7000.;
double discount = .06;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double received = Bond.received(settlement, maturity,
investment, discount, dcb);
System.out.println("The amount received at maturity for the bond is " +
NumberFormat.getCurrencyInstance().format(received));

}
}

Output

The amount received at maturity for the bond is $17,514.40

Example: Bond-Equivalent Yield

The bond-equivalent yield for a 1 year Treasury bill is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class tbilleqEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {

870 • Bond class JMSL

GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/86");
double discount = .05;
double tbilleq = Bond.tbilleq(settlement, maturity, discount);
System.out.println("The bond-equivalent yield for the T-bill is "
+ tbilleq);

}
}

Output

The bond-equivalent yield for the T-bill is 0.05270709977197674

Example: Treasury Bill Price

The price per $100 face value for a 1 year Treasury bill is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class tbillpriceEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/86");
double discount = .05;
double tbillprice = Bond.tbillprice(settlement, maturity, discount);
System.out.println("The price per $100 face value for the T-bill is "
+ tbillprice);

}
}

Finance Bond class • 871

Output

The price per $100 face value for the T-bill is 94.93055555555556

Example: Treasury Bill Yield

The yield for a 1 year Treasury bill is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class tbillyieldEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/86");
double price = 94.93;
double tbillyield = Bond.tbillyield(settlement, maturity, price);
System.out.println("The yield for the T-bill is " +tbillyield);

}
}

Output

The yield for the T-bill is 0.05267616080486118

Example: Year Fraction

The year fraction of a 30/360 year starting 8/1/85 and ending 7/1/86 is returned in this
example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

872 • Bond class JMSL

public class yearfracEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar start = parse("8/1/85");
GregorianCalendar end = parse("7/1/86");
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yearfrac = Bond.yearfrac(start, end, dcb);
System.out.println("The year fraction of the 30/360 period is " +
yearfrac);

}
}

Output

The year fraction of the 30/360 period is 0.9166666666666666

Example: Yield on a Security

The yield on a 10 year bond which pays interest semiannually is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class yieldEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double rate = .06;
double price = 95.40663;
double redemption = 105.;
int frequency = Bond.SEMIANNUAL;

Finance Bond class • 873

DayCountBasis dcb = DayCountBasis.BasisNASD;
double yield = Bond.yield(settlement, maturity, rate, price,
redemption, frequency, dcb);
System.out.println("The yield of the bond is " + yield);

}
}

Output

The yield of the bond is 0.06999999682842895

Example: Yield on a Discounted Security

The yield on a discounted 10 year bond is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class yielddiscEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");
GregorianCalendar maturity = parse("7/1/95");
double price = 95.40663;
double redemption = 105.;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yielddisc = Bond.yielddisc(settlement, maturity, price,
redemption, dcb);
System.out.println("The yield on the discounted bond is " + yielddisc);

}
}

Output

The yield on the discounted bond is 0.010055244588347783

874 • Bond class JMSL

Example: Yield on a Security Which Pays at Maturity

The yield on a bond which pays at maturity is returned in this example.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class yieldmatEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
cal.setTime(dateFormat.parse(s));
return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("8/1/85");
GregorianCalendar maturity = parse("7/1/95");
GregorianCalendar issue = parse("7/1/85");
double rate = .06;
double price = 95.40663;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yieldmat = Bond.yieldmat(settlement, maturity, issue, rate,
price, dcb);
System.out.println("The yield on a bond which pays at maturity is " +
yieldmat);

}
}

Output

The yield on a bond which pays at maturity is 0.06739051278091948

DayCountBasis class

public class com.imsl.finance.DayCountBasis

The Day Count Basis. Rules for computing the number or days between two dates or number
of days in a year. For many securities, computations are based on rules other than on the
actual calendar.

Finance DayCountBasis class • 875

Fields

Basis30e360
static final public DayCountBasis Basis30e360

Computations based on the assumption of 30 days per month and 360 days per year.

BasisActual360
static final public DayCountBasis BasisActual360

Computations are based on the number of days in a month based on the actual calendar
value and the number of days, but assuming 360 days per year.

BasisActual365
static final public DayCountBasis BasisActual365

Computations are based on the number of days in a month based on the actual calendar
value and the number of days, but assuming 365 days per year.

BasisActualActual
static final public DayCountBasis BasisActualActual

Computations are based on the actual calendar.

BasisNASD
static final public DayCountBasis BasisNASD

Computations based on the assumption of 30 days per month and 360 days per year.

BasisPart30E360
static final public BasisPart BasisPart30E360

Computations based on the assumption of 30 days per month and 360 days per year. This
computes the number of days between two dates differently than BasisPartNASD for
months with other than 30 days.

BasisPart365
static final public BasisPart BasisPart365

Computations based on the assumption of 365 days per year.

BasisPartActual
static final public BasisPart BasisPartActual

Computations are based on the actual calendar.

BasisPartNASD
static final public BasisPart BasisPartNASD

Computations based on the assumption of 30 days per month and 360 days per year.

876 • DayCountBasis class JMSL

Constructor

DayCountBasis
public DayCountBasis(BasisPart monthBasis, BasisPart yearBasis)

Description

Creates a new DayCountBasis.

Parameters

monthBasis – is the month basis

yearBasis – is the year basis

Methods

getMonthBasis
public BasisPart getMonthBasis()

Description

Returns the (days in month) portion of the Day Count Basis.

Returns

a BasisPart object which represents the month Basis for this DayCountBasis

getYearBasis
public BasisPart getYearBasis()

Description

Returns the (days in year) portion of the Day Count Basis.

Returns

a BasisPart object which represents the year Basis for this DayCountBasis

Finance class

public class com.imsl.finance.Finance

Collection of finance functions.

Fields

AT BEGINNING OF PERIOD

Finance Finance class • 877

static final public int AT BEGINNING OF PERIOD
Flag used to indicate that payment is made at the beginning of each period.

AT END OF PERIOD
static final public int AT END OF PERIOD

Flag used to indicate that payment is made at the end of each period.

Methods

cumipmt
static public double cumipmt(double rate, int nper, double pv, int start,
int end, int when)

Description

Returns the cumulative interest paid between two periods. It is computed using the
following:

end∑
i=start

interest i

where interest i is computed from ipmt for the ith period.

Parameters

rate – a double, the interest rate

nper – an int, the total number of payment periods

pv – a double, the present value

start – an int, the first period in the caclulation. Periods are numbered starting
with one.

end – an int, the last period in the calculation

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the cumulative interest paid between the first period and the last period

cumprinc
static public double cumprinc(double rate, int nper, double pv, int start,
int end, int when)

878 • Finance class JMSL

Description

Returns the cumulative principal paid between two periods. It is computed using the
following:

end∑
i=start

principal i

where principal i is computed from ppmt for the ith period.

Parameters

rate – a double, the interest rate

nper – an int, the total number of payment periods

pv – a double, the present value

start – an int, the first period in the calculation. Periods are numbered starting
with one.

end – an int, the last period in the calculation

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877) .

Returns

a double, the cumulative principal paid between the first period and the last period

db
static public double db(double cost, double salvage, int life, int period,
int month)

Description

Returns the depreciation of an asset using the fixed-declining balance method. Method db
varies depending on the specified value for the argument period, see table below.

If period = 1,

cost× rate× month
12

If period = life,

(cost− total depreciation from periods)× rate× 12−month
12

If period other than 1 or life,

(cost− total depreciation from priorperiods)× rate

where

Finance Finance class • 879

rate = 1−
(

salvage
cost

)(1
life)

NOTE: rate is rounded to three decimal places.

Parameters

cost – a double, the initial cost of the asset

salvage – a double, the salvage value of the asset

life – an int, the number of periods over which the asset is being depreciated

period – an int, the period for which the depreciation is to be computed

month – an int, the number of months in the first year

Returns

a double, the depreciation of an asset for a specified period using the fixed-declining
balance method

ddb
static public double ddb(double cost, double salvage, int life, int period,
double factor)

Description

Returns the depreciation of an asset using the double-declining balance method. It is
computed using the following:

[cost − salvage (total depreciation from prior periods)]
factor
life

Parameters

cost – a double, the initial cost of the asset

salvage – a double, the salvage value of the asset

life – an int, the number of periods over which the asset is being depreciated

period – an int, the period

factor – a double, the rate at which the balance declines

Returns

a double, the depreciation of an asset for a specified period

dollarde
static public double dollarde(double fractionalDollar, int fraction)

880 • Finance class JMSL

Description

Converts a fractional price to a decimal price. It is computed using the following:

idollar + (fractionalDollar − idollar)× 10(ifrac+1)

fraction

where idollar is the integer part of fractionalDollar , and ifrac is the integer part of
log(fraction).

Parameters

fractionalDollar – a double, a fractional number

fraction – an int, the denominator

Returns

a double, the dollar price expressed as a decimal number

dollarfr
static public double dollarfr(double decimalDollar, int fraction)

Description

Converts a decimal price to a fractional price. It is computed using the following:

idollar +
decimalDollar − idollar

10(ifrac+1)/fraction

where idollar is the integer part of the decimalDollar , and ifrac is the integer part of
log(fraction).

Parameters

decimalDollar – a double, a decimal number

fraction – a int, the denominator

Returns

a double, a dollar price expressed as a fraction

effect
static public double effect(double nominalRate, int nper)

Description

Returns the effective annual interest rate. The nominal interest rate is the
periodically-compounded interest rate as stated on the face of a security. The effective
annual interest rate is computed using the following:(

1 +
nominalRate

nper

)nper

− 1

Finance Finance class • 881

Parameters

nominalRate – a double, the nominal interest rate
nper – an int, the number of compounding periods per year

Returns

a double, the effective annual interest rate

fv
static public double fv(double rate, int nper, double pmt, double pv, int
when)

Description

Returns the future value of an investment. The future value is the value, at some time in
the future, of a current amount and a stream of payments. It can be found by solving the
following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

rate – a double, the interest rate
nper – an int, the total number of payment periods
pmt – a double, the payment made in each period
pv – a double, the present value
when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the future value of an investment

fvschedule
static public double fvschedule(double principal, double[] schedule)

Description

Returns the future value of an initial principal taking into consideration a schedule of
compound interest rates. It is computed using the following:

count∑
i=1

(principal × schedulei)

where schedulei = interest rate at the ith period, and the count is schedule.length.

882 • Finance class JMSL

Parameters

principal – a double, the present value

schedule – a double array of interest rates to apply

Returns

a double, the future value of an initial principal

ipmt
static public double ipmt(double rate, int period, int nper, double pv,
double fv, int when)

Description

Returns the interest payment for an investment for a given period. It is computed using
the following:{

pv (1 + rate)nper−1 + pmt (1 + rate × when)
(1 + rate)nper−1

rate

}
rate

Parameters

rate – a double, the interest rate

period – an int, the payment period

nper – an int, the total number of periods

pv – a double, the present value

fv – a double, the future value

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the interest payment for a given period for an investment

irr
static public double irr(double[] pmt)

Description

Returns the internal rate of return for a schedule of cash flows. It is found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return, and count is
pmt.length.

Finance Finance class • 883

Parameter

pmt – a double array which contains cash flow values which occur at regular intervals

Returns

a double, the internal rate of return

irr
static public double irr(double[] pmt, double guess)

Description

Returns the internal rate of return for a schedule of cash flows. It is found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return.

Parameters

pmt – a double array which contains cash flow values which occur at regular intervals

guess – a double value which represents an initial guess at the return value from
this function

Returns

a double, the internal rate of return

mirr
static public double mirr(double[] value, double financeRate, double
reinvestRate)

Description

Returns the modified internal rate of return for a schedule of periodic cash flows. The
modified internal rate of return differs from the ordinary internal rate of return in
assuming that the cash flows are reinvested at the cost of capital, not at the internal rate
of return. It also eliminates the multiple rates of return problem. It is computed using
the following:

{
− (pnpv) (1 + reinvestRate)nper

(nnpv) (1 + financeRate)

} 1
nper−1

− 1

where pnpv is calculated from npv for positive values in value using reinvestRate, nnpv
is calculated from npv for negative values in value using financeRate, and nper =
value.length.

884 • Finance class JMSL

Parameters

value – a double array of cash flows

financeRate – a double, the interest you pay on the money you borrow

reinvestRate – a double, the interest rate you receive on the cash flows

Returns

a double, the modified internal rate of return

nominal
static public double nominal(double effectiveRate, int nper)

Description

Returns the nominal annual interest rate. The nominal interest rate is the interest rate as
stated on the face of a security. It is computed using the following:[

(1 + effectiveRate)
1

nper − 1
]
× nper

Parameters

effectiveRate – a double, the effective interest rate

nper – an int, the number of compounding periods per year

Returns

a double, the nominal annual interest rate

nper
static public double nper(double rate, double pmt, double pv, double fv, int
when)

Description

Returns the number of periods for an investment for which periodic, and constant
payments are made and the interest rate is constant. It can be found by solving the
following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

Finance Finance class • 885

Parameters

rate – a double, the interest rate

pmt – a double, the payment

pv – a double, the present value

fv – a double, the future value

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

an int, the number of periods for an investment

npv
static public double npv(double rate, double[] value)

Description

Returns the net present value of a stream of equal periodic cash flows, which are subject
to a given discount rate. It is found by solving the following:

count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, and count is value.length.

Parameters

rate – a double, the interest rate per period. It must not be -1.

value – a double array of equally-spaced cash flows

Returns

a double, the net present value of the investment

pmt
static public double pmt(double rate, int nper, double pv, double fv, int
when)

Description

Returns the periodic payment for an investment. It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

886 • Finance class JMSL

Parameters

rate – a double, the interest rate

nper – an int, the total number of periods

pv – a double, the present value

fv – a double, the future value

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the interest payment for a given period for an investment

ppmt
static public double ppmt(double rate, int period, int nper, double pv,
double fv, int when)

Description

Returns the payment on the principal for a specified period. It is computed using the
following:

payment i − interest i

where payment i is computed from pmt for the ith period, interest i is calculated from ipmt
for the ith period.

Parameters

rate – a double, the interest rate

period – an int, the payment period

nper – an int, the total number of periods

pv – a double, the present value

fv – a double, the future value

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the payment on the principal for a given period

pv
static public double pv(double rate, int nper, double pmt, double fv, int
when)

Finance Finance class • 887

Description

Returns the net present value of a stream of equal periodic cash flows, which are subject
to a given discount rate. It can be found by solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

rate – a double, the interest rate per period
nper – an int, the number of periods
pmt – a double, the payment made each period
fv – a double, the annuity’s value after the last payment
when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

Returns

a double, the present value of the investment

rate
static public double rate(int nper, double pmt, double pv, double fv, int
when)

Description

Returns the interest rate per period of an annuity. rate is calculated by iteration and can
have zero or more solutions. It can be found by solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

nper – an int, the number of periods
pmt – a double, the payment made each period
pv – a double, the present value
fv – a double, the annuity’s value after the last payment
when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

888 • Finance class JMSL

Returns

a double, the interest rate per period of an annuity

rate
static public double rate(int nper, double pmt, double pv, double fv, int
when, double guess)

Description

Returns the interest rate per period of an annuity with an initial guess. rate is calculated
by iteration and can have zero or more solutions. It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

nper – an int, the number of periods

pmt – a double, the payment made each period

pv – a double, the present value

fv – a double, the annuity’s value after the last payment

when – an int, the time in each period when the payment is made, either
com.imsl.finance.Finance.AT END OF PERIOD (p. 878) or
com.imsl.finance.Finance.AT BEGINNING OF PERIOD (p. 877)

guess – a double value which represents an initial guess at the interest rate per
period of an annuity

Returns

a double, the interest rate per period of an annuity

sln
static public double sln(double cost, double salvage, int life)

Description

Returns the depreciation of an asset using the straight line method. It is computed using
the following:

cost − salvage/life

Finance Finance class • 889

Parameters

cost – a double, the initial cost of the asset

salvage – a double, the salvage value of the asset

life – an int, the number of periods over which the asset is being depreciated

Returns

a double, the straight line depreciation of an asset for one period

syd
static public double syd(double cost, double salvage, int life, int per)

Description

Returns the depreciation of an asset using the sum-of-years digits method. It is computed
using the following:

(cost − salvage)(per)
(life + 1) (life)

2

Parameters

cost – a double, the initial cost of the asset

salvage – a double, the salvage value of the asset

life – an int, the number of periods over which the asset is being depreciated

per – an int, the period

Returns

a double, the sum-of-years digits depreciation of an asset

vdb
static public double vdb(double cost, double salvage, int life, int start,
int end, double factor, boolean no sl)

Description

Returns the depreciation of an asset for any given period using the variable-declining
balance method. It is computed using the following:

If no sl = 0,
end∑

i=start+1

ddbi

If no sl 6= 0,

A+
end∑
i=k

cost −A− salvage
end − k + 1

890 • Finance class JMSL

where ddbi is computed from ddb for the ith period. k = the first period where straight
line depreciation is greater than the depreciation using the double-declining balance
method.

A =
k−1∑

i=start+1

ddbi

Parameters

cost – a double, the initial cost of the asset
salvage – a double, the salvage value of the asset
life – an int, the number of periods over which the asset is being depreciated
start – an int, the initial period for the calculation
end – an int, the final period for the calculation
factor – a double, the rate at which the balance declines
no sl – a boolean flag. If true, do not switch to straight-line depreciation even when
the depreciation is greater than the declining balance calculation.

Returns

a double, the depreciation of the asset

xirr
static public double xirr(double[] pmt, Date[] dates)

Description

Returns the internal rate of return for a schedule of cash flows. It is not necessary that
the cash flows be periodic. It can be found by solving the following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1

365

In the equation above, di represents the ith payment date. d1 represents the 1st payment
date. value represents the ith cash flow. rate is the internal rate of return, and count is
pmt.length.

Parameters

pmt – a double array which contains cash flow values which correspond to a schedule
of payments in dates
dates – a Date array which contains a schedule of payment dates

Returns

a double, the internal rate of return

xirr
static public double xirr(double[] pmt, Date[] dates, double guess)

Finance Finance class • 891

Description

Returns the internal rate of return for a schedule of cash flows with a user supplied initial
guess. It is not necessary that the cash flows be periodic. It can be found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1

365

In the equation above, di represents the ith payment date. d1 represents the 1st payment
date. value represents the ith cash flow. rate is the internal rate of return. Count is
pmt.length.

Parameters

pmt – a double array which contains cash flow values which correspond to a schedule
of payments in dates

dates – a Date array which contains a schedule of payment dates

guess – a double value which represents an initial guess at the return value from
this function

Returns

a double, the internal rate of return

xnpv
static public double xnpv(double rate, double[] value, Date[] dates)

Description

Returns the present value for a schedule of cash flows. It is not necessary that the cash
flows be periodic. It is computed using the following:

count∑
i=1

valuei

(1 + rate)(di−d1)/365

In the equation above, di represents the ith payment date, d1 represents the first payment
date, valuei represents the ith cash flow. and count is value.length

Parameters

rate – a double, the interest rate

value – a double array containing the cash flows

dates – a Date array which contains a schedule of payment dates

Returns

a double, the present value

892 • Finance class JMSL

Example: Cumulative Interest Example

The amount of interest paid in the first year of a 30 year fixed rate mortgage is computed. The
amount financed is $200,000 at an interest rate of 7.25% for 30 years.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class cumipmtEx1 {
public static void main(String args[]) {

double rate = 0.0725/12;
int periods = 12*30;
double pv = 200000;
int start = 1;
int end = 12;
double total;

total = Finance.cumipmt(rate, periods, pv, start, end,
Finance.AT_END_OF_PERIOD);

System.out.println("First year interest = " +
NumberFormat.getCurrencyInstance().format(total));

}
}

Output

First year interest = ($14,436.52)

Example: Cumulative Principal Example

The amount of principal paid in the first year of a 30 year fixed rate mortgage is computed.
The amount financed is $200,000 at an interest rate of 7.25% for 30 years.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class cumprincEx1 {
public static void main(String args[]) {

double rate = 0.0725/12;
int periods = 12*30;
double pv = 200000;
int start = 1;
int end = 12;
double total;

total = Finance.cumprinc(rate, periods, pv, start, end,
Finance.AT_END_OF_PERIOD);

Finance Finance class • 893

System.out.println("First year principal = " +
NumberFormat.getCurrencyInstance().format(total));

}
}

Output

First year principal = ($1,935.71)

Example: Depreciation - Fixed Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a
period of 3 years is calculated. Here month is 6 since the life of the asset did not begin until the
seventh month of the first year.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class dbEx1 {
public static void main(String args[]) {

double cost = 2500;
double salvage = 500;
int life = 3;
int month = 6;

for (int period = 1; period <= life+1; period++) {
double db = Finance.db(cost, salvage, life, period, month);
System.out.println("For period "+period+" db = " +
NumberFormat.getCurrencyInstance().format(db));

}
}

}

Output

For period 1 db = $518.75
For period 2 db = $822.22
For period 3 db = $481.00
For period 4 db = $140.69

894 • Finance class JMSL

Example: Depreciation - Double-Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a
period of 2 years is calculated. A factor of 2 is used (the double-declining balance method).

import com.imsl.finance.*;
import java.text.NumberFormat;

public class ddbEx1 {
public static void main(String args[]) {

double cost = 2500;
double salvage = 500;
double factor = 2;
int life = 24;

for (int period = 1; period <= life; period++) {
double ddb = Finance.ddb(cost, salvage, life, period, factor);
System.out.println("For period "+period+" ddb = " +
NumberFormat.getCurrencyInstance().format(ddb));

}
}

}

Output

For period 1 ddb = $208.33
For period 2 ddb = $190.97
For period 3 ddb = $175.06
For period 4 ddb = $160.47
For period 5 ddb = $147.10
For period 6 ddb = $134.84
For period 7 ddb = $123.60
For period 8 ddb = $113.30
For period 9 ddb = $103.86
For period 10 ddb = $95.21
For period 11 ddb = $87.27
For period 12 ddb = $80.00
For period 13 ddb = $73.33
For period 14 ddb = $67.22
For period 15 ddb = $61.62
For period 16 ddb = $56.48
For period 17 ddb = $51.78
For period 18 ddb = $47.46
For period 19 ddb = $22.09
For period 20 ddb = $0.00
For period 21 ddb = $0.00
For period 22 ddb = $0.00
For period 23 ddb = $0.00
For period 24 ddb = $0.00

Finance Finance class • 895

Example: Price Conversion - Fractional Dollars

A fractional dollar price, in this case 1 3/8, is converted to a decimal price.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class dollardeEx1 {
public static void main(String args[]) {

double fractionalDollar = 1.3;
int fraction = 8;

double dollardec = Finance.dollarde(fractionalDollar, fraction);
System.out.println("The fractional dollar 1.3 = " +
NumberFormat.getCurrencyInstance().format(dollardec));

}
}

Output

The fractional dollar 1.3 = $1.38

Example: Price Conversion - Decimal Dollars

A decimal dollar price, in this case $1.38, is converted to a fractional price.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class dollarfrEx1 {
public static void main(String args[]) {

double decimalDollar = 1.38;
int fraction = 8;

double dollarfrc = Finance.dollarfr(decimalDollar, fraction);
NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(2);
System.out.println("The decimal dollar $1.38 as a fractional dollar = "
+ nf.format(dollarfrc));

}
}

Output

896 • Finance class JMSL

The decimal dollar $1.38 as a fractional dollar = 1.3

Example: Effective Rate

In this example the effective interest rate is computed given that the nominal rate is 6.0% and
that the interest will be compounded quarterly.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class effectEx1 {
public static void main(String args[]) {

double nominalRate = .06;
int nper = 4;
double effectiveRate;

effectiveRate = Finance.effect(nominalRate, nper);
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("The effective rate of the nominal rate, 6.0%, " +
"compounded quarterly is " +nf.format(effectiveRate));

}
}

Output

The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14%

Example: Future Value of an Investment

A couple starts setting aside $30,000 a year when they are 45 years old. They expect to earn
5% interest on the money compounded yearly. The future value of the investment is computed
for a 20 year period.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class fvEx1 {
public static void main(String args[]) {

double rate = .05;
int nper = 20;
double payment = -30000.00;
double pv = -30000.00;
int when = Finance.AT_BEGINNING_OF_PERIOD;

Finance Finance class • 897

double fv = Finance.fv(rate, nper, payment, pv, when);
System.out.println("After 20 years, the value of the investments " +
"will be " + NumberFormat.getCurrencyInstance().format(fv));

}
}

Output

After 20 years, the value of the investments will be $1,121,176.49

Example: Future Value - Adustable Rates

An investment of $10,000 is made. The investment will grow at the rate of 5.1% the first year,
with the rate increasing by .1% each year thereafter for a total of 5 years. The future value of
the investment is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class fvscheduleEx1 {
public static void main(String args[]) {

double principal = 10000.0;
double[] schedule = {.050, .051, .052, .053, .054};
double fvschedule;

fvschedule = Finance.fvschedule(principal, schedule);
System.out.println("After 5 years the $10,000 investment will have " +
"grown to " + NumberFormat.getCurrencyInstance().format(fvschedule));

}
}

Output

After 5 years the $10,000 investment will have grown to $12,884.77

Example: Interest Payments

The interest due the second year on a $100,000 25 year loan is calculated. The loan is at 8%.

import com.imsl.finance.*;
import java.text.NumberFormat;

898 • Finance class JMSL

public class ipmtEx1 {
public static void main(String args[]) {

double rate = .08;
int per = 2;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;
int when = Finance.AT_END_OF_PERIOD;

double ipmt = Finance.ipmt(rate, per, nper, pv, fv, when);
System.out.println("The interest due the second year on the " +
"$100,000 loan is " + NumberFormat.getCurrencyInstance().format(ipmt));

}
}

Output

The interest due the second year on the $100,000 loan is ($7,890.57)

Example: Internal Rate of Return

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any
calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the
cost of feed. He expects them to be productive for 9 years, after which time he will liquidate
the herd. The internal rate of return is computed after 9 years.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class irrEx1 {
public static void main(String args[]) {

double[] pmt = {-4500., -800., 800., 800., 600., 600.,
800., 800., 700., 3000.};

double irr = Finance.irr(pmt);
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("After 9 years, the internal rate of return on " +
"the cows is " + nf.format(irr));

}
}

Output

After 9 years, the internal rate of return on the cows is 7.21%

Finance Finance class • 899

Example: Modified Internal Rate of Return

A farmer uses a $4500 loan to buy 10 young cows and a bull. The interest rate on the loan is
8%. He expects to reinvest the profits received in any one year in the money market and receive
5.5%. The first year he does not expect to sell any calves, he just expects to feed them.
Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects them to be
productive for 9 years, after which time he will liquidate the herd. The modified internal rate of
return is computed after 9 years.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class mirrEx1 {
public static void main(String args[]) {

double[] value = {-4500., -800., 800., 800., 600., 600.,
800., 800., 700., 3000.};
double financeRate = .08;
double reinvestRate = .055;
double mirr = Finance.mirr(value, financeRate, reinvestRate);
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("After 9 years, the modified internal rate of " +
"return on the cows is " +nf.format(mirr));

}
}

Output

After 9 years, the modified internal rate of return on the cows is 6.66%

Example: Nominal Rate

In this example the nominal interest rate is computed given that the effective rate is 6.14% and
that the interest has been compounded quarterly.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class nominalEx1 {
public static void main(String args[]) {

double effectiveRate = .0614;
int nper = 4;

double nominalRate = Finance.nominal(effectiveRate, nper);

900 • Finance class JMSL

NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("The nominal rate of the effective rate, 6.14%, " +
"compounded quarterly is " + nf.format(nominalRate));

}
}

Output

The nominal rate of the effective rate, 6.14%, compounded quarterly is 6%

Example: Number of Periods for an Investment

Someone obtains a $20,000 loan at 7.25% to buy a car. They want to make $350 a month
payments. Here, the number of payments necessary to pay off the loan is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class nperEx1 {
public static void main(String args[]) {

double rate = 0.0725/12;
double pmt = -350.;
double pv = 20000;
double fv = 0.;
int when = Finance.AT_BEGINNING_OF_PERIOD;
double nperiods;

nperiods = Finance.nper(rate, pmt, pv, fv, when);

System.out.println("Number of payment periods = " +nperiods);
}

}

Output

Number of payment periods = 69.78051136628257

Example: Net Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount

Finance Finance class • 901

rate. Here, the net present value of her prize is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class npvEx1 {
public static void main(String args[]) {

double rate = 0.06;
double[] value = new double[20];

for (int i = 0; i < 20; i++) value[i] = 500000.;
double npv = Finance.npv(rate, value);

System.out.println("The net present value of the $10 million " +
"prize is " + NumberFormat.getCurrencyInstance().format(npv));

}
}

Output

The net present value of the $10 million prize is $5,734,960.61

Example: Periodic Payments

The payment due each year on a 25 year, $100,000 loan is calculated. The loan is at 8%.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class pmtEx1 {
public static void main(String args[]) {

double rate = .08;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;
int when = Finance.AT_END_OF_PERIOD;

double pmt = Finance.pmt(rate, nper, pv, fv, when);
System.out.println("The payment due each year on the $100,000 loan is "
+ NumberFormat.getCurrencyInstance().format(pmt));

}
}

Output

902 • Finance class JMSL

The payment due each year on the $100,000 loan is ($9,367.88)

Example: Principal Payments

The payment on the principal the first year on a 25 year, $100,000 loan is calculated. The loan
is at 8%.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class ppmtEx1 {
public static void main(String args[]) {

double rate = .08;
int per = 1;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;
int when = Finance.AT_END_OF_PERIOD;

double ppmt = Finance.ppmt(rate, per, nper, pv, fv, when);
System.out.println("The payment on the principal the first year " +
"of the $100,000 loan is " +
NumberFormat.getCurrencyInstance().format(ppmt));

}
}

Output

The payment on the principal the first year of the $100,000 loan is ($1,367.88)

Example: Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount
rate. Here, the present value of her prize is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class pvEx1 {
public static void main(String args[]) {

double rate = 0.06;
double pmt = 500000.;
double fv = 0.;
int nper = 20;

Finance Finance class • 903

int when = Finance.AT_END_OF_PERIOD;

double pv = Finance.pv(rate, nper, pmt, fv, when);

System.out.println("The present value of the $10 million prize is " +
NumberFormat.getCurrencyInstance().format(pv));

}
}

Output

The present value of the $10 million prize is ($5,734,960.61)

Example: Interest Rate

Someone obtains a $20,000 loan to buy a car. They make $350 a month payments for 70
months. Here, the interest rate of the loan is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class rateEx1 {
public static void main(String args[]) {

double rate;
int nper = 70;
double pmt = -350.;
double pv = 20000;
double fv = 0.;
int when = Finance.AT_BEGINNING_OF_PERIOD;

rate = Finance.rate(nper, pmt, pv, fv, when)*12;
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("The computed interest rate on the loan is " +
nf.format(rate));

}
}

Output

The computed interest rate on the loan is 7.35%

904 • Finance class JMSL

Example: Depreciation - Straight Line Method

The straight line depreciation for one period of an asset with a life of 24 months, an initial cost
of $2500 and a salvage value of $500 is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class slnEx1 {
public static void main(String args[]) {

double cost = 2500;
double salvage = 500;
int life = 24;

double sln = Finance.sln(cost, salvage, life);
System.out.println("The straight line depreciation of the asset " +
"for one period is " + NumberFormat.getCurrencyInstance().format(sln));

}
}

Output

The straight line depreciation of the asset for one period is $83.33

Example: Depreciation - Sum-of-years’ Digits

The sum-of-years’ digits depreciation for the 14th year of an asset with a life of 15 years, an
initial cost of $25000 and a salvage value of $5000 is computed.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class sydEx1 {
public static void main(String args[]) {

double cost = 25000;
double salvage = 5000;
int life = 15;
int per = 14;

double syd = Finance.syd(cost, salvage, life, per);
System.out.println("The depreciation allowance for the 14th year is " +
NumberFormat.getCurrencyInstance().format(syd));

}
}

Finance Finance class • 905

Output

The depreciation allowance for the 14th year is $333.33

Example: Depreciation - Variable Declining Balance

The depreciation between the 10th and 15th year of an asset with a life of 15 years, an initial
cost of $25000 and a salvage value of $5000 is computed. The variable-declining balance
method is used.

import com.imsl.finance.*;
import java.text.NumberFormat;

public class vdbEx1 {
public static void main(String args[]) {

double cost = 25000;
double salvage = 5000;
int life = 15;
int start = 10;
int end = 15;
double factor = 2.;
boolean no_sl = false;

double vdb = Finance.vdb(cost, salvage, life, start, end,
factor, no_sl);
System.out.println("The depreciation allowance between the " +
"10th and 15th year is " +
NumberFormat.getCurrencyInstance().format(vdb));

}
}

Output

The depreciation allowance between the 10th and 15th year is $976.69

Example: Internal Rate of Return - Variable Schedule

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any
calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the
cost of feed. He expects them to be productive for 9 years, after which time he will liquidate
the herd. The internal rate of return is computed after 9 years.

import com.imsl.finance.*;

906 • Finance class JMSL

import java.text.NumberFormat;
import java.text.*;
import java.util.*;

public class xirrEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

private static Date parse(String s) throws ParseException {
return dateFormat.parse(s);

}

public static void main(String args[]) throws ParseException {
double[] pmt = {-4500., -800., 800., 800., 600., 600.,
800., 800., 700., 3000.};
Date dates[] = {

parse("1/1/98"), parse("10/1/98"), parse("5/5/99"),
parse("5/5/00"), parse("6/1/01"), parse("7/1/02"),
parse("8/30/03"), parse("9/15/04"), parse("10/15/05"),
parse("11/1/06")

};
double xirr = Finance.xirr(pmt, dates);
NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMaximumFractionDigits(2);
System.out.println("After approximately 9 years, the internal rate " +
"of return on the cows is " + nf.format(xirr));

}
}

Output

After approximately 9 years, the internal rate of return on the cows is 7.69%

Example: Present Value of a Schedule of Cash Flows

In this example, the present value of 3 payments, $1,000, $2,000, and $1,000, with an interest
rate of 5% made on January 3, 1997, January 3, 1999, and January 3, 2000 is computed.

import com.imsl.finance.*;
import java.text.*;
import java.util.*;

public class xnpvEx1 {
static final DateFormat dateFormat =
DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

private static Date parse(String s) throws ParseException {
return dateFormat.parse(s);

}

Finance Finance class • 907

public static void main(String args[]) throws ParseException {
double rate = 0.05;
double value[] = {1000.,2000., 1000.};
Date dates[] = {parse("1/3/1997"), parse("1/3/1999"),
parse("1/3/2000")};

double pv = Finance.xnpv(rate, value, dates);
System.out.println("The present value of the schedule of cash " +
"flows is " + NumberFormat.getCurrencyInstance().format(pv));

}
}

Output

The present value of the schedule of cash flows is $3,677.90

908 • Finance class JMSL

Chapter 24: Chart 2D

Types

class Chart . 910
class AbstractChartNode . 915
class ChartNode . 935
class Background . 959
class ChartTitle . 960
class Legend . 960
class Grid . 961
class Axis. .962
class AxisXY . 964
class Axis1D. .966
class AxisLabel . 971
class AxisLine . 972
class AxisTitle . 973
class AxisUnit . 973
class MajorTick . 974
class MinorTick. .974
interface Transform . 975
class TransformDate . 976
class AxisR . 977
class AxisRLabel . 979
class AxisRLine. .980
class AxisRMajorTick . 981
class AxisTheta. .982
class GridPolar . 983
class Data . 984
interface ChartFunction . 995
class ChartSpline . 996
class Text . 997
class ToolTip . 999
class FillPaint . 1001
class Draw . 1004
class JFrameChart. .1015

909

class JPanelChart . 1016
class DrawPick . 1018
class PickEvent . 1025
interface PickListener. .1026
class JspBean . 1027
class ChartServlet . 1030
class DrawMap . 1032
class BoxPlot . 1038
class Contour . 1049
class ErrorBar . 1057
class HighLowClose .1062
class Candlestick . 1069
class CandlestickItem. 1071
class SplineData . 1072
class Bar . 1075
class BarItem. .1081
class BarSet . 1082
class Pie. .1083
class PieSlice . 1087
class Dendrogram . 1088
class Polar. .1096
class Heatmap . 1098
interface Colormap . 1109

Chart class

public class com.imsl.chart.Chart extends com.imsl.chart.ChartNode implements
Cloneable, java.awt.print.Printable

The root node of the chart tree.

This chart node creates the following child nodes: com.imsl.chart.Background (p. 959) ,
com.imsl.chart.ChartTitle (p. 960) and com.imsl.chart.Legend (p. 960) .

Constructors

Chart
public Chart()

Description

This is the root of our tree, it has no parent. This creates the Chart with a null
component

910 • Chart class JMSL

Chart
public Chart(Component component)

Description

This is the root of our tree, it has no parent. This creates the Chart with the named
component

Parameter

component – the Component that contains the chart.

Chart
public Chart(Image image)

Description

This is the root of our tree, it has no parent. This creates the Chart drawn into the
image.

Parameter

image – the Image into which the chart is to be drawn.

Methods

addLegendItem
public void addLegendItem(int type, ChartNode node)

Description

Adds a legend to this ChartNode

Parameters

type – an int which specifies the LegendItem type. 0 = DATA TYPE NONE; 1 =
DATA TYPE LINE; 2 = DATA TYPE MARKER; 3 = DATA TYPE FILL

node – the ChartNode object to which this legend is to be added

addMouseListener
public void addMouseListener(MouseListener listener)

Description

Adds a MouseListener to the component associated with this chart. If the component is
null the listener will be saved and added to the component when it is assigned.

addMouseMotionListener
public void addMouseMotionListener(MouseMotionListener listener)

Chart 2D Chart class • 911

Description

Adds a MouseMotionListener to the component associated with this chart. If the
component is null the listener will be saved and added to the component when it is
assigned.

clone
public Object clone()

Description

Returns a clone of the graphics tree.

Returns

an Object which is a clone of this graphics tree

clone
protected Object clone(Map hashClonedNode)

Description

Returns a clone of this node.

Parameter

hashClonedNode – the Hashtable to be cloned

Returns

an Object which is a clone of this node

copy
public void copy()

Description

Copy the chart to the clipboard.

finalize
protected void finalize()

paint
public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – a Draw object to be painted

paint
public void paint(Graphics g)

912 • Chart class JMSL

Description

Paints this node and all of its children. This should be called whenever the paint member
function in the Component used in this object’s constructor is called.

Parameter

g – Graphics object to be painted

paintChart
public void paintChart(Graphics graphics)

Description

Draw the chart using the given Graphics object.

Parameter

graphics – is the object for which the chart is to be drawn.

paintImage
public Image paintImage()

Description

Returns an Image of the chart.

Returns

an Image containing a picture of the chart. Call flush() on the image when it is no longer
needed.

pick
public void pick(MouseEvent event)

Description

Fire the PickListeners for the nodes hit by the event.

Parameter

event – MouseEvent/code whose position determines which nodes have been
selected

print
public int print(Graphics graphics, PageFormat pageFormat, int param) throws
PrinterException

Description

This method implements the Printable interface. It prints the chart on a single page. The
output is scaled to fill the page as much as possible while preserving the aspect ratio.

repaint
public void repaint()

Chart 2D Chart class • 913

Description

Prepares the chart to be repainted by deleting any double buffering image.

setComponent
public void setComponent(Component component)

Description

Sets the Component for this chart. Also registers MouseListeners or
MouseMotionListeners that could not be added previously.

update
public void update(Graphics g)

writePNG
public void writePNG(OutputStream os, int width, int height) throws
IOException

Description

Writes the chart as an PNG file. PNG () is a lossless bitmap format. This method
requires either J2SE 1.4 or later .

Parameters

os – is the output stream to which the PNG image is to be written.

width – is the width of the output image.

height – is the height of the output image.

java.io.IOException if there is a problem writing the image to the stream.

java.lang.NoClassDefFoundError if an older version of J2SE is used and the Java
Advanced Imaging Toolkit cannot be found.

writeSVG
public void writeSVG(Writer writer, boolean useCSS) throws IOException

Description

Writes the chart as an SVG file. This method requires the library.

Parameters

writer – is the output character stream

useCSS – is true if the CSS style attribute is to be used

java.io.IOException if there is a problem writing the file.

java.lang.NoClassDefFoundError if the Batik library cannot be found.

914 • Chart class JMSL

AbstractChartNode class

abstract public class com.imsl.chart.AbstractChartNode implements Serializable,
Cloneable

The base class of all of the nodes in both the 2D and 3D chart trees.

Fields

AUTOSCALE DATA
static final public int AUTOSCALE DATA

Flag used to indicate that autoscaling is to be done by scanning the data nodes.

AUTOSCALE DENSITY
static final public int AUTOSCALE DENSITY

Flag used to indicate that autoscaling is to adjust the ”Density” attribute. This applies
only to time axes.

AUTOSCALE NUMBER
static final public int AUTOSCALE NUMBER

Flag used to indicate that autoscaling is to adjust the ”Number” attribute.

AUTOSCALE OFF
static final public int AUTOSCALE OFF

Flag used to indicate that autoscaling is turned off.

AUTOSCALE WINDOW
static final public int AUTOSCALE WINDOW

Flag used to indicate that autoscaling is to be done by using the ”Window” attribute.

AXIS X
static final public int AXIS X

Flag to indicate x-axis.

AXIS Y
static final public int AXIS Y

Flag to indicate y-axis.

AXIS Z

Chart 2D AbstractChartNode class • 915

static final public int AXIS Z
Flag to indicate z-axis.

LABEL TYPE NONE
static final public int LABEL TYPE NONE

Flag used to indicate the an element is not to be labeled.

LABEL TYPE TITLE
static final public int LABEL TYPE TITLE

Flag used to indicate that an element is to be labeled with the value of its title attribute.

LABEL TYPE X
static final public int LABEL TYPE X

Flag used to indicate that an element is to be labeled with the value of its x-coordinate.

LABEL TYPE Y
static final public int LABEL TYPE Y

Flag used to indicate that an element is to be labeled with the value of its y-coordinate.

LABEL TYPE Z
static final public int LABEL TYPE Z

Flag used to indicate that an element is to be labeled with the value of its y-coordinate.

serialVersionUID
static final public long serialVersionUID

TRANSFORM CUSTOM
static final public int TRANSFORM CUSTOM

Flag used to indicate that the axis using a custom transformation.

TRANSFORM LINEAR
static final public int TRANSFORM LINEAR

Flag used to indicate that the axis uses linear scaling.

TRANSFORM LOG
static final public int TRANSFORM LOG

Flag used to indicate that the axis uses logarithmic scaling.

916 • AbstractChartNode class JMSL

Constructor

AbstractChartNode
public AbstractChartNode(AbstractChartNode parent)

Methods

clone
protected Object clone(Map hashClonedNode)

Description

Returns a deep-copy clone of this node. Each class derived from this class should override
this function IF the derived class contains ChartNode objects or double[] arrays as
member data. The overriden function should call this function and then clone each of its
ChartNode data members. For example, in AxisXY we have

protected Object clone(Hashtable hashClonedNode)
{

AxisXY t = (AxisXY)super.clone(hashClonedNode);
t.axisX = (Axis1D)axisX.clone(hashClonedNode);
t.axisY = (Axis1D)axisY.clone(hashClonedNode);
return t;

}

Parameter

hashClonedNode – Hashtable of nodes that have already been cloned. We need to
clone each ChartNode exactly once even if multiple references to it exist in the
graphics tree. In this hashtable keys are existing ChartNode objects and values are
their clones.

clone
protected Object clone(Object value, Map hashClonedNode)

Description

Returns a deep copy of an Object. Handles non-immutable object types ChartNode,
Hashtable, Vector, double[], String[], and int[]. (Immutable objects can just be reused,
they do not have to be cloned.)

If other non-immutable object types are used in the tree then the nodes where they are
defined should override this function to handle the cloning. The new function calls
super.clone(value, hashClonedNode) for values handled here.

clone
final protected List clone(List in, Map hashClonedNode)

Chart 2D AbstractChartNode class • 917

Description

Returns a deep copy of a vector of ChartNode’s.

clone
final protected Map clone(Map hashIn, Map hashClonedNode)

Description

Returns a deep copy of a Hashtable. We assume the keys are immutable (e.g. Strings)
and so do not have to be cloned. We cannot just use Hashtable.clone() because we want
to specially handle cloning of ChartNodes that may occur in the hashtable. (Need to
clone each ChartNode exactly once even if multiple references to it exist in the graphics
tree.)

getAbstractParent
public AbstractChartNode getAbstractParent()

Description

Returns the parent of this node. Note that this is not an attribute setting. Note that
there is no setParent function.

Returns

A AbstractChartNode object which contains this node’s parent. This is null in the case
of the root node of the chart tree, since that node has no parent.

getAttribute
public Object getAttribute(String name)

Description

Gets an attribute.

Parameter

name – a String which contains the name of the attribute

getAutoscaleInput
public int getAutoscaleInput()

Description

Returns the value of the ”AutoscaleInput” attribute.

Returns

the int value of the ”AutoscaleInput” attribute.

getAutoscaleMinimumTimeInterval
public int getAutoscaleMinimumTimeInterval()

918 • AbstractChartNode class JMSL

Description

Returns the value of the ”AutoscaleMinimumTimeInterval” attribute.

Returns

The int value of the ”AutoscaleMinimumTimeInterval” attribute.

getAutoscaleOutput
public int getAutoscaleOutput()

Description

Returns the value of the ”AutoscaleOutput” attribute.

Returns

The int value of the ”AutoscaleOutput” attribute.

getBooleanAttribute
public boolean getBooleanAttribute(String name, boolean defaultValue)

Description

Convenience routine to get a Boolean-valued attribute.

Parameters

name – a String which contains the name of the attribute

defaultValue – the boolean default value of the attribute

Returns

the boolean value of the attribute, if defined and if its value is of type Boolean.
Otherwise defaultValue is returned.

getChildList
final protected List getChildList()

Description

Returns the children of this node.

Returns

a List array which contains the children of this node. It may be null.

getColorAttribute
public Color getColorAttribute(String name)

Description

Convenience routine to get a Color-valued attribute.

Parameter

name – a String which contains the name of the attribute.

Chart 2D AbstractChartNode class • 919

Returns

the Color value of the attribute, if defined and if its value is of type Color. Otherwise, a
default color value is returned.

getCustomTransform
public Transform getCustomTransform()

Description

Returns the value of the ”CustomTransform” attribute.

Returns

an Transform which contains the value of the ”Transform” attribute

getDensity
public int getDensity()

Description

Returns the value of the ”Density” attribute.

Returns

The int value of the ”Density” attribute, if defined. Otherwise, a default value of zero is
returned.

getDoubleAttribute
public double getDoubleAttribute(String name, double defaultValue)

Description

Convenience routine to get a Double-valued attribute.

Parameters

name – a String which contains the name of the attribute

defaultValue – the double default value of the attribute.

Returns

the double value of the attribute, if defined and if its value is of type Double. Otherwise
defaultValue is returned.

getFillColor
public Color getFillColor()

Description

Returns the value of the ”FillColor” attribute.

920 • AbstractChartNode class JMSL

Returns

The Color value of the ”FillColor” attribute, if defined. Otherwise, a default color value
is returned.

getFont
public Font getFont()

Description

Convenience routine which gets a Font object based on the ”FontName”, ”FontStyle” and
”FontSize” attributes. There is no ”Font” attribute.

getFontName
public String getFontName()

Description

Returns the value of the ”FontName” attribute.

Returns

The String value of the ”FontName” attribute, if defined. Otherwise, the empty string is
returned.

getFontSize
public int getFontSize()

Description

Returns the value of the ”FontSize” attribute.

Returns

The int value of the ”FontSize” attribute, if defined. Otherwise, 10 is returned.

getFontStyle
public int getFontStyle()

Description

Returns the value of the ”FontStyle” attribute.

Returns

The int value of the ”FontStyle” attribute, if defined. Otherwise, java.awt.Font.PLAIN is
returned.

getImage
public Image getImage()

Description

Returns the value of the ”Image” attribute.

Chart 2D AbstractChartNode class • 921

Returns

the Image value of the ”Image” attribute

getIntegerAttribute
public int getIntegerAttribute(String name, int defaultValue)

Description

Convenience routine to get an Integer-valued attribute.

Parameters

name – a String which contains the name of the attribute.

defaultValue – the int default value of the attribute

Returns

the int value of the attribute, if defined and if its value is of type Integer. Otherwise
defaultValue is returned.

getLabelType
public int getLabelType()

Description

Returns the value of the ”LabelType” attribute. If the attribute has not been set
com.imsl.chart.AbstractChartNode.LABEL TYPE NONE (p. 916) is returned.

Returns

The int value of the ”LabelType” attribute.

getLightColor
public Color getLightColor()

Description

Returns the value of the ”LightColor” attribute.

Returns

The Color value of the ”LightColor” attribute, if defined. Otherwise, a default color
value is returned.

getLineColor
public Color getLineColor()

Description

Returns the value of the ”LineColor” attribute.

922 • AbstractChartNode class JMSL

Returns

The LineColor value of the ”LineColor” attribute, if defined. Otherwise, a default color
value is returned.

getLineWidth
public double getLineWidth()

Description

Returns the value of the ”LineWidth” attribute.

Returns

The double value of the ”LineWidth” attribute, if defined. Otherwise, the default value
of one is returned.

getLocale
public Locale getLocale()

Description

Returns the value of the ”Locale” attribute.

Returns

The Locale value of the ”Locale” attribute, if defined. Otherwise, a default value is
returned.

getMarkerColor
public Color getMarkerColor()

Description

Returns the value of the ”MarkerColor” attribute. Otherwise, a default color value is
returned.

Returns

a Color which contains the ”MarkerColor” value

getMarkerSize
public double getMarkerSize()

Description

Returns the value of the ”MarkerSize” attribute.

Returns

The double value of the ”MarkerSize” attribute, if defined. Otherwise, a default of 1.0 is
returned.

getName
public String getName()

Chart 2D AbstractChartNode class • 923

Description

Returns the value of the ”Name” attribute.

Returns

The String value of the ”Name” attribute, if defined. Otherwise, the empty string is
returned.

getNumber
public int getNumber()

Description

Returns the value of the ”Number” attribute.

Returns

The int value of the ”Number” attribute, if defined. Otherwise, zero is returned.

getPaint
public boolean getPaint()

Description

Returns the value of the ”Paint” attribute.

Returns

The boolean value of the ”Paint” attribute, if defined. Otherwise, true is returned.

getStringAttribute
public String getStringAttribute(String name)

Description

Convenience routine to get a String-valued attribute.

Parameter

name – a String which contains the name of the attribute.

Returns

the String value of the attribute, if defined and if its value is of type String.

getTextColor
public Color getTextColor()

Description

Returns the value of the ”TextColor” attribute.

924 • AbstractChartNode class JMSL

Returns

The Color value of the ”TextColor” attribute, if defined. Otherwise, a default color value
is returned.

getTextFormat
public Format getTextFormat()

Description

Returns the value of the ”TextFormat” attribute.

Returns

The Format value of the ”TextFormat” attribute, if defined. Otherwise, a default format
is returned. The default is a NumberFomat that allows exactly two digits after the
decimal.

getTickLength
public double getTickLength()

Description

Returns the value of the ”TickLength” attribute.

Returns

The double value of the ”TickLength” attribute, if defined. Otherwise, 1.0 is returned.

getTransform
public int getTransform()

Description

Returns the value of the ”Transform” attribute.

Returns

an int which contains the value of the ”Transform” attribute

getX
public double[] getX()

Description

Returns the value of the ”X” attribute.

Returns

the double array which contains the value of the ”X” attribute

getY
public double[] getY()

Description

Returns the value of the ”Y” attribute.

Chart 2D AbstractChartNode class • 925

Returns

the double array which contains the value of the ”Y” attribute

isAncestorOf
public boolean isAncestorOf(AbstractChartNode node)

Description

Returns true if this node is an ancestor of the argument node.

Parameter

node – a AbstractChartNode object

Returns

a boolean, true if this node is an ancestor of the argument, node

isAttributeSet
public boolean isAttributeSet(String name)

Description

Determines if an attribute is defined (may have been inherited).

Parameter

name – a String which contains the name of the attribute

Returns

a boolean, true if the attribute is defined for this node. The definition may have been
inherited from its parent node.

isAttributeSetAtThisNode
public boolean isAttributeSetAtThisNode(String name)

Description

Determines if an attribute is defined in this node (not inherited).

Parameter

name – a String which contains the name of the attribute

Returns

a boolean, true if the attribute is defined in this node. The definition must have been set
directly in this node, not just inherited from its parent node.

isBitSet
static public boolean isBitSet(int flag, int mask)

Description

Returns true if the bit set in flag is set in mask.

926 • AbstractChartNode class JMSL

Parameters

flag – the int which contains the bit to be tested against mask

mask – the int which is used as the mask

Returns

a boolean, true if the bit set in flag is set in mask

parseColor
static public Color parseColor(String nameColor)

Description

Returns a color specified by name or a red-green-blue triple.

Parameter

nameColor – is the name of a color (this name is not case sensitive) or a comma
separated list of red, green, blue values all in the range 0 to 255. For example, ”red”
or ”255,0,0”.

Returns

the named Color.

IllegalArgumentException is thrown if the color name is not known.

remove
final public void remove()

Description

Removes the node from its parents list of children.

setAttribute
public void setAttribute(String name, Object value)

Description

Sets an attribute.

Parameters

name – a String which contains the name of the attribute to be set

value – an Object which contains the value of the attribute

setAutoscaleInput
public void setAutoscaleInput(int value)

Description

Sets the value of the ”AutoscaleInput” attribute. This attribute determines what inputs
are use for autoscaling.

Chart 2D AbstractChartNode class • 927

Parameter

value – ”AutoscaleInput” value. Legal values are

AUTOSCALE OFF Do not do autoscaling.
AUTOSCALE DATA Use the data values. This is the default.
AUTOSCALE WINDOW Use the ”Window” attribute value.

setAutoscaleMinimumTimeInterval
public void setAutoscaleMinimumTimeInterval(int value)

Description

Sets the value of the ”AutoscaleMinimumTimeInterval” attribute. This attribute
determines the minimum tick mark interval for autoscaled time axes.
Parameter

value – ”AutoscaleMinimumTimeInterval” value. Legal values are:

MILLISECOND Millisecond
SECOND Second
MINUTE Minute
HOUR OF DAY Hour
DAY OF WEEK Day
WEEK OF YEAR Week
MONTH Month
YEAR Year

The default is MILLISECOND.

setAutoscaleOutput
public void setAutoscaleOutput(int value)

Description

Sets the value of the ”AutoscaleOutput” attribute. This attribute determines what
attributes to change as a result of autoscaling.
Parameter

value – ”AutoscaleOutput” value. Legal values are bitwise-or combinations of the
following:

AUTOSCALE OFF Do not do autoscaling.
AUTOSCALE WINDOW Change the ”Window” attribute value.
AUTOSCALE NUMBER Change the ”Number” attribute value.
AUTOSCALE DENSITY Change the ”Density” attribute value.

The default is (AUTOSCALE NUMBER — AUTOSCALE WINDOW —
AUTOSCALE DENSITY).

setCustomTransform
public void setCustomTransform(Transform value)

928 • AbstractChartNode class JMSL

Description

Sets the value of the ”CustomTransform” attribute. This is used only if the ”Transform”
attribute is set to TRANSFORM CUSTOM.

Parameter

value – an object implementing the Transform interface.

setDensity
public void setDensity(int value)

Description

Sets the value of the ”Density” attribute. This attribute controls the number of minor
tick marks in the interval between major tick marks.

Parameter

value – int ”Density” value which specifies the number of minor tick marks per
major tick mark.

setFillColor
public void setFillColor(Color color)

Description

Sets the value of the ”FillColor” attribute.

Parameter

color – Color ”FillColor” value

setFillColor
public void setFillColor(String color)

Description

Sets the ”FillColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setFont
public void setFont(Font font)

Description

Sets the value of the font attributes. This function sets the ”FontName”, ”FontStyle” and
”FontSize” attributes. There is no ”Font” attribute.

Chart 2D AbstractChartNode class • 929

Parameter

font – Font object whose components are used to set three different attributes.

setFontName
public void setFontName(String value)

Description

Sets the value of the ”FontName” attribute. This is used in the constructor for
java.awt.Font.

Parameter

value – a String which contains the ”FontName” value

setFontSize
public void setFontSize(int value)

Description

Sets the value of the ”FontSize” attribute. This is used in the constructor for
java.awt.Font.

Parameter

value – an int ”FontSize” value

setFontStyle
public void setFontStyle(int value)

Description

Sets the value of the ”FontStyle” attribute. This is used in the constructor for
java.awt.Font.

Parameter

value – an int ”FontStyle” value.

setImage
public void setImage(ImageIcon value)

Description

Sets the value of the ”Image” attribute.

Parameter

value – ImageIcon value.

setLabelType
public void setLabelType(int type)

930 • AbstractChartNode class JMSL

Description

Sets the value of the ”LabelType” attribute. This indicates how a data point is to be
labeled. The default is to not label data points.

Parameter

type – the int ”LabelType” value

setLightColor
public void setLightColor(Color color)

Description

Sets the value of the ”LightColor” attribute.

Parameter

color – a Color which contains the ”LightColor” value

setLightColor
public void setLightColor(String color)

Description

Sets the value of the ”LightColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setLineColor
public void setLineColor(Color color)

Description

Sets the value of the ”LineColor” attribute.

Parameter

color – the LineColor value

setLineColor
public void setLineColor(String color)

Description

Sets the value of the ”LineColor” attribute.

Parameter

color – the LineColor value

setLineWidth
public void setLineWidth(double value)

Chart 2D AbstractChartNode class • 931

Description

Sets the value of the ”LineWidth” attribute.

Parameter

value – the double ”LineWidth” value

setLocale
public void setLocale(Locale value)

Description

Sets the value of the ”Locale” attribute. This attribute controls how formatting is done.

Parameter

value – the Locale value

setMarkerColor
public void setMarkerColor(Color color)

Description

Sets the value of the ”MarkerColor” attribute.

Parameter

color – a Color which contains the ”MarkerColor” value

setMarkerColor
public void setMarkerColor(String color)

Description

Sets the value of the ”MarkerColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setMarkerSize
public void setMarkerSize(double size)

Description

Sets the value of the ”MarkerSize” attribute. The default marker size is 1.0. If
”MarkerSize” is 2.0 then markers are drawn twice as large as normal.

Parameter

size – a double which specifies the ”MarkerSize” value

setName
public void setName(String value)

932 • AbstractChartNode class JMSL

Description

Sets the value of the ”Name” attribute. This the user-friendly name of the node.

Parameter

value – a String which contains the ”Name” value

setNumber
public void setNumber(int value)

Description

Sets the value of the ”Number” attribute. This is the number of tick marks along an axis.

Parameter

value – the int ”Number” value

setPaint
public void setPaint(boolean value)

Description

Sets the value of the ”Paint” attribute.

Parameter

value – the boolean ”Paint” value. If false, this node and its children are not drawn.

setTextColor
public void setTextColor(Color color)

Description

Sets the value of the ”TextColor” attribute.

Parameter

color – a Color which contains the ”TextColor” value

setTextColor
public void setTextColor(String color)

Description

Sets the value of the ”TextColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setTextFormat
public void setTextFormat(String value)

Chart 2D AbstractChartNode class • 933

Description

Sets the value of the ”TextFormat” attribute.

The TextFormat attribute is normally a java.text.Format object, but, as a convenience,
it can be set as a String. The following special values are defined. In this table, ”locale” is
the value of the locale attribute.

value Attribute
”Date(SHORT)” DateFormat.getDateInstance(DateFormat.SHORT, locale)
”Date(MEDIUM)” DateFormat.getDateInstance(DateFormat.MEDIUM, locale)
”Date(LONG)” DateFormat.getDateInstance(DateFormat.LONG, locale)
”Currency” DateFormat.getCurrencyInstance(locale)
”Number” DateFormat.getNumberInstance(locale)
”Percent” DateFormat.getPercentInstance(locale)

If the value does not match one of these special cases then an interpretation as a
java.text.DecimalFormat object is attempted. If this fails then an interpretation as a
java.text.SimpleDateFormat object is attempted.

Parameter

value – a String which contains the ”TextFormat” value

setTextFormat
public void setTextFormat(Format value)

Description

Sets the value of the ”TextFormat” attribute.

Parameter

value – a Format which contains the ”TextFormat” value

setTickLength
public void setTickLength(double tickLength)

Description

Sets the value of the ”TickLength” attribute. This scales the length of the tick mark
lines. A value of 2.0 makes the tick marks twice as long as normal. A negative value
causes the tick marks to be drawn pointing into the plot area.

Parameter

tickLength – a double which contains the ”TickLength” value

setTransform
public void setTransform(int value)

934 • AbstractChartNode class JMSL

Description

Sets the value of the ”Transform” attribute. This sets the axis to be linear, logarithmic or
a custom transform.

Parameter

value – The ”Transform” value. Legal values are TRANSFORM LINEAR (the
default), TRANSFORM LOG and TRANSFORM CUSTOM.

setX
public void setX(Object value)

Description

Sets the value of the ”X” attribute.

Parameter

value – an Object which contains the ”X” value

setY
public void setY(Object value)

Description

Sets the value of the ”Y” attribute.

Parameter

value – the Object which contains the ”Y” value

toString
public String toString()

Description

Returns the name of this ChartNode

Returns

a String, the name of this ChartNode

ChartNode class

abstract public class com.imsl.chart.ChartNode extends
com.imsl.chart.AbstractChartNode

The base class of all of the nodes in the 2D chart tree.

Chart 2D ChartNode class • 935

Fields

AXIS X TOP
static final public int AXIS X TOP

Flag to indicate x-axis placed on top of the chart.

AXIS Y RIGHT
static final public int AXIS Y RIGHT

Flag to indicate y-axis placed to the right of the chart.

BAR TYPE HORIZONTAL
static final public int BAR TYPE HORIZONTAL

Flag to indicate a horizontal bar chart.

BAR TYPE VERTICAL
static final public int BAR TYPE VERTICAL

Flag to indicate a vertical bar chart.

DASH PATTERN DASH
static final public double[] DASH PATTERN DASH

Flag to draw a dashed line.

DASH PATTERN DASH DOT
static final public double[] DASH PATTERN DASH DOT

Flag to draw a dash-dot pattern line.

DASH PATTERN DOT
static final public double[] DASH PATTERN DOT

Flag to draw a dotted line.

DASH PATTERN SOLID
static final public double[] DASH PATTERN SOLID

Flag to draw solid line.

DATA TYPE FILL
static final public int DATA TYPE FILL

Value for attribute ”DataType” indicating that the area between the lines connecting the
data points and the horizontal reference line (y = attribute ”Reference”) should be filled.
This is an area chart.

936 • ChartNode class JMSL

DATA TYPE LINE
static final public int DATA TYPE LINE

Value for attribute ”DataType” indicating that the data points should be connected with
line segments. This is the default setting.

DATA TYPE MARKER
static final public int DATA TYPE MARKER

Value for attribute ”DataType” indicating that a marker should be drawn at each data
point.

DATA TYPE PICTURE
static final public int DATA TYPE PICTURE

Value for attribute ”DataType” indicating that an image (attribute ”Image”) should be
drawn at each data point. This can be used to draw fancy markers.

DATA TYPE TUBE
static final public int DATA TYPE TUBE

Value for attribute ”DataType” indicating that an a tube connecting the data points
should be drawn. Tubes are similar to lines, but tubes are shaded. The diameter of the
tube is controlled by the attribute ”LineWidth”. Tube color is controlled by the attribute
”LineColor”.

DENDROGRAM TYPE HORIZONTAL
static final public int DENDROGRAM TYPE HORIZONTAL

Flag to indicate a horizontal dendrogram.

DENDROGRAM TYPE VERTICAL
static final public int DENDROGRAM TYPE VERTICAL

Flag to indicate a vertical dendrogram.

FILL TYPE GRADIENT
static final public int FILL TYPE GRADIENT

Value for attribute ”FillType” indicating that the region is to be drawn in a color
gradient as specified by the attribute Gradient.

FILL TYPE NONE
static final public int FILL TYPE NONE

Value for attribute ”FillType” and ”FillOutlineType” indicating that the region is not to
be drawn.

FILL TYPE PAINT

Chart 2D ChartNode class • 937

static final public int FILL TYPE PAINT
Value for attribute ”FillType” indicating that the region is to be drawn using the texture
specified by the attribute FillPaint.

FILL TYPE SOLID
static final public int FILL TYPE SOLID

Value for attribute ”FillType” and ”FillOutlineType” indicating that the region is to be
drawn using the solid color specified by the attribute FillColor or FillOutlineColor.

LABEL TYPE PERCENT
static final public int LABEL TYPE PERCENT

Flag used to indicate that a pie slice is to be labeled with a percentage value. This
attribute only applies to pie charts.

MARKER TYPE ASTERISK
static final public int MARKER TYPE ASTERISK

Flag for a asterisk data marker.

MARKER TYPE CIRCLE CIRCLE
static final public int MARKER TYPE CIRCLE CIRCLE

Flag for a circle in a circle data marker.

MARKER TYPE CIRCLE PLUS
static final public int MARKER TYPE CIRCLE PLUS

Flag for a plus in a circle data marker.

MARKER TYPE CIRCLE X
static final public int MARKER TYPE CIRCLE X

Flag for an x in a circle data marker.

MARKER TYPE DIAMOND PLUS
static final public int MARKER TYPE DIAMOND PLUS

Flag for a plus in a diamond data marker.

MARKER TYPE FILLED CIRCLE
static final public int MARKER TYPE FILLED CIRCLE

Flag for a filled circle data marker.

MARKER TYPE FILLED DIAMOND
static final public int MARKER TYPE FILLED DIAMOND

Flag for a filled diamond data marker.

938 • ChartNode class JMSL

MARKER TYPE FILLED SQUARE
static final public int MARKER TYPE FILLED SQUARE

Flag for a filled square data marker.

MARKER TYPE FILLED TRIANGLE
static final public int MARKER TYPE FILLED TRIANGLE

Flag for a filled triangle data marker.

MARKER TYPE HOLLOW CIRCLE
static final public int MARKER TYPE HOLLOW CIRCLE

Flag for a hollow circle data marker.

MARKER TYPE HOLLOW DIAMOND
static final public int MARKER TYPE HOLLOW DIAMOND

Flag for a hollow diamond data marker.

MARKER TYPE HOLLOW SQUARE
static final public int MARKER TYPE HOLLOW SQUARE

Flag for a hollow square data marker.

MARKER TYPE HOLLOW TRIANGLE
static final public int MARKER TYPE HOLLOW TRIANGLE

Flag for hollow triangle data marker.

MARKER TYPE OCTAGON PLUS
static final public int MARKER TYPE OCTAGON PLUS

Flag for a plus in an octagon data marker.

MARKER TYPE OCTAGON X
static final public int MARKER TYPE OCTAGON X

Flag for a x in an octagon data marker.

MARKER TYPE PLUS
static final public int MARKER TYPE PLUS

Flag for a plus-shaped data marker.

MARKER TYPE SQUARE PLUS
static final public int MARKER TYPE SQUARE PLUS

Flag for a plus in a square data marker.

Chart 2D ChartNode class • 939

MARKER TYPE SQUARE X
static final public int MARKER TYPE SQUARE X

Flag for an x in a square data marker.

MARKER TYPE X
static final public int MARKER TYPE X

Flag for a x-shaped data marker.

TEXT X CENTER
static final public int TEXT X CENTER

Value for attribute ”TextAlignment” indicating that the text should be centered.

TEXT X LEFT
static final public int TEXT X LEFT

Value for attribute ”TextAlignment” indicating that the text should be left adjusted.
This is the default setting.

TEXT X RIGHT
static final public int TEXT X RIGHT

Value for attribute ”TextAlignment” indicating that the text should be right adjusted.

TEXT Y BOTTOM
static final public int TEXT Y BOTTOM

Value for attribute ”TextAlignment” indicating that the text should be drawn on the
baseline. This is the default setting.

TEXT Y CENTER
static final public int TEXT Y CENTER

Value for attribute ”TextAlignment” indicating that the text should be vertically
centered.

TEXT Y TOP
static final public int TEXT Y TOP

Value for attribute ”TextAlignment” indicating that the text should be drawn with the
top of the letters touching the top of the drawing region.

Constructor

ChartNode
public ChartNode(ChartNode parent)

940 • ChartNode class JMSL

Description

Construct a ChartNode object.

Parameter

parent – the ChartNode parent of this object

Methods

addPickListener
public void addPickListener(PickListener pickListener)

Description

Adds a PickListener to this node. Unlike simple attributes, the pickListener is added to a
list of existing PickListeners defined at this node. The existing listeners remain defined at
this node. If this pickListener is already registered in this node, it will not be added
again.

Parameter

pickListener – the PickListener to be added to this node

firePickListeners
public void firePickListeners(MouseEvent event)

Description

Fires the pick listeners defined at this node and at all of its ancestors, if the event ”hits”
the node.

Parameter

event – MouseEvent which determines which nodes have been selected

getALT
public String getALT()

Description

Returns the value of the ”ALT” attribute.

Returns

The value of the ”ALT” attribute.

getAxis
public Axis getAxis()

Description

Returns the value of the ”Axis” attribute.

Chart 2D ChartNode class • 941

Returns

the Axis value of the ”Axis” attribute

getBackground
public Background getBackground()

Description

Returns the value of the ”Background” attribute. This is the node used to draw the
chart’s background.

Returns

The Background value of the ”Background” attribute, if defined. Otherwise, null is
returned.

getBarGap
public double getBarGap()

Description

Returns the value of the ”BarGap” attribute.

Returns

the double value of the ”BarGap” attribute, if defined. Otherwise, 0.0 is returned.

getBarType
public int getBarType()

Description

Returns the value of the ”BarType” attribute.

Returns

an int which specifies BarType

getBarWidth
public double getBarWidth()

Description

Returns the value of the ”BarWidth” attribute.

Returns

the double value of the ”BarWidth” attribute, if defined. Otherwise, 0.5 is returned.

getChart
public Chart getChart()

Description

Returns the value of the ”Chart” attribute. This is the root node of the chart tree.

942 • ChartNode class JMSL

Returns

The Chart value of the attribute, if defined. Otherwise, null is returned.

getChartTitle
public ChartTitle getChartTitle()

Description

Returns the value of the ”ChartTitle” attribute.

Returns

the ChartTitle value of the attribute.

getChildren
final public ChartNode[] getChildren()

Description

Returns an array of the children of this node. If there are no children, a 0-length array is
returned.

Returns

a ChartNode array which contains the children of this node

getClipData
public boolean getClipData()

Description

Returns the value of the ”ClipData” attribute.

Returns

The boolean value of the attribute, if defined. Otherwise, true is returned.

getComponent
public Component getComponent()

Description

Returns the value of the ”Component” attribute. This is the AWT object into which the
chart is rendered.

Returns

The Component value of the attribute, if defined. Otherwise, null is returned.

getConcatenatedViewport
public double[] getConcatenatedViewport()

Description

Returns the value of the ”Viewport” attribute concatenated with the ”Viewport”
attributes set in its ancestor nodes.

Chart 2D ChartNode class • 943

Returns

a double[4] array containing xmin, xmax, ymin, ymax

getDataType
public int getDataType()

Description

Returns the value of the ”DataType” attribute.

Returns

The int value of the ”DataType” attribute, if defined. Otherwise, DATA TYPE LINE is
returned.

getDoubleBuffering
public boolean getDoubleBuffering()

Description

Returns the value of the ”DoubleBuffering” attribute.

Returns

The boolean value of the ”DoubleBuffering” attribute, if defined. Otherwise, false is
returned.

getExplode
public double getExplode()

Description

Returns the value of the ”Explode” attribute.

Returns

The double value of the ”Explode” attribute, if defined. Otherwise, a default value of
zero is returned. (The pie slice begins at the center.)

getFillOutlineColor
public Color getFillOutlineColor()

Description

Returns the value of the ”FillOutlineColor” attribute.

Returns

The Color value of the ”FillOutlineColor” attribute, if defined. Otherwise, a default color
value is returned.

getFillOutlineType
public int getFillOutlineType()

944 • ChartNode class JMSL

Description

Returns the value of the ”FillOutlineType” attribute.
Returns

The int value of the ”FillOutlineType” attribute, if defined. Otherwise,
FILL TYPE SOLID is returned.

getFillPaint
public Paint getFillPaint()

Description

Returns the value of the ”FillPaint” attribute.
Returns

The value of the ”FillPaint” attribute, if defined. Otherwise, null is returned.

getFillType
public int getFillType()

Description

Returns the value of the ”FillType” attribute.
Returns

The int value of the ”FillType” attribute, if defined. Otherwise, FILL TYPE SOLID is
returned.

getGradient
public Color[] getGradient()

Description

Returns the value of the ”Gradient” attribute.
Returns

a Color array which contains the color value of the ”Gradient” attribute, if defined.
Otherwise, null is returned. The array is of length four, containing {colorLL, colorLR,
colorUR, colorUL}.

getHREF
public String getHREF()

Description

Returns the value of the ”HREF” attribute.
Returns

The value of the ”HREF” attribute.

getLegend
public Legend getLegend()

Chart 2D ChartNode class • 945

Description

Returns the value of the ”Legend” attribute.
Returns

the Legend value of the ”Legend” attribute

getLineDashPattern
public double[] getLineDashPattern()

Description

Returns the value of the ”LineDashPattern” attribute.
Returns

double array containing the value of the ”LineDashPattern” attribute, if defined.
Otherwise, null is returned.

getMarkerDashPattern
public double[] getMarkerDashPattern()

Description

Returns the value of the ”MarkerPattern” attribute.
Returns

The double array which contains the value of the ”MarkerPattern” attribute, if defined.
Otherwise, null is returned.

getMarkerThickness
public double getMarkerThickness()

Description

Returns the value of the ”MarkerThickness” attribute.
Returns

The double value of the ”MarkerThickness” attribute, if defined. Otherwise, a default of
1.0 is returned.

getMarkerType
public int getMarkerType()

Description

Returns the value of the ”MarkerType” attribute.
Returns

The int value of the ”MarkerType” attribute, if defined. Otherwise, a default of
MARKER TYPE PLUS is returned.

getParent
public ChartNode getParent()

946 • ChartNode class JMSL

Description

Returns the parent of this node. Note that this is not an attribute setting. Note that
there is no setParent function.

Returns

A ChartNode object which contains this node’s parent. This is null in the case of the root
node of the chart tree, since that node has no parent.

getReference
public double getReference()

Description

Returns the value of the ”Reference” attribute.

Returns

The double value of the ”Reference” attribute, if defined. Otherwise, zero is returned.

getScreenAxis
public AxisXY getScreenAxis()

Description

Returns the value of the ”ScreenAxis” attribute. This provides a default mapping from
the user coordinates [0,1] by [0,1] to the screen. This is set by the root Chart node, so
there is no setScreenAxis function.

Returns

The AxisXY value of the ”ScreenAxis” attribute

getScreenSize
public Dimension getScreenSize()

Description

Returns the value of the ”ScreenSize” attribute.

Returns

The Dimension value of the ”ScreenSize” attribute, if defined. Otherwise, the size of the
”Component” attribute is returned. If neither the ”ScreenSize” nor the ”Component”
attributes are defined then null is returned.

getScreenViewport
public int[] getScreenViewport()

Description

Returns the value of the ”Viewport” attribute scaled by the screen size.

Chart 2D ChartNode class • 947

Returns

the int[4] value of the ”Viewport” attribute scaled by the screen size containing the pixel
coordinates for xmin, xmax, ymin, ymax

getSize
public Dimension getSize()

Description

Returns the value of the ”Size” attribute.

Returns

the Dimension value of the ”Size” attribute

getSkipWeekends
public boolean getSkipWeekends()

Description

Returns the value of the ”SkipWeekends” attribute. If true then autoscaling will not
select an interval of less than a day.

Returns

the value of the ”SkipWeekend” attribute..

getTextAngle
public int getTextAngle()

Description

Returns the value of the ”TextAngle” attribute.

Returns

The int value of the ”TextAngle” attribute, if defined. Otherwise, zero is returned.

getTextColor
public Color getTextColor()

Description

Returns the value of the ”TextColor” attribute.

Returns

The Color value of the ”TextColor” attribute, if defined. Otherwise, a default color value
is returned.

getTitle
public Text getTitle()

Description

Returns the value of the ”Title” attribute.

948 • ChartNode class JMSL

Returns

the Text value of the ”Title” attribute

getToolTip
public String getToolTip()

Description

Returns the value of the ”ToolTip” attribute.

Returns

the String value of the ”ToolTip” attribute

getViewport
public double[] getViewport()

Description

Returns the value of the ”Viewport” attribute.

Returns

a double[4] array containing xmin, xmax, ymin, ymax

isBitSet
static public boolean isBitSet(int flag, int mask)

Description

Returns true if the bit set in flag is set in mask.

Parameters

flag – the int which contains the bit to be tested against mask

mask – the int which is used as the mask

Returns

a boolean, true if the bit set in flag is set in mask

paint
abstract public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

removePickListener
public void removePickListener(PickListener pickListener)

Chart 2D ChartNode class • 949

Description

Removes a PickListener from this node.

Parameter

pickListener – the PickListener to be removed from this node

setALT
public void setALT(String value)

Description

Sets the value of the ”ALT” attribute. The ”ALT” attribute is used when client-side
image maps are generated. A client-side image map has an entry for each node in which
the chart attribute HREF is defined. Some browsers use the alt tag value as tooltip text. *

Parameter

value – ”ALT” value.

setBarGap
public void setBarGap(double value)

Description

Sets the value of the ”BarGap” attribute. This is the gap between bars in a group. A gap
of 1.0 means that space between bars is the same as the width of an individual bar in the
group.

Parameter

value – the double ”BarGap” value

setBarType
public void setBarType(int value)

Description

Sets the value of the ”BarType” attribute.

Parameter

value – an int which specifies BarType. Legal values are BAR TYPE VERTICAL
or BAR TYPE HORIZONTAL.

setBarWidth
public void setBarWidth(double value)

Description

Sets the value of the ”BarWidth” attribute. This is the width of all of the groups of bars
at each index.

950 • ChartNode class JMSL

Parameter

value – the double ”BarWidth” value.

setChartTitle
public void setChartTitle(ChartTitle value)

Description

Sets the value of the ”ChartTitle” attribute. This is effective only in the Chart node,
where it replaces the existing ChartTitle node. The Chart node constructor creates a
ChartTitle node and uses it to define its ”ChartTitle” attribute, so there is generally no
need to call this routine.

Parameter

value – ChartTitle node

setClipData
public void setClipData(boolean value)

Description

Sets the value of the ”ClipData” attribute. This indicates that the data elements are to
be clipped to the current window.

Parameter

value – ”ClipData” value

setCustomTransform
public void setCustomTransform(Transform value)

Description

Sets the value of the ”CustomTransform” attribute. This is used only if the ”Transform”
attribute is set to TRANSFORM CUSTOM.

Parameter

value – an object implementing the Transform interface.

setDataType
public void setDataType(int value)

Description

Sets the value of the ”DataType” attribute.

Chart 2D ChartNode class • 951

Parameter

value – ”DataType” value. This should be some xor-ed combination of
DATA TYPE LINE, DATA TYPE MARKER.

setDoubleBuffering
public void setDoubleBuffering(boolean value)

Description

Sets the value of the ”DoubleBuffering” attribute. Double buffering reduces flicker when
the screen is updated. This attribute only has an effect if it is set at the root node of the
chart tree.

Parameter

value – boolean ”DoubleBuffering” value

setExplode
public void setExplode(double value)

Description

Sets the value of the ”Explode” attribute. This attribute controls how far from the center
pie slices are drawn. The scale is proportional to the pie chart’s radius.

Parameter

value – a double ”Explode” value. This attribute controls how far from the center
pie slices are drawn. The scale is proportional to the pie chart’s radius.

setFillOutlineColor
public void setFillOutlineColor(Color color)

Description

Sets the value of the ”FillOutlineColor” attribute.

Parameter

color – a Color ”FillOutlineColor” value.

setFillOutlineColor
public void setFillOutlineColor(String color)

Description

Sets the value of the ”FillOutlineColor” attribute to a color specified by name.

952 • ChartNode class JMSL

Parameter

color – String name of a color.

setFillOutlineType
public void setFillOutlineType(int value)

Description

Sets the value of the ”FillOutlineType” attribute.

Parameter

value – ”FillOutlineType” value. This value should be FILL TYPE NONE or
FILL TYPE SOLID.

setFillPaint
public void setFillPaint(Paint value)

Description

Sets the value of the ”FillPaint” attribute.

Parameter

value – ”FillPaint” value.

setFillPaint
public void setFillPaint(URL urlImage)

Description

Sets the value of the ”FillPaint” attribute.

Parameter

urlImage – is the URL of an image used to set the FillPaint attribute.

setFillPaint
public void setFillPaint(ImageIcon imageIcon)

Description

Sets the value of the ”FillPaint” attribute.

Parameter

imageIcon – is used to create a Paint object that is used as the value of the
”FillPaint” attribute.

setFillType
public void setFillType(int value)

Chart 2D ChartNode class • 953

Description

Sets the value of the ”FillType” attribute.

Parameter

value – ”FillType” value. This value should be FILL TYPE NONE,
FILL TYPE SOLID, FILL TYPE GRADIENT or FILL TYPE PAINT.

setGradient
public void setGradient(Color[] colorGradient)

Description

Sets the value of the ”Gradient” attribute.

Parameter

colorGradient – is a Color array of length four, containing the colors at the lower
left, lower right, upper right and upper left corners of the bounding box of the
regions being filled. See com.imsl.chart.ChartNode.setGradient (p. ??) for
details on the interpretation of these colors.

setGradient
public void setGradient(Color colorLL, Color colorLR, Color colorUR, Color
colorUL)

Description

Sets the value of the ”Gradient” attribute.

Parameters

colorLL – Color value which specifies the color of the lower left corner.

colorLR – Color value which specifies the color of the lower right corner.

colorUR – Color value which specifies the color of the upper right corner.

colorUL – Color value which specifies the color of the upper left corner.
This attribute defines a color gradient used to fill regions. Only two of the four
colors given are actually used.
If colorLL==colorLR and colorUL==colorUR then a vertical gradient is drawn.
If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is drawn.
If colorLR==null and colorUL==null then a diagonal gradient is used.
If colorLL==null and colorUR==null then a diagonal gradient is used.
If none of these conditions is met then no gradient is drawn.

setGradient
public void setGradient(String colorLL, String colorLR, String colorUR,
String colorUL)

954 • ChartNode class JMSL

Description

Sets the value of the ”Gradient” attribute using named colors.

Parameters

colorLL – String value which specifies the color of the lower left corner.

colorLR – String value which specifies the color of the lower right corner.

colorUR – String value which specifies the color of the upper right corner.

colorUL – String value which specifies the color of the upper left corner. This
attribute defines a color gradient used to fill regions. Only two of the four colors
given are actually used.
If colorLL==colorLR and colorUL==colorUR then a vertical gradient is drawn.
If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is drawn.
If colorLR==null and colorUL==null then a diagonal gradient is used.
If colorLL==null and colorUR==null then a diagonal gradient is used.
If none of these conditions is met then no gradient is drawn.

setHREF
public void setHREF(String value)

Description

Sets the value of the ”HREF” attribute. The ”HREF” attribute is used when client-side
image maps are generated. A client-side image map has an entry for each node in which
the chart attribute HREF is defined. The values of HREF attributes are URLs. Such regions
treated by the browser as hyperlinks.

Parameter

value – ”HREF” value.

setImage
public void setImage(Image value)

Description

Sets the value of the ”Image” attribute. This function also loads the image, if necessary,
using the java.awt.MediaTracker class. The component associated with this chart is
redrawn after the image is loaded by MediaTracker.

Note that Image objects are not serializable and their presence in the chart tree will make
the entire chart non-serializable. javax.swing.ImageIcon objects are serializable.

Parameter

value – Image value.

setLineDashPattern
public void setLineDashPattern(double[] value)

Chart 2D ChartNode class • 955

Description

Sets the value of the ”LineDashPattern” attribute.

Parameter

value – double ”LineDashPattern” value.

setMarkerDashPattern
public void setMarkerDashPattern(double[] value)

Description

Sets the value of the ”MarkerDashPattern” attribute.

Parameter

value – double array which contains the ”MarkerDashPattern” value.

setMarkerThickness
public void setMarkerThickness(double width)

Description

Sets the value of the ”MarkerThickness” attribute. This determines the line thickness
used to draw the markers. The default marker width is 1.0. If ”MarkerThickness” is 2.0
then markers are drawn twice as thick as normal.

Parameter

width – the double ”MarkerThickness” value.

setMarkerType
public void setMarkerType(int type)

Description

Sets the value of the ”MarkerType” attribute. This indicates which marker is to be
drawn.

Parameter

type – the int ”MarkerType” value.

setReference
public void setReference(double value)

Description

Sets the value of the ”Reference” attribute. This is used as the baseline in drawing area
charts. It is also used as the angle (in degrees) of the first slice in a pie chart.

956 • ChartNode class JMSL

Parameter

value – the double ”Reference” value

setScreenSize
public void setScreenSize(Dimension value)

Description

Sets the value of the ”ScreenSize” attribute.

Parameter

value – the Dimension ”ScreenSize” value.

setSize
public void setSize(Dimension value)

Description

Sets the value of the ”Size” attribute.

Parameter

value – the Dimension ”Size” value

setSkipWeekends
public void setSkipWeekends(boolean skipWeekends)

Description

Sets the value of the ”SkipWeekends” attribute. If this attribute is true and weekends are
skipped on date axes. (A date axis is an Axis1D whose AxisLabel has a TextFormat value
that extends java.text.DateFormat.)

If this attribute is set to true, the attribute ”AutoscaleMinimumTimeInterval” should also
be set to value of a day or longer.

Parameter

skipWeekends – the boolean value.

setTextAngle
public void setTextAngle(int value)

Description

Sets the value of the ”TextAngle” attribute. This indicates the angle, in degrees, at which
text is to be drawn. Only multiples of 90 are allowed at this time.

Chart 2D ChartNode class • 957

Parameter

value – an int ”TextAngle” value

setTextColor
public void setTextColor(Color color)

Description

Sets the value of the ”TextColor” attribute.

Parameter

color – a Color which contains the ”TextColor” value

setTextColor
public void setTextColor(String color)

Description

Sets the value of the ”TextColor” attribute to a color specified by name.

Parameter

color – String name of a color.

setTitle
public void setTitle(Text value)

Description

Sets the value of the ”Title” attribute.

Parameter

value – a Text which contains the ”Title” value

setTitle
public void setTitle(String value)

Description

Sets the value of the ”Title” attribute.

Parameter

value – a String which contains the ”Title” value

setToolTip
public void setToolTip(String value)

Description

Sets the value of the ”ToolTip” attribute.

958 • ChartNode class JMSL

Parameter

value – a String which contains the ”ToolTip” value

setViewport
public void setViewport(double[] value)

Description

Sets the value of the ”Viewport” attribute. The viewport is the subregion of the drawing
surface where the plot is to be drawn. ”Viewport” coordinates are [0,1] by [0,1] with (0,0)
in the lower left corner. This attribute affects only Axis nodes, since they contain the
mappings to device space.

Parameter

value – A double array of length 4 which contains the ”Viewport” values for xmin,
xmax, ymin, ymax. The value saved is a copy of the input array.

setViewport
public void setViewport(double xmin, double xmax, double ymin, double ymax)

Description

Sets the value of the ”Viewport” attribute.

Parameters

xmin – a double, the left side of the viewport

xmax – a double, the right side of the viewport

ymin – a double, the bottom side of the viewport

ymax – a double, the top side of the viewport

Background class

public class com.imsl.chart.Background extends com.imsl.chart.AxisXY

The background of a chart.

Grid is created by com.imsl.chart.Chart (p. 910) as its child. It can be retrieved using the
method com.imsl.chart.ChartNode.getBackground (p. ??) .

Fill attributes in this node control the drawing of the background.

Chart 2D Background class • 959

Method

paint
public void paint(Draw draw)

Description

Paint this node. This is not normally called by a user program.

Parameter

draw – the Draw object to be painted

ChartTitle class

public class com.imsl.chart.ChartTitle extends com.imsl.chart.AxisXY

The main title of a chart.

ChartTitle is created by com.imsl.chart.Chart (p. 910) as its child. It can be retrieved using
the method com.imsl.chart.ChartNode.getChartTitle (p. ??) .

The chart title is the value of the ”Title” attribute at this node. Text attributes in this node
control the drawing of the title.

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Legend class

public class com.imsl.chart.Legend extends com.imsl.chart.AxisXY

The chart legend.

960 • ChartTitle class JMSL

Legend is created by com.imsl.chart.Chart (p. 910) as its child. It can be retrieved using the
method com.imsl.chart.ChartNode.getLegend (p. ??) .

By default the legend is not drawn. To have it drawn, set its ”Paint” attribute to true.

com.imsl.chart.Data (p. 984) objects that have their ”Title” attribute defined are
automatically entered into the legend.

The drawing of the background of the legend box is controlled by the fill attributes in this
node. Text attributes control the drawing of the text strings in the box.

Constructor

Legend
protected Legend(Chart chart)

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Grid class

public class com.imsl.chart.Grid extends com.imsl.chart.ChartNode

Draws the grid lines perpendicular to an axis.

Grid is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved using the
method com.imsl.chart.Axis1D.getGrid (p. ??) .

Line attributes in this node control the drawing of the grid lines.

Methods

getType

Chart 2D Grid class • 961

public int getType()

Description

Returns the axis type.

Returns

an int, the axis type

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Axis class

abstract public class com.imsl.chart.Axis extends com.imsl.chart.ChartNode

The Axis node provides the mapping for all of its children from the user coordinate space to the
device (screen) space.

Constructor

Axis
public Axis(Chart chart)

Description

Contructs an Axis node. Its parent must be a Chart node. This node’s ”Axis” attribute
has itself as a value, so that decendent nodes can easily obtain their controlling axis node.

Parameter

chart – a Chart object, the parent of this node

Methods

mapDeviceToUser
abstract public void mapDeviceToUser(int devX, int devY, double[] userXY)

962 • Axis class JMSL

Description

Maps the device coordinates to user coordinates.

Parameters

devX – an int which specifies the device x-coordinate

devY – an int which specifies the device y-coordinate

userXY – an int[2] array on input, on output, the user coordinates

mapUserToDevice
abstract public void mapUserToDevice(double userX, double userY, int[]
devXY)

Description

Maps the user coordinates (userX,userY) to the device coordinates devXY.

Parameters

userX – a double which specifies the user x-coordinate

userY – a double which specifies the user y-coordinate

devXY – an int[2] array on input, on output, the device coordinates

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – a Draw object which specifies the chart tree to be rendered on the screen

setupMapping
abstract public void setupMapping()

Description

Initializes the mappings between user and coordinate space. This must be called
whenever the screen size, the window or the viewport may have changed. Generally, it is
safest to call this each time the chart is repainted.

Chart 2D Axis class • 963

AxisXY class

public class com.imsl.chart.AxisXY extends com.imsl.chart.Axis

The axes for an x-y chart.

This node is used when the mapping to and from user and device space can be decomposed into
an x and a y mapping. This is when the mapping map(userX,userY) = (deviceX,deviceY) can
be written as map(userX,userY) = (mapX(userX),mapY(userY) = (deviceX,deviceY)

Constructor

AxisXY
public AxisXY(Chart chart)

Description

Create an AxisXY. This also creates two Axis1D nodes as children of this node. They hold
the decomposed mapping. The ”Viewport” attributute for this node is set to [0.2,0.8] by
[0.2,0.8].

Parameter

chart – the Chart parent of this node

Methods

getAxisX
public Axis1D getAxisX()

Description

Return the x-axis node.

Returns

the Axis1D x-axis node

getAxisY
public Axis1D getAxisY()

Description

Return the y-axis node.

Returns

the Axis1D y-axis node

964 • AxisXY class JMSL

getCross
public double[] getCross()

Description

Returns the value of the ”Cross” attribute.

Returns

a double[2] array containing the value of the ”Cross” attribute, if defined. The value is
the point where the X and Y axes intersect, (xcross,ycross). If ”Cross” is not defined then
null is returned.

mapDeviceToUser
public void mapDeviceToUser(int devX, int devY, double[] userXY)

Description

Map the device coordinates to user coordinates.

Parameters

devX – an int which specifies the device x-coordinate
devY – an int which specifies the device y-coordinate
userXY – a double[2] array on input. On output, the user coordinates.

mapUserToDevice
public void mapUserToDevice(double userX, double userY, int[] devXY)

Description

Map the user coordinates (userX,userY) to the device coordinates devXY.

Parameters

userX – a double which specifies the user x-coordinate
userY – a double which specifies the user y-coordinate
devXY – an int[2] array on input. On output, the device coordinates.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setCross
public void setCross(double[] cross)

Chart 2D AxisXY class • 965

Description

Sets the value of the ”Cross” attribute. This defines the point where the X and Y axes
intersect. If ”Cross” is not defined then the attribute ”Window” is used to determine the
crossing point.

Parameter

cross – is a double of length two containing the x and y-coordinate where the axes
cross

setCross
public void setCross(double xcross, double ycross)

Description

Sets the value of the ”Cross” attribute. This defines the point where the X and Y axes
intersect. If ”Cross” is not defined then the attribute ”Window” is used to determine the
crossing point.

Parameters

xcross – a double which specifies the x-coordinate where the axes cross

ycross – a double which specifies the y-coordinate where the axes cross

setupMapping
public void setupMapping()

Description

Initializes the mappings between user and coordinate space. This must be called
whenever the screen size, the window or the viewport may have changed. Generally, it is
safest to call this each time the chart is repainted.

setWindow
public void setWindow(double[] value)

Description

Sets the window in user coordinates along an axis.

Parameter

value – a double array which contains the minimum and maximum of the window
along an axis

Axis1D class

public class com.imsl.chart.Axis1D extends com.imsl.chart.ChartNode

966 • Axis1D class JMSL

An x-axis or a y-axis.

Axis1D is created by com.imsl.chart.AxisXY (p. 964) as its child. It can be retrieved using
the method com.imsl.chart.AxisXY.getAxisX (p. ??) or com.imsl.chart.AxisXY.getAxisY
(p. ??) .

It in turn creates the following child nodes: com.imsl.chart.AxisLine (p. 972) ,
com.imsl.chart.AxisLabel (p. 971) , com.imsl.chart.AxisTitle (p. 973) ,
com.imsl.chart.AxisUnit (p. 973) , com.imsl.chart.MajorTick (p. 974) ,
com.imsl.chart.MinorTick (p. 974) and com.imsl.chart.Grid (p. 961) .

The number of tick marks (”Number” attribute) is set to 5, but autoscaling can change this
value.

Methods

getAxisLabel
public AxisLabel getAxisLabel()

Description

Returns the label node associated with this axis.

Returns

the AxisLabel node created as a child by this node

getAxisLine
public AxisLine getAxisLine()

Description

Returns the axis line node associated with this axis.

Returns

the AxisLine node created as a child by this node

getAxisTitle
public AxisTitle getAxisTitle()

Description

Returns the title node associated with this axis.

Returns

the AxisTitle node created as a child by this node

getAxisUnit
public AxisUnit getAxisUnit()

Chart 2D Axis1D class • 967

Description

Returns the unit node associated with this axis.

Returns

the AxisUnit node created as a child by this node

getFirstTick
public double getFirstTick()

Description

Convenience routine to get the ”FirstTick” attribute.

Returns

the double value of the ”FirstTick” attribute, if defined. Otherwise, window[0] is
returned.

getGrid
public Grid getGrid()

Description

Returns the grid node associated with this axis.

Returns

the Grid node created as a child by this node

getMajorTick
public MajorTick getMajorTick()

Description

Returns the major tick node associated with this axis.

Returns

the MajorTick node created as a child by this node

getMinorTick
public MinorTick getMinorTick()

Description

Returns the minor tick node associated with this axis.

Returns

the MinorTick node created as a child by this node

getTickInterval
public double getTickInterval()

968 • Axis1D class JMSL

Description

Retrieves the tick interval.
Returns

a double which specifies the tick interval

getTicks
public double[] getTicks()

Description

Returns the value of the ”Ticks” attribute, if set. If not set, then computed tick values
are returned.
Returns

the double value of the ”Ticks” attribute, if defined. Otherwise, the computed tick values
are returned.

getType
public int getType()

Description

Returns the axis type.
Returns

an int which specifies the node type; can be AXIS X, AXIS Y, AXIS X TOP or AXIS Y RIGHT

getWindow
public double[] getWindow()

Description

Returns the window for an Axis1D.
Returns

a double array of length two containing the range of this axis.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.
Parameter

draw – the Draw object to be painted

setFirstTick
public void setFirstTick(double firstTick)

Chart 2D Axis1D class • 969

Description

Convenience routine to set the ”FirstTick” attribute.

Parameter

firstTick – a double, the location of the first tick

setTickInterval
public void setTickInterval(double tickInterval)

Description

Sets the tick interval.

Parameter

tickInterval – a double which specifies a tick interval

setTicks
public void setTicks(double[] ticks)

Description

Sets the value of the ”Ticks” attribute. The attribute Number is set to the length of the
array.

Parameter

ticks – an array of doubles which contain the location, in user coordinates, of the
major tick marks. If set, this attribute overrides the automatic computation of the
tick values.

setType
public void setType(int type)

Description

Sets the type of this node.

Parameter

type – an int which specifies the node type; can be AXIS X, AXIS Y, AXIS X TOP or
AXIS Y RIGHT

setWindow
public void setWindow(double[] window)

Description

Sets the window for an Axis1D.

970 • Axis1D class JMSL

Parameter

window – is an array of length two containing the range of this axis.

setWindow
public void setWindow(double min, double max)

Description

Sets the window for an Axis1D.

Parameters

min – a double which specifies the value of the left/bottom end of the axis

max – a double which specifies the value of the right/top end of the axis

AxisLabel class

public class com.imsl.chart.AxisLabel extends com.imsl.chart.ChartNode

The labels on an axis.

AxisLabel is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved
using the method com.imsl.chart.Axis1D.getAxisLabel (p. ??) .

Axis labels are placed at the tick mark locations. The number of tick marks is determined by
the attribute ”Number”. Tick marks are evenly spaced. If the attribute ”Labels” is defined
then it is used to label the tick marks.

If ”Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute ”Window”. The numbers are formatted using the attribute
”TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Methods

getLabels
public Text[] getLabels()

Description

Returns the ”Labels” attribute.

Returns

a String array containing the axis labels, if set. Otherwise, null is returned.

Chart 2D AxisLabel class • 971

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setLabels
public void setLabels(String[] value)

Description

Sets the axis label values for this node to be used instead of the default numbers. The
attribute ”Number” is also set to value.length.

Parameter

value – a String array containing the labels for the major tick marks

AxisLine class

public class com.imsl.chart.AxisLine extends com.imsl.chart.ChartNode

The axis line.

AxisLine is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved using
the method com.imsl.chart.Axis1D.getAxisLine (p. ??) .

Line attributes in this node control the drawing of the axis line.

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

972 • AxisLine class JMSL

AxisTitle class

public class com.imsl.chart.AxisTitle extends com.imsl.chart.ChartNode

The title on an axis.

AxisTitle is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved
using the method com.imsl.chart.Axis1D.getAxisTitle (p. ??) .

The axis title is the value of the ”Title” attribute at this node. Text attributes in this node
control the drawing of the axis title.

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

AxisUnit class

public class com.imsl.chart.AxisUnit extends com.imsl.chart.ChartNode

The unit title on an axis.

AxisUnit is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved using
the method com.imsl.chart.Axis1D.getAxisUnit (p. ??) .

The unit title is the value of the ”Title” attribute at this node. Text attributes in this node
control the drawing of the unit title.

Method

paint
public void paint(Draw draw)

Chart 2D AxisTitle class • 973

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

MajorTick class

public class com.imsl.chart.MajorTick extends com.imsl.chart.ChartNode

The major tick marks.

MajorTick is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved
using the method com.imsl.chart.Axis1D.getMajorTick (p. ??) .

Line attributes in this node control the drawing of the major tick marks.

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

MinorTick class

public class com.imsl.chart.MinorTick extends com.imsl.chart.ChartNode

The minor tick marks.

MinorTick is created by com.imsl.chart.Axis1D (p. 966) as its child. It can be retrieved
using the method com.imsl.chart.Axis1D.getMinorTick (p. ??) .

Line attributes in this node control the drawing of the minor tick marks.

974 • MajorTick class JMSL

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Transform interface

public interface com.imsl.chart.Transform

Defines a custom transformation along an axis. Axis1D has built in support for linear and
logarithmic transformations. Additional transformations can be specified by setting the
”CustomTransform” attribute in an Axis1D to an object that implements this interface. The
interface consists of two methods that must be implemented. Each method is the inverse of the
other.

Methods

mapUnitToUser
public double mapUnitToUser(double unit)

Description

Maps points in the interval [0,1] to user coordinates.

mapUserToUnit
public double mapUserToUnit(double user)

Description

Maps user coordinate to the interval [0,1]. The user coordinate interval is specified by the
”Window” attribute for the axis with which the transform is associated.

setupMapping
public void setupMapping(Axis1D axis1d)

Description

Initializes the mappings between user and coordinate space.

Chart 2D Transform interface • 975

TransformDate class

public class com.imsl.chart.TransformDate implements com.imsl.chart.Transform

Defines a transformation along an axis that skips weekend dates.

Constructor

TransformDate
public TransformDate()

Methods

isWeekday
public boolean isWeekday(GregorianCalendar cal)

Description

Returns true if the specified date is a weekday.

mapUnitToUser
public double mapUnitToUser(double unit)

Description

Maps points in the interval [0,1] to user coordinates.

mapUserToUnit
public double mapUserToUnit(double user)

Description

Maps user coordinate to the interval [0,1]. The user coordinate interval is specified by the
”Window” attribute for the axis with which the transform is associated.

setupMapping
public void setupMapping(Axis1D axis1d)

Description

Initializes the mappings between user and coordinate space.

976 • TransformDate class JMSL

AxisR class

public class com.imsl.chart.AxisR extends com.imsl.chart.ChartNode

The R-axis in a polar plot.

AxisR is created by com.imsl.chart.Polar (p. 1096) as its child. It can be retrieved using the
method com.imsl.chart.Polar.getAxisR (p. ??) .

It in turn creates the following child nodes: com.imsl.chart.AxisRLine (p. 980) ,
com.imsl.chart.AxisRLabel (p. 979) and com.imsl.chart.AxisRMajorTick (p. 981) .

The number of tick marks (”Number” attribute) is set to 4, but autoscaling can change this
value.

Field

serialVersionUID
static final public long serialVersionUID

Methods

getAxisRLabel
public AxisRLabel getAxisRLabel()

Description

Returns the AxisRLabel node.

getAxisRLine
public AxisRLine getAxisRLine()

Description

Returns the AxisRLine node.

getAxisRMajorTick
public AxisRMajorTick getAxisRMajorTick()

Description

Returns the major tick node associated with this axis.

Returns

the MajorTick node created as a child by this node

Chart 2D AxisR class • 977

getTickInterval
public double getTickInterval()

Description

Retrieves the tick interval.

Returns

a double which indicates the tick interval

getTicks
public double[] getTicks()

Description

Returns the value of the ”Ticks” attribute, if set. If not set, then it computes and returns
tick values, based on the attributes ”Number” and ”TickInterval”.

Returns

the double values of the ”Ticks” attribute, if defined. Otherwise, computed tick values
are returned.

getWindow
public double getWindow()

Description

Returns the Window attribute.

Returns

a double which specifies the Window value

paint
public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

setTickInterval
public void setTickInterval(double tickInterval)

Description

Sets the tick interval.

978 • AxisR class JMSL

Parameter

tickInterval – a double which specifies the tick interval

setWindow
public void setWindow(double rmax)

Description

Sets the Window attribute. The R-axis always starts at 0. The Window attribute is the
maximum value of R.

Parameter

rmax – a double specifying the radius at which the AxisTheta is drawn.

AxisRLabel class

public class com.imsl.chart.AxisRLabel extends com.imsl.chart.ChartNode

The labels on an axis.

AxisRLabel is created by com.imsl.chart.AxisR (p. 977) as its child. It can be retrieved
using the method com.imsl.chart.AxisR.getAxisRLabel (p. ??) .

Axis labels are placed at the tick mark locations. The number of tick marks is determined by
the attribute ”Number”. Tick marks are evenly spaced. If the attribute ”Labels” is defined
then it is used to label the tick marks.

If ”Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute ”Window”. The numbers are formatted using the attribute
”TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Field

serialVersionUID
static final public long serialVersionUID

Methods

getLabels
public Text[] getLabels()

Chart 2D AxisRLabel class • 979

Description

Returns the ”Labels” attribute.

Returns

a Text array containing the axis labels and formatting information, if set. Otherwise,
null is returned.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setLabels
public void setLabels(String[] value)

Description

Sets the axis label values for this node to be used instead of the default numbers. The
attribute ”Number” is also set to value.length.

Parameter

value – a String array containing the labels to be used to label the major tick
marks

AxisRLine class

public class com.imsl.chart.AxisRLine extends com.imsl.chart.ChartNode

The radius axis line in a polar plot.

AxisRLine is created by com.imsl.chart.AxisR (p. 977) as its child. It can be retrieved using
the method com.imsl.chart.AxisR.getAxisRLine (p. ??) .

Line attributes in this node control the drawing of the axis line.

Field

serialVersionUID
static final public long serialVersionUID

980 • AxisRLine class JMSL

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

AxisRMajorTick class

public class com.imsl.chart.AxisRMajorTick extends com.imsl.chart.ChartNode

The major tick marks for the radius axis in a polar plot.

AxisRMajorTick is created by com.imsl.chart.AxisR (p. 977) as its child. It can be retrieved
using the method com.imsl.chart.AxisR.getAxisRMajorTick (p. ??) .

Line attributes in this node control the drawing of the major tick marks.

Field

serialVersionUID
static final public long serialVersionUID

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Chart 2D AxisRMajorTick class • 981

AxisTheta class

public class com.imsl.chart.AxisTheta extends com.imsl.chart.ChartNode

The angular axis in a polar plot.

AxisTheta is created by com.imsl.chart.Polar (p. 1096) as its child. It can be retrieved
using the method com.imsl.chart.Polar.getAxisTheta (p. ??) .

The angles are labeled using the TextFormat attribute, which is set to "0.##\\u00b0", where
\\u00b0 is the Unicode character for degrees. This labels the angles in degrees. More generally,
TextFormat can be set to a NumberFormat object to format the angles in degrees.

TextFormat can also be set to a MessageFormat object. In this case, field {0} is the value in
degrees, field {1} is the value in radians and field {2} is the value in radians/π. So, for labels
like 1.5\\u03c0, where \\u03c0 is the Unicode character for π, set TextFormat to new
MessageFormat("{2,number,0.##\\u03c0}").

The number of tick marks (”Number” attribute) is set to 9, but autoscaling can change this
value.

Field

serialVersionUID
static final public long serialVersionUID

Methods

getTicks
public double[] getTicks()

Description

Returns the value of the ”Ticks” attribute, if set. If not set then computed tick values are
returned. These are the positions at which the angles are labeled.

Returns

the double value of the ”Ticks” attribute, if defined. Otherwise, computed tick values are
returned. The ticks are in radians, not degrees.

getWindow
public double[] getWindow()

Description

Returns the window for an AxisTheta.

982 • AxisTheta class JMSL

Returns

a double array of length two containing the angular range of the window.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

setWindow
public void setWindow(double[] window)

Description

Sets the window for an AxisTheta.

Parameter

window – a double array of length two containing the angular range.

setWindow
public void setWindow(double min, double max)

Description

Sets the window for an AxisTheta. The default Window is [0,2pi].

Parameters

min – a double which specifies the initial angular value, in radians.

max – a double which specifies the final angular value, in radians.

GridPolar class

public class com.imsl.chart.GridPolar extends com.imsl.chart.ChartNode

Draws the grid lines for a polar plot.

PolarGrid is created by com.imsl.chart.Polar (p. 1096) as its child. It can be retrieved using
the method com.imsl.chart.Polar.getGridPolar (p. ??) .

Line attributes in this node control the drawing of the grid lines.

Chart 2D GridPolar class • 983

Field

serialVersionUID
static final public long serialVersionUID

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

Data class

public class com.imsl.chart.Data extends com.imsl.chart.ChartNode

Draws a data node.

Drawing of a Data node is determined by the setting of the ”DataType” attribute. Multiple
bits can be set in ”DataType”. If the com.imsl.chart.ChartNode.DATA TYPE LINE (p. 936)
bit is set, the line attributes are active. If the com.imsl.chart.ChartNode.DATA TYPE MARKER
(p. 937) bit is set, the marker attributes are active. If the
com.imsl.chart.ChartNode.DATA TYPE FILL (p. 936) bit is set, the fill attributes are active.

If the attribute ”LabelType” is set to other than the default, then the data points are labeled.
The contents of the labels are determined by the value of the ”LabelType” attribute. See Chart
Programmer’s Guide: Labels for details. The drawing of the labels is controlled by the text
attributes.

Constructors

Data
public Data(ChartNode parent)

Description

Creates a data node.

984 • Data class JMSL

Parameter

parent – the ChartNode parent of this data node

Data
public Data(ChartNode parent, double[] y)

Description

Creates a data node with y values. The attribute ”X” is set to the double array
containing {0,1,...,y.length-1}.
Parameters

parent – the ChartNode parent of this data node

y – a double array containing the ”Y” attribute in this node

Data
public Data(ChartNode parent, double[] x, double[] y)

Description

Creates a data node with x and y values.

Parameters

parent – the ChartNode parent of this data node

x – a double array which contains the value for the attribute ”X” in this node

y – a double array which contains the value for the attribute ”Y” in this node

Data
public Data(ChartNode parent, ChartFunction cf, double a, double b)

Description

Creates a data node with y values. The attribute ”X” is set to the double array
containing {0,1,...,y.length-1}.
Parameters

parent – the ChartNode parent of this data node

cf – a ChartFunction object that defines the function to be plotted

a – a double, the left endpoint

b – a double, the right endpoint

Methods

dataRange
public void dataRange(double[] range)

Chart 2D Data class • 985

Description

Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range are
updated to reflect the extent of the data in this node. Range is an input/output variable.
Its value should be updated only if the data in this node is outside the range already in
the array.

Parameter

range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

formatLabel
protected Text formatLabel(double x, double y)

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

Example: Scatter Chart

A scatter plot is constructed in this example. Three data sets are used and a legend is added to
the chart. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import java.awt.Color;

public class ScatterEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double x[] = new double[npoints];
double y1[] = new double[npoints];
double y2[] = new double[npoints];

986 • Data class JMSL

double y3[] = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++){

x[i] = i * dx;
y1[i] = Math.sin(x[i]);
y2[i] = Math.cos(x[i]);
y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker
d1.setDataType(d1.DATA_TYPE_MARKER);
d2.setDataType(d2.DATA_TYPE_MARKER);
d3.setDataType(d3.DATA_TYPE_MARKER);

// Set Marker Types
d1.setMarkerType(Data.MARKER_TYPE_CIRCLE_PLUS);
d2.setMarkerType(Data.MARKER_TYPE_HOLLOW_SQUARE);
d3.setMarkerType(Data.MARKER_TYPE_ASTERISK);

// Set Marker Colors
d1.setMarkerColor(Color.red);
d2.setMarkerColor(Color.black);
d3.setMarkerColor(Color.blue);

// Set Data Labels
d1.setTitle("Sine");
d2.setTitle("Cosine");
d3.setTitle("ArcTangent");

// Add a Legend
Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend"));
chart.addLegendItem(2, chart);
legend.setPaint(true);

// Set the Chart Title
chart.getChartTitle().setTitle("Scatter Plot");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
ScatterEx1.setup(frame.getChart());
frame.show();

}
}

Chart 2D Data class • 987

Output

Scatter PlotScatter Plot

0.00 0.40 0.80 1.20 1.60 2.00
0.00

0.30

0.60

0.90

1.20

1.50

Legend

Sine

Cosine

ArcTangent

Example: Line Chart

A simple line chart is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import java.awt.Color;

public class LineEx1 extends javax.swing.JApplet {
private JPanelChart panel;

988 • Data class JMSL

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double x[] = new double[npoints];
double y1[] = new double[npoints];
double y2[] = new double[npoints];
double y3[] = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++){

x[i] = i * dx;
y1[i] = Math.sin(x[i]);
y2[i] = Math.cos(x[i]);
y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Line
axis.setDataType(axis.DATA_TYPE_LINE);

// Set Line Colors
d1.setLineColor(Color.red);
d2.setLineColor(Color.black);
d3.setLineColor(Color.blue);

// Set Data Labels
d1.setTitle("Sine");
d2.setTitle("Cosine");
d3.setTitle("ArcTangent");

// Add a Legend
Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend"));
chart.addLegendItem(1, chart);
legend.setPaint(true);

// Set the Chart Title
chart.getChartTitle().setTitle("Line Plots");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
LineEx1.setup(frame.getChart());

Chart 2D Data class • 989

frame.show();
}

}

Output

Line PlotsLine Plots

0.00 0.40 0.80 1.20 1.60 2.00
0.00

0.30

0.60

0.90

1.20

1.50

Legend

Sine

Cosine

ArcTangent

990 • Data class JMSL

Example: Picture Chart

A picture plot is constructed in this example. This class can be used either as an applet or as
an application.

import com.imsl.chart.*;
import java.awt.Color;
import java.net.URL;
import javax.swing.ImageIcon;

public class PictureEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double x[] = new double[npoints];
double y1[] = new double[npoints];
double y2[] = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++){

x[i] = i * dx;
y1[i] = Math.sin(x[i]);
y2[i] = Math.cos(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);

// Load Images
d1.setDataType(Data.DATA_TYPE_PICTURE);
d1.setImage(loadImage("marker.gif"));
d2.setDataType(Data.DATA_TYPE_PICTURE);
d2.setImage(loadImage("marker2.gif"));

// Set the Chart Title
chart.getChartTitle().setTitle("Picture Plot");

}

static private java.awt.Image loadImage(String name) {
return new ImageIcon(PictureEx1.class.getResource(name)).getImage();

}

public static void main(String argv[]) {

Chart 2D Data class • 991

JFrameChart frame = new JFrameChart();
PictureEx1.setup(frame.getChart());
frame.show();

}
}

Output

Picture PlotPicture Plot

0.00 0.40 0.80 1.20 1.60 2.00
0.00

0.20

0.40

0.60

0.80

1.00

992 • Data class JMSL

Example: Area Chart

An area chart is constructed in this example. Three data sets are used and a legend is added to
the chart. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import java.awt.Color;

public class AreaEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double x[] = new double[npoints];
double y1[] = new double[npoints];
double y2[] = new double[npoints];
double y3[] = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++) {

x[i] = i * dx;
y1[i] = Math.sin(x[i]);
y2[i] = Math.cos(x[i]);
y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Fill Area
axis.setDataType(d1.DATA_TYPE_FILL);

// Set Line Colors
d1.setLineColor(Color.red);
d2.setLineColor(Color.black);
d3.setLineColor(Color.blue);

// Set Fill Colors
d1.setFillColor(Color.red);
d2.setFillColor(Color.black);
d3.setFillColor(Color.blue);

// Set Data Labels
d1.setTitle("Sine");
d2.setTitle("Cosine");

Chart 2D Data class • 993

d3.setTitle("ArcTangent");

// Add a Legend
Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend"));
legend.setPaint(true);

// Set the Chart Title
chart.getChartTitle().setTitle("Area Plots");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
AreaEx1.setup(frame.getChart());
frame.show();

}
}

994 • Data class JMSL

Output

Area PlotsArea Plots

0.00 0.40 0.80 1.20 1.60 2.00
0.00

0.30

0.60

0.90

1.20

1.50

Legend

Sine

Cosine

ArcTangent

ChartFunction interface

public interface com.imsl.chart.ChartFunction

An interface that allows a function to be plotted.

Chart 2D ChartFunction interface • 995

Method

f
public double f(double x)

Description

Function to be charted.

ChartSpline class

public class com.imsl.chart.ChartSpline implements com.imsl.chart.ChartFunction

Wrap a spline into a ChartFunction to be plotted.

Constructors

ChartSpline
public ChartSpline(Spline spline)

Description

Creates a ChartSpline from a Spline.

Parameter

spline – The Spline to be plotted.

ChartSpline
public ChartSpline(Spline spline, int ideriv)

Description

Creates a ChartSpline from the derivative of a Spline.

Parameters

spline – The Spline to be plotted.

ideriv – The derivative to be plotted. If zero, the function value is plotted. If one,
the first derivative is plotted, etc.

Method

f
public double f(double x)

996 • ChartSpline class JMSL

Description

Function to be charted.

Text class

public class com.imsl.chart.Text implements Serializable

The value of the attribute ”Title”. A Title is a multi-line string with alignment information.

Line breaks are indicated by the newline character (’“n’) within the string.

Titles are drawn relative to a reference point. Alignment determines the position of the
reference point on the horizontally-aligned box that bounds the text.

Constructors

Text
public Text(String string)

Description

Construct a Text object.

Parameter

string – a String

Text
public Text(String string, int alignment)

Description

Construct a Text object with specified alignment.

Parameters

string – a String

alignment – an int which specifies the alignment. The alignment determines the
position of the reference point on the horizontally aligned box containing the drawn
text. It is the bitwise combination of one of TEXT X LEFT, TEXT X CENTER,
TEXT X RIGHT and one of TEXT Y BOTTOM, TEXT Y CENTER,
TEXT Y TOP.

Text
public Text(Format format, double value)

Chart 2D Text class • 997

Description

Creates a text object by applying a java.text.Format to a double.

Parameters

format – a java.text.Format

value – the double to which the java.text.Format is to be applied.

Methods

getAlignment
public int getAlignment()

Description

Gets the alignment for this Text object.

Returns

the int which specifies the alignment for this Text object.

getOffset
public double getOffset()

Description

Returns the offset.

getString
public String getString()

Description

Gets the string for this Text object.

Returns

the String

setAlignment
public void setAlignment(int alignment)

Description

Sets the alignment for this Text object.

Parameter

alignment – the int which specifies the alignment.

setDefaultAlignment
public void setDefaultAlignment(int alignment)

998 • Text class JMSL

Description

Sets the alignment to use, if it has not been set using setAlignment(int).

Parameter

alignment – the int which specifies the default alignment.

setDefaultOffset
public void setDefaultOffset(double offset)

Description

Sets the default value of the offset. Offset is in units of the default marker size. Text
drawn is offset in the direction of the alignment.

setOffset
public void setOffset(double offset)

Description

Sets the offset. Offset is in units of the default marker size. Text drawn is offset in the
direction of the alignment.

setString
public void setString(String string)

Description

Sets the string for this Text object.

Parameter

string – the String

ToolTip class

public class com.imsl.chart.ToolTip extends com.imsl.chart.ChartNode implements
com.imsl.chart.PickListener, java.awt.event.MouseMotionListener

A ToolTip for a chart element.

This class requires that the chart’s component be a subclass of javax.swing.JComponent. The
JComponent class can be subclassed to provide different behaviors for displaying ToolTips.

To use, create an instance of ToolTip to activate the ToolTips in a node and in the node’s
descendants. The ToolTip string is the value of a node’s ”ToolTip” attribute or, if it is null, the
node’s ”Title” attribute.

Chart 2D ToolTip class • 999

Constructor

ToolTip
public ToolTip(ChartNode parent)

Description

Creates a ToolTip node that enables ToolTips on charts.

Parameter

parent – The ChartNode parent of this node. Do not use the root chart node for
this argument, because it will normally select only the background node.

Methods

mouseDragged
public void mouseDragged(MouseEvent e)

Description

Part of the MouseMotionListener interface.

mouseMoved
public void mouseMoved(MouseEvent event)

Description

Part of the MouseMotionListener interface.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – the Draw object to be painted

pickPerformed
public void pickPerformed(PickEvent event)

Description

Part of the PickListener interface.

1000 • ToolTip class JMSL

FillPaint class

public class com.imsl.chart.FillPaint

A collection of methods to create Paint objects for fill areas. All of the Paint objects returned
by the methods in this class are Serializable, unlike most Paint objects.

Methods

checkerboard
static public Paint checkerboard(int n, Color colorA, Color colorB)

Description

Returns a checkerboard pattern.

Parameters

n – is the size of the pattern in pixels.

colorA – is one of the colors.

colorB – is the other color.

Returns

a Paint containing the checkerboard pattern.

crosshatch
static public Paint crosshatch(int n, int p, Color colorBackground, Color
colorLine)

Description

Returns a horizonal and vertical crosshatch pattern.

Parameters

n – is the size of the pattern in pixels.

p – is the number of pixels between the vertical lines.

colorBackground – is the background color.

colorLine – is the line color.

Returns

a Paint containing the pattern.

diagonal
static public Paint diagonal(int n, Color colorA, Color colorB)

Chart 2D FillPaint class • 1001

Description

Returns a diagonal pattern.
Parameters

n – is the size of the pattern in pixels.
colorA – is one of the colors.
colorB – is the other color.

Returns

a Paint containing the checkerboard pattern.

diamond
static public Paint diamond(int n, int p, Color colorBackground, Color
colorLine)

Description

Returns a diamond pattern (a checkerboard rotated 45 degrees).
Parameters

n – is the size of the pattern in pixels.
p – is the thickness of the line.
colorBackground – is the color of the background.
colorLine – is the color of the line.

Returns

a Paint containing the diamond pattern.

diamondHatch
static public Paint diamondHatch(int n, int p, Color colorBackground, Color
colorLine)

Description

Returns a crosshatch on a 45 degree angle.
Parameters

n – is the size of the pattern in pixels.
p – is the number of pixels between the vertical lines.
colorBackground – is the background color.
colorLine – is the line color.

Returns

a Paint containing the pattern.

dot
static public Paint dot(int n, int r, Color colorBackground, Color
colorCircle)

1002 • FillPaint class JMSL

Description

Returns a pattern that is an array of circles.

Parameters

n – is the size of the pattern in pixels.

r – is the radius, in pixels, of the circles in the pattern.

colorBackground – is the background color.

colorCircle – is the color of the circles.

Returns

a Paint containing the pattern.

horizontalStripe
static public Paint horizontalStripe(int n, int p, Color colorBackground,
Color colorLine)

Description

Returns a horizontally striped pattern.

Parameters

n – is the size of the pattern in pixels.

p – is the number of pixels between the vertical lines.

colorBackground – is the background color.

colorLine – is the line color.

Returns

a Paint containing the pattern.

image
static public Paint image(ImageIcon imageIcon)

Description

Returns a tiling of an image.

Parameter

imageIcon – is the image to be tiled.

Returns

a Paint containing the tiling of the image.

verticalStripe
static public Paint verticalStripe(int n, int p, Color colorBackground,
Color colorLine)

Chart 2D FillPaint class • 1003

Description

Returns a vertically striped pattern.

Parameters

n – is the size of the pattern in pixels.

p – is the number of pixels between the vertical lines.

colorBackground – is the background color.

colorLine – is the line color.

Returns

a Paint containing the pattern.

Draw class

public class com.imsl.chart.Draw

Chart tree renderer.

Renders the chart tree to the screen.

Fields

currentType
protected int currentType

ERROR BAR
static final protected int ERROR BAR

FILL
static final protected int FILL

fillColor
protected Color fillColor

fillOutlineColor
protected Color fillOutlineColor

fillOutlineType
protected int fillOutlineType

1004 • Draw class JMSL

fillPaint
protected Paint fillPaint

fillType
protected int fillType

graphics
protected Graphics2D graphics

haveErrorBarProperties
protected boolean haveErrorBarProperties

haveFillProperties
protected boolean haveFillProperties

haveImageProperties
protected boolean haveImageProperties

haveLineProperties
protected boolean haveLineProperties

haveMarkerProperties
protected boolean haveMarkerProperties

haveTextProperties
protected boolean haveTextProperties

IMAGE
static final protected int IMAGE

imageObserver
protected Component imageObserver

LAST
static final protected int LAST

Flag for the last data marker.

LINE
static final protected int LINE

lineColor
protected Color lineColor

Chart 2D Draw class • 1005

lineDashPattern
protected float[] lineDashPattern

lineWidth
protected float lineWidth

MARKER
static final protected int MARKER

MARKER SCALE
static final protected float MARKER SCALE

Normal marker size in pixels is screen width times MARKER SCALE.

markerColor
protected Color markerColor

markerDashPattern
protected float[] markerDashPattern

markerSize
protected float markerSize

markerThickness
protected float markerThickness

markerType
protected int markerType

node
protected ChartNode node

NONE
static final protected int NONE

outline
static final protected float[][][] outline

Markers defined on a [-1,1] x [-1,1] grid. Each row is a continuous polyline, {x1,y1, x2,y2,
x3,y3, etc.} If a row contains only a single number then that number is taken as the
radius of a circle with center at (0,0).

path
protected GeneralPath path

1006 • Draw class JMSL

RADIAN
static final protected double RADIAN

scaleFont
protected float scaleFont

TEXT
static final protected int TEXT

textAngle
protected int textAngle

textColor
protected Color textColor

textFont
protected Font textFont

Constructor

Draw
public Draw(Graphics graphics, Dimension bounds)

Description

Contructs a Draw object.

Parameters

graphics – is the graphics context in which to draw.

bounds – is the size of the chart to be drawn.

Methods

check
protected void check(int type)

drawArc
public void drawArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

Chart 2D Draw class • 1007

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle. The
center of the arc is center of this rectangle.

Parameters

x – An int which specifies the x of the rectangle.

y – An int which specifies the y of the rectangle origin.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

arcAngle – An int which specifies the arcAngle. drawArc draws the arc from
startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

drawErrorBar
public void drawErrorBar(int x0, int y0, int x1, int y1, int flag)

Description

Draw an error bar.

Parameters

x0 – an int which specifies the x-coordinate of the beginning reference point

y0 – an int which specifies the y-coordinate of the beginning reference point

x1 – an int which specifies the x-coordinate of the ending reference point

y1 – an int which specifies the y-coordinate of the ending reference point

flag – indicates which caps to draw (0=none, 1=bottom, 2=top, 3=both).

drawImage
public void drawImage(Image image, int x, int y)

Description

Draw an image.

Parameters

image – the Image object to be drawn

x – an int which specifies the x-coordinate of the reference point

y – an int which specifies the y-coordinate of the reference point

drawLine
public void drawLine(int x0, int y0, int x1, int y1)

1008 • Draw class JMSL

Description

Draw a line from (x0,y0) to (x1,y1).

Parameters

x0 – an int which specifies the x0 of the line origin, (x0,y0)

y0 – an int which specifies the y0 of the line origin, (x0,y0)

x1 – an int which specifies the x1 of the line destination, (x1,y1)

y1 – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker
public void drawMarker(int x, int y)

Description

Draw a marker.

Parameters

x – an int which specifies the x of the marker destination, (x,y)

y – an int which specifies the y of the marker destination, (x,y)

drawRotatedText
protected void drawRotatedText(Text text, int x, int y, float angle)

Description

Draws a text object, at the specified angle, with its lower left point being at (x,y).

drawText
protected void drawText(Graphics g, Text text)

Description

Draws the text.

drawText
public Dimension drawText(Text text, int x, int y)

Description

Draws a text object.

Parameters

text – the Text object to be drawn

x – an int which specifies the abscissa of the (x,y) point at which to start drawing
the text

y – an int which specifies the ordinate of the (x,y) point at which to start drawing
the text

Chart 2D Draw class • 1009

drawText
protected Dimension drawText(Text text, int x, int y, boolean dimensionOnly)

Description

Draws a text object. The angle of the string is given by textAngle. Consider the
horizontally and vertically aligned bounding box around the string. The box below
corresponds to textAngle == 45.

----*
| o|
| l |
* l *
| e |
|H |
----*

The reference point corresponds to one of the 8 starred points on the bounding box, as
indicated by the ”alignment” attribute” in the text object.

Parameters

text – a Text object to be drawn.

x – an int which specifies the x-coordinate of the reference point.

y – an int which specifies the y-coordinate of the reference point.

dimensionOnly – a boolean which is true if only the bounding box is to be
computed and no text actually drawn.

Returns

the dimension of the bounding box.

endErrorBar
public void endErrorBar()

Description

Stop drawing an error bar.

endFill
public void endFill()

Description

Stop drawing a filled region.

endImage
public void endImage()

1010 • Draw class JMSL

Description

Stop drawing an image.

endLine
public void endLine()

Description

Finish drawing lines.

endMarker
public void endMarker()

Description

Finish drawing markers.

endText
public void endText()

Description

Stop drawing text.

fillArc
public void fillArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

Description

Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is
center of this rectangle.

Parameters

x – An int which specifies the x of the rectangle.

y – An int which specifies the y of the rectangle origin.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

arcAngle – An int which specifies the arcAngle.

fillPolygon
public void fillPolygon(Polygon polygon)

Description

Fill a polygon defined by a Polygon object.

Chart 2D Draw class • 1011

Parameter

polygon – a Polygon object which specifies the polygon to be filled

fillPolygon
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)

Description

Fill a polygon.

Parameters

xpoints – an int array which contains the abscissae of the points which define the
polygon

ypoints – an int array which contains the ordinates of the points which define the
polygon

npoints – an int which specifies the number of points

fillRectangle
public void fillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Parameters

x – an int which specifies the abscissa of the origin of the rectangle

y – an int which specifies the ordinate of the origin of the rectangle

width – an int which specifies the width of the rectangle

height – an int which specifies the height of the rectangle

getClipBounds
public Rectangle getClipBounds()

Description

Get the clipping rectangle.

Returns

a Rectangle object which contains the clipping bounds

getDeviceMarkerSize
public float getDeviceMarkerSize()

1012 • Draw class JMSL

Description

Returns the marker size in device corrdinates.

getScaleFont
public double getScaleFont()

Description

Returns the factor by which fonts are to be scaled.

getSize
protected Dimension getSize(Text text)

Description

Returns the size of the bounding box for a text object. This does not take into account
any rotation.

setClip
public void setClip(Rectangle clip)

Description

Set the clipping rectangle.

Parameter

clip – a Rectangle object which contains the clipping bounds

setNode
public void setNode(ChartNode node)

Description

Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter

node – a ChartNode object

setScaleFont
public void setScaleFont(double scaleFont)

Description

Set a factor by which fonts are to be scaled.

start
public void start(Chart chart)

Chart 2D Draw class • 1013

Description

Called just before a chart is drawn.

startErrorBar
public void startErrorBar()

Description

Start drawing an error bar.

startFill
public void startFill()

Description

Start drawing a filled region.

startImage
public void startImage()

Description

Start drawing an image.

startLine
public void startLine()

Description

Start drawing lines.

startMarker
public void startMarker()

Description

Start drawing markers.

startText
public void startText()

Description

Start drawing text.

stop
public void stop()

1014 • Draw class JMSL

Description

Called when a chart is finished being drawn.

translate
public void translate(int x, int y)

Description

Translates the origin to the point (x,y)

Parameters

x – an int which specifies the x of the new origin

y – an int which specifies the y of the new origin

JFrameChart class

public class com.imsl.chart.JFrameChart extends javax.swing.JFrame

JFrameChart is a JFrame that contains a chart. It is designed to allow simple charting
applications to be quickly implemented. It contains a menu bar with ”File”, ”Edit”, and
”Help” menu items.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

JFrameChart
public JFrameChart()

Description

Creates new JFrameChart to display a chart.

JFrameChart
public JFrameChart(Chart chart)

Description

Creates new JFrameChart to display a given chart.

Chart 2D JFrameChart class • 1015

Parameter

chart – is the Chart to be displayed

Methods

getChart
public Chart getChart()

Description

Return the Chart object.

Returns

the chart being displayed by this container

getPanel
public JPanelChart getPanel()

Description

Returns the JPanelChart into which the chart is drawn.

setChart
public void setChart(Chart chart)

Description

Sets the chart to be handled.

Parameter

chart – is the new chart

JPanelChart class

public class com.imsl.chart.JPanelChart extends javax.swing.JPanel

A Swing JPanel that contains a chart. This class causes the contained chart to be redrawn as
necessary.

Fields

chart
protected Chart chart

The embedded chart.

1016 • JPanelChart class JMSL

serialVersionUID
static final public long serialVersionUID

Constructors

JPanelChart
public JPanelChart()

Description

Creates new JPanelChart. This creates a new Chart object.

JPanelChart
public JPanelChart(Chart chart)

Description

Creates new JPanelChart using a given Chart object.

Parameter

chart – is the Chart to be displayed in this panel

Methods

getChart
public Chart getChart()

Description

Return the Chart object.

Returns

the chart being displayed by this container

paintComponent
public void paintComponent(Graphics g)

Description

Calls the UI delegate’s paint method, if the UI delegate is non-null. We pass the delegate
a copy of the Graphics object to protect the rest of the paint code from irrevocable
changes (for example, Graphics.translate). If you override this in a subclass you
should not make permanent changes to the passed in Graphics). For example, you should
not alter the clip Rectangle or modify the transform. If you need to do these operations
you may find it easier to create a new Graphics from the passed in Graphics and
manipulate it. Further, if you do not invoker super’s implementation you must honor the
opaque property, that is if this component is opaque, you must completely fill in the

Chart 2D JPanelChart class • 1017

background in a non-opaque color. If you do not honor the opaque property you will
likely see visual artifacts.

Parameter

g – the Graphics for painting the chart.

print
public void print()

Description

Print the chart, centered on a page.

setChart
public void setChart(Chart chart)

Description

Sets the Chart to be handled by this container.

Parameter

chart – is the Chart to be displayed by this container

DrawPick class

public class com.imsl.chart.DrawPick extends com.imsl.chart.Draw

The DrawPick class.

Constructor

DrawPick
public DrawPick(MouseEvent event, Graphics graphics, Dimension bounds)

Description

Contructs a DrawPick object.

Parameters

event – is a MouseEvent

graphics – is the graphics context in which to draw.

bounds – is the size of the chart to be drawn.

1018 • DrawPick class JMSL

Methods

drawArc
public void drawArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

Description

Draw an arc.

Parameters

x – An int which specifies the x of the rectangle origin, (x,y). The center of the arc
is the center of this rectangle.

y – An int which specifies the y of the rectangle origin, (x,y). The center of the arc
is the center of this rectangle.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

arcAngle – An int which specifies the arcAngle. drawArc draws the arc from
startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

drawErrorBar
public void drawErrorBar(int x0, int y0, int x1, int y1)

Description

Draw ErrorBar

Parameters

x0 – an int which specifies the x-coordinate of the beginning reference point

y0 – an int which specifies the y-coordinate of the beginning reference point

x1 – an int which specifies the x-coordinate of the ending reference point

y1 – an int which specifies the y-coordinate of the ending reference point

drawImage
public void drawImage(Image image, int x, int y)

Description

Draw Image

Chart 2D DrawPick class • 1019

Parameters

image – the Image object to be drawn

x – an int which specifies the x-coordinate of the reference point

y – an int which specifies the y-coordinate of the reference point

drawLine
public void drawLine(int x0, int y0, int x1, int y1)

Description

Draw a line from (x0,y0) to (x1,y1).

Parameters

x0 – an int which specifies the x0 of the line origin, (x0,y0)

y0 – an int which specifies the y0 of the line origin, (x0,y0)

x1 – an int which specifies the x1 of the line destination, (x1,y1)

y1 – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker
public void drawMarker(int x, int y)

Description

Draw a marker.

Parameters

x – an int which specifies the x of the marker destination, (x,y)

y – an int which specifies the y of the marker destination, (x,y)

drawText
public Dimension drawText(Text text, int x, int y)

endErrorBar
public void endErrorBar()

Description

End ErrorBar

endFill
public void endFill()

1020 • DrawPick class JMSL

Description

End fill

endImage
public void endImage()

Description

End Image

endLine
public void endLine()

Description

Finish drawing lines.

endMarker
public void endMarker()

Description

Finish drawing markers.

endText
public void endText()

Description

End Text

fillArc
public void fillArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

Description

Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is
center of this rectangle.

Parameters

x – An int which specifies the x of the rectangle.

y – An int which specifies the y of the rectangle origin.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

Chart 2D DrawPick class • 1021

arcAngle – An int which specifies the arcAngle. drawArc draws the arc from
startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

fillPolygon
public void fillPolygon(Polygon polygon)

Description

Fill a polygon defined by a Polygon object.

Parameter

polygon – a Polygon object which specifies the polygon to be filled

fillPolygon
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)

Description

Fill a polygon.

Parameters

xpoints – an int array which contains the abscissae of the points which define the
polygon

ypoints – an int array which contains the ordinates of the points which define the
polygon

npoints – an int which specifies the number of points

fillRectangle
public void fillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Parameters

x – an int which specifies the abscissa of the origin of the rectangle

y – an int which specifies the ordinate of the origin of the rectangle

width – an int which specifies the width of the rectangle

height – an int which specifies the height of the rectangle

fire
public void fire()

1022 • DrawPick class JMSL

Description

Fires the pickListeners for all of the picked nodes.

getTolerance
public int getTolerance()

Description

Get the minimum distance that an event can be from a point or a line and still be
considered a hit.

Returns

an int which specifies the minimum distance that an event can be from a point or a line
and still be considered a hit

pickNode
protected void pickNode()

Description

Register the currentNode as the ”picked” node if the ”PickListener” attribute is defined
for the current node.

setNode
public void setNode(ChartNode node)

Description

Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter

node – a ChartNode object

setTolerance
public void setTolerance(int tolerance)

Description

Set the minimum distance that an event can be from a point or a line and still be
considered a hit.

Parameter

tolerance – an int which specifies the minimum distance that an event can be from
a point or a line and still be considered a hit

startErrorBar
public void startErrorBar()

Chart 2D DrawPick class • 1023

Description

Start ErrorBar

startFill
public void startFill()

Description

Fill

startImage
public void startImage()

Description

Start Image

startLine
public void startLine()

Description

Start drawing lines.

startMarker
public void startMarker()

Description

Start drawing markers.

startText
public void startText()

Description

Start drawing text

translate
public void translate(int x, int y)

Description

Translates the origin to the point (x,y)

Parameters

x – an int which specifies the x of the new origin

y – an int which specifies the y of the new origin

1024 • DrawPick class JMSL

PickEvent class

public class com.imsl.chart.PickEvent extends java.awt.event.MouseEvent

An event that indicates that a chart element has been selected.

Constructors

PickEvent
public PickEvent(MouseEvent event)

Description

Construct a PickEvent object.

Parameter

event – a MouseEvent

PickEvent
public PickEvent(Component source, int id, long when, int modifiers, int x,
int y, int clickCount, boolean popupTrigger)

Description

Construct a PickEvent object at point (x,y).

Parameters

source – the Component that originated the event

id – an int that identifies the event

when – a long that gives the time the event occurred

modifiers – an int that gives the modifier keys down during event (e.g. shift, ctrl,
alt, meta)

x – an int, the x coordinate of the point (x,y)

y – an int, the y coordinate of the point (x,y)

clickCount – an int which specifies the number of mouse button clicks necessary to
trigger the event

popupTrigger – is a boolean, true if this event is a trigger for a popup menu

Methods

getNode
public ChartNode getNode()

Chart 2D PickEvent class • 1025

Description

Gets this ChartNode.

pointToLine
static public double pointToLine(int Px, int Py, int[] devA, int[] devB)

Description

Compute the distance from the point (Px,Py) to the line segment AB. If the closest point
from P to the line AB is not between A and B then the distance to the closer of A and B
is returned.

Parameters

Px – an int, the x coordinate of the point (Px,Py)

Py – an int, the y coordinate of the point (Px,Py)

devA – an int array which contains the point which defines the head of the line
segment.

devB – an int array which contains the point which defines the tail of the line
segment.

Returns

a double, the distance from the point (Px,Py) to the line segment AB.

setNode
public void setNode(ChartNode node)

Description

Sets the ChartNode.

Parameter

node – the ChartNode to be set

PickListener interface

public interface com.imsl.chart.PickListener implements java.util.EventListener

The listener interface for receiving pick events.

Method

pickPerformed
public void pickPerformed(PickEvent event)

1026 • PickListener interface JMSL

Description

Public interface for PickListener.

Parameter

event – a PickEvent

JspBean class

public class com.imsl.chart.JspBean implements Serializable

JspBean is used to refer to charts in a Java Server Page that are later rendered using the
ChartServlet.

Field

serialVersionUID
static final public long serialVersionUID

Constructor

JspBean
public JspBean()

Description

Creates a JspBean object.

Methods

getChartServletName
public String getChartServletName()

Description

Returns the URL of the servlet used to render the chart.

getCreateImageMap
public boolean getCreateImageMap()

Chart 2D JspBean class • 1027

Description

Returns true if a client-side imagemap is to be created.

getId
public String getId()

Description

Returns the identifier number for the chart. It is assigned a unique random value by the
constructor.

getImageMap
public String getImageMap()

Description

Returns an HTML for the client-side imagemap. This HTML is to be inserted into the
page being generated.

Returns

the HTML map tag. If no map is defined the empty string is returned.

getImageTag
public String getImageTag()

Description

Returns an HTML image tag. This is normally inserted into the HTML being generated.

Returns

the HTML tag refering to the servlet-generated chart. If no image is defined the empty
string is returned.

getMapName
public String getMapName()

Description

Returns the name of the client-size imagemap. This is null if CreateImageMap is false.

getSize
public Dimension getSize()

Description

Returns the size of the generated image.

registerChart
public void registerChart(Chart chart, HttpServletRequest request)

1028 • JspBean class JMSL

Description

Saves the chart and sets the chart attribute ”Size”. The chart is saved using the
saveChart method. If the ChartServletName has not been set, it is set to
”ContextPath/servlet/com.imsl.chart.ChartServlet”, where ”ContextPath is the
context path in the request.

Parameters

chart – is the chart to be registered. The java.awt.Dimension -value attribute
”Size” is set in the root node of the chart tree. The Size attribute is used by
com.imsl.chart.ChartServlet (p. 1030) .

request – from the Java Server Page.

saveChart
protected void saveChart(Chart chart, HttpServletRequest request)

Description

Saves the chart so that a servlet can later render it. The chart is saved in the
HttpSession, associated with the request, under the key ”chartNNN”, where NNN is the
value of the id property. This method can be overridden to change the mechanism by
which the bean and the servlet correspond.

Parameters

chart – is the chart to be registered.

request – from the Java Server Page. The chart is saved in its session object.

setChartServletName
public void setChartServletName(String chartServletName)

Description

Sets the URL of the servlet used to render the chart. Its initial value is null. It is usually
set in the registerChart method. Since this is used only in the image tag, it can be
specified relative to the URL of the page in which the image tag is used.

Parameter

chartServletName – is the location of the chart servlet to be used in the generated
image tag.

setCreateImageMap
public void setCreateImageMap(boolean createImageMap)

Description

Sets a flag indicating if a client-size imagemap is to be generated. Its initial value is false.
A client-side image map has an entry for each node in which the chart attribute HREF is
defined. The values of HREF attributes are URLs. Such regions are treated by the browser
as hyperlinks.

Chart 2D JspBean class • 1029

Parameter

createImageMap – is true if a client-side image map is to be generated.

setSize
public void setSize(Dimension size)

Description

Sets the size of the generated image. Its initial value is new Dimension(300,300).

Parameter

size – is the size of the generated image.

setSize
public void setSize(int width, int height)

Description

Sets the size of the generated image. Its initial value is new Dimension(300,300).

Parameters

width – is the width of the generated image.

height – is the height of the generated image.

ChartServlet class

public class com.imsl.chart.ChartServlet extends javax.servlet.http.HttpServlet

The base class for chart servlets.

This class requires a servlet container.

The behavior of this class depends on the version of the Java runtime being used.

• JDK1.4 or later. Images are rendered using the standard class javax.imageio.ImageIO.
This class can be used on a headless server. Java runs in a headless mode if the system
property java.awt.headless=true. This class turns off caching in the ImageIO class
(calls javax.imageio.ImageIO.setUseCache(false)).

• JDK1.3 or earlier. Since the ImageIO class does not exist in older versions of Java, this
class requires the Java Advanced Imaging Toolkit (JAI) and a running windowing system
to create images. It will not work on a ”headless” server.

1030 • ChartServlet class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Constructor

ChartServlet
public ChartServlet()

Methods

doGet
protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException

Description

Returns the chart as a PNG image. The HTTP request parameter ”id” selects the chart.

Parameters

request – an HttpServletRequest object that contains the request the client has
made of the servlet
response – an HttpServletResponse object that contains the response the servlet
sends to the client

getChart
protected Chart getChart(HttpServletRequest request)

Description

Returns the chart found in the session saved with the key ”chart”+id, where id is the
value of the ”id” parameter in the request. This method can be overridden to change how
charts are communicated to this servlet.

Parameter

request – an HttpServletRequest object that contains the request the client has
made of the servlet

Returns

the chart to be rendered or null if the chart cannot be found.

init
public void init() throws ServletException

Chart 2D ChartServlet class • 1031

DrawMap class

public class com.imsl.chart.DrawMap extends com.imsl.chart.Draw

Creates an HTML client-side imagemap from a chart tree. Entries in the imagemap correspond
to nodes that define the HREF attribute.

Constructor

DrawMap
public DrawMap(Graphics graphics, Dimension bounds)

Description

Contructs a DrawMap object.

Parameters

graphics – is the graphics context in which to draw.

bounds – is the size of the chart to be drawn.

Methods

circle
protected void circle(int x, int y, int r)

Description

Sets a circle as the target.

Parameters

x – is the x-coordinate of the center of the circle

y – is the y-coordinate of the center of the circle

r – is the radius of the circle

drawArc
public void drawArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle. The
center of the arc is center of this rectangle.

1032 • DrawMap class JMSL

Parameters

x – An int which specifies the x of the rectangle.

y – An int which specifies the y of the rectangle origin.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

arcAngle – An int which specifies the arcAngle. drawArc draws the arc from
startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

drawErrorBar
public void drawErrorBar(int x0, int y0, int x1, int y1, int flag)

Description

Draw an error bar.

Parameters

x0 – an int which specifies the x-coordinate of the beginning reference point

y0 – an int which specifies the y-coordinate of the beginning reference point

x1 – an int which specifies the x-coordinate of the ending reference point

y1 – an int which specifies the y-coordinate of the ending reference point

flag – an int that indicates which caps to draw (0=none, 1=bottom, 2=top,
3=both).

drawImage
public void drawImage(Image image, int x, int y)

Description

Draw Image

Parameters

image – the Image object to be drawn

x – an int which specifies the x-coordinate of the reference point

y – an int which specifies the y-coordinate of the reference point

drawLine
public void drawLine(int x0, int y0, int x1, int y1)

Description

Draw a line from (x0,y0) to (x1,y1).

Chart 2D DrawMap class • 1033

Parameters

x0 – an int which specifies the x0 of the line origin, (x0,y0)

y0 – an int which specifies the y0 of the line origin, (x0,y0)

x1 – an int which specifies the x1 of the line destination, (x1,y1)

y1 – an int which specifies the y1 of the line destination, (x1,y1)

drawMarker
public void drawMarker(int x, int y)

Description

Draw a marker.

Parameters

x – an int which specifies the x of the marker destination, (x,y)

y – an int which specifies the y of the marker destination, (x,y)

drawText
protected Dimension drawText(Text text, int x, int y, boolean dimensionOnly)

endErrorBar
public void endErrorBar()

endFill
public void endFill()

endImage
public void endImage()

endLine
public void endLine()

endMarker
public void endMarker()

endText
public void endText()

fillArc
public void fillArc(int x, int y, int width, int height, int startAngle, int
arcAngle)

1034 • DrawMap class JMSL

Description

Fills a circular or elliptical arc covering the specified rectangle. The center of the arc is
center of this rectangle.

Parameters

x – An int which specifies the x of the rectangle.

y – An int which specifies the y of the rectangle origin.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

startAngle – An int which specifies the start angle in degrees. startAngle = 0 is
equivalent to the 3-o’clock position.

arcAngle – An int which specifies the arcAngle. drawArc draws the arc from
startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

fillPolygon
public void fillPolygon(Polygon polygon)

Description

Fill a polygon defined by a Polygon object.

Parameter

polygon – a Polygon object which specifies the polygon to be filled

fillPolygon
public void fillPolygon(int[] xpoints, int[] ypoints, int npoints)

Description

Fill a polygon.

Parameters

xpoints – an int array which contains the abscissae of the points which define the
polygon

ypoints – an int array which contains the ordinates of the points which define the
polygon

npoints – an int which specifies the number of points

fillRectangle
public void fillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Chart 2D DrawMap class • 1035

Parameters

x – an int which specifies the abscissa of the origin of the rectangle

y – an int which specifies the ordinate of the origin of the rectangle

width – an int which specifies the width of the rectangle

height – an int which specifies the height of the rectangle

getALT
protected String getALT()

Description

Returns the current ALT string.

getHREF
protected String getHREF()

Description

Returns the current HREF string.

getMap
public String getMap()

Description

Returns the body of the HTML imagemap.

Returns

the body of the HTML client-side imagemap. The actual ¡map¿ and ¡/map¿ tags are not
included, so that the client code can more easily add attributes to the ¡map¿ tag.

getTolerance
public int getTolerance()

Description

Get the minimum distance that an event can be from a point or a line and still be
considered a hit.

Returns

an int which specifies the minimum distance that an event can be from a point or a line
and still be considered a hit

poly
protected void poly(int[] x, int[] y)

Description

Sets a polygon as the target.

1036 • DrawMap class JMSL

Parameters

x – is an array containing the x-coordinates of the polygon.

y – is an array containing the y-coordinates of the polygon.

rect
protected void rect(int x, int y, int w, int h)

Description

Sets a rectangle as the target.

Parameters

x – is the x-coordinate of the left edge of the rectangle

y – is the y-coordinate of the top edge of the rectangle

w – is the width of the rectangle

h – is the height of the rectangle

setNode
public void setNode(ChartNode node)

Description

Set the current ChartNode. This is used to get drawing attributes from the tree.

Parameter

node – a ChartNode object

setTolerance
public void setTolerance(int tolerance)

Description

Set the minimum distance that an event can be from a point or a line and still be
considered a hit.

Parameter

tolerance – an int which specifies the minimum distance that an event can be from
a point or a line and still be considered a hit

startErrorBar
public void startErrorBar()

startFill
public void startFill()

Chart 2D DrawMap class • 1037

startImage
public void startImage()

startLine
public void startLine()

Description

Start drawing lines.

startMarker
public void startMarker()

Description

Start drawing markers.

startText
public void startText()

translate
public void translate(int x, int y)

Description

Translates the origin to the point (x,y)

Parameters

x – an int which specifies the x of the new origin

y – an int which specifies the y of the new origin

BoxPlot class

public class com.imsl.chart.BoxPlot extends com.imsl.chart.Data

Draws a multiple-group Box plot.

For each group of observations, the box limits represent the lower quartile (25th percentile) and
upper quartile (75th percentile). The median is displayed as a line across the box. Whiskers are
drawn from the upper quartile to the upper adjacent value, and from the lower quartile to the
lower adjacent value.

Optional notches may be displayed to show a 95 percent confidence interval about the median,
at ±1.58 IRQ /

√
n, where IRQ is the interquartile range and n is the number of observations.

Outside and far outside values may be displayed as symbols. Outside values are outside the
inner fence. Far out values are outside the outer fence.

1038 • BoxPlot class JMSL

The BoxPlot has several child nodes. Any of these nodes can be disabled by setting their
”Paint” attribute to false.

• The ”Bodies” node has the main body of the box plot elements. Its fill attributes
determine the drawing of (notched) rectangle. Its line attributes determine the drawing of
the median line. The width of the box is controlled by the ”MarkerSize” attribute.

• The ”Whiskers” node draws the lines to the upper and lower quartile. Its drawing is
affected by the marker attributes.

• The ”FarMarkers” node hold the far markers. Its drawing is affected by the marker
attributes.

• The ”OutsideMarkers” node hold the outside markers. Its drawing is affected by the
marker attributes.

Fields

BOXPLOT TYPE HORIZONTAL
static final public int BOXPLOT TYPE HORIZONTAL

Value for attribute ”BoxPlotType” indicating that this is a horizontal box plot. Used in
connection with BoxPlot nodes.

BOXPLOT TYPE VERTICAL
static final public int BOXPLOT TYPE VERTICAL

Value for attribute ”BoxPlotType” indicating that this is a horizontal box plot. Used in
connection with BoxPlot nodes.

serialVersionUID
static final public long serialVersionUID

Constructors

BoxPlot
public BoxPlot(AxisXY axis, double[][] obs)

Description

Constructs a box plot chart.

Parameters

axis – an AxisXY object, the parent of this node

obs – a double array which contains the observations. The length of each row in obs
must be at least 4.

Chart 2D BoxPlot class • 1039

BoxPlot
public BoxPlot(AxisXY axis, double[] x, BoxPlot.Statistics[] statistics)

Description

Constructs a box plot chart node with specified x values.

Parameters

axis – an AxisXY object, the parent of this node

x – a double array which contains the x values

statistics – is an array of BoxPlot.Statistics objects. The number of
BoxPlot.Statistics must equal the length of x.

BoxPlot
public BoxPlot(AxisXY axis, double[] x, double[][] obs)

Description

Constructs a box plot chart node with specified x values.

Parameters

axis – an AxisXY object, the parent of this node

x – a double array which contains the x values

obs – a double array which contains the observations for each x. The number of rows
in obs must equal the length of x. The length of each row in obs must be at least 4.

Methods

dataRange
public void dataRange(double[] range)

Description

Overrides Data.dataRange.

Parameter

range – a double array which contains the new range

getBodies
public ChartNode getBodies()

Description

Returns a node containing the body elements in the Box plot.

1040 • BoxPlot class JMSL

Returns

a ChartNode containing the bodies.

getBoxPlotType
public int getBoxPlotType()

Description

Returns the value of the ”BoxPlotType” attribute.

Returns

an int which contains the ”BoxPlotType”. Legal values are BOXPLOT TYPE VERTICAL or
BOXPLOT TYPE HORIZONTAL.

getFarMarkers
public ChartNode getFarMarkers()

Description

Returns the FarMarkers node.

Returns

a ChartNode containing the far markers

getNotch
public boolean getNotch()

Description

Gets the ”Notch” attribute value. return a boolean which specifies whether the notches
are to be displayed; true if so false otherwise

getOutsideMarkers
public ChartNode getOutsideMarkers()

Description

Returns the OutsideMarkers node.

Returns

a ChartNode containing the outside markers

getStatistics
public BoxPlot.Statistics[] getStatistics()

Description

Returns an array of BoxPlot.Statistics objects, one for each set of observations.

Chart 2D BoxPlot class • 1041

Returns

an array of BoxPlot.Statistics objects

getStatistics
public BoxPlot.Statistics getStatistics(int iSet)

Description

Returns a BoxPlot.Statistics for a set of observations.

Parameter

iSet – an int which specifies the index of a set whose statistics are to be returned

Returns

a BoxPlot.Statistics object related to the iSet set of observations

getWhiskers
public ChartNode getWhiskers()

Description

Returns the Whiskers node. return a ChartNode containing the whiskers

isProportionalWidth
public boolean isProportionalWidth()

Description

Returns the value of the attribute ”ProportionalWidth”. The width of the narrowest box
is determined by the ”MarkerSize” attribute.

Returns

a boolean which specifies whether the box widths are proportional. If true the box
widths are proportional to the square root of the number of observations. If false all of
the boxes have the same width.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setBoxPlotType
public void setBoxPlotType(int value)

1042 • BoxPlot class JMSL

Description

Sets the ”BoxPlotType” attribute value.

Parameter

value – an int which specifies the ”BoxPlotType” attribute. Legal values are
BOXPLOT TYPE VERTICAL or BOXPLOT TYPE HORIZONTAL.

setLabels
public void setLabels(String[] labels)

Description

Sets up an axis with labels. This turns off the tick marks and sets the ”BoxPlotType”
attribute. It also turns off autoscaling for the axis and sets its ”Window” and ”Number”
and ”Ticks” attribute as appropriate for a labeled Box plot. The existing value of the
”BoxPlotType” attribute is used to determine the axis to be modified.

Parameter

labels – is an array of strings with which to label the axis. The number of labels
must equal the number of items.

setLabels
public void setLabels(String[] labels, int type)

Description

Sets up an axis with labels. This turns off the tick marks and sets the ”BoxPlotType”
attribute. It also turns off autoscaling for the axis and sets its ”Window” and ”Number”
and ”Ticks” attribute as appropriate for a labeled Box plot.

Parameters

labels – an array of Strings with which to label the axis. The number of labels
must equal the number of items.

type – an int which specifies the BoxPlotType. Legal values are
BOXPLOT TYPE VERTICAL or BOXPLOT TYPE HORIZONTAL. This determines the axis to
be modified.

setNotch
public void setNotch(boolean value)

Description

Sets the attribute ”Notch”.

Chart 2D BoxPlot class • 1043

Parameter

value – a boolean which specifies whether notches are to be displayed; true if so
false otherwise

setProportionalWidth
public void setProportionalWidth(boolean proportionalWidth)

Description

Sets the value of the attribute ”ProportionalWidth”.

Parameter

proportionalWidth – a boolean which specifies whether the box widths are to be
proportional. Is true if the box widths are to be proportional to the square root of
the number of observations. If false all of the boxes have the same width. The
default value is false.

Example: Box Plot Chart

A simple box plot chart is constructed in this example. Display of far and outside values is
turned on.

import com.imsl.chart.*;

public class BoxPlotEx1 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
double obs[][]={{66.0, 52.0, 49.0, 64.0, 68.0, 26.0, 86.0, 52.0,

43.0, 75.0, 87.0, 188.0, 118.0, 103.0, 82.0,
71.0, 103.0, 240.0, 31.0, 40.0, 47.0, 51.0, 31.0,
47.0, 14.0, 71.0},

{61.0, 47.0, 196.0, 131.0, 173.0, 37.0, 47.0,
215.0, 230.0, 69.0, 98.0, 125.0, 94.0, 72.0,
72.0, 125.0, 143.0, 192.0, 122.0, 32.0, 114.0,
32.0, 23.0, 71.0, 38.0, 136.0, 169.0},

{152.0, 201.0, 134.0, 206.0, 92.0, 101.0, 119.0,
124.0, 133.0, 83.0, 60.0, 124.0, 142.0, 124.0, 64.0,
75.0, 103.0, 46.0, 68.0, 87.0, 27.0,
73.0, 59.0, 119.0, 64.0, 111.0},

{80.0, 68.0, 24.0, 24.0, 82.0, 100.0, 55.0, 91.0,
87.0, 64.0, 170.0, 86.0, 202.0, 71.0, 85.0, 122.0,

1044 • BoxPlot class JMSL

155.0, 80.0, 71.0, 28.0, 212.0, 80.0, 24.0,
80.0, 169.0, 174.0, 141.0, 202.0},

{113.0, 38.0, 38.0, 28.0, 52.0, 14.0, 38.0, 94.0,
89.0, 99.0, 150.0, 146.0, 113.0, 38.0, 66.0, 38.0,
80.0, 80.0, 99.0, 71.0, 42.0, 52.0, 33.0, 38.0,
24.0, 61.0, 108.0, 38.0, 28.0}

};
double x[] = {1.0, 2.0, 3.0, 4.0, 5.0};
String xLabels[] = {"May", "June", "July", "August", "September"};

// Create an instance of a BoxPlot Chart
AxisXY axis = new AxisXY(chart);
BoxPlot boxPlot = new BoxPlot(axis, obs);
boxPlot.setLabels(xLabels);

// Customize the fill color and the outside and far markers
boxPlot.getBodies().setFillColor("blue");
boxPlot.getOutsideMarkers().setMarkerType(boxPlot.MARKER_TYPE_HOLLOW_CIRCLE);
boxPlot.getOutsideMarkers().setMarkerColor("purple");
boxPlot.getFarMarkers().setMarkerType(boxPlot.MARKER_TYPE_ASTERISK);
boxPlot.getFarMarkers().setMarkerColor("red");

// Set titles
chart.getChartTitle().setTitle("Ozone Levels in Stanford by Month");
axis.getAxisX().getAxisTitle().setTitle("Month");
axis.getAxisY().getAxisTitle().setTitle("Ozone Level");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
BoxPlotEx1.setup(frame.getChart());
frame.show();

}
}

Chart 2D BoxPlot class • 1045

Output

Ozone Levels in Stanford by MonthOzone Levels in Stanford by Month

May June July AugustSeptember
Month

0.00

50.00

100.00

150.00

200.00

250.00

300.00

O
zo

ne
 L

ev
el

BoxPlot.Statistics class

static public class com.imsl.chart.BoxPlot.Statistics implements Serializable

Computes the statistics for one set of observations in a Boxplot.

1046 • BoxPlot class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Constructor

BoxPlot.Statistics
public BoxPlot.Statistics(double[] obs)

Description

Creates a new instance of BoxPlot.Statistics.

Parameter

obs – a double array containing the set of observations. There must be at least 4
observations to compute the statistics.

IllegalArgumentException is thrown if there are fewer than 4 observations.

Methods

getFarMarkers
public double[] getFarMarkers()

Description

Returns the array of far markers.

Returns

a double array containing the far markers for this set

getLowerAdjacentValue
public double getLowerAdjacentValue()

Description

Returns the lower adjacent value.

Returns

a double which specifies the lower adjacent value

getLowerQuartile
public double getLowerQuartile()

Description

Returns the lower quartile value.

Chart 2D BoxPlot class • 1047

Returns

a double which specifies the lower quartile value (25th percentile)

getMaximumValue
public double getMaximumValue()

Description

Returns the maximum value of the observations.

Returns

a double which specifies the the maximum value of this set

getMedian
public double getMedian()

Description

Returns the median value.

Returns

a double which specifies the median value for the set of observations

getMedianLowerConfidenceInterval
public double getMedianLowerConfidenceInterval()

Description

Returns the lower confidence interval for the median.

Returns

a double which specifies the lower confidence interval for the median value of this set of
observations

getMedianUpperConfidenceInterval
public double getMedianUpperConfidenceInterval()

Description

Returns the upper confidence interval for the median.

Returns

a double which specifies the upper confidence interval for the median value of this set of
observations

getMinimumValue
public double getMinimumValue()

Description

Returns the minimum value of the observations.

1048 • BoxPlot class JMSL

Returns

a double which specifies the the minimum value of this set

getNumberObservations
public int getNumberObservations()

Description

Returns the number of observations.

Returns

an int which specifies the number of observations in this set

getOutsideMarkers
public double[] getOutsideMarkers()

Description

Returns the array of outside markers.

Returns

a double array containing the outside markers for this set

getUpperAdjacentValue
public double getUpperAdjacentValue()

Description

Returns the lower adjacent value.

Returns

a double which specifies the upper adjacent value

getUpperQuartile
public double getUpperQuartile()

Description

Returns the upper quartile value.

Returns

a double which specifies the upper quartile value (75th percentile)

Contour class

public class com.imsl.chart.Contour extends com.imsl.chart.Data

A Contour chart shows level curves of a two-dimensional function.

Chart 2D Contour class • 1049

The function can be defined either as values on a rectangular grid or by scattered data points.

A set of ContourLevel objects are created as children of this node. The number of
ContourLevels is one more than the number of level curves. If the level curve values are
c0, . . . , cn−1 then the k-th ContourLevel child corresponds to ck−1 < z ≤ ck.

To change the look of the contour chart, change the line attributes and fill attributes in the
ContourLevel nodes.

A Legend object is also created as a child of this node. It should be used instead of the usual
chart legend. By default, this legend is not shown. To show it, set its paint method to true.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

Contour
public Contour(AxisXY axis, double[] xGrid, double[] yGrid, double[][]
zData)

Description

Create a Contour chart from rectangularly gridded data with computed contour levels.
The contour levels are chosen to span the data and to be ”nice” values.

Parameters

axis – an AxisXY object, the parent of this node.

xGrid – a double array which contains the x-coordinate values of the grid.

yGrid – a double array which contains the y-coordinate values of the grid.

zData – a double rectangular matrix which contains the function values to be
contoured. The value of the function at (xGrid[i],yGrid[j]) is given by zData[i][j].
The size of this matrix must be xGrid.length by yGrid.length.

Contour
public Contour(AxisXY axis, double[] xGrid, double[] yGrid, double[][]
zData, double[] cLevel)

Description

Create a Contour chart from rectangularly gridded data.

1050 • Contour class JMSL

Parameters

axis – an AxisXY object, the parent of this node.
xGrid – a double array which contains the x-coordinate values of the grid.
yGrid – a double array which contains the y-coordinate values of the grid.
zData – a double rectangular matrix which contains the function values to be
contoured. The value of the function at (xGrid[i],yGrid[j]) is given by zData[i][j].
The size of this matrix must be xGrid.length by yGrid.length.
cLevel – a double array which contains the values of the contour levels.

Contour
public Contour(AxisXY axis, double[] x, double[] y, double[] z, double[]
cLevel, int nCenters)

Description

Create a Contour chart from scattered data. The contour chart is created by using a
RadialBasis appoximation to estimate the functions value on a rectangular grid. The
contour chart is then computed as for gridded data.
Parameters

axis – an AxisXY object, the parent of this node.
x – a double array which contains the x-values of the data points.
y – a double array which contains the y-values of the data points.
z – a double array which contains the z-values of the data points.
cLevel – a double array which contains the values of the contour levels.
nCenters – is the number of centers to use for the radial basis approximation. The
larger the number the closer, but noiser, the approximation.

Methods

dataRange
public void dataRange(double[] range)

Description

Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range are
updated to reflect the extent of the data in this node. Range is an input/output variable.
Its value should be updated only if the data in this node is outside the range already in
the array.
Parameter

range – a double array which contains the updated range, {xmin,xmax,ymin,ymax}

getContourLegend
public Contour.Legend getContourLegend()

Chart 2D Contour class • 1051

Description

Returns the contour chart legend.

By default, the legend is not drawn because its ”Paint” attribute is set to false. To show
the legend set ”Paint” to true, .i.e., contour.getContourLegend().setPaint(true);

Returns

the Legend associated with the contour chart.

getContourLevel
public ContourLevel[] getContourLevel()

Description

Returns all of the contour levels.

Returns

an array containing the contour levels.

getContourLevel
public ContourLevel getContourLevel(int k)

Description

Returns a ContourLevel. The k-th contour level contains the level curve equal to cLevel[k]
in the constructor. It also contains the fill areas for the values in the interval (cLevel[k-1],
cLevel[k]). The first contour level (k=0) contains the fill area for values less than cLevel[0]
and the level curves lines where the function value equals cLevel[0]. The last contour level
(k=cLevel.length) contains the fill area for values greater than cLevel[cLevel.length-1],
but no level curve lines.

paint
public void paint(Draw draw)

Example: Contour Chart from Gridded Data

In the restricted three-body problem, two large objects (masses M1 and M2) a distance a apart,
undergoing mutual gravitational attraction, circle a common center-of-mass. A third small
object (mass m) is assumed to move in the same plane as M1 and M2 and is assumed to be two
small to affect the large bodies. For simplicity, we use a coordinate system that has the center
of mass at the origin. M1 and M2 are on the x-axis at x1 and x2, respectively.

In the center-of-mass coordinate system, the effective potential energy of the system is given by

V =
m(M1 +M2)G

a

[
x2√

(x− x1)2 + y2
− x1√

(x− x2)2 + y2
− 1

2
(
x2 + y2

)]
The universal gravitational constant is G. The following program plots the part of V(x,y) inside
of the square bracket. The factor m(M1+M2)G

a is ignored because it just scales the plot.

1052 • Contour class JMSL

import com.imsl.chart.*;

public class ContourEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
int nx = 80;
int ny = 80;

// Allocate space
double xGrid[] = new double[nx];
double yGrid[] = new double[ny];
double zData[][] = new double[nx][ny];

// Setup the grids points
for (int i = 0; i < nx; i++) {

xGrid[i] = -2 + 4.0*i/(double)(nx-1);
}
for (int j = 0; j < ny; j++) {

yGrid[j] = -2 + 4.0*j/(double)(ny-1);
}

// Evaluate the function at the grid points
for (int i = 0; i < nx; i++) {

for (int j = 0; j < ny; j++) {
double x = xGrid[i];
double y = yGrid[j];
double rm = 0.5;
double x1 = rm / (1.0+rm);
double x2 = x1 - 1.0;
double d1 = Math.sqrt((x-x1)*(x-x1)+y*y);
double d2 = Math.sqrt((x-x2)*(x-x2)+y*y);
zData[i][j] = x2/d1 - x1/d2 - 0.5*(x*x+y*y);

}
}

// Create the contour chart, with user-specified levels and a legend
AxisXY axis = new AxisXY(chart);
double cLevel[] = {-7, -5.4, -3, -2.3, -2.1, -1.97, -1.85, -1.74, -1.51, -1.39, -1};
Contour c = new Contour(axis, xGrid, yGrid, zData, cLevel);
c.getContourLegend().setPaint(true);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
ContourEx1.setup(frame.getChart());
frame.show();

}

Chart 2D Contour class • 1053

}

Output

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

-7.00

-5.40

-3.00

-2.30

-2.10

-1.97

-1.85

-1.74

-1.51

-1.39

-1.00

Example: Contour Chart from Scattered Data

In this example, a contour chart is created from 150, randomly choosen, scattered data points.
The function is

√
x2 + y2, so the level curve should be circles.

The input data is shown on top of the contours as small green circles. The chart data nodes are

1054 • Contour class JMSL

drawn in the order in which they are added, so the input data marker node has to be added to
the axis after the contour, so that the markers are not hidden.

import com.imsl.chart.*;
import java.util.Random;

public class ContourEx2 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();
int n = 150;

// Allocate space
double x[] = new double[n];
double y[] = new double[n];
double z[] = new double[n];

// Evaluate the function at n random points
Random random = new Random(123457);
for (int k = 0; k < n; k++) {

x[k] = random.nextDouble();
y[k] = random.nextDouble();
z[k] = Math.sqrt(x[k]*x[k] + y[k]*y[k]);

}

// Setup the contour plot and its legend
AxisXY axis = new AxisXY(chart);
Contour contour = new Contour(axis, x, y, z);
contour.getContourLegend().setPaint(true);

// Show the input data points as small green circles
Data dataPoints = new Data(axis, x, y);
dataPoints.setDataType(Data.DATA_TYPE_MARKER);
dataPoints.setMarkerType(Data.MARKER_TYPE_FILLED_CIRCLE);
dataPoints.setMarkerColor("green");
dataPoints.setMarkerSize(0.5);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
ContourEx2.setup(frame.getChart());
frame.show();

}
}

Chart 2D Contour class • 1055

Output

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

0.80

1.00

0.00

0.22

0.44

0.67

0.89

1.11

1.33

1.56

1.78

2.00

Contour.Legend class

public class com.imsl.chart.Contour.Legend extends com.imsl.chart.AxisXY

A legend for a contour chart.

This legend should be used for contour charts, instead of usual chart legend.

1056 • Contour class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

ErrorBar class

public class com.imsl.chart.ErrorBar extends com.imsl.chart.Data

Data points with error bars.

Fields

DATA TYPE ERROR X
static final public int DATA TYPE ERROR X

Value for attribute ”DataType” indicating that this is a horizontal error bar. Used in
connection with ErrorBar nodes.

DATA TYPE ERROR Y
static final public int DATA TYPE ERROR Y

Value for attribute ”DataType” indicating that this is a vertical error bar. Used in
connection with ErrorBar nodes.

Constructor

ErrorBar

Chart 2D ErrorBar class • 1057

public ErrorBar(AxisXY axis, double[] x, double[] y, double[] low, double[]
high)

Description

Creates a set of error bars centered at (x[k],y[k]) and with extents low[k],high[k]. If the
attribute ”DataType” has the bit DATA TYPE ERROR X set then this is a horizontal
error bar. If the bit DATA TYPE ERROR Y is set then this is a vertical error bar. If
neither bit is set then no error bar is drawn.

A Data node with the same x and y values can be used to put markers at the center of
each error bar.

Parameters

axis – an Axis object

x – a double array which contains the x coordinates of the points at which the error
bars will be centered. This is used to set the ”X” attribute.

y – a double array which contains the y coordinates of the points at which the error
bars will be centered. This is used to set the ”Y” attribute.

low – a double array which contains the values which define the minimum extent of
the error bars. This is used to set the ”Low” attribute.

high – a double array which contains the values which define the maximum extent
of the error bars. This is used to set the ”High” attribute.

Methods

dataRange
public void dataRange(double[] range)

Description

Overrides Data.dataRange.

Parameter

range – a double array which contains the new range

getHigh
public double[] getHigh()

Description

Convenience routine to get the ”High” attribute.

Returns

the double array which contains the value of the ”High” attribute

getLow
public double[] getLow()

1058 • ErrorBar class JMSL

Description

Convenience routine to get the ”Low” attribute.

Returns

the double array which contains the value of the ”Low” attribute

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setHigh
public void setHigh(double[] value)

Description

Convenience routine to set the ”High” attribute.

Parameter

value – an double array which contains the ”High” values.

setLow
public void setLow(double[] value)

Description

Convenience routine to set the ”Low” attribute.

Parameter

value – an double array which contains the ”Low” values.

Example: ErrorBar Chart

An ErrorBar chart is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import java.awt.Color;

public class ErrorBarEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {

Chart 2D ErrorBar class • 1059

Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double x[] = new double[npoints];
double y1[] = new double[npoints];
double y2[] = new double[npoints];
double y3[] = new double[npoints];
double low1[] = new double[npoints];
double low2[] = new double[npoints];
double low3[] = new double[npoints];
double hi1[] = new double[npoints];
double hi2[] = new double[npoints];
double hi3[] = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++){

x[i] = i * dx;
y1[i] = Math.sin(x[i]);
low1[i] = x[i] - .05;
hi1[i] = x[i] + .05;
y2[i] = Math.cos(x[i]);
low2[i] = y2[i] - .07;
hi2[i] = y2[i] + .03;
y3[i] = Math.atan(x[i]);
low3[i] = y3[i] - .01;
hi3[i] = y3[i] + .04;

}

Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker
d1.setDataType(d1.DATA_TYPE_MARKER);
d2.setDataType(d2.DATA_TYPE_MARKER);
d3.setDataType(d3.DATA_TYPE_MARKER);

// Set Marker Types
d1.setMarkerType(Data.MARKER_TYPE_CIRCLE_PLUS);
d2.setMarkerType(Data.MARKER_TYPE_HOLLOW_SQUARE);
d3.setMarkerType(Data.MARKER_TYPE_ASTERISK);

// Set Marker Colors
d1.setMarkerColor(Color.red);
d2.setMarkerColor(Color.black);
d3.setMarkerColor(Color.blue);

// Create an instances of ErrorBars

1060 • ErrorBar class JMSL

ErrorBar ebar1 = new ErrorBar(axis, x, y1, low1, hi1);
ErrorBar ebar2 = new ErrorBar(axis, x, y2, low2, hi2);
ErrorBar ebar3 = new ErrorBar(axis, x, y3, low3, hi3);

// Set Data Type to Error_X
ebar1.setDataType(ebar1.DATA_TYPE_ERROR_X);
// Set Data Type to Error_Y
ebar2.setDataType(ebar2.DATA_TYPE_ERROR_Y);
ebar3.setDataType(ebar3.DATA_TYPE_ERROR_Y);

// Set Marker Colors
ebar1.setMarkerColor(Color.red);
ebar2.setMarkerColor(Color.black);
ebar3.setMarkerColor(Color.blue);

// Set Data Labels
d1.setTitle("Sine");
d2.setTitle("Cosine");
d3.setTitle("ArcTangent");

// Add a Legend
Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend"));
chart.addLegendItem(0, chart);
legend.setPaint(true);

// Set the Chart Title
chart.getChartTitle().setTitle("ErrorBar Plot");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
ErrorBarEx1.setup(frame.getChart());
frame.show();

}
}

Chart 2D ErrorBar class • 1061

Output

ErrorBar PlotErrorBar Plot

-0.10 0.20 0.50 0.80 1.10 1.40 1.70 2.00
-0.10

0.10

0.30

0.50

0.70

0.90

1.10

1.30

Legend

Sine

Cosine

ArcTangent

HighLowClose class

public class com.imsl.chart.HighLowClose extends com.imsl.chart.Data

High-low-close plot of stock data.

1062 • HighLowClose class JMSL

Fields

DAY
static final public long DAY

Milliseconds per day

serialVersionUID
static final public long serialVersionUID

Constructors

HighLowClose
public HighLowClose(AxisXY axis, double[] x, double[] high, double[] low,
double[] close)

Description

Constructs a high-low-close chart node at specified axis points.

Parameters

axis – an Axis object, the parent of this node.

x – a double array which contains the axis points. This is used to set the ”X”
attribute.

high – a double array which contains the stock’s high prices. This is used to set the
”High” attribute.

low – a double array which contains the stock’s low prices. This is used to set the
”Low” attribute.

close – a double array which contains the stock’s closing prices. This is used to set
the ”Close” attribute.

HighLowClose
public HighLowClose(AxisXY axis, Date start, double[] high, double[] low,
double[] close)

Description

Constructs a high-low-close chart node beginning with specified start date.

Parameters

axis – an Axis object, the parent of this node.

start – a date object which contains the first date.

high – a double array which contains the stock’s high prices. This is used to set the
”High” attribute.

Chart 2D HighLowClose class • 1063

low – a double array which contains the stock’s low prices. This is used to set the
”Low” attribute.

close – a double array which contains the stock’s closing prices. This is used to set
the ”Close” attribute.

HighLowClose
public HighLowClose(AxisXY axis, double[] x, double[] high, double[] low,
double[] close, double[] open)

Description

Constructs a high-low-close-open chart node at specified axis points.

Parameters

axis – an Axis object, the parent of this node.

x – a double array which contains the axis points. This is used to set the ”X”
attribute.

high – a double array which contains the stock’s high prices. This is used to set the
”High” attribute.

low – a double array which contains the stock’s low prices. This is used to set the
”Low” attribute.

close – a double array which contains the stock’s closing prices. This is used to set
the ”Close” attribute.

open – a double array which contains the stock’s opening prices This is used to set
the ”Open” attribute.

HighLowClose
public HighLowClose(AxisXY axis, Date start, double[] high, double[] low,
double[] close, double[] open)

Description

Constructs a high-low-close-open chart node beginning with specified start date.

Parameters

axis – an Axis object, the parent of this node.

start – a date object which contains the first date.

high – a double array which contains the stock’s high prices. This is used to set the
”High” attribute.

low – a double array which contains the stock’s low prices. This is used to set the
”Low” attribute.

close – a double array which contains the stock’s closing prices. This is used to set
the ”Close” attribute.

open – a double array which contains the stock’s opening prices. This is used to set
the ”Open” attribute.

1064 • HighLowClose class JMSL

Methods

dataRange
public void dataRange(double[] range)

Description

Overrides Data.dataRange.

Parameter

range – a double array which contains the new range

getClose
public double[] getClose()

Description

Gets the value of the attribute ”Close”. return a double array of closing stock prices.

getHigh
public double[] getHigh()

Description

Convenience routine to get the ”High” attribute.

Returns

the double array of high stock prices.

getLow
public double[] getLow()

Description

Convenience routine to get the ”Low” attribute.

Returns

the double array of low stock prices.

getOpen
public double[] getOpen()

Description

Gets the value of the attribute ”Open”. return a double array of opening stock prices.

paint
public void paint(Draw draw)

Chart 2D HighLowClose class • 1065

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setClose
public void setClose(double[] value)

Description

Sets the attribute ”Close”.

Parameter

value – a double array of closing stock prices.

setDateAxis
public void setDateAxis(String labelFormat)

Description

Sets up the x-axis for high-low-close plot. This turns off autoscaling on the x-axis and
sets the Window attribute depending on the number of dates being plotted. The Number
attribute determines the number of intervals along the x-axis.

Parameter

labelFormat – is used to format the date axis labels. It sets the TextFormat
attribute in the AxisLabel node.

setHigh
public void setHigh(double[] value)

Description

Convenience routine to set the ”High” attribute.

Parameter

value – an double array of high stock prices.

setLow
public void setLow(double[] value)

Description

Convenience routine to set the ”Low” attribute.

1066 • HighLowClose class JMSL

Parameter

value – an double array of low stock prices.

setOpen
public void setOpen(double[] value)

Description

Sets the attribute ”Open”.

Parameter

value – a double array of opening stock prices.

Example: High-Low-Close Chart

A simple high-low-close chart is constructed in this example.

Autoscaling does not properly handle time data, so autoscaling is turned off for the x (time)
axis and the axis limits are set explicitly.

import com.imsl.chart.*;
import java.awt.Color;
import java.text.DateFormat;
import java.util.Date;
import java.util.GregorianCalendar;

public class HiLoEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

// Date is June 27, 1999
Date date =
new GregorianCalendar(1999, GregorianCalendar.JUNE, 27).getTime();

double high[] = {75., 75.25, 75.25, 75., 74.125, 74.25};
double low[] = {74.125, 74.25, 74., 74.5, 73.75, 73.50};
double close[] = {75., 74.75, 74.25, 74.75, 74., 74.0};

// Create an instance of a HighLowClose Chart
HighLowClose hilo = new HighLowClose(axis, date, high, low, close);
hilo.setMarkerColor("blue");

// Set the HighLowClose Chart Title

Chart 2D HighLowClose class • 1067

chart.getChartTitle().setTitle("A Simple HighLowClose Chart");

// Configure the x-axis
hilo.setDateAxis("Date(SHORT)");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
HiLoEx1.setup(frame.getChart());
frame.show();

}
}

1068 • HighLowClose class JMSL

Output

A Simple HighLowClose ChartA Simple HighLowClose Chart

6/26/99

6/28/99

6/30/99

7/2/99

7/4/99

72.00

73.00

74.00

75.00

76.00

77.00

Candlestick class

public class com.imsl.chart.Candlestick extends com.imsl.chart.HighLowClose

Candlestick plot of stock data.

Two nodes are created as children of this node. One for the up days and one for the down days.

Chart 2D Candlestick class • 1069

Field

serialVersionUID
static final public long serialVersionUID

Constructors

Candlestick
public Candlestick(AxisXY axis, double[] x, double[] high, double[] low,
double[] close, double[] open)

Description

Constructs a candlestick chart node at specified axis points.

Parameters

axis – an Axis object, the parent of this node

x – a double array which contains the axis points. This is used to set the ”X”
attribute.

high – a double array which contains the stock’s high prices. This is used to set the
”High” attribute.

low – a double array which contains the stock’s low prices. This is used to set the
”Low” attribute.

close – a double array which contains the stock’s closing prices. This is used to set
the ”Close” attribute.

open – a double array which contains the stock’s opening prices This is used to set
the ”Open” attribute.

Candlestick
public Candlestick(AxisXY axis, Date start, double[] high, double[] low,
double[] close, double[] open)

Description

Constructs a candlestick chart node beginning with specified start date.

Parameters

axis – an Axis object, the parent of this node

start – a date object which contains the first date

high – a double array which contains the stock’s high prices This is used to set the
”High” attribute.

low – a double array which contains the stock’s low prices This is used to set the
”Low” attribute.

1070 • Candlestick class JMSL

close – a double array which contains the stock’s closing prices This is used to set
the ”Close” attribute.

open – a double array which contains the stock’s opening prices This is used to set
the ”Open” attribute.

Methods

getDown
public CandlestickItem getDown()

Description

Returns the CandlestickItem for down days.

getUp
public CandlestickItem getUp()

Description

Returns the CandlestickItem for up days.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

CandlestickItem class

public class com.imsl.chart.CandlestickItem extends com.imsl.chart.Data

A candlestick for the up days or the down days.

CandlestickItem’s are created by Candlestick; one for up days and one for down days.

Field

serialVersionUID
static final public long serialVersionUID

Chart 2D CandlestickItem class • 1071

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

SplineData class

public class com.imsl.chart.SplineData extends com.imsl.chart.Data

A data set created from a Spline.

Constructor

SplineData
public SplineData(ChartNode parent, Spline spline)

Description

Creates a data node from Spline values.

Parameters

parent – the ChartNode parent of this data node

spline – the Spline to be plotted

Example: SplineData Chart

This example makes use of the SplineData class as well as the two spline smoothing classes in
the package com.imsl.math. This class can be used either as an applet or as an application.

import com.imsl.math.*;
import com.imsl.chart.*;
import com.imsl.stat.Random;
import java.awt.Color;

public class SplineDataEx1 extends javax.swing.JApplet {

1072 • SplineData class JMSL

static private final int nData = 21;
static private final int nSpline = 100;

private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
chart.getChartTitle().setTitle(new Text("Smoothed Spline"));

Legend legend = chart.getLegend();
legend.setTitle(new Text("Legend"));
legend.setViewport(0.7, 0.9, 0.1, 0.3);
legend.setPaint(true);

// Original data
double xData[] = grid(nData);
double yData[] = new double[nData];
for (int k = 0; k < nData; k++) {

yData[k] = f(xData[k]);
}
AxisXY axis = new AxisXY(chart);
Data data = new Data(axis, xData, yData);
data.setDataType(data.DATA_TYPE_MARKER);
data.setMarkerType(Data.MARKER_TYPE_HOLLOW_CIRCLE);
data.setMarkerColor(Color.red);
data.setTitle("Original Data");

// Noisy data
Random random = new Random(123457);
double yNoisy[] = new double[nData];
for (int k = 0; k < nData; k++) {

yNoisy[k] = yData[k] + (2.*random.nextDouble()-1.);
}
data = new Data(axis, xData, yNoisy);
data.setDataType(data.DATA_TYPE_MARKER);
data.setMarkerType(Data.MARKER_TYPE_FILLED_SQUARE);
data.setMarkerSize(0.75);
data.setMarkerColor(Color.blue);
data.setTitle("Noisy Data");

chartSpline(axis, new CsSmooth(xData, yData), Color.red, "CsSmooth");
chartSpline(axis, new CsSmoothC2(xData, yData, nData),

Color.orange, "CsSmoothC2");
}

static private void chartSpline(AxisXY axis, Spline spline,
Color color, String title) {

Data data = new SplineData(axis, spline);
data.setDataType(data.DATA_TYPE_LINE);

Chart 2D SplineData class • 1073

data.setLineColor(color);
data.setTitle(title);

}

static private double[] grid(int nData) {
double xData[] = new double[nData];
for (int k = 0; k < nData; k++) {

xData[k] = 3.0*k / (double)(nData-1);
}
return xData;

}

static private double f(double x) {
return 1.0/(0.1+Math.pow(3.0*(x-1.0),4));

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
SplineDataEx1.setup(frame.getChart());
frame.show();

}
}

1074 • SplineData class JMSL

Output

Smoothed SplineSmoothed Spline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
-1.00

1.00

3.00

5.00

7.00

9.00

11.00

13.00
Legend

Original Data

Noisy Data

CsSmooth

CsSmoothC2

Bar class

public class com.imsl.chart.Bar extends com.imsl.chart.Data

A bar chart.

The class Bar has children of class com.imsl.chart.BarItem (p. 1081) . The attribute
”BarItem” in class Bar is set to the BarItem array of children.

Chart 2D Bar class • 1075

Constructors

Bar
public Bar(AxisXY axis)

Description

Constructs a bar chart.

Parameter

axis – the AxisXY parent of this node

Bar
public Bar(AxisXY axis, double[] y)

Description

Constructs a simple bar chart using supplied y data.

Parameters

axis – the AxisXY parent of this node

y – a double array which contains the y data for the simple bar chart

Bar
public Bar(AxisXY axis, double[] x, double[] y)

Description

Constructs a simple bar chart using supplied x and y data.

Parameters

axis – the AxisXY parent of this node

x – a double array which contains the x data for the simple bar chart

y – a double array which contains the y data for the simple bar chart

Methods

dataRange
public void dataRange(double[] range)

Description

Overrides Data.dataRange.

1076 • Bar class JMSL

Parameter

range – a double array which contains the new range

getBarData
public double[][][] getBarData()

Description

Returns the ”BarData” attribute.

Returns

a BarData[][][] value

getBarSet
public BarSet[][] getBarSet()

Description

Returns the BarSet object.

Returns

a BarSet[][] value

getBarSet
public BarSet getBarSet(int group)

Description

Returns the BarSet object. The group index is assumed to be zero. This method is most
useful for charts with only a single group.

Parameter

group – an int which specifies the group index

Returns

a BarSet[][] value

getBarSet
public BarSet getBarSet(int stack, int group)

Description

Returns the BarSet object.

Parameters

stack – an int which specifies the stack index

group – an int which specifies the group index

Chart 2D Bar class • 1077

Returns

a BarSet[][] value

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setBarData
public void setBarData(double[][][] value)

Description

Convenience routine to set the ”BarData” attribute.

Parameter

value – a BarData[][][] array of objects that make up this bar chart. The first index
refers to the ”stack”, the second refers to the group and the third refers to the x
position.

setLabels
public void setLabels(String[] labels)

Description

Sets up an axis with bar labels. This turns off the tick marks and sets the BarType
attribute. It also turns off autoscaling for the axis and sets its Window and Number and
Ticks attribute as appropriate for a labeled bar chart. The existing value of the BarType
attribute is used to determine the axis to be modified.

Parameter

labels – a String array with which to label the axis. The number of labels must
equal the number of items.

setLabels
public void setLabels(String[] labels, int type)

Description

Sets up an axis with bar labels. This turns off the tick marks and sets the ”BarType”
attribute. It also turns off autoscaling for the axis and sets its ”Window”, ”Number” and
”Ticks” attributes as appropriate for a labeled bar chart.

1078 • Bar class JMSL

Parameters

labels – a String array with which to label the axis. The number of labels must
equal the number of items.

type – an int which specifies the BarType. Legal values are BAR TYPE VERTICAL or
BAR TYPE HORIZONTAL. This determines the axis to be modified.

Example: Stacked Bar Chart

A stacked bar chart is constructed in this example. Bar labels and colors are set and axis labels
are set. This class can be used either as an applet or as an application.

import com.imsl.chart.*;
import com.imsl.stat.Random;
import java.awt.Color;

public class BarEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int nStacks = 2;
int nGroups = 3;
int nItems = 6;

// Generate some random data
Random r = new Random(123457);
double x[] = new double[nItems];
double y[][][] = new double[nStacks][nGroups][nItems];
double dx = 0.5*Math.PI/(x.length-1);
for (int istack = 0; istack < y.length; istack++) {

for (int jgroup = 0; jgroup < y[istack].length; jgroup++) {
for (int kitem = 0; kitem < y[istack][jgroup].length;
kitem++) {

y[istack][jgroup][kitem] = r.nextDouble();
}

}
}

// Create an instance of a Bar Chart
Bar bar = new Bar(axis, y);

// Set the Bar Chart Title
chart.getChartTitle().setTitle("Sales by Region");

Chart 2D Bar class • 1079

// Set the fill outline type;
bar.setFillOutlineType(Bar.FILL_TYPE_SOLID);

// Set the Bar Item fill colors
bar.getBarSet(0,0).setFillColor(Color.red);
bar.getBarSet(0,1).setFillColor(Color.yellow);
bar.getBarSet(0,2).setFillColor(Color.green);
bar.getBarSet(1,0).setFillColor(Color.blue);
bar.getBarSet(1,1).setFillColor(Color.cyan);
bar.getBarSet(1,2).setFillColor(Color.magenta);

chart.getLegend().setPaint(true);
bar.getBarSet(0,0).setTitle("Red");
bar.getBarSet(0,1).setTitle("Yellow");
bar.getBarSet(0,2).setTitle("Green");
bar.getBarSet(1,0).setTitle("Blue");
bar.getBarSet(1,1).setTitle("Cyan");
bar.getBarSet(1,2).setTitle("Magenta");

// Setup the vertical axis for a labeled bar chart.
String labels[] = {

"New York",
"Texas",
"Northern\nCalifornia",
"Southern\nCalifornia",
"Colorado",
"New Jersey"

};
bar.setLabels(labels, bar.BAR_TYPE_VERTICAL);

// Set the text angle
axis.getAxisX().getAxisLabel().setTextAngle(270);

// Set the Y axis title
axis.getAxisY().getAxisTitle().setTitle("Sales ($million)\nby " +
"widget color");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
BarEx1.setup(frame.getChart());
frame.show();

}
}

1080 • Bar class JMSL

Output

Sales by RegionSales by Region

N
ew

 Y
ork

T
exas

N
orthern

C
alifornia

Southern
C

alifornia

C
olorado

N
ew

 Jersey

0.00

0.40

0.80

1.20

1.60

2.00

Sa
le

s
($

m
ill

io
n)

by
 w

id
ge

t c
ol

or

Red

Yellow

Green

Blue

Cyan

Magenta

BarItem class

public class com.imsl.chart.BarItem extends com.imsl.chart.Data

A single bar in a bar chart.

Chart 2D BarItem class • 1081

Methods

dataRange
public void dataRange(double[] range)

Description

Overides Data.dataRange.

Parameter

range – a double array which contains the new range

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

BarSet class

public class com.imsl.chart.BarSet extends com.imsl.chart.ChartNode

A set of bars in a bar chart.

A BarSet is created by Bar and contains a collection of BarItems. Bar creates
a BarSet for each stack-group combination. Each BarSet contains the BarItems
for that combination. Normally all of the BarItems in a BarSet have the same
color, title, etc.

Methods

dataRange
public void dataRange(double[] range)

getBarItem
public BarItem[] getBarItem()

Description

Returns an array of BarItems. This is the collection of all BarItems contained in this bar
group.

1082 • BarSet class JMSL

Returns

a BarItem array

getBarItem
public BarItem getBarItem(int index)

Description

Returns the BarItem given the index.

Parameter

index – an int which specifies the index

Returns

a BarItem associated with the specified index

paint
public void paint(Draw draw)

Pie class

public class com.imsl.chart.Pie extends com.imsl.chart.Axis

A pie chart.

The angle of the first slice is determined by the attribute ”Reference”.

The Pie class is an Axis, because it defines its own mapping to device space.

Constructors

Pie
public Pie(Chart chart)

Description

Constructs a Pie chart object. The ”Viewport” attribute for this node is set to [0.2,0.8]
by [0.2,0.8].

Parameter

chart – the Chart parent of this node

Pie
public Pie(Chart chart, double[] y)

Chart 2D Pie class • 1083

Description

Constructs a Pie chart object with a specified number of slices. An array of y.length
PieSlice nodes are created as children of this node and this array is used to define the
attribute ”PieSlice” in this node. The ”Viewport” attribute for this node is set to [0.2,0.8]
by [0.2,0.8].

Parameters

chart – the Chart parent of this node

y – a double array which contains the values for the pie chart

Methods

getPieSlice
public PieSlice[] getPieSlice()

Description

Returns the PieSlice objects.

Returns

a PieSlice array of PieSlice objects

getPieSlice
public PieSlice getPieSlice(int index)

Description

Returns a specified PieSlice.

Parameter

index – an int, the 0-based index of the pie slice to return

Returns

a PieSlice array of PieSlice objects

mapDeviceToUser
public void mapDeviceToUser(int devX, int devY, double[] userXY)

Description

Maps the device coordinates to user coordinates.

Parameters

devX – an int which specifies the device x-coordinate

devY – an int which specifies the device y-coordinate

userXY – an int[2] array in which the the user coordinates are returned.

1084 • Pie class JMSL

mapUserToDevice
public void mapUserToDevice(double userX, double userY, int[] devXY)

Description

Maps the user coordinates (userX,userY) to the device coordinates devXY.

Parameters

userX – a double which specifies the user x-coordinate

userY – a double which specifies the user y-coordinate

devXY – an int[2] array in which the device coordinates are returned.

setData
public PieSlice[] setData(double[] y)

Description

Changes the data in a Pie chart object.

Parameter

y – a double array which contains the values for the pie chart.

Returns

A PieSlice array containing the updated PieSlice. If the number of slices is unchanged
then the existing pie slice array, defined by the attribute ”PieSlice” in this node, is reused.
If the number is different, a new array is allocated, using the existing PieSlice elements to
initialize the new array.

setupMapping
public void setupMapping()

Description

Initializes the mappings between user and coordinate space. This must be called
whenever the screen size, the window or the viewport may have changed. Generally, it is
safest to call this each time the chart is repainted.

Example: Pie Chart

A simple Pie chart is constructed in this example. Pie slice labels and colors are set and one pie
slice is exploded from the center. This class extends JFrameChart, which manages the window.

import com.imsl.chart.*;
import java.awt.Color;
import java.applet.Applet;

public class PieEx1 extends javax.swing.JApplet {
private JPanelChart panel;

Chart 2D Pie class • 1085

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
// Create an instance of a Pie Chart
double y[] = {10., 20., 30., 40.};
Pie pie = new Pie(chart, y);

// Set the Pie Chart Title
chart.getChartTitle().setTitle("A Simple Pie Chart");

// Set the colors of the Pie Slices
PieSlice[] slice = pie.getPieSlice();
slice[0].setFillColor(Color.red);
slice[1].setFillColor(Color.blue);
slice[2].setFillColor(Color.black);
slice[3].setFillColor(Color.yellow);

// Set the Pie Slice Labels
pie.setLabelType(pie.LABEL_TYPE_TITLE);
slice[0].setTitle("Fish");
slice[1].setTitle("Pork");
slice[2].setTitle("Poultry");
slice[3].setTitle("Beef");

// Explode a Pie Slice
slice[0].setExplode(0.2);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
PieEx1.setup(frame.getChart());
frame.show();

}
}

1086 • Pie class JMSL

Output

A Simple Pie ChartA Simple Pie Chart

Fish

Pork

Poultry

Beef

PieSlice class

public class com.imsl.chart.PieSlice extends com.imsl.chart.Data

One wedge of a pie chart.

com.imsl.chart.Pie (p. 1083) creates PieSlice objects as its children, one per pie wedge. A
specific slice can be retrieved using the method com.imsl.chart.Pie.getPieSlice (p. ??) .

Chart 2D PieSlice class • 1087

All of the slices can be retrieved using the method com.imsl.chart.Pie.getPieSlice (p. ??) .

The drawing of the slice is controlled by the fill attributes in this node.

Methods

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

setAngles
protected void setAngles(double angleA, double angleB)

Description

Sets the angles, in degrees, that determine the extent of this slice.

Parameters

angleA – is the angle, in degrees, at which the slice begins

angleB – is the angle, in degrees, at which the slice ends

Dendrogram class

public class com.imsl.chart.Dendrogram extends com.imsl.chart.Data

A Dendrogram chart for cluster analysis.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

Dendrogram
public Dendrogram(AxisXY axis, ClusterHierarchical clusterHierarchical)

1088 • Dendrogram class JMSL

Description

Constructs a vertical dendrogram chart using supplied ClusterHierarchical object.

Parameters

axis – the AxisXY parent of this node

clusterHierarchical – a ClusterHierarchical object

Dendrogram
public Dendrogram(AxisXY axis, ClusterHierarchical clusterHierarchical, int
type)

Description

Constructs a dendrogram chart using supplied ClusterHierarchical object.

Parameters

axis – the AxisXY parent of this node

clusterHierarchical – a ClusterHierarchical object

type – an int which specifies the DendrogramType. Legal values are
DENDROGRAM TYPE VERTICAL or DENDROGRAM TYPE HORIZONTAL.

Dendrogram
public Dendrogram(AxisXY axis, double[] clusterLevel, int[] leftSons, int[]
rightSons)

Description

Constructs a vertical dendrogram chart using supplied data.

Parameters

axis – the AxisXY parent of this node

clusterLevel – a double array which contains the levels at which the clusters are
joined

leftSons – an int array which contains the left sons of each merged cluster

rightSons – an int array which contains the right sons of each merged cluster

Dendrogram
public Dendrogram(AxisXY axis, double[] clusterLevel, int[] leftSons, int[]
rightSons, int type)

Description

Constructs a dendrogram chart using supplied data.

Chart 2D Dendrogram class • 1089

Parameters

axis – the AxisXY parent of this node

clusterLevel – a double array which contains the levels at which the clusters are
joined

leftSons – an int array which contains the left sons of each merged cluster

rightSons – an int array which contains the right sons of each merged cluster

type – an int which specifies the DendrogramType. Legal values are
DENDROGRAM TYPE VERTICAL or DENDROGRAM TYPE HORIZONTAL.

Methods

dataRange
public void dataRange(double[] range)

Description

Overrides Data.dataRange.

Parameter

range – a double array which contains the new range

getCoordinates
public double[][] getCoordinates()

Description

Convenience routine to get the ”Coordinates” attribute.

Returns

the double[][] array of coordinates.

getLeftSons
public int[] getLeftSons()

Description

Convenience routine to get the ”LeftSons” attribute.

Returns

the int array of left sons.

getLevels
public double[] getLevels()

Description

Convenience routine to get the ”Levels” attribute.

1090 • Dendrogram class JMSL

Returns

the double array of cluster levels.

getOrder
public int[] getOrder()

Description

Convenience routine to get the ”Order” attribute.

Returns

an int array of the order of clusters as they appear in the dendrogram.

getRightSons
public int[] getRightSons()

Description

Convenience routine to get the ”RightSons” attribute.

Returns

an int array of right sons.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setCoordinates
public void setCoordinates(double[][] value)

Description

Convenience routine to set the ”Coordinates” attribute.

Parameter

value – a double[][] array of coordinates.

setLabels
public void setLabels(String[] labels)

Chart 2D Dendrogram class • 1091

Description

Sets up the axis labels for dendrogram plot. This turns off autoscaling on the axis and
sets the Window attribute depending on the number of points being plotted.

Note that user-defined labels will be re-ordered to match the order of the clusters
displayed in the plot.

Parameter

labels – a String array with which to label the axis. The number of labels must
equal the number of items.

setLeftSons
public void setLeftSons(int[] value)

Description

Convenience routine to set the ”LeftSons” attribute.

Parameter

value – an int array of left sons.

setLevels
public void setLevels(double[] value)

Description

Convenience routine to set the ”Levels” attribute.

Parameter

value – a double array of cluster levels.

setLineColor
public void setLineColor(Color[] colors)

Description

Define colors for individual clusters. The color of the topmost level should be set using
ChartNode.setLineColor(java.awt.Color color). This method will color N clusters,
where N is the number of elements in the colors[] array.

Parameter

colors – a Color array which contains each color to use for the subclusters.

setLineColor
public void setLineColor(String[] colors)

1092 • Dendrogram class JMSL

Description

Define colors for individual clusters. The color of the topmost level should be set using
ChartNode.setLineColor(String color). This method will color N clusters, where N is
the number of elements in the colors[] array.

Parameter

colors – a String array which contains each color to use for the subclusters.

setOrder
public void setOrder(int[] value)

Description

Convenience routine to set the ”Order” attribute.

Parameter

value – an int array of the order of clusters as they appear in the dendrogram.

setRightSons
public void setRightSons(int[] value)

Description

Convenience routine to set the ”RightSons” attribute.

Parameter

value – an int array of right sons.

Example: Dendrogram

A Dendrogram.

import com.imsl.stat.*;
import com.imsl.chart.*;

public class DendrogramEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);
panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {

/*
1998 test data from 17 school districts in Los Angeles County.

Chart 2D Dendrogram class • 1093

The variables were:
lep - Proportion of LEP students to total tested
read - The Reading Scaled Score for 5th Grade
math - The Math Scaled Score for 5th Grade
lang - The Language Scaled Score for 5th Grade

The districts were:
lau - Los Angeles
ccu - Culver City
bhu - Beverly Hills
ing - Inglewood
com - Compton
smm - Santa Monica Malibu
bur - Burbank
gln - Glendale
pvu - Palos Verdes
sgu - San Gabriel
abc - Artesia, Bloomfield, and Carmenita
pas - Pasadena
lan - Lancaster
plm - Palmdale
tor - Torrance
dow - Downey
lbu - Long Beach

input lep read math lang str3 district
.38 626.5 601.3 605.3 lau
.18 654.0 647.1 641.8 ccu
.07 677.2 676.5 670.5 bhu
.09 639.9 640.3 636.0 ing
.19 614.7 617.3 606.2 com
.12 670.2 666.0 659.3 smm
.20 651.1 645.2 643.4 bur
.41 645.4 645.8 644.8 gln
.07 683.5 682.9 674.3 pvu
.39 648.6 647.8 643.1 sgu
.21 650.4 650.8 643.9 abc
.24 637.0 636.9 626.5 pas
.09 641.1 628.8 629.4 lan
.12 638.0 627.7 628.6 plm
.11 661.4 659.0 651.8 tor
.22 646.4 646.2 647.0 dow
.33 634.1 632.0 627.8 lbu
*/

double[][] data = {
{.38, 626.5, 601.3, 605.3},
{.18, 654.0, 647.1, 641.8},
{.07, 677.2, 676.5, 670.5},
{.09, 639.9, 640.3, 636.0},
{.19, 614.7, 617.3, 606.2},
{.12, 670.2, 666.0, 659.3},
{.20, 651.1, 645.2, 643.4},
{.41, 645.4, 645.8, 644.8},
{.07, 683.5, 682.9, 674.3},
{.39, 648.6, 647.8, 643.1},

1094 • Dendrogram class JMSL

{.21, 650.4, 650.8, 643.9},
{.24, 637.0, 636.9, 626.5},
{.09, 641.1, 628.8, 629.4},
{.12, 638.0, 627.7, 628.6},
{.11, 661.4, 659.0, 651.8},
{.22, 646.4, 646.2, 647.0},
{.33, 634.1, 632.0, 627.8}};

String[] lab = {"lau", "ccu", "bhu", "ing", "com", "smm",
"bur", "gln", "pvu", "sgu", "abc", "pas",
"lan", "plm", "tor", "dor", "lbu"};

// 3rd arg in Dissimilarities gives different results for 0,1,2
try {

Dissimilarities dist = new Dissimilarities(data, 0, 1, 1);
double[][] distanceMatrix = dist.getDistanceMatrix();
ClusterHierarchical clink = new ClusterHierarchical(

dist.getDistanceMatrix(),4,0);

int nClusters = 4;
int[] iclus = clink.getClusterMembership(nClusters);
int[] nclus = clink.getObsPerCluster(nClusters);

AxisXY axis = new AxisXY(chart);

// use either method below to create the chart
Dendrogram dc = new Dendrogram(axis, clink, Data.DENDROGRAM_TYPE_HORIZONTAL);

dc.setLabels(lab);
dc.setLineColor(new String[] {"Blue","Green", "Red", "Orange"});

} catch (com.imsl.IMSLException e) {
System.out.println(e.getStackTrace());

}
}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();
DendrogramEx1.setup(frame.getChart());
frame.setVisible(true);

}
}

Chart 2D Dendrogram class • 1095

Output

0.00 1.50 3.00 4.50 6.00 7.50 9.00

pvu
bhu

tor
smm
com

lau
sgu
gln
lbu

pas
bur
ccu
abc
dor

plm
lan
ing

Polar class

public class com.imsl.chart.Polar extends com.imsl.chart.Axis

This Axis node is used for polar charts. In a polar plot, the (x,y) coordinates in Data nodes are
interpreted as (r,theta) values.

1096 • Polar class JMSL

Constructor

Polar
public Polar(Chart chart)

Description

Create an AxisPolar.

Parameter

chart – a Chart object, the parent of this node

Methods

getAxisR
public AxisR getAxisR()

Description

Return the radius axis node.

Returns

the AxisR radius axis node

getAxisTheta
public AxisTheta getAxisTheta()

Description

Return the angular axis node.

Returns

the AxisTheta axis node

getGridPolar
public GridPolar getGridPolar()

Description

Returns the grid.

Returns

the grid, a GridPolar object

mapDeviceToUser
public void mapDeviceToUser(int devX, int devY, double[] userRT)

Description

Map the device coordinates to polar coordinates.

Chart 2D Polar class • 1097

Parameters

devX – an int, the device x-coordinate

devY – an int, the device y-coordinate

userRT – a double[2] array in which the user coordinates, (radius,theta), are
returned.

mapUserToDevice
public void mapUserToDevice(double userRadius, double userTheta, int[]
devXY)

Description

Map the polar coordinates (userRadius,userAngle) to the device coordinates devXY.

Parameters

userRadius – a double, the user radius coordinate

userTheta – a double, the user angle coordinate

devXY – an int[2] array in which the device coordinates are returned.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – the Draw object to be painted

setupMapping
public void setupMapping()

Description

Initializes the mappings between user and coordinate space. This must be called
whenever the screen size, the window or the viewport may have changed.

Heatmap class

public class com.imsl.chart.Heatmap extends com.imsl.chart.Data

Heatmap creates a chart from a two-dimensional array of double precision values or
java.awt.Color values. Optionally, each cell in the heatmap can be labeled.

1098 • Heatmap class JMSL

If the input is a two-dimensional array of double values then a Colormap object is used to map
the real values to colors.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

Heatmap
public Heatmap(AxisXY axis, double xmin, double xmax, double ymin, double
ymax, Color[][] color)

Description

Creates a Heatmap from an array of Color values.

Parameters

axis – An AxisXY object, the parent of this node.

xmin – The minimum x-value of the color data.

xmax – The maximum x-value of the color data.

ymin – The minimum y-value of the color data.

ymax – The maximum y-value of the color data.

color – A two-dimensional Color array of the color values. The value of
color[0][0] is the color of the cell whose lower left corner is (xmin, ymin).

Heatmap
public Heatmap(AxisXY axis, double xmin, double xmax, double ymin, double
ymax, double zmin, double zmax, double[][] data, Colormap colormap)

Description

Creates a Heatmap from an array of double values and a Colormap.

Parameters

axis – An AxisXY object, the parent of this node.

xmin – The minimum x-value of the color data.

xmax – The maximum x-value of the color data.

ymin – The minimum y-value of the color data.

ymax – The maximum y-value of the color data.

zmin – The data value that corresponds to the initial (t=0) value in the Colormap.

Chart 2D Heatmap class • 1099

zmax – The data value that corresponds to the final (t=1) value in the Colormap.

data – A two-dimensional double array containing the data values. The x-interval
(xmin , xmax) is uniformly divided and mapped into the first index of data. The
y-interval (ymin, ymax) is uniformly divided and mapped into the second index of
data. So, the value of data[0][0] is used to determine the color of the cell whose
lower left corner is (xmin,ymin).

colormap – Maps the values in data to colors. If a cell has a data value equal to t
then its color is the value of the colormap at s, where

s =
t− zmin

zmax− zmin
.

Methods

dataRange
public void dataRange(double[] range)

Description

Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range are
updated to reflect the extent of the data in this node. range is an input/output variable.
Its value should be updated only if the data in this node is outside the range already in
the array.

Parameter

range – A array containing the updated range = {xmin,xmax,ymin,ymax}.

getColormap
public Colormap getColormap()

Description

Returns the value of the ”Colormap” attribute. This is the Colormap associated with this
Heatmap.

Returns

The Colormap value of the ”Colormap” attribute, if defined. Otherwise, null is returned.

getHeatmapLabels
public Text[][] getHeatmapLabels()

Description

Returns the value of the ”HeatmapLabels” attribute.

1100 • Heatmap class JMSL

Returns

A two-dimensional array of {@link Text} objects that are the value of the
”HeatmapLabels” attribute, if defined. Otherwise, null is returned.

getHeatmapLegend
public Heatmap.Legend getHeatmapLegend()

Description

Returns the heatmap legend.

By default, the legend is not drawn because its ”Paint” attribute is set to false. To show
the legend set ”Paint” to true, .i.e., contour.getContourLegend().setPaint(true);

Returns

The Legend object associated with the Heatmap.

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – The Draw object to be painted.

setColormap
public void setColormap(Colormap colorMap)

Description

Sets the value of the ”Colormap” attribute. This is the Colormap associated with this
Heatmap.

Parameter

colorMap – The Colormap object’s ”ColorMap” value.

setHeatmapLabels
public void setHeatmapLabels(Text[][] labels)

Description

Sets the value of the ”HeatmapLabels” attribute.

Chart 2D Heatmap class • 1101

Parameter

labels – A two-dimensional array of com.imsl.chart.Text (p. 997) objects that
are used to set the ”HeatmapLabels” attribute.

setHeatmapLabels
public void setHeatmapLabels(String[][] labels)

Description

Sets the value of the ”HeatmapLabels” attribute. The value of the ”HeatmapLabels”
attribute is a two dimensional array of Text objects. Each Text object is created from the
corresponding label value with TEXT X CENTER|TEXT Y CENTER alignment.

Parameter

labels – A two-dimensional array of String objects used to create the two
dimensional array of Text objects that is the value of the attribute. The array of
labels and the array of Text objects have the same shape.

Example: Heatmap from Color array

A 5 by 10 array of Color objects is created by linearly interpolating red along the x-axis, blue
along the y-axis and mixing in a random amount of green. The data range is set to [0,10] by
[0,1].

import com.imsl.chart.*;
import java.awt.Color;
import java.util.Random;

public class HeatmapEx1 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();
AxisXY axis = new AxisXY(chart);

double xmin = 0.0;
double xmax = 10.0;
double ymin = 0.0;
double ymax = 1.0;

int nxRed = 5;
int nyBlue = 10;
Random random = new Random(123457L);
Color color[][] = new Color[nxRed][nyBlue];

1102 • Heatmap class JMSL

for (int i = 0; i < nxRed; i++) {
for (int j = 0; j < nyBlue; j++) {

int r = (int)(255.*i/nxRed);
int g = random.nextInt(255);
int b = (int)(255.*j/nyBlue);
color[i][j] = new Color(r,g,b);

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, color);
axis.getAxisX().getAxisTitle().setTitle("Red");
axis.getAxisY().getAxisTitle().setTitle("Blue");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();
HeatmapEx1.setup(frame.getChart());
frame.show();

}
}

Chart 2D Heatmap class • 1103

Output

0.00 2.00 4.00 6.00 8.00 10.00
Red

0.00

0.20

0.40

0.60

0.80

1.00

B
lu

e

Example: Heatmap from Color array

A 5 by 10 data array is created by linearly interpolating from the lower left corner to the upper
right corner and adding in a uniform random variable. A red temperature color map is used.
This maps the minimum data value to light green and the maximum data value to dark green.

The legend is enabled by setting its paint attribute to true.

import com.imsl.chart.*;
import java.awt.Color;

1104 • Heatmap class JMSL

import java.util.Random;

public class HeatmapEx2 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();
AxisXY axis = new AxisXY(chart);

int nx = 5;
int ny = 10;
double xmin = 0.0;
double xmax = 10.0;
double ymin = -3.0;
double ymax = 2.0;
double fmin = 0.0;
double fmax = nx + ny - 1;

double data[][] = new double[nx][ny];
Random random = new Random(123457L);
for (int i = 0; i < nx; i++) {

for (int j = 0; j < ny; j++) {
data[i][j] = i + j + random.nextDouble();

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, fmax,

data, Colormap.RED_TEMPERATURE);
heatmap.getHeatmapLegend().setPaint(true);
heatmap.getHeatmapLegend().setTitle("Heat");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();
HeatmapEx2.setup(frame.getChart());
frame.show();

}
}

Chart 2D Heatmap class • 1105

Output

0.00 2.00 4.00 6.00 8.00 10.00
-3.00

-2.00

-1.00

0.00

1.00

2.00
Heat

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Example: Heatmap with Labels

A 5 by 10 array of random data is created and a similarly sized array of strings is also created.
These labels contain spreadsheet-like indices and the random data value expressed as a
percentage.

The legend is enabled by setting its paint attribute to true. The tick marks in the legend are
formatted using the percentage NumberFormat object. A title is also set in the legend.

import com.imsl.chart.*;

1106 • Heatmap class JMSL

import java.awt.Color;
import java.text.NumberFormat;
import java.util.Random;

public class HeatmapEx3 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);
JPanelChart panel = new JPanelChart(chart);
getContentPane().add(panel, java.awt.BorderLayout.CENTER);
setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();
AxisXY axis = new AxisXY(chart);

double xmin = 0.0;
double xmax = 10.0;
double ymin = 0.0;
double ymax = 1.0;

NumberFormat format = NumberFormat.getPercentInstance();

int nx = 5;
int ny = 10;
double data[][] = new double[nx][ny];
String labels[][] = new String[nx][ny];
Random random = new Random(123457L);
for (int i = 0; i < nx; i++) {

for (int j = 0; j < ny; j++) {
data[i][j] = random.nextDouble();
labels[i][j] = "ABCDE".charAt(i) + Integer.toString(j) + "\n"

+ format.format(data[i][j]);
}

}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, 1.0,

data, Colormap.BLUE);
heatmap.setHeatmapLabels(labels);
heatmap.setTextColor("orange");
heatmap.getHeatmapLegend().setPaint(true);
heatmap.getHeatmapLegend().setTextFormat(format);
heatmap.getHeatmapLegend().setTitle("Percentage");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();
HeatmapEx3.setup(frame.getChart());
frame.show();

}
}

Chart 2D Heatmap class • 1107

Output

0.00 2.00 4.00 6.00 8.00 10.00
0.00

0.20

0.40

0.60

0.80

1.00

A0
41%

B0
57%

C0
32%

D0
91%

E0
57%

A1
16%

B1
33%

C1
96%

D1
93%

E1
4%

A2
82%

B2
27%

C2
11%

D2
31%

E2
76%

A3
49%

B3
11%

C3
1%

D3
42%

E3
31%

A4
44%

B4
88%

C4
9%

D4
100%

E4
5%

A5
21%

B5
90%

C5
49%

D5
4%

E5
63%

A6
99%

B6
72%

C6
98%

D6
79%

E6
10%

A7
48%

B7
49%

C7
55%

D7
65%

E7
89%

A8
96%

B8
62%

C8
47%

D8
79%

E8
70%

A9
67%

B9
10%

C9
19%

D9
82%

E9
52%

Percentage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Heatmap.Legend class

public class com.imsl.chart.Heatmap.Legend extends com.imsl.chart.AxisXY

A legend for use with a heatmap.

This Legend should be used with heatmaps, rather than the usual chart legend.

1108 • Heatmap class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Method

paint
public void paint(Draw draw)

Description

Paints this node and all of its children. This is normally called only by the paint method
in this node’s parent.

Parameter

draw – The Draw object to be painted.

Colormap interface

public interface com.imsl.chart.Colormap

Colormaps are mappings from the unit interval to Colors. They are a one-dimensional
parameterized path through the color cube.

Fields

BLUE
static final public Colormap BLUE

Linear blue colormap.

BLUE GREEN RED YELLOW
static final public Colormap BLUE GREEN RED YELLOW

Blue/green/red/yellow colormap.

BLUE RED
static final public Colormap BLUE RED

Blue/red colormap.

Chart 2D Colormap interface • 1109

BLUE WHITE
static final public Colormap BLUE WHITE

Blue/white colormap.

BW LINEAR
static final public Colormap BW LINEAR

Black and white (grayscale) colormap.

GREEN
static final public Colormap GREEN

Linear green colormap.

GREEN PINK
static final public Colormap GREEN PINK

Green/pink colormap.

GREEN RED BLUE WHITE
static final public Colormap GREEN RED BLUE WHITE

Green/red/blue/white colormap.

GREEN WHITE EXPONENTIAL
static final public Colormap GREEN WHITE EXPONENTIAL

Exponential green/white colormap.

GREEN WHITE LINEAR
static final public Colormap GREEN WHITE LINEAR

Linear green/white colormap.

PRISM
static final public Colormap PRISM

Prism colormap.

RED
static final public Colormap RED

Linear red colormap.

RED PURPLE
static final public Colormap RED PURPLE

Red/purple colormap.

1110 • Colormap interface JMSL

RED TEMPERATURE
static final public Colormap RED TEMPERATURE

Red temperature colormap.

SPECTRAL
static final public Colormap SPECTRAL

Spectral colormap.

STANDARD GAMMA
static final public Colormap STANDARD GAMMA

Standard gamma colormap.

WHITE BLUE LINEAR
static final public Colormap WHITE BLUE LINEAR

Linear blue/white colormap.

Method

color
public Color color(double t)

Description

Maps the parameterization interval [0,1] into Colors.

Parameter

t – A parameter value in the interval [0,1].

Returns

A Color value corresponding to t.

IllegalArgumentException is thrown if t is outside of the range [0,1]

Chapter 24. Chart 2D Colormap interface • 1111

1112 • Colormap interface JMSL

Chapter 25: Chart 3D

Types

class Chart3D . 1113
class JFrameChart3D. 1117
class ChartNode3D . 1118
class Background . 1129
class Canvas3DChart . 1129
class BufferedPaint . 1133
class ChartLights . 1134
class AmbientLight . 1135
class DirectionalLight. .1135
class PointLight . 1137
class AxisXYZ. .1139
class AxisBox. .1141
class Axis3D. .1143
class AxisLabel . 1146
class AxisLine . 1147
class AxisTitle. .1148
class MajorTick . 1148
class Surface. .1149
class Data . 1160
interface ColorFunction . 1173
class ColormapLegend . 1173

Chart3D class

public class com.imsl.chart3d.Chart3D extends com.imsl.chart3d.ChartNode3D
implements Serializable

Root node of a 3d chart tree.

1113

Field

serialVersionUID
static final public long serialVersionUID

Constructor

Chart3D
public Chart3D()

Description

Creates a new instance of Chart3D

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

cleanup
public void cleanup()

Description

Cleanup memory use and references used by the chart. Typically it should be invoked by
an applet’s destroy method.

clone
public Object clone()

Description

Returns a clone of the graphics tree.

Returns

an Object which is a clone of this graphics tree

clone
protected Object clone(Map hashClonedNode)

Description

Returns a clone of this node.

Parameter

hashClonedNode – the Hashtable to be cloned

1114 • Chart3D class JMSL

Returns

an Object which is a clone of this node

finalize
protected void finalize()

getBackground
public Background getBackground()

Description

Returns the value of the ”Background” attribute. This is the node used to draw the
chart’s background.

Returns

The Background value of the ”Background” attribute, if defined. Otherwise, null is
returned.

getCanvas
public Canvas3D getCanvas()

getKeyboard
public boolean getKeyboard()

Description

Returns the value of the ”Keyboard” attribute. If true then the mouse can be used to
zoom, translate and reset the chart. Its default value is true.

Returns

the value for the ”Keyboard” attribute.

getOrbit
public boolean getOrbit()

Description

Returns the value of the ”Orbit” attribute. If true then the mouse can be used to rotate,
zoom and translate the chart. Its default value is true.

Returns

the value for the ”Orbit” attribute.

getViewPlatformTransformation
public void getViewPlatformTransformation(Transform3D t3d)

Description

Sets the transformation for the view platform.

Chart 3D Chart3D class • 1115

Parameter

t3d – is set to the ViewPlatform transformation.

resetViewPlatformTransformation
public void resetViewPlatformTransformation()

Description

Resets the view platform transformation to its default value.

setCanvas
public void setCanvas(Canvas3D canvas)

setKeyboard
public void setKeyboard(boolean keyboard)

Description

Sets the value of the ”Keyboard” attribute. If true then the keyboard can be used to
zoom, translate and reset the chart.

Parameter

keyboard – is the value for the ”Keyboard” attribute.

setOrbit
public void setOrbit(boolean orbit)

Description

Sets the value of the ”Orbit” attribute. If true then the mouse can be used to rotate,
zoom and translate the chart.

Parameter

orbit – is the value for the ”Orbit” attribute.

setViewPlatformTransformation
public void setViewPlatformTransformation(Transform3D t3d)

Description

Sets the transformation for the view platform.

Parameter

t3d – is the new ViewPlatform transformation.

1116 • Chart3D class JMSL

JFrameChart3D class

public class com.imsl.chart3d.JFrameChart3D extends javax.swing.JFrame
implements Serializable

JFrameChart3D is a JFrame that contains a chart. It is designed to allow simple charting
applications to be quickly implemented. It contains a menu bar with ”Print” and ”Exit” menu
items.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

JFrameChart3D
public JFrameChart3D()

Description

Creates new JFrameChart3D to display a chart.

JFrameChart3D
public JFrameChart3D(Chart3D chart)

Description

Creates new JFrameChart3D to display a given chart.

Parameter

chart – is the Chart to be displayed

Methods

getCanvas
public Canvas3DChart getCanvas()

Description

Returns the Canvas3DChart into which the chart is drawn.

Chart 3D JFrameChart3D class • 1117

getChart3D
public Chart3D getChart3D()

Description

Return the Chart object.

Returns

the chart being displayed by this container

render
public void render()

Description

Renders the 3D chart node tree into a Java 3D scene graph.

ChartNode3D class

abstract public class com.imsl.chart3d.ChartNode3D extends
com.imsl.chart.AbstractChartNode implements Serializable

The base class of all of the nodes in the 3D chart tree.

Fields

AXIS TITLE AT END
static final public int AXIS TITLE AT END

Value for attribute ”AxisTitlePosition” indicating that the axis title should be placed at
the end of the axis.

AXIS TITLE PARALLEL
static final public int AXIS TITLE PARALLEL

Value for attribute ”AxisTitlePosition” indicating that the axis title should be placed
parallel to the axis.

DATA TYPE LINE
static final public int DATA TYPE LINE

Value for attribute ”DataType” indicating that the data points should be connected with
line segments. This is the default setting.

DATA TYPE MARKER

1118 • ChartNode3D class JMSL

static final public int DATA TYPE MARKER
Value for attribute ”DataType” indicating that a marker should be drawn at each data
point.

DATA TYPE PICTURE
static final public int DATA TYPE PICTURE

Value for attribute ”DataType” indicating that an image (attribute ”Image”) should be
drawn at each data point. This can be used to draw fancy markers.

DATA TYPE TUBE
static final public int DATA TYPE TUBE

Value for attribute ”DataType” indicating that a tube connecting the data points should
be drawn. Tubes are similar to lines, but tubes are shaded. The diameter of the tube is
controlled by the attribute ”LineWidth”. Tube color is controlled by the attribute
”LineColor”.

MARKER TYPE CUBE
static final public int MARKER TYPE CUBE

Flag for a cube data marker.

MARKER TYPE CUSTOM
static final public int MARKER TYPE CUSTOM

Flag for a custom marker

MARKER TYPE PLUS
static final public int MARKER TYPE PLUS

Flag for a 3D plus sign data marker.

MARKER TYPE SIMPLE CUBE
static final public int MARKER TYPE SIMPLE CUBE

Flag for a simple cube (no edge) data marker.

MARKER TYPE SIMPLE PLUS
static final public int MARKER TYPE SIMPLE PLUS

Flag for a simple 2D plus sign (no edge) data marker.

MARKER TYPE SIMPLE TETRAHEDRON
static final public int MARKER TYPE SIMPLE TETRAHEDRON

Flag for a simple tetrahedron (no edge) data marker.

MARKER TYPE SPHERE

Chart 3D ChartNode3D class • 1119

static final public int MARKER TYPE SPHERE
Flag for a sphere data marker.

MARKER TYPE TETRAHEDRON
static final public int MARKER TYPE TETRAHEDRON

Flag for a tetrahedron data marker.

serialVersionUID
static final public long serialVersionUID

Constructor

ChartNode3D
public ChartNode3D(ChartNode3D parent)

Description

Construct a ChartNode3D object.

Parameter

parent – the ChartNode3D parent of this object

Methods

addToSceneGraph
abstract protected void addToSceneGraph(Group parent)

Description

Called to add this object to the scene graph.

Parameter

parent – is the node in the scene graph at which this object is to be added.

getAxisTitlePosition
public int getAxisTitlePosition()

Description

Returns the value of the ”AxisTitlePosition” attribute.

Returns

The int value of the ”AxisTitlePosition” attribute, if defined. Otherwise,
AXIS TITLE AT END is returned.

1120 • ChartNode3D class JMSL

getBoundingSphere
public BoundingSphere getBoundingSphere()

Description

Gets the spherical bounding region object BoundingSphere.

Returns

a BoundingSphere object which is defined by a centerpoint and a radius.

getChildren
final public ChartNode3D[] getChildren()

Description

Returns an array of the children of this node. If there are no children, a 0-length array is
returned.

Returns

a ChartNode3D array which contains the children of this node

getColorFunction
public ColorFunction getColorFunction()

Description

Returns the value of the ”ColorFunction” attribute.

Returns

The ColorFunction value of the ”ColorFunction” attribute, if defined. If not defined null
is returned.

getConcatenatedViewport
public double[] getConcatenatedViewport()

Description

Returns the value of the ”Viewport” attribute concatenated with the ”Viewport”
attributes set in its ancestor nodes.

Returns

a double[4] array containing xmin, xmax, ymin, ymax, zmin, zmax

getDataType
public int getDataType()

Description

Returns the value of the ”DataType” attribute.

Chart 3D ChartNode3D class • 1121

Returns

The int value of the ”DataType” attribute, if defined. Otherwise, DATA TYPE MARKER is
returned.

getMarkerPulsingCycle
public double getMarkerPulsingCycle()

Description

Returns the value of the ”MarkerPulsingCycle” attribute.

Returns

The double value of the ”MarkerPulsingCycle” attribute, if defined. Otherwise, a default
of 0.0 is returned.

getMarkerPulsingCycleOffset
public double getMarkerPulsingCycleOffset()

Description

Returns the value of the ”MarkerPulsingCycleOffset” attribute.

Returns

The double value of the ”MarkerPulsingCycleOffset” attribute, if defined. Otherwise, a
default of 0.0 is returned.

getMarkerPulsingMaximumScale
public double getMarkerPulsingMaximumScale()

Description

Returns the value of the ”MarkerPulsingMaximumScale” attribute.

Returns

The double value of the ”MarkerPulsingMaximumScale” attribute, if defined. Otherwise,
a default of 2.0 is returned.

getMarkerPulsingMinimumScale
public double getMarkerPulsingMinimumScale()

Description

Returns the value of the ”MarkerPulsingMinimumScale” attribute.

Returns

The double value of the ”MarkerPulsingMinimumScale” attribute, if defined. Otherwise,
a default of 0.0 is returned.

getMarkerRotatingAxis
public double[] getMarkerRotatingAxis()

1122 • ChartNode3D class JMSL

Description

Returns the value of the ”MarkerRotatingAxis” attribute.

Returns

The double value of the ”MarkerRotatingAxis” attribute, if defined. Otherwise, a default
of 0.0 is returned.

getMarkerRotatingCycle
public double getMarkerRotatingCycle()

Description

Returns the value of the ”MarkerRotatingCycle” attribute.

Returns

The double value of the ”MarkerRotatingCycle” attribute, if defined. Otherwise, a
default of 0.0 is returned.

getMarkerRotatingCycleOffset
public double getMarkerRotatingCycleOffset()

Description

Returns the value of the ”MarkerRotatingCycleOffset” attribute.

Returns

The double value of the ”MarkerRotatingCycleOffset” attribute, if defined. Otherwise, a
default of 0.0 is returned.

getMarkerType
public int getMarkerType()

Description

Returns the value of the ”MarkerType” attribute.

Returns

The int value of the ”MarkerType” attribute, if defined. Otherwise, a default of
MARKER TYPE CUBE is returned.

getMaterial
public Material getMaterial()

Description

Returns the value of the ”Material” attribute.

Chart 3D ChartNode3D class • 1123

Returns

The value of the ”Material” attribute, if defined. Otherwise, a default of material is
returned.

getParent
public ChartNode3D getParent()

Description

Returns the parent of this node. Note that this is not an attribute setting. Note that
there is no setParent function.

Returns

A ChartNode3D object which contains this node’s parent. This is null in the case of the
root node of the chart tree, since that node has no parent.

getTitle
public String getTitle()

Description

Returns the value of the ”Title” attribute.

Returns

the String value of the ”Title” attribute

getViewport
public double[] getViewport()

Description

Returns the value of the ”Viewport” attribute.

Returns

a double[6] array containing xmin, xmax, ymin, ymax, zmin, zmax

getVirtualUniverse
public VirtualUniverse getVirtualUniverse()

Description

Returns the value of the ”Universe” attribute.

Returns

The value of the ”Universe” attribute.

getZ
public double[] getZ()

Description

Returns the value of the ”Z” attribute.

1124 • ChartNode3D class JMSL

Returns

the double array which contains the value of the ”Z” attribute

setAxisTitlePosition
public void setAxisTitlePosition(int value)

Description

Sets the value of the ”AxisTitlePosition” attribute.

Parameter

value – ”AxisTitlePosition” value. This should be AXIS TITLE AT END or
AXIS TITLE PARALLEL. AXIS TITLE AT END is the default value.

setBoundingSphere
public void setBoundingSphere(BoundingSphere bounds)

Description

Sets the spherical bounding region object BoundingSphere.

Parameter

bounds – a BoundingSphere object which is defined by a centerpoint and a radius.

setColorFunction
public void setColorFunction(ColorFunction colorFunction)

Description

Sets the value of the ”ColorFunction” attribute. ColorFunction defines a value-dependent
coloring.

Parameter

colorFunction – defines a mapping from x,y,z to a color.

setDataType
public void setDataType(int value)

Description

Sets the value of the ”DataType” attribute.

Parameter

value – ”DataType” value. This should be some xor-ed combination of
DATA TYPE LINE, DATA TYPE MARKER.

setMarkerPulsingCycle
public void setMarkerPulsingCycle(double time)

Chart 3D ChartNode3D class • 1125

Description

Sets the value of the ”MarkerPulsingCycle” attribute. The default marker cycle time is
zero. If ”MarkerPulsingCycle” is greater then zero then markers pulse with the specified
cycle time.

Parameter

time – a double which specifies the ”MarkerPulsingCycle” time in seconds.

setMarkerPulsingCycleOffset
public void setMarkerPulsingCycleOffset(double offset)

Description

Sets the value of the ”MarkerPulsingCycleOffset” attribute.

Parameter

offset – a double which specifies the ”MarkerPulsingCycleOffset”. This is the
time, in seconds, by which a pulsing marker starting time is offset from the initial
time. This allows different markers to pulse with different phases.

setMarkerPulsingMaximumScale
public void setMarkerPulsingMaximumScale(double max)

Description

Sets the value of the ”MarkerPulsingMaximumScale” attribute.

Parameter

max – a double which specifies the ”MarkerPulsingMaximumScale”. This is the
amount by which a pulsing marker is scaled at the top of a pulse. Its default value is
2.0.

setMarkerPulsingMinimumScale
public void setMarkerPulsingMinimumScale(double min)

Description

Sets the value of the ”MarkerPulsingMinimumScale” attribute.

Parameter

min – a double which specifies the ”MarkerPulsingMinimumScale”. This is the
amount by which a pulsing marker is scaled at the bottom of a pulse. Its default
value is 0.0.

setMarkerRotatingAxis
public void setMarkerRotatingAxis(double x, double y, double z)

1126 • ChartNode3D class JMSL

Description

Sets the value of the ”MarkerRotatingAxis” attribute. The default marker cycle time is
zero. If ”MarkerRotatingAxis” is greater then zero then markers rotate with the specified
cycle time.

Parameters

x – is the x-coordinate of the rotation axis.

y – is the y-coordinate of the rotation axis.

z – is the z-coordinate of the rotation axis.

setMarkerRotatingCycle
public void setMarkerRotatingCycle(double time)

Description

Sets the value of the ”MarkerRotatingCycle” attribute. The default marker cycle time is
zero. If ”MarkerRotatingCycle” is greater then zero then markers rotate with the
specified cycle time.

Parameter

time – a double which specifies the ”MarkerRotatingCycle” time in seconds.

setMarkerRotatingCycleOffset
public void setMarkerRotatingCycleOffset(double offset)

Description

Sets the value of the ”MarkerRotatingCycleOffset” attribute.

Parameter

offset – a double which specifies the ”MarkerRotatingCycleOffset”. This is the
time, in seconds, by which a rotating marker starting time is offset from the initial
time. This allows different markers to rotate with different phases.

setMarkerType
public void setMarkerType(int type)

Description

Sets the value of the ”MarkerType” attribute. This indicates which marker is to be
drawn.

Parameter

type – the int ”MarkerType” value.

setMaterial
public void setMaterial(Material material)

Chart 3D ChartNode3D class • 1127

Description

Sets the value of the ”Material” attribute. This indicates which matherial is to be used
when lighting a surface.
Parameter

material – is a Java 3D Material value.

setTitle
public void setTitle(String value)

Description

Sets the value of the ”Title” attribute.
Parameter

value – a String which contains the ”Title” value

setViewport
public void setViewport(double[] value)

Description

Sets the value of the ”Viewport” attribute. The viewport is the subregion of the drawing
surface where the plot is to be drawn. ”Viewport” coordinates are [0,1] by [0,1] by [0,1]
This attribute affects only Axis nodes, since they contain the mappings to device space.
Parameter

value – A double array of length 6 which contains the ”Viewport” values for xmin,
xmax, ymin, ymax, zmin, zmax. The value saved is a copy of the input array.

setViewport
public void setViewport(double xmin, double xmax, double ymin, double ymax,
double zmin, double zmax)

Description

Sets the value of the ”Viewport” attribute.
Parameters

xmin – a double, the minimum x-coordinate of the viewport
xmax – a double, the maximum x-coordinate of the viewport
ymin – a double, the minimum y-coordinate of the viewport
ymax – a double, the maximum y-coordinate of the viewport
zmin – a double, the minimum z-coordinate of the viewport
zmax – a double, the maximum z-coordinate of the viewport

setZ
public void setZ(Object value)

1128 • ChartNode3D class JMSL

Description

Sets the value of the ”Z” attribute.

Parameter

value – the Object which contains the ”Z” value

Background class

public class com.imsl.chart3d.Background extends com.imsl.chart3d.ChartNode3D
implements Serializable

Background of the chart. The chart’s background is a solid color defined by this node’s
”FillColor” attribute value. The default background color is white.

This node is created by the Chart3D node. To disable this node, set its ”Paint” attribute value
to false.

More complex background’s can be implemented by registering
com.imsl.chart3d.Canvas3DChart.Paint (p. 1132) objects with
com.imsl.chart3d.Canvas3DChart (p. 1129) . These objects can be used to draw to the
background either in front or behind the 3D chart.

Field

serialVersionUID
static final public long serialVersionUID

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

Canvas3DChart class

public class com.imsl.chart3d.Canvas3DChart extends javax.media.j3d.Canvas3D

A canvas for rendering a 3D chart.

Chart 3D Background class • 1129

Constructors

Canvas3DChart
public Canvas3DChart()

Description

Creates a Canvas3DChart with a new Chart3D object.

Canvas3DChart
public Canvas3DChart(Chart3D chart)

Description

Creates a Canvas3DChart with a given Chart3D object.

Parameter

chart – is the Chart3D object associated with this canvas.

Methods

addPostRenderPaint
public void addPostRenderPaint(Canvas3DChart.Paint paint)

Description

Adds a Paint object to draw to the canvas after the the 3D image is rendered.

Parameter

paint – is the Paint object to be removed.

addPreRenderPaint
public void addPreRenderPaint(Canvas3DChart.Paint paint)

Description

Adds a Paint object to draw to the canvas before the the 3D image is rendered.

Parameter

paint – implements the paint method to be called before the 3D image is rendered.

getChart3D
public Chart3D getChart3D()

Description

Returns the Chart3D associated with this canvas.

1130 • Canvas3DChart class JMSL

Returns

the Chart3D associated with this canvas.

paint
public void paint(Graphics g)

Description

Paint method overriden to correct a problem in JDK 1.4. See for details.

postRender
public void postRender()

Description

Calls the Paint objects added to the post-render list. This routine is called by the Java
3D rendering loop after completing all rendering to the canvas for this frame and before
the buffer swap.

NOTE: Applications should not call this method.

postSwap
public void postSwap()

Description

Writes the chart to a file as a bitmap image. Use the write method to trigger writing of
the image.

NOTE: Applications should not call this method.

preRender
public void preRender()

Description

Calls the Paint objects added to the pre-render list. This routine is called by the Java 3D
rendering loop after clearing the canvas and before any rendering has been done for this
frame.

NOTE: Applications should not call this method.

removePostRenderPaint
public void removePostRenderPaint(Canvas3DChart.Paint paint)

Description

Removes a Paint object from the list of post-render Paint objects.

Chart 3D Canvas3DChart class • 1131

Parameter

paint – is the Paint object to be removed.

removePreRenderPaint
public void removePreRenderPaint(Canvas3DChart.Paint paint)

Description

Removes a Paint object from the list of pre-render Paint objects.

Parameter

paint – implements the paint method to be called before the 3D image is rendered.

render
public void render()

Description

Creates a scene graph from the chart tree and starts rendering the scene graph into this
canvas. This method must be called after the chart tree has been created and associated
with this canvas.

write
public void write(String filename, String format)

Description

Write the canvas as an image file after it is next redrawn.

Parameters

filename – is the name of the file to which the image is to be written.
format – is the image format name, such as ”PNG” or ”JPEG”. The supported
formats are the same as for ImageIO.write.

Canvas3DChart.Paint interface

public interface com.imsl.chart3d.Canvas3DChart.Paint

Interface for 2D drawing on the canvas before or after the the 3D image is drawn.

Method

paint
public void paint(Graphics graphics)

1132 • Canvas3DChart class JMSL

Parameter

graphics – is a java.awt.Graphics2D object.

BufferedPaint class

public class com.imsl.chart3d.BufferedPaint implements
com.imsl.chart3d.Canvas3DChart.Paint

A Paint object cached into an image.

This is used to cache a static image that will be painted into the canvas containing a 3D chart.
Since the 3D chart canvas will be repainted many times each second, it is faster to compose the
image once.

Constructor

BufferedPaint
public BufferedPaint(Canvas3DChart.Paint paint, int x, int y, int width, int
height, Component component)

Description

The paint method in Canvas3DChart.Paint is written into an image of size width by
height. Any whitespace around the image is trimmed. The trimmed image is then used
to paint onto the canvas.

Parameters

paint – is the Canvas3DChart.Paint object to be cached.

x – is the pixel position in the canvas of the left edge of the image. If x is negative
then —x— is the distance from the right edge of the image to the right edge of the
component.

y – is the pixel position in the canvas of the top edge of the image. If y is negative
then —y— is the distance from the bottom edge of the image to the bottom edge of
the component.

width – is the maximum width of the image.

height – is the maximum height of the image.

component – is the Component in which the image is to be painted.

Methods

paint

Chart 3D BufferedPaint class • 1133

public void paint(Graphics g)

Description

Paint the image onto the canvas. This method should be called by the canvas, not by any
application.

Parameter

g – is the Graphics object.

trim
public void trim()

Description

Returns a subimage with the white space trimmed off.

ChartLights class

public class com.imsl.chart3d.ChartLights extends com.imsl.chart3d.ChartNode3D
implements Serializable

Default set of lights.

ChartLights defines a default set of lights for the chart. If customized lights are desired, then
this node can be disabled by setting its ”Paint” attribute to false and explicitly adding lights to
the scene.

Field

serialVersionUID
static final public long serialVersionUID

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

1134 • ChartLights class JMSL

AmbientLight class

public class com.imsl.chart3d.AmbientLight extends com.imsl.chart3d.ChartNode3D
implements Serializable

An ambient light. Ambient light is light that seems to come from all directions.

Field

serialVersionUID
static final public long serialVersionUID

Constructor

AmbientLight
public AmbientLight(Chart3D parent)

Description

Creates an ambient light.

Parameter

parent – is the Chart3D parent of this node.

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

DirectionalLight class

public class com.imsl.chart3d.DirectionalLight extends
com.imsl.chart3d.ChartNode3D implements Serializable

A directional light.

A directional light is an oriented light with an origin at infinity. The direction is defined by the
attribute ”Direction”.

Chart 3D AmbientLight class • 1135

The light’s position is in a coordinate system in which the default viewport is the cube [-1,1] by
[-1,1] by [-1,1].

Field

serialVersionUID
static final public long serialVersionUID

Constructors

DirectionalLight
public DirectionalLight(Chart3D parent)

Description

Creates a directional light pointing in the negative z direction.

Parameter

parent – is the Chart3D parent of this node.

DirectionalLight
public DirectionalLight(Chart3D parent, double x, double y, double z)

Description

Creates a directional light pointing with a specified direction.

Parameters

parent – is the Chart3D parent of this node.

x – is the x-component of the direction vector.

y – is the y-component of the direction vector.

z – is the z-component of the direction vector.

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getDirection
public Vector3f getDirection()

Description

Returns the value of the ”Direction” attribute.

1136 • DirectionalLight class JMSL

Returns

The Vector3f value of the ”Direction” attribute, if defined. Otherwise, (0, 0, -1) is
returned.

setDirection
public void setDirection(Vector3f direction)

Description

Sets the value of the ”Direction” attribute to a light direction.

Parameter

direction – Vector3f direction.

setDirection
public void setDirection(double x, double y, double z)

Description

Sets the value of the ”Direction” attribute to a light direction.

Parameters

x – is the x-component of the direction vector.

y – is the y-component of the direction vector.

z – is the z-component of the direction vector.

PointLight class

public class com.imsl.chart3d.PointLight extends com.imsl.chart3d.ChartNode3D
implements Serializable

A point light source.

A point light source is at a fixed point in space and radiates light equally in all directions away
from the light source. The light’s position is defined by the attribute ”Position”.

The light’s position is in a coordinate system in which the default viewport is the cube [-1,1] by
[-1,1] by [-1,1].

Field

serialVersionUID
static final public long serialVersionUID

Chart 3D PointLight class • 1137

Constructors

PointLight
public PointLight(Chart3D parent)

Description

Creates a point light source at the origin.

Parameter

parent – is the Chart3D parent of this node.

PointLight
public PointLight(Chart3D parent, double x, double y, double z)

Description

Creates a point light at a specified position.

Parameters

parent – is the Chart3D parent of this node.

x – is the x-component of the position.

y – is the y-component of the position.

z – is the z-component of the position.

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getPosition
public Point3f getPosition()

Description

Returns the value of the ”Position” attribute.

Returns

The Point3f value of the ”Position” attribute, if defined. Otherwise, (0, 0, 0) is returned.

setPosition
public void setPosition(Point3f position)

Description

Sets the value of the ”Point” attribute to a light point.

1138 • PointLight class JMSL

Parameter

position – is the location of the light.

setPosition
public void setPosition(double x, double y, double z)

Description

Sets the value of the ”Point” attribute to a light point.

AxisXYZ class

public class com.imsl.chart3d.AxisXYZ extends com.imsl.chart3d.ChartNode3D
implements Serializable

The axes for an x-y-z chart.

This node is used when the mapping to and from user and device space can be decomposed into
an x, a y and a z mapping.

Field

serialVersionUID
static final public long serialVersionUID

Constructor

AxisXYZ
public AxisXYZ(Chart3D chart)

Description

Create an AxisXYZ. This also creates three Axis3D nodes as children of this node. They
hold the decomposed mapping.

Parameter

chart – the Chart3D parent of this node

Methods

addToSceneGraph

Chart 3D AxisXYZ class • 1139

protected void addToSceneGraph(Group parent)

getAxisBox
public AxisBox getAxisBox()

Description

Return the axis box node.

Returns

the AxisBox node

getAxisX
public Axis3D getAxisX()

Description

Return the x-axis node.

Returns

the Axis3D x-axis node

getAxisY
public Axis3D getAxisY()

Description

Return the y-axis node.

Returns

the Axis3D y-axis node

getAxisZ
public Axis3D getAxisZ()

Description

Return the z-axis node.

Returns

the Axis3D z-axis node

mapCubeToUser
public void mapCubeToUser(double cubeX, double cubeY, double cubeZ, double[]
userXYZ)

Description

Map the cube coordinates to user coordinates.

1140 • AxisXYZ class JMSL

Parameters

cubeX – an int, the cube x-coordinate

cubeY – an int, the cube y-coordinate

cubeZ – an int, the cube z-coordinate

userXYZ – a double[3] array on input. On output, the user coordinates.

mapUserToCube
public void mapUserToCube(double userX, double userY, double userZ, double[]
cubeXYZ)

Description

Map the user coordinates (userX,userY) to the cube coordinates cubeXYZ.

Parameters

userX – a double, the user x-coordinate

userY – a double, the user y-coordinate

userZ – a double, the user y-coordinate

cubeXYZ – an int[3] array on input. On output, the cube coordinates.

AxisBox class

public class com.imsl.chart3d.AxisBox extends com.imsl.chart3d.ChartNode3D
implements Serializable

Box behind the axis.

The axis box is drawn behind the axis. The color is defined by this node’s ”FillColor” attribute
value. The default color is a transparent gray.

The box also includes grid lines. They are drawn with this node’s ”LineColor” attribute.

This node is created by the Chart3D node. To disable this node, set its ”Paint” attribute value
to false.

Fields

FACE XA
static final public int FACE XA

Show the x = a face of the box.

Chart 3D AxisBox class • 1141

FACE XB
static final public int FACE XB

Show the x = b face of the box.

FACE YA
static final public int FACE YA

Show the y = a face of the box.

FACE YB
static final public int FACE YB

Show the y = b face of the box.

FACE ZA
static final public int FACE ZA

Show the z = a face of the box.

FACE ZB
static final public int FACE ZB

Show the z = b face of the box.

serialVersionUID
static final public long serialVersionUID

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getVisibleFaces
public int getVisibleFaces()

Description

Returns the flag indicating which faces of the box are to be drawn. The default value is
FACE XB | FACE YB | FACE ZA.

setVisibleFaces
public void setVisibleFaces(int visibleFaces)

Description

Sets the ”VisibleFaces” attribute indicating which faces of the box are to be drawn.

1142 • AxisBox class JMSL

Parameter

visibleFaces – is an or-ed combination of the flags FACE XA, FACE YA, FACE ZA,
FACE XB, FACE YB, FACE ZB.

Axis3D class

public class com.imsl.chart3d.Axis3D extends com.imsl.chart3d.ChartNode3D
implements Serializable

An x-axis, y-axis or a z-axis.

Axis3D is created by com.imsl.chart3d.AxisXYZ (p. 1139) as its child. It can be retrieved
using the method com.imsl.chart3d.AxisXYZ.getAxisX (p. ??) or
com.imsl.chart3d.AxisXYZ.getAxisY (p. ??) or com.imsl.chart3d.AxisXYZ.getAxisZ (p.
??) .

It in turn creates the following child nodes: com.imsl.chart3d.AxisLine (p. 1147) ,
com.imsl.chart3d.AxisLabel (p. 1146) , com.imsl.chart3d.AxisTitle (p. 1148) and
com.imsl.chart3d.MajorTick (p. 1148) .

The number of tick marks (”Number” attribute) is set to 4, but autoscaling can change this
value.

Field

serialVersionUID
static final public long serialVersionUID

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getAxisLabel
public AxisLabel getAxisLabel()

Description

Returns the label node associated with this axis.

Returns

the AxisLabel node created as a child by this node

Chart 3D Axis3D class • 1143

getAxisLine
public AxisLine getAxisLine()

Description

Returns the axis line node associated with this axis.
Returns

the AxisLine node created as a child by this node

getAxisTitle
public AxisTitle getAxisTitle()

Description

Returns the title node associated with this axis.
Returns

the AxisTitle node created as a child by this node

getFirstTick
public double getFirstTick()

Description

Convenience routine to get the ”FirstTick” attribute.
Returns

the double value of the ”FirstTick” attribute, if defined. Otherwise, window[0] is
returned.

getMajorTick
public MajorTick getMajorTick()

Description

Returns the major tick node associated with this axis.
Returns

the MajorTick node created as a child by this node

getTickInterval
public double getTickInterval()

Description

Retrieves the tick interval.
Returns

a double which specifies the tick interval

getTicks
public double[] getTicks()

1144 • Axis3D class JMSL

Description

Returns the value of the ”Ticks” attribute, if set. If not set, then computed tick values
are returned.

Returns

the double value of the ”Ticks” attribute, if defined. Otherwise, the computed tick values
are returned.

getType
public int getType()

Description

Returns the axis type.

Returns

an int which specifies the node type; can be AXIS X, AXIS Y, or AXIS Z

getWindow
public double[] getWindow()

Description

Returns the window for an Axis1D.

Returns

an array of length two containing the range of this axis.

setFirstTick
public void setFirstTick(double firstTick)

Description

Convenience routine to set the ”FirstTick” attribute.

Parameter

firstTick – a double, the location of the first tick

setTickInterval
public void setTickInterval(double tickInterval)

Description

Sets the tick interval.

Parameter

tickInterval – a double which specifies a tick interval

setTicks
public void setTicks(double[] ticks)

Chart 3D Axis3D class • 1145

Description

Sets the value of the ”Ticks” attribute. The attribute Number is set to the length of the
array.

Parameter

ticks – an array of doubles which contain the location, in user coordinates, of the
major tick marks. If set, this attribute overrides the automatic computation of the
tick values.

setWindow
public void setWindow(double[] window)

Description

Sets the window for an Axis1D.

Parameter

window – is an array of length two containing the range of this axis.

setWindow
public void setWindow(double min, double max)

Description

Sets the window for an Axis1D.

Parameters

min – is the value of the left/bottom end of the axis.

max – is the value of the right/top end of the axis.

AxisLabel class

public class com.imsl.chart3d.AxisLabel extends com.imsl.chart3d.ChartNode3D
implements Serializable

The labels on an axis.

AxisLabel is created by com.imsl.chart3d.Axis3D (p. 1143) as its child. It can be retrieved
using the method com.imsl.chart3d.Axis3D.getAxisLabel (p. ??) .

Axis labels are placed at the tick mark locations. The number of tick marks is determined by
the attribute ”Number”. Tick marks are evenly spaced. If the attribute ”Labels” is defined
then it is used to label the tick marks.

If ”Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute ”Window”. The numbers are formatted using the attribute
”TextFormat”.

1146 • AxisLabel class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getLabels
public String[] getLabels()

Description

Returns the ”Labels” attribute.

Returns

a String array containing the axis labels, if set. Otherwise, null is returned.

setLabels
public void setLabels(String[] value)

Description

Sets the axis label values for this node to be used instead of the default numbers. The
attribute ”Number” is also set to value.length.

Parameter

value – a String array containing the labels for the major tick marks

AxisLine class

public class com.imsl.chart3d.AxisLine extends com.imsl.chart3d.ChartNode3D
implements Serializable

The axis line.

AxisLine is created by com.imsl.chart3d.Axis3D (p. 1143) as its child. It can be retrieved
using the method com.imsl.chart3d.Axis3D.getAxisLine (p. ??) .

Chart 3D AxisLine class • 1147

Field

serialVersionUID
static final public long serialVersionUID

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

AxisTitle class

public class com.imsl.chart3d.AxisTitle extends com.imsl.chart3d.ChartNode3D
implements Serializable

Axis title. The position of the axis title is controlled by the attribute ”AxisTitlePosition”. It
can be either parallel to the axis line or at the end of the axis line.

This node is created by the Axis3D node. To disable this node, set its ”Paint” attribute value
to false.

Field

serialVersionUID
static final public long serialVersionUID

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

MajorTick class

public class com.imsl.chart3d.MajorTick extends com.imsl.chart3d.ChartNode3D
implements Serializable

1148 • AxisTitle class JMSL

Major ticks marks.

This node is created by the Axis3D node. To disable this node, set its ”Paint” attribute value
to false.

Field

serialVersionUID
static final public long serialVersionUID

Method

addToSceneGraph
protected void addToSceneGraph(Group parent)

Surface class

public class com.imsl.chart3d.Surface extends com.imsl.chart3d.Data implements
Serializable

Surface from a function or from a set of scattered data points.

Fields

serialVersionUID
static final public long serialVersionUID

SURFACE TYPE FLAT
static final public int SURFACE TYPE FLAT

Draws the surface using flat shading.

In a flat shaded surface, each polygon has a uniform color.

SURFACE TYPE GOURAUD
static final public int SURFACE TYPE GOURAUD

Draws the surface using Gouraud shading. In a Gouraud shaded surface, colors are
interpolated across each polygon.

Chart 3D Surface class • 1149

SURFACE TYPE MESH
static final public int SURFACE TYPE MESH

Draws the surface as a mesh.

SURFACE TYPE NICEST
static final public int SURFACE TYPE NICEST

Draws the surface using the best shading available.

Constructors

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[][] z)

Description

Creates a surface from a gridded data set. A surface is created from a grid of points in a
rectangular area. The point z[i][j] is the z-value at (x[i], y[j]).

Parameters

parent – an AxisXYZ object, the parent of this node.

x – is the array of x values.

y – is the array of y values.

z – is the two-dimensional array of z values of size x.length by y.length.

Surface
public Surface(AxisXYZ parent, double[] x, double[] y, double[][] z,
Color[][] color)

Description

Creates a colored surface from a gridded data set.

A surface is created from a grid of points in a rectangular area. The point z[i][j] is the
z-value at (x[i], y[j]).

Parameters

parent – an AxisXYZ object, the parent of this node.

x – is the array of x values.

y – is the array of y values.

z – is the two-dimensional array of z values.

color – is the two-dimensional array of color values. The array must have the same
size as the array z.

1150 • Surface class JMSL

Surface
public Surface(AxisXYZ parent, Surface.ZFunction zFunction, double xmin,
double xmax, double ymin, double ymax)

Description

Creates a surface from a function. A surface is created by evaluation of the function on a
grid of points in a rectangular area, [xmin,xmax] by [ymin,ymax], of the xy-plane.

Parameters

parent – an AxisXYZ object, the parent of this node.

zFunction – the function, z = f(x, y).

xmin – the minimum x-value of the function rectangle.

xmax – the maximum x-value of the function rectangle.

ymin – the minimum y-value of the function rectangle.

ymax – the maximum y-value of the function rectangle.

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

dataRange
public void dataRange(double[] range)

Description

Update the data range.

range = {xmin,xmax,ymin,ymax,zmin,zmax}. The entries in range are updated to
reflect the extent of the data in this node.

Range is an input/output variable. Its value should be updated only if the data in this
node is outside the range already in the array.

Parameter

range – a double array which contains the updated range,
{xmin,xmax,ymin,ymax,zmin,zmax}

getNumberGridPointsX
public int getNumberGridPointsX()

Description

Returns the value of the ”NumberGridPointsX” attribute.

This is the grid points in the x-direction for surfaces defined by a function.

Chart 3D Surface class • 1151

Returns

The number of grid points in the x-direction. Default is 40.

getNumberGridPointsY
public int getNumberGridPointsY()

Description

Returns the value of the ”NumberGridPointsY” attribute.
This is the grid points in the y-direction for surfaces defined by a function.
Returns

The number of grid points in the y-direction. Default is 40.

getSurfaceType
public int getSurfaceType()

Description

Returns the attribute ”SurfaceType”.
Returns

one of SURFACE TYPE MESH, SURFACE TYPE FLAT, SURFACE TYPE GOURAUD,
SURFACE TYPE NICEST or SURFACE TYPE MESH or-ed with one of the other types. Default
value is SURFACE TYPE NICEST.

setNumberGridPointsX
public void setNumberGridPointsX(int nx)

Description

Sets the value of the ”NumberGridPointsX” attribute.
This is the grid points in the x-direction for surfaces defined by a function.
Parameter

nx – The number of grid points in the x-direction. Default is 40.

setNumberGridPointsY
public void setNumberGridPointsY(int ny)

Description

Sets the value of the ”NumberGridPointsY” attribute.
This is the grid points in the y-direction for surfaces defined by a function.
Parameter

ny – The number of grid points in the y-direction. Default is 40.

setSurfaceType
public void setSurfaceType(int surfaceType)

1152 • Surface class JMSL

Description

Sets the attribute ”SurfaceType”.

Parameter

surfaceType – is one of SURFACE TYPE MESH, SURFACE TYPE FLAT,
SURFACE TYPE GOURAUD, SURFACE TYPE NICEST or SURFACE TYPE MESH or-ed with
one of the other types.

Example: Call Option Surface shaded by Vega

A surface chart of call option values shaded by vega is rendered. The X, Y, and Z axes
represent Stock Price, Time, and Option Value respectively.

import com.imsl.chart3d.*;
import com.imsl.chart.Colormap;
import com.imsl.math.ZeroFunction;
import com.imsl.stat.Cdf;
import java.awt.Color;

/**
* Surface chart of call option value shaded by vega.
*/
public class SurfaceEx1 extends JFrameChart3D {

/**
* Creates new form CallOptionSurface
*/
public SurfaceEx1() {

Chart3D chart = getChart3D();
chart.setTextFormat("0.0000");

AxisXYZ axis = new AxisXYZ(chart);
axis.setAxisTitlePosition(axis.AXIS_TITLE_PARALLEL);
axis.setTextFormat("0.0");

axis.getAxisX().getAxisTitle().setTitle("Stock Price");
axis.getAxisY().getAxisTitle().setTitle("Time");
axis.getAxisZ().getAxisTitle().setTitle("Option Value");

double strike = 20.0;
double rate = 0.045;
double sigma = 0.25;
CallOption callOption = new CallOption(strike, rate, sigma);

double minStock = 0.0;
double maxStock = 2.0 * strike;
double minTime = 0.0;
double maxTime = 1.0;
Surface surface = new Surface(axis, callOption, minStock, maxStock, minTime, maxTime);
surface.setColorFunction(callOption);
surface.setSurfaceType(Surface.SURFACE_TYPE_MESH | Surface.SURFACE_TYPE_NICEST);

Chart 3D Surface class • 1153

ColormapLegend colormapLegend = new ColormapLegend(chart, Colormap.RED_TEMPERATURE, -10., 60.);
colormapLegend.setTitle("Vega");
colormapLegend.setTextFormat("0.00");
colormapLegend.setNumber(25);
colormapLegend.setAutoscaleInput(colormapLegend.AUTOSCALE_WINDOW);
colormapLegend.setAutoscaleOutput(colormapLegend.AUTOSCALE_NUMBER);

this.setSize(375, 375);
render();

}

public class CallOption implements Surface.ZFunction, ColorFunction {
private double strike, rate, sigma;

/**
* Compute call option value using the Black-Scholes formula.
*/

public CallOption(double strike, double rate, double sigma) {
this.strike = strike;
this.rate = rate;
this.sigma = sigma;

}

public double f(double stock, double time) {
double d1 = (Math.log(stock/strike)+(rate+0.5*sigma*sigma)*time)/(sigma*Math.sqrt(time));
double d2 = d1 - sigma*Math.sqrt(time);
return stock*Cdf.normal(d1) - strike*Math.exp(-rate*time)*Cdf.normal(d2);

}

public double delta(double stock, double time) {
double d1 = (Math.log(stock/strike)+(rate+0.5*sigma*sigma)*time)/(sigma*Math.sqrt(time));
return Cdf.normal(d1);

}

public double vega(double stock, double time) {
double d1 = (Math.log(stock/strike)+(rate+0.5*sigma*sigma)*time)/(sigma*Math.sqrt(time));
return stock * Math.sqrt(time) * Cdf.normal(d1);

}

public Color color(double stock, double time, double optionValue) {
double vega = vega(stock, time);
double s = (vega + 10.0) / (60.0+10.);
return Colormap.RED_TEMPERATURE.color(s);

}
}

public static void main(String args[]) {
new SurfaceEx1().setVisible(true);

}
}

1154 • Surface class JMSL

Output

Chart 3D Surface class • 1155

Example: Daily Carbon Monoxide Levels by Time of Day

A surface plot is rendered to show the carbon monoxide levels in a metropolitan area over the
course of a year by time of day.

import com.imsl.chart3d.*;
import com.imsl.chart.Colormap;
import com.imsl.io.*;
import java.awt.Color;
import java.io.*;
import java.sql.SQLException;
import java.util.GregorianCalendar;

/**
* CO surface shaded by temperature
*/
public class SurfaceEx2 extends JFrameChart3D {

static private final int xMin = 0;
static private final int xMax = 365;
static private final int yMin = 0;
static private final int yMax = 144;

private double temp[][];
private double co[][];

private double tempMin, tempMax;

private Colormap colormap = Colormap.SPECTRAL;

/**
* Creates new form COSurface
*/
public SurfaceEx2() throws IOException, SQLException {

temp = readData("temp.csv");
co = readData("co.csv");

tempMin = temp[0][0];
tempMax = temp[0][0];
for (int i = 0; i < xMax; i++) {

for (int j = 0; j < yMax; j++) {
tempMin = Math.min(temp[i][j], tempMin);
tempMax = Math.max(temp[i][j], tempMax);

}
}

Chart3D chart = getChart3D();
chart.getBackground().setFillColor("lightyellow");
AxisXYZ axis = new AxisXYZ(chart);
axis.setAxisTitlePosition(axis.AXIS_TITLE_PARALLEL);

axis.getAxisX().getAxisTitle().setTitle("Day of Year");
final GregorianCalendar initialDate = new GregorianCalendar(2000,

GregorianCalendar.JANUARY, 1);
axis.getAxisX().setAutoscaleOutput(0);
GregorianCalendar lastDate = (GregorianCalendar)initialDate.clone();

1156 • Surface class JMSL

lastDate.add(GregorianCalendar.DATE, 365);
axis.getAxisX().setWindow(initialDate.getTimeInMillis(), lastDate.getTimeInMillis());
axis.getAxisX().setTextFormat(new java.text.SimpleDateFormat("MMM"));

axis.getAxisY().getAxisTitle().setTitle("Time of Day");
axis.getAxisY().setAutoscaleOutput(0);
axis.getAxisY().setWindow(yMin, yMax);
String labelsY[] = {"0:00", "6:00", "12:00", "18:00", "24:00"};
axis.getAxisY().getAxisLabel().setLabels(labelsY);

axis.getAxisZ().getAxisTitle().setTitle("CO");
axis.getAxisZ().getAxisTitle().setAxisTitlePosition(axis.AXIS_TITLE_AT_END);
axis.getAxisZ().setTextFormat("0.0");

GregorianCalendar date = (GregorianCalendar)initialDate.clone();
double x[] = new double[xMax];
for (int i = 0; i < xMax; i++) {

x[i] = date.getTimeInMillis();
date.add(GregorianCalendar.DATE, 1);

}

double y[] = new double[yMax];
for (int j = 0; j < yMax; j++) {

y[j] = j - 1;
}

Color color[][] = new Color[xMax][yMax];
for (int i = 0; i < xMax; i++) {

for (int j = 0; j < yMax; j++) {
double t = (tempMax-temp[i][j]) / (tempMax-tempMin);
color[i][j] = colormap.color(t);

}
}

Surface surface = new Surface(axis, x, y, co, color);
surface.setSurfaceType(Surface.SURFACE_TYPE_NICEST);
int nTicks = 10;
double ticks[] = new double[nTicks];
for (int i = 0; i < nTicks; i++) {

ticks[i] = tempMax - i*(tempMax-tempMin)/(nTicks-1);
}
ColormapLegend colormapLegend = new ColormapLegend(chart, colormap, ticks);
colormapLegend.setPosition(-1, 10);
colormapLegend.setTitle("Temperature");

setSize(375, 375);
render();

}

static private double[][] readData(String name) throws IOException, SQLException {
InputStream is = SurfaceEx2.class.getResourceAsStream(name);
BufferedReader br = new BufferedReader(new InputStreamReader(is));
FlatFile ff = new FlatFile(br);
double data[][] = new double[xMax][yMax];
for (int j = 0; j < yMax; j++) {

if (!ff.next()) throw new IOException("Error in file "+name);

Chart 3D Surface class • 1157

for (int i = 0; i < xMax; i++) {
data[i][j] = ff.getDouble(i+1);

}
}
is.close();
return data;

}

public static void main(String args[]) throws IOException, SQLException {
new SurfaceEx2().setVisible(true);

}
}

1158 • Surface class JMSL

Output

Chart 3D Surface class • 1159

Surface.ZFunction interface

public interface com.imsl.chart3d.Surface.ZFunction

Functional representation of a surface.

Method

f
public double f(double x, double y)

Description

Define the surface function.

Parameters

x – is the x value.

y – is the y value.

Returns

the z value.

Data class

public class com.imsl.chart3d.Data extends com.imsl.chart3d.ChartNode3D
implements Serializable

Draws a 3D data node.

Drawing of a Data node is determined by the setting of the ”DataType” attribute. Multiple
bits can be set in ”DataType”. If the com.imsl.chart3d.ChartNode3D.DATA TYPE MARKER (p.
1118) bit is set, the marker attributes are active. If the
com.imsl.chart3d.ChartNode3D.DATA TYPE LINE (p. 1118) bit is set, the points are connected
by lines using the line attributes. If the com.imsl.chart3d.ChartNode3D.DATA TYPE TUBE (p.
1119) bit is set, the points are connected by tubes using the line attributes. Tubes are similar
to lines, but are fully 3d objects and so can be shaded.

If the attribute ”LabelType” is set to other than the default, then the data points are labeled.
The contents of the labels are determined by the value of the ”LabelType” attribute.

1160 • Data class JMSL

Field

serialVersionUID
static final public long serialVersionUID

Constructors

Data
public Data(AxisXYZ parent)

Description

Creates a data node.

Parameter

parent – the AxisXYZ parent of this data node

Data
public Data(AxisXYZ parent, double[] x, double[] y, double[] z)

Description

Creates a data node with x, y and z values.

Parameters

parent – the AxisXYZ parent of this data node
x – a double array which contains the value for the attribute ”X” in this node
y – a double array which contains the value for the attribute ”Y” in this node
z – a double array which contains the value for the attribute ”Z” in this node

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

dataRange
public void dataRange(double[] range)

Description

Update the data range.

range = {xmin,xmax,ymin,ymax,zmin,zmax} The entries in range are updated to reflect
the extent of the data in this node.

Range is an input/output variable. Its value should be updated only if the data in this
node is outside the range already in the array.

Chart 3D Data class • 1161

Parameter

range – a double array which contains the updated range,
{xmin,xmax,ymin,ymax,zmin,zmax}

getCustomMarkerFactory
public Data.CustomMarkerFactory getCustomMarkerFactory()

Description

Returns a custom marker factory.

setCustomMarker
public void setCustomMarker(Data.CustomMarkerFactory customMarkerFactory)

Description

Sets a custom marker factory. This factory is used when the ”MarkerType” attribute is
set to MARKER TYPE CUSTOM.

update
public void update()

Description

Update the surface by reevaluation of the z-function and the color function.

Example: Spiral Data connected with Tubes

A spiral data set is charted with tubes connecting the data points.

import com.imsl.chart3d.*;
import com.imsl.chart3d.ColorFunction;
import java.awt.Color;

public class DataEx1 extends JFrameChart3D implements ColorFunction {

public DataEx1() {
Chart3D chart = getChart3D();
AxisXYZ axis = new AxisXYZ(chart);

axis.getAxisBox().setPaint(false);

int nSpiral = 400;
double xSpiral[] = new double[nSpiral];
double ySpiral[] = new double[nSpiral];
double zSpiral[] = new double[nSpiral];
for (int i = 0; i < nSpiral; i++) {

double t = 8.0 * Math.PI * i / (double)(nSpiral-1);
double r = 0.6 + (double)i / (double)(nSpiral-1);
xSpiral[i] = r * Math.cos(t);

1162 • Data class JMSL

ySpiral[i] = r * Math.sin(t);
zSpiral[i] = (double)i / (double)(nSpiral-1);

}
Data spiral = new Data(axis, xSpiral, ySpiral, zSpiral);
spiral.setDataType(spiral.DATA_TYPE_TUBE);
spiral.setLineWidth(2);
spiral.setColorFunction(this);
this.setSize(375, 375);
render();

}

public Color color(double x, double y, double z) {
return com.imsl.chart.Colormap.SPECTRAL.color(z);

}

public static void main(String args[]) throws Exception {
new DataEx1().setVisible(true);

}
}

Chart 3D Data class • 1163

Output

1164 • Data class JMSL

Example: Fisher Iris Data marked by spheres

The classic Fisher iris data is plotted in this chart. This example shows use of the 3D marker
type. A sphere has been chosen in this example to highlight data points.

import com.imsl.chart3d.*;
import com.imsl.io.FlatFile;
import java.awt.Color;
import java.io.*;
import java.sql.SQLException;
import java.util.StringTokenizer;

public class DataEx2 extends JFrameChart3D {
private int species[];
private double sepalLength[];
private double sepalWidth[];
private double petalLength[];
private double petalWidth[];

public DataEx2() throws IOException, SQLException {
read();

Chart3D chart = getChart3D();
chart.getBackground().setFillColor("lightyellow");
AxisXYZ axis = new AxisXYZ(chart);
axis.setAxisTitlePosition(axis.AXIS_TITLE_PARALLEL);

axis.getAxisX().getAxisTitle().setTitle("Sepal Length");
axis.getAxisY().getAxisTitle().setTitle("Sepal Width");
axis.getAxisZ().getAxisTitle().setTitle("Petal Length");

axis.setDataType(Data.DATA_TYPE_MARKER);
axis.setMarkerType(Data.MARKER_TYPE_SPHERE);
String color[] = {"red", "green", "blue"};

for (int k = 0; k < species.length; k++) {
// marker type = Species
// x = Sepal Length
// y = Sepal Width
// z = Petal Length
// marker size = Petal Width
double xp[] = {sepalLength[k]};
double yp[] = {sepalWidth[k]};
double zp[] = {petalLength[k]};
Data data = new Data(axis, xp, yp, zp);
data.setMarkerSize(Math.sqrt(petalWidth[k]));
data.setMarkerColor(color[species[k]-1]);

}
setSize(375, 375);
render();

}

void read() throws IOException, SQLException {
InputStream is = getClass().getResourceAsStream("FisherIris.csv");
FisherIrisReader fisherIrisReader = new FisherIrisReader(is);

Chart 3D Data class • 1165

int nObs = 150;
species = new int[nObs];
sepalLength = new double[nObs];
sepalWidth = new double[nObs];
petalLength = new double[nObs];
petalWidth = new double[nObs];
for (int k = 0; fisherIrisReader.next(); k++) {

species[k] = fisherIrisReader.getInt("Species");
sepalLength[k] = fisherIrisReader.getDouble("Sepal Length");
sepalWidth[k] = fisherIrisReader.getDouble("Sepal Width");
petalLength[k] = fisherIrisReader.getDouble("Petal Length");
petalWidth[k] = fisherIrisReader.getDouble("Petal Width");

}
}

static private class FisherIrisReader extends FlatFile {
public FisherIrisReader(InputStream is) throws IOException {

super(new BufferedReader(new InputStreamReader(is)));
String line = readLine();
StringTokenizer st = new StringTokenizer(line, ",");
for (int j = 0; st.hasMoreTokens(); j++) {

setColumnName(j+1, st.nextToken().trim());
setColumnClass(j, Double.class);

}
}

}

public static void main(String args[]) throws IOException, SQLException {
new DataEx2().setVisible(true);

}
}

1166 • Data class JMSL

Output

Chart 3D Data class • 1167

Example: Heart Data

A multivariate data set is charted. This example shows how multiple variables can be encoded
into a single chart. The data set is from: Afifi, A.A. and S.P. Azen (1979), Statistical Analysis:
A Computer Oriented Approach, Second Edition, Academic Press, New York.

Each observation in the data set is represented by a marker. The encoding of the variables into
the chart is described in the following table:

Representation Variable
x-coordinate Age (years)
y-coordinate Height (cm)
z-coordinate Initial Body Surface Area (m2̂)
Marker Type Survival?
Marker Size Initial Mean Circulation Time (sec)
Color Initial Cardiac Index (liters/min-m2̂)
Min Pulse Size Initial Hemoglobin (gm/100 ml)
Max Pulse Size Final Hemoglobin (gm/100 ml)
Rotation Direction Sex (Gender)

import com.imsl.chart.Colormap;
import com.imsl.chart3d.*;
import com.imsl.io.*;
import com.imsl.stat.Summary;
import java.awt.Color;
import java.io.*;
import java.sql.ResultSetMetaData;
import java.sql.*;
import java.util.StringTokenizer;
import javax.swing.JPanel;
import javax.swing.JLabel;

public class DataEx3 extends javax.swing.JFrame {
static private final int nVariables = 34;
static private final int nObs = 113;

static private final Colormap colormap = Colormap.BLUE_GREEN_RED_YELLOW;

static private final int ivarX = 1; // Age (years)
static private final int ivarY = 2; // Height (cm)
static private final int ivarZ = 11; // Initial Body Surface Area (m^2)
static private final int ivarMarkerType = 4; // Survival?
static private final int ivarMarkerSize = 14; // Initial Mean Circulation Time (sec)
static private final int ivarMarkerColor = 12; // Initial Cardiac Index (liters/min-m^2)
static private final int ivarMarkerPulseMin = 18; // Initial Hemoglobin (gm/100 ml)
static private final int ivarMarkerPulseMax = 32; // Final Hemoglobin (gm/100 ml)
static private final int ivarRotationAxis = 3; // Sex (Gender)

private ResultSetMetaData meta;
private JPanel jPanelLegend;

1168 • Data class JMSL

public DataEx3() throws IOException, SQLException {
InputStream is = DataEx3.class.getResourceAsStream("AfifiAzen.csv");
AfifiAzenReader reader = new AfifiAzenReader(is);
double data[][] = reader.readData();
is.close();

Chart3D chart = new Chart3D();
AxisXYZ axis = new AxisXYZ(chart);
axis.setAxisTitlePosition(axis.AXIS_TITLE_PARALLEL);

meta = reader.getMetaData();
axis.getAxisX().getAxisTitle().setTitle(meta.getColumnName(ivarX+1));
axis.getAxisY().getAxisTitle().setTitle(meta.getColumnName(ivarY+1));
axis.getAxisZ().getAxisTitle().setTitle(meta.getColumnName(ivarZ+1));

int markerTypes[] = {Data.MARKER_TYPE_CUBE, Data.MARKER_TYPE_TETRAHEDRON};

double minMarkerSize = 0.0;
double maxMarkerSize = 0.0;
if (ivarMarkerSize >= 0) {

Summary summary = getSummary(data, ivarMarkerSize);
minMarkerSize = summary.getMinimum();
maxMarkerSize = summary.getMaximum();

}

double minColor = 0.0;
double maxColor = 0.0;
if (ivarMarkerColor >= 0) {

Summary summary = getSummary(data, ivarMarkerColor);
minColor = summary.getMinimum();
maxColor = summary.getMaximum();

}

double maxPulse = 0.0;
if (ivarMarkerColor >= 0) {

maxPulse = getSummary(data, ivarMarkerPulseMax).getMaximum();
}

axis.setDataType(Data.DATA_TYPE_MARKER);
for (int i = 0; i < data.length; i++) {

double xp[] = {data[i][ivarX]};
double yp[] = {data[i][ivarY]};
double zp[] = {data[i][ivarZ]};
Data data3D = new Data(axis, xp, yp, zp);
double size = (data[i][ivarMarkerSize]-minMarkerSize) / (maxMarkerSize-minMarkerSize);
data3D.setMarkerSize(1.0 + size);
double t = (data[i][ivarMarkerColor]-minColor) / (maxColor-minColor);
data3D.setMarkerColor(colormap.color(t));

data3D.setMarkerPulsingMinimumScale(data[i][ivarMarkerPulseMin]/maxPulse);
data3D.setMarkerPulsingMaximumScale(data[i][ivarMarkerPulseMax]/maxPulse);
data3D.setMarkerPulsingCycle(1.0);

double zaxis = (data[i][ivarRotationAxis] == 1 ? 1.0 : -1.0);
data3D.setMarkerRotatingAxis(0.0, 0.0, zaxis);
data3D.setMarkerRotatingCycle(8.0);

Chart 3D Data class • 1169

data3D.setMarkerType(data[i][ivarMarkerType] == 1.0 ? markerTypes[0] : markerTypes[1]);
}

Canvas3DChart canvas = new Canvas3DChart(chart);
canvas.setSize(375, 375);
getContentPane().add(canvas, java.awt.BorderLayout.CENTER);

jPanelLegend = new JPanel(new java.awt.GridBagLayout());
setupLegend();
getContentPane().add(jPanelLegend, java.awt.BorderLayout.WEST);
setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
pack();

ColormapLegend colormapLegend = new ColormapLegend(chart, colormap, minColor, maxColor);
colormapLegend.setPosition(10, 10);
colormapLegend.setTitle(meta.getColumnName(ivarMarkerColor+1));

canvas.render();
}

private class AfifiAzenReader extends FlatFile {
AfifiAzenReader(InputStream is) throws IOException {

super(new BufferedReader(new InputStreamReader(is)));
String line = readLine();
line = readLine();
line = readLine();
StringTokenizer st = new StringTokenizer(line, ",");
for (int j = 0; st.hasMoreTokens(); j++) {

setColumnName(j+1, st.nextToken().trim());
setColumnClass(j, Double.class);

}
}

double[][] readData() throws IOException, java.sql.SQLException {
double data[][] = new double[nObs][nVariables];
for (int i = 0; i < nObs; i++) {

if (!next()) throw new IOException("Error in file");
for (int j = 0; j < nVariables; j++) {

data[i][j] = getDouble(j+1);
}

}
return data;

}
}

static Summary getSummary(double data[][], int ivar) {
Summary summary = new Summary();
for (int i = 0; i < nObs; i++) {

summary.update(data[i][ivar]);
}
return summary;

}

1170 • Data class JMSL

private void setupLegend() throws SQLException {
addLegendTitle("Marker Color:");
addLegendValue(ivarMarkerColor, 1.0);

addLegendTitle("Marker Size:");
addLegendValue(ivarMarkerSize, 1.0);

addLegendTitle("Marker Pulse (min/max):");
addLegendValue(ivarMarkerPulseMin, 0.0);
addLegendValue(ivarMarkerPulseMax, 1.0);

addLegendTitle("Rotation Axis:");
addLegendValue(ivarRotationAxis, 1.0);

addLegendTitle("Marker Type:");
addLegendValue(ivarMarkerType, 1.0);

}

private void addLegendTitle(String title) {
JLabel jLabel = new JLabel(title);
java.awt.GridBagConstraints gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;
jPanelLegend.add(jLabel, gridBagConstraints);

}

private void addLegendValue(int ivar, double weight) throws SQLException {
JLabel jLabel = new JLabel(meta.getColumnName(ivar+1));
java.awt.GridBagConstraints gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.anchor = java.awt.GridBagConstraints.NORTHWEST;
gridBagConstraints.weighty = weight;
jPanelLegend.add(jLabel, gridBagConstraints);
jLabel.setForeground(Color.BLUE);

}

public static void main(String args[]) throws IOException, java.sql.SQLException {
new DataEx3().setVisible(true);

}
}

Chart 3D Data class • 1171

Output

Data.CustomMarkerFactory interface

public interface com.imsl.chart3d.Data.CustomMarkerFactory

Factory to create customized markers.

1172 • Data class JMSL

Method

createCustomMarker
public Node createCustomMarker()

Description

Returns a custom marker.

ColorFunction interface

public interface com.imsl.chart3d.ColorFunction

Interface to define value dependent colors.

Method

color
public Color color(double x, double y, double z)

ColormapLegend class

public class com.imsl.chart3d.ColormapLegend extends
com.imsl.chart3d.ChartNode3D implements Serializable

Adds a legend for a Colormap gradient to the background of the canvas.

Field

serialVersionUID
static final public long serialVersionUID

Constructors

ColormapLegend
public ColormapLegend(Chart3D chart, Colormap colormap, double[] ticks)

Chart 3D ColorFunction interface • 1173

Description

Creates a legend for a Colormap and adds it to the canvas. If set, the attribute ”Title” is
used to provide a title for the legend.
The paint method in Canvas3DChart.Paint is written into an image of size width by
height. Any whitespace around the image is trimmed. The trimmed image is then used
to paint onto the canvas.
Parameters

chart – is the Chart3D object on which the legend is to be painted.
colormap – is the Colormap for the legend.
ticks – is an array of values used to label the legend. These should be equally
spaced.

ColormapLegend
public ColormapLegend(Chart3D chart, Colormap colormap, double min, double
max)

Methods

addToSceneGraph
protected void addToSceneGraph(Group parent)

getPosition
public int[] getPosition()

Description

Returns the position of the legend.
Returns

an array containing the legend’s position.

getTicks
public double[] getTicks()

Description

Returns the value of the ”Ticks” attribute, if set. If not set, then computed tick values
are returned.
Returns

the double value of the ”Ticks” attribute, if defined. Otherwise, the computed tick values
are returned.

getWindow
public double[] getWindow()

1174 • ColormapLegend class JMSL

Description

Returns the window for a ColormapLegend.

Returns

window an array of length two containing the range of this colormap.

setPosition
public void setPosition(int x, int y)

Description

Sets the position of the legend. The default position is (0,0).

Parameters

x – is the pixel position in the canvas of the left edge of the legend. If x is negative
then —x— is the distance from the right edge of the legend to the right edge of the
component.

y – is the pixel position in the canvas of the top edge of the legend. If y is negative
then —y— is the distance from the bottom edge of the legend to the bottom edge of
the component.

setTicks
public void setTicks(double[] ticks)

Description

Sets the value of the ”Ticks” attribute. The attribute Number is set to the length of the
array.

Parameter

ticks – an array of doubles which contain the location, in user coordinates, of the
major tick marks. If set, this attribute overrides the automatic computation of the
tick values.

setWindow
public void setWindow(double[] window)

Description

Sets the window for a ColormapLegend.

Parameter

window – is an array of length two containing the range of this axis.

setWindow
public void setWindow(double min, double max)

Chart 3D ColormapLegend class • 1175

Description

Sets the window for a ColormapLegend.

Parameters

min – is the value of the bottom end of the colormap legend labels.

max – is the value of the top of the colormap legend labels.

1176 • ColormapLegend class JMSL

Chapter 26: Neural Nets

Types

class Network . 1220
class FeedForwardNetwork . 1229
class Layer . 1243
class InputLayer . 1245
class HiddenLayer . 1246
class OutputLayer . 1247
class Node. .1249
class InputNode . 1249
class Perceptron . 1250
class OutputPerceptron. .1251
interface Activation. .1252
class Link . 1254
interface Trainer .1255
class QuasiNewtonTrainer . 1257
class LeastSquaresTrainer. .1266
class EpochTrainer . 1271
class BinaryClassification . 1277
class MultiClassification . 1317
class ScaleFilter . 1331
class UnsupervisedNominalFilter. .1340
class UnsupervisedOrdinalFilter . 1343
class TimeSeriesFilter . 1348
class TimeSeriesClassFilter . 1351

Usage Notes

Neural Networks - An Overview

Today, neural networks are used to solve a wide variety of problems, some of which have been
solved by existing statistical methods, and some of which have not. These applications fall into

1177

one of the following three categories:

• Forecasting: predicting one or more quantitative outcomes from both quantitative and
categorical input data,

• Classification: classifying input data into one of two or more categories, or

• Statistical pattern recognition: uncovering patterns, typically spatial or temporal, among a
set of variables.

Forecasting, pattern recognition and classification problems are not new. They existed years
before the discovery of neural network solutions in the 1980’s. What is new is that neural
networks provide a single framework for solving so many traditional problems and, in some
cases, extend the range of problems that can be solved.

Traditionally, these problems have been solved using a variety of well known statistical methods:

• linear regression and general least squares,

• logistic regression and discrimination,

• principal component analysis,

• discriminant analysis,

• k-nearest neighbor classification, and

• ARMA and non-linear ARMA time series forecasts.

In many cases, simple neural network configurations yield the same solution as many
traditional statistical applications.For example, a single-layer, feed-forward neural network with
linear activation for its output perceptron is equivalent to a general linear regression fit. Neural
networks can provide more accurate and robust solutions for problems where traditional
methods do not completely apply.

Mandic and Chambers (2001) point out that traditional methods for time series forecasting are
unsuitable when a time series:

• is non-stationary,

• has large amounts of noise, such as a biomedical series, or

• is too short.

ARIMA and other traditional time series approaches can produce poor forecasts when one or
more of the above problems exist. The forecasts of ARMA and non-linear ARMA (NARMA)
depend heavily upon key assumptions about the model or underlying relationship between the
output of the series and its patterns.

Neural networks, on the other hand, adapt to changes in a non-stationary series and can
produce reliable forecasts even when the series contains a good deal of noise or when only a

1178 • JMSL

short series is available for training.Neural networks provide a single tool for solving many
problems traditionally solved using a wide variety of statistical tools and for solving problems
when traditional methods fail to provide an acceptable solution.

Although neural network solutions to forecasting, pattern recognition, and classification
problems can be very different, they are always the result of computations that proceed from
the network inputs to the network outputs. The network inputs are referred to as patterns, and
outputs are referred to as classes. Frequently the flow of these computations is in one direction,
from the network input patterns to its outputs. Networks with forward-only flow are referred to
as feed-forward networks.

INPUT LAYER

H1

H2

H3

Z1

Z2

Y1

Y2

HIDDEN LAYER

OUTPUT LAYER
X1

X2

X3

X4

Figure 1. A 2-layer, Feed-Forward Network with 4 Inputs and 2 Outputs

Other networks, such as recurrent neural networks, allow data and information to flow in both
directions, see Mandic and Chambers (2001).

Neural Nets • 1179

INPUT LAYER

H1

H3

Z1

Z2

Y1

Y2

HIDDEN LAYER

OUTPUT LAYER
X1

X2

X3

X4

Figure 2. A Recurrent Neural Network with 4 Inputs and 2 Outputs

A neural network is defined not only by its architecture and flow, or interconnections, but also
by computations used to transmit information from one node or input to another node. These
computations are determined by network weights. The process of fitting a network to existing
data to determine these weights is referred to as training the network, and the data used in this
process are referred to as patterns. Individual network inputs are referred to as attributes and
outputs are referred to as classes. Many terms used to describe neural networks are
synonymous to common statistical terminology.

Table 1. Synonyms between Neural Network and Common Statistical Terminology

1180 • JMSL

Neural Network
Terminology

Traditional
Statistical Ter-
minology

Description

Training Model Fitting Estimating unknown parameters or
coefficients in the analysis.

Patterns Cases or Observa-
tions

A single observation of all input and
output variables.

Attributes Independent vari-
ables

Inputs to the network or model.

Classes Dependent vari-
ables

Outputs from the network or model
calculations.

Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts (1943) wrote one of the first published works on neural networks. In their
paper, they describe the threshold neuron as a model for how the human brain stores and
processes information.

x1

x2

x3

W
1

W2

W 3

McCulloch &
Pitts Neuron

Weights

Inputs

Y

Output

Figure 3. The McCulloch and Pitts Threshold Neuron

All inputs to a threshold neuron are combined into a single number, Z, using the following

weighted sum: Z =
m∑

i=1

wixi − µ where wi is the weight associated with the i-th input

(attribute) xi. The term µ in this calculation is referred to as the bias term. In traditional

Neural Nets • 1181

statistical terminology, it might be referred to as the intercept. The weights and bias terms in
this calculation are estimated during network training.

In McCulloch and Pitt’s description of the threshold neuron, the neuron does not respond to its
inputs unless Z is greater than zero. If Z is greater than zero then the output from this neuron

is set equal to 1. If Z is less than zero the output is zero: Y =
{

1 ifZ > 0
0 ifZ ≤ 0 where Y is the

neuron’s output.

For years following their 1943 paper, interest in the McCulloch and Pitts neural network was
limited to theoretical discussions, such as those of Hebb (1949), about learning, memory, and
the brain’s structure.

The Perceptron

The McCulloch and Pitts neuron is also referred to as a threshold neuron since it abruptly
changes its output from 0 to 1 when its potential, Z, crosses a threshold. Mathematically, this
behavior can be viewed as a step function that maps the neuron’s potential, Z, to the neuron’s
output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this step
function with a continuous function that maps Z to Y. The Rosenblatt neuron is referred to as
the perceptron, and the continuous function mapping Z to Y makes it easier to train a network
of perceptrons than a network of threshold neurons.

Unlike the threshold neuron, the perceptron produces analog output rather than the threshold
neuron’s purely binary output. Carefully selecting the analog function makes Rosenblatt’s
perceptron differentiable, whereas the threshold neuron is not. This simplifies the training
algorithm.

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of its

inputs, Z =
m∑

i=1

wixi − µ. This is referred to as the perceptron’s potential.

Rosenblatt’s perceptron calculates its analog output from its potential. There are many choices
for this calculation. The function used for this calculation is referred to as the activation
function in Figure 4 below.

1182 • JMSL

g(Z)

x1

Zx2

x3

W
1

W2

W 3

Activation
Function

Potential

Weights

Inputs

Y = g(Z)

Output

Figure 4. The Perceptron

As shown in Figure 4, perceptrons consist of the following five components:

Component Example
Inputs X1,X2,X3,
Input Weights W1,W2,W3,

Potential Z =
3∑

i=1

WiXi − µ, where µ is a bias correction.

Activation Function g()
Output g(Z)

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the
output from another perceptron. The primary purpose of the network training is to estimate
the weights associated with each perceptron’s potential. The activation function maps this
potential to the perceptron’s output.

The Activation Function

Although theoretically any differential function can be used as an activation function, the
identity and sigmoid functions are the two most commonly used.

The identity activation function, also referred to as a linear activation function, is a
flow-through mapping of the perceptron’s potential to its output: g (Z) = Z

Output perceptrons in a forecasting network often use the identity activation function.

Neural Nets • 1183

0

1

Z

g(Z)

Figure 5. An Identity (Linear) Activation Function

If the identity activation function is used throughout the network, then it is easily shown that
the network is equivalent to fitting a linear regression model of the form
Yi = β0 + β1x1 + · · ·+ βkxk, where x1, x2, · · · , xk are the k network inputs, Yi is the i-th
network output and β0, β1, · · · , βk are the coefficients in the regression equation. As a result, it
is uncommon to find a neural network with identity activation used in all its perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s potential to
a range of values, such as 0 to 1, i.e., RK → R where K is the number of preceptron inputs.

1184 • JMSL

0

1

Z

g(Z)

Figure 6. A Sigmoid Activation Function

In practice, the most common sigmoid activation function is the logistic function that maps the
potential into the range 0 to 1:g(Z) = 1

1+e−Z

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output
probabilities.

Other popular sigmoid activation functions include:

• the hyperbolic-tangent g(Z) = tanh(Z) = eαZ−e−αZ

eαZ+e−αZ

• the arc-tangent g(Z) = 2
π arctan

(
πZ
2

)
, and

• the squash activation function (Elliott (1993)) g(Z) = Z
1+|Z|

It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly
related. Consequently, forecasts produced using logistic activation should be close to those
produced using hyperbolic-tangent activation. However, one function may be preferred over the
other when training performance is a concern. Researchers report that the training time using
the hyperbolic-tangent activation function is shorter than using the logistic activation function.

Neural Nets • 1185

Network Applications

Forecasting using Neural Networks

There are many good statistical forecasting tools. Most require assumptions about the
relationship between the variables being forecasted and the variables used to produce the
forecast, as well as the distribution of forecast errors. Such statistical tools are referred to as
parametric methods. ARIMA time series models, for example, assume that the time series is
stationary, that the errors in the forecasts follow a particular ARIMA model, and that the
probability distribution for the residual errors is Gaussian, see Box and Jenkins (1970). If these
assumptions are invalid, then ARIMA time series forecasts can be very poor.

Neural networks, on the other hand, require few assumptions. Since neural networks can
approximate highly non-linear functions, they can be applied without an extensive analysis of
underlying assumptions.

Another advantage of neural networks over ARIMA modeling is the number of observations
needed to produce a reliable forecast. ARIMA models generally require 50 or more equally
spaced, sequential observations in time. In many cases, neural networks can also provide
adequate forecasts with fewer observations by incorporating exogenous, or external, variables in
the network’s input.

For example, a company applying ARIMA time series analysis to forecast business expenses
would normally require each of its departments, and each sub-group within each department to
prepare its own forecast. For large corporations this can require fitting hundreds or even
thousands of ARIMA models. With a neural network approach, the department and sub-group
information could be incorporated into the network as exogenous variables. Although this can
significantly increase the network’s training time, the result would be a single model for
predicting expenses within all departments and sub-departments.

Linear least squares models are also popular statistical forecasting tools. These methods range
from simple linear regression for predicting a single quantitative outcome to logistic regression
for estimating probabilities associated with categorical outcomes. It is easy to show that simple
linear least squares forecasts and logistic regression forecasts are equivalent to a feed-forward
network with a single layer. For this reason, single-layer feed-forward networks are rarely used
for forecasting. Instead multilayer networks are used.

Hutchinson (1994) and Masters (1995) describe using multilayer feed-forward neural networks
for forecasting. Multilayer feed-forward networks are characterized by the forward-only flow of
information in the network. The flow of information and computations in a feed-forward
network is always in one direction, mapping an M-dimensional vector of inputs to a
C-dimensional vector of outputs, i.e., RM → RC .

There are many other types of networks without this feed-forward requirement. Information
and computations in a recurrent neural network, for example, flows in both directions. Output
from one level of a recurrent neural network can be fed back, with some delay, as input into the
same network, see Figure 2. Recurrent networks are very useful for time series prediction, see
Mandic and Chambers (2001).

1186 • JMSL

Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern recognition
applications that make wide use of neural networks include:

• natural language processing: Manning and Schütze (1999)

• speech and text recognition: Lippmann (1989)

• face recognition: Lawrence, et al. (1997)

• playing backgammon, Tesauro (1990)

• classifying financial news, Calvo (2001).

The interest in pattern recognition using neural networks has stimulated the development of
important variations of feed-forward networks. Two of the most popular are:

• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

• and Radial Basis Function Networks, Bishop (1995).

Good mathematical descriptions of the neural network methods underlying these applications
are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and Abe (2001). An
excellent overview of neural networks, from a statistical viewpoint, is also found in Warner and
Misra (1996).

Neural Networks for Classification

Classifying observations using prior concomitant information is a popular application of neural
networks. Data classification problems abound in business and research. When decisions based
upon data are needed, they can often be treated as a neural network data classification
problem. Decisions to buy, sell, hold or do nothing with a stock, are decisions involving four
choices. Classifying loan applicants as good or bad credit risks, based upon their application, is
a classification problem involving two choices. Neural networks are powerful tools for making
decisions or choices based upon data.

These same tools are ideally suitable for automatic selection or decision-making. Incoming
email, for example, can be examined to separate spam from important email using a neural
network trained for this task. A good overview of solving classification problems using
multilayer feed-forward neural networks is found in Abe (2001) and Bishop (1995).

There are two popular methods for solving data classification problems using multilayer
feed-forward neural networks, depending upon the number of choices (classes) in the
classification problem. If the classification problem involves only two choices, then it can be
solved using a neural network with one logistic output. This output estimates the probability
that the input data belong to one of the two choices.

Neural Nets • 1187

For example, a multilayer feed-forward network with a single logistic output can be used to
determine whether a new customer is credit-worthy. The network’s input would consist of
information on the applicants credit application, such as age, income, etc. If the network
output probability is above some threshold value (such as 0.5 or higher) then the applicant’s
credit application is approved. This is referred to as binary classification using a multilayer
feed-forward neural network.

If more than two classes are involved then a different approach is needed. A popular approach
is to assign one output perceptron to each class in the classification problem. Inputs to the
network are associated with the class */ with the highest probability for that input pattern.
However, this approach requires the output probabilities sum to one, which is a requirement for
any valid multivariate probability distribution.

To ensure these probabilities sum to one, the softmax activation function, see Bridle (1990), is
applied to the network outputs ensuring that the outputs conform to the mathematical
requirements of multivariate classification probabilities. If the classification problem has C
categories, or classes, then each category is modeled by one of the network outputs. If Zi is the
weighted sum of products between its weights and inputs for the i-th output, i.e.,
Zi =

∑
j

wjiyji.softmaxi = eZi

CP

j=1
eZj

The softmax activation function ensures that the outputs all conform to the requirements for
multivariate probabilities. That is, 0 < softmaxi < 1, for all i = 1, 2, . . . , C and∑C

i=1 softmaxi = 1

A pattern is assigned to the i-th classification when softmaxi is the largest among all C classes.

However, multilayer feed-forward neural networks are only one of several popular methods for
solving classification problems. Others include:

• Support Vector Machines (SVM Neural Networks), Abe (2001),

• Classification and Regression Trees (CART), Breiman, et al. (1984),

• Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and

• Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feed-forward neural
networks (MLFF) configured for pattern classification.

Multilayer Feed-Forward Neural Networks

A multilayer feed-forward neural network is an interconnection of perceptrons in which data and
calculations flow in a single direction, from the input data to the outputs. The number of layers
in a neural network is the number of layers of perceptrons. The simplest neural network is one
with a single input layer and an output layer of perceptrons. The network in Figure 7 illustrates
this type of network. Technically this is referred to as a one-layer feed-forward network with
two outputs because the output layer is the only layer with an activation calculation.

1188 • JMSL

INPUT LAYER

Z1

Z2

Y1

Y2

g1(Z1)

g2(Z2)

OUTPUT LAYER

X1

X2

X3

Input
Data

Output
sNeuron

Figure 7. A Single-Layer Feed-Forward Neural Net

In this single-layer feed-forward neural network, the networks inputs are directly connected to
the output layer perceptrons, Z1 and Z2.

The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 and Y2

Since Z1 =
3∑

i=1

W1,iXi − µ1 and Z2 =
3∑

i=1

W2,iXi − µ2Y1 = g1(Z1) = g1(
3∑

i=1

W1,iXi − µ1) and

Y2 = g2(Z2) = g2(
3∑

i=1

W2,iXi − µ2) When the activation functions g1 and g2 are identity

activation functions, a single-layer neural net is equivalent to a linear regression model.
Similarly, if g1 and g2 are logistic activation functions, then the single-layer neural net is
equivalent to logistic regression. Because of this correspondence between single-layer neural
networks and linear and logistic regression, single-layer neural networks are rarely used in place
of linear and logistic regression.

The next most complicated neural network is one with two layers. This extra layer is referred
to as a hidden layer. In general there is no restriction on the number of hidden layers. However,
it has been shown mathematically that a two-layer neural network, such as shown in Figure 1,
can accurately reproduce any differentiable function, provided the number of perceptrons in the
hidden layer is unlimited.

However, increasing the number of neurons increases the number of weights that must be
estimated in the network, which in turn increases the execution time for this network. Instead
of increasing the number of perceptrons in the hidden layers to improve accuracy, it is
sometimes better to add additional hidden layers, which typically reduces both the total

Neural Nets • 1189

number of network weights and the computational time. However, in practice, it is uncommon
to see neural networks with more than two or three hidden layers.

Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Many error
calculations have been researched, trying to find a calculation with a short training time that is
appropriate for the network’s application. Typically error calculations are very different
depending primarily on the network’s application.

For forecasting, the most popular error function is the sum-of-squared errors, or one of its
scaled versions. This is analogous to using the minimum least squares optimization criterion in
linear regression. Like least squares, the sum-of-squared errors is calculated by looking at the
squared difference between what the network predicts for each training pattern and the target
value, or observed value, for that pattern. Formally, the equation is the same as one-half the

traditional least squares error:E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
where N is the total number of training cases, C is equal to the number of network outputs, tij
is the observed output for the i-th training case and the j-th network output, and t̂ij is the
network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That is,
the recommended practice is to use C=1 when using a multilayer feed-forward neural network
for forecasting. For classification problems with more than two classes, it is common to
associate one output with each classification category, i.e., C=number of classes.

Notice that in ordinary least squares, the sum-of-squared errors is not multiplied by one-half.
Although this has no impact on the final solution, it significantly reduces the number of
computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors
increases. As a result, it is often useful to use the root-mean-square (RMS) error instead of the

unscaled sum-of-squared errors:ERMS =

NP

i=1

CP

j=1
(tij−t̂ij)2

NP

i=1

CP

j=1
(tij−t̄)2

where t̄ is the average output: t̄ =

NP

i=1

CP

j=1
tij

N ·C Unlike the unscaled sum-of-squared errors, ERMS

does not increase as N increases. The smaller the value of ERMS the closer the network is
predicting its targets during training. A value of ERMS = 0 indicates that the network is able
to predict every pattern exactly. A value of ERMS = 1 indicates that the network is predicting
the training cases only as well as using the mean of the training cases for forecasting.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple scale
factor: ERMS = 2

t̄ · E Another popular error calculation for forecasting from a neural network

1190 • JMSL

is the Minkowski-R error. The sum-of-squared error, E, and the root-mean-squared error,
ERMS , are both theoretically motivated by assuming the noise in the target data is Gaussian.
In many cases, this assumption is invalid. A generalization of the Gaussian distribution to
other distributions gives the following error function, referred to as the Minkowski-R

error:ER =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣R.
Notice that ER = 2E when R=2.

A good motivation for using ER instead of E is to reduce the impact of outliers in the training
data. The usual error measures, E and ERMS , emphasize larger differences between the
training data and network forecasts since they square those differences. If outliers are expected,
then it is better to de-emphasize larger differences. This can be done by using the Minkowski-R
error with R=1. When R=1, the Minkowski-R error simplifies to the sum of absolute

differences:L = E1 =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣.
L is also referred to as the Laplacian error. Its name is derived from the fact that it can be
theoretically justified by assuming the noise in the training data follows a Laplacian rather than
Gaussian distribution.

Of course, similar to E, L generally increases when the number of training cases increases.
Similar to ERMS , a scaled version of the Laplacian error can be calculated using the following

formula:LRMS =

NP

i=1

CP

j=1
|tij−t̂ij|

NP

i=1

CP

j=1
|tij−t̄|

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feed-forward neural networks can be used for both
forecasting and classification applications. Training a forecasting network involves finding the
network weights that minimize either the Gaussian or Laplacian distributions, E or L
respectively, or equivalently their scaled versions, ERMS or LRMS . Although these error
calculations can be adapted for use in classification by setting the target classification variable
to zeros and ones, this is not recommended. Use of the sum-of-squared and Laplacian error
calculations is based on the assumption that the target variable is continuous. In classification
applications, the target variable is a discrete random variable with C possible values, where
C=number of classes.

A multilayer feed-forward neural network for classifying patterns into one of only two categories
is referred to as a binary classification network. It has a single output: the estimated probability
that the input pattern belongs to one of the two categories. The probably that it belongs to the
other category is equal to one minus this probability, i.e.,P (C2) = P (not C1) = 1− P (C1)

Binary classification applications are very common. Any problem requiring yes/no classification
is a binary classification application. For example, deciding to sell or buy a stock is a binary
classification problem. Deciding to approve a loan application is also a binary classification
problem. Deciding whether to approve a new drug or to provide one of two medical treatments

Neural Nets • 1191

are binary classification problems.

For binary classification problems, only a single output is used, C=1. This output represents
the probability that the training case should be classified as yes. A common choice for the
activation function of the output of a binary classification network is the logistic activation
function, which always results in an output in the range 0 to 1, regardless of the perceptron’s
potential.

One choice for training binary classification network is to use sum-of-squared errors with the
class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.:

tij =
{

1 if training pattern i=yes
0 if the training pattern i=no However, using either the sum-of-squared or

Laplacian errors for training a network with these target values assumes that the noise in the
training data are Gaussian. In binary classification, the zeros and ones are not Gaussian.They
follow the Bernoulli distribution: P (ti = t) = pt(1− p)1−t where p is equal to the probability
that a randomly selected case belongs to the yes class.

Modeling the binary classes as Bernoulli observations leads to the use of the cross-entropy error
function described by Hopfield (1987) and Bishop

(1995):EC = −
N∑

i=1

{
ti ln(t̂i) + (1− ti) ln(1− t̂i)

}
.

where N is the number of training patterns, ti is the target value for the i-th case (either 1 or
0), and t̂i is the network’s output for the i-th case. This is equal to the neural network’s
estimate of the probability that the i-th case should be classified as yes.

For situations in which the target variable is a probability in the range 0 < tij < 1, the value of
the cross-entropy at the networks optimum is equal to:

EC
min = −

N∑
i=1

{ti ln(ti) + (1− ti) ln(1− ti)}Subtracting this from EC gives an error term

bounded below by zero, i.e., ECE ≥ 0 where:

ECE = EC − EC
min = −

N∑
i=1

{
ti ln

[
t̂i

ti

]
+ (1− ti) ln

[
1−t̂i

1−ti

]}
This adjusted cross-entropy is

normally reported when training a binary classification network where 0 < tij < 1. Otherwise
EC , the non-adjusted cross-entropy error, is used. Small values, values near zero, would
indicate that the training resulted in a network with a low error rate and that patterns are
being classified correctly most of the time.

Cross-Entropy Error for Multi-Classification

Using a multilayer feedforward neural network for binary classification is relatively
straightforward. A network for binary classification only has a single output that estimates the
probability that an input pattern belongs to the yes class, i.e., ti = 1. In classification problems
with more than two mutually exclusive classes, the calculations and network configurations are
not as simple.

One approach is to use multiple network outputs, one for each of the C classes. Using this
approach, the j-th output for the i-th training pattern, tij = 1, is the estimated probability that

1192 • JMSL

the i-th pattern is the network’s j-th class, denoted by t̂ij . An easy way to estimate these
probabilities is to use logistic activation for each output. This ensures that each output satisfies
the univariate probability requirements, i.e., 0 ≤ t̂ij ≤ 1.

However, since the classification categories are mutually exclusive, each pattern can only be
assigned to one of the C classes, which means that the sum of these individual probabilities
should always equal 1. However, if each output is the estimated probability for that class, it is

very unlikely that
C∑

j=1

t̂ij = 1. In fact, the sum of the individual probability estimates can easily

exceed 1 if logistic activation is applied to every output.

Support Vector Machine (SVM) neural networks use this approach with one modification. An
SVM network classifies a pattern as belonging to the i-th category if the activation calculation
for that category exceeds a threshold and the other calculations do not exceed this value. That
is, the i-th pattern is assigned to the j-th category if and only if t̂ij > δand t̂ik ≤ δfor all k 6= j,
where δ is the threshold. If this does not occur, then the pattern is marked as unclassified.

Another approach to multi-class classification problems is to use the softmax activation
function developed by Bridle (1990) on the network outputs. This approach produces outputs
that conform to the requirements of a multinomial distribution. That is
C∑

j=1

t̂ij = 1 for all i = 1, 2, · · · , N and 0 ≤ t̂ij ≤ 1 forall i = 1, 2, · · · , N and j = 1, 2, · · · , C

The softmax activation function estimates classification probabilities using the following
softmax activation function: t̂ij = eZij

CP

j=1
eZij

where Zij is the potential for the j-th output

perceptron, or category, using the i-th pattern.

For this activation function, it is clear that:

• 0 ≤ t̂ij ≤ 1 for all i = 1, 2, · · · , N and

•
C∑

j=1

t̂ij = 1 for all i = 1, 2, · · · , N

Modeling the C network outputs as multinomial observations leads to the cross-entropy error

function described by Hopfield (1987) and Bishop (1995): EC = −
N∑

i=1

C∑
j=1

tij ln(t̂ij)where N is

the number of training patterns, tij is the target value for the j-th class of i-th pattern (either 1
or 0), and t̂ij o the neural network’s estimate of the j-th output for the i-th pattern. t̂ij is equal
to the neural network’s estimate of the probability that the i-th pattern should be classified
into the j-th category.

For situations in which the target variable is a probability in the range 0 < tij < 1, the value of

the cross-entropy at the networks optimum is equal to: EC
min = −

N∑
i=1

C∑
j=1

tij ln(tij)Subtracting

this from EC gives an error term bounded below by zero, i.e., ECE ≥ 0 where:

ECE = EC − EC
min = −

N∑
i=1

C∑
j=1

tij ln
[

t̂ij

tij

]
This adjusted cross-entropy is normally reported when

Neural Nets • 1193

training a binary classification network where 0 < tij < 1. Otherwise EC , the non-adjusted
cross-entropy error, is used. That is, when 1-in-C encoding of the target variable is used,

tij =
{

1 if the i−th pattern belongs to the j−th category
0 if the i−th pattern does not belong to the j−th category Small values, values

near zero, indicate that the training resulted in a network with a low error rate and that
patterns are being classified correctly most of the time.

Back-Propagation in Multilayer Feed-Forward Neural Network

Sometimes a multilayer feed-forward neural network is referred to incorrectly as a
back-propagation network. The term back-propagation does not refer to the structure or
architecture of a network. Back-propagation refers to the method used during network training.
More specifically, back-propagation refers to a simple method for calculating the gradient of the
network, that is the first derivative of the weights in the network.

The primary objective of network training is to estimate an appropriate set of network weights
based upon a training dataset. There are many ways that have been researched for estimating
these weights, but they all involve minimizing some error function. In forecasting, the most
commonly used error function is the sum of squared errors:

E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
Training uses one of several possible optimization methods to minimize this error term. Some
of the more common are: steepest descent, quasi-Newton, conjugant gradient, and many
various modifications of these optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error
function required by some optimization methods. It is certainly not the only method for
estimating the gradient. However, it is the most efficient. In fact, some will argue that the
development of this method by Werbos (1974), Parket (1985), and Rumelhart, Hinton and
Williams (1986) contributed to the popularity of neural network methods by significantly
reducing the network training time and making it possible to train networks consisting of a
large number of inputs and perceptrons.

Simply stated, back-propagation is a method for calculating the first derivative of the error
function with respect to each network weight. Bishop (1995) derives and describes these
calculations for the two most common forecasting error functions, the sum of squared errors
and Laplacian error functions. Abe (2001) gives the description for the classification error
function, the cross-entropy error function. For all of these error functions, the basic formula for
the first derivative of the network weight wji at the i-th perceptron applied to the output from
the j-th perceptron ∂E

∂wji
= δjZi,where Zi = g(ai) is the output from the i-th perceptron after

activation, and ∂E
∂wji

is the derivative for a single output and a single training pattern. The
overall estimate of the first derivative of wji is obtained by summing this calculation over all N
training patterns and C network outputs.

The term back-propagation gets its name from the way the term δj in the back-propagation
formula is calculated: δj = g′(aj) ·

∑
k

wkjδk, where the summation is over all perceptrons that

1194 • JMSL

use the activation from the j-th perceptron, g(aj).

The derivative of the activation functions, g′(a), varies among these functions, see the following
table:

Table 2.Activation Functions and Their Derivatives

Activation Function g(a) g′(a)
Linear g(a) = a g′(a) = 1 (where a is a constant)
Logistic g(a) = 1

1+e−a g′(a) = g(a)(1− g(a))
Hyperbolic-tangent g(a) = tanh(a) g′(a) = sech2(a) = 1− tanh2(a)

Squash g(a) = a
1+|a| g′(a) = 1

(1+|a|)2

Creating a Feed Forward Network

The following code fragment creates the feed forward neural network shown in the following
figure:

Neural Nets • 1195

HIDDEN LAYER 1

2

1

0

1

0

Y1

Y0

HIDDEN LAYER 2

OUTPUT LAYER

x5

x4

x3

3

x2 2

x1 1

x0 0

INPUT
LAYER

Figure 8. A Three-Layer Feed-Forward Neural Net

Notice that this network is more complex than the typical feed-forward network in which all
nodes from each layer are connected to every node in the next layer. This network has 6 input
nodes, and they are not all connected to every node in the 1st hidden layer.

Note also that the 4 perceptrons in the 1st hidden layer are not connected to every node in the
2nd hidden layer, and the perceptrons in the 2nd hidden layer are not all connected to the two
outputs.

// ***
// EXAMPLE CODE FOR CREATING LINKS AMONG NETWORK NODES
// ***

import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();

1196 • JMSL

network.getInputLayer().createInputs(6);
network.createHiddenLayer().createPerceptrons(4);
network.createHiddenLayer().createPerceptrons(3);
network.getOutputLayer().createPerceptrons(2);
HiddenLayers[] hiddenLayer = network.getHiddenLayers();
Node[] inputNode = network.getInputLayer().getNodes();
Node[] layer1Node = hiddenLayer[0].getNodes();
Node[] layer2Node = hiddenLayer[1].getNodes();
Node[] outputNode = network.getOutputLayer().getNodes();

// Create links between input nodes and 1st hidden layer
network.link(inputNode[0], layer1Node[0]);
network.link(inputNode[0], layer1Node[1]);
network.link(inputNode[1], layer1Node[0]);
network.link(inputNode[1], layer1Node[1]);
network.link(inputNode[1], layer1Node[3]);
network.link(inputNode[2], layer1Node[1]);
network.link(inputNode[2], layer1Node[2]);
network.link(inputNode[3], layer1Node[3]);
network.link(inputNode[4], layer1Node[3]);
network.link(inputNode[5], layer1Node[3]);

// Create links between 1st and 2nd hidden layers
network.link(layer1Node[0], layer2Node[0]);
network.link(layer1Node[0], layer2Node[1]);
network.link(layer1Node[0], layer2Node[2]);
network.link(layer1Node[1], layer2Node[0]);
network.link(layer1Node[1], layer2Node[1]);
network.link(layer1Node[1], layer2Node[2]);
network.link(layer1Node[2], layer2Node[0]);
network.link(layer1Node[2], layer2Node[2]);
network.link(layer1Node[3], layer2Node[1]);
network.link(layer1Node[3], layer2Node[2]);

// Create links between 2nd hidden layer and output layer
network.link(layer2Node[0], outputNode[0]);
network.link(layer2Node[1], outputNode[0]);
network.link(layer2Node[1], outputNode[1]);
network.link(layer2Node[2], outputNode[0]);
network.link(layer2Node[2], outputNode[1]);

// Create link between input node[0] and ouput node[0]
network.link(inputNode[0], outputNode[0]);

// ***

By default, the FeedForwardNetwork constructor creates a feed forward network with an empty
input layer, no hidden layers and an empty output layer. Input nodes are created by accessing
the empty input layer and creating 6 nodes within it. Two hidden layers are then created within
the network using the FeedForwardNetwork.createHiddenLayer().createPerceptrons()
method. Four perceptrons are created within the first hidden layer and three within the second.
Output perceptrons are created by accessing the empty output layer and creating the
Perceptrons within it: FeedForwardNetwork.getOutputLayer().createPerceptrons().

Links among the input nodes and perceptrons can be created using one of several approaches.
If all inputs are connected to every perceptron in the first hidden layer, and if all perceptrons
are connected to every perceptron in the following layer, which is a standard architecture for
feed forward networks, then a call to the FeedForwardNetwork.linkAll() method can be used
to create these links.

Neural Nets • 1197

However, this example does not use that standard configuration. Some links are missing. In
this case, the approach used is to construct individual links using the
FeedForwardNetwork.link() method. This requires one call for every link.

An alternate approach is to first create all links and then to remove those that are not needed.
The following code illustrates this approach:

// ***
// EXAMPLE CODE FOR REMOVING LINKS AMONG NETWORK NODES
// ***

import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.getInputLayer().createInputs(6);
Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);
Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);
Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);
network.linkAll(); // Creates standard feed forward configuration

// Remove links between input nodes and 1st hidden layer
network.remove(network.findLink(inputNode[0],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[0],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[1],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[2],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[2],hiddenLayer1[3]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[3],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[4],hiddenLayer1[2]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[0]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[1]));
network.remove(network.findLink(inputNode[5],hiddenLayer1[2]));

// Remove links between 1st and 2nd hidden layers
network.remove(network.findLink(hiddenLayer1[2],hiddenLayer2[1]));
network.remove(network.findLink(hiddenLayer1[3],hiddenLayer2[0]));

// Remove links between 2nd hidden layer and the output layer
network.remove(network.findLink(hiddenLayer2[0],outputLayer[1]));

// Add link from input node[0] to output node[0]
network.link(inputNode[0], outputNode[0]);

// ***

In the above fragment, all links are created using the FeedForwardNetwork.linkAll()
method. This creates a total of 6*4+4*3+3*2=42 links, not including the link between the first
input node and the first output node. Links that skip layers are not created by the linkAll()
method.

Links are then selectively removed starting with the first input node and proceeding to links
between the last hidden layer and the output layers. In this case, there are 6*4=24 possible
links between the input nodes and first hidden layer. Fourteen of them had to be removed.
Between the first hidden layer and second, there are 4*3=12 possible links. Two of them were
removed. Between the second hidden layer and output layer there are 3*2=6 possible links, and
only one needed to be removed. Finally the skip-layer link between the first input node and

1198 • JMSL

first output node is added.

After creating and removing links among layers, the activation function used with each
perceptron can be selected. By default, every perceptron in the hidden layers use the logistic
activation function and every perceptron in the output layers uses the linear activation
function. The following fragment shows how to change the activation function in the hidden
layer perceptrons from logistic to hyperbolic-tangent and the output layer from linear to
logistic. It also creates a connection directly from the first input node to the output node.

// ***
// EXAMPLE CODE FOR SETTING NON-DEFAULT ACTIVATION FUNCTIONS
// ***

import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.getInputLayer().createInputs(6);
Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);
Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);
Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);
for (int k = 0; k hiddenLayer1.length; k++) {

hiddenLayer1[k].setActivation(Activation.TANH);
}
for (int k = 0; k hiddenLayer2.length; k++) {

hiddenLayer2[k].setActivation(Activation.TANH);
}
for (int k = 0; k outputLayer.length; k++) {

output[k].setActivation(Activation.LOGISTIC);
}

.

.

.
// ***

Training

Trainers are used to find the network weights that produce network outputs matching a set of
training targets. The training targets together with their associated network inputs are referred
to as training patterns. Training patterns can be historical data relating network inputs to its
outputs, or they can be developed from expert opinion or theoretical analysis. In the end, each
training pattern relates specific network inputs to its real or desired target outputs.

In JMSL, all trainers implement the com.imsl.datamining.neural.Trainer interface. The
number of training input attributes must equal the number of input nodes, and the number of
training outputs, sometimes called training targets, must equal the number of output
perceptrons created for the network.

Single Stage Trainers

QuasiNewtonTrainer and LeastSquaresTrainer are single stage trainers. They use all
available training patterns and a specific optimization method to find optimum network
weights. The best set of weights is a set that minimizes the error between the network output

Neural Nets • 1199

and its training targets. The following code fragment illustrates how to use the quasi-Newton
method for single stage network training.

// ***
// EXAMPLE CODE FOR ONE-STAGE TRAINER
// ***

double xData[][] = ...
double yData[][] = ...
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setGradientTolerance(1.0e-7);
trainer.train(network, xData, yData);

.

.

.
// ***

In this example, xData and yData are two-dimensional arrays containing the input attributes
and output targets respectively. The number of rows in these arrays is equal to the number of
training patterns. The number of columns in xData is equal to the number of input attributes,
after applying any necessary preprocessing. The number of columns in yData is equal to the
number of network outputs. The setGradientTolerance() method is one of several optional
settings for tailoring the convergence criteria used with the training optimizer.

LeastSquaresTrainer is another single stage trainer. There are two principal differences
between this trainer and the quasi-Newton trainer. First their optimization algorithms are
different. The least squares trainer uses the Levenberg-Marquardt algorithm to optimize the
network. As the name implies, the quasi-Newton trainer uses a modified Newton algorithm for
optimization. In some applications, depending upon the data and the network architecture, one
method may train the network faster than the other.

Another key difference between these single stage trainers is that the least squares trainer only
uses one error function, the sum of squared errors. The quasi-Newton trainer, by default, uses
the same error function. However, it also has an interface that accepts a user-supplied error
function. For this reason, the quasi-Newton trainer is used to solve classification problems.

Multistage Trainers

When there are a large number of training patterns, single stage trainers will often take too
long to complete network training. For these applications, a multistage trainer could be used to
reduce training time. Multistage trainers provide considerably more flexibility in designing an
optimum training scheme. All of these trainers break network training into two stages. Stage II
is optional. That is, a multistage trainer can be requested to only conduct Stage I training, or
it can be requested to conduct both Stage I and II training.

The main difference between Stage I and II training is that Stage I training is conducted
multiple times using randomly selected subsets of all available training patterns. Each training
session is referred to as an epoch. Although each epoch uses a different set of randomly selected
training patterns, the number of patterns is the same for every epoch. Typically, because they
are using different data, the solutions vary among epochs.

Stage II training is conducted following the Stage I training using the best set of weights
obtained during Stage I. This ensures that the weights developed during Stage II training will

1200 • JMSL

always be as good as or better than those determined during Stage I training. The entire set of
original training patterns is used during Stage II training, and only one training session is
completed.

There is no requirement to use the same trainer for both stages, although there is nothing
wrong with that approach. The least squares trainer might be used for Stage I training and the
quasi-Newton trainer might be used for Stage II training. In addition, the optimization settings
for each trainer can be different. In JMSL, the multistage trainer is implemented using the
EpochTrainer class.

The following code fragment illustrates the use of the epoch multistage trainer:

// ***
// EXAMPLE CODE FOR MULTISTAGE EPOCH TRAINER
// ***

double xData[][] = ...
double yData[][] = ...
QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
LeastSquaresTrainer stageIITrainer = new LeastSquaresTrainer();
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);
trainer.setNumberOfEpochs(20);
trainer.setEpochSize(3000);

.

.

.
// ***

In this example, a quasi-Newton trainer is selected for the Stage I trainer, and the least squares
trainers is used for Stage II. Stage I will consists of 20 training epochs. The training of each
epoch uses 3,000 randomly selected training patterns with the quasi-Newton trainer. The epoch
with the smallest training error supplies the starting values for the Stage II trainer.

Data Preprocessing

Data preprocessing, or filtering, is the term used to describe the process of scaling or
transforming input attributes into numerical values suitable for network training. In general it
is important to scale all input attributes to a common range, either [0, 1] or [-1, 1]. The
algorithm used for obtaining values for the network weights assumes that the inputs are scaled
to one of these ranges. If some network inputs have values that cover a much broader range,
then the initial weights can be far from optimum causing network training to fail or take an
excessively long time.

Network input data are classified into three general categories: continuous, ordinal and
nominal. JMSL provides methods for preprocessing all three data types. Continuous data are
scaled using the ScaleFilter class. In addition, lagged versions of continuous time series data
can be created using the TimeSeriesFilter or TimeSeriesClassFilter class.

Categorical data, such as color or preference ratings, are either ordinal and nominal data.
JMSL provides methods UnsupervisedOrdinalFilter and UnsupervisedNominalFilter to
preprocess ordinal and nominal data respectively. UnsupervisedOrdinalFilter transforms

Neural Nets • 1201

ordinal data into values between 0 and 1, which allows them to be treated as continuous data.

Nominal data, on the other hand, can be transformed using several methods.
UnsupervisedNominalFilter converts a single nominal variable with m classes into m columns
containing the values 0 and 1. This is referred to as binary encoding of nominal classification
information.

The following code fragment illustrates the use of some of these preprocessing methods:

// ***
// EXAMPLE CODE FOR PREPROCESSING NOMINAL AND CONTINUOUS DATA
// ***

double[][] yData = {....};
int[] nominalVariable={.....};
int nClasses = 3;

// Create a nominal filter for binary encoding of a nominal variable
// that has 3 categorical values

UnsupervisedNominalFilter nominalFilter = new UnsupervisedNominalFilter(nClasses);
int[][] binaryColumns = nominalFilter.encode(nominalVariable);

// Create a scale filter for scaling continuous data in a range of [0,1]
ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED_SCALING);

// Apply the scale filter to two continuous variables, x1 and x2
scaleFilter.setBounds(-200,1000,0,1); // Original values [-200, 1000]
scaleFilter.encode(x1);
scaleFilter.setBounds(0,5000,0,1); // Original values [0, 5000]
scaleFilter.encode(x2);

// Load the encoded columns into xData
int n = nominalVariable.length;
double[][] xData = new double[n][3+3];
for(int i=0; i n; i++){

xData[i][0] = x1[i];
xData[i][1] = x2[i];
for(int j=0; j nClasses; j++) xData[i][j+2] = binaryColumns[i][j];

}
.
.
.
// ***

In the above example, one nominal variable consisting of values representing 3 different classes,
or categories, is encoded into 3 binary columns using UnsupervisedNominalFilter class. Two
continuous variables are scaled using the ScaleFilter class, and these five columns are then
loaded into xData in preparation for network training.

Serialization

Neural network training can require a substantial amount of time, so it is often desirable to
save a trained network for later use in forecasting. Java serialization can be used to save the
results of network training.

1202 • JMSL

When an object is serialized, its state is saved. However, the code implementing the class (the
class file) is not saved with the serialized file. Hence when the object is deserialized, the code
that created the serialized object should be in the classpath. Otherwise deserialization will fail.

For an object to be serialized, it must implement the java.io.Serializable interface. The
following code fragment serializes key network and training information into four files. One
contains the network weights, another contains the training statistics, and two additional files
contain the training patterns. This is done using a write(Object,String) method that takes
a file name and writes the serialized object to that file.

// ***
// EXAMPLE CODE FOR SAVING TRAINED NETWORK USING SERIALIZATION
// ***
.
.
.
// ***
// SAVE A TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECTS
// ***
// Saving network weights and structural information

write(network, "MyNetwork.ser");
// Saving training information available from computeStatistics()

write(trainer, "MyNetworkTrainer.ser");
// Saving xData training targests

write(xData, "MyNetworkxData.ser");
// Saving yData training targets

write(yData, "MyNetworkyData.ser);
// ***
// WRITE SERIALIZED OBJECT TO A FILE
// ***
static public void write(Object obj, String filename)

throws IOException {
FileOutputStream fos = new FileOutputStream(filename);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(obj);
oos.close();
fos.close();

}
// ***

Notice that not only is the network object serialized and saved, the trainer and training
patterns, xData and yData, are also saved. This was only done to allow someone to calculate
the additional network statistics. If these are not needed, then these training patterns need not
be saved. However, for forecasting, it is essential to remember the specifc order and nature of
the network inputs used during training. This information is not saved in the network serialized
file.

When an object is deserialized, the object is reconstructed using the saved serialization file.
The following code deserializes the previously saved network information.

// ***
// EXAMPLE CODE FOR READING TRAINED NETWORK FROM SERIALIZED FILES
// ***

Neural Nets • 1203

.

.

.
// ***
// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT

Network network = (Network)read("MyNetwork.ser");
// READ THE SERIALIZED XDATA[][] AND YDATA[][] ARRAYS OF TRAINING
// PATTERNS.

xData = (double[][])read("MyNetworkxData.ser");
yData = (double[][])read("MyNetworkyData.ser");

// READ THE SERIALIZED TRAINER OBJECT
Trainer trainer = (Trainer)read("MyNetworkTrainer.ser");

// ***
// DISPLAY TRAINING STATISTICS
// ***

double stats[] = network.computeStatistics(xData, yData);
.
.
.

// ***
// READ SERIALIZED NETWORK FROM A FILE
// ***
static public Object read(String filename)

throws IOException, ClassNotFoundException {
FileInputStream fis = new FileInputStream(filename);
ObjectInputStream ois = new ObjectInputStream(fis);
Object obj = ois.readObject();
ois.close();
fis.close();
return obj;

}
// ***

Logging

The training classes support logging using the standard Java classes. The following code
fragment enables logging for an epoch trainer. The log is stored into a file with the name
MyNetworkTraining.log

// ***
// EXAMPLE CODE FOR CREATING TRAINING LOG
// ***
import java.util.logging.*;
.
.
.
try {

Handler handler = new FileHandler("MyNetworkTraining.log");
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(EpochTrainer.getFormatter());

1204 • JMSL

}catch (Exception e) {
e.printStackTrace();

}
.
.
.
// ***

The standard Java logging classes are in the package java.util.logging. A FileHandler is
used to write the logging information to the log file. Each of the training classes has a static
method that returns a special Formatter designed to work with the logging statements in the
trainers. All of the trainers use the same Formatter.

The name of the logger in each of the trainers is the fully qualified name of the trainer. Because
the Java logger is hierarchical, the name com.imsl.datamining.neural can be used to log all
of the JMSL training classes. More specific names can be used to set trainer specific logging
levels. For example, setting the logging level in com.imsl.datamining.neural.EpochTrainer
to Level.FINEST, while setting the level in
com.imsl.datamining.neural.QuasiNewtonTrainer to Level.FINE. The trainers support
logging the Level.FINE, Level.FINER and Level.FINEST.

Example: Neural Network Forecasting Application

This application illustrates one common approach to time series prediction using a neural
network. In this case, the output target for this network is a single time series. In general, the
inputs to this network consist of lagged values of the time series together with other
concomitant variables, both continuous and categorical. In this application, however, only the
first three lags of the time series are used as network inputs.

The objective is to train a neural network for forecasting the series Yt, t = 0, 1, 2, . . ., from the
first three lags of Yt, i.e.

Yt = f(Yt−1, Yt−2, Yt−3)

Since this series consists of data from several company departments, lagging of the series must
be done within departments. This creates many missing values. The original data contains
118,519 training patterns. After lagging, 16,507 are identified as missing and are removed,
leaving a total of 102,012 usable training patterns. Missing values are denoted using a number
not in the training patterns, the value -9,999,999,999.0 .

The structure of the network consists of three input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure depicts this
structure:

Neural Nets • 1205

INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

Figure 9. An example 2-layer Feed Forward Neural Network

There are a total of 16 weights in this network, including the 4 bias weights. All perceptrons in
the hidden layer use logistic activation, and the output perceptron uses linear activation.
Because of the large number of training patterns, the Activation.LOGISTIC TABLE activation
funtion is used instead of Activation.LOGISTIC. Activation.LOGISTIC TABLE uses a table
lookup for calculating the logistic activation function, which significantly reduces training time.
However, these are not completely interchangable. If a network is trained using
Activation.LOGISTIC TABLE, then it is important to use the same activation function for
forecasting.

All input nodes are linked to every perceptron in the hidden layer, which are in turn linked to
the output perceptron. Then all inputs and the output target are scaled using the ScaleFilter
class to ensure that all input values and outputs are in the range [0, 1]. This requires forecasts
to be unscaled using the decode() method of the ScaleFilter class.

Training is conducted using the epoch trainer. This trainer allows users to customize training
into two stages. Typically this is necessary when training using a large number of training
patterns. Stage I training uses randomly selected subsets of training patterns to search for
network solutions. Stage II training is optional, and uses the entire set of training patterns. For
larger sets of training patterns, training could take many hours, or even days. In that case,
Stage II training might be bypassed.

In this example, Stage I training is conducted using the Quasi-Newton trainer applied to 20
epochs, each consisting of 5,000 randomly selected observations. Stage II training also uses the
Quasi-Newton trainer. The training results for each Stage I epoch and for the final Stage II
solution are stored in a training log file NeuralNetworkEx1.log.

1206 • JMSL

The training patterns are contained in two data files: continuous.txt and output.txt. The
formats of these files are identical. The first line of the file contains the number of columns or
variables in that file. The second contains a line of tab-delimited integer values. These are the
column indices associated with the incoming data. The remaining lines contain tab-delimited,
floating point values, one for each of the incoming variables.

For example, the first four lines of the continuous.txt file consists of the following lines:

3
1 2 3
0 0 0
0 0 0

There are 3 continuous input variables which are numbered, or labeled, as 1, 2, and 3.

Source Code

import com.imsl.datamining.neural.*;
import com.imsl.math.*;
import java.io.*;
import java.util.*;
import java.util.logging.*;

//***
// NeuralNetworkEx1.java *
// Two Layer Feed-Forward Network Complete Example for Simple Time Series *
//***
// Synopsis: This example illustrates how to use a Feed-Forward Neural *
// Network to forecast time series data. The network target is a *
// time series and the three inputs are the 1st, 2nd, and 3rd lag *
// for the target series. *
// Activation: Logistic_Table in Hidden Layer, Linear in Output Layer *
// Trainer: Epoch Trainer: Stage I - Quasi-Newton, Stage II - Quasi-Newton *
// Inputs: Lags 1-3 of the time series *
// Output: A Time Series sorted chronologically in descending order, *
// i.e., the most recent observations occur before the earliest, *
// within each department *
//***

public class NeuralNetworkEx1 implements Serializable {

private FeedForwardNetwork network;
private static String QuasiNewton = "quasi-newton";
private static String LeastSquares= "least-squares";

// ***
// Network Architecture *
// ***

private static int nObs =118519; // number of training patterns
private static int nInputs = 3; // four inputs
private static int nCategorical = 0; // three categorical attributes
private static int nContinuous = 3; // one continuous input attribute
private static int nOutputs = 1; // one continuous output

Neural Nets • 1207

private static int nLayers = 2; // number of perceptron layers
private static int nPerceptrons = 3; // perceptrons in hidden layer
private static int perceptrons[]={3}; // number of perceptrons in each

// hidden layer
// PERCEPTRON ACTIVATION
private static Activation hiddenLayerActivation = Activation.LOGISTIC_TABLE;
private static Activation outputLayerActivation = Activation.LINEAR;

// ***
// Epoch Training Optimization Settings *
// ***

private static boolean trace = true; //trainer logging *
private static int nEpochs = 20; //number of epochs *
private static int epochSize = 5000; //samples per epoch *
// Stage I Trainer - Quasi-Newton Trainer **********************************
private static int stage1Iterations = 5000; //max. iterations *
private static double stage1MaxStepsize = 50.0; //max. stepsize *
private static double stage1StepTolerance = 1e-09;//step tolerance *
private static double stage1RelativeTolerance = 1e-11;//rel. tolerance *
// Stage II Trainer - Quasi-Newton Trainer *********************************
private static int stage2Iterations = 5000; //max. iterations *
private static double stage2MaxStepsize = 50.0; //max. stepsize *
private static double stage2StepTolerance = 1e-09;//step tolerance *
private static double stage2RelativeTolerance = 1e-11;//rel. tolerance *

// ***
// FILE NAMES AND FILE READER DEFINITIONS *
// ***

// READERS
private static BufferedReader attFileInputStream;
private static BufferedReader contFileInputStream;
private static BufferedReader outputFileInputStream;
// OUTPUT FILES
// File Name for training log produced when trace = true
private static String trainingLogFile = "NeuralNetworkEx1.log";
// File Name for Serialized Network
private static String networkFileName = "NeuralNetworkEx1.ser";
// File Name for Serialized Trainer
private static String trainerFileName = "NeuralNetworkTrainerEx1.ser";
// File Name for Serialized xData File (training input attributes)
private static String xDataFileName = "NeuralNetworkxDataEx1.ser";
// File Name for Serialized yData File (training output targets)
private static String yDataFileName = "NeuralNetworkyDataEx1.ser";
// INPUT FILES
// Continuous input attributes file. File contains Lags 1-3 of series
private static String contFileName = "continuous.txt";
// Continuous network targets file. File contains the original series
private static String outputFileName = "output.txt";

// ***
// Data Preprocessing Settings *
// ***

private static double lowerDataLimit=-105000; // lower scale limit
private static double upperDataLimit=25000000; // upper scale limit
private static double missingValue = -9999999999.0; // missing values

// indicator
// ***
// Time Parameters for Tracking Training Time *
// ***

1208 • JMSL

private static Calendar startTime;
private static Calendar endTime;

// ***
// Error Message Encoding for Stage II Trainer - Quasi-Newton Trainer *
// ***
// Note: For the Epoch Trainer, the error status returned is the status for *
// the Stage II trainer, unless Stage II training is not used. *
// ***

private static String errorMsg = "";
// Error Status Messages for the Quasi-Newton Trainer
private static String errorMsg0 =

"--> Network Training";
private static String errorMsg1 =

"--> The last global step failed to locate a lower point than the\n"+
"current error value. The current solution may be an approximate\n"+
"solution and no more accuracy is possible, or the step tolerance\n"+
"may be too large.";

private static String errorMsg2 =
"--> Relative function convergence; both both the actual and \n"+
"predicted relative reductions in the error function are less than\n"+
"or equal to the relative fu nction convergence tolerance.";

private static String errorMsg3 =
"--> Scaled step tolerance satisfied; the current solution may be\n"+
"an approximate local solution, or the algorithm is making very slow\n"+
"progress and is not near a solution, or the step tolerance is too big.";

private static String errorMsg4 =
"--> Quasi-Newton Trainer threw a \n"+
"MinUnconMultiVar.FalseConvergenceException.";

private static String errorMsg5 =
"--> Quasi-Newton Trainer threw a \n"+
"MinUnconMultiVar.MaxIterationsException.";

private static String errorMsg6 =
"--> Quasi-Newton Trainer threw a \n"+
"MinUnconMultiVar.UnboundedBelowException.";

// ***
// MAIN *
// ***

public static void main(String[] args) throws Exception {

double weight[]; // Network weights
double gradient[]; // Network gradient after training
double x[]; // Temporary x space for generating forecasts
double y[]; // Temporary y space for generating forecasts
double xData[][]; // Training Patterns Input Attributes
double yData[][]; // Training Targets Output Attributes
double contAtt[][];// A 2D matrix for the continuous training attributes
double outs[][]; // A matrix containing the training output tragets
int i, j, k, m=0; // Array indicies
int nWeights = 0; // Number of network weights
int nCol = 0; // Number of data columns in input file
int ignore[]; // Array of 0’s and 1’s (0=missing value)
int cont_col[], outs_col[], isMissing[]={0};
String inputLine="", temp;
String dataElement[];

// ***
// Initialize timers *

Neural Nets • 1209

// ***
startTime = Calendar.getInstance();
System.out.println("--> Starting Data Preprocessing at: "+

startTime.getTime());

// ***
// Read continuous attribute data *
// ***

// Initialize ignore[] for identifying missing observations
ignore = new int[nObs];
isMissing = new int[1];
openInputFiles();

nCol = readFirstLine(contFileInputStream);

nContinuous = nCol;
System.out.println("--> Number of continuous variables: "+nContinuous);
// If the number of continuous variables is greater than zero then read
// the remainder of this file (contFile)
if(nContinuous > 0){

// contFile contains continuous attribute data
contAtt = new double[nObs][nContinuous];
cont_col = readColumnLabels(contFileInputStream, nContinuous);
for (i=0; i < nObs; i++){

isMissing[0] = -1;
contAtt[i] = readDataLine(contFileInputStream,

nContinuous, isMissing);
ignore[i] = isMissing[0];
if (isMissing[0] >= 0) m++;

}
}else{

nContinuous = 0;
contAtt = new double[1][1];
contAtt[0][0]= 0;

}
closeFile(contFileInputStream);

// ***
// Read continuous output targets *
// ***

nCol = readFirstLine(outputFileInputStream);
nOutputs = nCol;
System.out.println("--> Number of output variables: "+nOutputs);
outs = new double[nObs][nOutputs];
// Read numeric labels for continuous input attributes
outs_col = readColumnLabels(outputFileInputStream, nOutputs);

m = 0;
for (i=0; i < nObs; i++){

isMissing[0] = ignore[i];
outs[i] = readDataLine(outputFileInputStream, nOutputs, isMissing);
ignore[i] = isMissing[0];
if (isMissing[0] >= 0) m++;

}
System.out.println("--> Number of Missing Observations: " + m);
closeFile(outputFileInputStream);
// Remove missing observations using the ignore[] array

1210 • JMSL

m = removeMissingData(nObs, nContinuous, ignore, contAtt);
m = removeMissingData(nObs, nOutputs, ignore, outs);

System.out.println("--> Total Number of Training Patterns: "+ nObs);
nObs = nObs - m;
System.out.println("--> Number of Usable Training Patterns: "+ nObs);

// ***
// Setup Method and Bounds for Scale Filter *
// ***

ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED_SCALING);
scaleFilter.setBounds(lowerDataLimit,upperDataLimit,0,1);

// ***
// PREPROCESS TRAINING PATTERNS *
// ***

System.out.println("--> Starting Preprocessing of Training Patterns");
xData = new double[nObs][nContinuous];
yData = new double[nObs][nOutputs];
for(i=0; i < nObs; i++) {

for(j=0; j < nContinuous; j++){
xData[i][j] = contAtt[i][j];

}
yData[i][0] = outs[i][0];

}
scaleFilter.encode(0, xData);
scaleFilter.encode(1, xData);
scaleFilter.encode(2, xData);
scaleFilter.encode(0, yData) ;

// ***
// CREATE FEEDFORWARD NETWORK *
// ***

System.out.println("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 3
network.getInputLayer().createInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.createHiddenLayer().createPerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.getOutputLayer().createPerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.linkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron perceptrons[] = network.getPerceptrons();
// Set all hidden layer perceptrons to logistic_table activation
for (i=0; i < perceptrons.length-1; i++) {

perceptrons[i].setActivation(hiddenLayerActivation);
}
perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);
System.out.println("--> Feed Forward Network Created with 2 Layers");

// **
// TRAIN NETWORK USING EPOCH TRAINER *
// **

System.out.println("--> Training Network using Epoch Trainer");
Trainer trainer = createTrainer(QuasiNewton,QuasiNewton);
Calendar startTime = Calendar.getInstance();
// Train Network

Neural Nets • 1211

trainer.train(network, xData, yData);

// Check Training Error Status
switch(trainer.getErrorStatus()){

case 0: errorMsg = errorMsg0;
break;

case 1: errorMsg = errorMsg1;
break;

case 2: errorMsg = errorMsg2;
break;

case 3: errorMsg = errorMsg3;
break;

case 4: errorMsg = errorMsg4;
break;

case 5: errorMsg = errorMsg5;
break;

case 6: errorMsg = errorMsg6;
break;

default:errorMsg = "--> Unknown Error Status Returned from Trainer";
}
System.out.println(errorMsg);
Calendar currentTimeNow = Calendar.getInstance();
System.out.println("--> Network Training Completed at: "+currentTimeNow.getTime());
double duration = (double)(currentTimeNow.getTimeInMillis() -

startTime.getTimeInMillis())/1000.0;
System.out.println("--> Training Time: "+duration+" seconds");

// ***
// DISPLAY TRAINING STATISTICS *
// ***

double stats[] = network.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> SSE: "+(float)stats[0]);
System.out.println("--> RMS: "+(float)stats[1]);
System.out.println("--> Laplacian Error: "+(float)stats[2]);
System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);
System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);
System.out.println("***");
System.out.println("");

// ***
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS *
// ***

System.out.println("--> Getting Network Weights and Gradients");
// Get weights
weight = network.getWeights();
// Get number of weights = number of gradients
nWeights = network.getNumberOfWeights();
// Obtain Gradient Vector
gradient = trainer.getErrorGradient();
// Print Network Weights and Gradients
System.out.println(" ");
System.out.println("--> Network Weights and Gradients:");
System.out.println("***");
double[][] printMatrix = new double[nWeights][2];
for(i=0; i < nWeights; i++){

1212 • JMSL

printMatrix[i][0] = weight[i];
printMatrix[i][1] = gradient[i];

}
// Print result without row/column labels.
String[] colLabels = {"Weight", "Gradient"};
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setColumnLabels(colLabels);
pm.setTitle("Weights and Gradients");
pm.print(mf, printMatrix);

System.out.println("***");
// ***
// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT *
// ***

System.out.println("\n--> Saving Trained Network into "+
networkFileName);

write(network, networkFileName);
System.out.println("--> Saving Network Trainer into "+

trainerFileName);
write(trainer, trainerFileName);
System.out.println("--> Saving xData into "+

xDataFileName);
write(xData, xDataFileName);
System.out.println("--> Saving yData into "+

yDataFileName);
write(yData, yDataFileName);

}
// ***
// OPEN DATA FILES *
// ***

static public void openInputFiles(){
try{

// Continuous Input Attributes
InputStream contInputStream = new FileInputStream(contFileName);
contFileInputStream =

new BufferedReader(new InputStreamReader(contInputStream));
// Continuous Output Targets
InputStream outputInputStream = new FileInputStream(outputFileName);
outputFileInputStream =

new BufferedReader(new InputStreamReader(outputInputStream));
}catch(Exception e){

System.out.println("-->ERROR: "+e);
System.exit(0);

}
}

// ***
// READ FIRST LINE OF DATA FILE AND RETURN NUMBER OF COLUMNS IN FILE *
// ***

static public int readFirstLine(BufferedReader inputFile){
String inputLine="", temp;
int nCol=0;
try{

temp = inputFile.readLine();

Neural Nets • 1213

inputLine = temp.trim();
nCol = Integer.parseInt(inputLine);

}catch(Exception e){
System.out.println("--> ERROR READING 1st LINE OF File" + e);
System.exit(0);

}
return nCol;

}
// ***
// READ COLUMN LABELS (2ND LINE IN FILE) *
// ***

static public int[] readColumnLabels(BufferedReader inputFile, int nCol){
int contCol[] = new int[nCol];
String inputLine="", temp;
String dataElement[];
// Read numeric labels for continuous input attributes
try{

temp = inputFile.readLine();
inputLine = temp.trim();

}catch(Exception e){
System.out.println("--> ERROR READING 2nd LINE OF FILE: "+ e);
System.exit(0);

}
dataElement = inputLine.split(" ");
for (int i=0; i < nCol; i++){

contCol[i] = Integer.parseInt(dataElement[i]);
}
return contCol;

}
// ***
// READ DATA ROW *
// ***

static public double[] readDataLine(BufferedReader inputFile,
int nCol, int[] isMissing){

double missingValueIndicator = -9999999999.0;
double dataLine[] = new double[nCol];
double contCol[] = new double[nCol];
String inputLine="", temp;
String dataElement[];
try{

temp = inputFile.readLine();
inputLine = temp.trim();

}catch(Exception e){
System.out.println("-->ERROR READING LINE: " + e);
System.exit(0);

}
dataElement = inputLine.split(" ");
for (int j=0; j < nCol; j++){

dataLine[j] = Double.parseDouble(dataElement[j]);
if (dataLine[j] == missingValueIndicator)isMissing[0] = 1;

}
return dataLine;

}
// ***
// CLOSE FILE *
// ***

1214 • JMSL

static public void closeFile(BufferedReader inputFile){
try{

inputFile.close();
}catch(Exception e){

System.out.println("ERROR: Unable to close file: " + e);
System.exit(0);

}
}

// ***
// REMOVE MISSING DATA *
// ***

// Now remove all missing data using the ignore[] array
// and recalculate the number of usable observations, nObs
// This method is inefficient, but it works. It removes one case at a
// time, starting from the bottom. As a case (row) is removed, the cases
// below are pushed up to take it’s place.
// ***
static public int removeMissingData(int nObs,int nCol,int ignore[],

double[][] inputArray){
int m=0;
for(int i=nObs-1; i >=0; i--){

if(ignore[i]>=0){
// the ith row contains a missing value
// remove the ith row by shifting all rows below the
// ith row up by one position, e.g. row i+1 -> row i

m++;
if (nCol > 0){

for(int j=i; j < nObs-m; j++){
for (int k=0; k < nCol; k++){

inputArray[j][k]=inputArray[j+1][k];
}

}
}

}
}
return m;

}
// **
// Create Stage I/Stage II Trainer *
// **

static public Trainer createTrainer(String s1, String s2) {
EpochTrainer epoch = null; // Epoch Trainer (returned by this method)
QuasiNewtonTrainer stage1Trainer; // Stage I Quasi-Newton Trainer
QuasiNewtonTrainer stage2Trainer; // Stage II Quasi-Newton Trainer
LeastSquaresTrainer stage1LS; // Stage I Least Squares Trainer
LeastSquaresTrainer stage2LS; // Stage II Least Squares Trainer
Calendar currentTimeNow ; // Calendar time tracker

// Create Epoch (Stage I/Stage II) trainer from above trainers.
System.out.println(" --> Creating Epoch Trainer");
if (s1.equals(QuasiNewton)){

// Setup stage I quasi-newton trainer
stage1Trainer = new QuasiNewtonTrainer();
//stage1Trainer.setMaximumStepsize(maxStepSize);
stage1Trainer.setMaximumTrainingIterations(stage1Iterations);
stage1Trainer.setStepTolerance(stage1StepTolerance);

Neural Nets • 1215

if (s2.equals(QuasiNewton)){
stage2Trainer = new QuasiNewtonTrainer();
//stage2Trainer.setMaximumStepsize(maxStepSize);
stage2Trainer.setMaximumTrainingIterations(stage2Iterations);
epoch = new EpochTrainer(stage1Trainer, stage2Trainer);

}else{
if (s2.equals(LeastSquares)){

stage2LS = new LeastSquaresTrainer();
stage2LS.setInitialTrustRegion(1.0e-3);
//stage2LS.setMaximumStepsize(maxStepSize);
stage2LS.setMaximumTrainingIterations(stage2Iterations);
epoch = new EpochTrainer(stage1Trainer, stage2LS);

}else{
epoch = new EpochTrainer(stage1Trainer);

}
}

}else{
// Setup stage I least squares trainer
stage1LS = new LeastSquaresTrainer();
stage1LS.setInitialTrustRegion(1.0e-3);
stage1LS.setMaximumTrainingIterations(stage1Iterations);
//stage1LS.setMaximumStepsize(maxStepSize);
if (s2.equals(QuasiNewton)){

stage2Trainer = new QuasiNewtonTrainer();
//stage2Trainer.setMaximumStepsize(maxStepSize);
stage2Trainer.setMaximumTrainingIterations(stage2Iterations);
epoch = new EpochTrainer(stage1LS, stage2Trainer);

}else{
if (s2.equals(LeastSquares)){

stage2LS = new LeastSquaresTrainer();
stage2LS.setInitialTrustRegion(1.0e-3);
//stage2LS.setMaximumStepsize(maxStepSize);
stage2LS.setMaximumTrainingIterations(stage2Iterations);
epoch = new EpochTrainer(stage1LS, stage2LS);

}else{
epoch = new EpochTrainer(stage1LS);

}
}

}
epoch.setNumberOfEpochs(nEpochs);
epoch.setEpochSize(epochSize);
epoch.setRandom(new com.imsl.stat.Random(1234567));
epoch.setRandomSamples(new com.imsl.stat.Random(12345),

new com.imsl.stat.Random(67891));
System.out.println(" --> Trainer: Stage I - "+s1+" Stage II "+s2);
System.out.println(" --> Number of Epochs: " + nEpochs);
System.out.println(" --> Epoch Size: " + epochSize);
// Describe optimization setup for Stage I training
System.out.println(" --> Creating Stage I Trainer");
System.out.println(" --> Stage I Iterations: " + stage1Iterations);
System.out.println(" --> Stage I Step Tolerance: " + stage1StepTolerance);
System.out.println(" --> Stage I Relative Tolerance: " + stage1RelativeTolerance);
System.out.println(" --> Stage I Step Size: " + "DEFAULT");
System.out.println(" --> Stage I Trace: " + trace);
if(s2.equals(QuasiNewton) || s2.equals(LeastSquares)){
// Describe optimization setup for Stage II training

1216 • JMSL

System.out.println(" --> Creating Stage II Trainer");
System.out.println(" --> Stage II Iterations: " + stage2Iterations);
System.out.println(" --> Stage II Step Tolerance: " + stage2StepTolerance);
System.out.println(" --> Stage II Relative Tolerance: " + stage2RelativeTolerance);
System.out.println(" --> Stage II Step Size: " + "DEFAULT");
System.out.println(" --> Stage II Trace: " + trace);

}
if (trace) {

try {
Handler handler = new FileHandler(trainingLogFile);
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(EpochTrainer.getFormatter());
System.out.println(" --> Training Log Stored in "+trainingLogFile);

} catch (Exception e) {
e.printStackTrace();

}
}
currentTimeNow = Calendar.getInstance();
System.out.println("--> Starting Network Training at "+currentTimeNow.getTime());
// Return Stage I/Stage II trainer
return epoch;

}

// ***
// WRITE SERIALIZED OBJECT TO A FILE *
// ***

static public void write(Object obj, String filename)
throws IOException {
FileOutputStream fos = new FileOutputStream(filename);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(obj);
oos.close();
fos.close();

}
}
// ***

Output

--> Starting Data Preprocessing at: Thu Oct 14 17:27:04 CDT 2004
--> Number of continuous variables: 3
--> Number of output variables: 1
--> Number of Missing Observations: 16507
--> Total Number of Training Patterns: 118519
--> Number of Usable Training Patterns: 102012
--> Starting Preprocessing of Training Patterns
--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Epoch Trainer

--> Creating Epoch Trainer
--> Trainer: Stage I - quasi-newton Stage II quasi-newton

Neural Nets • 1217

--> Number of Epochs: 20
--> Epoch Size: 5000
--> Creating Stage I Trainer
--> Stage I Iterations: 5000
--> Stage I Step Tolerance: 1.0E-9
--> Stage I Relative Tolerance: 1.0E-11
--> Stage I Step Size: DEFAULT
--> Stage I Trace: true
--> Creating Stage II Trainer
--> Stage II Iterations: 5000
--> Stage II Step Tolerance: 1.0E-9
--> Stage II Relative Tolerance: 1.0E-11
--> Stage II Step Size: DEFAULT
--> Stage II Trace: true
--> Training Log Stored in NeuralNetworkEx1.log

--> Starting Network Training at Thu Oct 14 17:32:33 CDT 2004
--> The last global step failed to locate a lower point than the
current error value. The current solution may be an approximate
solution and no more accuracy is possible, or the step tolerance
may be too larger.
--> Network Training Completed at: Thu Oct 14 18:18:08 CDT 2004
--> Training Time: 2735.341 seconds

--> SSE: 3.88076
--> RMS: 0.12284768
--> Laplacian Error: 125.36781
--> Scaled Laplacian Error: 0.20686063
--> Largest Absolute Residual: 0.500993

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:

Weights and Gradients

Weight Gradient
1.921 -0
1.569 0

-199.709 0
0.065 -0
-0.003 0

106.62 0
1.221 -0
0.787 0

119.169 0
-129.8 0
146.822 0
-0.076 0
-6.022 -0
-5.257 0.001
2.19 0
-0.377 0

--> Saving Trained Network into NeuralNetworkEx1.ser

1218 • JMSL

--> Saving Network Trainer into NeuralNetworkTrainerEx1.ser
--> Saving xData into NeuralNetworkxDataEx1.ser
--> Saving yData into NeuralNetworkyDataEx1.ser

Results

The above output indicates that the network successfully completed its training. The final sum
of squared errors was 3.88, and the RMS (the scaled version of the sum of squared errors) was
0.12. All of the gradients at this solution are nearly zero, which is expected if network training
found a local or global optima. Non-zero gradients usually indicate there was a problem with
network training.

Examining the training log for this application, NeuralNetworkEx1.log, illustrates the
importance of Stage II training.

Portions of the Training Log - NeuralNetworkEx1.log

.

.

.
End EpochTrainer Stage 1

Best Epoch 15
Error Status 17
Best Error 0.03979299031789641
Best Residual 0.03979299031789641
SSE 1072.1281419136983
RMS 33.93882798404427
Laplacian 429.30253410528974
Scaled Laplacian 0.7083620086220087
Max Residual 11.837166167929052

Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 1
Beginning com.imsl.datamining.neural.EpochTrainer.train Stage 2
.
.
.
Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 2

Summary
Error Status 1
Best Error 3.88076005209094
SSE 3.88076005209094
RMS 0.12284767343218107
Laplacian 125.3678136373788
Scaled Laplacian 0.20686063843020083
Max Residual 0.5009930332151435

The training log indicates that the best Stage I epoch occurred at iteration 15, and that 17 of
the 20 Stage I epochs detected a problem with training optimization. Other parts of the log
indicate that these problems included: possible local minima, and maximum number of
iterations exceeded. Although these problems are warning messages and not true errors, they

Neural Nets • 1219

do indicate that convergence to a global optima is uncertain for 17 of the 20 epochs. Possibly
increasing the epoch size might have provided more stable Stage I training.

More disturbing is the fact that for the best epoch=15, the sum of squared errors totaled over
all training patterns is 1072.13. Epoch 15 was used as the starting point for the Stage II
training which was able to reduce this sum of squared errors to 3.88. This suggests that
although the epoch size, epochSize=5000, was too small for effective Stage I training, the Stage
II trainer was able to locate a better solution.

However, even the Stage II trainer returned a non-zero error status, errorStatus=1. This was a
warning that the Stage II trainer may have found a local optima. Further attempts were made
to determine whether a better network could be found, but these alternate solutions only
marginally lowered the sum of squared errors.

The trained network was serialized and stored into four files:

the network file - NeuralNetworkEx1.ser,
the trainer file - NeuralNetworkTrainerEx1.ser,
the xData file - NeuralNetworkxDataEx1.ser, and
the yData file - NeuralNetworkyDataEx1.ser.

Links to Input Data Files Used in this Example and the Training Log:

Network class

abstract public class com.imsl.datamining.neural.Network implements
Serializable

Neural network base class.

Constructor

Network
public Network()

1220 • Network class JMSL

Description

Default constructor for Network. Since this class is abstract, it cannot be instantiated
directly; this constructor is used by constructors in classes derived from Network.

Methods

computeStatistics
public double[] computeStatistics(double[][] xData, double[][] yData)

Description

Computes error statistics.

This is a static method that can be used to compute the statistics regardless of the
training class used to train the network.

Computes statistics related to the error. In this table, the observed values are yi. The
forecasted values are ŷi. The mean observed value is ȳ =

∑
i yi/NC, where N is the

number of observations and C is the number of classes per observation.

Index Name Formula
0 SSE 1

2

∑
i (yi − ŷi)

2

1 RMS
P

i(yi−ŷi)
2

P
i(yi−ȳi)

2 Laplacian
∑

i |yi − ŷi|
3 Scaled Laplacian

P
i|yi−ŷi|P
i|yi−ȳi|

4 Max residual maxi |yi − ŷi|

Parameters

xData – A double matrix containing the input values.

yData – A double array containing the observed values.

Returns

A double array containing the above described statistics.

createHiddenLayer
abstract public HiddenLayer createHiddenLayer()

Description

Creates the next HiddenLayer in the Network.

Returns

The new HiddenLayer.

forecast
abstract public double[] forecast(double[] x)

Neural Nets Network class • 1221

Description

Returns a forecast for each of the Network’s outputs computed from the trained Network.

Parameter

x – A double array of values with the same length and order as the training patterns
used to train the Network.

Returns

A double array containing the forecasts for the output Perceptrons. Its length is equal
to the number of output Perceptrons.

getForecastGradient
abstract public double[][] getForecastGradient(double[] x)

Description

Returns the derivatives of the outputs with respect to the weights.

Parameter

x – A double array which specifies the input values at which the gradient is to be
evaluated.

Returns

A double array containing the gradient values. The value of gradient[i][j] is dyi/dwj ,
where yi is the i-th output and wj is the j-th weight.

getInputLayer
abstract public InputLayer getInputLayer()

Description

Returns the InputLayer object.

Returns

The Network InputLayer.

getLinks
abstract public Link[] getLinks()

Description

Returns an array containing the Link objects in the Network.

Returns

An array of Links associated with this Network.

getNumberOfInputs
abstract public int getNumberOfInputs()

1222 • Network class JMSL

Description

Returns the number of Network inputs.

Returns

An int which contains the number of inputs.

getNumberOfLinks
abstract public int getNumberOfLinks()

Description

Returns the number of Network Links among the nodes.

Returns

An int which contains the number of Links in the Network.

getNumberOfOutputs
abstract public int getNumberOfOutputs()

Description

Returns the number of Network output Perceptrons.

Returns

An int which contains the number of outputs.

getNumberOfWeights
abstract public int getNumberOfWeights()

Description

Returns the number of weights in the Network.

Returns

An int which contains the number of weights associated with this Network.

getOutputLayer
abstract public OutputLayer getOutputLayer()

Description

Returns the OutputLayer.

Returns

The Network OutputLayer.

getPerceptrons
abstract public Perceptron[] getPerceptrons()

Description

Returns an array containing the Perceptrons in the Network.

Neural Nets Network class • 1223

Returns

An array of Perceptrons associated with this Network.

getWeights
abstract public double[] getWeights()

Description

Returns the weights.

Returns

A double array containing the weights associated with Network Links.

setWeights
abstract public void setWeights(double[] weights)

Description

Sets the weights.

Parameter

weights – A double array which specifies the weights to be associated with Network
Links.

Example: Network

This example uses a network previously trained and serialized into four files to obtain
information about the network and forecasts. Training was done using the code for the
FeedForwardNetwork Example 1.

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1 to X3 are the three binary columns, corresponding to categories 1 to 3 of the nominal
attribute, and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons
in the hidden layer and one in the output layer. The following figure illustrates this structure:

1224 • Network class JMSL

INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

X4

Figure 10. An example 2-layer Feed Forward Neural Network with 4 Inputs

All perceptrons were trained using a Linear Activation Function. Forecasts are generated for 9
conditions, corresponding to the following conditions:
Nominal Class 1-3 with the Continuous Input Attribute = 0
Nominal Class 1-3 with the Continuous Input Attribute = 5.0
Nominal Class 1-3 with the Continuous Input Attribute = 10.0

Note that the network training statistics retrieved from the serialized network confirm that this
is the same network used in the previous example. Obtaining these statistics requires retrieval
of the training patterns which were serialized and stored into separate files. This information is
not serialized with the network, nor with the trainer.

import com.imsl.datamining.neural.*;
import java.io.*;

//***
// Two Layer Feed-Forward Network with 4 inputs: 1 categorical with 3 classes
// encoded using binary encoding and 1 continuous input, and 1 output
// target (continuous). There is a perfect linear relationship between
// the input and output variables:
//
// MODEL: Y = 10*X1 + 20*X2 + 30*X3 + 2*X4
//
// Variables X1-X3 are the binary encoded nominal variable and X4 is the
// continuous variable.
//

Neural Nets Network class • 1225

// This example uses Linear Activation in both the hidden and output layers
// The network uses a 2-layer configuration, one hidden layer and one
// output layer. The hidden layer consists of 3 perceptrons. The output
// layer consists of a single output perceptron.
// The input from the continuous variable is scaled to [0,1] before training
// the network. Training is done using the Quasi-Newton Trainer.
// The network has a total of 19 weights.
// Since the network target is a linear combination of the network inputs, and
// since all perceptrons use linear activation, the network is able to forecast
// the every training target exactly. The largest residual is 2.78E-08.
//***

public class NetworkEx1 implements Serializable {
// **
// MAIN
// **

public static void main(String[] args) throws Exception {
double xData[][]; // Input Attributes for Training Patterns
double yData[][]; // Output Attributes for Training Patterns
double weight[]; // network weights
double gradient[];// network gradient after training
// Input Attributes for Forecasting
double x[][] = { {1,0,0,0.0}, {0,1,0,0.0}, {0,0,1,0.0},

{1,0,0,5.0}, {0,1,0,5.0}, {0,0,1,5.0},
{1,0,0,10.0}, {0,1,0,10.0}, {0,0,1,10.0}

};
double xTemp[], y[];// Temporary areas for storing forecasts
int i, j; // loop counters
// Names of Serialized Files
String networkFileName = "FeedForwardNetworkEx1.ser"; // the network
String trainerFileName = "FeedForwardTrainerEx1.ser"; // the trainer
String xDataFileName = "FeedForwardxDataEx1.ser"; // xData
String yDataFileName = "FeedForwardyDataEx1.ser"; // yData

// **
// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT
// **

System.out.println("--> Reading Trained Network from " +
networkFileName);

Network network = (Network)read(networkFileName);
// **
// READ THE SERIALIZED XDATA[][] AND YDATA[][] ARRAYS OF TRAINING
// PATTERNS.
// **

System.out.println("--> Reading xData from " +
xDataFileName);

xData = (double[][])read(xDataFileName);
System.out.println("--> Reading yData from " +

yDataFileName);
yData = (double[][])read(yDataFileName);

// **
// READ THE SERIALIZED TRAINER OBJECT
// **

System.out.println("--> Reading Network Trainer from " +
trainerFileName);

Trainer trainer = (Trainer)read(trainerFileName);
// **

1226 • Network class JMSL

// DISPLAY TRAINING STATISTICS
// **

double stats[] = network.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> SSE: "+(float)stats[0]);
System.out.println("--> RMS: "+(float)stats[1]);
System.out.println("--> Laplacian Error: "+(float)stats[2]);
System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);
System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);
System.out.println("***");
System.out.println("");
// **
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **
System.out.println("--> Getting Network Information");
// Get weights
weight = network.getWeights();
// Get number of weights = number of gradients
int nWeights = network.getNumberOfWeights();
// Obtain Gradient Vector
gradient = trainer.getErrorGradient();
// Print Network Weights and Gradients
System.out.println(" ");
System.out.println("--> Network Weights and Gradients:");
for(i=0; i < nWeights; i++){
System.out.println("w["+i+"]=" + (float)weight[i]+

" g["+i+"]="+(float)gradient[i]);
}

// **
// OBTAIN AND DISPLAY FORECASTS FOR THE LAST 10 TRAINING TARGETS
// **

// Get number of network inputs
int nInputs = network.getNumberOfInputs();
// Get number of network outputs
int nOutputs = network.getNumberOfOutputs();
xTemp = new double[nInputs]; // temporary x space for forecast inputs
y = new double[nOutputs];// temporary y space for forecast output
System.out.println(" ");
// Obtain example forecasts for input attributes = x[]
// X1-X3 are binary encoded for one nominal variable with 3 classes
// X4 is a continuous input attribute ranging from 0-10. During
// training, X4 was scaled to [0,1] by dividing by 10.
for(i=0;i<9;i++){

for(j=0;j<nInputs;j++) xTemp[j] = x[i][j];
xTemp[nInputs-1] = xTemp[nInputs-1]/10.0;
y = network.forecast(xTemp);
System.out.print("--> X1="+(int)x[i][0]+

" X2="+(int)x[i][1]+" X3="+(int)x[i][2]+
" | X4="+x[i][3]);

System.out.println(" | y="+
(float)(10.0*x[i][0]+20.0*x[i][1]+30.0*x[i][2]+2.0*x[i][3])+
"| Forecast="+(float)y[0]);

}
}

// **

Neural Nets Network class • 1227

// READ SERIALIZED NETWORK FROM A FILE
// **

static public Object read(String filename)
throws IOException, ClassNotFoundException {
FileInputStream fis = new FileInputStream(filename);
ObjectInputStream ois = new ObjectInputStream(fis);
Object obj = ois.readObject();
ois.close();
fis.close();
return obj;

}
}

Output

--> Reading Trained Network from FeedForwardNetworkEx1.ser
--> Reading xData from FeedForwardxDataEx1.ser
--> Reading yData from FeedForwardyDataEx1.ser
--> Reading Network Trainer from FeedForwardTrainerEx1.ser

--> SSE: 1.0134443E-15
--> RMS: 2.0074636E-19
--> Laplacian Error: 3.0058038E-7
--> Scaled Laplacian Error: 3.5352343E-10
--> Largest Absolute Residual: 2.784276E-8

--> Getting Network Information

--> Network Weights and Gradients:
w[0]=-1.4917853 g[0]=-2.6110852E-8
w[1]=-1.4917853 g[1]=-2.6110852E-8
w[2]=-1.4917853 g[2]=-2.6110852E-8
w[3]=1.6169184 g[3]=6.182032E-8
w[4]=1.6169184 g[4]=6.182032E-8
w[5]=1.6169184 g[5]=6.182032E-8
w[6]=4.725622 g[6]=-5.273859E-8
w[7]=4.725622 g[7]=-5.273859E-8
w[8]=4.725622 g[8]=-5.273859E-8
w[9]=6.217407 g[9]=-8.7338103E-10
w[10]=6.217407 g[10]=-8.7338103E-10
w[11]=6.217407 g[11]=-8.7338103E-10
w[12]=1.0722584 g[12]=-1.6909877E-7
w[13]=1.0722584 g[13]=-1.6909877E-7
w[14]=1.0722584 g[14]=-1.6909877E-7
w[15]=3.8507552 g[15]=-1.7029118E-8
w[16]=3.8507552 g[16]=-1.7029118E-8
w[17]=3.8507552 g[17]=-1.7029118E-8
w[18]=2.4117248 g[18]=-1.5881545E-8

--> X1=1 X2=0 X3=0 | X4=0.0 | y=10.0| Forecast=10.0
--> X1=0 X2=1 X3=0 | X4=0.0 | y=20.0| Forecast=20.0
--> X1=0 X2=0 X3=1 | X4=0.0 | y=30.0| Forecast=30.0

1228 • Network class JMSL

--> X1=1 X2=0 X3=0 | X4=5.0 | y=20.0| Forecast=20.0
--> X1=0 X2=1 X3=0 | X4=5.0 | y=30.0| Forecast=30.0
--> X1=0 X2=0 X3=1 | X4=5.0 | y=40.0| Forecast=40.0
--> X1=1 X2=0 X3=0 | X4=10.0 | y=30.0| Forecast=30.0
--> X1=0 X2=1 X3=0 | X4=10.0 | y=40.0| Forecast=40.0
--> X1=0 X2=0 X3=1 | X4=10.0 | y=50.0| Forecast=50.0

FeedForwardNetwork class

public class com.imsl.datamining.neural.FeedForwardNetwork extends
com.imsl.datamining.neural.Network

A representation of a feed forward neural network.

A Network contains an InputLayer, an OutputLayer and zero or more HiddenLayers. The
null InputLayer and OutputLayer are automatically created by the
com.imsl.datamining.neural.Network (p. 1220) constructor. The InputNodes are added
using the getInputLayer().createInputs(nInputs) method. Output Perceptrons are added
using the getOutputLayer().createPerceptrons(nOutputs), and HiddenLayers can be
created using the createHiddenLayer().createPerceptrons(nPerceptrons) method.

The InputLayer contains InputNodes. The HiddenLayers and OutputLayers contain
Perceptron nodes. These Nodes are created using factory methods in the Layers.

The Network also contains Links between Nodes. Links are created by methods in this class.

Each Link has a weight and gradient value. Each Perceptron node has a bias value. When the
Network is trained, the weight and bias values are used as initial guesses. After the Network is
trained the weight, gradient and bias values are set to the values computed by the training.

A feed forward network is a network in which links are only allowed from one layer to a
following layer.

Constructor

FeedForwardNetwork
public FeedForwardNetwork()

Neural Nets FeedForwardNetwork class • 1229

Description

Creates a new instance of FeedForwardNetwork.

Methods

createHiddenLayer
public HiddenLayer createHiddenLayer()

Description

Creates a HiddenLayer.

Returns

A HiddenLayer object which specifies a neural network hidden layer.

findLink
public Link findLink(Node from, Node to)

Description

Returns the Link between two Nodes.

Parameters

from – The origination Node.

to – The destination Node.

Returns

A Link between the two Nodes, or null if no such Link exists.

findLinks
public Link[] findLinks(Node to)

Description

Returns all of the Links to a given Node.

Parameter

to – A Node who’s Links are to be determined.

Returns

An array of Links containing all of the Links to the given Node.

forecast
public double[] forecast(double[] x)

Description

Computes a forecast using the Network.

1230 • FeedForwardNetwork class JMSL

Parameter

x – A double array of values to which the Nodes in the InputLayer are to be set.

Returns

A double array containing the values of the Nodes in the OutputLayer.

getForecastGradient
public double[][] getForecastGradient(double[] xData)

Description

Returns the derivatives of the outputs with respect to the weights.

Parameter

xData – A double array which specifies the input values at which the gradient is to
be evaluated.

Returns

A double array containing the gradient values. The value of gradient[i][j] is dyi/dwj ,
where yi is the i-th output and wj is the j-th weight.

getHiddenLayers
public HiddenLayer[] getHiddenLayers()

Description

Returns the HiddenLayers in this network.

Returns

An array of HiddenLayers in this network.

getInputLayer
public InputLayer getInputLayer()

Description

Returns the InputLayer.

Returns

The neural network InputLayer.

getLinks
public Link[] getLinks()

Description

Return all of the Links in this Network.

Neural Nets FeedForwardNetwork class • 1231

Returns

An array of Links containing all of the Links in this Network.

getNumberOfInputs
public int getNumberOfInputs()

Description

Returns the number of inputs to the Network.

Returns

An int containing the number of inputs to the Network.

getNumberOfLinks
public int getNumberOfLinks()

Description

Returns the number of Links in the Network.

Returns

An int which contains the number of Links in the Network.

getNumberOfOutputs
public int getNumberOfOutputs()

Description

Returns the number of outputs from the Network.

Returns

An int containing the number of outputs from the Network.

getNumberOfWeights
public int getNumberOfWeights()

Description

Returns the number of weights in the Network.

Returns

An int which contains the number of weights in the Network.

getOutputLayer
public OutputLayer getOutputLayer()

Description

Returns the OutputLayer.

1232 • FeedForwardNetwork class JMSL

Returns

The neural network OutputLayer.

getPerceptrons
public Perceptron[] getPerceptrons()

Description

Returns the Perceptrons in this Network.

Returns

An array of Perceptrons in this network.

getWeights
public double[] getWeights()

Description

Returns the weights for the Links in this network.

Returns

An array of doubles containing the weights. The array contains the weights for each Link
followed by the Perceptron bias values. The Link weights are in the order in which the
Links were created. The weight values are first, followed by the bias values in the
HiddenLayers and then the bias values in the OutputLayer, and then by the order in
which the Perceptrons were created.

link
public Link link(Node from, Node to)

Description

Establishes a Link between two Nodes. Any existing Link between these Nodes is
removed.

Parameters

from – The origination Node.

to – The destination Node.

Returns

A Link between the two Nodes.

link
public Link link(Node from, Node to, double weight)

Description

Establishes a Link between two Nodes with a specified weight.

Neural Nets FeedForwardNetwork class • 1233

Parameters

from – The origination Node.

to – The destination Node.

weight – A double which specifies the weight to be given the Link.

Returns

A Link between the two Nodes.

linkAll
public void linkAll()

Description

For each Layer in the Network, link each Node in the Layer to each Node in the next
Layer.

linkAll
public void linkAll(Layer from, Layer to)

Description

Link all of the Nodes in one Layer to all of the Nodes in another Layer.

Parameters

from – The origination Layer.

to – The destination Layer.

remove
public void remove(Link link)

Description

Removes a Link from the network.

Parameter

link – The Link deleted from the network.

setEqualWeights
public void setEqualWeights(double[][] xData)

Description

Initializes network weights using equal weighting.

The equal weights approach starts by assigning equal values to the inputs of each
perceptron. If a perceptron has 4 inputs, then this method starts by assigning the value
1/4 to each of the perceptron’s input weights. The bias weight is initially assigned a value
of zero.

1234 • FeedForwardNetwork class JMSL

The weights for the first layer of perceptrons, either the first hidden layer if the number of
layers is greater than 1 or the output layer, are scaled using the training patterns. Scaling
is accomplished by dividing the initial weights for the first layer by the standard
deviation, s, of the potential for that perceptron. The bias weight is set to -avg/s, where
avg is the average potential for that perceptron. This makes the average potential for the
perceptrons in this first layer approximately 0 and its standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very
large or small values for the perceptron’s potential. During training random noise is
added to these intial values at each training stage. If the epoch trainer is used, noise is
added to these initial values at the start of each epoch.

Parameter

xData – An input double matrix containing training patterns. The number of
columns in xData must equal the number of nodes in the input layer.

setRandomWeights
public void setRandomWeights(double[][] xData, Random random)

Description

Initializes network weights using random weights.

The random weights algorithm assigns equal weights to all perceptrons, except those in
the first layer connected to the input layer. Like the equal weights algorithm, perceptrons
not in the first layer are assigned weights 1/k, where k is the number of inputs connected
to that perceptron.

For the first layer perceptron weights, they are initially assigned values from the uniform
random distribution on the interval [-0.5, +0.5]. These are then scaled using the training
patterns. The random weights for a perceptron are divided by s, the standard deviation
of the potential for that perceptron calculated using the intial random values. Its bias
weight is set to -avg/s, where avg is the average potential for that perceptron. This makes
the average potential for the perceptrons in this first layer approximately 0 and its
standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very
large or small values for the perceptron’s potential. During training random noise is
added to these intial values at each training stage. If the epoch trainer is used, noise is
added to these initial values at the start of each epoch.

Parameters

xData – An input double matrix containing training patterns. The number of
columns in xData must equal the number of nodes in the input layer.

random – A Random object.

setWeights
public void setWeights(double[] weights)

Neural Nets FeedForwardNetwork class • 1235

Description

Sets the weights for the Links in this Network.

Parameter

weights – A double array containing the weights in the same order as
com.imsl.datamining.neural.FeedForwardNetwork.getWeights (p. ??) .

validateLink
protected void validateLink(Node from, Node to) throws
IllegalArgumentException

Description

Checks that a Link between two Nodes is valid.

In a feed forward network a link must be from a node in one layer to a node in a later
layer. Intermediate layers can be skipped, but a link cannot go backward.

Parameters

from – The origination Node.

to – The destination Node.

IllegalArgumentException is thrown if the Link is not valid

Example: FeedForwardNetwork

This example trains a 2-layer network using 100 training patterns from one nominal and one
continuous input attribute. The nominal attribute has three classifications which are encoded
using binary encoding. This results in three binary network input columns. The continuous
input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1-X3 are the three binary columns, corresponding to categories 1-3 of the nominal attribute,
and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons
in the hidden layer and one in the output layer. The following figure illustrates this structure:

1236 • FeedForwardNetwork class JMSL

INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

X4

There are a total of 19 weights in this network. The activations functions are all linear. Since
the target output is a linear function of the input attributes, linear activation functions
guarantee that the network forecasts will exactly match their targets. Of course, this same
result could have been obtained using linear multiple regression. Training is conducted using
the quasi-newton trainer.

import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;

//***
// Two Layer Feed-Forward Network with 4 inputs: 1 nominal with 3 categories,
// encoded using binary encoding, 1 continuous input attribute, and 1 output
// target (continuous).
// There is a perfect linear relationship between the input and output
// variables:
//
// MODEL: Y = 10*X1+20*X2+30*X3+2*X4
//

Neural Nets FeedForwardNetwork class • 1237

// Variables X1-X3 are the binary encoded nominal variable and X4 is the
// continuous variable.
//***

public class FeedForwardNetworkEx1 implements Serializable {

// Network Settings
private FeedForwardNetwork network;
private static int nObs =100; // number of training patterns
private static int nInputs = 4; // four inputs
private static int nCategorical = 3; // three categorical attributes
private static int nContinuous = 1; // one continuous input attribute
private static int nOutputs = 1; // one continuous output
private static int nLayers = 2; // number of perceptron layers
private static int nPerceptrons = 3; // perceptrons in hidden layer
private static boolean trace = true; // Turns on/off training log
private static Activation hiddenLayerActivation = Activation.LINEAR;
private static Activation outputLayerActivation = Activation.LINEAR;
private static String errorMsg = "";
// Error Status Messages for the Least Squares Trainer
private static String errorMsg0 =

"--> Least Squares Training Completed Successfully";
private static String errorMsg1 =

"--> Scaled step tolerance was satisfied. The current solution \n"+
"may be an approximate local solution, or the algorithm is making\n"+
"slow progress and is not near a solution, or the Step Tolerance\n"+
"is too big";

private static String errorMsg2 =
"--> Scaled actual and predicted reductions in the function are\n"+
"less than or equal to the relative function convergence\n"+
"tolerance RelativeTolerance";

private static String errorMsg3 =
"--> Iterates appear to be converging to a noncritical point.\n"+
"Incorrect gradient information, a discontinuous function,\n"+
"or stopping tolerances being too tight may be the cause.";

private static String errorMsg4 =
"--> Five consecutive steps with the maximum stepsize have\n"+
"been taken. Either the function is unbounded below, or has\n"+
"a finite asymptote in some direction, or the maximum stepsize\n"+
"is too small.";

private static String errorMsg5 =
"--> Too many iterations required";

// categoricalAtt[]: A 2D matrix of values for the categorical training
// attribute. In this example, the single categorical
// attribute has 3 categories that are encoded using
// binary encoding for input into the network.
// {1,0,0} = category 1, {0,1,0} = category 2, and
// {0,0,1} = category 3.

private static double categoricalAtt[][] =
{
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},

1238 • FeedForwardNetwork class JMSL

{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},

{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1}
};

//
// contAtt[]: A matrix of values for the continuous training attribute
//

private static double contAtt[] = {
4.007054658,7.10028447,4.740350984,5.714553211,6.205437459,
2.598930065,8.65089967,5.705787357,2.513348184,2.723795955,
4.1829356,1.93280416,0.332941608,6.745567628,5.593588463,
7.273544478,3.162117939,4.205381208,0.16414745,2.883418275,
0.629342241,1.082223406,8.180324708,8.004894314,7.856215418,
7.797143157,8.350033996,3.778254431,6.964837082,6.13938006,
0.48610387,5.686627923,8.146173848,5.879852653,4.587492779,
0.714028533,7.56324211,8.406012623,4.225261454,6.369220241,
4.432772218,9.52166984,7.935791508,4.557155333,7.976015058,
4.913538616,1.473658514,2.592338905,1.386872932,7.046051685,
1.432128376,1.153580985,5.6561491,3.31163251,4.648324851,
5.042514515,0.657054195,7.958308093,7.557870384,7.901990083,
5.2363088,6.95582150,8.362167045,4.875903563,1.729229471,
4.380370223,8.527875685,2.489198107,3.711472959,4.17692681,
5.844828801,4.825754155,5.642267843,5.339937786,4.440813223,
1.615143829,7.542969339,8.100542684,0.98625265,4.744819569,
8.926039258,8.813441887,7.749383991,6.551841576,8.637046998,
4.560281415,1.386055087,0.778869034,3.883379045,2.364501589,
9.648737525,1.21754765,3.908879368,4.253313879,9.31189696,
3.811953836,5.78471629,3.414486452,9.345413015,1.024053777
};

//
// outs[]: A 2D matrix containing the training outputs for this network
// In this case there is an exact linear relationship between these
// outputs and the inputs: outs = 10*X1+20*X2+30*X3+2*X4, where
// X1-X3 are the categorical variables and X4=contAtt
//

private static double outs[] = {
18.01410932,24.20056894,19.48070197,21.42910642,22.41087492,
15.19786013,27.30179934,21.41157471,15.02669637,15.44759191,
18.3658712,13.86560832,10.66588322,23.49113526,21.18717693,
24.54708896,16.32423588,18.41076242,10.3282949,15.76683655,
11.25868448,12.16444681,26.36064942,26.00978863,25.71243084,
25.59428631,26.70006799,17.55650886,23.92967416,22.27876012,
10.97220774,21.37325585,26.2923477,21.75970531,19.17498556,
21.42805707,35.12648422,36.81202525,28.45052291,32.73844048,
28.86554444,39.04333968,35.87158302,29.11431067,35.95203012,
29.82707723,22.94731703,25.18467781,22.77374586,34.09210337,
22.86425675,22.30716197,31.3122982,26.62326502,29.2966497,
30.08502903,21.31410839,35.91661619,35.11574077,35.80398017,
30.4726176,33.91164302,36.72433409,29.75180713,23.45845894,
38.76074045,47.05575137,34.97839621,37.42294592,38.35385362,

Neural Nets FeedForwardNetwork class • 1239

41.6896576,39.65150831,41.28453569,40.67987557,38.88162645,
33.23028766,45.08593868,46.20108537,31.9725053,39.48963914,
47.85207852,47.62688377,45.49876798,43.10368315,47.274094,
39.1205628,32.77211017,31.55773807,37.76675809,34.72900318,
49.29747505,32.4350953,37.81775874,38.50662776,48.62379392,
37.62390767,41.56943258,36.8289729,48.69082603,32.04810755
};

// **
// MAIN
// **

public static void main(String[] args) throws Exception {

double weight[]; // network weights
double gradient[];// network gradient after training
double x[]; // temporary x space for generating forecasts
double y[]; // temporary y space for generating forecasts
double xData[][]; // Input Attributes for Trainer
double yData[][]; // Output Attributes for Trainer
int i, j; // array indicies
int nWeights = 0; // Number of weights obtained from network
String networkFileName = "FeedForwardNetworkEx1.ser";
String trainerFileName = "FeedForwardTrainerEx1.ser";
String xDataFileName = "FeedForwardxDataEx1.ser";
String yDataFileName = "FeedForwardyDataEx1.ser";
String trainLogName = "FeedForwardTraining.log";

// **
// PREPROCESS TRAINING PATTERNS
// **

System.out.println("--> Starting Preprocessing of Training Patterns");
xData = new double[nObs][nInputs];
yData = new double[nObs][nOutputs];
for(i=0; i < nObs; i++) {

for(j=0; j < nCategorical; j++){
xData[i][j] = categoricalAtt[i][j];

}
xData[i][nCategorical] = contAtt[i]/10.0; // Scale continuous input
yData[i][0] = outs[i]; // outputs are unscaled

}
// **
// CREATE FEEDFORWARD NETWORK
// **

System.out.println("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 4
network.getInputLayer().createInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.createHiddenLayer().createPerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.getOutputLayer().createPerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.linkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron perceptrons[] = network.getPerceptrons();
// Set all perceptrons to linear activation
for (i=0; i < perceptrons.length-1; i++) {

perceptrons[i].setActivation(hiddenLayerActivation);

1240 • FeedForwardNetwork class JMSL

}
perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);
System.out.println("--> Feed Forward Network Created with 2 Layers");

// **
// TRAIN NETWORK USING QUASI-NEWTON TRAINER
// **

System.out.println("--> Training Network using Quasi-Newton Trainer");
// Create Trainer
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
// Set Training Parameters
trainer.setMaximumTrainingIterations(1000);
// If tracing is requested setup training logger
if (trace) {

try {
Handler handler = new FileHandler(trainLogName);
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());
System.out.println("--> Training Log Created in "+

trainLogName);
} catch (Exception e) {

System.out.println("--> Cannot Create Training Log.");
}

}
// Train Network
trainer.train(network, xData, yData);
// Check Training Error Status
switch(trainer.getErrorStatus()){

case 0: errorMsg = errorMsg0;
break;

case 1: errorMsg = errorMsg1;
break;

case 2: errorMsg = errorMsg2;
break;

case 3: errorMsg = errorMsg3;
break;

case 4: errorMsg = errorMsg4;
break;

case 5: errorMsg = errorMsg5;
break;

default:errorMsg = errorMsg0;
}
System.out.println(errorMsg);

// **
// DISPLAY TRAINING STATISTICS
// **

double stats[] = network.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> SSE: "+(float)stats[0]);
System.out.println("--> RMS: "+(float)stats[1]);
System.out.println("--> Laplacian Error: "+(float)stats[2]);
System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);
System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);
System.out.println("***");

Neural Nets FeedForwardNetwork class • 1241

System.out.println("");
// **
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **
System.out.println("--> Getting Network Weights and Gradients");
// Get weights
weight = network.getWeights();
// Get number of weights = number of gradients
nWeights = network.getNumberOfWeights();
// Obtain Gradient Vector
gradient = trainer.getErrorGradient();
// Print Network Weights and Gradients
System.out.println(" ");
System.out.println("--> Network Weights and Gradients:");
System.out.println("***");
for(i=0; i < nWeights; i++){

System.out.println("w["+i+"]=" + (float)weight[i]+
" g["+i+"]="+(float)gradient[i]);

}
System.out.println("***");

// **
// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT
// **

System.out.println("\n--> Saving Trained Network into "+
networkFileName);

write(network, networkFileName);
System.out.println("--> Saving xData into "+

xDataFileName);
write(xData, xDataFileName);
System.out.println("--> Saving yData into "+

yDataFileName);
write(yData, yDataFileName);
System.out.println("--> Saving Network Trainer into "+

trainerFileName);
write(trainer, trainerFileName);

}
// **
// WRITE SERIALIZED NETWORK TO A FILE
// **

static public void write(Object obj, String filename)
throws IOException {
FileOutputStream fos = new FileOutputStream(filename);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(obj);
oos.close();
fos.close();

}
}

Output

--> Starting Preprocessing of Training Patterns

1242 • FeedForwardNetwork class JMSL

--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Quasi-Newton Trainer
--> Training Log Created in FeedForwardTraining.log
--> Least Squares Training Completed Successfully

--> SSE: 1.013444E-15
--> RMS: 2.007463E-19
--> Laplacian Error: 3.0058033E-7
--> Scaled Laplacian Error: 3.5352335E-10
--> Largest Absolute Residual: 2.784276E-8

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:

w[0]=-1.4917853 g[0]=-2.6110781E-8
w[1]=-1.4917853 g[1]=-2.6110781E-8
w[2]=-1.4917853 g[2]=-2.6110781E-8
w[3]=1.6169184 g[3]=6.182036E-8
w[4]=1.6169184 g[4]=6.182036E-8
w[5]=1.6169184 g[5]=6.182036E-8
w[6]=4.725622 g[6]=-5.2738493E-8
w[7]=4.725622 g[7]=-5.2738493E-8
w[8]=4.725622 g[8]=-5.2738493E-8
w[9]=6.217407 g[9]=-8.732707E-10
w[10]=6.217407 g[10]=-8.732707E-10
w[11]=6.217407 g[11]=-8.732707E-10
w[12]=1.0722584 g[12]=-1.6909704E-7
w[13]=1.0722584 g[13]=-1.6909704E-7
w[14]=1.0722584 g[14]=-1.6909704E-7
w[15]=3.8507552 g[15]=-1.7028917E-8
w[16]=3.8507552 g[16]=-1.7028917E-8
w[17]=3.8507552 g[17]=-1.7028917E-8
w[18]=2.4117248 g[18]=-1.5881357E-8

--> Saving Trained Network into FeedForwardNetworkEx1.ser
--> Saving xData into FeedForwardxDataEx1.ser
--> Saving yData into FeedForwardyDataEx1.ser
--> Saving Network Trainer into FeedForwardTrainerEx1.ser

Layer class

abstract public class com.imsl.datamining.neural.Layer implements Serializable

The base class for Layers in a neural network.

Neural Nets Layer class • 1243

Field

serialVersionUID
static final public long serialVersionUID

Constructor

Layer
protected Layer(FeedForwardNetwork network)

Description

Constructs a Layer.

Parameter

network – The FeedForwardNetwork to which this Layer is to be associated.

Methods

addNode
protected void addNode(Node node)

Description

Associates a Perceptron with this Layer.

Parameter

node – A Node to associate with this Layer.

getIndex
public int getIndex()

Description

Returns the index of this Layer.

Returns

An int which contains the value of property index.

getNodes
public Node[] getNodes()

Description

Return a list of the Perceptrons in this Layer.

1244 • Layer class JMSL

Returns

An array containing the Nodes associated with this Layer.

InputLayer class

public class com.imsl.datamining.neural.InputLayer extends
com.imsl.datamining.neural.Layer

Input layer in a neural network. An InputLayer is automatically created by Network.

Field

serialVersionUID
static final public long serialVersionUID

Methods

createInput
public InputNode createInput()

Description

Creates an InputNode in the InputLayer of the neural network.

createInputs
public InputNode[] createInputs(int n)

Description

Creates a number of InputNodes in this Layer of the neural network.

Parameter

n – An int which specifies the number of InputNodes to be created in this layer.

Returns

An array containing the created InputNodes.

getNodes
public Node[] getNodes()

Description

Return the Perceptrons in the InputLayer.

Neural Nets InputLayer class • 1245

Returns

An InputNode array containing the Nodes in the InputLayer.

HiddenLayer class

public class com.imsl.datamining.neural.HiddenLayer extends
com.imsl.datamining.neural.Layer

Hidden layer in a neural network. This is created by a factory method in Network.

Field

serialVersionUID
static final public long serialVersionUID

Methods

createPerceptron
public Perceptron createPerceptron()

Description

Creates a Perceptron in this Layer of the neural network. The created Perceptron uses
the logistic activation function and has an initial bias value of zero.

createPerceptron
public Perceptron createPerceptron(Activation activation, double bias)

Description

Creates a Perceptron in this Layer with a specified activation function and bias.

Parameters

activation – The Activation object which specifies the activation function to be
used.

bias – A double which specifies the initial value for the bias.

createPerceptrons
public Perceptron[] createPerceptrons(int n)

1246 • HiddenLayer class JMSL

Description

Creates a number of Perceptrons in this Layer of the neural network. The created
Perceptrons use the logistic activation function and have an initial bias value of zero.

Parameter

n – An int which specifies the number of Perceptrons to be created.

Returns

An array containing the created Perceptrons.

createPerceptrons
public Perceptron[] createPerceptrons(int n, Activation activation, double
bias)

Description

Creates a number of Perceptrons in this Layer with the specified bias.

Parameters

n – An int which specifies the number of Perceptrons to be created.

activation – The Activation object which specifies the action function to be used.

bias – A double containing the initial value to be applied as the bias values for the
Perceptrons.

Returns

An array containing the created Perceptrons.

OutputLayer class

public class com.imsl.datamining.neural.OutputLayer extends
com.imsl.datamining.neural.Layer

Output layer in a neural network. An empty OutputLayer is automatically created by
FeedForwardNetwork.

Field

serialVersionUID
static final public long serialVersionUID

Neural Nets OutputLayer class • 1247

Methods

createPerceptron
public Perceptron createPerceptron()

Description

Creates a Perceptron in this Layer of the neural network. By default, the created
Perceptron uses the linear activation function and has an initial bias value of zero.

createPerceptron
public Perceptron createPerceptron(Activation activation, double bias)

Description

Creates a Perceptron in this Layer with a specified Activation and bias.

Parameters

activation – The Activation object which specifies the action function to be used.

bias – A double which specifies the initial value for the bias for this Perceptron.

createPerceptrons
public Perceptron[] createPerceptrons(int n)

Description

Creates a number of Perceptrons in this Layer of the neural network. By default, they
will use linear activation and a zero initial bias.

Parameter

n – An int which specifies the number of Perceptrons to be created in this layer.

Returns

An array containing the created Perceptrons.

createPerceptrons
public Perceptron[] createPerceptrons(int n, Activation activation, double
bias)

Description

Creates a number of Perceptrons in this Layer with specified activation and bias.

Parameters

n – An int which specifies the number of Perceptrons to be created.

activation – The Activation object which indicates the action function to be used.

bias – A double which specifies the initial bias for the Perceptrons.

1248 • OutputLayer class JMSL

Returns

An array containing the created Perceptrons.

getNodes
public Node[] getNodes()

Description

Return the Perceptrons in the OutputLayer.

This method overides the method in com.imsl.datamining.neural.Layer (p. 1243) to
return the Perceptrons in an OutputPerceptron array.

Returns

An OutputPerceptron[] array containing the Nodes in the OutputLayer.

Node class

abstract public class com.imsl.datamining.neural.Node implements Serializable

A Node in a neural network.

Node is an abstract class that serves as the base class for the concrete classes InputNode and
Perceptron.

Method

getLayer
public Layer getLayer()

Description

Returns the Layer in which this Node exists.

Returns

The Layer associated with this Node.

InputNode class

public class com.imsl.datamining.neural.InputNode extends
com.imsl.datamining.neural.Node

A Node in the InputLayer.

Neural Nets Node class • 1249

InputNodes are not created directly. Instead factory methods in InputLayer are used to create
InputNodes within the InputLayer. For example,
com.imsl.datamining.neural.InputLayer.createInput (p. ??) creates a single InputNode.

Methods

getValue
public double getValue()

Description

Returns the value of this node.
Returns

A double which contains the value of this InputNode.

setValue
public void setValue(double value)

Description

Sets the value of this Node.
Parameter

value – A double which specifies the new value of this InputNode.

Perceptron class

public class com.imsl.datamining.neural.Perceptron extends
com.imsl.datamining.neural.Node

A Perceptron node in a neural network. Perceptrons are created by factory methods in a
network layer.

Each perceptron has an activation function (g) and a bias (µ). The value of a perceptron is
given by g(

∑
i wiXi + µ), where Xi are the values of nodes input to this perceptron with

weights wi.

Network training will use existing bias values for the starting values for the trainer. Upon
completion of network training, the bias values are set to the values computed by the trainer.

Field

serialVersionUID
static final public long serialVersionUID

1250 • Perceptron class JMSL

Methods

getActivation
public Activation getActivation()

Description

Returns the activation function.

Returns

An Activation object indicating the activation function.

getBias
public double getBias()

Description

Returns the bias for this perceptron.

Returns

A double representing the bias for this perceptron.

setActivation
public void setActivation(Activation activation)

Description

Sets the activation function.

Parameter

activation – An Activation object which represents the activation g to be used by
this perceptron.

setBias
public void setBias(double bias)

Description

Sets the bias for this perceptron.

Parameter

bias – A double scalar value to which the bias is to be set. The bias has a default
value of 0.

OutputPerceptron class

public class com.imsl.datamining.neural.OutputPerceptron extends
com.imsl.datamining.neural.Perceptron

Neural Nets OutputPerceptron class • 1251

A Perceptron in the output layer. OutputPerceptrons are created by factory methods in
Outputlayer.

OutputPerceptrons are not created directly. Instead factory methods in OutputLayer are used
to create OutputPerceptrons within the OutputLayer. For example,
OutputLayer.createPerceptron() creates a single OutputPerceptron.

Method

getValue
public double getValue()

Description

Returns the value of the output perceptron determined using the current network state
and inputs.

Returns

A double value of the output perceptron determined using the current network state and
inputs.

Activation interface

public interface com.imsl.datamining.neural.Activation implements Serializable

Interface implemented by perceptron activation functions.

Standard activation functions are defined as static members of this interface. New activation
functions can be defined by implementing a method, g(double x), returning the value and a
method, derivative(double x, double y), returning the derivative of g evaluated at x
where y = g(x).

Fields

LINEAR
static final public Activation LINEAR

The identity activation function, g(x) = x.

LOGISTIC
static final public Activation LOGISTIC

The logistic activation function, g(x) = 1
1+e−x .

1252 • Activation interface JMSL

LOGISTIC TABLE
static final public Activation LOGISTIC TABLE

The logistic activation function computed using a table. This is an approximation to the
logistic function that is faster to compute.

This version of the logistic function differs from the exact version by at most 4.0e-9.

Networks trained using this activation should not use Activation.LOGISTIC for
forecasting. Forecasting should be done using the specific function supplied during
training.

serialVersionUID
static final public long serialVersionUID

SOFTMAX
static final public Activation SOFTMAX

The softmax activation function.

softmaxi =
eZi

C∑
j=1

eZj

.

SQUASH
static final public Activation SQUASH

The squash activation function, g(x) = x
1+|x|

TANH
static final public Activation TANH

The hyperbolic tangent activation function, g(x) = tanhx = ex−e−x

ex+e−x .

Methods

derivative
public double derivative(double x, double y)

Description

Returns the value of the derivative of the activation function.

Parameters

x – A double which specifies the point at which the activation function is to be
evaluated.

Neural Nets Activation interface • 1253

y – A double which specifies y = g(x), the value of the activation function at x. This
parameter is not mathematically required, but can sometimes be used to more
quickly compute the derivative.

Returns

A double containing the value of the derivative of the activation function at x.

g
public double g(double x)

Description

Returns the value of the activation function.

Parameter

x – A double is the point at which the activation function is to be evaluated.

Returns

A double containing the value of the activation function at x.

Link class

public class com.imsl.datamining.neural.Link implements Serializable

A link in a neural network.

Link objects are not created directly. Instead, they are created by factory methods in
FeedForwardNetwork.

The most useful method is com.imsl.datamining.neural.FeedForwardNetwork.linkAll (p.
??) which creates Link objects connecting every Node in each Layer to every Node in the next
Layer .

The method com.imsl.datamining.neural.FeedForwardNetwork.link (p. ??) creates a Link
from a Node to any Node in a later Layer.

The method com.imsl.datamining.neural.FeedForwardNetwork.findLink (p. ??) returns
the Link connecting two Nodes in the Network.

The method com.imsl.datamining.neural.FeedForwardNetwork.remove (p. ??) removes a
Link from the Network.

Each Link object contains a weight. Weights are used in computing Perceptron values.

Methods

getFrom

1254 • Link class JMSL

public Node getFrom()

Description

Returns the origination Node for this Link.

Returns

A Node which is the origination Node for this Link.

getTo
public Node getTo()

Description

Returns the destination Node for this Link.

Returns

A Node which is the destination Node for this Link.

getWeight
public double getWeight()

Description

Returns the weight for this Link.

Returns

A double which contains the weight attributed to this Node.

setWeight
public void setWeight(double weight)

Description

Sets the weight for this Link.

Parameter

weight – A double which specifies the weight to attribute to this Link.

Trainer interface

public interface com.imsl.datamining.neural.Trainer implements Serializable

Interface implemented by classes used to train a network. The method train is used to adjust
the weights in a network to best fit a set of observed data. After a network is trained, the other
methods in this interface can be used to check the quality of the fit.

Neural Nets Trainer interface • 1255

Methods

getErrorGradient
public double[] getErrorGradient()

Description

Returns the value of the gradient of the error function with respect to the weights.

Returns

A double array, the length of the number of weights, containing the value of the gradient
of the error function with respect to the weights at the computed optimal point. Before
training, null is returned.

getErrorStatus
public int getErrorStatus()

Description

Returns the error status.

Returns

An int specifying the error. If there was no error, zero is returned. A non-zero return
indicates a potential problem with the trainer.

getErrorValue
public double getErrorValue()

Description

Returns the value of the error function minimized by the trainer.

Returns

A double indicating the final value of the error function from the last training. Before
training, NaN is returned.

train
public void train(Network network, double[][] xData, double[][] yData)

Description

Trains the neural network using supplied training patterns.

Parameters

network – A Network object, which is the Network to be trained.
xData – A double matrix containing the input training patterns. The number of
columns in xData must equal the number of nodes in the input layer. Each row of
xData contains a training pattern.
yData – A double matrix containing the output training patterns. The number of
columns in yData must equal the number of perceptrons in the output layer. Each
row of yData contains a training pattern.

1256 • Trainer interface JMSL

QuasiNewtonTrainer class

public class com.imsl.datamining.neural.QuasiNewtonTrainer implements
com.imsl.datamining.neural.Trainer, Serializable

Trains a network using the quasi-Newton method, MinUnconMultiVar.

The Java Logging API can be used to trace the performance training. The name of this logger
is com.imsl.datamining.QuasiNewtonTrainer Accumulated levels of detail correspond to
Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of
information and FINEST yielding the most. The levels of output yield the following:

Level Output
FINE A message on entering and exiting method train,

and any exceptions from and the exit status of
MinUnconMultiVar

FINER All of the messages in FINE, the input settings,
and a summary report with the statistics from
Network.computeStatistics(), the number of func-
tion evaluations and the elapsed time.

FINEST All of the messages in FINER, and a table of the com-
puted weights and their gradient values.

Field

SUM OF SQUARES
static final public QuasiNewtonTrainer.Error SUM OF SQUARES

Compute the sum of squares error. The sum of squares error term is e(y, ŷ) = (y − ŷ)2/2.

This is the default Error object used by QuasiNewtonTrainer.

Constructor

QuasiNewtonTrainer
public QuasiNewtonTrainer()

Description

Constructs a QuasiNewtonTrainer object.

Neural Nets QuasiNewtonTrainer class • 1257

Methods

clone
protected Object clone()

Description

Clones a copy of the trainer.

getError
public QuasiNewtonTrainer.Error getError()

Description

Returns the function used to compute the error to be minimized.

Returns

The Error object containing the function to be minimized.

getErrorGradient
public double[] getErrorGradient()

Description

Returns the value of the gradient of the error function with respect to the weights.

Returns

A double array whose length is equal to the number of network weights, containing the
value of the gradient of the error function with respect to the weights. Before training,
null is returned.

getErrorStatus
public int getErrorStatus()

Description

Returns the error status from the trainer.

Returns

An int representing the error status from the trainer. Zero indicates that no errors were
encountered during training. Any non-zero value indicates that some error condition
arose during training. In many cases the trainer is able to recover from these conditions
and produce a well-trained network.

1258 • QuasiNewtonTrainer class JMSL

Error Status Condition
0 No error occurred during training.
1 The last global step failed to locate a lower point than the

current error value. The current solution may be an approx-
imate solution and no more accuracy is possible, or the step
tolerance may be too large.

2 Relative function convergence; both the actual and predicted
relative reductions in the error function are less than or equal
to the relative function convergence tolerance.

3 Scaled step tolerance satisfied; the current point may be an
approximate local solution, or the algorithm is making very
slow progress and is not near a solution, or the step tolerance
is too big.

4 MinUnconMultiVar.FalseConvergenceException thrown
by optimizer.

5 MinUnconMultiVar.MaxIterationsException thrown by
optimizer.

6 MinUnconMultiVar.UnboundedBelowException thrown by
optimizer.

getErrorValue
public double getErrorValue()

Description

Returns the final value of the error function.

Returns

A double representing the final value of the error function from the last training. Before
training, NaN is returned.

getFormatter
static public Formatter getFormatter()

Description

Returns the logging formatter object. Logger support requires JDK1.4. Use with earlier
versions returns null.

The returned Formatter is used as input to java.util.logging.Handler.setFormatter
to format the output log.

Returns

The Formatter object, if present, or null.

getLogger
static public Logger getLogger()

Neural Nets QuasiNewtonTrainer class • 1259

Description

Returns the Logger object. This is the Logger used to trace this class. It is named
com.imsl.datamining.neural.QuasiNewtonTrainer.

Returns

The Logger object, if present, or null.

getTrainingIterations
public int getTrainingIterations()

Description

Returns the number of iterations used during training.

Returns

An int representing the number of iterations used during training.

getUseBackPropagation
public boolean getUseBackPropagation()

Description

Returns the use back propagation setting.

Returns

a boolean specifying whether or not back propagation is being used for gradient
calculations.

setEpochNumber
protected void setEpochNumber(int num)

Description

Sets the epoch number for the trainer.

Parameter

num – An int array containing the epoch number.

setError
public void setError(QuasiNewtonTrainer.Error error)

Description

Sets the function used to compute the network error.

Parameter

error – The Error object containing the function to be used to compute the
network error. The default is to compute the sum of squares error, SUM OF SQUARES.

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

1260 • QuasiNewtonTrainer class JMSL

Description

Set the false convergence tolerance for the Trainer.

Parameter

falseConvergenceTolerance – A double specifying the false convergence tolerance.
Default: 2.22044604925031308e-14.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description

Set the gradient tolerance.

Parameter

gradientTolerance – A double specifying the gradient tolerance. Default: cube
root of machine precision.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description

Sets the maximum step size.

Parameter

maximumStepsize – A nonnegative double value specifying the maximum allowable
step size in the optimizer.

setMaximumTrainingIterations
public void setMaximumTrainingIterations(int maximumTrainingIterations)

Description

Sets the maximum number of iterations to use in a training.

Parameter

maximumTrainingIterations – An int representing the maximum number of
training iterations. Default: 100.

setParallelMode
protected void setParallelMode(ArrayList[] allLogRecords)

Description

Sets the trainer to be used in multi-threaded EpochTainer.

Neural Nets QuasiNewtonTrainer class • 1261

Parameter

allLogRecords – An ArrayList array containing the log records.

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description

Sets the relative tolerence.

Parameter

relativeTolerance – A double representing the relative error tolerance. It must be
in the interval [0,1]. Its default value is 3.66685e-11.

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description

Sets the scaled step tolerance.

The second stopping criterion for com.imsl.math.MinUnconMultiVar (p. 127) , the
optimizer used by this Trainer, is that the scaled distance between the last two steps be
less than the step tolerance.

Parameter

stepTolerance – A double which is the step tolerance. Default: 3.66685e-11.

setUseBackPropagation
public void setUseBackPropagation(boolean flag)

Description

Sets whether or not to use the back propagation algorithm for gradient calculations
during network training.

By default, the quasi-newton algorithm optimizes the network using numerical gradients.
This method directs the quasi-newton trainer to use the back propagation algorithm for
gradient calculations during network training. Depending upon the data and network
architecture, one approach is typically faster than the other, or is less sensitive to finding
local network optima.

Parameter

flag – boolean specifies whether or not to use the back propagation algorithm for
gradient calculations. Default value is true.

train
public void train(Network network, double[][] xData, double[][] yData)

1262 • QuasiNewtonTrainer class JMSL

Description

Trains the neural network using supplied training patterns.

Each row of xData and yData contains a training pattern. The number of rows in these
two arrays must be at least equal to the number of weights in the network.

Parameters

network – The Network to be trained.

xData – An input double matrix containing training patterns. The number of
columns in xData must equal the number of nodes in the input layer.

yData – An output double matrix containing output training patterns. The number
of columns in yData must equal the number of perceptrons in the output layer.

QuasiNewtonTrainer.Error interface

public interface com.imsl.datamining.neural.QuasiNewtonTrainer.Error implements
Serializable

Error function to be minimized by trainer. This trainer attempts to solve the problem

min
w

n−1∑
i=0

e(yi, ŷi)

where w are the weights, n is the number of training patterns, yi is a training target output and
ŷi is its forecast value.

This interface defines the function e(y, ŷ) and its derivative with respect to its computed value,
de/dŷ.

Methods

error
public double error(double[] computed, double[] expected)

Description

Returns the contribution to the error from a single training output target. This is the
function e(yi, ŷi).

Parameters

computed – A double representing the computed value.

expected – A double representing the expected value.

Neural Nets QuasiNewtonTrainer class • 1263

Returns

A double representing the contribution to the error from a single training output target.

errorGradient
public double[] errorGradient(double[] computed, double[] expected)

Description

Returns the derivative of the error function with respect to the forecast output.
Parameters

computed – A double representing the computed value.
expected – A double representing the expected value.

Returns

A double representing the derivative of the error function with respect to the forecast
output.

QuasiNewtonTrainer.Objective class

protected class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
implements com.imsl.math.MinUnconMultiVar.Function

The Objective class is passed to the optimizer.

Fields

nFunctionEvaluations
protected int nFunctionEvaluations

nObs
protected int nObs

nY
protected int nY

Method

f
public double f(double[] weights)

1264 • QuasiNewtonTrainer class JMSL

QuasiNewtonTrainer.GradObjective class

protected class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
extends com.imsl.datamining.neural.QuasiNewtonTrainer.Objective implements
com.imsl.math.MinUnconMultiVar.Gradient

The Objective class is passed to the optimizer.

Fields

nFunctionEvaluations
protected int nFunctionEvaluations

nObs
protected int nObs

nY
protected int nY

Method

gradient
public void gradient(double[] weights, double[] gradient)

QuasiNewtonTrainer.BlockObjective class

protected class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockObjective
extends com.imsl.datamining.neural.QuasiNewtonTrainer.Objective

Constructor

QuasiNewtonTrainer.BlockObjective
protected QuasiNewtonTrainer.BlockObjective()

Neural Nets QuasiNewtonTrainer class • 1265

Method

f
public double f(double[] weights)

QuasiNewtonTrainer.BlockGradObjective class

protected class
com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective extends
com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective

Constructor

QuasiNewtonTrainer.BlockGradObjective
protected QuasiNewtonTrainer.BlockGradObjective()

Methods

f
public double f(double[] weights)

gradient
public void gradient(double[] weights, double[] gradient)

LeastSquaresTrainer class

public class com.imsl.datamining.neural.LeastSquaresTrainer implements
com.imsl.datamining.neural.Trainer, Serializable

Trains a FeedForwardNetwork using a Levenberg-Marquardt algorithm for minimizing a sum of
squares error.

The Java Logging API can be used to trace the performance training. The name of this Logger
is com.imsl.datamining.LeatSquaresTrainer. Accumulated levels of detail correspond to
Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of
information and FINEST yielding the most. The levels of output yield the following:

1266 • LeastSquaresTrainer class JMSL

Level Output
FINE A message on entering and exiting method train,

and any exceptions from and the exit status of
NonlinLeastSquares

FINER All of the messages in FINE, the input set-
tings, and a summary report with the statistics
from Network.computeStatistics() and the elapsed
time.

FINEST All of the messages in FINER, and a table of the com-
puted weights and their gradient values.

Constructor

LeastSquaresTrainer
public LeastSquaresTrainer()

Description

Creates a LeastSquaresTrainer.

Methods

clone
protected Object clone()

Description

Clones a copy of the trainer.

getErrorGradient
public double[] getErrorGradient()

Description

Returns the value of the gradient of the error function with respect to the weights.

Returns

A double array whose length is equal to the number of network weights, containing the
value of the gradient of the error function with respect to the weights. Before training,
null is returned.

getErrorStatus
public int getErrorStatus()

Description

Returns the error status from the trainer.

Neural Nets LeastSquaresTrainer class • 1267

Returns

An int which contains the error status. Zero indicates that no errors were encountered
during training. Any non-zero value indicates that some error condition arose during
training.

In many cases the trainer is able to recover from these conditions and produce a
well-trained network.

Value Meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point

may be an approximate local solution, or the algo-
rithm is making very slow progress and is not near a
solution, or StepTolerance is too big.

2 Scaled actual and predicted reductions in the function
are less than or equal to the relative function conver-
gence tolerance RelativeTolerance.

3 Iterates appear to be converging to a noncritical point.
Incorrect gradient information, a discontinuous func-
tion, or stopping tolerances being too tight may be
the cause.

4 Five consecutive steps with the maximum stepsize
have been taken. Either the function is unbounded
below, or has a finite asymptote in some direction, or
the maximum stepsize is too small.

5 Too many iterations required

getErrorValue
public double getErrorValue()

Description

Returns the final value of the error function.

Returns

A double containing the final value of the error function from the last training. Before
training, NaN is returned.

getFormatter
static public Formatter getFormatter()

Description

Returns the logging Formatter object. Logger support requires JDK1.4. Use with earlier
versions returns null.

The returned Formatter is used as input to java.util.logging.Handler.setFormatter
to format the output log.

1268 • LeastSquaresTrainer class JMSL

Returns

A Formatter object, if present, or null .

getLogger
static public Logger getLogger()

Description

Returns the Logger object. This is the Logger used to trace this class. It is named
com.imsl.datamining.neural.QuasiNewtonTrainer.

Returns

The Logger object, if present, or null .

setEpochNumber
protected void setEpochNumber(int num)

Description

Sets the epoch number for the trainer.

Parameter

num – An int array containing the epoch number.

setFalseConvergenceTolerance
public void setFalseConvergenceTolerance(double falseConvergenceTolerance)

Description

Set the false convergence tolerance.

Parameter

falseConvergenceTolerance – a double specifying the false convergence tolerance.
Default: 1.0e-14.

setGradientTolerance
public void setGradientTolerance(double gradientTolerance)

Description

Set the gradient tolerance.

Parameter

gradientTolerance – A double specifying the gradient tolerance. Default: 2.0e-5.

setInitialTrustRegion
public void setInitialTrustRegion(double initialTrustRegion)

Neural Nets LeastSquaresTrainer class • 1269

Description

Sets the intial trust region.

Parameter

initialTrustRegion – A double which specifies the initial trust region radius.
Default: unlimited trust region.

setMaximumStepsize
public void setMaximumStepsize(double maximumStepsize)

Description

Sets the maximum step size.

Parameter

maximumStepsize – A nonnegative double value specifying the maximum allowable
stepsize in the optimizer. Default: 103||w||2, where w are the values of the weights in
the network when training starts.

setMaximumTrainingIterations
public void setMaximumTrainingIterations(int maximumSolverIterations)

Description

Sets the maximum number of iterations used by the nonlinear least squares solver.

Parameter

maximumSolverIterations – An int which specifies the maximum number of
iterations to be used by the nonlinear least squares solver. Its default value is 1000.

setParallelMode
protected void setParallelMode(ArrayList[] allLogRecords)

Description

Sets the trainer to be used in multi-threaded EpochTainer.

Parameter

allLogRecords – An ArrayList array containing the log records.

setRelativeTolerance
public void setRelativeTolerance(double relativeTolerance)

Description

Sets the relative tolerance.

1270 • LeastSquaresTrainer class JMSL

Parameter

relativeTolerance – A double which specifies the relative error tolerance. It must
be in the interval [0,1]. Its default value is 1.0e-20.

setStepTolerance
public void setStepTolerance(double stepTolerance)

Description

Set the step tolerance used to step between weights.

Parameter

stepTolerance – A double which specifies the scaled step tolerance to use when
changing the weights. Default: 1.0e-5.

train
public void train(Network network, double[][] xData, double[][] yData)

Description

Trains the neural network using supplied training patterns.

Each row of xData and yData contains a training pattern. These number of rows in two
arrays must be equal.

Parameters

network – The Network to be trained.

xData – A double matrix which contains the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – A double matrix which contains the output training patterns. The number
of columns in yData must equal the number of Perceptrons in the OutputLayer.

EpochTrainer class

public class com.imsl.datamining.neural.EpochTrainer implements
com.imsl.datamining.neural.Trainer, Serializable

Two-stage training using randomly selected training patterns in stage I. The epoch trainer, is a
meta-trainer that combines two trainers. The first trainer is used on a series of randomly
selected subsets of the training patterns. For each subset, the weights are initialized to their
initial values plus a random offset.

Stage II then refines the result found in stage 1. The best result from the stage 1 trainings is
used as the initial guess with the second trainer operating on the full set of training patterns.
Stage II is optional, if the second trainer is null then the best stage 1 result is returned as the
epoch trainer’s result.

Neural Nets EpochTrainer class • 1271

The Java Logging API can be used to trace the performance training. The name of this logger
is com.imsl.datamining.EpochTrainer. Accumulated levels of detail correspond to Java’s
FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of information
and FINEST yielding the most. The levels of output yield the following:

Level Output
FINE A message on entering and exiting method

train, a message entering and exiting both
stages 1 and 2, and a summary report (based on
com.imsl.datamining.neural.Network.computeStatistics
(p. ??)) upon completion of training.

FINER All of the messages in FINE, a message entering and
exiting each epoch in stage 1, the input settings, the
value of the function being minimized in stage 1 for
each epoch, a time stamp at the start of each iteration
in stage 1 and at the beginning and end of stage 2, and
(if there is a stage 2) a summary at the end of stage
1.

FINEST All of the messages in FINER and a table of the com-
puted weights and their gradient values.

Constructors

EpochTrainer
public EpochTrainer(Trainer stage1Trainer)

Description

Creates a single stage EpochTrainer. Stage 2 training is bypassed.

Parameter

stage1Trainer – The Trainer used in stage I.

EpochTrainer
public EpochTrainer(Trainer stage1Trainer, Trainer stage2Trainer)

Description

Creates an two-stage EpochTrainer.

Parameters

stage1Trainer – The stage I Trainer.

stage2Trainer – The stage II Trainer, or null if stage II is to be bypassed.

1272 • EpochTrainer class JMSL

Methods

getEpochSize
public int getEpochSize()

Description

Returns the number of sample training patterns in each stage 1 epoch.

Returns

An int which contains the number of sample training patterns in each stage I epoch.

getErrorGradient
public double[] getErrorGradient()

Description

Returns the value of the gradient of the error function with respect to the weights.

Returns

A double array whose length is equal to the number of Network weights, containing the
value of the gradient of the error function with respect to the weights. Before training,
null is returned.

getErrorStatus
public int getErrorStatus()

Description

Returns the training error status.

Returns

An int containing the error status from stage 2. If there is no stage 2 then the number of
stage 1 epochs that returned a non-zero error status is returned.

getErrorValue
public double getErrorValue()

Description

Returns the value of the error function.

Returns

A double containing final value of the error function from the last training. Before
training, NaN is returned.

getFormatter
static public Formatter getFormatter()

Neural Nets EpochTrainer class • 1273

Description

Returns the logging Formatter object. Logger support requires JDK1.4. Use with earlier
versions returns null .
The returned Formatter is used as input to java.util.logging.Handler.setFormatter
to format the output log.
Returns

The Formatter object, if present, or null otherwise.

getLogger
static public Logger getLogger()

Description

Returns the Logger object. This is the Logger used to trace this class. It is named
com.imsl.datamining.neural.QuasiNewtonTrainer (p. 1257) .
Returns

The Logger object, if present, or null otherwise.

getNumberOfEpochs
public int getNumberOfEpochs()

Description

Returns the number of epochs used during stage I training.
Returns

An int which contains the number of epochs used during stage I training.

getNumberOfThreads
public int getNumberOfThreads()

Description

Gets the number of threads to use during stage I training.
Returns

An int which contains the number of threads to use.

getRandom
public Random getRandom()

Description

Returns the random number generator used to perturb the stage 1 guesses.
Returns

The Random object used to generate stage 1 perturbations.

getRandomSampleIndicies
protected RandomSampleIndicies getRandomSampleIndicies()

1274 • EpochTrainer class JMSL

Description

Gets the random number generators used to select random training patterns in stage 1.

Returns

A RandomSampleIndicies containing the random number generators.

getStage1Trainer
protected Trainer getStage1Trainer()

Description

Returns the stage 1 trainer.

Returns

A Trainer containing the stage 1 trainer.

getStage2Trainer
protected Trainer getStage2Trainer()

Description

Returns the stage 1 trainer.

Returns

A Trainer containing the stage 2 trainer.

incrementEpochCount
protected int incrementEpochCount()

Description

Increments the epoch counter.

setEpochSize
public void setEpochSize(int epochSize)

Description

Sets the number of randomly selected training patterns in stage 1 epoch.

Parameter

epochSize – An int which specifies the number of sample training patterns in each
stage I epoch. The default value is the number of observations in the training data.

setNumberOfEpochs
public void setNumberOfEpochs(int numberOfEpochs)

Description

Sets the number of epochs.

Neural Nets EpochTrainer class • 1275

Parameter

numberOfEpochs – An int which specifies the number of epochs to be used during
stage I training. The default value is 10.

setNumberOfThreads
public void setNumberOfThreads(int number)

Description

Sets the number of threads to use during stage I training.

Parameter

number – An int which specifies the number of threads to use. Default: number = 1.

setRandom
public void setRandom(Random random)

Description

Sets the random number generator used to perturb the initial stage 1 guesses.

Parameter

random – The Random object used to set the random number generator.

setRandomSamples
public void setRandomSamples(Random randomA, Random randomB)

Description

Sets the random number generators used to select random training patterns in stage 1.
The two random number generators should be independent.

Parameters

randomA – A Random object which is the first random number generator.

randomB – A Random object which is the second random number generator,
independent of randomA.

train
public void train(Network network, double[][] xData, double[][] yData)

Description

Trains the neural network using supplied training patterns.

1276 • EpochTrainer class JMSL

Parameters

network – The Network to be trained.

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – A double containing the output training patterns. The number of columns
in yData must equal the number of Perceptrons in the OutputLayer.
Each row of xData and yData contains a training pattern. These number of rows in
two arrays must be equal.

BinaryClassification class

public class com.imsl.datamining.neural.BinaryClassification implements
Serializable

Classifies patterns into two classes.

Uses a FeedForwardNetwork to solve binary classification problems. In these problems, the
target output for the network is the probability that the pattern falls into one of two classes.
The first class, P (C1), is usually equal to one and the second class, P (C2) equal to zero. These
probabilities are then used to assign patterns to one of the two classes. Typical applications
include determining whether a credit applicant is a good or bad credit risk, and determining
whether a person should or should not receive a particular treatment based upon their physical,
clinical and laboratory information. This class signals that network training will minimize the
binary cross-entropy error, and that network output is the probability that the pattern belongs
to the first class, P (C1). Which is calculated by applying the logistic activation function to the
potential of the single output. The probability for the second class is calculated by
P (C2) = 1− P (C1).

Constructor

BinaryClassification
public BinaryClassification(Network network)

Description

Creates a binary classifier.

Parameter

network – is the neural network used for classification. Its output perceptron should
use the logistic activation function.

Neural Nets BinaryClassification class • 1277

Methods

computeStatistics
public double[] computeStatistics(double[][] xData, int[] yData)

Description

Computes the classification error statistics for the supplied network patterns and their
associated classifications.

The first element returned is the binary cross-entropy error; the second is the classification
error rate. The classification error rate is calculated by comparing the estimated
classification probabilities to the target classifications. If the estimated probability for the
target class is less than 0.5, then this is tallied as a classification error.

Parameters

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – A double containing the output classification patterns. The number of
columns in yData must equal the number of Perceptrons in the OutputLayer.

Returns

A two-element double array containing the binary cross-entropy error and the
classification error rate.

getError
public QuasiNewtonTrainer.Error getError()

Description

Returns the error function for use by QuasiNewtonTrainer for training a binary
classification network.

Returns

an implementation of the binary-entropy error function.

getNetwork
public Network getNetwork()

Description

Returns the network being used for classification.

Returns

the network set by the constructor.

predictedClass
public int predictedClass(double[] x)

1278 • BinaryClassification class JMSL

Description

Calculates the classification probablities for the input pattern x, and returns either 0 or 1
identifying the class with the highest probability.

This method is used to classify patterns into one of the two target classes based upon the
pattern’s values. The predicted classification is the class with the largest probability, i.e.
greater than 0.5.

Parameter

x – the double array containing the network input patterns to classify. The length of
x should be equal to the number of inputs in the network.

Returns

The classification predicted by the trained network for x. This will be either 0 or 1.

probabilities
public double[] probabilities(double[] x)

Description

Returns classification probabilities for the input pattern x.

Calculates the two probabilities for the pattern supplied: P (C1) and P (C2). The
probability that the pattern belongs to the first class, P (C1), is estmated using the
logistic function of the output perceptron’s potential. The probability for the second class
is claculated as P (C2) = 1− P (C1). The predicted classification is the class with the
largest probability, i.e. greater than 0.5.

Parameter

x – a double array containing the network input pattern to classify. The length of x
must equal the number of nodes in the input layer.

Returns

the probability of x being in class C1, followed by the probability of x being in class C2.

train
public void train(Trainer trainer, double[][] xData, int[] yData)

Description

Trains the classification neural network using supplied trainer and patterns.

Parameters

trainer – A Trainer object, which is used to train the network. The error function
in any QuasiNewton trainer included in trainer should be set to the error function
from this class using the getError method provided by this class.
xData – A double matrix containing the input training patterns. The number of
columns in xData must equal the number of nodes in the input layer. Each row of
xData contains a training pattern.
yData – An int array containing the output classification values. These values must
be 0 or 1.

Neural Nets BinaryClassification class • 1279

Example 1: Binary Classification

This example trains a 3-layer network using 48 training patterns from four nominal input
attributes. The first two nominal attributes have two classifications. The third and fourth
nominal attributes have three and four classifications respectively. All four attributes are
encoded using binary encoding. This results in eleven binary network input columns. The
output class is 1 if the first two nominal attributes sum to 1, and 0 otherwise.

The structure of the network consists of eleven input nodes and three layers, with three
perceptrons in the first hidden layer, two perceptrons in the second hidden layer, and one
perceptron in the output layer.

There are a total of 47 weights in this network, including the six bias weights. The
linearactivations function is used for both hidden layers. Since the target output is binary
classification the logistic activation function is used in the output layer. Training is conducted
using the quasi-newton trainer with the binary-entropy error function provided by the
BinaryClassification class.

import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;
import java.util.Random;

//***
// Two Layer Feed-Forward Network with 11 inputs: 4 nominal with 2,2,3,4 categories,
// encoded using binary encoding, and 1 output target (class).
//
// new classification training_ex1.c
//***

public class BinaryClassificationEx1 implements Serializable
{

// Network Settings
private static int nObs = 48; // number of training patterns
private static int nInputs = 11; // four nominal with 2,2,3,4 categories
private static int nCategorical = 11; // three categorical attributes
private static int nOutputs = 1; // one continuous output (nClasses=2)
private static int nPerceptrons1 = 3; // perceptrons in 1st hidden layer
private static int nPerceptrons2 = 2; // perceptrons in 2nd hidden layer
private static boolean trace = true; // Turns on/off training log

private static Activation hiddenLayerActivation = Activation.LINEAR;
private static Activation outputLayerActivation = Activation.LOGISTIC;

/* 2 classifications */
private static int[] x1 = {

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};

1280 • BinaryClassification class JMSL

/* 2 classifications */
private static int[] x2 = {

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};

/* 3 classifications */
private static int[] x3 = {

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3 };

/* 4 classifications */
private static int[] x4 = {

1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4 };

// **
// MAIN
// **

public static void main(String[] args) throws Exception
{

double x[]; // temporary x space for generating forecasts
double xData[][]; // Input Attributes for Trainer
int yData[]; // Output Attributes for Trainer
int i, j; // array indicies
int nWeights = 0; // Number of weights obtained from network
String trainLogName = "BinaryClassificationExample.log";

// **
// Binary encode 4 categorical variables.
// Var x1 contains 2 classes
// Var x2 contains 2 classes
// Var x3 contains 3 classes
// Var x4 contains 4 classes
// ***
int[][] z1;
int[][] z2;
int[][] z3;
int[][] z4;
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(2);
z1 = filter.encode(x1);
z2 = filter.encode(x2);
filter = new UnsupervisedNominalFilter(3);
z3 = filter.encode(x3);
filter = new UnsupervisedNominalFilter(4);
z4 = filter.encode(x4);

/* Concatenate binary encoded z’s */
xData = new double[nObs][nInputs];
yData = new int[nObs];
for (i=0; i<(nObs); i++)
{

for (j=0; j <nCategorical; j++) {

Neural Nets BinaryClassification class • 1281

xData[i][j] = 0;
if (j < 2) xData[i][j] = (double) z1[i][j];
if (j > 1 && j < 4) xData[i][j] = (double) z2[i][j-2];
if (j > 3 && j < 7) xData[i][j] = (double) z3[i][j-4];
if (j > 6) xData[i][j] = (double)z4[i][j-7];

}
yData[i] = ((x1[i] +x2[i] == 2) ? 1 : 0);

}

// **
// CREATE FEEDFORWARD NETWORK
// **

long t0 = System.currentTimeMillis();

FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(nInputs);
network.createHiddenLayer().createPerceptrons(nPerceptrons1);
network.createHiddenLayer().createPerceptrons(nPerceptrons2);
network.getOutputLayer().createPerceptrons(nOutputs);

BinaryClassification classification = new BinaryClassification(network);

network.linkAll();
Random r = new Random(123457L);
network.setRandomWeights(xData, r);
Perceptron perceptrons[] = network.getPerceptrons();
for (i=0; i < perceptrons.length-1; i++) {

perceptrons[i].setActivation(hiddenLayerActivation);
}
perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);

// **
// TRAIN NETWORK USING QUASI-NEWTON TRAINER
// **

QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setError(classification.getError());
trainer.setMaximumTrainingIterations(1000);
trainer.setMaximumStepsize(3.0);
trainer.setGradientTolerance(1.0e-20);
trainer.setFalseConvergenceTolerance(1.0e-20);
trainer.setStepTolerance(1.0e-20);
trainer.setRelativeTolerance(1.0e-20);
if (trace) {

try {
Handler handler = new FileHandler(trainLogName);
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());
System.out.println("--> Training Log Created in "+

trainLogName);
} catch (Exception e) {

System.out.println("--> Cannot Create Training Log.");
}

}

1282 • BinaryClassification class JMSL

classification.train(trainer, xData, yData);

// **
// DISPLAY TRAINING STATISTICS
// **

double stats[] = classification.computeStatistics(xData, yData);
System.out.println("***");
System.out.println("--> Cross-entropy error: "+(float)stats[0]);
System.out.println("--> Classification error rate: "+(float)stats[1]);
System.out.println("***");
System.out.println("");
// **
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **
double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for(i = 0; i < weight.length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf,wg);

// ****************************
// forecast the network
// ****************************
double report[][] = new double[nObs][6];
for (i = 0; i < nObs; i++)
{

report[i][0] = x1[i];
report[i][1] = x2[i];
report[i][2] = x3[i];
report[i][3] = x4[i];
report[i][4] = yData[i];
report[i][5] = classification.predictedClass(xData[i]);

}
pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{

"X1", "X2", "X3", "X4",
"Expected", "Predicted"});

new PrintMatrix("Forecast").print(pmf, report);

// **
// DISPLAY CLASSIFICATION STATISTICS
// **

double statsClass[] = classification.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> Cross-Entropy Error: "+(float)statsClass[0]);
System.out.println("--> Classification Error: "+(float)statsClass[1]);
System.out.println("***");

Neural Nets BinaryClassification class • 1283

System.out.println("");

long t1 = System.currentTimeMillis();
double small = 1.e-7;
double time = t1-t0;
time = time/1000;
System.out.println("****************Time: "+time);
System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());

}
}

Output

--> Training Log Created in BinaryClassificationExample.log

--> Cross-entropy error: 1.8296475E-13
--> Classification error rate: 0.0

Weights Gradients
0 2.575599 -0.000000
1 1.770546 -0.000000
2 1.675687 -0.000000
3 -5.859796 0.000000
4 -1.794721 0.000000
5 -4.925026 0.000000
6 3.654187 0.000000
7 2.089872 0.000000
8 2.485173 0.000000
9 -5.238608 0.000000
10 -1.396975 0.000000
11 -4.730949 0.000000
12 0.143083 0.000000
13 0.777367 0.000000
14 0.316769 0.000000
15 -3.270781 -0.000000
16 0.283153 -0.000000
17 -0.162338 -0.000000
18 1.153316 0.000000
19 0.782549 0.000000
20 -0.387279 0.000000
21 -2.010958 -0.000000
22 0.273662 -0.000000
23 -0.670019 -0.000000
24 2.096144 0.000000
25 -0.264374 0.000000
26 0.351305 0.000000
27 1.190361 0.000000
28 -0.053966 0.000000
29 0.555192 0.000000
30 -2.001125 -0.000000

1284 • BinaryClassification class JMSL

31 0.735950 -0.000000
32 -0.829534 -0.000000
33 -4.824521 0.000000
34 -4.824521 0.000000
35 -0.652606 0.000000
36 -0.652606 0.000000
37 -2.921224 0.000000
38 -2.921224 0.000000
39 -1.621591 0.000000
40 -1.621591 0.000000
41 -1.967947 0.000000
42 1.534864 0.000000
43 0.907830 0.000000
44 1.594078 -0.000000
45 1.594078 -0.000000
46 -0.169361 0.000000

Forecast
X1 X2 X3 X4 Expected Predicted

0 1 1 1 1 1 1
1 1 1 1 2 1 1
2 1 1 1 3 1 1
3 1 1 1 4 1 1
4 1 1 2 1 1 1
5 1 1 2 2 1 1
6 1 1 2 3 1 1
7 1 1 2 4 1 1
8 1 1 3 1 1 1
9 1 1 3 2 1 1
10 1 1 3 3 1 1
11 1 1 3 4 1 1
12 1 2 1 1 0 0
13 1 2 1 2 0 0
14 1 2 1 3 0 0
15 1 2 1 4 0 0
16 1 2 2 1 0 0
17 1 2 2 2 0 0
18 1 2 2 3 0 0
19 1 2 2 4 0 0
20 1 2 3 1 0 0
21 1 2 3 2 0 0
22 1 2 3 3 0 0
23 1 2 3 4 0 0
24 2 1 1 1 0 0
25 2 1 1 2 0 0
26 2 1 1 3 0 0
27 2 1 1 4 0 0
28 2 1 2 1 0 0
29 2 1 2 2 0 0
30 2 1 2 3 0 0
31 2 1 2 4 0 0
32 2 1 3 1 0 0
33 2 1 3 2 0 0
34 2 1 3 3 0 0
35 2 1 3 4 0 0
36 2 2 1 1 0 0

Neural Nets BinaryClassification class • 1285

37 2 2 1 2 0 0
38 2 2 1 3 0 0
39 2 2 1 4 0 0
40 2 2 2 1 0 0
41 2 2 2 2 0 0
42 2 2 2 3 0 0
43 2 2 2 4 0 0
44 2 2 3 1 0 0
45 2 2 3 2 0 0
46 2 2 3 3 0 0
47 2 2 3 4 0 0

--> Cross-Entropy Error: 1.8296475E-13
--> Classification Error: 0.0

****************Time: 0.641
trainer.getErrorValue = 1.8296475445823478E-13

Example 2: Binary Classification Network

This example uses a database of a complete set of possible board configurations at the end of
tic-tac-toe games, where ”x” is assumed to have played first. The target concept is ”win for x”
(i.e., true when ”x” has one of 8 possible ways to create a ”three-in-a-row”).

There are nine nominal input attributes for each square on the tic-tac-toe board and are
encoded such that 0=player x has taken, 1=player o has taken, 2=blank.

Input attributes

• top-left-square: {x,o,b}

• top-middle-square: {x,o,b}

• top-right-square: {x,o,b}

• middle-left-square: {x,o,b}

• middle-middle-square: {x,o,b}

• middle-right-square: {x,o,b}

• bottom-left-square: {x,o,b}

• bottom-middle-square: {x,o,b}

• bottom-right-square: {x,o,b}

The predicted atribute is a win or loose at tic-tac-toe. For this example the first 626
observations are a win and the next 332 are loss.

1286 • BinaryClassification class JMSL

The structure of the network consists of 27 input nodes and three layers, with five perceptrons
in the first hidden layer, three perceptrons in the second hidden layer, and one perceptron in
the output layer.

There are a total of 162 weights in this network. The activations functions are logistic for all
layers. Since the target output is binary classification the logistic activation function must be
used in the output layer. Training is conducted using the quasi-newton trainer using the binary
entropy error function provided by the BinaryClassification class.

import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;
import com.imsl.stat.Random;

//***
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 2 classification categories.
//
// new classification training_ex4.c
//
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 2 classification categories.
//
// This database encodes the complete set of possible board configurations
// at the end of tic-tac-toe games, where "x" is assumed to have played
// first. The target concept is "win for x" (i.e., true when "x" has one
// of 8 possible ways to create a "three-in-a-row").
//
// Predicted attribute: win or loose at tic-tac-toe
// First 626 obs are positive (win) and the next 332 are negative (loss)
//
// Input Attributes (10 categorical Attributes)
// Attribute Information: (0=player x has taken, 1=player o has taken, 2=blank)
//
// 1. top-left-square: {x,o,b}
// 2. top-middle-square: {x,o,b}
// 3. top-right-square: {x,o,b}
// 4. middle-left-square: {x,o,b}
// 5. middle-middle-square: {x,o,b}
// 6. middle-right-square: {x,o,b}
// 7. bottom-left-square: {x,o,b}
// 8. bottom-middle-square: {x,o,b}
// 9. bottom-right-square: {x,o,b}
// 10. Class: {positive,negative}

//***

public class BinaryClassificationEx2 implements Serializable
{

private static int nObs = 958; // number of training patterns
private static int nInputs = 27; // 9 nominal coded as 0=x, 1=O, 2=blank
private static int nCategorical = 27; // seven categorical attributes

Neural Nets BinaryClassification class • 1287

private static int nContinuous = 0; // two continuous input attribute
private static int nOutputs = 1; // one continuous output (nClasses=2)
private static int nLayers = 3; // number of perceptron layers
private static int nPerceptrons1 = 5; // perceptrons in 1st hidden layer
private static int nPerceptrons2 = 3; // perceptrons in 2nd hidden layer
private static boolean trace = true; // Turns on/off training log

private static Activation hiddenLayerActivation = Activation.LOGISTIC;
private static Activation outputLayerActivation = Activation.LOGISTIC;

private static int[][] data = {
{0,0,0,0,1,1,0,1,1},{0,0,0,0,1,1,1,0,1},{0,0,0,0,1,1,1,1,0},{0,0,0,0,1,1,1,2,2},
{0,0,0,0,1,1,2,1,2},{0,0,0,0,1,1,2,2,1},{0,0,0,0,1,2,1,1,2},{0,0,0,0,1,2,1,2,1},

{0,0,0,0,1,2,2,1,1},{0,0,0,0,2,1,1,1,2},{0,0,0,0,2,1,1,2,1},{0,0,0,0,2,1,2,1,1},
{0,0,0,1,0,1,0,1,1},{0,0,0,1,0,1,1,0,1},{0,0,0,1,0,1,1,1,0},{0,0,0,1,0,1,1,2,2},
{0,0,0,1,0,1,2,1,2},{0,0,0,1,0,1,2,2,1},{0,0,0,1,0,2,1,1,2},{0,0,0,1,0,2,1,2,1},
{0,0,0,1,0,2,2,1,1},{0,0,0,1,1,0,0,1,1},{0,0,0,1,1,0,1,0,1},{0,0,0,1,1,0,1,1,0},
{0,0,0,1,1,0,1,2,2},{0,0,0,1,1,0,2,1,2},{0,0,0,1,1,0,2,2,1},{0,0,0,1,1,2,0,1,2},
{0,0,0,1,1,2,0,2,1},{0,0,0,1,1,2,1,0,2},{0,0,0,1,1,2,1,2,0},{0,0,0,1,1,2,2,0,1},
{0,0,0,1,1,2,2,1,0},{0,0,0,1,1,2,2,2,2},{0,0,0,1,2,0,1,1,2},{0,0,0,1,2,0,1,2,1},
{0,0,0,1,2,0,2,1,1},{0,0,0,1,2,1,0,1,2},{0,0,0,1,2,1,0,2,1},{0,0,0,1,2,1,1,0,2},
{0,0,0,1,2,1,1,2,0},{0,0,0,1,2,1,2,0,1},{0,0,0,1,2,1,2,1,0},{0,0,0,1,2,1,2,2,2},
{0,0,0,1,2,2,0,1,1},{0,0,0,1,2,2,1,0,1},{0,0,0,1,2,2,1,1,0},{0,0,0,1,2,2,1,2,2},
{0,0,0,1,2,2,2,1,2},{0,0,0,1,2,2,2,2,1},{0,0,0,2,0,1,1,1,2},{0,0,0,2,0,1,1,2,1},
{0,0,0,2,0,1,2,1,1},{0,0,0,2,1,0,1,1,2},{0,0,0,2,1,0,1,2,1},{0,0,0,2,1,0,2,1,1},
{0,0,0,2,1,1,0,1,2},{0,0,0,2,1,1,0,2,1},{0,0,0,2,1,1,1,0,2},{0,0,0,2,1,1,1,2,0},
{0,0,0,2,1,1,2,0,1},{0,0,0,2,1,1,2,1,0},{0,0,0,2,1,1,2,2,2},{0,0,0,2,1,2,0,1,1},
{0,0,0,2,1,2,1,0,1},{0,0,0,2,1,2,1,1,0},{0,0,0,2,1,2,1,2,2},{0,0,0,2,1,2,2,1,2},
{0,0,0,2,1,2,2,2,1},{0,0,0,2,2,1,0,1,1},{0,0,0,2,2,1,1,0,1},{0,0,0,2,2,1,1,1,0},
{0,0,0,2,2,1,1,2,2},{0,0,0,2,2,1,2,1,2},{0,0,0,2,2,1,2,2,1},{0,0,0,2,2,2,1,1,2},
{0,0,0,2,2,2,1,2,1},{0,0,0,2,2,2,2,1,1},{0,0,1,0,0,1,1,1,0},{0,0,1,0,1,0,0,1,1},
{0,0,1,0,1,1,0,1,0},{0,0,1,0,1,1,0,2,2},{0,0,1,0,1,2,0,1,2},{0,0,1,0,1,2,0,2,1},
{0,0,1,0,2,1,0,1,2},{0,0,1,0,2,2,0,1,1},{0,0,1,1,0,0,1,0,1},{0,0,1,1,0,0,1,1,0},
{0,0,1,1,0,1,0,1,0},{0,0,1,1,0,1,1,0,0},{0,0,1,1,0,1,2,0,2},{0,0,1,1,0,1,2,2,0},
{0,0,1,1,0,2,1,0,2},{0,0,1,1,0,2,1,2,0},{0,0,1,1,0,2,2,0,1},{0,0,1,1,0,2,2,1,0},
{0,0,1,2,0,1,1,0,2},{0,0,1,2,0,1,1,2,0},{0,0,1,2,0,1,2,1,0},{0,0,1,2,0,2,1,0,1},
{0,0,1,2,0,2,1,1,0},{0,0,2,0,1,1,0,1,2},{0,0,2,0,1,1,0,2,1},{0,0,2,0,1,2,0,1,1},
{0,0,2,0,2,1,0,1,1},{0,0,2,1,0,1,1,0,2},{0,0,2,1,0,1,1,2,0},{0,0,2,1,0,1,2,0,1},
{0,0,2,1,0,1,2,1,0},{0,0,2,1,0,2,1,0,1},{0,0,2,1,0,2,1,1,0},{0,0,2,2,0,1,1,0,1},
{0,0,2,2,0,1,1,1,0},{0,1,0,0,0,1,0,1,1},{0,1,0,0,0,1,1,1,0},{0,1,0,0,1,1,0,0,1},
{0,1,0,0,1,1,0,2,2},{0,1,0,0,1,2,0,2,1},{0,1,0,0,2,1,0,1,2},{0,1,0,0,2,1,0,2,1},
{0,1,0,0,2,2,0,1,1},{0,1,0,1,0,0,0,1,1},{0,1,0,1,0,0,1,1,0},{0,1,0,1,0,1,0,0,1},
{0,1,0,1,0,1,0,1,0},{0,1,0,1,0,1,0,2,2},{0,1,0,1,0,1,1,0,0},{0,1,0,1,0,1,2,2,0},
{0,1,0,1,0,2,0,1,2},{0,1,0,1,0,2,0,2,1},{0,1,0,1,0,2,1,2,0},{0,1,0,1,0,2,2,1,0},
{0,1,0,1,1,0,1,0,0},{0,1,0,1,1,0,2,2,0},{0,1,0,1,2,0,1,2,0},{0,1,0,1,2,0,2,1,0},
{0,1,0,2,0,1,0,1,2},{0,1,0,2,0,1,0,2,1},{0,1,0,2,0,1,1,2,0},{0,1,0,2,0,1,2,1,0},
{0,1,0,2,0,2,0,1,1},{0,1,0,2,0,2,1,1,0},{0,1,0,2,1,0,1,2,0},{0,1,0,2,2,0,1,1,0},
{0,1,1,0,0,0,0,1,1},{0,1,1,0,0,0,1,0,1},{0,1,1,0,0,0,1,1,0},{0,1,1,0,0,0,1,2,2},
{0,1,1,0,0,0,2,1,2},{0,1,1,0,0,0,2,2,1},{0,1,1,0,0,1,0,1,0},{0,1,1,0,0,1,0,2,2},
{0,1,1,0,0,1,1,0,0},{0,1,1,0,0,1,2,2,0},{0,1,1,0,0,2,0,1,2},{0,1,1,0,0,2,0,2,1},
{0,1,1,0,0,2,1,2,0},{0,1,1,0,0,2,2,1,0},{0,1,1,0,1,0,0,0,1},{0,1,1,0,1,0,0,2,2},
{0,1,1,0,1,1,0,0,0},{0,1,1,0,1,2,0,0,2},{0,1,1,0,1,2,0,2,0},{0,1,1,0,2,0,0,1,2},
{0,1,1,0,2,0,0,2,1},{0,1,1,0,2,1,0,0,2},{0,1,1,0,2,1,0,2,0},{0,1,1,0,2,2,0,0,1},
{0,1,1,0,2,2,0,1,0},{0,1,1,0,2,2,0,2,2},{0,1,1,1,0,0,0,1,0},{0,1,1,1,0,0,1,0,0},
{0,1,1,1,0,0,2,2,0},{0,1,1,1,0,1,0,0,0},{0,1,1,1,0,2,0,2,0},{0,1,1,1,0,2,2,0,0},

1288 • BinaryClassification class JMSL

{0,1,1,1,1,0,0,0,0},{0,1,1,1,2,2,0,0,0},{0,1,1,2,0,0,1,2,0},{0,1,1,2,0,0,2,1,0},
{0,1,1,2,0,1,0,2,0},{0,1,1,2,0,1,2,0,0},{0,1,1,2,0,2,0,1,0},{0,1,1,2,0,2,1,0,0},
{0,1,1,2,0,2,2,2,0},{0,1,1,2,1,2,0,0,0},{0,1,1,2,2,1,0,0,0},{0,1,2,0,0,0,1,1,2},
{0,1,2,0,0,0,1,2,1},{0,1,2,0,0,0,2,1,1},{0,1,2,0,0,1,0,1,2},{0,1,2,0,0,1,0,2,1},
{0,1,2,0,0,1,1,2,0},{0,1,2,0,0,1,2,1,0},{0,1,2,0,0,2,0,1,1},{0,1,2,0,0,2,1,1,0},
{0,1,2,0,1,0,0,2,1},{0,1,2,0,1,1,0,0,2},{0,1,2,0,1,1,0,2,0},{0,1,2,0,1,2,0,0,1},
{0,1,2,0,1,2,0,2,2},{0,1,2,0,2,0,0,1,1},{0,1,2,0,2,1,0,0,1},{0,1,2,0,2,1,0,1,0},
{0,1,2,0,2,1,0,2,2},{0,1,2,0,2,2,0,1,2},{0,1,2,0,2,2,0,2,1},{0,1,2,1,0,0,1,2,0},
{0,1,2,1,0,0,2,1,0},{0,1,2,1,0,1,0,2,0},{0,1,2,1,0,1,2,0,0},{0,1,2,1,0,2,0,1,0},
{0,1,2,1,0,2,1,0,0},{0,1,2,1,0,2,2,2,0},{0,1,2,1,1,2,0,0,0},{0,1,2,1,2,1,0,0,0},
{0,1,2,2,0,0,1,1,0},{0,1,2,2,0,1,0,1,0},{0,1,2,2,0,1,1,0,0},{0,1,2,2,0,1,2,2,0},
{0,1,2,2,0,2,1,2,0},{0,1,2,2,0,2,2,1,0},{0,1,2,2,1,1,0,0,0},{0,2,0,0,1,1,0,1,2},
{0,2,0,0,1,1,0,2,1},{0,2,0,0,1,2,0,1,1},{0,2,0,0,2,1,0,1,1},{0,2,0,1,0,1,0,1,2},
{0,2,0,1,0,1,0,2,1},{0,2,0,1,0,1,1,2,0},{0,2,0,1,0,1,2,1,0},{0,2,0,1,0,2,0,1,1},
{0,2,0,1,0,2,1,1,0},{0,2,0,1,1,0,1,2,0},{0,2,0,1,1,0,2,1,0},{0,2,0,1,2,0,1,1,0},
{0,2,0,2,0,1,0,1,1},{0,2,0,2,0,1,1,1,0},{0,2,0,2,1,0,1,1,0},{0,2,1,0,0,0,1,1,2},
{0,2,1,0,0,0,1,2,1},{0,2,1,0,0,0,2,1,1},{0,2,1,0,0,1,0,1,2},{0,2,1,0,0,1,1,2,0},
{0,2,1,0,0,1,2,1,0},{0,2,1,0,0,2,0,1,1},{0,2,1,0,0,2,1,1,0},{0,2,1,0,1,0,0,1,2},
{0,2,1,0,1,0,0,2,1},{0,2,1,0,1,1,0,0,2},{0,2,1,0,1,1,0,2,0},{0,2,1,0,1,2,0,0,1},
{0,2,1,0,1,2,0,1,0},{0,2,1,0,1,2,0,2,2},{0,2,1,0,2,0,0,1,1},{0,2,1,0,2,1,0,1,0},
{0,2,1,0,2,1,0,2,2},{0,2,1,0,2,2,0,1,2},{0,2,1,0,2,2,0,2,1},{0,2,1,1,0,0,1,2,0},
{0,2,1,1,0,0,2,1,0},{0,2,1,1,0,1,0,2,0},{0,2,1,1,0,1,2,0,0},{0,2,1,1,0,2,0,1,0},
{0,2,1,1,0,2,1,0,0},{0,2,1,1,0,2,2,2,0},{0,2,1,1,1,2,0,0,0},{0,2,1,1,2,1,0,0,0},
{0,2,1,2,0,0,1,1,0},{0,2,1,2,0,1,0,1,0},{0,2,1,2,0,1,1,0,0},{0,2,1,2,0,1,2,2,0},
{0,2,1,2,0,2,1,2,0},{0,2,1,2,0,2,2,1,0},{0,2,1,2,1,1,0,0,0},{0,2,2,0,0,1,0,1,1},
{0,2,2,0,0,1,1,1,0},{0,2,2,0,1,0,0,1,1},{0,2,2,0,1,1,0,0,1},{0,2,2,0,1,1,0,1,0},
{0,2,2,0,1,1,0,2,2},{0,2,2,0,1,2,0,1,2},{0,2,2,0,1,2,0,2,1},{0,2,2,0,2,1,0,1,2},
{0,2,2,0,2,1,0,2,1},{0,2,2,0,2,2,0,1,1},{0,2,2,1,0,0,1,1,0},{0,2,2,1,0,1,0,1,0},
{0,2,2,1,0,1,1,0,0},{0,2,2,1,0,1,2,2,0},{0,2,2,1,0,2,1,2,0},{0,2,2,1,0,2,2,1,0},
{0,2,2,2,0,1,1,2,0},{0,2,2,2,0,1,2,1,0},{0,2,2,2,0,2,1,1,0},{1,0,0,0,0,1,0,1,1},
{1,0,0,0,0,1,1,0,1},{1,0,0,0,1,0,1,1,0},{1,0,0,1,0,0,0,1,1},{1,0,0,1,0,1,0,0,1},
{1,0,0,1,0,1,0,1,0},{1,0,0,1,0,1,0,2,2},{1,0,0,1,0,1,2,0,2},{1,0,0,1,0,2,0,1,2},
{1,0,0,1,0,2,0,2,1},{1,0,0,1,0,2,2,0,1},{1,0,0,1,1,0,0,1,0},{1,0,0,1,1,0,2,2,0},
{1,0,0,1,2,0,2,1,0},{1,0,0,2,0,1,0,1,2},{1,0,0,2,0,1,0,2,1},{1,0,0,2,0,1,1,0,2},
{1,0,0,2,0,1,2,0,1},{1,0,0,2,0,2,0,1,1},{1,0,0,2,0,2,1,0,1},{1,0,0,2,1,0,1,2,0},
{1,0,0,2,1,0,2,1,0},{1,0,0,2,2,0,1,1,0},{1,0,1,0,0,0,0,1,1},{1,0,1,0,0,0,1,0,1},
{1,0,1,0,0,0,1,1,0},{1,0,1,0,0,0,1,2,2},{1,0,1,0,0,0,2,1,2},{1,0,1,0,0,0,2,2,1},
{1,0,1,0,0,1,1,0,0},{1,0,1,0,0,1,2,0,2},{1,0,1,0,0,2,1,0,2},{1,0,1,0,0,2,2,0,1},
{1,0,1,0,1,1,0,0,0},{1,0,1,1,0,0,0,0,1},{1,0,1,1,0,0,2,0,2},{1,0,1,1,0,1,0,0,0},
{1,0,1,1,0,2,0,0,2},{1,0,1,1,0,2,2,0,0},{1,0,1,1,1,0,0,0,0},{1,0,1,1,2,2,0,0,0},
{1,0,1,2,0,0,1,0,2},{1,0,1,2,0,0,2,0,1},{1,0,1,2,0,1,0,0,2},{1,0,1,2,0,1,2,0,0},
{1,0,1,2,0,2,0,0,1},{1,0,1,2,0,2,1,0,0},{1,0,1,2,0,2,2,0,2},{1,0,1,2,1,2,0,0,0},
{1,0,1,2,2,1,0,0,0},{1,0,2,0,0,0,1,1,2},{1,0,2,0,0,0,1,2,1},{1,0,2,0,0,0,2,1,1},
{1,0,2,0,0,1,1,0,2},{1,0,2,0,0,1,2,0,1},{1,0,2,0,0,2,1,0,1},{1,0,2,1,0,0,2,0,1},
{1,0,2,1,0,1,0,0,2},{1,0,2,1,0,1,2,0,0},{1,0,2,1,0,2,0,0,1},{1,0,2,1,0,2,2,0,2},
{1,0,2,1,1,2,0,0,0},{1,0,2,1,2,1,0,0,0},{1,0,2,2,0,0,1,0,1},{1,0,2,2,0,1,0,0,1},
{1,0,2,2,0,1,1,0,0},{1,0,2,2,0,1,2,0,2},{1,0,2,2,0,2,1,0,2},{1,0,2,2,0,2,2,0,1},
{1,0,2,2,1,1,0,0,0},{1,1,0,0,0,0,0,1,1},{1,1,0,0,0,0,1,0,1},{1,1,0,0,0,0,1,1,0},
{1,1,0,0,0,0,1,2,2},{1,1,0,0,0,0,2,1,2},{1,1,0,0,0,0,2,2,1},{1,1,0,0,0,1,0,0,1},
{1,1,0,0,0,1,0,1,0},{1,1,0,0,0,1,0,2,2},{1,1,0,0,0,2,0,1,2},{1,1,0,0,0,2,0,2,1},
{1,1,0,0,1,0,1,0,0},{1,1,0,0,1,0,2,2,0},{1,1,0,0,1,1,0,0,0},{1,1,0,0,2,0,1,2,0},
{1,1,0,0,2,0,2,1,0},{1,1,0,1,0,0,0,0,1},{1,1,0,1,0,0,0,1,0},{1,1,0,1,0,0,0,2,2},
{1,1,0,1,0,0,2,2,0},{1,1,0,1,0,1,0,0,0},{1,1,0,1,0,2,0,0,2},{1,1,0,1,0,2,0,2,0},
{1,1,0,1,1,0,0,0,0},{1,1,0,1,2,0,0,2,0},{1,1,0,1,2,0,2,0,0},{1,1,0,1,2,2,0,0,0},
{1,1,0,2,0,0,0,1,2},{1,1,0,2,0,0,0,2,1},{1,1,0,2,0,0,1,2,0},{1,1,0,2,0,0,2,1,0},
{1,1,0,2,0,1,0,0,2},{1,1,0,2,0,1,0,2,0},{1,1,0,2,0,2,0,0,1},{1,1,0,2,0,2,0,1,0},

Neural Nets BinaryClassification class • 1289

{1,1,0,2,0,2,0,2,2},{1,1,0,2,1,0,0,2,0},{1,1,0,2,1,0,2,0,0},{1,1,0,2,1,2,0,0,0},
{1,1,0,2,2,0,0,1,0},{1,1,0,2,2,0,1,0,0},{1,1,0,2,2,0,2,2,0},{1,1,0,2,2,1,0,0,0},
{1,1,2,0,0,0,0,1,2},{1,1,2,0,0,0,0,2,1},{1,1,2,0,0,0,1,0,2},{1,1,2,0,0,0,1,2,0},
{1,1,2,0,0,0,2,0,1},{1,1,2,0,0,0,2,1,0},{1,1,2,0,0,0,2,2,2},{1,1,2,0,1,2,0,0,0},
{1,1,2,0,2,1,0,0,0},{1,1,2,1,0,2,0,0,0},{1,1,2,1,2,0,0,0,0},{1,1,2,2,0,1,0,0,0},
{1,1,2,2,1,0,0,0,0},{1,1,2,2,2,2,0,0,0},{1,2,0,0,0,0,1,1,2},{1,2,0,0,0,0,1,2,1},
{1,2,0,0,0,0,2,1,1},{1,2,0,0,0,1,0,1,2},{1,2,0,0,0,1,0,2,1},{1,2,0,0,0,2,0,1,1},
{1,2,0,0,1,0,1,2,0},{1,2,0,0,1,0,2,1,0},{1,2,0,0,2,0,1,1,0},{1,2,0,1,0,0,0,1,2},
{1,2,0,1,0,0,0,2,1},{1,2,0,1,0,0,2,1,0},{1,2,0,1,0,1,0,0,2},{1,2,0,1,0,1,0,2,0},
{1,2,0,1,0,2,0,0,1},{1,2,0,1,0,2,0,1,0},{1,2,0,1,0,2,0,2,2},{1,2,0,1,1,0,0,2,0},
{1,2,0,1,1,0,2,0,0},{1,2,0,1,1,2,0,0,0},{1,2,0,1,2,0,0,1,0},{1,2,0,1,2,0,2,2,0},
{1,2,0,1,2,1,0,0,0},{1,2,0,2,0,0,0,1,1},{1,2,0,2,0,0,1,1,0},{1,2,0,2,0,1,0,0,1},
{1,2,0,2,0,1,0,1,0},{1,2,0,2,0,1,0,2,2},{1,2,0,2,0,2,0,1,2},{1,2,0,2,0,2,0,2,1},
{1,2,0,2,1,0,0,1,0},{1,2,0,2,1,0,1,0,0},{1,2,0,2,1,0,2,2,0},{1,2,0,2,1,1,0,0,0},
{1,2,0,2,2,0,1,2,0},{1,2,0,2,2,0,2,1,0},{1,2,1,0,0,0,0,1,2},{1,2,1,0,0,0,0,2,1},
{1,2,1,0,0,0,1,0,2},{1,2,1,0,0,0,1,2,0},{1,2,1,0,0,0,2,0,1},{1,2,1,0,0,0,2,1,0},
{1,2,1,0,0,0,2,2,2},{1,2,1,0,1,2,0,0,0},{1,2,1,0,2,1,0,0,0},{1,2,1,1,0,2,0,0,0},
{1,2,1,1,2,0,0,0,0},{1,2,1,2,0,1,0,0,0},{1,2,1,2,1,0,0,0,0},{1,2,1,2,2,2,0,0,0},
{1,2,2,0,0,0,0,1,1},{1,2,2,0,0,0,1,0,1},{1,2,2,0,0,0,1,1,0},{1,2,2,0,0,0,1,2,2},
{1,2,2,0,0,0,2,1,2},{1,2,2,0,0,0,2,2,1},{1,2,2,0,1,1,0,0,0},{1,2,2,1,0,1,0,0,0},
{1,2,2,1,1,0,0,0,0},{1,2,2,1,2,2,0,0,0},{1,2,2,2,1,2,0,0,0},{1,2,2,2,2,1,0,0,0},
{2,0,0,1,0,1,0,1,2},{2,0,0,1,0,1,0,2,1},{2,0,0,1,0,1,1,0,2},{2,0,0,1,0,1,2,0,1},
{2,0,0,1,0,2,0,1,1},{2,0,0,1,0,2,1,0,1},{2,0,0,1,1,0,1,2,0},{2,0,0,1,1,0,2,1,0},
{2,0,0,1,2,0,1,1,0},{2,0,0,2,0,1,0,1,1},{2,0,0,2,0,1,1,0,1},{2,0,0,2,1,0,1,1,0},
{2,0,1,0,0,0,1,1,2},{2,0,1,0,0,0,1,2,1},{2,0,1,0,0,0,2,1,1},{2,0,1,0,0,1,1,0,2},
{2,0,1,0,0,2,1,0,1},{2,0,1,1,0,0,1,0,2},{2,0,1,1,0,0,2,0,1},{2,0,1,1,0,1,0,0,2},
{2,0,1,1,0,1,2,0,0},{2,0,1,1,0,2,0,0,1},{2,0,1,1,0,2,1,0,0},{2,0,1,1,0,2,2,0,2},
{2,0,1,1,1,2,0,0,0},{2,0,1,1,2,1,0,0,0},{2,0,1,2,0,0,1,0,1},{2,0,1,2,0,1,1,0,0},
{2,0,1,2,0,1,2,0,2},{2,0,1,2,0,2,1,0,2},{2,0,1,2,0,2,2,0,1},{2,0,1,2,1,1,0,0,0},
{2,0,2,0,0,1,1,0,1},{2,0,2,1,0,0,1,0,1},{2,0,2,1,0,1,0,0,1},{2,0,2,1,0,1,1,0,0},
{2,0,2,1,0,1,2,0,2},{2,0,2,1,0,2,1,0,2},{2,0,2,1,0,2,2,0,1},{2,0,2,2,0,1,1,0,2},
{2,0,2,2,0,1,2,0,1},{2,0,2,2,0,2,1,0,1},{2,1,0,0,0,0,1,1,2},{2,1,0,0,0,0,1,2,1},
{2,1,0,0,0,0,2,1,1},{2,1,0,0,0,1,0,1,2},{2,1,0,0,0,1,0,2,1},{2,1,0,0,0,2,0,1,1},
{2,1,0,0,1,0,1,2,0},{2,1,0,0,2,0,1,1,0},{2,1,0,1,0,0,0,1,2},{2,1,0,1,0,0,0,2,1},
{2,1,0,1,0,0,1,2,0},{2,1,0,1,0,0,2,1,0},{2,1,0,1,0,1,0,0,2},{2,1,0,1,0,1,0,2,0},
{2,1,0,1,0,2,0,0,1},{2,1,0,1,0,2,0,1,0},{2,1,0,1,0,2,0,2,2},{2,1,0,1,1,0,0,2,0},
{2,1,0,1,1,0,2,0,0},{2,1,0,1,1,2,0,0,0},{2,1,0,1,2,0,0,1,0},{2,1,0,1,2,0,1,0,0},
{2,1,0,1,2,0,2,2,0},{2,1,0,1,2,1,0,0,0},{2,1,0,2,0,0,0,1,1},{2,1,0,2,0,0,1,1,0},
{2,1,0,2,0,1,0,0,1},{2,1,0,2,0,1,0,1,0},{2,1,0,2,0,1,0,2,2},{2,1,0,2,0,2,0,1,2},
{2,1,0,2,0,2,0,2,1},{2,1,0,2,1,0,1,0,0},{2,1,0,2,1,0,2,2,0},{2,1,0,2,1,1,0,0,0},
{2,1,0,2,2,0,1,2,0},{2,1,0,2,2,0,2,1,0},{2,1,1,0,0,0,0,1,2},{2,1,1,0,0,0,0,2,1},
{2,1,1,0,0,0,1,0,2},{2,1,1,0,0,0,1,2,0},{2,1,1,0,0,0,2,0,1},{2,1,1,0,0,0,2,1,0},
{2,1,1,0,0,0,2,2,2},{2,1,1,0,1,2,0,0,0},{2,1,1,0,2,1,0,0,0},{2,1,1,1,0,2,0,0,0},
{2,1,1,1,2,0,0,0,0},{2,1,1,2,0,1,0,0,0},{2,1,1,2,1,0,0,0,0},{2,1,1,2,2,2,0,0,0},
{2,1,2,0,0,0,0,1,1},{2,1,2,0,0,0,1,0,1},{2,1,2,0,0,0,1,1,0},{2,1,2,0,0,0,1,2,2},
{2,1,2,0,0,0,2,1,2},{2,1,2,0,0,0,2,2,1},{2,1,2,0,1,1,0,0,0},{2,1,2,1,0,1,0,0,0},
{2,1,2,1,1,0,0,0,0},{2,1,2,1,2,2,0,0,0},{2,1,2,2,1,2,0,0,0},{2,1,2,2,2,1,0,0,0},
{2,2,0,0,0,1,0,1,1},{2,2,0,0,1,0,1,1,0},{2,2,0,1,0,0,0,1,1},{2,2,0,1,0,0,1,1,0},
{2,2,0,1,0,1,0,0,1},{2,2,0,1,0,1,0,1,0},{2,2,0,1,0,1,0,2,2},{2,2,0,1,0,2,0,1,2},
{2,2,0,1,0,2,0,2,1},{2,2,0,1,1,0,0,1,0},{2,2,0,1,1,0,1,0,0},{2,2,0,1,1,0,2,2,0},
{2,2,0,1,2,0,1,2,0},{2,2,0,1,2,0,2,1,0},{2,2,0,2,0,1,0,1,2},{2,2,0,2,0,1,0,2,1},
{2,2,0,2,0,2,0,1,1},{2,2,0,2,1,0,1,2,0},{2,2,0,2,1,0,2,1,0},{2,2,0,2,2,0,1,1,0},
{2,2,1,0,0,0,0,1,1},{2,2,1,0,0,0,1,0,1},{2,2,1,0,0,0,1,1,0},{2,2,1,0,0,0,1,2,2},
{2,2,1,0,0,0,2,1,2},{2,2,1,0,0,0,2,2,1},{2,2,1,0,1,1,0,0,0},{2,2,1,1,0,1,0,0,0},
{2,2,1,1,1,0,0,0,0},{2,2,1,1,2,2,0,0,0},{2,2,1,2,1,2,0,0,0},{2,2,1,2,2,1,0,0,0},
{2,2,2,0,0,0,1,1,2},{2,2,2,0,0,0,1,2,1},{2,2,2,0,0,0,2,1,1},{2,2,2,1,1,2,0,0,0},

1290 • BinaryClassification class JMSL

{2,2,2,1,2,1,0,0,0},{2,2,2,2,1,1,0,0,0},{0,0,1,0,0,1,1,2,1},{0,0,1,0,0,1,2,1,1},
{0,0,1,0,0,2,1,1,1},{0,0,1,0,1,0,1,1,2},{0,0,1,0,1,0,1,2,1},{0,0,1,0,1,1,1,0,2},
{0,0,1,0,1,1,1,2,0},{0,0,1,0,1,1,2,0,1},{0,0,1,0,1,2,1,0,1},{0,0,1,0,1,2,1,1,0},
{0,0,1,0,1,2,1,2,2},{0,0,1,0,2,0,1,1,1},{0,0,1,0,2,1,1,0,1},{0,0,1,0,2,1,2,2,1},
{0,0,1,1,0,1,0,2,1},{0,0,1,1,1,0,1,0,2},{0,0,1,1,1,0,1,2,0},{0,0,1,1,1,1,0,0,2},
{0,0,1,1,1,1,0,2,0},{0,0,1,1,1,1,2,0,0},{0,0,1,1,1,2,1,0,0},{0,0,1,1,2,1,0,0,1},
{0,0,1,2,0,0,1,1,1},{0,0,1,2,0,1,0,1,1},{0,0,1,2,0,1,2,2,1},{0,0,1,2,1,0,1,0,1},
{0,0,1,2,1,0,1,1,0},{0,0,1,2,1,0,1,2,2},{0,0,1,2,1,1,0,0,1},{0,0,1,2,1,1,1,0,0},
{0,0,1,2,1,2,1,0,2},{0,0,1,2,1,2,1,2,0},{0,0,1,2,2,1,0,2,1},{0,0,1,2,2,1,2,0,1},
{0,0,2,0,0,1,1,1,1},{0,0,2,0,1,0,1,1,1},{0,0,2,0,2,2,1,1,1},{0,0,2,1,0,0,1,1,1},
{0,0,2,1,1,1,0,0,1},{0,0,2,1,1,1,0,1,0},{0,0,2,1,1,1,0,2,2},{0,0,2,1,1,1,1,0,0},
{0,0,2,1,1,1,2,0,2},{0,0,2,1,1,1,2,2,0},{0,0,2,2,0,2,1,1,1},{0,0,2,2,2,0,1,1,1},
{0,1,0,0,0,2,1,1,1},{0,1,0,0,1,0,1,1,2},{0,1,0,0,1,0,2,1,1},{0,1,0,0,1,1,2,1,0},
{0,1,0,0,1,2,1,1,0},{0,1,0,0,1,2,2,1,2},{0,1,0,0,2,0,1,1,1},{0,1,0,1,1,0,0,1,2},
{0,1,0,1,1,1,0,0,2},{0,1,0,1,1,1,0,2,0},{0,1,0,1,1,1,2,0,0},{0,1,0,1,1,2,0,1,0},
{0,1,0,2,0,0,1,1,1},{0,1,0,2,1,0,0,1,1},{0,1,0,2,1,0,2,1,2},{0,1,0,2,1,1,0,1,0},
{0,1,0,2,1,2,0,1,2},{0,1,0,2,1,2,2,1,0},{0,1,1,0,0,1,2,0,1},{0,1,1,0,1,0,1,0,2},
{0,1,1,0,1,0,1,2,0},{0,1,1,0,1,0,2,1,0},{0,1,1,0,1,2,1,0,0},{0,1,1,2,0,1,0,0,1},
{0,1,1,2,1,0,0,1,0},{0,1,1,2,1,0,1,0,0},{0,1,2,0,1,0,1,1,0},{0,1,2,0,1,0,2,1,2},
{0,1,2,0,1,2,2,1,0},{0,1,2,1,1,0,0,1,0},{0,1,2,2,1,0,0,1,2},{0,1,2,2,1,0,2,1,0},
{0,1,2,2,1,2,0,1,0},{0,2,0,0,0,1,1,1,1},{0,2,0,0,1,0,1,1,1},{0,2,0,0,2,2,1,1,1},
{0,2,0,1,0,0,1,1,1},{0,2,0,1,1,1,0,0,1},{0,2,0,1,1,1,0,1,0},{0,2,0,1,1,1,0,2,2},
{0,2,0,1,1,1,1,0,0},{0,2,0,1,1,1,2,0,2},{0,2,0,1,1,1,2,2,0},{0,2,0,2,0,2,1,1,1},
{0,2,0,2,2,0,1,1,1},{0,2,1,0,0,1,1,0,1},{0,2,1,0,0,1,2,2,1},{0,2,1,0,1,0,1,0,1},
{0,2,1,0,1,0,1,1,0},{0,2,1,0,1,0,1,2,2},{0,2,1,0,1,1,1,0,0},{0,2,1,0,1,2,1,0,2},
{0,2,1,0,1,2,1,2,0},{0,2,1,0,2,1,2,0,1},{0,2,1,1,0,1,0,0,1},{0,2,1,1,1,0,1,0,0},
{0,2,1,2,0,1,0,2,1},{0,2,1,2,0,1,2,0,1},{0,2,1,2,1,0,1,0,2},{0,2,1,2,1,0,1,2,0},
{0,2,1,2,1,2,1,0,0},{0,2,1,2,2,1,0,0,1},{0,2,2,0,0,2,1,1,1},{0,2,2,0,2,0,1,1,1},
{0,2,2,1,1,1,0,0,2},{0,2,2,1,1,1,0,2,0},{0,2,2,1,1,1,2,0,0},{0,2,2,2,0,0,1,1,1},
{1,0,0,0,0,2,1,1,1},{1,0,0,0,1,0,1,2,1},{1,0,0,0,1,0,2,1,1},{1,0,0,0,1,1,0,2,1},
{1,0,0,0,1,1,2,0,1},{1,0,0,0,1,2,0,1,1},{1,0,0,0,1,2,1,0,1},{1,0,0,0,1,2,2,2,1},
{1,0,0,0,2,0,1,1,1},{1,0,0,1,0,0,1,1,2},{1,0,0,1,0,0,1,2,1},{1,0,0,1,0,1,1,2,0},
{1,0,0,1,0,2,1,1,0},{1,0,0,1,0,2,1,2,2},{1,0,0,1,1,0,0,2,1},{1,0,0,1,1,0,1,0,2},
{1,0,0,1,1,0,2,0,1},{1,0,0,1,1,1,0,0,2},{1,0,0,1,1,1,0,2,0},{1,0,0,1,1,1,2,0,0},
{1,0,0,1,1,2,0,0,1},{1,0,0,1,1,2,1,0,0},{1,0,0,1,2,0,1,0,1},{1,0,0,1,2,0,1,2,2},
{1,0,0,1,2,1,1,0,0},{1,0,0,1,2,2,1,0,2},{1,0,0,1,2,2,1,2,0},{1,0,0,2,0,0,1,1,1},
{1,0,0,2,1,0,0,1,1},{1,0,0,2,1,0,1,0,1},{1,0,0,2,1,0,2,2,1},{1,0,0,2,1,1,0,0,1},
{1,0,0,2,1,2,0,2,1},{1,0,0,2,1,2,2,0,1},{1,0,1,0,0,1,0,2,1},{1,0,1,0,1,0,0,2,1},
{1,0,1,0,1,0,1,0,2},{1,0,1,0,1,0,1,2,0},{1,0,1,0,1,0,2,0,1},{1,0,1,0,1,2,0,0,1},
{1,0,1,0,1,2,1,0,0},{1,0,1,0,2,1,0,0,1},{1,0,1,1,0,0,1,2,0},{1,0,1,1,2,0,1,0,0},
{1,0,1,2,1,0,0,0,1},{1,0,1,2,1,0,1,0,0},{1,0,2,0,1,0,0,1,1},{1,0,2,0,1,0,1,0,1},
{1,0,2,0,1,0,2,2,1},{1,0,2,0,1,1,0,0,1},{1,0,2,0,1,2,0,2,1},{1,0,2,0,1,2,2,0,1},
{1,0,2,1,0,0,1,1,0},{1,0,2,1,0,0,1,2,2},{1,0,2,1,0,2,1,2,0},{1,0,2,1,1,0,0,0,1},
{1,0,2,1,1,0,1,0,0},{1,0,2,1,2,0,1,0,2},{1,0,2,1,2,0,1,2,0},{1,0,2,1,2,2,1,0,0},
{1,0,2,2,1,0,0,2,1},{1,0,2,2,1,0,2,0,1},{1,0,2,2,1,2,0,0,1},{1,1,0,0,1,0,0,1,2},
{1,1,0,0,1,0,0,2,1},{1,1,0,0,1,0,2,0,1},{1,1,0,0,1,2,0,0,1},{1,1,0,0,1,2,0,1,0},
{1,1,0,1,0,0,1,0,2},{1,1,0,1,0,2,1,0,0},{1,1,0,2,1,0,0,0,1},{1,1,1,0,0,1,0,0,2},
{1,1,1,0,0,1,0,2,0},{1,1,1,0,0,1,2,0,0},{1,1,1,0,0,2,0,0,1},{1,1,1,0,0,2,0,1,0},
{1,1,1,0,0,2,0,2,2},{1,1,1,0,0,2,1,0,0},{1,1,1,0,0,2,2,0,2},{1,1,1,0,0,2,2,2,0},
{1,1,1,0,1,0,0,0,2},{1,1,1,0,1,0,0,2,0},{1,1,1,0,1,0,2,0,0},{1,1,1,0,2,0,0,0,1},
{1,1,1,0,2,0,0,1,0},{1,1,1,0,2,0,0,2,2},{1,1,1,0,2,0,1,0,0},{1,1,1,0,2,0,2,0,2},
{1,1,1,0,2,0,2,2,0},{1,1,1,0,2,2,0,0,2},{1,1,1,0,2,2,0,2,0},{1,1,1,0,2,2,2,0,0},
{1,1,1,1,0,0,0,0,2},{1,1,1,1,0,0,0,2,0},{1,1,1,1,0,0,2,0,0},{1,1,1,2,0,0,0,0,1},
{1,1,1,2,0,0,0,1,0},{1,1,1,2,0,0,0,2,2},{1,1,1,2,0,0,1,0,0},{1,1,1,2,0,0,2,0,2},
{1,1,1,2,0,0,2,2,0},{1,1,1,2,0,2,0,0,2},{1,1,1,2,0,2,0,2,0},{1,1,1,2,0,2,2,0,0},
{1,1,1,2,2,0,0,0,2},{1,1,1,2,2,0,0,2,0},{1,1,1,2,2,0,2,0,0},{1,1,2,0,1,0,0,0,1},

Neural Nets BinaryClassification class • 1291

{1,1,2,0,1,0,0,1,0},{1,1,2,1,0,0,1,0,0},{1,2,0,0,1,0,0,1,1},{1,2,0,0,1,0,1,0,1},
{1,2,0,0,1,0,2,2,1},{1,2,0,0,1,1,0,0,1},{1,2,0,0,1,2,0,2,1},{1,2,0,0,1,2,2,0,1},
{1,2,0,1,0,0,1,0,1},{1,2,0,1,0,0,1,2,2},{1,2,0,1,0,1,1,0,0},{1,2,0,1,0,2,1,0,2},
{1,2,0,1,0,2,1,2,0},{1,2,0,1,1,0,0,0,1},{1,2,0,1,2,0,1,0,2},{1,2,0,1,2,2,1,0,0},
{1,2,0,2,1,0,0,2,1},{1,2,0,2,1,0,2,0,1},{1,2,0,2,1,2,0,0,1},{1,2,1,0,0,1,0,0,1},
{1,2,1,0,1,0,0,0,1},{1,2,1,0,1,0,1,0,0},{1,2,1,1,0,0,1,0,0},{1,2,2,0,1,0,0,2,1},
{1,2,2,0,1,0,2,0,1},{1,2,2,0,1,2,0,0,1},{1,2,2,1,0,0,1,0,2},{1,2,2,1,0,0,1,2,0},
{1,2,2,1,0,2,1,0,0},{1,2,2,1,2,0,1,0,0},{1,2,2,2,1,0,0,0,1},{2,0,0,0,0,1,1,1,1},
{2,0,0,0,1,0,1,1,1},{2,0,0,0,2,2,1,1,1},{2,0,0,1,0,0,1,1,1},{2,0,0,1,1,1,0,0,1},
{2,0,0,1,1,1,0,1,0},{2,0,0,1,1,1,0,2,2},{2,0,0,1,1,1,1,0,0},{2,0,0,1,1,1,2,0,2},
{2,0,0,1,1,1,2,2,0},{2,0,0,2,0,2,1,1,1},{2,0,0,2,2,0,1,1,1},{2,0,1,0,0,1,0,1,1},
{2,0,1,0,0,1,2,2,1},{2,0,1,0,1,0,1,0,1},{2,0,1,0,1,0,1,1,0},{2,0,1,0,1,0,1,2,2},
{2,0,1,0,1,1,0,0,1},{2,0,1,0,1,1,1,0,0},{2,0,1,0,1,2,1,0,2},{2,0,1,0,1,2,1,2,0},
{2,0,1,0,2,1,0,2,1},{2,0,1,0,2,1,2,0,1},{2,0,1,1,1,0,1,0,0},{2,0,1,2,0,1,0,2,1},
{2,0,1,2,1,0,1,0,2},{2,0,1,2,1,0,1,2,0},{2,0,1,2,1,2,1,0,0},{2,0,1,2,2,1,0,0,1},
{2,0,2,0,0,2,1,1,1},{2,0,2,0,2,0,1,1,1},{2,0,2,1,1,1,0,0,2},{2,0,2,1,1,1,0,2,0},
{2,0,2,1,1,1,2,0,0},{2,0,2,2,0,0,1,1,1},{2,1,0,0,1,0,0,1,1},{2,1,0,0,1,0,2,1,2},
{2,1,0,0,1,1,0,1,0},{2,1,0,0,1,2,0,1,2},{2,1,0,0,1,2,2,1,0},{2,1,0,2,1,0,0,1,2},
{2,1,0,2,1,2,0,1,0},{2,1,1,0,0,1,0,0,1},{2,1,1,0,1,0,0,1,0},{2,1,1,0,1,0,1,0,0},
{2,1,2,0,1,0,0,1,2},{2,1,2,0,1,0,2,1,0},{2,1,2,0,1,2,0,1,0},{2,1,2,2,1,0,0,1,0},
{2,2,0,0,0,2,1,1,1},{2,2,0,0,2,0,1,1,1},{2,2,0,1,1,1,0,0,2},{2,2,0,1,1,1,0,2,0},
{2,2,0,1,1,1,2,0,0},{2,2,0,2,0,0,1,1,1},{2,2,1,0,0,1,0,2,1},{2,2,1,0,0,1,2,0,1},
{2,2,1,0,1,0,1,0,2},{2,2,1,0,1,0,1,2,0},{2,2,1,0,1,2,1,0,0},{2,2,1,0,2,1,0,0,1},
{2,2,1,2,0,1,0,0,1},{2,2,1,2,1,0,1,0,0},{0,0,1,1,0,0,0,1,1},{0,0,1,1,1,0,0,0,1},
{0,0,1,1,1,0,0,1,0},{0,1,0,0,0,1,1,0,1},{0,1,0,0,1,0,1,0,1},{0,1,0,0,1,1,1,0,0},
{0,1,0,1,0,0,1,0,1},{0,1,0,1,1,0,0,0,1},{0,1,1,1,0,0,0,0,1},{1,0,0,0,0,1,1,1,0},

{1,0,0,0,1,1,0,1,0},{1,0,0,0,1,1,1,0,0},{1,0,1,0,0,1,0,1,0},{1,0,1,0,1,0,0,1,0},
{1,0,1,1,0,0,0,1,0},{1,1,0,0,0,1,1,0,0}

};

private double categoricalAtt[][];

private static double weights[] = {
-0.00000000000000063401, 0.00000000000000055700, 0.00000000000000012769,
-0.52573653474162341000, 0.43427498705107342000, 0.09146154769055023200,
0.00000000000000138130, -0.00000000000000118053, -0.00000000000000050631,
0.52573653474162607000, -0.43427498705107603000, -0.09146154769055094000,

-0.00000000000000057743, 0.00000000000000037314, -0.00000000000000023441,
0.52573653474162907000, -0.43427498705107787000, -0.09146154769055155100,

-0.00000000000000405476, 0.00000000000000339568, 0.00000000000000053496,
-0.52573653474162763000, 0.43427498705107587000, 0.09146154769055155100,
-0.00000000000000116499, 0.00000000000000111960, 0.00000000000000004464,
0.59181480684449950000, -0.48617039139374285000, -0.10564441545075645000,
0.33659693927260309000, -0.28023189914604213000, -0.05636504012656110000,

-0.00000000000000339401, 0.00000000000000312093, 0.00000000000000057542,
0.33659693927260292000, -0.28023189914604213000, -0.05636504012656087800,
0.00000000000000099480, -0.00000000000000067295, -0.00000000000000003901,

-0.33659693927260537000, 0.28023189914604435000, 0.05636504012656118300,
-0.00000000000000284785, 0.00000000000000269180, 0.00000000000000026089,
-0.33659693927260426000, 0.28023189914604330000, 0.05636504012656121800,
-0.59181480684449039000, 0.48617039139373414000, 0.10564441545075609000,
0.00000000000000098567, -0.00000000000000095474, -0.00000000000000021207,

-0.33659693927260698000, 0.28023189914604579000, 0.05636504012656142600,
-0.59181480684449372000, 0.48617039139373774000, 0.10564441545075645000,
0.33659693927260514000, -0.28023189914604435000, -0.05636504012656100300,

1292 • BinaryClassification class JMSL

-0.00000000000000010012, 0.00000000000000001702, 0.00000000000000012437,
-0.33659693927260204000, 0.28023189914604152000, 0.05636504012656010100,
0.59181480684449428000, -0.48617039139373813000, -0.10564441545075638000,
0.33659693927260081000, -0.28023189914603991000, -0.05636504012656074600,
0.00000000000000216976, -0.00000000000000195478, -0.00000000000000023527,
0.39961448116107012000, -0.35734834346184241000, -0.04226613769922773400,

-0.33634249144114892000, 0.28239332896420155000, 0.05394916247694748300,
0.39961448116106396000, -0.35734834346183769000, -0.04226613769922723400,

-0.33634249144114703000, 0.28239332896420027000, 0.05394916247694724100,
-0.21667948075941171000, 0.12935693076722185000, 0.08732254999219028800,
-0.33634249144114398000, 0.28239332896419722000, 0.05394916247694688700,
0.39961448116106157000, -0.35734834346183453000, -0.04226613769922710200,

-0.33634249144114919000, 0.28239332896420105000, 0.05394916247694810100,
0.39961448116107307000, -0.35734834346184485000, -0.04226613769922824700,

-0.54188833749531484000, 0.49456532031183192000, 0.04732301718348254400,
0.00000000000000042643, -0.00000000000000052416, -0.00000000000000028161,
0.54188833749532672000, -0.49456532031184147000, -0.04732301718348516700,
0.00000000000000208148, -0.00000000000000170526, -0.00000000000000039120,

-0.00000000000001165642, 0.00000000000000998830, 0.00000000000000133016,
-0.00000000000000389738, 0.00000000000000286692, 0.00000000000000081238,
0.54188833749532805000, -0.49456532031184208000, -0.04732301718348581200,

-0.00000000000000308117, 0.00000000000000212213, 0.00000000000000117840,
-0.54188833749532439000, 0.49456532031183975000, 0.04732301718348420900,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
0.00000000000000093850, -0.00000000000000054323, -0.00000000000000011761,

-0.03290466729806285100, 0.00000000000000063771, 0.00000000000000000000,
0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000};

// **
// MAIN
// **

public static void main(String[] args) throws Exception {

double xData[][]; // Input Attributes for Trainer
int yData[]; // Output Attributes for Trainer
int i, j; // array indicies
int nWeights = 0; // Number of weights obtained from network
String trainLogName = "BinaryClassificationNetworkEx2.log";
int[][] z;

// **
// PREPROCESS TRAINING PATTERNS
// **

long t0 = System.currentTimeMillis();

xData = new double[nObs][nInputs];
yData = new int[nObs];

/* Perform Binary Filtering. */
for (i=0;i<data.length;i++) {

Neural Nets BinaryClassification class • 1293

for (j=0;j<data[0].length;j++) {
data[i][j]++;

}
}
int xx[] = new int[nObs];
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(3);
for (i=0; i<9; i++) {

// Copy each variable to a temp var
for (j=0; j<nObs; j++) {

xx[j] = data[j][i];
}
// Perform binary filter on temp var
z = filter.encode(xx);
// Copy binary encoded var to xData
for (j=0; j<nObs; j++) {

for (int k=0; k<3; k++) {
xData[j][k+(i*3)] = (double) z[j][k];

}
}

}

for (i=0; i < nObs; i++) {
yData[i] = (i >= 626 ? 0 : 1);

}

// **
// CREATE FEEDFORWARD NETWORK
// **

FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(nInputs);
network.createHiddenLayer().createPerceptrons(nPerceptrons1);
network.createHiddenLayer().createPerceptrons(nPerceptrons2);
network.getOutputLayer().createPerceptrons(nOutputs);
network.linkAll();
network.setWeights(weights);
Perceptron perceptrons[] = network.getPerceptrons();
for (i=0; i < perceptrons.length-1; i++) {

perceptrons[i].setActivation(hiddenLayerActivation);
}

// **
// SET OUTPUT LAYER ACTIVATION FUNCTION TO LOGISTIC FOR BINARY CLASSIFICATION
// **

perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);

BinaryClassification classification = new BinaryClassification(network);

QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
QuasiNewtonTrainer stageIITrainer = new QuasiNewtonTrainer();
stageITrainer.setError(classification.getError());
stageIITrainer.setError(classification.getError());
stageITrainer.setMaximumTrainingIterations(8000);
stageITrainer.setMaximumStepsize(10.0);
stageIITrainer.setMaximumStepsize(10.0);
stageITrainer.setRelativeTolerance(10e-20);

1294 • BinaryClassification class JMSL

stageIITrainer.setRelativeTolerance(10e-20);
stageIITrainer.setMaximumTrainingIterations(8000);
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);

// Set Training Parameters
trainer.setNumberOfEpochs(20);
trainer.setEpochSize(nObs);

// Set random number seeds to produce repeatable output
trainer.setRandom(new Random(5555));
trainer.setRandomSamples(new Random(5555), new Random(5555));

// If tracing is requested setup training logger
if (trace) {

try {
Handler handler = new FileHandler(trainLogName);
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());
System.out.println("--> Training Log Created in "+

trainLogName);
} catch (Exception e) {

System.out.println("--> Cannot Create Training Log.");
}

}
classification.train(trainer, xData, yData);
System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());
System.out.println("StageITrainer.getErrorValue = "+stageITrainer.getErrorValue());
System.out.println("StageIITrainer.getErrorValue = "+stageIITrainer.getErrorValue());

// **
// DISPLAY TRAINING STATISTICS
// **
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("***");
System.out.println("--> Cross-entropy error: "+(float)stats[0]);
System.out.println("--> Classification error rate: "+(float)stats[1]);
System.out.println("***");
System.out.println("");

// **
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **
double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for(i = 0; i < weight.length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));

Neural Nets BinaryClassification class • 1295

pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf,wg);

// **
// forecast the network
// **
double report[][] = new double[nObs][2];
for (i = 0; i < 50; i++) {

report[i][0] = yData[i];
report[i][1] = classification.predictedClass(xData[i]);

}

pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{"Expected","Predicted"});
new PrintMatrix("Forecast").print(pmf, report);

long t1 = System.currentTimeMillis();
double small = 1.e-7;
double time = t1-t0; //Math.max(small, (double)(t1-t0)/(double)iters);
time = time/1000;
System.out.println("****************Time: "+time);
System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());
System.out.println("StageITrainer.getErrorValue = "+stageITrainer.getErrorValue());
System.out.println("StageIITrainer.getErrorValue = "+stageIITrainer.getErrorValue());

}
}

Output

--> Training Log Created in BinaryClassificationNetworkEx2.log
trainer.getErrorValue = 1.4572899893203097
StageITrainer.getErrorValue = 482.27809835973795
StageIITrainer.getErrorValue = 1.4572899893203097

--> Cross-entropy error: 1.4572899
--> Classification error rate: 0.0020876827

Weights Gradients
0 2.944218 -0.000103
1 11.572133 -0.002104
2 -10.464978 0.031618
3 18.197968 -0.099090
4 26.552980 -0.007697
5 -12.948492 -0.004065
6 -6.920502 0.026458
7 12.449166 0.002808
8 -22.044311 -0.101337
9 -28.603049 -0.000001

10 11.236107 0.000069
11 2.983088 -0.000000

1296 • BinaryClassification class JMSL

12 -10.165526 0.000501
13 1.947292 -0.000411
14 -19.153976 -0.000000
15 -8.400962 -0.004047
16 -12.026586 -0.000877
17 -6.175538 0.034892
18 16.752667 -0.302597
19 27.202764 -0.007699
20 7.846400 -0.000000
21 9.415102 0.000000
22 -0.717963 -0.000000
23 -22.044410 0.000000
24 -36.633994 0.000001
25 2.960843 -0.000053
26 9.591344 0.025231
27 -0.050062 0.000035
28 4.260128 0.101759
29 -11.478470 0.000000
30 -10.507361 0.000000
31 17.400312 0.024341
32 -4.365829 0.030967
33 20.318348 -0.002424
34 -40.598205 -0.007753
35 11.547888 -0.004180
36 -13.955145 0.000013
37 -12.967388 0.003914
38 -24.426023 -0.198309
39 28.236830 0.000055
40 1.006560 0.000081
41 4.508082 -0.000000
42 7.094010 0.000046
43 2.986456 -0.000105
44 -9.215039 -0.000001
45 -18.006465 -0.000063
46 6.899860 0.026472
47 -9.835696 0.002747
48 17.886021 -0.214726
49 1.824013 0.000000
50 12.255996 -0.003981
51 -2.444224 -0.002118
52 4.933440 0.032021
53 -22.233104 0.013710
54 -11.061314 -0.007698
55 6.440296 -0.000056
56 3.000394 0.000000
57 -4.155388 0.000159
58 2.669732 0.000177
59 -11.757717 0.000000
60 27.524414 -0.003981
61 55.921417 -0.000001
62 -1.707040 0.004514
63 20.846132 -0.135316
64 -7.685032 -0.000001
65 -27.369955 -0.000119
66 -40.908826 0.026472
67 -4.823267 0.030411

Neural Nets BinaryClassification class • 1297

68 -23.581984 -0.065522
69 3.181360 -0.007697
70 1.828543 -0.000000
71 -6.090504 -0.002116
72 -0.988539 0.000002
73 0.790178 -0.000000
74 -17.522973 -0.000000
75 -25.682496 -0.003981
76 -11.943730 0.025216
77 -6.535236 0.031614
78 19.237103 0.115771
79 -23.303947 -0.007697
80 20.785871 -0.000061
81 -0.398901 -0.000875
82 4.220983 0.002898
83 -21.805541 -0.316308
84 5.385592 0.000000
85 7.992170 -0.000058
86 20.561026 0.000014
87 -5.836442 0.000415
88 -0.392213 -0.000302
89 -3.883298 -0.000001
90 -6.908613 -0.004065
91 10.546036 0.001241
92 -39.677236 -0.000000
93 18.095781 0.056472
94 9.597760 0.000000
95 3.294999 -0.000034
96 -21.179800 -0.002104
97 31.118283 0.034927
98 -22.059079 -0.358786
99 8.161085 -0.007698
100 5.313321 -0.000000
101 19.102103 0.025217
102 0.740958 -0.000000
103 2.578075 0.101476
104 -38.607568 0.000000
105 -8.339988 -0.000035
106 1.639758 0.000013
107 -3.726085 0.034889
108 15.554956 -0.422305
109 42.980892 -0.007752
110 2.181836 -0.004065
111 4.443285 0.001241
112 2.587092 0.000036
113 -22.489842 0.119719
114 -36.432494 -0.000000
115 8.075659 -0.000000
116 0.979978 0.023101
117 -7.488272 0.000002
118 5.319442 0.101748
119 -26.819508 0.000054
120 3.541003 -0.004128
121 4.189919 -0.000875
122 -9.620799 0.002783
123 19.398187 -0.202984

1298 • BinaryClassification class JMSL

124 -3.194663 0.000055
125 -5.228130 0.000083
126 -3.757340 0.025216
127 9.792260 0.032081
128 -21.755460 0.002231
129 -7.715387 -0.007753
130 2.769206 -0.000055
131 7.901853 0.000014
132 -10.435488 0.000062
133 1.168304 -0.000086
134 -9.954674 -0.000001
135 -51.555283 -0.071057
136 4.958954 -0.000000
137 -7.408263 0.000000
138 39.517621 -0.070072
139 13.036423 -0.000000
140 24.059711 0.000000
141 -20.165068 -0.061182
142 2.978425 0.000000
143 -3.346216 -0.000001
144 91.294581 -0.053340
145 4.700837 0.000000
146 33.962649 -0.000005
147 58.702284 -0.401485
148 3.416411 0.000000
149 4.415371 -0.002499
150 171.784942 -0.005808
151 -45.805688 -0.010427
152 12.976783 -0.010230
153 1.348388 -0.004100
154 7.967453 0.024354
155 -8.634125 0.034927
156 -1.937680 -0.200838
157 -21.314065 -0.007698
158 -58.810144 -0.445640
159 13.151796 0.000000
160 -0.728858 -0.002499
161 -56.918496 -0.010427

Forecast
Expected Predicted

0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

10 1 1
11 1 1
12 1 1
13 1 1
14 1 1

Neural Nets BinaryClassification class • 1299

15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1
21 1 1
22 1 1
23 1 1
24 1 1
25 1 1
26 1 1
27 1 1
28 1 1
29 1 1
30 1 1
31 1 1
32 1 1
33 1 1
34 1 1
35 1 1
36 1 1
37 1 1
38 1 1
39 1 1
40 1 1
41 1 1
42 1 1
43 1 1
44 1 1
45 1 1
46 1 1
47 1 1
48 1 1
49 1 1
50 0 0
51 0 0
52 0 0
53 0 0
54 0 0
55 0 0
56 0 0
57 0 0
58 0 0
59 0 0
60 0 0
61 0 0
62 0 0
63 0 0
64 0 0
65 0 0
66 0 0
67 0 0
68 0 0
69 0 0
70 0 0

1300 • BinaryClassification class JMSL

71 0 0
72 0 0
73 0 0
74 0 0
75 0 0
76 0 0
77 0 0
78 0 0
79 0 0
80 0 0
81 0 0
82 0 0
83 0 0
84 0 0
85 0 0
86 0 0
87 0 0
88 0 0
89 0 0
90 0 0
91 0 0
92 0 0
93 0 0
94 0 0
95 0 0
96 0 0
97 0 0
98 0 0
99 0 0
100 0 0
101 0 0
102 0 0
103 0 0
104 0 0
105 0 0
106 0 0
107 0 0
108 0 0
109 0 0
110 0 0
111 0 0
112 0 0
113 0 0
114 0 0
115 0 0
116 0 0
117 0 0
118 0 0
119 0 0
120 0 0
121 0 0
122 0 0
123 0 0
124 0 0
125 0 0
126 0 0

Neural Nets BinaryClassification class • 1301

127 0 0
128 0 0
129 0 0
130 0 0
131 0 0
132 0 0
133 0 0
134 0 0
135 0 0
136 0 0
137 0 0
138 0 0
139 0 0
140 0 0
141 0 0
142 0 0
143 0 0
144 0 0
145 0 0
146 0 0
147 0 0
148 0 0
149 0 0
150 0 0
151 0 0
152 0 0
153 0 0
154 0 0
155 0 0
156 0 0
157 0 0
158 0 0
159 0 0
160 0 0
161 0 0
162 0 0
163 0 0
164 0 0
165 0 0
166 0 0
167 0 0
168 0 0
169 0 0
170 0 0
171 0 0
172 0 0
173 0 0
174 0 0
175 0 0
176 0 0
177 0 0
178 0 0
179 0 0
180 0 0
181 0 0
182 0 0

1302 • BinaryClassification class JMSL

183 0 0
184 0 0
185 0 0
186 0 0
187 0 0
188 0 0
189 0 0
190 0 0
191 0 0
192 0 0
193 0 0
194 0 0
195 0 0
196 0 0
197 0 0
198 0 0
199 0 0
200 0 0
201 0 0
202 0 0
203 0 0
204 0 0
205 0 0
206 0 0
207 0 0
208 0 0
209 0 0
210 0 0
211 0 0
212 0 0
213 0 0
214 0 0
215 0 0
216 0 0
217 0 0
218 0 0
219 0 0
220 0 0
221 0 0
222 0 0
223 0 0
224 0 0
225 0 0
226 0 0
227 0 0
228 0 0
229 0 0
230 0 0
231 0 0
232 0 0
233 0 0
234 0 0
235 0 0
236 0 0
237 0 0
238 0 0

Neural Nets BinaryClassification class • 1303

239 0 0
240 0 0
241 0 0
242 0 0
243 0 0
244 0 0
245 0 0
246 0 0
247 0 0
248 0 0
249 0 0
250 0 0
251 0 0
252 0 0
253 0 0
254 0 0
255 0 0
256 0 0
257 0 0
258 0 0
259 0 0
260 0 0
261 0 0
262 0 0
263 0 0
264 0 0
265 0 0
266 0 0
267 0 0
268 0 0
269 0 0
270 0 0
271 0 0
272 0 0
273 0 0
274 0 0
275 0 0
276 0 0
277 0 0
278 0 0
279 0 0
280 0 0
281 0 0
282 0 0
283 0 0
284 0 0
285 0 0
286 0 0
287 0 0
288 0 0
289 0 0
290 0 0
291 0 0
292 0 0
293 0 0
294 0 0

1304 • BinaryClassification class JMSL

295 0 0
296 0 0
297 0 0
298 0 0
299 0 0
300 0 0
301 0 0
302 0 0
303 0 0
304 0 0
305 0 0
306 0 0
307 0 0
308 0 0
309 0 0
310 0 0
311 0 0
312 0 0
313 0 0
314 0 0
315 0 0
316 0 0
317 0 0
318 0 0
319 0 0
320 0 0
321 0 0
322 0 0
323 0 0
324 0 0
325 0 0
326 0 0
327 0 0
328 0 0
329 0 0
330 0 0
331 0 0
332 0 0
333 0 0
334 0 0
335 0 0
336 0 0
337 0 0
338 0 0
339 0 0
340 0 0
341 0 0
342 0 0
343 0 0
344 0 0
345 0 0
346 0 0
347 0 0
348 0 0
349 0 0
350 0 0

Neural Nets BinaryClassification class • 1305

351 0 0
352 0 0
353 0 0
354 0 0
355 0 0
356 0 0
357 0 0
358 0 0
359 0 0
360 0 0
361 0 0
362 0 0
363 0 0
364 0 0
365 0 0
366 0 0
367 0 0
368 0 0
369 0 0
370 0 0
371 0 0
372 0 0
373 0 0
374 0 0
375 0 0
376 0 0
377 0 0
378 0 0
379 0 0
380 0 0
381 0 0
382 0 0
383 0 0
384 0 0
385 0 0
386 0 0
387 0 0
388 0 0
389 0 0
390 0 0
391 0 0
392 0 0
393 0 0
394 0 0
395 0 0
396 0 0
397 0 0
398 0 0
399 0 0
400 0 0
401 0 0
402 0 0
403 0 0
404 0 0
405 0 0
406 0 0

1306 • BinaryClassification class JMSL

407 0 0
408 0 0
409 0 0
410 0 0
411 0 0
412 0 0
413 0 0
414 0 0
415 0 0
416 0 0
417 0 0
418 0 0
419 0 0
420 0 0
421 0 0
422 0 0
423 0 0
424 0 0
425 0 0
426 0 0
427 0 0
428 0 0
429 0 0
430 0 0
431 0 0
432 0 0
433 0 0
434 0 0
435 0 0
436 0 0
437 0 0
438 0 0
439 0 0
440 0 0
441 0 0
442 0 0
443 0 0
444 0 0
445 0 0
446 0 0
447 0 0
448 0 0
449 0 0
450 0 0
451 0 0
452 0 0
453 0 0
454 0 0
455 0 0
456 0 0
457 0 0
458 0 0
459 0 0
460 0 0
461 0 0
462 0 0

Neural Nets BinaryClassification class • 1307

463 0 0
464 0 0
465 0 0
466 0 0
467 0 0
468 0 0
469 0 0
470 0 0
471 0 0
472 0 0
473 0 0
474 0 0
475 0 0
476 0 0
477 0 0
478 0 0
479 0 0
480 0 0
481 0 0
482 0 0
483 0 0
484 0 0
485 0 0
486 0 0
487 0 0
488 0 0
489 0 0
490 0 0
491 0 0
492 0 0
493 0 0
494 0 0
495 0 0
496 0 0
497 0 0
498 0 0
499 0 0
500 0 0
501 0 0
502 0 0
503 0 0
504 0 0
505 0 0
506 0 0
507 0 0
508 0 0
509 0 0
510 0 0
511 0 0
512 0 0
513 0 0
514 0 0
515 0 0
516 0 0
517 0 0
518 0 0

1308 • BinaryClassification class JMSL

519 0 0
520 0 0
521 0 0
522 0 0
523 0 0
524 0 0
525 0 0
526 0 0
527 0 0
528 0 0
529 0 0
530 0 0
531 0 0
532 0 0
533 0 0
534 0 0
535 0 0
536 0 0
537 0 0
538 0 0
539 0 0
540 0 0
541 0 0
542 0 0
543 0 0
544 0 0
545 0 0
546 0 0
547 0 0
548 0 0
549 0 0
550 0 0
551 0 0
552 0 0
553 0 0
554 0 0
555 0 0
556 0 0
557 0 0
558 0 0
559 0 0
560 0 0
561 0 0
562 0 0
563 0 0
564 0 0
565 0 0
566 0 0
567 0 0
568 0 0
569 0 0
570 0 0
571 0 0
572 0 0
573 0 0
574 0 0

Neural Nets BinaryClassification class • 1309

575 0 0
576 0 0
577 0 0
578 0 0
579 0 0
580 0 0
581 0 0
582 0 0
583 0 0
584 0 0
585 0 0
586 0 0
587 0 0
588 0 0
589 0 0
590 0 0
591 0 0
592 0 0
593 0 0
594 0 0
595 0 0
596 0 0
597 0 0
598 0 0
599 0 0
600 0 0
601 0 0
602 0 0
603 0 0
604 0 0
605 0 0
606 0 0
607 0 0
608 0 0
609 0 0
610 0 0
611 0 0
612 0 0
613 0 0
614 0 0
615 0 0
616 0 0
617 0 0
618 0 0
619 0 0
620 0 0
621 0 0
622 0 0
623 0 0
624 0 0
625 0 0
626 0 0
627 0 0
628 0 0
629 0 0
630 0 0

1310 • BinaryClassification class JMSL

631 0 0
632 0 0
633 0 0
634 0 0
635 0 0
636 0 0
637 0 0
638 0 0
639 0 0
640 0 0
641 0 0
642 0 0
643 0 0
644 0 0
645 0 0
646 0 0
647 0 0
648 0 0
649 0 0
650 0 0
651 0 0
652 0 0
653 0 0
654 0 0
655 0 0
656 0 0
657 0 0
658 0 0
659 0 0
660 0 0
661 0 0
662 0 0
663 0 0
664 0 0
665 0 0
666 0 0
667 0 0
668 0 0
669 0 0
670 0 0
671 0 0
672 0 0
673 0 0
674 0 0
675 0 0
676 0 0
677 0 0
678 0 0
679 0 0
680 0 0
681 0 0
682 0 0
683 0 0
684 0 0
685 0 0
686 0 0

Neural Nets BinaryClassification class • 1311

687 0 0
688 0 0
689 0 0
690 0 0
691 0 0
692 0 0
693 0 0
694 0 0
695 0 0
696 0 0
697 0 0
698 0 0
699 0 0
700 0 0
701 0 0
702 0 0
703 0 0
704 0 0
705 0 0
706 0 0
707 0 0
708 0 0
709 0 0
710 0 0
711 0 0
712 0 0
713 0 0
714 0 0
715 0 0
716 0 0
717 0 0
718 0 0
719 0 0
720 0 0
721 0 0
722 0 0
723 0 0
724 0 0
725 0 0
726 0 0
727 0 0
728 0 0
729 0 0
730 0 0
731 0 0
732 0 0
733 0 0
734 0 0
735 0 0
736 0 0
737 0 0
738 0 0
739 0 0
740 0 0
741 0 0
742 0 0

1312 • BinaryClassification class JMSL

743 0 0
744 0 0
745 0 0
746 0 0
747 0 0
748 0 0
749 0 0
750 0 0
751 0 0
752 0 0
753 0 0
754 0 0
755 0 0
756 0 0
757 0 0
758 0 0
759 0 0
760 0 0
761 0 0
762 0 0
763 0 0
764 0 0
765 0 0
766 0 0
767 0 0
768 0 0
769 0 0
770 0 0
771 0 0
772 0 0
773 0 0
774 0 0
775 0 0
776 0 0
777 0 0
778 0 0
779 0 0
780 0 0
781 0 0
782 0 0
783 0 0
784 0 0
785 0 0
786 0 0
787 0 0
788 0 0
789 0 0
790 0 0
791 0 0
792 0 0
793 0 0
794 0 0
795 0 0
796 0 0
797 0 0
798 0 0

Neural Nets BinaryClassification class • 1313

799 0 0
800 0 0
801 0 0
802 0 0
803 0 0
804 0 0
805 0 0
806 0 0
807 0 0
808 0 0
809 0 0
810 0 0
811 0 0
812 0 0
813 0 0
814 0 0
815 0 0
816 0 0
817 0 0
818 0 0
819 0 0
820 0 0
821 0 0
822 0 0
823 0 0
824 0 0
825 0 0
826 0 0
827 0 0
828 0 0
829 0 0
830 0 0
831 0 0
832 0 0
833 0 0
834 0 0
835 0 0
836 0 0
837 0 0
838 0 0
839 0 0
840 0 0
841 0 0
842 0 0
843 0 0
844 0 0
845 0 0
846 0 0
847 0 0
848 0 0
849 0 0
850 0 0
851 0 0
852 0 0
853 0 0
854 0 0

1314 • BinaryClassification class JMSL

855 0 0
856 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 0 0
862 0 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 0 0
880 0 0
881 0 0
882 0 0
883 0 0
884 0 0
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 0
893 0 0
894 0 0
895 0 0
896 0 0
897 0 0
898 0 0
899 0 0
900 0 0
901 0 0
902 0 0
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
909 0 0
910 0 0

Neural Nets BinaryClassification class • 1315

911 0 0
912 0 0
913 0 0
914 0 0
915 0 0
916 0 0
917 0 0
918 0 0
919 0 0
920 0 0
921 0 0
922 0 0
923 0 0
924 0 0
925 0 0
926 0 0
927 0 0
928 0 0
929 0 0
930 0 0
931 0 0
932 0 0
933 0 0
934 0 0
935 0 0
936 0 0
937 0 0
938 0 0
939 0 0
940 0 0
941 0 0
942 0 0
943 0 0
944 0 0
945 0 0
946 0 0
947 0 0
948 0 0
949 0 0
950 0 0
951 0 0
952 0 0
953 0 0
954 0 0
955 0 0
956 0 0
957 0 0

****************Time: 100.431
trainer.getErrorValue = 1.4572899893203097
StageITrainer.getErrorValue = 482.27809835973795
StageIITrainer.getErrorValue = 1.4572899893203097

1316 • BinaryClassification class JMSL

MultiClassification class

public class com.imsl.datamining.neural.MultiClassification implements
Serializable

Classifies patterns into three or more classes.

Extends neural network analysis to solving multi-classification problems. In these problems, the
target output for the network is the probability that the pattern falls into each of several
classes, where the number of classes is 3 or greater. These probabilities are then used to assign
patterns to one of the target classes. Typical applications include determining the credit
classification for a business (excellent, good, fair or poor), and determining which of three or
more treatments a patient should receive based upon their physical, clinical and laboratory
information. This class signals that network training will minimize the multi-classification
cross-entropy error, and that network outputs are the probabilities that the pattern belongs to
each of the target classes. These probabilities are scaled to sum to 1.0 using softmax activation.

Constructor

MultiClassification
public MultiClassification(Network network)

Description

Creates a classifier.

Parameter

network – is the neural network used for classification. It’s output perceptrons
should use linear activation functions. The number of output perceptrons should
equal the number of classes.

Methods

computeStatistics
public double[] computeStatistics(double[][] xData, int[] yData)

Description

Computes classification statistics for the supplied network patterns and their associated
classifications.

Method computeStatistics returns a two element array where the first element returned
is the cross-entropy error; the second is the classification error rate. The classification
error rate is calculated by comparing the estimated classification probabilities to the
target classifications. If the estimated probability for the target class is not the largest for
among the target classes, then the pattern is tallied as a classification error.

Neural Nets MultiClassification class • 1317

Parameters

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – A double containing the output classification patterns. The number of
columns in yData must equal the number of Perceptrons in the OutputLayer.

Returns

A double array containing the two statistics described above.

getError
public QuasiNewtonTrainer.Error getError()

Description

Returns the error function for use by QuasiNewtonTrainer for training a classification
network. This error function combines the softmax activation function and the
cross-entropy error function.

Returns

an implementation of the multi-classification cross-entropy error function.

getNetwork
public Network getNetwork()

Description

Returns the network being used for classification.

Returns

the network set by the constructor.

predictedClass
public int predictedClass(double[] x)

Description

Calculates the classification probablities for the input pattern x, and returns the class
with the highest probability.

This method classifies patterns into one of the target classes based upon the patterns
values.

Parameter

x – The double array containing the network input patterns to classify. The length
of x should equal the number of inputs in the network.

1318 • MultiClassification class JMSL

Returns

The classification predicted by the trained network for x. This will be one of the integers
1,2,...,nClasses, where nClasses is equal to nOuptuts. nOuptuts is the number of outputs
in the network representing the number classes.

probabilities
public double[] probabilities(double[] x)

Description

Returns classification probabilities for the input pattern x.

The number of probabilities is equal to the number of target classes, which is the number
of outputs in the FeedForwardNetwork. Each are calculated using the softmax activation
for each of the output perceptrons. The softmax function transforms the outputs
potential z to the probability y by

yi = softmaxi =
eZi

C∑
j=1

eZj

Parameter

x – a double array containing the input patterns to classify. The length of x must be
equal to the number of input nodes.

Returns

A double containing the scaled probabilities.

train
public void train(Trainer trainer, double[][] xData, int[] yData)

Description

Trains the classification neural network using supplied training patterns.

Parameters

trainer – A Trainer object, which is used to train the network. The error function
in any QuasiNewton trainer included in trainer should be set to the error function
from this class using the getError method.

xData – A double matrix containing the input training patterns. The number of
columns in xData must equal the number of nodes in the input layer. Each row of
xData contains a training pattern.

yData – An int array containing the output classification values. These values must
be in the range of one to the number of output perceptrons in the network.

Neural Nets MultiClassification class • 1319

Example 1: MultiClassification

This example trains a 3-layer network using Fisher’s Iris data with four continuous input
attributes and three output classifications. This is perhaps the best known database to be
found in the pattern recognition literature. Fisher’s paper is a classic in the field. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

The structure of the network consists of four input nodes and three layers, with four
perceptrons in the first hidden layer, three perceptrons in the second hidden layer and three in
the output layer.

The four input attributes represent

• Sepal length

• Sepal width

• Petal length

• Petal width

The output attribute represents the class of the iris plant and are encoded using binary
encoding.

• Iris Setosa

• Iris Versicolour

• Iris Virginica

There are a total of 46 weights in this network, including the bias weights. All hidden layers use
the logistic activation function. Since the target output is multi-classification the softmax
activation function is used in the output layer and the MultiClassification error function
class is used by the trainer. The error class MultiClassification combines the cross-entropy
error claculations and the softmax function.

import com.imsl.datamining.neural.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;
import java.io.*;
import java.util.logging.*;

//***
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 3 classification categories.
//
// new classification training_ex5.c
//
// This is perhaps the best known database to be found in the pattern
// recognition literature. Fisher’s paper is a classic in the field.
// The data set contains 3 classes of 50 instances each,

1320 • MultiClassification class JMSL

// where each class refers to a type of iris plant. One class is
// linearly separable from the other 2; the latter are NOT linearly
// separable from each other.
//
// Predicted attribute: class of iris plant.
// 1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
//
// Input Attributes (4 Continuous Attributes)
// X1: Sepal length, X2: Sepal width, X3: Petal length, and X4: Petal width
//***

public class MultiClassificationEx1 implements Serializable {
private static int nObs = 150; // number of training patterns
private static int nInputs = 4; // 9 nominal coded as 0=x, 1=o, 2=blank
private static int nOutputs = 3; // one continuous output (nClasses=2)
private static boolean trace = true; // Turns on/off training log

// irisData[]: The raw data matrix. This is a 2-D matrix with 150 rows and 5 columns. *
// The first 4 columns are the continuous input attributes and the 5th *
// column is the classification category (1-3). These data contain no *
// categorical input attributes. *

private static double[][] irisData = {
{5.1,3.5,1.4,0.2,1},{4.9,3.0,1.4,0.2,1},{4.7,3.2,1.3,0.2,1},{4.6,3.1,1.5,0.2,1},
{5.0,3.6,1.4,0.2,1},{5.4,3.9,1.7,0.4,1},{4.6,3.4,1.4,0.3,1},{5.0,3.4,1.5,0.2,1},
{4.4,2.9,1.4,0.2,1},{4.9,3.1,1.5,0.1,1},{5.4,3.7,1.5,0.2,1},{4.8,3.4,1.6,0.2,1},
{4.8,3.0,1.4,0.1,1},{4.3,3.0,1.1,0.1,1},{5.8,4.0,1.2,0.2,1},{5.7,4.4,1.5,0.4,1},
{5.4,3.9,1.3,0.4,1},{5.1,3.5,1.4,0.3,1},{5.7,3.8,1.7,0.3,1},{5.1,3.8,1.5,0.3,1},
{5.4,3.4,1.7,0.2,1},{5.1,3.7,1.5,0.4,1},{4.6,3.6,1.0,0.2,1},{5.1,3.3,1.7,0.5,1},
{4.8,3.4,1.9,0.2,1},{5.0,3.0,1.6,0.2,1},{5.0,3.4,1.6,0.4,1},{5.2,3.5,1.5,0.2,1},
{5.2,3.4,1.4,0.2,1},{4.7,3.2,1.6,0.2,1},{4.8,3.1,1.6,0.2,1},{5.4,3.4,1.5,0.4,1},
{5.2,4.1,1.5,0.1,1},{5.5,4.2,1.4,0.2,1},{4.9,3.1,1.5,0.1,1},{5.0,3.2,1.2,0.2,1},
{5.5,3.5,1.3,0.2,1},{4.9,3.1,1.5,0.1,1},{4.4,3.0,1.3,0.2,1},{5.1,3.4,1.5,0.2,1},
{5.0,3.5,1.3,0.3,1},{4.5,2.3,1.3,0.3,1},{4.4,3.2,1.3,0.2,1},{5.0,3.5,1.6,0.6,1},
{5.1,3.8,1.9,0.4,1},{4.8,3.0,1.4,0.3,1},{5.1,3.8,1.6,0.2,1},{4.6,3.2,1.4,0.2,1},
{5.3,3.7,1.5,0.2,1},{5.0,3.3,1.4,0.2,1},

{7.0,3.2,4.7,1.4,2},{6.4,3.2,4.5,1.5,2},{6.9,3.1,4.9,1.5,2},{5.5,2.3,4.0,1.3,2},
{6.5,2.8,4.6,1.5,2},{5.7,2.8,4.5,1.3,2},{6.3,3.3,4.7,1.6,2},{4.9,2.4,3.3,1.0,2},
{6.6,2.9,4.6,1.3,2},{5.2,2.7,3.9,1.4,2},{5.0,2.0,3.5,1.0,2},{5.9,3.0,4.2,1.5,2},
{6.0,2.2,4.0,1.0,2},{6.1,2.9,4.7,1.4,2},{5.6,2.9,3.6,1.3,2},{6.7,3.1,4.4,1.4,2},
{5.6,3.0,4.5,1.5,2},{5.8,2.7,4.1,1.0,2},{6.2,2.2,4.5,1.5,2},{5.6,2.5,3.9,1.1,2},
{5.9,3.2,4.8,1.8,2},{6.1,2.8,4.0,1.3,2},{6.3,2.5,4.9,1.5,2},{6.1,2.8,4.7,1.2,2},
{6.4,2.9,4.3,1.3,2},{6.6,3.0,4.4,1.4,2},{6.8,2.8,4.8,1.4,2},{6.7,3.0,5.0,1.7,2},
{6.0,2.9,4.5,1.5,2},{5.7,2.6,3.5,1.0,2},{5.5,2.4,3.8,1.1,2},{5.5,2.4,3.7,1.0,2},
{5.8,2.7,3.9,1.2,2},{6.0,2.7,5.1,1.6,2},{5.4,3.0,4.5,1.5,2},{6.0,3.4,4.5,1.6,2},
{6.7,3.1,4.7,1.5,2},{6.3,2.3,4.4,1.3,2},{5.6,3.0,4.1,1.3,2},{5.5,2.5,4.0,1.3,2},
{5.5,2.6,4.4,1.2,2},{6.1,3.0,4.6,1.4,2},{5.8,2.6,4.0,1.2,2},{5.0,2.3,3.3,1.0,2},
{5.6,2.7,4.2,1.3,2},{5.7,3.0,4.2,1.2,2},{5.7,2.9,4.2,1.3,2},{6.2,2.9,4.3,1.3,2},
{5.1,2.5,3.0,1.1,2},{5.7,2.8,4.1,1.3,2},

{6.3,3.3,6.0,2.5,3},{5.8,2.7,5.1,1.9,3},{7.1,3.0,5.9,2.1,3},{6.3,2.9,5.6,1.8,3},
{6.5,3.0,5.8,2.2,3},{7.6,3.0,6.6,2.1,3},{4.9,2.5,4.5,1.7,3},{7.3,2.9,6.3,1.8,3},
{6.7,2.5,5.8,1.8,3},{7.2,3.6,6.1,2.5,3},{6.5,3.2,5.1,2.0,3},{6.4,2.7,5.3,1.9,3},
{6.8,3.0,5.5,2.1,3},{5.7,2.5,5.0,2.0,3},{5.8,2.8,5.1,2.4,3},{6.4,3.2,5.3,2.3,3},

Neural Nets MultiClassification class • 1321

{6.5,3.0,5.5,1.8,3},{7.7,3.8,6.7,2.2,3},{7.7,2.6,6.9,2.3,3},{6.0,2.2,5.0,1.5,3},
{6.9,3.2,5.7,2.3,3},{5.6,2.8,4.9,2.0,3},{7.7,2.8,6.7,2.0,3},{6.3,2.7,4.9,1.8,3},
{6.7,3.3,5.7,2.1,3},{7.2,3.2,6.0,1.8,3},{6.2,2.8,4.8,1.8,3},{6.1,3.0,4.9,1.8,3},
{6.4,2.8,5.6,2.1,3},{7.2,3.0,5.8,1.6,3},{7.4,2.8,6.1,1.9,3},{7.9,3.8,6.4,2.0,3},
{6.4,2.8,5.6,2.2,3},{6.3,2.8,5.1,1.5,3},{6.1,2.6,5.6,1.4,3},{7.7,3.0,6.1,2.3,3},
{6.3,3.4,5.6,2.4,3},{6.4,3.1,5.5,1.8,3},{6.0,3.0,4.8,1.8,3},{6.9,3.1,5.4,2.1,3},
{6.7,3.1,5.6,2.4,3},{6.9,3.1,5.1,2.3,3},{5.8,2.7,5.1,1.9,3},{6.8,3.2,5.9,2.3,3},
{6.7,3.3,5.7,2.5,3},{6.7,3.0,5.2,2.3,3},{6.3,2.5,5.0,1.9,3},{6.5,3.0,5.2,2.0,3},
{6.2,3.4,5.4,2.3,3},{5.9,3.0,5.1,1.8,3}

};

public static void main(String[] args) throws Exception {
double xData[][] = new double[nObs][nInputs];
int yData[] = new int[nObs];

for (int i = 0; i < nObs; i++) {
for (int j = 0; j < nInputs; j++) {

xData[i][j] = irisData[i][j];
}
yData[i] = (int)irisData[i][4];

}

// Create network
FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(nInputs);
network.createHiddenLayer().createPerceptrons(4, Activation.LOGISTIC, 0.0);
network.createHiddenLayer().createPerceptrons(3, Activation.LOGISTIC, 0.0);
network.getOutputLayer().createPerceptrons(nOutputs, Activation.SOFTMAX, 0.0);
network.linkAll();

MultiClassification classification = new MultiClassification(network);

// Create trainer
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setError(classification.getError());
trainer.setMaximumTrainingIterations(1000);

// If tracing is requested setup training logger
if (trace) {

Handler handler = new FileHandler("ClassificationNetworkTraining.log");
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());

}
// Train Network
long t0 = System.currentTimeMillis();
classification.train(trainer, xData, yData);

// Display Network Errors
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("***");
System.out.println("--> Cross-entropy error: "+(float)stats[0]);
System.out.println("--> Classification error rate: "+(float)stats[1]);
System.out.println("***");
System.out.println("");

1322 • MultiClassification class JMSL

double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for(int i = 0; i < weight.length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf,wg);

double report[][] = new double[nObs][nInputs+2];
for (int i = 0; i < nObs; i++) {

for (int j = 0; j < nInputs; j++) {
report[i][j] = xData[i][j];

}
report[i][nInputs] = irisData[i][4];
report[i][nInputs+1] = classification.predictedClass(xData[i]);

}
pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{

"Sepal Length",
"Sepal Width",
"Petal Length",
"Petal Width",
"Expected",
"Predicted"});

new PrintMatrix("Forecast").print(pmf, report);

// **
// DISPLAY CLASSIFICATION STATISTICS
// **

double statsClass[] = classification.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> Cross-Entropy Error: "+(float)statsClass[0]);
System.out.println("--> Classification Error: "+(float)statsClass[1]);
System.out.println("***");
System.out.println("");
long t1 = System.currentTimeMillis();
double small = 1.e-7;
double time = t1-t0; //Math.max(small, (double)(t1-t0)/(double)iters);
time = time/1000;
System.out.println("****************Time: "+time);

System.out.println("Cross-Entropy Error Value = "+trainer.getErrorValue());

}
}

Neural Nets MultiClassification class • 1323

Output

--> Cross-entropy error: 4.640623
--> Classification error rate: 0.006666667

Weights Gradients
0 -51.777881 -0.021660
1 605.119380 0.000000
2 -284.226877 0.000000
3 327.038883 0.000000
4 -41.160485 -0.009887
5 -867.891312 0.000000
6 -1210.846071 0.000000
7 -994.103717 0.000000
8 73.932788 -0.016740
9 -346.829319 0.000000
10 704.482597 0.000000
11 -497.908892 0.000000
12 51.636506 -0.006301
13 1943.984336 0.000000
14 1516.711136 0.000000
15 1935.687178 0.000000
16 -3.143561 -2.271656
17 -443.852301 -7.201949
18 242.475544 -0.000024
19 23.461487 -2.272793
20 189.287779 -7.201954
21 260.386655 -0.096456
22 564.420647 -2.272793
23 607.227248 -7.201954
24 -62.368750 -0.096456
25 163.370794 -2.272793
26 216.054929 -7.201954
27 296.537883 -0.096456
28 -15686.506783 0.000000
29 3478.164215 0.004606
30 12209.342568 -0.004606
31 -15443.797985 0.000000
32 4719.334347 0.002674
33 10725.463639 -0.002674
34 -15303.926099 0.000000
35 3602.472102 0.004863
36 11702.453998 -0.004863
37 -19.854440 -0.003322
38 965.005400 0.000000
39 874.394173 0.000000
40 898.666721 0.000000
41 -745.305267 -2.272793
42 -568.545362 -7.201954
43 -494.170957 -0.096456
44 36175.248628 0.000000
45 -8292.572938 0.004882

1324 • MultiClassification class JMSL

46 -27882.675691 -0.004882

Forecast
Sepal Length Sepal Width Petal Length Petal Width Expected Predicted

0 5.1 3.5 1.4 0.2 1 1
1 4.9 3 1.4 0.2 1 1
2 4.7 3.2 1.3 0.2 1 1
3 4.6 3.1 1.5 0.2 1 1
4 5 3.6 1.4 0.2 1 1
5 5.4 3.9 1.7 0.4 1 1
6 4.6 3.4 1.4 0.3 1 1
7 5 3.4 1.5 0.2 1 1
8 4.4 2.9 1.4 0.2 1 1
9 4.9 3.1 1.5 0.1 1 1

10 5.4 3.7 1.5 0.2 1 1
11 4.8 3.4 1.6 0.2 1 1
12 4.8 3 1.4 0.1 1 1
13 4.3 3 1.1 0.1 1 1
14 5.8 4 1.2 0.2 1 1
15 5.7 4.4 1.5 0.4 1 1
16 5.4 3.9 1.3 0.4 1 1
17 5.1 3.5 1.4 0.3 1 1
18 5.7 3.8 1.7 0.3 1 1
19 5.1 3.8 1.5 0.3 1 1
20 5.4 3.4 1.7 0.2 1 1
21 5.1 3.7 1.5 0.4 1 1
22 4.6 3.6 1 0.2 1 1
23 5.1 3.3 1.7 0.5 1 1
24 4.8 3.4 1.9 0.2 1 1
25 5 3 1.6 0.2 1 1
26 5 3.4 1.6 0.4 1 1
27 5.2 3.5 1.5 0.2 1 1
28 5.2 3.4 1.4 0.2 1 1
29 4.7 3.2 1.6 0.2 1 1
30 4.8 3.1 1.6 0.2 1 1
31 5.4 3.4 1.5 0.4 1 1
32 5.2 4.1 1.5 0.1 1 1
33 5.5 4.2 1.4 0.2 1 1
34 4.9 3.1 1.5 0.1 1 1
35 5 3.2 1.2 0.2 1 1
36 5.5 3.5 1.3 0.2 1 1
37 4.9 3.1 1.5 0.1 1 1
38 4.4 3 1.3 0.2 1 1
39 5.1 3.4 1.5 0.2 1 1
40 5 3.5 1.3 0.3 1 1
41 4.5 2.3 1.3 0.3 1 1
42 4.4 3.2 1.3 0.2 1 1
43 5 3.5 1.6 0.6 1 1
44 5.1 3.8 1.9 0.4 1 1
45 4.8 3 1.4 0.3 1 1
46 5.1 3.8 1.6 0.2 1 1
47 4.6 3.2 1.4 0.2 1 1
48 5.3 3.7 1.5 0.2 1 1
49 5 3.3 1.4 0.2 1 1
50 7 3.2 4.7 1.4 2 2
51 6.4 3.2 4.5 1.5 2 2

Neural Nets MultiClassification class • 1325

52 6.9 3.1 4.9 1.5 2 2
53 5.5 2.3 4 1.3 2 2
54 6.5 2.8 4.6 1.5 2 2
55 5.7 2.8 4.5 1.3 2 2
56 6.3 3.3 4.7 1.6 2 2
57 4.9 2.4 3.3 1 2 2
58 6.6 2.9 4.6 1.3 2 2
59 5.2 2.7 3.9 1.4 2 2
60 5 2 3.5 1 2 2
61 5.9 3 4.2 1.5 2 2
62 6 2.2 4 1 2 2
63 6.1 2.9 4.7 1.4 2 2
64 5.6 2.9 3.6 1.3 2 2
65 6.7 3.1 4.4 1.4 2 2
66 5.6 3 4.5 1.5 2 2
67 5.8 2.7 4.1 1 2 2
68 6.2 2.2 4.5 1.5 2 2
69 5.6 2.5 3.9 1.1 2 2
70 5.9 3.2 4.8 1.8 2 2
71 6.1 2.8 4 1.3 2 2
72 6.3 2.5 4.9 1.5 2 2
73 6.1 2.8 4.7 1.2 2 2
74 6.4 2.9 4.3 1.3 2 2
75 6.6 3 4.4 1.4 2 2
76 6.8 2.8 4.8 1.4 2 2
77 6.7 3 5 1.7 2 2
78 6 2.9 4.5 1.5 2 2
79 5.7 2.6 3.5 1 2 2
80 5.5 2.4 3.8 1.1 2 2
81 5.5 2.4 3.7 1 2 2
82 5.8 2.7 3.9 1.2 2 2
83 6 2.7 5.1 1.6 2 3
84 5.4 3 4.5 1.5 2 2
85 6 3.4 4.5 1.6 2 2
86 6.7 3.1 4.7 1.5 2 2
87 6.3 2.3 4.4 1.3 2 2
88 5.6 3 4.1 1.3 2 2
89 5.5 2.5 4 1.3 2 2
90 5.5 2.6 4.4 1.2 2 2
91 6.1 3 4.6 1.4 2 2
92 5.8 2.6 4 1.2 2 2
93 5 2.3 3.3 1 2 2
94 5.6 2.7 4.2 1.3 2 2
95 5.7 3 4.2 1.2 2 2
96 5.7 2.9 4.2 1.3 2 2
97 6.2 2.9 4.3 1.3 2 2
98 5.1 2.5 3 1.1 2 2
99 5.7 2.8 4.1 1.3 2 2
100 6.3 3.3 6 2.5 3 3
101 5.8 2.7 5.1 1.9 3 3
102 7.1 3 5.9 2.1 3 3
103 6.3 2.9 5.6 1.8 3 3
104 6.5 3 5.8 2.2 3 3
105 7.6 3 6.6 2.1 3 3
106 4.9 2.5 4.5 1.7 3 3
107 7.3 2.9 6.3 1.8 3 3

1326 • MultiClassification class JMSL

108 6.7 2.5 5.8 1.8 3 3
109 7.2 3.6 6.1 2.5 3 3
110 6.5 3.2 5.1 2 3 3
111 6.4 2.7 5.3 1.9 3 3
112 6.8 3 5.5 2.1 3 3
113 5.7 2.5 5 2 3 3
114 5.8 2.8 5.1 2.4 3 3
115 6.4 3.2 5.3 2.3 3 3
116 6.5 3 5.5 1.8 3 3
117 7.7 3.8 6.7 2.2 3 3
118 7.7 2.6 6.9 2.3 3 3
119 6 2.2 5 1.5 3 3
120 6.9 3.2 5.7 2.3 3 3
121 5.6 2.8 4.9 2 3 3
122 7.7 2.8 6.7 2 3 3
123 6.3 2.7 4.9 1.8 3 3
124 6.7 3.3 5.7 2.1 3 3
125 7.2 3.2 6 1.8 3 3
126 6.2 2.8 4.8 1.8 3 3
127 6.1 3 4.9 1.8 3 3
128 6.4 2.8 5.6 2.1 3 3
129 7.2 3 5.8 1.6 3 3
130 7.4 2.8 6.1 1.9 3 3
131 7.9 3.8 6.4 2 3 3
132 6.4 2.8 5.6 2.2 3 3
133 6.3 2.8 5.1 1.5 3 3
134 6.1 2.6 5.6 1.4 3 3
135 7.7 3 6.1 2.3 3 3
136 6.3 3.4 5.6 2.4 3 3
137 6.4 3.1 5.5 1.8 3 3
138 6 3 4.8 1.8 3 3
139 6.9 3.1 5.4 2.1 3 3
140 6.7 3.1 5.6 2.4 3 3
141 6.9 3.1 5.1 2.3 3 3
142 5.8 2.7 5.1 1.9 3 3
143 6.8 3.2 5.9 2.3 3 3
144 6.7 3.3 5.7 2.5 3 3
145 6.7 3 5.2 2.3 3 3
146 6.3 2.5 5 1.9 3 3
147 6.5 3 5.2 2 3 3
148 6.2 3.4 5.4 2.3 3 3
149 5.9 3 5.1 1.8 3 3

--> Cross-Entropy Error: 4.640623
--> Classification Error: 0.006666667

****************Time: 15.513
Cross-Entropy Error Value = 4.6406232788035595

Neural Nets MultiClassification class • 1327

Example 2: MultiClassification

This example trains a 2-layer network using three binary inputs (X0, X1, X2) and one
three-level classification (Y). Where

Y = 0 if X1 = 1

Y = 1 if X2 = 1

Y = 2 if X3 = 1

import com.imsl.datamining.neural.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;
import java.io.*;
import java.util.logging.*;

//***
// Two-Layer FFN with 3 binary inputs (X0, X1, X2) and one three-level
// classification variable (Y)
// Y = 0 if X1 = 1
// Y = 1 if X2 = 1
// Y = 2 if X3 = 1
// (training_ex6)
//***

public class MultiClassificationEx2 implements Serializable {
private static int nObs = 6; // number of training patterns
private static int nInputs = 3; // 3 inputs, all categorical
private static int nOutputs = 3; //
private static boolean trace = true; // Turns on/off training log
private static double xData[][] = {

{1, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 1}
};
private static int yData[] = {1, 1, 2, 2, 3, 3};

private static double weights[] = {
1.29099444873580580000,-0.64549722436790280000,-0.64549722436790291000,
0.00000000000000000000, 1.11803398874989490000,-1.11803398874989470000,
0.57735026918962584000, 0.57735026918962584000, 0.57735026918962584000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,

-0.00000000000000005851,-0.00000000000000005851,-0.57735026918962573000,
0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000};

public static void main(String[] args) throws Exception {
FeedForwardNetwork network = new FeedForwardNetwork();
network.getInputLayer().createInputs(nInputs);
network.createHiddenLayer().createPerceptrons(3, Activation.LINEAR, 0.0);
//network.createHiddenLayer().createPerceptrons(4, Activation.TANH, 0.0);
network.getOutputLayer().createPerceptrons(nOutputs, Activation.SOFTMAX, 0.0);
network.linkAll();
network.setWeights(weights);

1328 • MultiClassification class JMSL

MultiClassification classification = new MultiClassification(network);

QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.setError(classification.getError());
trainer.setMaximumTrainingIterations(1000);
trainer.setFalseConvergenceTolerance(1.0e-20);
trainer.setGradientTolerance(1.0e-20);
trainer.setRelativeTolerance(1.0e-20);
trainer.setStepTolerance(1.0e-20);

// If tracing is requested setup training logger
if (trace) {

Handler handler = new FileHandler("ClassificationNetworkEx2.log");
Logger logger = Logger.getLogger("com.imsl.datamining.neural");
logger.setLevel(Level.FINEST);
logger.addHandler(handler);
handler.setFormatter(QuasiNewtonTrainer.getFormatter());

}
// Train Network
classification.train(trainer, xData, yData);

// Display Network Errors
double stats[] = classification.computeStatistics(xData, yData);
System.out.println("***");
System.out.println("--> Cross-Entropy Error: "+(float)stats[0]);
System.out.println("--> Classification Error: "+(float)stats[1]);
System.out.println("***");
System.out.println();

double weight[] = network.getWeights();
double gradient[] = trainer.getErrorGradient();
double wg[][] = new double[weight.length][2];
for(int i = 0; i < weight.length; i++) {

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));
pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
new PrintMatrix().print(pmf,wg);

double report[][] = new double[nObs][nInputs+nOutputs+2];
for (int i = 0; i < nObs; i++) {

for (int j = 0; j < nInputs; j++) {
report[i][j] = xData[i][j];

}
report[i][nInputs] = yData[i];
double p[] = classification.probabilities(xData[i]);
for (int j = 0; j < nOutputs; j++) {

report[i][nInputs+1+j] = p[j];
}
report[i][nInputs+nOutputs+1] = classification.predictedClass(xData[i]);

}
pmf = new PrintMatrixFormat();
pmf.setColumnLabels(new String[]{"X1", "X2", "X3", "Y", "P(C1)", "P(C2)",

Neural Nets MultiClassification class • 1329

"P(C3)", "Predicted"});
new PrintMatrix("Forecast").print(pmf, report);
System.out.println("Cross-Entropy Error Value = "+trainer.getErrorValue());

// **
// DISPLAY CLASSIFICATION STATISTICS
// **

double statsClass[] = classification.computeStatistics(xData, yData);
// Display Network Errors
System.out.println("***");
System.out.println("--> Cross-Entropy Error: "+(float)statsClass[0]);
System.out.println("--> Classification Error: "+(float)statsClass[1]);
System.out.println("***");
System.out.println("");

}
}

Output

--> Cross-Entropy Error: 0.0
--> Classification Error: 0.0

Weights Gradients
0 3.401208 -0.000000
1 -4.126657 0.000000
2 -2.201606 -0.000000
3 -2.009527 0.000000
4 3.173323 -0.000000
5 -4.200377 -0.000000
6 0.028736 -0.000000
7 2.657051 0.000000
8 4.868134 -0.000000
9 3.711295 -0.000000
10 -2.723536 -0.000000
11 0.012241 0.000000
12 -4.996359 0.000000
13 4.296983 0.000000
14 1.699376 -0.000000
15 -1.993114 0.000000
16 -4.048833 0.000000
17 7.041948 -0.000000
18 -0.447927 -0.000000
19 0.653830 0.000000
20 -0.925019 -0.000000
21 -0.078963 0.000000
22 0.247835 0.000000
23 -0.168872 -0.000000

Forecast

1330 • MultiClassification class JMSL

X1 X2 X3 Y P(C1) P(C2) P(C3) Predicted
0 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 1
2 0 1 0 2 0 1 0 2
3 0 1 0 2 0 1 0 2
4 0 0 1 3 0 0 1 3
5 0 0 1 3 0 0 1 3

Cross-Entropy Error Value = 0.0

--> Cross-Entropy Error: 0.0
--> Classification Error: 0.0

ScaleFilter class

public class com.imsl.datamining.neural.ScaleFilter implements Serializable

Scales or unscales continuous data prior to its use in neural network training, testing, or
forecasting.

Bounded scaling is used to ensure that the values in the scaled array fall between a lower and
upper bound. The scale limits have the following interpretation:

Argument Interpretation
realMin The lowest value expected in x.
realMax The largest value expected in x.
targetMin The lower bound for the values in the scaled data.
targetMax The upper bound for the values in the scaled data.

The scale limits are set using the method setBounds.

The specific scaling used is controlled by the argument scalingMethod used when constructing
the filter object. If scalingMethod is NO SCALING, then no scaling is performed on the data.

If the scalingMethod is BOUNDED SCALING then the bounded method of scaling and unscaling is
applied to x. The scaling operation is conducted using the scale limits set in method
setBounds, using the following calculation:

z = r(x− realMin) + targetMin,

where
r =

targetMax− targetMin

realMax− realMin
.

If scalingMethod is one of UNBOUNDED Z SCORE SCALING MEAN STDEV,
UNBOUNDED Z SCORE SCALING MEDIAN MAD, BOUNDED Z SCORE SCALING MEAN STDEV, or

Neural Nets ScaleFilter class • 1331

BOUNDED Z SCORE SCALING MEDIAN MAD, then the z-score method of scaling is used. These
calculations are based upon the following scaling calculation:

z =
(x− a)

b
,

where a is a measure of center for x, and b is a measure of the spread of x.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV, or
BOUNDED Z SCORE SCALING MEAN STDEV, then a and b are the arithmetic average and sample
standard deviation of the training data.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD or
BOUNDED Z SCORE SCALING MEDIAN MAD, then a and b are the median and s̃, where s̃ is a robust
estimate of the population standard deviation:

s̃ =
MAD
0.6745

where MAD is the Mean Absolute Deviation

MAD = median{| x−median{x} |}

The Mean Absolute Deviation is a robust measure of spread calculated by finding the median
of the absolute value of differences between each non-missing value for the ith variable and the
median of those values.

If the method decode is called then an unscaling operation is conducted by inverting using:

x =
(z − targetMin)

r
+ realMin.

Unbounded z-score Scaling

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV or
UNBOUNDED Z SCORE SCALING MEDIAN MAD, then a scaling operation is conducted using the
z-score calculation:

z =
(x− center)
spread

,

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV then center is set equal to the
arithmetic average x̄ of x, and spread is set equal to the sample standard deviation of x. If
scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD then center is set equal to the
median m̃ of x, and spread is set equal to the Mean Absolute Difference (MAD).

The method decode can be used to unfilter data using the the inverse calculation for the above
equation:

x = spread · z + center.

1332 • ScaleFilter class JMSL

Bounded z-score Scaling

This method is essentially the same as the z-score calculation described above with additional
scaling or unscaling using the scale limits set in method setBounds. The scaling operation is
conducted using the well known z-score calculation:

z =
r · (x− center)

spread
− r · realMin+ targetMin.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV then center is set equal to the
arithmetic average x̄ of x, and spread is set equal to the sample standard deviation of x. If
scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD then center is set equal to the
median m̃ of x, and spread is set equal to the Mean Absolute Difference (MAD).The method
decode can be used to unfilter data using the the inverse calculation for the above equation:

x =
spread · (z − targetMin)

r
+ spread · realMin+ center

Fields

BOUNDED SCALING
static final public int BOUNDED SCALING

Flag to indicate bounded scaling.

BOUNDED Z SCORE SCALING MEAN STDEV
static final public int BOUNDED Z SCORE SCALING MEAN STDEV

Flag to indicate bounded z-score scaling using the mean and standard deviation.

BOUNDED Z SCORE SCALING MEDIAN MAD
static final public int BOUNDED Z SCORE SCALING MEDIAN MAD

Flag to indicate bounded z-score scaling using the median and mean absolute difference.

NO SCALING
static final public int NO SCALING

Flag to indicate no scaling.

UNBOUNDED Z SCORE SCALING MEAN STDEV
static final public int UNBOUNDED Z SCORE SCALING MEAN STDEV

Flag to indicate unbounded z-score scaling using the mean and standard deviation.

UNBOUNDED Z SCORE SCALING MEDIAN MAD
static final public int UNBOUNDED Z SCORE SCALING MEDIAN MAD

Flag to indicate unbounded z-score scaling using the median and mean absolute difference.

Neural Nets ScaleFilter class • 1333

Constructor

ScaleFilter
public ScaleFilter(int scalingMethod)

Description

Constructor for ScaleFilter.

Parameter

scalingMethod – An int specifying the scaling method to be applied.
scalingMethod is specified by:
com.imsl.datamining.neural.ScaleFilter.NO SCALING (p. 1333) ,
com.imsl.datamining.neural.ScaleFilter.BOUNDED SCALING (p. 1333) ,
com.imsl.datamining.neural.ScaleFilter.UNBOUNDED Z SCORE SCALING MEAN STDEV
(p. 1333) ,
com.imsl.datamining.neural.ScaleFilter.UNBOUNDED Z SCORE SCALING MEDIAN MAD
(p. 1333) ,
com.imsl.datamining.neural.ScaleFilter.BOUNDED Z SCORE SCALING MEAN STDEV
(p. 1333) , or
com.imsl.datamining.neural.ScaleFilter.BOUNDED Z SCORE SCALING MEDIAN MAD
(p. 1333) .

Methods

decode
public double decode(double z)

Description

Unscales a value.

Parameter

z – A double containing the value to be unscaled.

Returns

A double containing the filtered data.

decode
public void decode(int columnIndex, double[][] z)

Description

Unscales a single column of a two dimensional array of values.

1334 • ScaleFilter class JMSL

Parameters

columnIndex – An int specifying the index of the column of z to unscale. Indexing
is zero-based.

z – A double matrix containing the values to be unscaled. Its columnIndex-th
column is modified in place.

encode
public double encode(double x)

Description

Scales a value.

Parameter

x – A double containing the value to be scaled.

Returns

A double containing the scaled value.

encode
public void encode(int columnIndex, double[][] x)

Description

Scales a single column of a two dimensional array of values.

Parameters

columnIndex – An int specifying the index of the column of x to scale. Indexing is
zero-based.

x – A double matrix containing the value to be scaled. Its columnIndex-th column
is modified in place.

getBounds
public double[] getBounds()

Description

Retrieves bounds used during bounded scaling.

Returns

A double array of length 4 containing the values

i result[i]
0 realMin. Lowest expected value in the data to be filtered.
1 realMax. Largest expected value in the data to be filtered.
2 targetMin. Lowest allowed value in the filtered data.
3 targetMax. Largest allowed value in the filtered data.

Neural Nets ScaleFilter class • 1335

getCenter
public double getCenter()

Description

Retrieves the measure of center to be used during z-score scaling.
Returns

A double containing the measure of center to be used during z-score scaling.

getSpread
public double getSpread()

Description

Retrieves the measure of spread to be used during scaling.
Returns

a double containing the measure of spread to be used during scaling.

setBounds
public void setBounds(double realMin, double realMax, double targetMin,
double targetMax)

Description

Sets bounds to be used during bounded scaling and unscaling. This method is normally
called prior to calls to encode or decode. Otherwise the default bounds are realMin = 0,
realMax = 1, targetMin = 0, and targetMax = 1. These bounds are ignored for
unbounded scaling.
Parameters

realMin – A double containing the lowest expected value in the data to be filtered.
realMax – A double containing the largest expected value in the data to be filtered.
targetMin – A double containing the lowest allowed value in the filtered data.
targetMax – A double containing the largest allowed value in the filtered data.

setCenter
public void setCenter(double center)

Description

Set the measure of center to be used during z-score scaling.
Parameter

center – A double containing the measure of center to be used during scaling. If
this method is not called then the measure of center is computed from the data.

setSpread
public void setSpread(double spread)

1336 • ScaleFilter class JMSL

Description

Set the measure of spread to be used during z-score scaling.

Parameter

spread – A double containing the measure of spread to be used during z-score
scaling. If this method is not called then the measure of spread is computed from the
data.

Example: ScaleFilter

In this example three sets of data, X0, X1, and X2 are scaled using the methods described in
the following table:

Variables and Scaling Methods

Variable Method Description
X0 0 No Scaling
X1 4 Bounded Z-score scaling using the mean and standard deviation of X1
X2 5 Bounded Z-score scaling using the median and MAD of X2

The bounds, measuresof center and spreadfor X1 and X2 are:

Scaling Limits and Measures of Center and Spread

Variable Real Limits Target Limits Measure of Center Measure of Spread
X1 (-6, +6) (-3, +3) 3.4 (Mean) 1.7421 (Std. Dev.)
X2 (-3, +3) (-3, +3) 2.4 (Median) 1.3343(MAD/0.6745)

The real and target limits are used for bounded scaling. The measures of center and spread are
used to calculate z-scores. Using these values for x1[0]=3.5 yields the following calculations:

For x1[0] , the scale factor is calculated using the real and target limits in the above table:

r = (3-(-3))/(6-(-6)) = 0.5

The z-score for x1[0] is calculated using the measures of center and spread:

z1[0] = (3.5 - 3.4)/1.7421 = 0.057402

Since method=4 is used for x1, this z-score is bounded (scaled) using the real and target limits:

z1(bounded) = r(z1[0]) - r(realMin) + (targetMin)
= 0.5(0.057402) - 0.5(-6) + (-3) = 0.029

Thecalculations for x2[0] are nearly identical, except that since method=5 for x2, the median
and MAD replace the mean and standard deviation used to calculate z1(bounded):

r = (3-(-3))/(3-(-3)) = 1,

z2[0] = (3.1 - 2.4)/1.3343 = 0.525, and

Neural Nets ScaleFilter class • 1337

z2(bounded) = r(z2[0]) - r(realMin) + (targetMin)
= 1(0.525) - 1(-3) + (-3) = 0.525

import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class ScaleFilterEx1 {
public static void main(String args[]) throws Exception {

ScaleFilter[] scaleFilter = new ScaleFilter[3];
scaleFilter[0] = new ScaleFilter(ScaleFilter.NO_SCALING);
scaleFilter[1] =

new ScaleFilter(ScaleFilter.BOUNDED_Z_SCORE_SCALING_MEAN_STDEV);
scaleFilter[1].setBounds(-6.0, 6.0, -3.0, 3.0);
scaleFilter[2] =

new ScaleFilter(ScaleFilter.BOUNDED_Z_SCORE_SCALING_MEDIAN_MAD);
scaleFilter[2].setBounds(-3.0, 3.0, -3.0, 3.0);
int nObs = 5;
double[] y0, y1, y2;
double[] x0 = {1.2, 0.0, -1.4, 1.5, 3.2};
double[] x1 = {3.5, 2.4, 4.4, 5.6, 1.1};
double[] x2 = {3.1, 1.5, -1.5, 2.4, 4.2};

// Perform forward filtering
y0 = scaleFilter[0].encode(x0);
y1 = scaleFilter[1].encode(x1);
y2 = scaleFilter[2].encode(x2);
// Display x0
System.out.print("X0 = {");
for (int i=0; i<4; i++) System.out.print(x0[i]+", ");
System.out.println(x0[4]+"}");
// Display summary statistics for X1
System.out.print("\nX1 = {");
for (int i=0; i<4; i++) System.out.print(x1[i]+", ");
System.out.println(x1[4]+"}");
System.out.println("X1 Mean: "+scaleFilter[1].getCenter());
System.out.println("X1 Std. Dev.: "+scaleFilter[1].getSpread());
// Display summary statistics for X2
System.out.print("\nX2 = {");
for (int i=0; i<4; i++) System.out.print(x2[i]+", ");
System.out.println(x2[4]+"}");
System.out.println("X2 Median: "+scaleFilter[2].getCenter());
System.out.println("X2 MAD/0.6745: "+scaleFilter[2].getSpread());
System.out.println("");
PrintMatrix pm = new PrintMatrix();
pm.setTitle("Filtered X0 Using Method=0 (no scaling)");
pm.print(y0);
pm.setTitle("Filtered X1 Using Bounded Z-score Scaling\n"+

"with Center=Mean and Spread=Std. Dev.");
pm.print(y1);
pm.setTitle("Filtered X2 Using Bounded Z-score Scaling\n"+

"with Center=Median and Spread=MAD/0.6745");
pm.print(y2);

// Perform inverse filtering

1338 • ScaleFilter class JMSL

double[] z0, z1, z2;
z0 = scaleFilter[0].decode(y0);
z1 = scaleFilter[1].decode(y1);
z2 = scaleFilter[2].decode(y2);
pm.setTitle("Decoded Z0");
pm.print(z0);
pm.setTitle("Decoded Z1");
pm.print(z1);
pm.setTitle("Decoded Z2");
pm.print(z2);

}
}

Output

X0 = {1.2, 0.0, -1.4, 1.5, 3.2}

X1 = {3.5, 2.4, 4.4, 5.6, 1.1}
X1 Mean: 3.4
X1 Std. Dev.: 1.7421251390184345

X2 = {3.1, 1.5, -1.5, 2.4, 4.2}
X2 Median: 2.4
X2 MAD/0.6745: 1.3343419966550414

Filtered X0 Using Method=0 (no scaling)
0

0 1.2
1 0
2 -1.4
3 1.5
4 3.2

Filtered X1 Using Bounded Z-score Scaling
with Center=Mean and Spread=Std. Dev.

0
0 0.029
1 -0.287
2 0.287
3 0.631
4 -0.66

Filtered X2 Using Bounded Z-score Scaling
with Center=Median and Spread=MAD/0.6745

0
0 0.525
1 -0.674
2 -2.923
3 0
4 1.349

Neural Nets ScaleFilter class • 1339

Decoded Z0
0

0 1.2
1 0
2 -1.4
3 1.5
4 3.2

Decoded Z1
0

0 3.5
1 2.4
2 4.4
3 5.6
4 1.1

Decoded Z2
0

0 3.1
1 1.5
2 -1.5
3 2.4
4 4.2

UnsupervisedNominalFilter class

public class com.imsl.datamining.neural.UnsupervisedNominalFilter implements
Serializable

Converts nominal data into a series of binary encoded columns for input to a neural network. It
also reverses the aforementioned encoding, accepting binary encoded data and returns an array
of integers representing the classes for a nominal variable.

Binary Encoding

Method encode can be used to apply binary encoding. Referring to the result as z, binary
encoding takes each category in the nominal variable x[], and creates a column in z containing
all zeros and ones. A value of zero indicates that this category was not present and a value of
one indicates that it is present.

1340 • UnsupervisedNominalFilter class JMSL

For example, if x[]={2, 1, 3, 4, 2, 4} then nClasses=4, and

z =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

Notice that the number of columns in the result, z, is equal to the number of distinct classes in
x. The number of rows in z is equal to the length of x.

Binary Decoding

Unfiltering can be performed using the method decode. In this case, z is the input, and we
refer to x as the output. Binary unfiltering takes binary representation in z, and returns the
appropriate class in x.

For example, if a row in z equals {0, 1, 0, 0}, then the return value from decode would be 2 for
that row. If a row in z equals {1, 0, 0, 0}, then the return value from decode would be 1 for
that row. Notice these are the same values as the first two elements of the original x[] because
classes are numbered sequentially from 1 to nClasses. This ensures that the results of decode
are associated with the ith class in x[].

Constructor

UnsupervisedNominalFilter
public UnsupervisedNominalFilter(int nClasses)

Description

Constructor for UnsupervisedNominalFilter.

Parameter

nClasses – An int specifying the number of categories in the nominal variable to be
filtered.

Methods

decode
public int decode(int[] z)

Description

Decodes a binary encoded array into its nominal category. This is the inverse of the
encode(int) method.

Neural Nets UnsupervisedNominalFilter class • 1341

Parameter

z – An int array containing the data to be decoded.

Returns

An int containing the number associated with the category encoded in z.

encode
public int[][] encode(int[] x)

Description

Encodes class data prior to its use in neural network training.

Parameter

x – An int array containing the data to be encoded. Class number must be in the
range 1 to nClasses.

Returns

An int matrix containing the encoded data.

getNumberOfClasses
public int getNumberOfClasses()

Description

Retrieves the number of classes in the nominal variable.

Returns

An int containing the number of classes in the nominal variable.

Example: UnsupervisedNominalFilter

In this example a data set with 7 observations and 3 classes is filtered.

import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class UnsupervisedNominalFilterEx1 {
public static void main(String args[]) throws Exception {

int nClasses = 3;
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(nClasses);
int nObs = 7;
int[] x = {3, 3, 1, 2, 2, 1, 2};
int[] xBack = new int[nObs];
int[][] z;

/* Perform Binary Filtering. */
z = filter.encode(x);
PrintMatrix pm = new PrintMatrix();

1342 • UnsupervisedNominalFilter class JMSL

pm.setTitle("Filtered x");
pm.print(z);

/* Perform Binary Un-filtering. */
for (int i=0;i<nObs;i++) {

xBack[i] = filter.decode(z[i]);
}
pm.setTitle("Result of inverse filtering");
pm.print(xBack);

}
}

Output

Filtered x
0 1 2

0 0 0 1
1 0 0 1
2 1 0 0
3 0 1 0
4 0 1 0
5 1 0 0
6 0 1 0

Result of inverse filtering
0

0 3
1 3
2 1
3 2
4 2
5 1
6 2

UnsupervisedOrdinalFilter class

public class com.imsl.datamining.neural.UnsupervisedOrdinalFilter implements
Serializable

Encodes ordinal data into percentages for input to a neural network. It also allows decoding,
accepting a percentage and converting it into an ordinal value.

Class UnsupervisedOrdinalFilter is designed to either encode or decode ordinal variables.
Encoding consists of transforming the ordinal classes into percentages, with each percentage
being equal to the percentage of the data at or below this class.

Neural Nets UnsupervisedOrdinalFilter class • 1343

Ordinal Encoding

In this case, x is input to the method encode and is filtered by converting each ordinal class
value into a cumulative percentage.

For example, if x[]={2, 1, 3, 4, 2, 4, 1, 1, 3, 3} then nClasses=4, and encode returns
the ordinal class designation with the cumulative percentages displayed in the following table.
Cumulative percentages are equal to the percent of the data in this class or a lower class.

Ordinal Class Frequency Cumulative Percentage
1 3 30%
2 2 50%
3 3 80%
4 2 100%

Classes in x must be numbered from 1 to nClasses.

The values returned from encoding or decoding depend upon the setting of transform. In this
example, if the filter was constructed with transform = TRANSFORM NONE, then the method
encode will return

z[] = {50, 30, 80, 100, 50, 100, 30, 30, 80, 80}.

If the filter was constructed with transform = TRANSFORM SQRT, then the square root of these
values is returned, i.e.,

z[i] =

√
z[i]
100

z[] = {0.71, 0.55, 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

If the filter was constructed with transform = TRANSFORM ASIN SQRT, then the arcsin square
root of these values is returned using the following calculation:

z[i] = arcsin

(√
z[i]
100

)

Ordinal Decoding

Ordinal decoding takes a transformed cumulative proportion and converts it into an ordinal
class value.

Fields

TRANSFORM ASIN SQRT

1344 • UnsupervisedOrdinalFilter class JMSL

static final public int TRANSFORM ASIN SQRT
Flag to indicate the arcsine square root transform will be applied to the percentages.

TRANSFORM NONE
static final public int TRANSFORM NONE

Flag to indicate no transformation of percentages.

TRANSFORM SQRT
static final public int TRANSFORM SQRT

Flag to indicate the square root transform will be applied to the percentages.

Constructor

UnsupervisedOrdinalFilter
public UnsupervisedOrdinalFilter(int nClasses, int transform)

Description

Constructor for UnsupervisedOrdinalFilter.

Parameters

nClasses – An int specifying the number of classes in the data to be filtered.

transform – An int specifying the transform to be applied to the percentages.
Values for transform are:
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM NONE (p.
1345) ,
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM SQRT (p.
1345) ,
com.imsl.datamining.neural.UnsupervisedOrdinalFilter.TRANSFORM ASIN SQRT
(p. 1344)

Methods

decode
public int decode(double y)

Description

Decodes an encoded ordinal variable.

Parameter

y – A double containing the encoded value to be decoded.

Neural Nets UnsupervisedOrdinalFilter class • 1345

Returns

An int containing the ordinal category associated with y.

encode
public double[] encode(int[] x)

Description

Encodes an array of ordinal categories into an array of transformed percentages.

Parameter

x – An int array containing the categories for the ordinal variable. Categories must
be numbered from 1 to nClasses.

Returns

A double array of the transformed percentages.

getNumberOfClasses
public int getNumberOfClasses()

Description

Retrieves the number of categories associated with this ordinal variable.

Returns

An int containing the number of categories associated with this ordinal variable.

getPercentages
public double[] getPercentages()

Description

Retrieves the cumulative percentages used for encoding and decoding. If a transform has
been applied to the percentages then the transformed percentages are returned.

Returns

A double array of length nClasses containing the cumulative transformed percentages
associated with the ordinal categories.

getTransform
public int getTransform()

Description

Retrieves the transform flag used for encoding and decoding.

Returns

An int containing the transform flag used for encoding and decoding.

setPercentages
public void setPercentages(double[] percentages)

1346 • UnsupervisedOrdinalFilter class JMSL

Description

Set the untransformed cumulative percentages used during encoding and decoding.
Setting percentages with this method bypasses calculating cumulative percentages based
on the data being encoded. The percentages must be nondecreasing in the interval [0,
100], with the last element equal to 100. If this method is used it must be called prior to
any calls to the encoding and decoding methods.

Parameter

percentages – A double array of length nClasses containing the cumulative
percentages to use during encoding and decoding.

Example: UnsupervisedOrdinalFilter

In this example a data set with 10 observations and 4 classes is filtered.

import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class UnsupervisedOrdinalFilterEx1 {
public static void main(String args[]) throws Exception {

int nClasses = 4;
UnsupervisedOrdinalFilter filter =
new UnsupervisedOrdinalFilter(nClasses,
UnsupervisedOrdinalFilter.TRANSFORM_ASIN_SQRT);
int[] x = {2,1,3,4,2,4,1,1,3,3};
int nObs = x.length;
int[] xBack;
double[] z;
/* Ordinal Filtering. */
z = filter.encode(x);
// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
pm.setTitle("Filtered data");
pm.print(mf, z);

/* Ordinal Un-filtering. */
pm.setTitle("Un-filtered data");
xBack = filter.decode(z);

// Print results of Un-filtering.
pm.print(mf, xBack);

}
}

Neural Nets UnsupervisedOrdinalFilter class • 1347

Output

Filtered data

0.785
0.58
1.107
1.571
0.785
1.571
0.58
0.58
1.107
1.107

Un-filtered data

2
1
3
4
2
4
1
1
3
3

TimeSeriesFilter class

public class com.imsl.datamining.neural.TimeSeriesFilter implements
Serializable

Converts time series data to a lagged format used as input to a neural network.

Class TimeSeriesFilter can be used to operate on a data matrix and lags every column to
form a new data matrix. Using the method computeLags, each column of the input matrix, x,
is transformed into (nLags+1) columns by creating a column for lags = 0, 1, . . . nLags.

The output data array, z, can be symbolically represented as:

z = |x(0) : x(1) : x(2) : . . . : x(nLags− 1)|,

where x(i) is a lagged column of the incoming data matrix, x.

Consider, an example in which x has five rows and two columns with all variables continuous

1348 • TimeSeriesFilter class JMSL

input attributes. Using nObs and nVar to represent the number of rows and columns in x, let

x =


1 6
2 7
3 8
4 9
5 10


If nLags=1, then the number of columns in z[][] is nVar*(nLags+1)=2*2=4, and the number
of rows is (nObs-nLags)=5-1=4:

z =


1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10


If nLags=2, then the number of rows in z will be (nObs-nLags)=(5-2)=3 and the number of
columns will be nVar*(nLags+1)=2*3=6:

z =

 1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10



Constructor

TimeSeriesFilter
public TimeSeriesFilter()

Description

Constructor for TimeSeriesClassFilter.

Method

computeLags
public double[][] computeLags(int nLags, double[][] x)

Description

Lags time series data to a format used for input to a neural network.

Parameters

nLags – An int containing the requested number of lags. nLags must be greater
than 0.

x – A double matrix, nObs by nVar, containing the time series data to be lagged. It
is assumed that x is sorted in descending chronological order.

Neural Nets TimeSeriesFilter class • 1349

Returns

A double matrix with (nObs-nLags) rows and (nVar(nLags+1)) columns. The columns 0
through (nVar-1) contain the columns of x. The next nVar columns contain the first lag
of the columns in x, etc.

Example: TimeSeriesFilter

In this example a matrix with 5 rows and 2 columns is lagged twice. This produces a
two-dimensional matrix with 5 rows, but 2*3=6 columns. The first two columns correspond to
lag=0, which just places the original data into these columns. The 3rd and 4th columns contain
the first lags of the original 2 columns and the 5th and 6th columns contain the second lags.

import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class TimeSeriesFilterEx1 {
public static void main(String args[]) throws Exception {

TimeSeriesFilter filter = new TimeSeriesFilter();
int nLag = 2;
double[][] x = {

{1, 6},
{2, 7},
{3, 8},
{4, 9},
{5, 10}

};
double[][] z = filter.computeLags(nLag, x);
// Print result without row/column labels.

PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setNoColumnLabels();
pm.setTitle("Lagged data");
pm.print(mf, z);

}
}

Output

Lagged data

1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10

1350 • TimeSeriesFilter class JMSL

TimeSeriesClassFilter class

public class com.imsl.datamining.neural.TimeSeriesClassFilter implements
Serializable

Converts time series data contained within nominal categories to a lagged format for processing
by a neural network. Lagging is done within the nominal categories associated with the time
series.

Class TimeSeriesClassFilter can be used with a data array, x[] to compute a new data
array, z[][], containing lagged columns of x[].

When using the method computeLags, the output array, z[][] of lagged columns, can be
symbolically represented as:

z = |x(0) : x(1) : x(2) : . . . : x(nLags− 1)|,

where x(i) is a lagged column of the incoming data array x, and nLags is the number of
computed lags. The lag associated with x(i) is equal to the value in lag[i], and lagging is done
within the nominal categories given in iClass[]. This requires the time series data in x[] be
sorted in time order within each category iClass.

Consider an example in which the number of observations in x[] is 10. There are two lags
requested in lag[]. If

xT = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

iClassT = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

and
lagT = {0, 2}

then, all the time series data fall into a single category, i.e. nClasses = 1, and z would contain
2 columns and 10 rows. The first column reproduces the values in x[] because lags[0]=0, and
the second column is the 2nd lag because lags[1]=2.

z =



1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 NaN
10 NaN


On the other hand, if the data were organized into two classes with

iClassT = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2},

Neural Nets TimeSeriesClassFilter class • 1351

then nClasses is 2, and z is still a 2 by 10 matrix, but with the following values:

z =



1 3
2 4
3 5
4 NaN
5 NaN

6 8
7 9
8 10
9 NaN
10 NaN


The first 5 rows of z are the lagged columns for the first category, and the last five are the
lagged columns for the second category.

Constructor

TimeSeriesClassFilter
public TimeSeriesClassFilter(int nClasses)

Description

Constructor for TimeSeriesClassFilter.

Parameter

nClasses – An int specifying the number of nominal categories associated with the
time series.

Method

computeLags
public double[][] computeLags(int[] lags, int[] iClass, double[] x)

Description

Computes lags of an array sorted first by class designations and then descending
chronological order.

Parameters

lags – An int array containing the requested lags. Every lag must be non-negative.
iClass – An int array containing class number associated with each element of x,
sorted in ascending order. The i-th element is equal to the class associated with the
i-th element of x. iClass and x must be the same length.
x – A double array containing the time series data to be lagged. This array is
assumed to be sorted first by class designations and then descending chronological
order, i.e., most recent observations appear first within a class.

1352 • TimeSeriesClassFilter class JMSL

Returns

A double matrix containing the lagged data. The i-th column of this array is the lagged
values of x for a lag equal to lags[i]. The number of rows is equal to the length of x.

Example: TimeSeriesClassFilter

For illustration purposes, the time series in this example consists of the integers 1, 2, ..., 10,
organized into two classes. Of course, it is assumed that these data are sorted in chronologically
descending order. That is for each class, the first number is the latest value and the last
number in that class is the earliest.

The values 1-4 are in class 1, and the values 5-10 are in class 2. These values represent two
separate time series, one for each class. If you were to list them in chronologically ascending
order, starting with time = T0, the values would be:

Class 1: T0=4, T1=3, T2=2, T3=1
Class 2: T0=10, T1=9, T2=8, T3=7, T4=6, T5=5

This example requests lag calculations for lags 0, 1, 2, 3. For lag=0, no lagging is performed.
For lag=1, the value at time = t replaced with the value at time = t-1, the previous value in
that class. If t− 1 < 0, then a missing value is placed in that position.

For example, the first lag of a time series at time=t are the values at time=t-1. For the time
series values of Class 1 (lag=1), these values are:

Class 1, lag 1: T0=NaN, T1=4, T2=3, T3=2

The second lag for time=t consists of the values at time=t-2:

Class 1, lag 2: T0=NaN, T1=NaN, T2=4, T3=3

Notice that the second lag now has two missing observations. In general, lag=n will have n
missing values. In some cases this can result in all missing values for classes with few
observations. A class will have all missing values in any of its lag columns that have a lag value
larger than or equal to the number of observations in that class.

import com.imsl.stat.*;
import com.imsl.math.*;
import com.imsl.datamining.neural.*;

public class TimeSeriesClassFilterEx1 {
private static int nClasses = 2;
private static int nObs =10;
private static int nLags = 4;
public static void main(String args[]) throws Exception {

double[] x = {1,2,3,4,5,6,7,8,9,10};
double[] time = {3,2,1,0,5,4,3,2,1,0};
int[] iClass = {1,1,1,1,2,2,2,2,2,2};
int[] lag = {0,1,2,3};
String[] colLabels = {"Class","Time","Lag=0","Lag=1","Lag=2","Lag=3"};

Neural Nets TimeSeriesClassFilter class • 1353

// Filter Classified Time Series Data
TimeSeriesClassFilter filter = new TimeSeriesClassFilter(nClasses);
double[][] y = filter.computeLags(lag, iClass, x);
double[][] z = new double[nObs][nLags+2];
for(int i=0; i < nObs;i++){

z[i][0] = (double)iClass[i];
z[i][1] = time[i];
for(int j=0; j < nLags; j++){

z[i][j+2] = y[i][j];
}

}

// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.setNoRowLabels();
mf.setColumnLabels(colLabels);
pm.setTitle("Lagged data");

pm.print(mf, z);
}

}

Output

Lagged data
Class Time Lag=0 Lag=1 Lag=2 Lag=3
1 3 1 2 3 4
1 2 2 3 4 ?
1 1 3 4 ? ?
1 0 4 ? ? ?
2 5 5 6 7 8
2 4 6 7 8 9
2 3 7 8 9 10
2 2 8 9 10 ?
2 1 9 10 ? ?
2 0 10 ? ? ?

1354 • TimeSeriesClassFilter class JMSL

Chapter 27: Miscellaneous

Types

class Messages . 1355
class Version . 1356
class Warning . 1357
class WarningObject. .1358
exception IMSLException . 1360
exception IMSLRuntimeException . 1361
exception LicenseManagerException . 1362

Messages class

public class com.imsl.Messages

Retrieve and format message strings.

Constructor

Messages
public Messages()

Methods

check
static public int check(int arg)

1355

formatMessage
static public String formatMessage(String bundleName, String key)

Description

A message is formatted, without arguments, using a MessageFormat string retrieved from
the named resource bundle using the given key.

Parameters

bundleName – is the resource bundle name.

key – is the key of the MessageFormat string in the resource bundle.

formatMessage
static public String formatMessage(String bundleName, String key, Object[]
arg)

Description

A message is formatted using a MessageFormat string retrieved from the named resource
bundle using the given key.

Parameters

bundleName – is the resource bundle name.

key – is the key of the MessageFormat string in the resource bundle.

arg – is an array of arguments passed to the MessageFormat.format method.

throwIllegalArgumentException
static public void throwIllegalArgumentException(String packageName, String
key, Object[] args)

Description

Throws an IllegalArgumentException with a formatted String argument.

Parameters

packageName – is package from which the error is thrown. The resource bundle
”ErrorMessages” in this package contains the error MessageFormat string.

key – is the key of the MessageFormat string in the resource bundle.

args – is an array of arguments passed to the MessageFormat.format method.

Version class

public class com.imsl.Version

Print the version information.

1356 • Version class JMSL

Constructor

Version
public Version()

Method

main
static public void main(String[] args) throws ParseException

Description

Print the version information about the envirnoment and this library.

Warning class

public final class com.imsl.Warning

Handle warning messages. This class maintains a single, private, WarningObject that actually
displays the warning messages.

Constructor

Warning
public Warning()

Methods

getWarning
static public WarningObject getWarning()

Description

Gets the WarningObject.

Returns

The current warning object.

print

Miscellaneous Warning class • 1357

static public void print(Object source, String bundleName, String key,
Object[] arg)

Description

Issue a warning message. Warning messages are stored as MessageFormat patterns in a
ResourceBundle. This method retrieves the pattern from the bundle, formats the message
with the supplied arguments, and prints the message to the warning stream.

Parameters

source – is the object that is the source of the warning.

bundleName – is the prefix of the ResourceBundle name. The actual name is formed
by appending ”.ErrorMessages”.

key – identifies the warning message in the bundle.

arg – are the arguments used to format the message.

setOut
static public void setOut(PrintStream out)

Description

Reassigns the output stream. The default warning stream is @see System.err.

Parameter

out – is the new warning output stream. It may be null, in which case warnings are
not printed.

setWarning
static public void setWarning(WarningObject warningObject)

Description

Sets a new WarningObject. Replacing the WarningObject allows warning errors to be
handled in a more custom fashion.

Parameter

warningObject – is the new WarningObject. It may be null, in which case error
messages will be ignored.

WarningObject class

public class com.imsl.WarningObject

Handle warning messages.

1358 •WarningObject class JMSL

Field

out
protected PrintStream out

The warning stream. Its default value is System.err.

Constructor

WarningObject
public WarningObject()

Methods

print
public void print(Object source, String bundleName, String key, Object[]
arg)

Description

Issue a warning message. Warning messages are stored as MessageFormat patterns in a
ResourceBundle. This method retrieves the pattern from the bundle, formats the message
with the supplied arguments, and prints the message to the warning stream.

Parameters

source – is the object that is the source of the warning.

bundleName – is the prefix of the ResourceBundle name. The actual name is formed
by appending ”.ErrorMessages”.

key – identifies the warning message in the bundle.

arg – are the arguments used to format the message.

setOut
public void setOut(PrintStream out)

Description

Reassigns the output stream. The default warning stream is java.lang.System.err .

Parameter

out – is the new warning output stream. It may be null, in which case warnings are
not printed.

Miscellaneous WarningObject class • 1359

IMSLException class

abstract public class com.imsl.IMSLException extends java.lang.Exception

Signals that a mathematical exception has occurred.

Constructors

IMSLException
public IMSLException()

Description

Constructs an IMSLException with no detail message. A detail message is a String that
describes this particular exception.

IMSLException
public IMSLException(String s)

Description

Constructs an IMSLException with the specified detail message. A detail message is a
String that describes this particular exception.

Parameter

s – the detail message

IMSLException
public IMSLException(String packageName, String key, Object[] arguments)

Description

Constructs an IMSLException with the specified detail message. The error message string
is in a resource bundle, ErrorMessages.

Parameters

packageName – is the name of the package containing the ErrorMessages resource
bundle.

key – is the key of the error message in the resource bundle.

arguments – is an array containing arguments used within the error message string.

1360 • IMSLException class JMSL

IMSLRuntimeException class

abstract public class com.imsl.IMSLRuntimeException extends
java.lang.RuntimeException

Signals that an error has occurred. This is used for programming mistake type of errors. Since
IMSLRuntimeException is a subclass of RuntimeException, this exception does not have to be
caught.

Constructors

IMSLRuntimeException
public IMSLRuntimeException()

Description

Constructs an IMSLRuntimeException with no detail message. A detail message is a
String that describes this particular exception.

IMSLRuntimeException
public IMSLRuntimeException(String s)

Description

Constructs an IMSLRuntimeException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameter

s – the detail message

IMSLRuntimeException
public IMSLRuntimeException(String packageName, String key, Object[]
arguments)

Description

Constructs an IMSLRuntimeException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

Parameters

packageName – is the name of the package containing the ErrorMessages resource
bundle.

key – is the key of the error message in the resource bundle.

arguments – is an array containing arguments used within the error message string.

Miscellaneous IMSLRuntimeException class • 1361

LicenseManagerException class

public class com.imsl.LicenseManagerException extends
com.imsl.IMSLRuntimeException

A LicenseManagerException exception is thrown if a license to use the product cannot be
obtained. Either a LicenseManagerException exception will be thrown or a
ExceptionInInitializerError exception will be thrown with LicenseManagerException as
the cause.

The behavior of the license manager is controlled by the following system properties.

Property Value Meaning
com.imsl.license.path License file path A location in your installation

hierarchy which indicates the
expected license file location.
This is a combination of one
or more license file paths
and [port]@host specifica-
tions. Multiple components
of the list are separated by
a semicolon (;) on Win-
dows or colon (:) on UNIX.
Redundant servers are not
supported in Java. Default is
license.dat:@localhost
(Windows) or
license.dat:@localhost
(Unix).

com.imsl.license.queue "true" or "false" If "true", automatically wait
in the queue for a license with-
out asking. Default is to ask
the user.

com.imsl.license.popup "true" or "false" If "true", use a dialog box to
show any license manager er-
rors or to ask the user about
waiting for a license. If
"false", errors only result in
this exception being thrown.
The user is asked on the con-
sole about waiting for a license.
Default is to use a popup.

1362 • LicenseManagerException class JMSL

Methods

getErrorNumber
public int getErrorNumber()

Description

Returns the FlexLM error number for this exception.

getFeature
public String getFeature()

Description

Returns the name of the feature that could not be licensed.

getLicensePath
public String getLicensePath()

Description

Returns the license file path for this exception.

getLocalizedMessage
public String getLocalizedMessage()

Description

Returns the localized error message for this exception.

Chapter 27. Miscellaneous LicenseManagerException class • 1363

1364 • LicenseManagerException class JMSL

Chapter 28: References

References

Abe

Abe, S. (2001) Pattern Classification: Neuro-Fuzzy Methods and their Comparison,
Springer-Verlag.

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach, 2d ed.,
Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional tests for
cross-classifications: Approximation of attained significance levels, Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta,
Poisson, and binomial distributions, Computing, 12, 223-246.

Akaike

Akaike, H., (1978), Covariance Matrix Computation of the State Variable of a Stationary
Gaussian Process, Ann. Inst. Statist. Math. 30 , Part B, 499-504.

Akaike et al

Akaike, H. , Kitagawa, G., Arahata, E., Tada, F., (1979), Computer Science Monographs No.
13, The Institute of Statistical Mathematics, Tokyo.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589-602.

1365

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points, ACM Transactions on Mathematical Software, 4, 148-159.

Anderberg

Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic Press, New York.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New York.
Anderson, T. W. (1994) The Statistical Analysis of Time Series, John Wiley & Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill Book
Company, New York.

Ashcraft

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse
symmetric positive definite systems, Technical Report ETA-TR-51, Engineering Technology
Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix
methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic. ,
1(4), 10-29.

Atkinson (1979)

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of beta
random variates, Biometrika, 66, 141-145.

Atkinson (1978)

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L1
approximation, SIAM Journal on Numerical Analysis, 10, 839 848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system of equations in
the l1 norm, Communications of the ACM, 17, 319 320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an overdetermined system of
linear equations in the Chebyshev norm, ACM Transactions on Mathematical Software, 1, 264
270.

Bartlett, M. S.

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal Statistics Society
Supplement, 2, 248 252.

Bartlett, M. S. (1937) Some examples of statistical methods of research in agriculture and
applied biology, Supplement to the Journal of the Royal Statistical Society, 4, 137-183.

1366 • JMSL

Bartlett, M. (1937), The statistical conception of mental factors, British Journal of Psychology,
28, 97-104.

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical Society, 8, 27-41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press, Cambridge.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of
real order to machine accuracy, Computer Physics Communication, 21, 297-314.

Barrett and Heal

Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6: Triangular
decomposition of a symmetric matrix, Applied Statistics, 27, 379-380.

Bays and Durham

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, ACM
Transactions on Mathematical Software, 2, 59-64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices for sampling
experiments, Communications in Statistics, B7, 163 182.

Berry and Linoff

Berry, M. J. A. and Linoff, G. (1997) Data Mining Techniques, John Wiley & Sons, Inc.

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises distribution, Applied
Statistics, 28, 152 157.

Bishop

Bishop, C. M. (1995) Neural Networks for Pattern Recognition, Oxford University Press.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975), Discrete Multivariate
Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing Angles Between
Subspaces, Mathematics of Computation,, 27, 579 594.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley &
Sons, New York.

Blom and Zegeling

References • 1367

Blom, JG, and Zegeling, PA (1994), A Moving-grid Interface for Systems of One-dimensional
Time-dependent Partial Differential Equations, ACM Transactions on Mathematical Software,
Vol 20, No.2, 194-214.

Boisvert

Boisvert, Ronald (1984), A fourth order accurate fast direct method of the Helmholtz equation,
Elliptic Problem solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press,
Orlando, Florida, 35-44.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications of the
ACM, 17, 156-157.

Box and Jenkins

Box, G. E. P. and Jenkins, G. M. (1970) Time Series Analysis: Forecasting and Control,
Holden-Day, Inc.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models, Journal of the American
Statistical Association, 65, 1509-1526.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals, Applied
Statistics, 28, 329 332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New Jersey.

Breiman et al.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and
Regression Trees, Chapman & Hall.

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Elseview Science Publ. Co.

Brent

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Breslow

Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics, 30, 89 99.

Bridle

Bridle, J. S. (1990) Probabilistic Interpretation of Feedforward Classification Network Outputs,

1368 • JMSL

with Relationships to Statistical Pattern Recognition, in F. Fogelman Soulie and J. Herault
(Eds.), Neuralcomputing: Algorithms, Architectures and Applications, Springer-Verlag, 227-236.

Brighamv

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New
Jersey.

Brown

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-measures of
association and the log-linear model (complete and incomplete tables), in BMDP Statistical
Software, 1983 Printing with Additions, (edited by W.J. Dixon), University of California Press,
Berkeley.

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and tests for
correlation in two-way contingency tables, Journal of the American Statistical Association,, 42,
309 315.

Burgoyne

Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation, 83,
295-298.

Calvo

Calvo, R. A. (2001) Classifying Financial News with Neural Networks, Proceedings of the 6th
Australasian Document Computing Symposium.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33,
1-16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM
Transactions on Mathematical Software, 7, 398-403.

Carlson and Foley

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation,
Computer Mathematical Applications, 21, 29-42.

Chen and Liu

Chen, C. and Liu, L., Joint Estimation of Model Parameters and Outlier Effects in Time Series,
Journal of the American Statistical Association, Vol. 88, No.421, March 1993.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters,
Communications of the ACM, 21, 317-322.

Clarkson and Jenrich

References • 1369

Clarkson, Douglas B. and Robert B Jenrich (1991), Computing extended maximum likelihood
estimates for linear parameter models, submitted to Journal of the Royal Statistical Society,
Series B, 53, 417-426.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex
Fourier series, Mathematics of Computation, 19, 297-301.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied
Statistics, 17, 190-192.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in Regression,
Chapman and Hall, New York.

Courant and Hilbert

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley
& Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions,
Numerische Mathematik, 31, 377-403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse
linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic
Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User’s Guide,
SIAM, Philadelphia.

1370 • JMSL

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd. ed., John Wiley & Sons,
New York.

DuCroz et al.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices using
Level-3 BLAS, Proceedings of CONPAR 90-VAPP IV, Lecture Notes in Computer Science,
Springer, Berlin, 222.

Duff et al.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for Sparse Matrices,
Clarendon Press, Oxford.

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9, 302-325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear
equations. SIAM Journal on Scientific and Statistical Computing, 5, 633-641.

Elman

Elman, J. L. (1990) Finding Structure in Time, Cognitive Science, 14, 179-211.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value
methods, ACM Transactions on Mathematical Software, 13, 1-22.

Farebrother and Berry

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular
decomposition of a symmetric matrix, Applied Statistics, 23, 477.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, Annals of
Eugenics, 7, 179-188.

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of multiplicative
congruential random number generators with modulus 231 - 1, Journal of the American
Statistical Association, 77, 129-136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a
digital computer, SIAM Journal on Applied Mathematics, 5, 74-88.

Franke

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics of

References • 1371

Computation, 38, 181-200.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, Technometrics,
16, 499-511.

Garbow et al.

Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines
- EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of
Weeks’ method for the inverse Laplace transform problem, ACM Transactions on Mathematical
Software, 14, 163-170.

Gautschi

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics
of Computation, 22, 251-270.

Gear

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold

Gear, C.W. and Petzold, Linda R. (1984), ODE methods for the solution of
differential/algebraic equations. SIAM Journal of Numerical Analysis, 21, #4, 716.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least
squares problems, Applied Statistics, 23, 448-454.

George and Liu

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive Definite
Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables,
NPL Report NAC 92, National Physical Laboratory, England.

Gill et al.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical
aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K.
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Giudici

Giudici, P. (2003) Applied Data Mining: Statistical Methods for Business and Industry, John
Wiley & Sons, Inc.

1372 • JMSL

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly
convex quadratic programs, Mathematical Programming, 27, 1-33.

Golub

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318-334.

Golub and Van Loan

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second Edition, The Johns
Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Maryland.

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics
of Computation, 23, 221-230.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing
Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redfish

Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for
sorting with minimal storage, Communications of the ACM, 13, 54.

Grosse

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34,
29-41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing,
MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin,
Madison.

Hageman and Young

Hageman, Louis A., and David M. Young (1981), Applied Iterative Methods, Academic Press,
New York.

Hanson

Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal
Sci. Stat. Computing, 7, #3.

Hardy

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces, Journal
of Geophysical Research, 76, 1905-1915.

References • 1373

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of Chicago Press,
Chicago.

Hart et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles K. Mesztenyi, John
R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer Approximations,
John Wiley & Sons, New York.

Healy

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix,
Applied Statistics, 17, 195-197.

Hebb

Hebb, D. O. (1949) The Organization of Behaviour: A Neuropsychological Theory, John Wiley.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 17, 289-292.

Higham

Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation, ACM Transactions on Mathematical
Software, 14, 381-396.

Hill

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617-619.

Hindmarsh

Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence
Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore National
Laboratory, Livermore, Calif.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67-69.

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should be used?,
Technometrics, 14, 967-970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American Statistician,
27, 148-152.

Hopfield

Hopfield, J. J. (1987) Learning Algorithms and Probability Distributions in Feed-Forward and
Feed-Back Networks, Proceedings of the National Academy of Sciences, 84, 8429-8433.

Huber

1374 • JMSL

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hutchinson

Hutchinson, J. M. (1994) A Radial Basis Function Approach to Financial Timer Series
Analysis, Ph.D. dissertation, Massachusetts Institute of Technology.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK–A subroutine for
solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of
Toronto.

Hwang and Ding

Hwang, J. T. G. and Ding, A. A. (1997) Prediction Intervals for Artificial Neural Networks,
Journal of the American Statistical Society, 92(438) 748-757.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and
smoothing, Constructive Approximation, 2, 129-151.

Jackson et al.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing
Runge-Kutta formulas, SIAM Journal of Numerical Analysis, 15, 618-641.

Jacobs et al.

Jacobs, R. A., Jorday, M. I., Nowlan, S. J., and Hinton, G. E. (1991) Adaptive Mixtures of
Local Experts, Neural Computation, 3(1), 79-87.

Jenkins

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on
Mathematical Software, 1, 178-189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using
quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545-566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial
zeros and its relation to generalized Rayleigh iteration, Numerishe Mathematik, 14, 252-263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the
ACM, 15, 97- 99.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen,
Metrika, 8, 5-15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin

References • 1375

Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate Distributions-1, John
Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate Distributions-2, John
Wiley & Sons, New York.

Jöreskog

Jöreskog, M.D. (1977), Factor analysis by least squares and maximum-likelihood methods,
Statistical Methods for Digital Computers, (edited by Kurt Enslein, Anthony Ralston, and
Herbert S. Wilf), John Wiley & Sons, New York, 125-153.

Kaiser

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C. Harris),
University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1-14.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial, and
hypergeometric random variates, Ph.D. dissertation, Purdue University, West Lafayette,
Indiana.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics, Volume II,
Inference and Relationship, Third Edition, Charles Griffin & Company, London, Chapter 30.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker,
New York.

Kernighan and Richtie

Kernighan, Brian W., and Richtie, Dennis M. 1988, ”The C Programming Language” Second
Edition, 241.

Kinnucan and Kuki

Kinnucan, P., and Kuki, H., (1968), A single precision inverse error function subroutine,
Computation Center, University of Chicago.

Kirk

Kirk, Roger, E., (1982), ”Experimental Design” Second Edition, Procedures in Behavioral
Sciences, Brooks/Cole Publishing Company, Monterey, CA.

Kohonen

Kohonen, T. (1995) Self-Organizing Maps, Springer-Verlag.

1376 • JMSL

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd. ed., Addison-Wesley, Reading, Mass.

Krogh

Krogh, Fred T. (2005), An Algorithm for Linear Programming,
http://mathalacarte.com.fkrogh/pub/lp/pdf, Tujunga, CA.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lawrence et al

Lawrence, S., Giles, C. L, Tsoi, A. C., Back, A. D. (1997) Face Recognition: A Convolutional
Neural Network Approach, IEEE Transactions on Neural Networks, Special Issue on Neural
Networks and Pattern Recognition, 8(1), 98-113.

Learmonth and Lewis

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random Number
Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate School, Monterey,
California.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San
Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly
of Applied Mathematics, 2, 164-168.

Leavenworth

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of
the ACM, 3, 602.

Lentini and PereyraPereyra, Victor (1978), PASVA3: An adaptive finite-difference
FORTRAN program for first order nonlinear boundary value problems, in Lecture Notes in
Computer Science, 76, Springer-Verlag, Berlin, 67 88.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator for
the System/ 360, IBM Systems Journal, 8, 136-146.

Li

Li, L. K. (1992) Approximation Theory and Recurrent Networks, Proc. Int. Joint Conference
On Neural Networks, vol. II, 266-271.

Liepman

References • 1377

Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions,
Dover Publications, New York.

Lippmann

Lippmann, R. P. (1989) Review of Neural Networks for Speech Recognition,, Neural
Computation, ,b¿I, 1-38.

Liu

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method,
Technical Report CS-87-10, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization.
ACM Transactions on Mathematical Software, 15, 310-325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice,
Technical Report CS-90-04, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for
sparse factorization. ACM Transactions on Mathematical Software, 12, 249-264.

Loh and Shih

Loh, W.-Y. and Shih, Y.-S. (1997) Split Selection Methods for Classification Trees, Statistica
Sinica, 7, 815-840.

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical
inversion of the Laplace transform, Mathematics of Computation, 47, 313-322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation
software for partial differential equations, ACM Transactions on Mathematical Software,5, #3,
326-351.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

Mandic and Chambers

Mandic, D. P. and Chambers, J. A. (2001) Recurrent Neural Networks for Prediction, John
Wiley & Sons, LTD.

Manning and Schütze

Manning, C. D. and Schütze, H. (1999) Foundations of Statistical Natural Language Processing,
MIT Press.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters,

1378 • JMSL

SIAM Journal on Applied Mathematics, 11, 431-441.

Marsaglia

Marsaglia, G. (1972), The structure of linear congruential sequences, in Applications of Number
Theory to Numerical Analysis, (edited by S. K. Zaremba), Academic Press, New York, 249-286.

Martin and Wilkinson

Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric Eigenproblem Ax = lBx
and Related Problems to Standard Form, Volume II, Linear Algebra Handbook, Springer, New
York.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for Complex Hessenberg
Matrices, Handbook, Volume II, Linear Algebra, Springer, New York.

Mayle

Mayle, Jan, (1993), Fixed Income Securities Formulas for Price, Yield, and Accrued Interest,
SIA Standard Securities Calculation Methods, Volume I, Third Edition, pages 17-35.

McCulloch and Pitts

McCulloch, W. S. and Pitts, W. (1943) A Logical Calculus for Ideas Imminent in Nervous
Activity, Bulletin of Mathematical Biophysics, 5, 115-133.

Michelli

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally
positive definite functions, Constructive Approximation, 2, 11-22.

Michelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth
functions, Numerische Mathematik, 26, 279-285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp
approximation, Constructive Approximation, 1, 93-102.

Microsoft Excel User Education Team

Microsoft Excel 5 - Worksheet Function Reference, (1994), Covers Microsoft Excel 5 for
Windowstm and the Apple Macintoshtm, Microsoft Press. Redmond, VA.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems,
SIAM Journal on Numerical Analysis, 10, 241-256. Covers Microsoft Excel 5 for Windowstm.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74, Argonne, Illinois.

Müller

Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer,

References • 1379

Mathematical Tables and Aids to Computation, 10, 208-215.

Murtagh

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice,
McGraw-Hill, New York.

Murty

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D.
Irwin, Homewood, Illinois.

Neter et al.

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear Regression
Models, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev

Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse Matrices, Lecture Notes in
Computer Science, 157, Springer-Verlag, New York.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company,
Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution, Biometrika, 52,
437-446.

Pao

Pao, Y. (1989) Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing.

Parlett

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Pennington and Berzins

Pennington, S. V., Berzins, M., (1994), Software for First-order Partial Differential Equations.
63-99.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 13, 624.

Petzold

Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver,
Proceedings of the IMACS World Congress, Montreal, Canada.

1380 • JMSL

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983),
QUADPACK, Springer-Verlag, New York.

Poli and Jones

Poli, I. and Jones, R. D. (1994) A Neural Net Model for Prediction, Journal of the American
Statistical Society, 89(425) 117-121.

Powell

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations,
Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G. A.
Watson), 630, Springer-Verlag, Berlin, Germany, 144-157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,
Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimizations calculations,
DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A Fortran package for linearly constrained optimizations
calculations, DAMTP Report NA2, University of Cambridge, England.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming,
DAMTP Report 1983/NA17, University of Cambridge, Cambridge, England.

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics, 9, 705-724.

Quinlan

Quinlan, J. R. (1993), C4.5 Programs for Machine Learning, Morgan Kaufmann.

Reed and Marks

Reed, R. D. and Marks, R. J. II (1999) Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks, The MIT Press, Cambridge, MA.

Reinsch

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,
177-183.

Rice

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New Yor.

Ripley

Ripley, B. D. (1994) Neural Networks and Related Methods for Classification, Journal of the
Royal Statistical Society B, 56(3), 409-456.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge University Press.

Rosenblatt

References • 1381

Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain,Psychol. Rev., 65, 386-408.

Rumelhart et al

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations by
Back-Propagating Errors, Nature, 323, 533-536.

Rumelhart, D. E. and McClelland, J. L. eds. (1986) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1, 318-362, MIT Press.

Saad and Schultz

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual algorithm for
solving nonsymmetric linear systems, SIAM Journal of Scientific and Statistical Computing, 7,
856-869.

Sallas and Lionti

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the nonfull
rank linear model with linear equality restrictions, IMSL Technical Report 8805, IMSL,
Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics–the two-sample
case, Annals of Mathematical Statistics, 27, 590-615.

Schittkowski

Schittkowski, K. (1987), More test examples for nonlinear programming codes, Springer-Verlag,
Berlin, 74.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained nonlinear
programming problems, (edited by Clyde L. Monma), Annals of Operations Research, 5,
485-500.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in Economics and
Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming method
with an augmented Lagrangian line search function, Mathematik Operationsforschung und
Statistik, Series Optimization, 14, 197-216.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random
variates, in Computer Science and Statistics: Proceedings of the Fifteenth Symposium on the
Interface, (edited by James E. Gentle), North-Holland Publishing Company, Amsterdam,
154-160.

Schmeiser and Babu

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential
majorizing functions, Operations Research, 28, 917-926.

1382 • JMSL

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate Generation,
Research Memorandum 81–4, School of Industrial Engineering, Purdue University, West
Lafayette, Indiana.

Schmeiser and Lal

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma variates,
Journal of the American Statistical Association, 75, 679-682.

Seidler and Carmichael

Seidler, Lee J. and Carmichael, D.R., (editors) (1980), Accountants’ Handbook, Volume I, Sixth
Edition, The Ronald Press Company, New York.

Shampine

Shampine, L.F. (1975), Discrete least squares polynomial fits, Communications of the ACM,
18, 179-180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary differential
equations, SIAM Review, 21, 1-17.

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations,
ACM Transactions on Mathematical Software, 1, #3, 232-260.

Singleton

Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage,
Communications of the ACM, 12, 185-187.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler
(1976), Matrix Eigensystem Routines – EISPACK Guide, Springer-Verlag, New York.

Smith

Smith, M. (1993) Neural Networks for Statistical Modeling, New York: Van Nostrand Reinhold.

Smith

Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for Approximation
II, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York.

Spellucci, Peter

Spellucci, P. (1998), An SQP method for general nonlinear programs using only equality
constrained subproblems, Math. Prog., 82, 413-448, Physica Verlag, Heidelberg, Germany

Spellucci, P. (1998), A new technique for inconsistent problems in the SQP method. Math.
Meth. of Oper. Res.,47, 355-500, Physica Verlag, Heidelberg, Germany.

References • 1383

Stewart

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Stoer

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear
programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO
ASI Series, 15, Springer-Verlag, Berlin, Germany.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics
of Computation, 22, 144-158.

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,
Englewood Cliffs, New Jersey.

Studenmund

Studenmund, A. H. (1992) Using Economics: A Practical Guide, New York: Harper Collins.

Swingler

Swingler, K. (1996) Applying Neural Networks: A Practical Guide, Academic Press.

Temme

Temme, N.M (1975), On the numerical evaluation of the modified Bessel Function of the third
kind, Journal of Computational Physics, 19, 324-337.

Tesauro

Tesauro, G. (1990) Neurogammon Wins Computer Olympiad, Neural Computation, 1, 321-323.

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic Publishers,
Boston.

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions In(z) and Kn(z) of real
order and complex argument, Computer Physics Communication, 47, 245-257.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33, 1-67.

Velleman and Hoaglin

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and Computing of
Exploratory Data Analysis, Duxbury Press, Boston.

Verwer et al

Verwer, J. G., Blom, J. G., Furzeland, R. M., and Zegeling, P. A. (1989), A moving-grid

1384 • JMSL

method for one-dimensional PDEs Based on the Method of Lines, Adaptive Methods for Partial
Differential Equations, Eds., J. E. Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasiilakis,
SIAM Publications, Philadelphia, PA (USA) pp. 160-175.

Walker

Walker, H.F. (1988), Implementation of the GMRES method using Householder
transformations, SIAM Journal of Scientific and Statistical Computing, 9, 152-163.

Warner and Misra

Warner, B. and Misra, M. (1996) Understanding Neural Networks as Statistical Tools, The
American Statistician, 50(4) 284-293.

Watkins

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for the
eigenvalue problem, Linear Algebra Applications, 143, pp. 29-47.

Weeks

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J.
ACM, 13, 419-429.

Werbos

Werbos, P. (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Science, PhD thesis, Harvard University, Cambridge, MA.Werbos, P. (1990) Backpropagation
Through Time: What It Does and How to do It, Proc.IEEE, 78, 1550-1560.

Williams and Zipser

Williams, R. J. and Zipser, D. (1989) A Learning Algorithm for Continuously Running Fully
Recurrent Neural Networks, Neural Computation, 1, 270-280.

Wilmott et al

Wilmott, P., Howison, and S., Dewynne, J., (1996), The Mathematics of Financial Derivatives
(A Student Introduction), Cambridge Univ. Press, New York, NY. 317 pages.

Witten and Frank

Witten, I. H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann Publishers.

Wu

Wu, S-I (1995) Mirroring Our Thought Processes, IEEE Potentials, 14, 36-41.

• JMSL

Index

AbstractChartNode, 915
AbstractFlatFile, 761

FlatFileSQLException, 809
Activation, 1252
AmbientLight, 1135
ANOVA, 439
ANOVAFactorial, 446
ARMA, 558

IllConditionedException, 581
IncreaseErrRelException, 577
MatrixSingularException, 578
NewInitialGuessException, 577
TooManyCallsException, 576
TooManyFcnEvalException, 579
TooManyITNException, 579
TooManyJacobianEvalException, 580

AutoCorrelation, 523
NonPosVariancesException, 532

Axis, 962
Axis1D, 966
Axis3D, 1143
AxisBox, 1141
AxisLabel, 971, 1146
AxisLine, 972, 1147
AxisR, 977
AxisRLabel, 979
AxisRLine, 980
AxisRMajorTick, 981
AxisTheta, 982
AxisTitle, 973, 1148
AxisUnit, 973
AxisXY, 964
AxisXYZ, 1139

Background, 959, 1129
Bar, 1075
BarItem, 1081

BarSet, 1082
BasisPart, 834
Bessel, 229
BinaryClassification, 1277
Bond, 835
BoundedLeastSquares, 179

FalseConvergenceException, 188
Function, 187
Jacobian, 188

BoxPlot, 1038
Statistics, 1046

BsInterpolate, 60
BsLeastSquares, 62
BufferedPaint, 1133

Candlestick, 1069
CandlestickItem, 1071
Canvas3DChart, 1129

Paint, 1132
CategoricalGenLinModel, 472

ClassificationVariableException, 495
ClassificationVariableLimitException, 496
ClassificationVariableValueException, 496
DeleteObservationsException, 497

Cdf, 679
CdfFunction, 726
Chart, 910
Chart3D, 1113
ChartFunction, 995
ChartLights, 1134
ChartNode, 935
ChartNode3D, 1118
ChartServlet, 1030
ChartSpline, 996
ChartTitle, 960
ChiSquaredTest, 509

DidNotConvergeException, 515

i

NoObservationsException, 514
NotCDFException, 514

Cholesky, 19
NotSPDException, 23

ClusterHierarchical, 625
ClusterKMeans, 609

ClusterNoPointsException, 619
NoConvergenceException, 618
NonnegativeFreqException, 619
NonnegativeWeightException, 620

ColorFunction, 1173
Colormap, 1109
ColormapLegend, 1173
Complex, 251
ComplexFFT, 98
ComplexLU, 15
ComplexMatrix, 7
ContingencyTable, 459
Contour, 1049

Legend, 1056
Covariances, 308

DiffObsDeletedException, 316
MoreObsDelThanEnteredException, 316
NonnegativeFreqException, 315
NonnegativeWeightException, 315
TooManyObsDeletedException, 315

CrossCorrelation, 532
NonPosVariancesException, 543

CsAkima, 47
CsInterpolate, 49
CsPeriodic, 51
CsShape, 53

TooManyIterationsException, 54
CsSmooth, 55
CsSmoothC2, 57

Data, 984, 1160
CustomMarkerFactory, 1172

DayCountBasis, 875
Dendrogram, 1088
DenseLP, 148

BoundsInconsistentException, 155
NoAcceptablePivotException, 155
ProblemUnboundedException, 156
WrongConstraintTypeException, 154

Difference, 582
DirectionalLight, 1135

DiscriminantAnalysis, 653
CovarianceSingularException, 674
EmptyGroupException, 674
SumOfWeightsNegException, 673

Dissimilarities, 620
NoPositiveVarianceException, 625
ScaleFactorZeroException, 624
ZeroNormException, 624

Draw, 1004
DrawMap, 1032
DrawPick, 1018

Eigen, 37
DidNotConvergeException, 39

EmpiricalQuantiles, 350
ScaleFactorZeroException, 352

EpochTrainer, 1271
EpsilonAlgorithm, 283
ErrorBar, 1057

FactorAnalysis, 634
BadVarianceException, 651
EigenvalueException, 651
NoDegreesOfFreedomException, 652
NonPositiveEigenvalueException, 652
NotPositiveDefiniteException, 650
NotPositiveSemiDefiniteException, 649
NotSemiDefiniteException, 650
RankException, 649
SingularException, 651

FaureSequence, 747
FeedForwardNetwork, 1229
FFT, 94
FillPaint, 1001
Finance, 877
FlatFile, 809

Parser, 817

GARCH, 586
ConstrInconsistentException, 594
EqConstrInconsistentException, 594
NoVectorXException, 594
TooManyIterationsException, 593
VarsDeterminedException, 593

Grid, 961
GridPolar, 983

Heatmap, 1098

ii • Index JMSL

Legend, 1108
HiddenLayer, 1246
HighLowClose, 1062
Hyperbolic, 245
HyperRectangleQuadrature, 80

Function, 83

IEEE, 243
IMSLException, 1360
IMSLRuntimeException, 1361
InputLayer, 1245
InputNode, 1249
InverseCdf, 727

DidNotConvergeException, 729

JFrameChart, 1015
JFrameChart3D, 1117
JMath, 234
JPanelChart, 1016
JspBean, 1027

KalmanFilter, 595

Layer, 1243
LeastSquaresTrainer, 1266
Legend, 960
LicenseManagerException, 1362
LinearProgramming, 156

BoundsInconsistentException, 162
NumericDifficultyException, 163
ProblemInfeasibleException, 163
ProblemUnboundedException, 164
WrongConstraintTypeException, 162

LinearRegression, 379
CaseStatistics, 389
CoefficientTTests, 387

Link, 1254
LU, 11

MajorTick, 974, 1148
Matrix, 3
MersenneTwister, 751
MersenneTwister64, 756
Messages, 1355
MinConGenLin, 169

ConstraintsInconsistentException, 177
ConstraintsNotSatisfiedException, 178

EqualityConstraintsException, 178
Function, 176
Gradient, 176
VarBoundsInconsistentException, 177

MinConNLP, 189
BadInitialGuessException, 210
ConstraintEvaluationException, 206
Formatter, 212
Function, 204
Gradient, 205
IllConditionedException, 210
LimitingAccuracyException, 208
LinearlyDependentGradientsException,

211
NoAcceptableStepsizeException, 207
ObjectiveEvaluationException, 206
PenaltyFunctionPointInfeasibleException,

208
QPInfeasibleException, 207
SingularException, 210
TerminationCriteriaNotSatisfiedExcep-

tion,
211

TooManyIterationsException, 209
TooMuchTimeException, 209
WorkingSetSingularException, 207

MinorTick, 974
MinUncon, 121

Derivative, 126
Function, 126

MinUnconMultiVar, 127
ApproximateMinimumException, 135
FalseConvergenceException, 135
Function, 134
Gradient, 134
MaxIterationsException, 136
UnboundedBelowException, 136

MPSReader, 819
Element, 831
InvalidMPSFileException, 830
Row, 830

MultiClassification, 1317
MultiCrossCorrelation, 544

NonPosVariancesException, 557
MultipleComparisons, 456

Network, 1220

Index Index • iii

Node, 1249
NonlinearRegression, 392

Derivative, 407
Function, 406
NegativeFreqException, 405
NegativeWeightException, 405
TooManyIterationsException, 406

NonlinLeastSquares, 137
FalseConvergenceException, 145
Function, 147
Jacobian, 148
RelativeFunctionConvergenceException,

145
StepMaxException, 146
StepToleranceException, 146
TooManyIterationsException, 147

NormalityTest, 515
NoVariationInputException, 519

NormOneSample, 317
NormTwoSample, 323

OdeRungeKutta, 86
DidNotConvergeException, 92
Function, 91
ToleranceTooSmallException, 91

OutputLayer, 1247
OutputPerceptron, 1251

Perceptron, 1250
Physical, 272
PickEvent, 1025
PickListener, 1026
Pie, 1083
PieSlice, 1087
PointLight, 1137
Polar, 1096
PrintMatrix, 285
PrintMatrixFormat, 290

QR, 24
QuadraticProgramming, 164

InconsistentSystemException, 169
Quadrature, 74

Function, 80
QuasiNewtonTrainer, 1257

BlockGradObjective, 1266
BlockObjective, 1265

Error, 1263
GradObjective, 1265
Objective, 1264

RadialBasis, 65
Function, 69
Gaussian, 71
HardyMultiquadric, 70

Random, 731
BaseGenerator, 747

RandomSequence, 760
Ranks, 341
RegressionBasis, 410

ScaleFilter, 1331
SelectionRegression, 411

NoVariablesException, 424
Statistics, 424

Sfun, 213
SignTest, 500
SingularMatrixException, 32
Sort, 334
Spline, 45
SplineData, 1072
StepwiseRegression, 426

CoefficientTTests, 436
CyclingIsOccurringException, 435
NoVariablesEnteredException, 436

Summary, 297
Surface, 1149

ZFunction, 1160
SVD, 28

DidNotConvergeException, 32
SymEigen, 40

TableMultiWay, 363
BalancedTable, 369
UnbalancedTable, 370

TableOneWay, 353
TableTwoWay, 357
Text, 997
TimeSeriesClassFilter, 1351
TimeSeriesFilter, 1348
Tokenizer, 817
ToolTip, 999
Trainer, 1255
Transform, 975

iv • Index JMSL

TransformDate, 976

UnsupervisedNominalFilter, 1340
UnsupervisedOrdinalFilter, 1343
UserBasisRegression, 408

Version, 1356

Warning, 1357
WarningObject, 1358
WilcoxonRankSum, 503

ZeroFunction, 109
Function, 112

ZeroPolynomial, 104
DidNotConvergeException, 108

ZeroSystem, 113
DidNotConvergeException, 116
Function, 116
Jacobian, 117
ToleranceTooSmallException, 117
TooManyIterationsException, 117

Index Index • v

	Table of Contents
	Linear Systems
	Matrix class
	ComplexMatrix class
	LU class
	ComplexLU class
	Cholesky class
	QR class
	SVD class
	SingularMatrixException class

	Eigensystem Analysis
	Eigen class
	SymEigen class

	Interpolation and Approximation
	Spline class
	CsAkima class
	CsInterpolate class
	CsPeriodic class
	CsShape class
	CsSmooth class
	CsSmoothC2 class
	BsInterpolate class
	BsLeastSquares class
	RadialBasis class

	Quadrature
	Quadrature class
	HyperRectangleQuadrature class

	Differential Equations
	OdeRungeKutta class

	Transforms
	FFT class
	ComplexFFT class

	Nonlinear Equations
	ZeroPolynomial class
	ZeroFunction class
	ZeroSystem class

	Optimization
	MinUncon class
	MinUnconMultiVar class
	NonlinLeastSquares class
	DenseLP class
	LinearProgramming class
	QuadraticProgramming class
	MinConGenLin class
	BoundedLeastSquares class
	MinConNLP class

	Special Functions
	Sfun class
	Bessel class
	JMath class
	IEEE class
	Hyperbolic class

	Miscellaneous
	Complex class
	Physical class
	EpsilonAlgorithm class

	Printing Functions
	PrintMatrix class
	PrintMatrixFormat class

	Basic Statistics
	Summary class
	Covariances class
	NormOneSample class
	NormTwoSample class
	Sort class
	Ranks class
	EmpiricalQuantiles class
	TableOneWay class
	TableTwoWay class
	TableMultiWay class

	Regression
	LinearRegression class
	NonlinearRegression class
	UserBasisRegression class
	RegressionBasis interface
	SelectionRegression class
	StepwiseRegression class

	Analysis of Variance
	ANOVA class
	ANOVAFactorial class
	MultipleComparisons class

	Categorical and Discrete Data Analysis
	ContingencyTable class
	CategoricalGenLinModel class

	Nonparametric Statistics
	SignTest class
	WilcoxonRankSum class

	Tests of Goodness of Fit
	ChiSquaredTest class
	NormalityTest class

	Time Series and Forecasting
	AutoCorrelation class
	CrossCorrelation class
	MultiCrossCorrelation class
	ARMA class
	Difference class
	GARCH class
	KalmanFilter class

	Multivariate Analysis
	ClusterKMeans class
	Dissimilarities class
	ClusterHierarchical class
	FactorAnalysis class
	DiscriminantAnalysis class

	Probability Distribution Functions and Inverses
	Cdf class
	CdfFunction interface
	InverseCdf class

	Random Number Generation
	Random class
	FaureSequence class
	MersenneTwister class
	MersenneTwister64 class
	RandomSequence interface

	Input/Output
	AbstractFlatFile class
	FlatFile class
	Tokenizer class
	MPSReader class

	Finance
	BasisPart interface
	Bond class
	DayCountBasis class
	Finance class

	Chart 2D
	Chart class
	AbstractChartNode class
	ChartNode class
	Background class
	ChartTitle class
	Legend class
	Grid class
	Axis class
	AxisXY class
	Axis1D class
	AxisLabel class
	AxisLine class
	AxisTitle class
	AxisUnit class
	MajorTick class
	MinorTick class
	Transform interface
	TransformDate class
	AxisR class
	AxisRLabel class
	AxisRLine class
	AxisRMajorTick class
	AxisTheta class
	GridPolar class
	Data class
	ChartFunction interface
	ChartSpline class
	Text class
	ToolTip class
	FillPaint class
	Draw class
	JFrameChart class
	JPanelChart class
	DrawPick class
	PickEvent class
	PickListener interface
	JspBean class
	ChartServlet class
	DrawMap class
	BoxPlot class
	Contour class
	ErrorBar class
	HighLowClose class
	Candlestick class
	CandlestickItem class
	SplineData class
	Bar class
	BarItem class
	BarSet class
	Pie class
	PieSlice class
	Dendrogram class
	Polar class
	Heatmap class
	Colormap interface

	Chart 3D
	Chart3D class
	JFrameChart3D class
	ChartNode3D class
	Background class
	Canvas3DChart class
	BufferedPaint class
	ChartLights class
	AmbientLight class
	DirectionalLight class
	PointLight class
	AxisXYZ class
	AxisBox class
	Axis3D class
	AxisLabel class
	AxisLine class
	AxisTitle class
	MajorTick class
	Surface class
	Data class
	ColorFunction interface
	ColormapLegend class

	Neural Nets
	Network class
	FeedForwardNetwork class
	Layer class
	InputLayer class
	HiddenLayer class
	OutputLayer class
	Node class
	InputNode class
	Perceptron class
	OutputPerceptron class
	Activation interface
	Link class
	Trainer interface
	QuasiNewtonTrainer class
	LeastSquaresTrainer class
	EpochTrainer class
	BinaryClassification class
	MultiClassification class
	ScaleFilter class
	UnsupervisedNominalFilter class
	UnsupervisedOrdinalFilter class
	TimeSeriesFilter class
	TimeSeriesClassFilter class

	Miscellaneous
	Messages class
	Version class
	Warning class
	WarningObject class
	IMSLException class
	IMSLRuntimeException class
	LicenseManagerException class

	References
	Index

