Abe, S. (2001) Pattern Classification: Neuro-Fuzzy Methods and their Comparison, Springer-Verlag.

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach, 2d ed., Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional tests for cross-classifications: Approximation of attained significance levels, Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta, Poisson, and binomial distributions, Computing, 12, 223-246.


Akaike, H., (1978), Covariance Matrix Computation of the State Variable of a Stationary Gaussian Process, Ann. Inst. Statist. Math. 30 , Part B, 499-504.

Akaike et al

Akaike, H. , Kitagawa, G., Arahata, E., Tada, F., (1979), Computer Science Monographs No. 13, The Institute of Statistical Mathematics, Tokyo.


Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal of the ACM, 17, 589-602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, ACM Transactions on Mathematical Software, 4, 148-159.


Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic Press, New York.


Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New York. Anderson, T. W. (1994) The Statistical Analysis of Time Series, John Wiley & Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill Book Company, New York.


Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse symmetric positive definite systems, Technical Report ETA-TR-51, Engineering Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic. , 1(4), 10-29.

Atkinson (1979)

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of beta random variates, Biometrika, 66, 141-145.

Atkinson (1978)

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L1 approximation, SIAM Journal on Numerical Analysis, 10, 839 848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system of equations in the l1 norm, Communications of the ACM, 17, 319 320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an overdetermined system of linear equations in the Chebyshev norm, ACM Transactions on Mathematical Software, 1, 264 270.

Bartlett, M. S.

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal Statistics Society Supplement, 2, 248 252.

Bartlett, M. S. (1937) Some examples of statistical methods of research in agriculture and applied biology, Supplement to the Journal of the Royal Statistical Society, 4, 137-183.

Bartlett, M. (1937), The statistical conception of mental factors, British Journal of Psychology, 28, 97-104.

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of autocorrelated time series, Supplement to the Journal of the Royal Statistical Society, 8, 27-41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press, Cambridge.


Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy, Computer Physics Communication, 21, 297-314.

Barrett and Heal

Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6: Triangular decomposition of a symmetric matrix, Applied Statistics, 27, 379-380.

Bays and Durham

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, ACM Transactions on Mathematical Software, 2, 59-64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices for sampling experiments, Communications in Statistics, B7, 163 182.

Berry and Linoff

Berry, M. J. A. and Linoff, G. (1997) Data Mining Techniques, John Wiley & Sons, Inc.

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises distribution, Applied Statistics, 28, 152 157.


Bishop, C. M. (1995) Neural Networks for Pattern Recognition, Oxford University Press.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975), Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing Angles Between Subspaces, Mathematics of Computation,, 27, 579 594.


Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley & Sons, New York.

Blom and Zegeling

Blom, JG, and Zegeling, PA (1994), A Moving-grid Interface for Systems of One-dimensional Time-dependent Partial Differential Equations, ACM Transactions on Mathematical Software, Vol 20, No.2, 194-214.


Boisvert, Ronald (1984), A fourth order accurate fast direct method of the Helmholtz equation, Elliptic Problem solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35-44.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications of the ACM, 17, 156-157.

Box and Jenkins

Box, G. E. P. and Jenkins, G. M. (1970) Time Series Analysis: Forecasting and Control, Holden-Day, Inc.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American Statistical Association, 65, 1509-1526.


Boyette, James M. (1979), Random RC tables with given row and column totals, Applied Statistics, 28, 329 332.


Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New Jersey.

Breiman et al.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and Regression Trees, Chapman & Hall.

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elseview Science Publ. Co.


Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.


Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics, 30, 89 99.


Bridle, J. S. (1990) Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition, in F. Fogelman Soulie and J. Herault (Eds.), Neuralcomputing: Algorithms, Architectures and Applications, Springer-Verlag, 227-236.


Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New Jersey.


Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-measures of association and the log-linear model (complete and incomplete tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by W.J. Dixon), University of California Press, Berkeley.

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and tests for correlation in two-way contingency tables, Journal of the American Statistical Association,, 42, 309 315.


Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation, 83, 295-298.


Calvo, R. A. (2001) Classifying Financial News with Neural Networks, Proceedings of the 6th Australasian Document Computing Symposium.


Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1-16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM Transactions on Mathematical Software, 7, 398-403.

Carlson and Foley

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation, Computer Mathematical Applications, 21, 29-42.

Chen and Liu

Chen, C. and Liu, L., Joint Estimation of Model Parameters and Outlier Effects in Time Series, Journal of the American Statistical Association, Vol. 88, No.421, March 1993.


Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, Communications of the ACM, 21, 317-322.

Clarkson and Jenrich

Clarkson, Douglas B. and Robert B Jenrich (1991), Computing extended maximum likelihood estimates for linear parameter models, submitted to Journal of the Royal Statistical Society, Series B, 53, 417-426.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex Fourier series, Mathematics of Computation, 19, 297-301.


Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17, 190-192.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in Regression, Chapman and Hall, New York.

Courant and Hilbert

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley & Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische Mathematik, 31, 377-403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User's Guide, SIAM, Philadelphia.

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd. ed., John Wiley & Sons, New York.

DuCroz et al.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices using Level-3 BLAS, Proceedings of CONPAR 90-VAPP IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon Press, Oxford.

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9, 302-325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations. SIAM Journal on Scientific and Statistical Computing, 5, 633-641.


Elman, J. L. (1990) Finding Structure in Time, Cognitive Science, 14, 179-211.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value methods, ACM Transactions on Mathematical Software, 13, 1-22.

Farebrother and Berry

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular decomposition of a symmetric matrix, Applied Statistics, 23, 477.


Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 179-188.

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of multiplicative congruential random number generators with modulus 231 - 1, Journal of the American Statistical Association, 77, 129-136.


Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital computer, SIAM Journal on Applied Mathematics, 5, 74-88.


Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics of Computation, 38, 181-200.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, Technometrics, 16, 499-511.

Garbow et al.

Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines - EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of Weeks' method for the inverse Laplace transform problem, ACM Transactions on Mathematical Software, 14, 163-170.


Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of Computation, 22, 251-270.


Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold

Gear, C.W. and Petzold, Linda R. (1984), ODE methods for the solution of differential/algebraic equations. SIAM Journal of Numerical Analysis, 21, #4, 716.


Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least squares problems, Applied Statistics, 23, 448-454.

George and Liu

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL Report NAC 92, National Physical Laboratory, England.

Gill et al.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.


Giudici, P. (2003) Applied Data Mining: Statistical Methods for Business and Industry, John Wiley & Sons, Inc.

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex quadratic programs, Mathematical Programming, 27, 1-33.


Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318-334.

Golub and Van Loan

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second Edition, The Johns Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of Computation, 23, 221-230.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redfish

Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 13, 54.


Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29-41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing, MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young

Hageman, Louis A., and David M. Young (1981), Applied Iterative Methods, Academic Press, New York.


Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci. Stat. Computing, 7, #3.


Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76, 1905-1915.


Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of Chicago Press, Chicago.

Hart et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley & Sons, New York.


Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix, Applied Statistics, 17, 195-197.


Hebb, D. O. (1949) The Organization of Behaviour: A Neuropsychological Theory, John Wiley.


Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 17, 289-292.


Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation, ACM Transactions on Mathematical Software, 14, 381-396.


Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13, 617-619.


Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.


Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67-69.


Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should be used?, Technometrics, 14, 967-970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American Statistician, 27, 148-152.


Hopfield, J. J. (1987) Learning Algorithms and Probability Distributions in Feed-Forward and Feed-Back Networks, Proceedings of the National Academy of Sciences, 84, 8429-8433.


Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.


Hutchinson, J. M. (1994) A Radial Basis Function Approach to Financial Timer Series Analysis, Ph.D. dissertation, Massachusetts Institute of Technology.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User's guide for DVERK--A subroutine for solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of Toronto.

Hwang and Ding

Hwang, J. T. G. and Ding, A. A. (1997) Prediction Intervals for Artificial Neural Networks, Journal of the American Statistical Society, 92(438) 748-757.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and smoothing, Constructive Approximation, 2, 129-151.

Jackson et al.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing Runge-Kutta formulas, SIAM Journal of Numerical Analysis, 15, 618-641.

Jacobs et al.

Jacobs, R. A., Jorday, M. I., Nowlan, S. J., and Hinton, G. E. (1991) Adaptive Mixtures of Local Experts, Neural Computation, 3(1), 79-87.


Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on Mathematical Software, 1, 178-189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545-566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration, Numerishe Mathematik, 14, 252-263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the ACM, 15, 97- 99.


Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen, Metrika, 8, 5-15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate Distributions-2, John Wiley & Sons, New York.


Jöreskog, M.D. (1977), Factor analysis by least squares and maximum-likelihood methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein, Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York, 125-153.


Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C. Harris), University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1-14.


Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial, and hypergeometric random variates, Ph.D. dissertation, Purdue University, West Lafayette, Indiana.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics, Volume II, Inference and Relationship, Third Edition, Charles Griffin & Company, London, Chapter 30.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New York.

Kernighan and Richtie

Kernighan, Brian W., and Richtie, Dennis M. 1988, "The C Programming Language" Second Edition, 241.

Kinnucan and Kuki

Kinnucan, P., and Kuki, H., (1968), A single precision inverse error function subroutine, Computation Center, University of Chicago.


Kirk, Roger, E., (1982), "Experimental Design" Second Edition, Procedures in Behavioral Sciences, Brooks/Cole Publishing Company, Monterey, CA.


Kohonen, T. (1995) Self-Organizing Maps, Springer-Verlag.


Knuth, Donald E. (1981), The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd. ed., Addison-Wesley, Reading, Mass.


Krogh, Fred T. (2005), An Algorithm for Linear Programming,, Tujunga, CA.


Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lawrence et al

Lawrence, S., Giles, C. L, Tsoi, A. C., Back, A. D. (1997) Face Recognition: A Convolutional Neural Network Approach, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, 8(1), 98-113.

Learmonth and Lewis

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random Number Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate School, Monterey, California.


Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, San Francisco.


Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2, 164-168.


Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the ACM, 3, 602.

Lentini and Pereyra

Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, Springer-Verlag, Berlin, 67 88.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator for the System/ 360, IBM Systems Journal, 8, 136-146.


Li, L. K. (1992) Approximation Theory and Recurrent Networks, Proc. Int. Joint Conference On Neural Networks, vol. II, 266-271.


Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions, Dover Publications, New York.


Lippmann, R. P. (1989) Review of Neural Networks for Speech Recognition,, Neural Computation, ,b>I, 1-38.


Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method, Technical Report CS-87-10, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM Transactions on Mathematical Software, 15, 310-325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice, Technical Report CS-90-04, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse factorization. ACM Transactions on Mathematical Software, 12, 249-264.

Loh and Shih

Loh, W.-Y. and Shih, Y.-S. (1997) Split Selection Methods for Classification Trees, Statistica Sinica, 7, 815-840.

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion of the Laplace transform, Mathematics of Computation, 47, 313-322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software for partial differential equations, ACM Transactions on Mathematical Software,5, #3, 326-351.


Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

Mandic and Chambers

Mandic, D. P. and Chambers, J. A. (2001) Recurrent Neural Networks for Prediction, John Wiley & Sons, LTD.

Manning and Schütze

Manning, C. D. and Schütze, H. (1999) Foundations of Statistical Natural Language Processing, MIT Press.


Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics, 11, 431-441.


Marsaglia, G. (1972), The structure of linear congruential sequences, in Applications of Number Theory to Numerical Analysis, (edited by S. K. Zaremba), Academic Press, New York, 249-286.

Martin and Wilkinson

Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric Eigenproblem Ax = lBx and Related Problems to Standard Form, Volume II, Linear Algebra Handbook, Springer, New York.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for Complex Hessenberg Matrices, Handbook, Volume II, Linear Algebra, Springer, New York.


Mayle, Jan, (1993), Fixed Income Securities Formulas for Price, Yield, and Accrued Interest, SIA Standard Securities Calculation Methods, Volume I, Third Edition, pages 17-35.

McCulloch and Pitts

McCulloch, W. S. and Pitts, W. (1943) A Logical Calculus for Ideas Imminent in Nervous Activity, Bulletin of Mathematical Biophysics, 5, 115-133.


Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constructive Approximation, 2, 11-22.

Michelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions, Numerische Mathematik, 26, 279-285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp approximation, Constructive Approximation, 1, 93-102.

Microsoft Excel User Education Team

Microsoft Excel 5 - Worksheet Function Reference, (1994), Covers Microsoft Excel 5 for Windowstm and the Apple Macintoshtm, Microsoft Press. Redmond, VA.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241-256. Covers Microsoft Excel 5 for Windowstm.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne, Illinois.


Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer, Mathematical Tables and Aids to Computation, 10, 208-215.


Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-Hill, New York.


Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin, Homewood, Illinois.

Neter et al.

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear Regression Models, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev

Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse Matrices, Lecture Notes in Computer Science, 157, Springer-Verlag, New York.


Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution, Biometrika, 52, 437-446.


Pao, Y. (1989) Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing.


Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Pennington and Berzins

Pennington, S. V., Berzins, M., (1994), Software for First-order Partial Differential Equations. 63-99.


Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 13<, 624.


Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver, Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983), QUADPACK, Springer-Verlag, New York.

Poli and Jones

Poli, I. and Jones, R. D. (1994) A Neural Net Model for Prediction, Journal of the American Statistical Society, 89(425) 117-121.


Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G. A. Watson), 630, Springer-Verlag, Berlin, Germany, 144-157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani, Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimizations calculations, DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A Fortran package for linearly constrained optimizations calculations, DAMTP Report NA2, University of Cambridge, England.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming, DAMTP Report 1983/NA17, University of Cambridge, Cambridge, England.


Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics, 9, 705-724.


Quinlan, J. R. (1993), C4.5 Programs for Machine Learning, Morgan Kaufmann.

Reed and Marks

Reed, R. D. and Marks, R. J. II (1999) Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, The MIT Press, Cambridge, MA.


Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10, 177-183.


Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New Yor.


Ripley, B. D. (1994) Neural Networks and Related Methods for Classification, Journal of the Royal Statistical Society B, 56(3), 409-456.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge University Press.


Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,

Psychol. Rev., 65, 386-408.

Rumelhart et al

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations by Back-Propagating Errors, Nature, 323, 533-536.

Rumelhart, D. E. and McClelland, J. L. eds. (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, 318-362, MIT Press.

Saad and Schultz

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM Journal of Scientific and Statistical Computing, 7, 856-869.

Sallas and Lionti

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the nonfull rank linear model with linear equality restrictions, IMSL Technical Report 8805, IMSL, Houston.


Savage, I. Richard (1956), Contributions to the theory of rank order statistics--the two-sample case, Annals of Mathematical Statistics, 27, 590-615.


Schittkowski, K. (1987), More test examples for nonlinear programming codes, Springer-Verlag, Berlin, 74.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems, (edited by Clyde L. Monma), Annals of Operations Research, 5, 485-500.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function, Mathematik Operationsforschung und Statistik, Series Optimization, 14, 197-216.


Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random variates, in Computer Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-Holland Publishing Company, Amsterdam, 154-160.

Schmeiser and Babu

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential majorizing functions, Operations Research, 28, 917-926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate Generation, Research Memorandum 81--4, School of Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma variates, Journal of the American Statistical Association, 75, 679-682.

Seidler and Carmichael

Seidler, Lee J. and Carmichael, D.R., (editors) (1980), Accountants' Handbook, Volume I, Sixth Edition, The Ronald Press Company, New York.


Shampine, L.F. (1975), Discrete least squares polynomial fits, Communications of the ACM, 18, 179-180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user's view of solving stiff ordinary differential equations, SIAM Review, 21, 1-17.

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations, ACM Transactions on Mathematical Software, 1, #3, 232-260.


Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 12, 185-187.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler (1976), Matrix Eigensystem Routines -- EISPACK Guide, Springer-Verlag, New York.


Smith, M. (1993) Neural Networks for Statistical Modeling, New York: Van Nostrand Reinhold.


Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for Approximation II, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York.

Spellucci, Peter

Spellucci, P. (1998), An SQP method for general nonlinear programs using only equality constrained subproblems, Math. Prog., 82, 413-448, Physica Verlag, Heidelberg, Germany

Spellucci, P. (1998), A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res.,47, 355-500, Physica Verlag, Heidelberg, Germany.


Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.


Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.


Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation, 22, 144-158.

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall, Englewood Cliffs, New Jersey.


Studenmund, A. H. (1992) Using Economics: A Practical Guide, New York: Harper Collins.


Swingler, K. (1996) Applying Neural Networks: A Practical Guide, Academic Press.


Temme, N.M (1975), On the numerical evaluation of the modified Bessel Function of the third kind, Journal of Computational Physics, 19, 324-337.


Tesauro, G. (1990) Neurogammon Wins Computer Olympiad, Neural Computation, 1, 321-323.


Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic Publishers, Boston.

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions In(z) and Kn(z) of real order and complex argument, Computer Physics Communication, 47, 245-257.


Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33, 1-67.

Velleman and Hoaglin

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Verwer et al

Verwer, J. G., Blom, J. G., Furzeland, R. M., and Zegeling, P. A. (1989), A moving-grid method for one-dimensional PDEs Based on the Method of Lines, Adaptive Methods for Partial Differential Equations, Eds., J. E. Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasiilakis, SIAM Publications, Philadelphia, PA (USA) pp. 160-175.


Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations, SIAM Journal of Scientific and Statistical Computing, 9, 152-163.

Warner and Misra

Warner, B. and Misra, M. (1996) Understanding Neural Networks as Statistical Tools, The American Statistician, 50(4) 284-293.


Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for the eigenvalue problem, Linear Algebra Applications, 143, pp. 29-47.


Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J. ACM, 13, 419-429.


Werbos, P. (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science, PhD thesis, Harvard University, Cambridge, MA.

Werbos, P. (1990) Backpropagation Through Time: What It Does and How to do It, Proc.IEEE, 78, 1550-1560.

Williams and Zipser

Williams, R. J. and Zipser, D. (1989) A Learning Algorithm for Continuously Running Fully Recurrent Neural Networks, Neural Computation, 1, 270-280.

Wilmott et al

Wilmott, P., Howison, and S., Dewynne, J., (1996), The Mathematics of Financial Derivatives (A Student Introduction), Cambridge Univ. Press, New York, NY. 317 pages.

Witten and Frank

Witten, I. H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann Publishers.


Wu, S-I (1995) Mirroring Our Thought Processes, IEEE Potentials, 14, 36-41.