Example 2: Binary Classification Network

This example uses a database of a complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row").

There are nine nominal input attributes for each square on the tic-tac-toe board and are encoded such that 0=player x has taken, 1=player o has taken, 2=blank.

Input attributes

  1. top-left-square: {x,o,b}
  2. top-middle-square: {x,o,b}
  3. top-right-square: {x,o,b}
  4. middle-left-square: {x,o,b}
  5. middle-middle-square: {x,o,b}
  6. middle-right-square: {x,o,b}
  7. bottom-left-square: {x,o,b}
  8. bottom-middle-square: {x,o,b}
  9. bottom-right-square: {x,o,b}

The predicted atribute is a win or loose at tic-tac-toe. For this example the first 626 observations are a win and the next 332 are loss.

The structure of the network consists of 27 input nodes and three layers, with five perceptrons in the first hidden layer, three perceptrons in the second hidden layer, and one perceptron in the output layer.

There are a total of 162 weights in this network. The activations functions are logistic for all layers. Since the target output is binary classification the logistic activation function must be used in the output layer. Training is conducted using the quasi-newton trainer using the binary entropy error function provided by the BinaryClassification class.

import com.imsl.datamining.neural.*;
import java.io.*;
import java.util.logging.*;
import com.imsl.math.PrintMatrix;
import com.imsl.math.PrintMatrixFormat;
import com.imsl.stat.Random;

//*****************************************************************************
// Three Layer Feed-Forward Network with 4 inputs, all 
// continuous, and 2 classification categories.
//
//  new classification training_ex4.c
//
// Three Layer Feed-Forward Network with 4 inputs, all 
// continuous, and 2 classification categories.
//     
//  This database encodes the complete set of possible board configurations
//   at the end of tic-tac-toe games, where "x" is assumed to have played
//   first.  The target concept is "win for x" (i.e., true when "x" has one
//   of 8 possible ways to create a "three-in-a-row"). 
//
//  Predicted attribute: win or loose at tic-tac-toe
//     First 626 obs are positive (win) and the next 332 are negative (loss)
//
//  Input Attributes (10 categorical Attributes)
//     Attribute Information: (0=player x has taken, 1=player o has taken, 2=blank)
//
//    1. top-left-square: {x,o,b}
//    2. top-middle-square: {x,o,b}
//    3. top-right-square: {x,o,b}
//    4. middle-left-square: {x,o,b}
//    5. middle-middle-square: {x,o,b}
//    6. middle-right-square: {x,o,b}
//    7. bottom-left-square: {x,o,b}
//    8. bottom-middle-square: {x,o,b}
//    9. bottom-right-square: {x,o,b}
//   10. Class: {positive,negative}

//*****************************************************************************

public class BinaryClassificationEx2 implements Serializable 
{

    private static int nObs          = 958; // number of training patterns
    private static int nInputs       =  27; // 9 nominal coded as 0=x, 1=O, 2=blank
    private static int nCategorical  =  27; // seven categorical attributes
    private static int nContinuous   =  0; // two continuous input attribute
    private static int nOutputs      =  1; // one continuous output (nClasses=2)
    private static int nLayers       =  3; // number of perceptron layers
    private static int nPerceptrons1 =  5; // perceptrons in 1st hidden layer
    private static int nPerceptrons2 =  3; // perceptrons in 2nd hidden layer
    private static boolean trace     = true; // Turns on/off training log
    
    private static Activation hiddenLayerActivation = Activation.LOGISTIC;
    private static Activation outputLayerActivation = Activation.LOGISTIC;
    

    private static int[][] data = {   
        {0,0,0,0,1,1,0,1,1},{0,0,0,0,1,1,1,0,1},{0,0,0,0,1,1,1,1,0},{0,0,0,0,1,1,1,2,2},
        {0,0,0,0,1,1,2,1,2},{0,0,0,0,1,1,2,2,1},{0,0,0,0,1,2,1,1,2},{0,0,0,0,1,2,1,2,1},
	{0,0,0,0,1,2,2,1,1},{0,0,0,0,2,1,1,1,2},{0,0,0,0,2,1,1,2,1},{0,0,0,0,2,1,2,1,1},
	{0,0,0,1,0,1,0,1,1},{0,0,0,1,0,1,1,0,1},{0,0,0,1,0,1,1,1,0},{0,0,0,1,0,1,1,2,2},
	{0,0,0,1,0,1,2,1,2},{0,0,0,1,0,1,2,2,1},{0,0,0,1,0,2,1,1,2},{0,0,0,1,0,2,1,2,1},
	{0,0,0,1,0,2,2,1,1},{0,0,0,1,1,0,0,1,1},{0,0,0,1,1,0,1,0,1},{0,0,0,1,1,0,1,1,0},
	{0,0,0,1,1,0,1,2,2},{0,0,0,1,1,0,2,1,2},{0,0,0,1,1,0,2,2,1},{0,0,0,1,1,2,0,1,2},
	{0,0,0,1,1,2,0,2,1},{0,0,0,1,1,2,1,0,2},{0,0,0,1,1,2,1,2,0},{0,0,0,1,1,2,2,0,1},
	{0,0,0,1,1,2,2,1,0},{0,0,0,1,1,2,2,2,2},{0,0,0,1,2,0,1,1,2},{0,0,0,1,2,0,1,2,1},
	{0,0,0,1,2,0,2,1,1},{0,0,0,1,2,1,0,1,2},{0,0,0,1,2,1,0,2,1},{0,0,0,1,2,1,1,0,2},
	{0,0,0,1,2,1,1,2,0},{0,0,0,1,2,1,2,0,1},{0,0,0,1,2,1,2,1,0},{0,0,0,1,2,1,2,2,2},
	{0,0,0,1,2,2,0,1,1},{0,0,0,1,2,2,1,0,1},{0,0,0,1,2,2,1,1,0},{0,0,0,1,2,2,1,2,2},
	{0,0,0,1,2,2,2,1,2},{0,0,0,1,2,2,2,2,1},{0,0,0,2,0,1,1,1,2},{0,0,0,2,0,1,1,2,1},
	{0,0,0,2,0,1,2,1,1},{0,0,0,2,1,0,1,1,2},{0,0,0,2,1,0,1,2,1},{0,0,0,2,1,0,2,1,1},
	{0,0,0,2,1,1,0,1,2},{0,0,0,2,1,1,0,2,1},{0,0,0,2,1,1,1,0,2},{0,0,0,2,1,1,1,2,0},
	{0,0,0,2,1,1,2,0,1},{0,0,0,2,1,1,2,1,0},{0,0,0,2,1,1,2,2,2},{0,0,0,2,1,2,0,1,1},
	{0,0,0,2,1,2,1,0,1},{0,0,0,2,1,2,1,1,0},{0,0,0,2,1,2,1,2,2},{0,0,0,2,1,2,2,1,2},
	{0,0,0,2,1,2,2,2,1},{0,0,0,2,2,1,0,1,1},{0,0,0,2,2,1,1,0,1},{0,0,0,2,2,1,1,1,0},
	{0,0,0,2,2,1,1,2,2},{0,0,0,2,2,1,2,1,2},{0,0,0,2,2,1,2,2,1},{0,0,0,2,2,2,1,1,2},
	{0,0,0,2,2,2,1,2,1},{0,0,0,2,2,2,2,1,1},{0,0,1,0,0,1,1,1,0},{0,0,1,0,1,0,0,1,1},
	{0,0,1,0,1,1,0,1,0},{0,0,1,0,1,1,0,2,2},{0,0,1,0,1,2,0,1,2},{0,0,1,0,1,2,0,2,1},
	{0,0,1,0,2,1,0,1,2},{0,0,1,0,2,2,0,1,1},{0,0,1,1,0,0,1,0,1},{0,0,1,1,0,0,1,1,0},
	{0,0,1,1,0,1,0,1,0},{0,0,1,1,0,1,1,0,0},{0,0,1,1,0,1,2,0,2},{0,0,1,1,0,1,2,2,0},
	{0,0,1,1,0,2,1,0,2},{0,0,1,1,0,2,1,2,0},{0,0,1,1,0,2,2,0,1},{0,0,1,1,0,2,2,1,0},
	{0,0,1,2,0,1,1,0,2},{0,0,1,2,0,1,1,2,0},{0,0,1,2,0,1,2,1,0},{0,0,1,2,0,2,1,0,1},
	{0,0,1,2,0,2,1,1,0},{0,0,2,0,1,1,0,1,2},{0,0,2,0,1,1,0,2,1},{0,0,2,0,1,2,0,1,1},
	{0,0,2,0,2,1,0,1,1},{0,0,2,1,0,1,1,0,2},{0,0,2,1,0,1,1,2,0},{0,0,2,1,0,1,2,0,1},
	{0,0,2,1,0,1,2,1,0},{0,0,2,1,0,2,1,0,1},{0,0,2,1,0,2,1,1,0},{0,0,2,2,0,1,1,0,1},
	{0,0,2,2,0,1,1,1,0},{0,1,0,0,0,1,0,1,1},{0,1,0,0,0,1,1,1,0},{0,1,0,0,1,1,0,0,1},
	{0,1,0,0,1,1,0,2,2},{0,1,0,0,1,2,0,2,1},{0,1,0,0,2,1,0,1,2},{0,1,0,0,2,1,0,2,1},
	{0,1,0,0,2,2,0,1,1},{0,1,0,1,0,0,0,1,1},{0,1,0,1,0,0,1,1,0},{0,1,0,1,0,1,0,0,1},
	{0,1,0,1,0,1,0,1,0},{0,1,0,1,0,1,0,2,2},{0,1,0,1,0,1,1,0,0},{0,1,0,1,0,1,2,2,0},
	{0,1,0,1,0,2,0,1,2},{0,1,0,1,0,2,0,2,1},{0,1,0,1,0,2,1,2,0},{0,1,0,1,0,2,2,1,0},
	{0,1,0,1,1,0,1,0,0},{0,1,0,1,1,0,2,2,0},{0,1,0,1,2,0,1,2,0},{0,1,0,1,2,0,2,1,0},
	{0,1,0,2,0,1,0,1,2},{0,1,0,2,0,1,0,2,1},{0,1,0,2,0,1,1,2,0},{0,1,0,2,0,1,2,1,0},
	{0,1,0,2,0,2,0,1,1},{0,1,0,2,0,2,1,1,0},{0,1,0,2,1,0,1,2,0},{0,1,0,2,2,0,1,1,0},
	{0,1,1,0,0,0,0,1,1},{0,1,1,0,0,0,1,0,1},{0,1,1,0,0,0,1,1,0},{0,1,1,0,0,0,1,2,2},
	{0,1,1,0,0,0,2,1,2},{0,1,1,0,0,0,2,2,1},{0,1,1,0,0,1,0,1,0},{0,1,1,0,0,1,0,2,2},
	{0,1,1,0,0,1,1,0,0},{0,1,1,0,0,1,2,2,0},{0,1,1,0,0,2,0,1,2},{0,1,1,0,0,2,0,2,1},
	{0,1,1,0,0,2,1,2,0},{0,1,1,0,0,2,2,1,0},{0,1,1,0,1,0,0,0,1},{0,1,1,0,1,0,0,2,2},
	{0,1,1,0,1,1,0,0,0},{0,1,1,0,1,2,0,0,2},{0,1,1,0,1,2,0,2,0},{0,1,1,0,2,0,0,1,2},
	{0,1,1,0,2,0,0,2,1},{0,1,1,0,2,1,0,0,2},{0,1,1,0,2,1,0,2,0},{0,1,1,0,2,2,0,0,1},
	{0,1,1,0,2,2,0,1,0},{0,1,1,0,2,2,0,2,2},{0,1,1,1,0,0,0,1,0},{0,1,1,1,0,0,1,0,0},
	{0,1,1,1,0,0,2,2,0},{0,1,1,1,0,1,0,0,0},{0,1,1,1,0,2,0,2,0},{0,1,1,1,0,2,2,0,0},
	{0,1,1,1,1,0,0,0,0},{0,1,1,1,2,2,0,0,0},{0,1,1,2,0,0,1,2,0},{0,1,1,2,0,0,2,1,0},
	{0,1,1,2,0,1,0,2,0},{0,1,1,2,0,1,2,0,0},{0,1,1,2,0,2,0,1,0},{0,1,1,2,0,2,1,0,0},
	{0,1,1,2,0,2,2,2,0},{0,1,1,2,1,2,0,0,0},{0,1,1,2,2,1,0,0,0},{0,1,2,0,0,0,1,1,2},
	{0,1,2,0,0,0,1,2,1},{0,1,2,0,0,0,2,1,1},{0,1,2,0,0,1,0,1,2},{0,1,2,0,0,1,0,2,1},
	{0,1,2,0,0,1,1,2,0},{0,1,2,0,0,1,2,1,0},{0,1,2,0,0,2,0,1,1},{0,1,2,0,0,2,1,1,0},
	{0,1,2,0,1,0,0,2,1},{0,1,2,0,1,1,0,0,2},{0,1,2,0,1,1,0,2,0},{0,1,2,0,1,2,0,0,1},
	{0,1,2,0,1,2,0,2,2},{0,1,2,0,2,0,0,1,1},{0,1,2,0,2,1,0,0,1},{0,1,2,0,2,1,0,1,0},
	{0,1,2,0,2,1,0,2,2},{0,1,2,0,2,2,0,1,2},{0,1,2,0,2,2,0,2,1},{0,1,2,1,0,0,1,2,0},
	{0,1,2,1,0,0,2,1,0},{0,1,2,1,0,1,0,2,0},{0,1,2,1,0,1,2,0,0},{0,1,2,1,0,2,0,1,0},
	{0,1,2,1,0,2,1,0,0},{0,1,2,1,0,2,2,2,0},{0,1,2,1,1,2,0,0,0},{0,1,2,1,2,1,0,0,0},
	{0,1,2,2,0,0,1,1,0},{0,1,2,2,0,1,0,1,0},{0,1,2,2,0,1,1,0,0},{0,1,2,2,0,1,2,2,0},
	{0,1,2,2,0,2,1,2,0},{0,1,2,2,0,2,2,1,0},{0,1,2,2,1,1,0,0,0},{0,2,0,0,1,1,0,1,2},
	{0,2,0,0,1,1,0,2,1},{0,2,0,0,1,2,0,1,1},{0,2,0,0,2,1,0,1,1},{0,2,0,1,0,1,0,1,2},
	{0,2,0,1,0,1,0,2,1},{0,2,0,1,0,1,1,2,0},{0,2,0,1,0,1,2,1,0},{0,2,0,1,0,2,0,1,1},
	{0,2,0,1,0,2,1,1,0},{0,2,0,1,1,0,1,2,0},{0,2,0,1,1,0,2,1,0},{0,2,0,1,2,0,1,1,0},
	{0,2,0,2,0,1,0,1,1},{0,2,0,2,0,1,1,1,0},{0,2,0,2,1,0,1,1,0},{0,2,1,0,0,0,1,1,2},
	{0,2,1,0,0,0,1,2,1},{0,2,1,0,0,0,2,1,1},{0,2,1,0,0,1,0,1,2},{0,2,1,0,0,1,1,2,0},	
	{0,2,1,0,0,1,2,1,0},{0,2,1,0,0,2,0,1,1},{0,2,1,0,0,2,1,1,0},{0,2,1,0,1,0,0,1,2},
	{0,2,1,0,1,0,0,2,1},{0,2,1,0,1,1,0,0,2},{0,2,1,0,1,1,0,2,0},{0,2,1,0,1,2,0,0,1},
	{0,2,1,0,1,2,0,1,0},{0,2,1,0,1,2,0,2,2},{0,2,1,0,2,0,0,1,1},{0,2,1,0,2,1,0,1,0},
	{0,2,1,0,2,1,0,2,2},{0,2,1,0,2,2,0,1,2},{0,2,1,0,2,2,0,2,1},{0,2,1,1,0,0,1,2,0},
	{0,2,1,1,0,0,2,1,0},{0,2,1,1,0,1,0,2,0},{0,2,1,1,0,1,2,0,0},{0,2,1,1,0,2,0,1,0},
	{0,2,1,1,0,2,1,0,0},{0,2,1,1,0,2,2,2,0},{0,2,1,1,1,2,0,0,0},{0,2,1,1,2,1,0,0,0},
	{0,2,1,2,0,0,1,1,0},{0,2,1,2,0,1,0,1,0},{0,2,1,2,0,1,1,0,0},{0,2,1,2,0,1,2,2,0},
	{0,2,1,2,0,2,1,2,0},{0,2,1,2,0,2,2,1,0},{0,2,1,2,1,1,0,0,0},{0,2,2,0,0,1,0,1,1},
	{0,2,2,0,0,1,1,1,0},{0,2,2,0,1,0,0,1,1},{0,2,2,0,1,1,0,0,1},{0,2,2,0,1,1,0,1,0},
	{0,2,2,0,1,1,0,2,2},{0,2,2,0,1,2,0,1,2},{0,2,2,0,1,2,0,2,1},{0,2,2,0,2,1,0,1,2},
	{0,2,2,0,2,1,0,2,1},{0,2,2,0,2,2,0,1,1},{0,2,2,1,0,0,1,1,0},{0,2,2,1,0,1,0,1,0},
	{0,2,2,1,0,1,1,0,0},{0,2,2,1,0,1,2,2,0},{0,2,2,1,0,2,1,2,0},{0,2,2,1,0,2,2,1,0},
	{0,2,2,2,0,1,1,2,0},{0,2,2,2,0,1,2,1,0},{0,2,2,2,0,2,1,1,0},{1,0,0,0,0,1,0,1,1},
	{1,0,0,0,0,1,1,0,1},{1,0,0,0,1,0,1,1,0},{1,0,0,1,0,0,0,1,1},{1,0,0,1,0,1,0,0,1},
	{1,0,0,1,0,1,0,1,0},{1,0,0,1,0,1,0,2,2},{1,0,0,1,0,1,2,0,2},{1,0,0,1,0,2,0,1,2},
	{1,0,0,1,0,2,0,2,1},{1,0,0,1,0,2,2,0,1},{1,0,0,1,1,0,0,1,0},{1,0,0,1,1,0,2,2,0},
	{1,0,0,1,2,0,2,1,0},{1,0,0,2,0,1,0,1,2},{1,0,0,2,0,1,0,2,1},{1,0,0,2,0,1,1,0,2},
	{1,0,0,2,0,1,2,0,1},{1,0,0,2,0,2,0,1,1},{1,0,0,2,0,2,1,0,1},{1,0,0,2,1,0,1,2,0},
	{1,0,0,2,1,0,2,1,0},{1,0,0,2,2,0,1,1,0},{1,0,1,0,0,0,0,1,1},{1,0,1,0,0,0,1,0,1},
	{1,0,1,0,0,0,1,1,0},{1,0,1,0,0,0,1,2,2},{1,0,1,0,0,0,2,1,2},{1,0,1,0,0,0,2,2,1},
	{1,0,1,0,0,1,1,0,0},{1,0,1,0,0,1,2,0,2},{1,0,1,0,0,2,1,0,2},{1,0,1,0,0,2,2,0,1},
	{1,0,1,0,1,1,0,0,0},{1,0,1,1,0,0,0,0,1},{1,0,1,1,0,0,2,0,2},{1,0,1,1,0,1,0,0,0},
	{1,0,1,1,0,2,0,0,2},{1,0,1,1,0,2,2,0,0},{1,0,1,1,1,0,0,0,0},{1,0,1,1,2,2,0,0,0},
	{1,0,1,2,0,0,1,0,2},{1,0,1,2,0,0,2,0,1},{1,0,1,2,0,1,0,0,2},{1,0,1,2,0,1,2,0,0},
	{1,0,1,2,0,2,0,0,1},{1,0,1,2,0,2,1,0,0},{1,0,1,2,0,2,2,0,2},{1,0,1,2,1,2,0,0,0},
	{1,0,1,2,2,1,0,0,0},{1,0,2,0,0,0,1,1,2},{1,0,2,0,0,0,1,2,1},{1,0,2,0,0,0,2,1,1},
	{1,0,2,0,0,1,1,0,2},{1,0,2,0,0,1,2,0,1},{1,0,2,0,0,2,1,0,1},{1,0,2,1,0,0,2,0,1},
	{1,0,2,1,0,1,0,0,2},{1,0,2,1,0,1,2,0,0},{1,0,2,1,0,2,0,0,1},{1,0,2,1,0,2,2,0,2},
	{1,0,2,1,1,2,0,0,0},{1,0,2,1,2,1,0,0,0},{1,0,2,2,0,0,1,0,1},{1,0,2,2,0,1,0,0,1},
	{1,0,2,2,0,1,1,0,0},{1,0,2,2,0,1,2,0,2},{1,0,2,2,0,2,1,0,2},{1,0,2,2,0,2,2,0,1},
	{1,0,2,2,1,1,0,0,0},{1,1,0,0,0,0,0,1,1},{1,1,0,0,0,0,1,0,1},{1,1,0,0,0,0,1,1,0},
	{1,1,0,0,0,0,1,2,2},{1,1,0,0,0,0,2,1,2},{1,1,0,0,0,0,2,2,1},{1,1,0,0,0,1,0,0,1},
	{1,1,0,0,0,1,0,1,0},{1,1,0,0,0,1,0,2,2},{1,1,0,0,0,2,0,1,2},{1,1,0,0,0,2,0,2,1},
	{1,1,0,0,1,0,1,0,0},{1,1,0,0,1,0,2,2,0},{1,1,0,0,1,1,0,0,0},{1,1,0,0,2,0,1,2,0},
	{1,1,0,0,2,0,2,1,0},{1,1,0,1,0,0,0,0,1},{1,1,0,1,0,0,0,1,0},{1,1,0,1,0,0,0,2,2},
	{1,1,0,1,0,0,2,2,0},{1,1,0,1,0,1,0,0,0},{1,1,0,1,0,2,0,0,2},{1,1,0,1,0,2,0,2,0},
	{1,1,0,1,1,0,0,0,0},{1,1,0,1,2,0,0,2,0},{1,1,0,1,2,0,2,0,0},{1,1,0,1,2,2,0,0,0},
	{1,1,0,2,0,0,0,1,2},{1,1,0,2,0,0,0,2,1},{1,1,0,2,0,0,1,2,0},{1,1,0,2,0,0,2,1,0},
	{1,1,0,2,0,1,0,0,2},{1,1,0,2,0,1,0,2,0},{1,1,0,2,0,2,0,0,1},{1,1,0,2,0,2,0,1,0},
	{1,1,0,2,0,2,0,2,2},{1,1,0,2,1,0,0,2,0},{1,1,0,2,1,0,2,0,0},{1,1,0,2,1,2,0,0,0},
	{1,1,0,2,2,0,0,1,0},{1,1,0,2,2,0,1,0,0},{1,1,0,2,2,0,2,2,0},{1,1,0,2,2,1,0,0,0},
	{1,1,2,0,0,0,0,1,2},{1,1,2,0,0,0,0,2,1},{1,1,2,0,0,0,1,0,2},{1,1,2,0,0,0,1,2,0},
	{1,1,2,0,0,0,2,0,1},{1,1,2,0,0,0,2,1,0},{1,1,2,0,0,0,2,2,2},{1,1,2,0,1,2,0,0,0},
	{1,1,2,0,2,1,0,0,0},{1,1,2,1,0,2,0,0,0},{1,1,2,1,2,0,0,0,0},{1,1,2,2,0,1,0,0,0},
	{1,1,2,2,1,0,0,0,0},{1,1,2,2,2,2,0,0,0},{1,2,0,0,0,0,1,1,2},{1,2,0,0,0,0,1,2,1},
	{1,2,0,0,0,0,2,1,1},{1,2,0,0,0,1,0,1,2},{1,2,0,0,0,1,0,2,1},{1,2,0,0,0,2,0,1,1},
	{1,2,0,0,1,0,1,2,0},{1,2,0,0,1,0,2,1,0},{1,2,0,0,2,0,1,1,0},{1,2,0,1,0,0,0,1,2},
	{1,2,0,1,0,0,0,2,1},{1,2,0,1,0,0,2,1,0},{1,2,0,1,0,1,0,0,2},{1,2,0,1,0,1,0,2,0},
	{1,2,0,1,0,2,0,0,1},{1,2,0,1,0,2,0,1,0},{1,2,0,1,0,2,0,2,2},{1,2,0,1,1,0,0,2,0},
	{1,2,0,1,1,0,2,0,0},{1,2,0,1,1,2,0,0,0},{1,2,0,1,2,0,0,1,0},{1,2,0,1,2,0,2,2,0},
	{1,2,0,1,2,1,0,0,0},{1,2,0,2,0,0,0,1,1},{1,2,0,2,0,0,1,1,0},{1,2,0,2,0,1,0,0,1},
	{1,2,0,2,0,1,0,1,0},{1,2,0,2,0,1,0,2,2},{1,2,0,2,0,2,0,1,2},{1,2,0,2,0,2,0,2,1},
	{1,2,0,2,1,0,0,1,0},{1,2,0,2,1,0,1,0,0},{1,2,0,2,1,0,2,2,0},{1,2,0,2,1,1,0,0,0},
	{1,2,0,2,2,0,1,2,0},{1,2,0,2,2,0,2,1,0},{1,2,1,0,0,0,0,1,2},{1,2,1,0,0,0,0,2,1},
	{1,2,1,0,0,0,1,0,2},{1,2,1,0,0,0,1,2,0},{1,2,1,0,0,0,2,0,1},{1,2,1,0,0,0,2,1,0},
	{1,2,1,0,0,0,2,2,2},{1,2,1,0,1,2,0,0,0},{1,2,1,0,2,1,0,0,0},{1,2,1,1,0,2,0,0,0},
	{1,2,1,1,2,0,0,0,0},{1,2,1,2,0,1,0,0,0},{1,2,1,2,1,0,0,0,0},{1,2,1,2,2,2,0,0,0},
	{1,2,2,0,0,0,0,1,1},{1,2,2,0,0,0,1,0,1},{1,2,2,0,0,0,1,1,0},{1,2,2,0,0,0,1,2,2},
	{1,2,2,0,0,0,2,1,2},{1,2,2,0,0,0,2,2,1},{1,2,2,0,1,1,0,0,0},{1,2,2,1,0,1,0,0,0},
	{1,2,2,1,1,0,0,0,0},{1,2,2,1,2,2,0,0,0},{1,2,2,2,1,2,0,0,0},{1,2,2,2,2,1,0,0,0},
	{2,0,0,1,0,1,0,1,2},{2,0,0,1,0,1,0,2,1},{2,0,0,1,0,1,1,0,2},{2,0,0,1,0,1,2,0,1},
	{2,0,0,1,0,2,0,1,1},{2,0,0,1,0,2,1,0,1},{2,0,0,1,1,0,1,2,0},{2,0,0,1,1,0,2,1,0},
	{2,0,0,1,2,0,1,1,0},{2,0,0,2,0,1,0,1,1},{2,0,0,2,0,1,1,0,1},{2,0,0,2,1,0,1,1,0},
	{2,0,1,0,0,0,1,1,2},{2,0,1,0,0,0,1,2,1},{2,0,1,0,0,0,2,1,1},{2,0,1,0,0,1,1,0,2},
	{2,0,1,0,0,2,1,0,1},{2,0,1,1,0,0,1,0,2},{2,0,1,1,0,0,2,0,1},{2,0,1,1,0,1,0,0,2},
	{2,0,1,1,0,1,2,0,0},{2,0,1,1,0,2,0,0,1},{2,0,1,1,0,2,1,0,0},{2,0,1,1,0,2,2,0,2},
	{2,0,1,1,1,2,0,0,0},{2,0,1,1,2,1,0,0,0},{2,0,1,2,0,0,1,0,1},{2,0,1,2,0,1,1,0,0},
	{2,0,1,2,0,1,2,0,2},{2,0,1,2,0,2,1,0,2},{2,0,1,2,0,2,2,0,1},{2,0,1,2,1,1,0,0,0},
	{2,0,2,0,0,1,1,0,1},{2,0,2,1,0,0,1,0,1},{2,0,2,1,0,1,0,0,1},{2,0,2,1,0,1,1,0,0},
	{2,0,2,1,0,1,2,0,2},{2,0,2,1,0,2,1,0,2},{2,0,2,1,0,2,2,0,1},{2,0,2,2,0,1,1,0,2},
	{2,0,2,2,0,1,2,0,1},{2,0,2,2,0,2,1,0,1},{2,1,0,0,0,0,1,1,2},{2,1,0,0,0,0,1,2,1},
	{2,1,0,0,0,0,2,1,1},{2,1,0,0,0,1,0,1,2},{2,1,0,0,0,1,0,2,1},{2,1,0,0,0,2,0,1,1},
	{2,1,0,0,1,0,1,2,0},{2,1,0,0,2,0,1,1,0},{2,1,0,1,0,0,0,1,2},{2,1,0,1,0,0,0,2,1},
	{2,1,0,1,0,0,1,2,0},{2,1,0,1,0,0,2,1,0},{2,1,0,1,0,1,0,0,2},{2,1,0,1,0,1,0,2,0},
	{2,1,0,1,0,2,0,0,1},{2,1,0,1,0,2,0,1,0},{2,1,0,1,0,2,0,2,2},{2,1,0,1,1,0,0,2,0},
	{2,1,0,1,1,0,2,0,0},{2,1,0,1,1,2,0,0,0},{2,1,0,1,2,0,0,1,0},{2,1,0,1,2,0,1,0,0},
	{2,1,0,1,2,0,2,2,0},{2,1,0,1,2,1,0,0,0},{2,1,0,2,0,0,0,1,1},{2,1,0,2,0,0,1,1,0},
	{2,1,0,2,0,1,0,0,1},{2,1,0,2,0,1,0,1,0},{2,1,0,2,0,1,0,2,2},{2,1,0,2,0,2,0,1,2},
	{2,1,0,2,0,2,0,2,1},{2,1,0,2,1,0,1,0,0},{2,1,0,2,1,0,2,2,0},{2,1,0,2,1,1,0,0,0},
	{2,1,0,2,2,0,1,2,0},{2,1,0,2,2,0,2,1,0},{2,1,1,0,0,0,0,1,2},{2,1,1,0,0,0,0,2,1},
	{2,1,1,0,0,0,1,0,2},{2,1,1,0,0,0,1,2,0},{2,1,1,0,0,0,2,0,1},{2,1,1,0,0,0,2,1,0},
	{2,1,1,0,0,0,2,2,2},{2,1,1,0,1,2,0,0,0},{2,1,1,0,2,1,0,0,0},{2,1,1,1,0,2,0,0,0},
	{2,1,1,1,2,0,0,0,0},{2,1,1,2,0,1,0,0,0},{2,1,1,2,1,0,0,0,0},{2,1,1,2,2,2,0,0,0},
	{2,1,2,0,0,0,0,1,1},{2,1,2,0,0,0,1,0,1},{2,1,2,0,0,0,1,1,0},{2,1,2,0,0,0,1,2,2},
	{2,1,2,0,0,0,2,1,2},{2,1,2,0,0,0,2,2,1},{2,1,2,0,1,1,0,0,0},{2,1,2,1,0,1,0,0,0},
	{2,1,2,1,1,0,0,0,0},{2,1,2,1,2,2,0,0,0},{2,1,2,2,1,2,0,0,0},{2,1,2,2,2,1,0,0,0},
	{2,2,0,0,0,1,0,1,1},{2,2,0,0,1,0,1,1,0},{2,2,0,1,0,0,0,1,1},{2,2,0,1,0,0,1,1,0},
	{2,2,0,1,0,1,0,0,1},{2,2,0,1,0,1,0,1,0},{2,2,0,1,0,1,0,2,2},{2,2,0,1,0,2,0,1,2},
	{2,2,0,1,0,2,0,2,1},{2,2,0,1,1,0,0,1,0},{2,2,0,1,1,0,1,0,0},{2,2,0,1,1,0,2,2,0},
	{2,2,0,1,2,0,1,2,0},{2,2,0,1,2,0,2,1,0},{2,2,0,2,0,1,0,1,2},{2,2,0,2,0,1,0,2,1},
	{2,2,0,2,0,2,0,1,1},{2,2,0,2,1,0,1,2,0},{2,2,0,2,1,0,2,1,0},{2,2,0,2,2,0,1,1,0},
	{2,2,1,0,0,0,0,1,1},{2,2,1,0,0,0,1,0,1},{2,2,1,0,0,0,1,1,0},{2,2,1,0,0,0,1,2,2},
	{2,2,1,0,0,0,2,1,2},{2,2,1,0,0,0,2,2,1},{2,2,1,0,1,1,0,0,0},{2,2,1,1,0,1,0,0,0},
	{2,2,1,1,1,0,0,0,0},{2,2,1,1,2,2,0,0,0},{2,2,1,2,1,2,0,0,0},{2,2,1,2,2,1,0,0,0},
	{2,2,2,0,0,0,1,1,2},{2,2,2,0,0,0,1,2,1},{2,2,2,0,0,0,2,1,1},{2,2,2,1,1,2,0,0,0},
	{2,2,2,1,2,1,0,0,0},{2,2,2,2,1,1,0,0,0},{0,0,1,0,0,1,1,2,1},{0,0,1,0,0,1,2,1,1},
	{0,0,1,0,0,2,1,1,1},{0,0,1,0,1,0,1,1,2},{0,0,1,0,1,0,1,2,1},{0,0,1,0,1,1,1,0,2},
	{0,0,1,0,1,1,1,2,0},{0,0,1,0,1,1,2,0,1},{0,0,1,0,1,2,1,0,1},{0,0,1,0,1,2,1,1,0},
	{0,0,1,0,1,2,1,2,2},{0,0,1,0,2,0,1,1,1},{0,0,1,0,2,1,1,0,1},{0,0,1,0,2,1,2,2,1},
	{0,0,1,1,0,1,0,2,1},{0,0,1,1,1,0,1,0,2},{0,0,1,1,1,0,1,2,0},{0,0,1,1,1,1,0,0,2},
	{0,0,1,1,1,1,0,2,0},{0,0,1,1,1,1,2,0,0},{0,0,1,1,1,2,1,0,0},{0,0,1,1,2,1,0,0,1},
	{0,0,1,2,0,0,1,1,1},{0,0,1,2,0,1,0,1,1},{0,0,1,2,0,1,2,2,1},{0,0,1,2,1,0,1,0,1},
	{0,0,1,2,1,0,1,1,0},{0,0,1,2,1,0,1,2,2},{0,0,1,2,1,1,0,0,1},{0,0,1,2,1,1,1,0,0},
	{0,0,1,2,1,2,1,0,2},{0,0,1,2,1,2,1,2,0},{0,0,1,2,2,1,0,2,1},{0,0,1,2,2,1,2,0,1},
	{0,0,2,0,0,1,1,1,1},{0,0,2,0,1,0,1,1,1},{0,0,2,0,2,2,1,1,1},{0,0,2,1,0,0,1,1,1},
	{0,0,2,1,1,1,0,0,1},{0,0,2,1,1,1,0,1,0},{0,0,2,1,1,1,0,2,2},{0,0,2,1,1,1,1,0,0},
	{0,0,2,1,1,1,2,0,2},{0,0,2,1,1,1,2,2,0},{0,0,2,2,0,2,1,1,1},{0,0,2,2,2,0,1,1,1},
	{0,1,0,0,0,2,1,1,1},{0,1,0,0,1,0,1,1,2},{0,1,0,0,1,0,2,1,1},{0,1,0,0,1,1,2,1,0},
	{0,1,0,0,1,2,1,1,0},{0,1,0,0,1,2,2,1,2},{0,1,0,0,2,0,1,1,1},{0,1,0,1,1,0,0,1,2},
	{0,1,0,1,1,1,0,0,2},{0,1,0,1,1,1,0,2,0},{0,1,0,1,1,1,2,0,0},{0,1,0,1,1,2,0,1,0},
	{0,1,0,2,0,0,1,1,1},{0,1,0,2,1,0,0,1,1},{0,1,0,2,1,0,2,1,2},{0,1,0,2,1,1,0,1,0},
	{0,1,0,2,1,2,0,1,2},{0,1,0,2,1,2,2,1,0},{0,1,1,0,0,1,2,0,1},{0,1,1,0,1,0,1,0,2},
	{0,1,1,0,1,0,1,2,0},{0,1,1,0,1,0,2,1,0},{0,1,1,0,1,2,1,0,0},{0,1,1,2,0,1,0,0,1},
	{0,1,1,2,1,0,0,1,0},{0,1,1,2,1,0,1,0,0},{0,1,2,0,1,0,1,1,0},{0,1,2,0,1,0,2,1,2},
	{0,1,2,0,1,2,2,1,0},{0,1,2,1,1,0,0,1,0},{0,1,2,2,1,0,0,1,2},{0,1,2,2,1,0,2,1,0},
	{0,1,2,2,1,2,0,1,0},{0,2,0,0,0,1,1,1,1},{0,2,0,0,1,0,1,1,1},{0,2,0,0,2,2,1,1,1},
	{0,2,0,1,0,0,1,1,1},{0,2,0,1,1,1,0,0,1},{0,2,0,1,1,1,0,1,0},{0,2,0,1,1,1,0,2,2},
	{0,2,0,1,1,1,1,0,0},{0,2,0,1,1,1,2,0,2},{0,2,0,1,1,1,2,2,0},{0,2,0,2,0,2,1,1,1},
	{0,2,0,2,2,0,1,1,1},{0,2,1,0,0,1,1,0,1},{0,2,1,0,0,1,2,2,1},{0,2,1,0,1,0,1,0,1},
	{0,2,1,0,1,0,1,1,0},{0,2,1,0,1,0,1,2,2},{0,2,1,0,1,1,1,0,0},{0,2,1,0,1,2,1,0,2},
	{0,2,1,0,1,2,1,2,0},{0,2,1,0,2,1,2,0,1},{0,2,1,1,0,1,0,0,1},{0,2,1,1,1,0,1,0,0},
	{0,2,1,2,0,1,0,2,1},{0,2,1,2,0,1,2,0,1},{0,2,1,2,1,0,1,0,2},{0,2,1,2,1,0,1,2,0},
	{0,2,1,2,1,2,1,0,0},{0,2,1,2,2,1,0,0,1},{0,2,2,0,0,2,1,1,1},{0,2,2,0,2,0,1,1,1},
	{0,2,2,1,1,1,0,0,2},{0,2,2,1,1,1,0,2,0},{0,2,2,1,1,1,2,0,0},{0,2,2,2,0,0,1,1,1},
	{1,0,0,0,0,2,1,1,1},{1,0,0,0,1,0,1,2,1},{1,0,0,0,1,0,2,1,1},{1,0,0,0,1,1,0,2,1},
	{1,0,0,0,1,1,2,0,1},{1,0,0,0,1,2,0,1,1},{1,0,0,0,1,2,1,0,1},{1,0,0,0,1,2,2,2,1},
	{1,0,0,0,2,0,1,1,1},{1,0,0,1,0,0,1,1,2},{1,0,0,1,0,0,1,2,1},{1,0,0,1,0,1,1,2,0},
	{1,0,0,1,0,2,1,1,0},{1,0,0,1,0,2,1,2,2},{1,0,0,1,1,0,0,2,1},{1,0,0,1,1,0,1,0,2},
	{1,0,0,1,1,0,2,0,1},{1,0,0,1,1,1,0,0,2},{1,0,0,1,1,1,0,2,0},{1,0,0,1,1,1,2,0,0},
	{1,0,0,1,1,2,0,0,1},{1,0,0,1,1,2,1,0,0},{1,0,0,1,2,0,1,0,1},{1,0,0,1,2,0,1,2,2},
	{1,0,0,1,2,1,1,0,0},{1,0,0,1,2,2,1,0,2},{1,0,0,1,2,2,1,2,0},{1,0,0,2,0,0,1,1,1},
	{1,0,0,2,1,0,0,1,1},{1,0,0,2,1,0,1,0,1},{1,0,0,2,1,0,2,2,1},{1,0,0,2,1,1,0,0,1},
	{1,0,0,2,1,2,0,2,1},{1,0,0,2,1,2,2,0,1},{1,0,1,0,0,1,0,2,1},{1,0,1,0,1,0,0,2,1},
	{1,0,1,0,1,0,1,0,2},{1,0,1,0,1,0,1,2,0},{1,0,1,0,1,0,2,0,1},{1,0,1,0,1,2,0,0,1},
	{1,0,1,0,1,2,1,0,0},{1,0,1,0,2,1,0,0,1},{1,0,1,1,0,0,1,2,0},{1,0,1,1,2,0,1,0,0},
	{1,0,1,2,1,0,0,0,1},{1,0,1,2,1,0,1,0,0},{1,0,2,0,1,0,0,1,1},{1,0,2,0,1,0,1,0,1},
	{1,0,2,0,1,0,2,2,1},{1,0,2,0,1,1,0,0,1},{1,0,2,0,1,2,0,2,1},{1,0,2,0,1,2,2,0,1},
	{1,0,2,1,0,0,1,1,0},{1,0,2,1,0,0,1,2,2},{1,0,2,1,0,2,1,2,0},{1,0,2,1,1,0,0,0,1},
	{1,0,2,1,1,0,1,0,0},{1,0,2,1,2,0,1,0,2},{1,0,2,1,2,0,1,2,0},{1,0,2,1,2,2,1,0,0},
	{1,0,2,2,1,0,0,2,1},{1,0,2,2,1,0,2,0,1},{1,0,2,2,1,2,0,0,1},{1,1,0,0,1,0,0,1,2},
	{1,1,0,0,1,0,0,2,1},{1,1,0,0,1,0,2,0,1},{1,1,0,0,1,2,0,0,1},{1,1,0,0,1,2,0,1,0},
	{1,1,0,1,0,0,1,0,2},{1,1,0,1,0,2,1,0,0},{1,1,0,2,1,0,0,0,1},{1,1,1,0,0,1,0,0,2},
	{1,1,1,0,0,1,0,2,0},{1,1,1,0,0,1,2,0,0},{1,1,1,0,0,2,0,0,1},{1,1,1,0,0,2,0,1,0},
	{1,1,1,0,0,2,0,2,2},{1,1,1,0,0,2,1,0,0},{1,1,1,0,0,2,2,0,2},{1,1,1,0,0,2,2,2,0},
	{1,1,1,0,1,0,0,0,2},{1,1,1,0,1,0,0,2,0},{1,1,1,0,1,0,2,0,0},{1,1,1,0,2,0,0,0,1},
	{1,1,1,0,2,0,0,1,0},{1,1,1,0,2,0,0,2,2},{1,1,1,0,2,0,1,0,0},{1,1,1,0,2,0,2,0,2},
	{1,1,1,0,2,0,2,2,0},{1,1,1,0,2,2,0,0,2},{1,1,1,0,2,2,0,2,0},{1,1,1,0,2,2,2,0,0},
	{1,1,1,1,0,0,0,0,2},{1,1,1,1,0,0,0,2,0},{1,1,1,1,0,0,2,0,0},{1,1,1,2,0,0,0,0,1},
	{1,1,1,2,0,0,0,1,0},{1,1,1,2,0,0,0,2,2},{1,1,1,2,0,0,1,0,0},{1,1,1,2,0,0,2,0,2},
	{1,1,1,2,0,0,2,2,0},{1,1,1,2,0,2,0,0,2},{1,1,1,2,0,2,0,2,0},{1,1,1,2,0,2,2,0,0},
	{1,1,1,2,2,0,0,0,2},{1,1,1,2,2,0,0,2,0},{1,1,1,2,2,0,2,0,0},{1,1,2,0,1,0,0,0,1},
	{1,1,2,0,1,0,0,1,0},{1,1,2,1,0,0,1,0,0},{1,2,0,0,1,0,0,1,1},{1,2,0,0,1,0,1,0,1},
	{1,2,0,0,1,0,2,2,1},{1,2,0,0,1,1,0,0,1},{1,2,0,0,1,2,0,2,1},{1,2,0,0,1,2,2,0,1},
	{1,2,0,1,0,0,1,0,1},{1,2,0,1,0,0,1,2,2},{1,2,0,1,0,1,1,0,0},{1,2,0,1,0,2,1,0,2},
	{1,2,0,1,0,2,1,2,0},{1,2,0,1,1,0,0,0,1},{1,2,0,1,2,0,1,0,2},{1,2,0,1,2,2,1,0,0},
	{1,2,0,2,1,0,0,2,1},{1,2,0,2,1,0,2,0,1},{1,2,0,2,1,2,0,0,1},{1,2,1,0,0,1,0,0,1},
	{1,2,1,0,1,0,0,0,1},{1,2,1,0,1,0,1,0,0},{1,2,1,1,0,0,1,0,0},{1,2,2,0,1,0,0,2,1},
	{1,2,2,0,1,0,2,0,1},{1,2,2,0,1,2,0,0,1},{1,2,2,1,0,0,1,0,2},{1,2,2,1,0,0,1,2,0},
	{1,2,2,1,0,2,1,0,0},{1,2,2,1,2,0,1,0,0},{1,2,2,2,1,0,0,0,1},{2,0,0,0,0,1,1,1,1},
	{2,0,0,0,1,0,1,1,1},{2,0,0,0,2,2,1,1,1},{2,0,0,1,0,0,1,1,1},{2,0,0,1,1,1,0,0,1},
	{2,0,0,1,1,1,0,1,0},{2,0,0,1,1,1,0,2,2},{2,0,0,1,1,1,1,0,0},{2,0,0,1,1,1,2,0,2},
	{2,0,0,1,1,1,2,2,0},{2,0,0,2,0,2,1,1,1},{2,0,0,2,2,0,1,1,1},{2,0,1,0,0,1,0,1,1},
	{2,0,1,0,0,1,2,2,1},{2,0,1,0,1,0,1,0,1},{2,0,1,0,1,0,1,1,0},{2,0,1,0,1,0,1,2,2},
	{2,0,1,0,1,1,0,0,1},{2,0,1,0,1,1,1,0,0},{2,0,1,0,1,2,1,0,2},{2,0,1,0,1,2,1,2,0},
	{2,0,1,0,2,1,0,2,1},{2,0,1,0,2,1,2,0,1},{2,0,1,1,1,0,1,0,0},{2,0,1,2,0,1,0,2,1},
	{2,0,1,2,1,0,1,0,2},{2,0,1,2,1,0,1,2,0},{2,0,1,2,1,2,1,0,0},{2,0,1,2,2,1,0,0,1},
	{2,0,2,0,0,2,1,1,1},{2,0,2,0,2,0,1,1,1},{2,0,2,1,1,1,0,0,2},{2,0,2,1,1,1,0,2,0},
	{2,0,2,1,1,1,2,0,0},{2,0,2,2,0,0,1,1,1},{2,1,0,0,1,0,0,1,1},{2,1,0,0,1,0,2,1,2},
	{2,1,0,0,1,1,0,1,0},{2,1,0,0,1,2,0,1,2},{2,1,0,0,1,2,2,1,0},{2,1,0,2,1,0,0,1,2},
	{2,1,0,2,1,2,0,1,0},{2,1,1,0,0,1,0,0,1},{2,1,1,0,1,0,0,1,0},{2,1,1,0,1,0,1,0,0},
	{2,1,2,0,1,0,0,1,2},{2,1,2,0,1,0,2,1,0},{2,1,2,0,1,2,0,1,0},{2,1,2,2,1,0,0,1,0},
	{2,2,0,0,0,2,1,1,1},{2,2,0,0,2,0,1,1,1},{2,2,0,1,1,1,0,0,2},{2,2,0,1,1,1,0,2,0},
	{2,2,0,1,1,1,2,0,0},{2,2,0,2,0,0,1,1,1},{2,2,1,0,0,1,0,2,1},{2,2,1,0,0,1,2,0,1},
	{2,2,1,0,1,0,1,0,2},{2,2,1,0,1,0,1,2,0},{2,2,1,0,1,2,1,0,0},{2,2,1,0,2,1,0,0,1},
	{2,2,1,2,0,1,0,0,1},{2,2,1,2,1,0,1,0,0},{0,0,1,1,0,0,0,1,1},{0,0,1,1,1,0,0,0,1},
	{0,0,1,1,1,0,0,1,0},{0,1,0,0,0,1,1,0,1},{0,1,0,0,1,0,1,0,1},{0,1,0,0,1,1,1,0,0},
	{0,1,0,1,0,0,1,0,1},{0,1,0,1,1,0,0,0,1},{0,1,1,1,0,0,0,0,1},{1,0,0,0,0,1,1,1,0},
        {1,0,0,0,1,1,0,1,0},{1,0,0,0,1,1,1,0,0},{1,0,1,0,0,1,0,1,0},{1,0,1,0,1,0,0,1,0},
        {1,0,1,1,0,0,0,1,0},{1,1,0,0,0,1,1,0,0}
    };

                       
    private double categoricalAtt[][];
    
    private static double weights[] =  {
        -0.00000000000000063401,  0.00000000000000055700,  0.00000000000000012769,
        -0.52573653474162341000,  0.43427498705107342000,  0.09146154769055023200,
         0.00000000000000138130, -0.00000000000000118053, -0.00000000000000050631,
         0.52573653474162607000, -0.43427498705107603000, -0.09146154769055094000,
        -0.00000000000000057743,  0.00000000000000037314, -0.00000000000000023441,
         0.52573653474162907000, -0.43427498705107787000, -0.09146154769055155100, 
        -0.00000000000000405476,  0.00000000000000339568,  0.00000000000000053496, 
        -0.52573653474162763000,  0.43427498705107587000,  0.09146154769055155100,
        -0.00000000000000116499,  0.00000000000000111960,  0.00000000000000004464, 
         0.59181480684449950000, -0.48617039139374285000, -0.10564441545075645000, 
         0.33659693927260309000, -0.28023189914604213000, -0.05636504012656110000,
        -0.00000000000000339401,  0.00000000000000312093,  0.00000000000000057542,
         0.33659693927260292000, -0.28023189914604213000, -0.05636504012656087800,
         0.00000000000000099480, -0.00000000000000067295, -0.00000000000000003901,
        -0.33659693927260537000,  0.28023189914604435000,  0.05636504012656118300,
        -0.00000000000000284785,  0.00000000000000269180,  0.00000000000000026089,
        -0.33659693927260426000,  0.28023189914604330000,  0.05636504012656121800,
        -0.59181480684449039000,  0.48617039139373414000,  0.10564441545075609000,
         0.00000000000000098567, -0.00000000000000095474, -0.00000000000000021207,
        -0.33659693927260698000,  0.28023189914604579000,  0.05636504012656142600,
        -0.59181480684449372000,  0.48617039139373774000,  0.10564441545075645000,
         0.33659693927260514000, -0.28023189914604435000, -0.05636504012656100300,
        -0.00000000000000010012,  0.00000000000000001702,  0.00000000000000012437,
        -0.33659693927260204000,  0.28023189914604152000,  0.05636504012656010100,
         0.59181480684449428000, -0.48617039139373813000, -0.10564441545075638000,
         0.33659693927260081000, -0.28023189914603991000, -0.05636504012656074600,
         0.00000000000000216976, -0.00000000000000195478, -0.00000000000000023527,
         0.39961448116107012000, -0.35734834346184241000, -0.04226613769922773400,
        -0.33634249144114892000,  0.28239332896420155000,  0.05394916247694748300,
         0.39961448116106396000, -0.35734834346183769000, -0.04226613769922723400,
        -0.33634249144114703000,  0.28239332896420027000,  0.05394916247694724100,
        -0.21667948075941171000,  0.12935693076722185000,  0.08732254999219028800,
        -0.33634249144114398000,  0.28239332896419722000,  0.05394916247694688700,
         0.39961448116106157000, -0.35734834346183453000, -0.04226613769922710200,
        -0.33634249144114919000,  0.28239332896420105000,  0.05394916247694810100,
         0.39961448116107307000, -0.35734834346184485000, -0.04226613769922824700,
        -0.54188833749531484000,  0.49456532031183192000,  0.04732301718348254400,
         0.00000000000000042643, -0.00000000000000052416, -0.00000000000000028161,
         0.54188833749532672000, -0.49456532031184147000, -0.04732301718348516700,
         0.00000000000000208148, -0.00000000000000170526, -0.00000000000000039120,
        -0.00000000000001165642,  0.00000000000000998830,  0.00000000000000133016,
        -0.00000000000000389738,  0.00000000000000286692,  0.00000000000000081238,
         0.54188833749532805000, -0.49456532031184208000, -0.04732301718348581200,
        -0.00000000000000308117,  0.00000000000000212213,  0.00000000000000117840,
        -0.54188833749532439000,  0.49456532031183975000,  0.04732301718348420900,
         0.20000000000000001000,  0.20000000000000001000,  0.20000000000000001000,
         0.20000000000000001000,  0.20000000000000001000,  0.20000000000000001000,
         0.20000000000000001000,  0.20000000000000001000,  0.20000000000000001000,
         0.20000000000000001000,  0.20000000000000001000,  0.20000000000000001000,
         0.20000000000000001000,  0.20000000000000001000,  0.20000000000000001000,
         0.33333333333333331000,  0.33333333333333331000,  0.33333333333333331000,
         0.00000000000000093850, -0.00000000000000054323, -0.00000000000000011761,
        -0.03290466729806285100,  0.00000000000000063771,  0.00000000000000000000,
         0.00000000000000000000,  0.00000000000000000000,  0.00000000000000000000};

    
 // **********************************************************************
 // MAIN
 // **********************************************************************
    public static void main(String[] args) throws Exception {

       double xData[][]; // Input  Attributes for Trainer
       int    yData[]; // Output Attributes for Trainer
       int i, j;         // array indicies
       int nWeights = 0; // Number of weights obtained from network
       String trainLogName    = "BinaryClassificationNetworkEx2.log";
       int[][] z;

    // **********************************************************************
    // PREPROCESS TRAINING PATTERNS
    // **********************************************************************
       long t0 = System.currentTimeMillis();

       xData = new double[nObs][nInputs];
       yData = new int[nObs];

       /* Perform Binary Filtering. */
       for (i=0;i<data.length;i++) {
           for (j=0;j<data[0].length;j++) {
               data[i][j]++;
           }
       }
       int xx[] = new int[nObs];
       UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(3);      
       for (i=0; i<9; i++) {
           // Copy each variable to a temp var
           for (j=0; j<nObs; j++) {
               xx[j] = data[j][i];
           }
           //  Perform binary filter on temp var
           z = filter.encode(xx);
           //  Copy binary encoded var to xData
            for (j=0; j<nObs; j++) {
               for (int k=0; k<3; k++) {
                   xData[j][k+(i*3)] = (double) z[j][k];
               }
           }
       }
       
       for (i=0; i < nObs; i++) {
           yData[i] = (i >= 626 ? 0 : 1);
       }
        
       
        
    // **********************************************************************
    // CREATE FEEDFORWARD NETWORK
    // **********************************************************************
       FeedForwardNetwork network = new FeedForwardNetwork();
       network.getInputLayer().createInputs(nInputs);
       network.createHiddenLayer().createPerceptrons(nPerceptrons1);
       network.createHiddenLayer().createPerceptrons(nPerceptrons2);
       network.getOutputLayer().createPerceptrons(nOutputs);
       network.linkAll();
       network.setWeights(weights);
       Perceptron perceptrons[] = network.getPerceptrons();
       for (i=0; i < perceptrons.length-1; i++) {
          perceptrons[i].setActivation(hiddenLayerActivation);
       }
     // **********************************************************************
     // SET OUTPUT LAYER ACTIVATION FUNCTION TO LOGISTIC FOR BINARY CLASSIFICATION
     // **********************************************************************
        perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);
       
        BinaryClassification classification = new BinaryClassification(network);

        QuasiNewtonTrainer stageITrainer  = new QuasiNewtonTrainer();
        QuasiNewtonTrainer stageIITrainer = new QuasiNewtonTrainer();
        stageITrainer.setError(classification.getError());
        stageIITrainer.setError(classification.getError());
        stageITrainer.setMaximumTrainingIterations(8000);
        stageITrainer.setMaximumStepsize(10.0);
        stageIITrainer.setMaximumStepsize(10.0);
        stageITrainer.setRelativeTolerance(10e-20);
        stageIITrainer.setRelativeTolerance(10e-20);
        stageIITrainer.setMaximumTrainingIterations(8000);
        EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);
        
        // Set Training Parameters
        trainer.setNumberOfEpochs(20);
        trainer.setEpochSize(nObs);
        
        // Set random number seeds to produce repeatable output
        trainer.setRandom(new Random(5555));
        trainer.setRandomSamples(new Random(5555), new Random(5555));


       // If tracing is requested setup training logger
       if (trace) {
            try {
                Handler handler = new FileHandler(trainLogName);
                Logger logger = Logger.getLogger("com.imsl.datamining.neural");
                logger.setLevel(Level.FINEST);
                logger.addHandler(handler);
                handler.setFormatter(QuasiNewtonTrainer.getFormatter());
                System.out.println("--> Training Log Created in "+
                                   trainLogName);
            } catch (Exception e) {
                System.out.println("--> Cannot Create Training Log.");
            }
        }
       classification.train(trainer, xData, yData);
       System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());
       System.out.println("StageITrainer.getErrorValue = "+stageITrainer.getErrorValue());
       System.out.println("StageIITrainer.getErrorValue = "+stageIITrainer.getErrorValue());

       // **********************************************************************
       // DISPLAY TRAINING STATISTICS
       // **********************************************************************
       double stats[] = classification.computeStatistics(xData, yData);
       System.out.println("***********************************************");
       System.out.println("--> Cross-entropy error:        "+(float)stats[0]);
       System.out.println("--> Classification error rate:  "+(float)stats[1]);
       System.out.println("***********************************************");
       System.out.println("");
       

       // **********************************************************************
       // OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
       // **********************************************************************
        double weight[]   = network.getWeights();
        double gradient[] = trainer.getErrorGradient();
        double wg[][] = new double[weight.length][2];
        for(i = 0;  i < weight.length;  i++) 
        {
            wg[i][0] = weight[i];
            wg[i][1] = gradient[i];
        }
        PrintMatrixFormat pmf = new PrintMatrixFormat();
        pmf.setNumberFormat(new java.text.DecimalFormat("0.000000"));
        pmf.setColumnLabels(new String[]{"Weights", "Gradients"});
        new PrintMatrix().print(pmf,wg);

        // **********************************************************************
        //     forecast the network
        // **********************************************************************
        double report[][] = new double[nObs][2];
        for ( i = 0;  i < 50;  i++) {
            report[i][0] = yData[i];
            report[i][1] = classification.predictedClass(xData[i]);
        }
        
        pmf = new PrintMatrixFormat();
        pmf.setColumnLabels(new String[]{"Expected","Predicted"});
        new PrintMatrix("Forecast").print(pmf, report);
        
        long t1 = System.currentTimeMillis();
        double small = 1.e-7;
        double time =  t1-t0; //Math.max(small, (double)(t1-t0)/(double)iters);
        time = time/1000;
        System.out.println("****************Time:  "+time);
        System.out.println("trainer.getErrorValue = "+trainer.getErrorValue());
        System.out.println("StageITrainer.getErrorValue = "+stageITrainer.getErrorValue());
        System.out.println("StageIITrainer.getErrorValue = "+stageIITrainer.getErrorValue());
        
    }
}

Output

--> Training Log Created in BinaryClassificationNetworkEx2.log
trainer.getErrorValue = 1.4572899893203097
StageITrainer.getErrorValue = 482.27809835973795
StageIITrainer.getErrorValue = 1.4572899893203097
***********************************************
--> Cross-entropy error:        1.4572899
--> Classification error rate:  0.0020876827
***********************************************

      Weights    Gradients  
  0    2.944218  -0.000103  
  1   11.572133  -0.002104  
  2  -10.464978   0.031618  
  3   18.197968  -0.099090  
  4   26.552980  -0.007697  
  5  -12.948492  -0.004065  
  6   -6.920502   0.026458  
  7   12.449166   0.002808  
  8  -22.044311  -0.101337  
  9  -28.603049  -0.000001  
 10   11.236107   0.000069  
 11    2.983088  -0.000000  
 12  -10.165526   0.000501  
 13    1.947292  -0.000411  
 14  -19.153976  -0.000000  
 15   -8.400962  -0.004047  
 16  -12.026586  -0.000877  
 17   -6.175538   0.034892  
 18   16.752667  -0.302597  
 19   27.202764  -0.007699  
 20    7.846400  -0.000000  
 21    9.415102   0.000000  
 22   -0.717963  -0.000000  
 23  -22.044410   0.000000  
 24  -36.633994   0.000001  
 25    2.960843  -0.000053  
 26    9.591344   0.025231  
 27   -0.050062   0.000035  
 28    4.260128   0.101759  
 29  -11.478470   0.000000  
 30  -10.507361   0.000000  
 31   17.400312   0.024341  
 32   -4.365829   0.030967  
 33   20.318348  -0.002424  
 34  -40.598205  -0.007753  
 35   11.547888  -0.004180  
 36  -13.955145   0.000013  
 37  -12.967388   0.003914  
 38  -24.426023  -0.198309  
 39   28.236830   0.000055  
 40    1.006560   0.000081  
 41    4.508082  -0.000000  
 42    7.094010   0.000046  
 43    2.986456  -0.000105  
 44   -9.215039  -0.000001  
 45  -18.006465  -0.000063  
 46    6.899860   0.026472  
 47   -9.835696   0.002747  
 48   17.886021  -0.214726  
 49    1.824013   0.000000  
 50   12.255996  -0.003981  
 51   -2.444224  -0.002118  
 52    4.933440   0.032021  
 53  -22.233104   0.013710  
 54  -11.061314  -0.007698  
 55    6.440296  -0.000056  
 56    3.000394   0.000000  
 57   -4.155388   0.000159  
 58    2.669732   0.000177  
 59  -11.757717   0.000000  
 60   27.524414  -0.003981  
 61   55.921417  -0.000001  
 62   -1.707040   0.004514  
 63   20.846132  -0.135316  
 64   -7.685032  -0.000001  
 65  -27.369955  -0.000119  
 66  -40.908826   0.026472  
 67   -4.823267   0.030411  
 68  -23.581984  -0.065522  
 69    3.181360  -0.007697  
 70    1.828543  -0.000000  
 71   -6.090504  -0.002116  
 72   -0.988539   0.000002  
 73    0.790178  -0.000000  
 74  -17.522973  -0.000000  
 75  -25.682496  -0.003981  
 76  -11.943730   0.025216  
 77   -6.535236   0.031614  
 78   19.237103   0.115771  
 79  -23.303947  -0.007697  
 80   20.785871  -0.000061  
 81   -0.398901  -0.000875  
 82    4.220983   0.002898  
 83  -21.805541  -0.316308  
 84    5.385592   0.000000  
 85    7.992170  -0.000058  
 86   20.561026   0.000014  
 87   -5.836442   0.000415  
 88   -0.392213  -0.000302  
 89   -3.883298  -0.000001  
 90   -6.908613  -0.004065  
 91   10.546036   0.001241  
 92  -39.677236  -0.000000  
 93   18.095781   0.056472  
 94    9.597760   0.000000  
 95    3.294999  -0.000034  
 96  -21.179800  -0.002104  
 97   31.118283   0.034927  
 98  -22.059079  -0.358786  
 99    8.161085  -0.007698  
100    5.313321  -0.000000  
101   19.102103   0.025217  
102    0.740958  -0.000000  
103    2.578075   0.101476  
104  -38.607568   0.000000  
105   -8.339988  -0.000035  
106    1.639758   0.000013  
107   -3.726085   0.034889  
108   15.554956  -0.422305  
109   42.980892  -0.007752  
110    2.181836  -0.004065  
111    4.443285   0.001241  
112    2.587092   0.000036  
113  -22.489842   0.119719  
114  -36.432494  -0.000000  
115    8.075659  -0.000000  
116    0.979978   0.023101  
117   -7.488272   0.000002  
118    5.319442   0.101748  
119  -26.819508   0.000054  
120    3.541003  -0.004128  
121    4.189919  -0.000875  
122   -9.620799   0.002783  
123   19.398187  -0.202984  
124   -3.194663   0.000055  
125   -5.228130   0.000083  
126   -3.757340   0.025216  
127    9.792260   0.032081  
128  -21.755460   0.002231  
129   -7.715387  -0.007753  
130    2.769206  -0.000055  
131    7.901853   0.000014  
132  -10.435488   0.000062  
133    1.168304  -0.000086  
134   -9.954674  -0.000001  
135  -51.555283  -0.071057  
136    4.958954  -0.000000  
137   -7.408263   0.000000  
138   39.517621  -0.070072  
139   13.036423  -0.000000  
140   24.059711   0.000000  
141  -20.165068  -0.061182  
142    2.978425   0.000000  
143   -3.346216  -0.000001  
144   91.294581  -0.053340  
145    4.700837   0.000000  
146   33.962649  -0.000005  
147   58.702284  -0.401485  
148    3.416411   0.000000  
149    4.415371  -0.002499  
150  171.784942  -0.005808  
151  -45.805688  -0.010427  
152   12.976783  -0.010230  
153    1.348388  -0.004100  
154    7.967453   0.024354  
155   -8.634125   0.034927  
156   -1.937680  -0.200838  
157  -21.314065  -0.007698  
158  -58.810144  -0.445640  
159   13.151796   0.000000  
160   -0.728858  -0.002499  
161  -56.918496  -0.010427  

         Forecast
     Expected  Predicted  
  0     1          1      
  1     1          1      
  2     1          1      
  3     1          1      
  4     1          1      
  5     1          1      
  6     1          1      
  7     1          1      
  8     1          1      
  9     1          1      
 10     1          1      
 11     1          1      
 12     1          1      
 13     1          1      
 14     1          1      
 15     1          1      
 16     1          1      
 17     1          1      
 18     1          1      
 19     1          1      
 20     1          1      
 21     1          1      
 22     1          1      
 23     1          1      
 24     1          1      
 25     1          1      
 26     1          1      
 27     1          1      
 28     1          1      
 29     1          1      
 30     1          1      
 31     1          1      
 32     1          1      
 33     1          1      
 34     1          1      
 35     1          1      
 36     1          1      
 37     1          1      
 38     1          1      
 39     1          1      
 40     1          1      
 41     1          1      
 42     1          1      
 43     1          1      
 44     1          1      
 45     1          1      
 46     1          1      
 47     1          1      
 48     1          1      
 49     1          1      
 50     0          0      
 51     0          0      
 52     0          0      
 53     0          0      
 54     0          0      
 55     0          0      
 56     0          0      
 57     0          0      
 58     0          0      
 59     0          0      
 60     0          0      
 61     0          0      
 62     0          0      
 63     0          0      
 64     0          0      
 65     0          0      
 66     0          0      
 67     0          0      
 68     0          0      
 69     0          0      
 70     0          0      
 71     0          0      
 72     0          0      
 73     0          0      
 74     0          0      
 75     0          0      
 76     0          0      
 77     0          0      
 78     0          0      
 79     0          0      
 80     0          0      
 81     0          0      
 82     0          0      
 83     0          0      
 84     0          0      
 85     0          0      
 86     0          0      
 87     0          0      
 88     0          0      
 89     0          0      
 90     0          0      
 91     0          0      
 92     0          0      
 93     0          0      
 94     0          0      
 95     0          0      
 96     0          0      
 97     0          0      
 98     0          0      
 99     0          0      
100     0          0      
101     0          0      
102     0          0      
103     0          0      
104     0          0      
105     0          0      
106     0          0      
107     0          0      
108     0          0      
109     0          0      
110     0          0      
111     0          0      
112     0          0      
113     0          0      
114     0          0      
115     0          0      
116     0          0      
117     0          0      
118     0          0      
119     0          0      
120     0          0      
121     0          0      
122     0          0      
123     0          0      
124     0          0      
125     0          0      
126     0          0      
127     0          0      
128     0          0      
129     0          0      
130     0          0      
131     0          0      
132     0          0      
133     0          0      
134     0          0      
135     0          0      
136     0          0      
137     0          0      
138     0          0      
139     0          0      
140     0          0      
141     0          0      
142     0          0      
143     0          0      
144     0          0      
145     0          0      
146     0          0      
147     0          0      
148     0          0      
149     0          0      
150     0          0      
151     0          0      
152     0          0      
153     0          0      
154     0          0      
155     0          0      
156     0          0      
157     0          0      
158     0          0      
159     0          0      
160     0          0      
161     0          0      
162     0          0      
163     0          0      
164     0          0      
165     0          0      
166     0          0      
167     0          0      
168     0          0      
169     0          0      
170     0          0      
171     0          0      
172     0          0      
173     0          0      
174     0          0      
175     0          0      
176     0          0      
177     0          0      
178     0          0      
179     0          0      
180     0          0      
181     0          0      
182     0          0      
183     0          0      
184     0          0      
185     0          0      
186     0          0      
187     0          0      
188     0          0      
189     0          0      
190     0          0      
191     0          0      
192     0          0      
193     0          0      
194     0          0      
195     0          0      
196     0          0      
197     0          0      
198     0          0      
199     0          0      
200     0          0      
201     0          0      
202     0          0      
203     0          0      
204     0          0      
205     0          0      
206     0          0      
207     0          0      
208     0          0      
209     0          0      
210     0          0      
211     0          0      
212     0          0      
213     0          0      
214     0          0      
215     0          0      
216     0          0      
217     0          0      
218     0          0      
219     0          0      
220     0          0      
221     0          0      
222     0          0      
223     0          0      
224     0          0      
225     0          0      
226     0          0      
227     0          0      
228     0          0      
229     0          0      
230     0          0      
231     0          0      
232     0          0      
233     0          0      
234     0          0      
235     0          0      
236     0          0      
237     0          0      
238     0          0      
239     0          0      
240     0          0      
241     0          0      
242     0          0      
243     0          0      
244     0          0      
245     0          0      
246     0          0      
247     0          0      
248     0          0      
249     0          0      
250     0          0      
251     0          0      
252     0          0      
253     0          0      
254     0          0      
255     0          0      
256     0          0      
257     0          0      
258     0          0      
259     0          0      
260     0          0      
261     0          0      
262     0          0      
263     0          0      
264     0          0      
265     0          0      
266     0          0      
267     0          0      
268     0          0      
269     0          0      
270     0          0      
271     0          0      
272     0          0      
273     0          0      
274     0          0      
275     0          0      
276     0          0      
277     0          0      
278     0          0      
279     0          0      
280     0          0      
281     0          0      
282     0          0      
283     0          0      
284     0          0      
285     0          0      
286     0          0      
287     0          0      
288     0          0      
289     0          0      
290     0          0      
291     0          0      
292     0          0      
293     0          0      
294     0          0      
295     0          0      
296     0          0      
297     0          0      
298     0          0      
299     0          0      
300     0          0      
301     0          0      
302     0          0      
303     0          0      
304     0          0      
305     0          0      
306     0          0      
307     0          0      
308     0          0      
309     0          0      
310     0          0      
311     0          0      
312     0          0      
313     0          0      
314     0          0      
315     0          0      
316     0          0      
317     0          0      
318     0          0      
319     0          0      
320     0          0      
321     0          0      
322     0          0      
323     0          0      
324     0          0      
325     0          0      
326     0          0      
327     0          0      
328     0          0      
329     0          0      
330     0          0      
331     0          0      
332     0          0      
333     0          0      
334     0          0      
335     0          0      
336     0          0      
337     0          0      
338     0          0      
339     0          0      
340     0          0      
341     0          0      
342     0          0      
343     0          0      
344     0          0      
345     0          0      
346     0          0      
347     0          0      
348     0          0      
349     0          0      
350     0          0      
351     0          0      
352     0          0      
353     0          0      
354     0          0      
355     0          0      
356     0          0      
357     0          0      
358     0          0      
359     0          0      
360     0          0      
361     0          0      
362     0          0      
363     0          0      
364     0          0      
365     0          0      
366     0          0      
367     0          0      
368     0          0      
369     0          0      
370     0          0      
371     0          0      
372     0          0      
373     0          0      
374     0          0      
375     0          0      
376     0          0      
377     0          0      
378     0          0      
379     0          0      
380     0          0      
381     0          0      
382     0          0      
383     0          0      
384     0          0      
385     0          0      
386     0          0      
387     0          0      
388     0          0      
389     0          0      
390     0          0      
391     0          0      
392     0          0      
393     0          0      
394     0          0      
395     0          0      
396     0          0      
397     0          0      
398     0          0      
399     0          0      
400     0          0      
401     0          0      
402     0          0      
403     0          0      
404     0          0      
405     0          0      
406     0          0      
407     0          0      
408     0          0      
409     0          0      
410     0          0      
411     0          0      
412     0          0      
413     0          0      
414     0          0      
415     0          0      
416     0          0      
417     0          0      
418     0          0      
419     0          0      
420     0          0      
421     0          0      
422     0          0      
423     0          0      
424     0          0      
425     0          0      
426     0          0      
427     0          0      
428     0          0      
429     0          0      
430     0          0      
431     0          0      
432     0          0      
433     0          0      
434     0          0      
435     0          0      
436     0          0      
437     0          0      
438     0          0      
439     0          0      
440     0          0      
441     0          0      
442     0          0      
443     0          0      
444     0          0      
445     0          0      
446     0          0      
447     0          0      
448     0          0      
449     0          0      
450     0          0      
451     0          0      
452     0          0      
453     0          0      
454     0          0      
455     0          0      
456     0          0      
457     0          0      
458     0          0      
459     0          0      
460     0          0      
461     0          0      
462     0          0      
463     0          0      
464     0          0      
465     0          0      
466     0          0      
467     0          0      
468     0          0      
469     0          0      
470     0          0      
471     0          0      
472     0          0      
473     0          0      
474     0          0      
475     0          0      
476     0          0      
477     0          0      
478     0          0      
479     0          0      
480     0          0      
481     0          0      
482     0          0      
483     0          0      
484     0          0      
485     0          0      
486     0          0      
487     0          0      
488     0          0      
489     0          0      
490     0          0      
491     0          0      
492     0          0      
493     0          0      
494     0          0      
495     0          0      
496     0          0      
497     0          0      
498     0          0      
499     0          0      
500     0          0      
501     0          0      
502     0          0      
503     0          0      
504     0          0      
505     0          0      
506     0          0      
507     0          0      
508     0          0      
509     0          0      
510     0          0      
511     0          0      
512     0          0      
513     0          0      
514     0          0      
515     0          0      
516     0          0      
517     0          0      
518     0          0      
519     0          0      
520     0          0      
521     0          0      
522     0          0      
523     0          0      
524     0          0      
525     0          0      
526     0          0      
527     0          0      
528     0          0      
529     0          0      
530     0          0      
531     0          0      
532     0          0      
533     0          0      
534     0          0      
535     0          0      
536     0          0      
537     0          0      
538     0          0      
539     0          0      
540     0          0      
541     0          0      
542     0          0      
543     0          0      
544     0          0      
545     0          0      
546     0          0      
547     0          0      
548     0          0      
549     0          0      
550     0          0      
551     0          0      
552     0          0      
553     0          0      
554     0          0      
555     0          0      
556     0          0      
557     0          0      
558     0          0      
559     0          0      
560     0          0      
561     0          0      
562     0          0      
563     0          0      
564     0          0      
565     0          0      
566     0          0      
567     0          0      
568     0          0      
569     0          0      
570     0          0      
571     0          0      
572     0          0      
573     0          0      
574     0          0      
575     0          0      
576     0          0      
577     0          0      
578     0          0      
579     0          0      
580     0          0      
581     0          0      
582     0          0      
583     0          0      
584     0          0      
585     0          0      
586     0          0      
587     0          0      
588     0          0      
589     0          0      
590     0          0      
591     0          0      
592     0          0      
593     0          0      
594     0          0      
595     0          0      
596     0          0      
597     0          0      
598     0          0      
599     0          0      
600     0          0      
601     0          0      
602     0          0      
603     0          0      
604     0          0      
605     0          0      
606     0          0      
607     0          0      
608     0          0      
609     0          0      
610     0          0      
611     0          0      
612     0          0      
613     0          0      
614     0          0      
615     0          0      
616     0          0      
617     0          0      
618     0          0      
619     0          0      
620     0          0      
621     0          0      
622     0          0      
623     0          0      
624     0          0      
625     0          0      
626     0          0      
627     0          0      
628     0          0      
629     0          0      
630     0          0      
631     0          0      
632     0          0      
633     0          0      
634     0          0      
635     0          0      
636     0          0      
637     0          0      
638     0          0      
639     0          0      
640     0          0      
641     0          0      
642     0          0      
643     0          0      
644     0          0      
645     0          0      
646     0          0      
647     0          0      
648     0          0      
649     0          0      
650     0          0      
651     0          0      
652     0          0      
653     0          0      
654     0          0      
655     0          0      
656     0          0      
657     0          0      
658     0          0      
659     0          0      
660     0          0      
661     0          0      
662     0          0      
663     0          0      
664     0          0      
665     0          0      
666     0          0      
667     0          0      
668     0          0      
669     0          0      
670     0          0      
671     0          0      
672     0          0      
673     0          0      
674     0          0      
675     0          0      
676     0          0      
677     0          0      
678     0          0      
679     0          0      
680     0          0      
681     0          0      
682     0          0      
683     0          0      
684     0          0      
685     0          0      
686     0          0      
687     0          0      
688     0          0      
689     0          0      
690     0          0      
691     0          0      
692     0          0      
693     0          0      
694     0          0      
695     0          0      
696     0          0      
697     0          0      
698     0          0      
699     0          0      
700     0          0      
701     0          0      
702     0          0      
703     0          0      
704     0          0      
705     0          0      
706     0          0      
707     0          0      
708     0          0      
709     0          0      
710     0          0      
711     0          0      
712     0          0      
713     0          0      
714     0          0      
715     0          0      
716     0          0      
717     0          0      
718     0          0      
719     0          0      
720     0          0      
721     0          0      
722     0          0      
723     0          0      
724     0          0      
725     0          0      
726     0          0      
727     0          0      
728     0          0      
729     0          0      
730     0          0      
731     0          0      
732     0          0      
733     0          0      
734     0          0      
735     0          0      
736     0          0      
737     0          0      
738     0          0      
739     0          0      
740     0          0      
741     0          0      
742     0          0      
743     0          0      
744     0          0      
745     0          0      
746     0          0      
747     0          0      
748     0          0      
749     0          0      
750     0          0      
751     0          0      
752     0          0      
753     0          0      
754     0          0      
755     0          0      
756     0          0      
757     0          0      
758     0          0      
759     0          0      
760     0          0      
761     0          0      
762     0          0      
763     0          0      
764     0          0      
765     0          0      
766     0          0      
767     0          0      
768     0          0      
769     0          0      
770     0          0      
771     0          0      
772     0          0      
773     0          0      
774     0          0      
775     0          0      
776     0          0      
777     0          0      
778     0          0      
779     0          0      
780     0          0      
781     0          0      
782     0          0      
783     0          0      
784     0          0      
785     0          0      
786     0          0      
787     0          0      
788     0          0      
789     0          0      
790     0          0      
791     0          0      
792     0          0      
793     0          0      
794     0          0      
795     0          0      
796     0          0      
797     0          0      
798     0          0      
799     0          0      
800     0          0      
801     0          0      
802     0          0      
803     0          0      
804     0          0      
805     0          0      
806     0          0      
807     0          0      
808     0          0      
809     0          0      
810     0          0      
811     0          0      
812     0          0      
813     0          0      
814     0          0      
815     0          0      
816     0          0      
817     0          0      
818     0          0      
819     0          0      
820     0          0      
821     0          0      
822     0          0      
823     0          0      
824     0          0      
825     0          0      
826     0          0      
827     0          0      
828     0          0      
829     0          0      
830     0          0      
831     0          0      
832     0          0      
833     0          0      
834     0          0      
835     0          0      
836     0          0      
837     0          0      
838     0          0      
839     0          0      
840     0          0      
841     0          0      
842     0          0      
843     0          0      
844     0          0      
845     0          0      
846     0          0      
847     0          0      
848     0          0      
849     0          0      
850     0          0      
851     0          0      
852     0          0      
853     0          0      
854     0          0      
855     0          0      
856     0          0      
857     0          0      
858     0          0      
859     0          0      
860     0          0      
861     0          0      
862     0          0      
863     0          0      
864     0          0      
865     0          0      
866     0          0      
867     0          0      
868     0          0      
869     0          0      
870     0          0      
871     0          0      
872     0          0      
873     0          0      
874     0          0      
875     0          0      
876     0          0      
877     0          0      
878     0          0      
879     0          0      
880     0          0      
881     0          0      
882     0          0      
883     0          0      
884     0          0      
885     0          0      
886     0          0      
887     0          0      
888     0          0      
889     0          0      
890     0          0      
891     0          0      
892     0          0      
893     0          0      
894     0          0      
895     0          0      
896     0          0      
897     0          0      
898     0          0      
899     0          0      
900     0          0      
901     0          0      
902     0          0      
903     0          0      
904     0          0      
905     0          0      
906     0          0      
907     0          0      
908     0          0      
909     0          0      
910     0          0      
911     0          0      
912     0          0      
913     0          0      
914     0          0      
915     0          0      
916     0          0      
917     0          0      
918     0          0      
919     0          0      
920     0          0      
921     0          0      
922     0          0      
923     0          0      
924     0          0      
925     0          0      
926     0          0      
927     0          0      
928     0          0      
929     0          0      
930     0          0      
931     0          0      
932     0          0      
933     0          0      
934     0          0      
935     0          0      
936     0          0      
937     0          0      
938     0          0      
939     0          0      
940     0          0      
941     0          0      
942     0          0      
943     0          0      
944     0          0      
945     0          0      
946     0          0      
947     0          0      
948     0          0      
949     0          0      
950     0          0      
951     0          0      
952     0          0      
953     0          0      
954     0          0      
955     0          0      
956     0          0      
957     0          0      

****************Time:  109.133
trainer.getErrorValue = 1.4572899893203097
StageITrainer.getErrorValue = 482.27809835973795
StageIITrainer.getErrorValue = 1.4572899893203097
Link to Java source.