This example illustrates a typical usage of ClusterHierarchical
. The Fisher iris data is clustered. First the distance between irises is computed using the class Dissimilarities
. The resulting distance matrix is then clustered using ClusterHierarchical
, and cluster memberships for 5 clusters are computed.
import java.io.*;
import com.imsl.stat.*;
import com.imsl.math.*;
public class ClusterHierarchicalEx1 {
public static void main(String argv[]) throws Exception {
double[][] irisData = {
{ 5.1, 3.5, 1.4, .2},
{ 4.9, 3.0, 1.4, .2},
{ 4.7, 3.2, 1.3, .2},
{ 4.6, 3.1, 1.5, .2},
{ 5.0, 3.6, 1.4, .2},
{ 5.4, 3.9, 1.7, .4},
{ 4.6, 3.4, 1.4, .3},
{ 5.0, 3.4, 1.5, .2},
{ 4.4, 2.9, 1.4, .2},
{ 4.9, 3.1, 1.5, .1},
{ 5.4, 3.7, 1.5, .2},
{ 4.8, 3.4, 1.6, .2},
{ 4.8, 3.0, 1.4, .1},
{ 4.3, 3.0, 1.1, .1},
{ 5.8, 4.0, 1.2, .2},
{ 5.7, 4.4, 1.5, .4},
{ 5.4, 3.9, 1.3, .4},
{ 5.1, 3.5, 1.4, .3},
{ 5.7, 3.8, 1.7, .3},
{ 5.1, 3.8, 1.5, .3},
{ 5.4, 3.4, 1.7, .2},
{ 5.1, 3.7, 1.5, .4},
{ 4.6, 3.6, 1.0, .2},
{ 5.1, 3.3, 1.7, .5},
{ 4.8, 3.4, 1.9, .2},
{ 5.0, 3.0, 1.6, .2},
{ 5.0, 3.4, 1.6, .4},
{ 5.2, 3.5, 1.5, .2},
{ 5.2, 3.4, 1.4, .2},
{ 4.7, 3.2, 1.6, .2},
{ 4.8, 3.1, 1.6, .2},
{ 5.4, 3.4, 1.5, .4},
{ 5.2, 4.1, 1.5, .1},
{ 5.5, 4.2, 1.4, .2},
{ 4.9, 3.1, 1.5, .2},
{ 5.0, 3.2, 1.2, .2},
{ 5.5, 3.5, 1.3, .2},
{ 4.9, 3.6, 1.4, .1},
{ 4.4, 3.0, 1.3, .2},
{ 5.1, 3.4, 1.5, .2},
{ 5.0, 3.5, 1.3, .3},
{ 4.5, 2.3, 1.3, .3},
{ 4.4, 3.2, 1.3, .2},
{ 5.0, 3.5, 1.6, .6},
{ 5.1, 3.8, 1.9, .4},
{ 4.8, 3.0, 1.4, .3},
{ 5.1, 3.8, 1.6, .2},
{ 4.6, 3.2, 1.4, .2},
{ 5.3, 3.7, 1.5, .2},
{ 5.0, 3.3, 1.4, .2},
{ 7.0, 3.2, 4.7, 1.4},
{ 6.4, 3.2, 4.5, 1.5},
{ 6.9, 3.1, 4.9, 1.5},
{ 5.5, 2.3, 4.0, 1.3},
{ 6.5, 2.8, 4.6, 1.5},
{ 5.7, 2.8, 4.5, 1.3},
{ 6.3, 3.3, 4.7, 1.6},
{ 4.9, 2.4, 3.3, 1.0},
{ 6.6, 2.9, 4.6, 1.3},
{ 5.2, 2.7, 3.9, 1.4},
{ 5.0, 2.0, 3.5, 1.0},
{ 5.9, 3.0, 4.2, 1.5},
{ 6.0, 2.2, 4.0, 1.0},
{ 6.1, 2.9, 4.7, 1.4},
{ 5.6, 2.9, 3.6, 1.3},
{ 6.7, 3.1, 4.4, 1.4},
{ 5.6, 3.0, 4.5, 1.5},
{ 5.8, 2.7, 4.1, 1.0},
{ 6.2, 2.2, 4.5, 1.5},
{ 5.6, 2.5, 3.9, 1.1},
{ 5.9, 3.2, 4.8, 1.8},
{ 6.1, 2.8, 4.0, 1.3},
{ 6.3, 2.5, 4.9, 1.5},
{ 6.1, 2.8, 4.7, 1.2},
{ 6.4, 2.9, 4.3, 1.3},
{ 6.6, 3.0, 4.4, 1.4},
{ 6.8, 2.8, 4.8, 1.4},
{ 6.7, 3.0, 5.0, 1.7},
{ 6.0, 2.9, 4.5, 1.5},
{ 5.7, 2.6, 3.5, 1.0},
{ 5.5, 2.4, 3.8, 1.1},
{ 5.5, 2.4, 3.7, 1.0},
{ 5.8, 2.7, 3.9, 1.2},
{ 6.0, 2.7, 5.1, 1.6},
{ 5.4, 3.0, 4.5, 1.5},
{ 6.0, 3.4, 4.5, 1.6},
{ 6.7, 3.1, 4.7, 1.5},
{ 6.3, 2.3, 4.4, 1.3},
{ 5.6, 3.0, 4.1, 1.3},
{ 5.5, 2.5, 4.0, 1.3},
{ 5.5, 2.6, 4.4, 1.2},
{ 6.1, 3.0, 4.6, 1.4},
{ 5.8, 2.6, 4.0, 1.2},
{ 5.0, 2.3, 3.3, 1.0},
{ 5.6, 2.7, 4.2, 1.3},
{ 5.7, 3.0, 4.2, 1.2},
{ 5.7, 2.9, 4.2, 1.3},
{ 6.2, 2.9, 4.3, 1.3},
{ 5.1, 2.5, 3.0, 1.1},
{ 5.7, 2.8, 4.1, 1.3},
{ 6.3, 3.3, 6.0, 2.5},
{ 5.8, 2.7, 5.1, 1.9},
{ 7.1, 3.0, 5.9, 2.1},
{ 6.3, 2.9, 5.6, 1.8},
{ 6.5, 3.0, 5.8, 2.2},
{ 7.6, 3.0, 6.6, 2.1},
{ 4.9, 2.5, 4.5, 1.7},
{ 7.3, 2.9, 6.3, 1.8},
{ 6.7, 2.5, 5.8, 1.8},
{ 7.2, 3.6, 6.1, 2.5},
{ 6.5, 3.2, 5.1, 2.0},
{ 6.4, 2.7, 5.3, 1.9},
{ 6.8, 3.0, 5.5, 2.1},
{ 5.7, 2.5, 5.0, 2.0},
{ 5.8, 2.8, 5.1, 2.4},
{ 6.4, 3.2, 5.3, 2.3},
{ 6.5, 3.0, 5.5, 1.8},
{ 7.7, 3.8, 6.7, 2.2},
{ 7.7, 2.6, 6.9, 2.3},
{ 6.0, 2.2, 5.0, 1.5},
{ 6.9, 3.2, 5.7, 2.3},
{ 5.6, 2.8, 4.9, 2.0},
{ 7.7, 2.8, 6.7, 2.0},
{ 6.3, 2.7, 4.9, 1.8},
{ 6.7, 3.3, 5.7, 2.1},
{ 7.2, 3.2, 6.0, 1.8},
{ 6.2, 2.8, 4.8, 1.8},
{ 6.1, 3.0, 4.9, 1.8},
{ 6.4, 2.8, 5.6, 2.1},
{ 7.2, 3.0, 5.8, 1.6},
{ 7.4, 2.8, 6.1, 1.9},
{ 7.9, 3.8, 6.4, 2.0},
{ 6.4, 2.8, 5.6, 2.2},
{ 6.3, 2.8, 5.1, 1.5},
{ 6.1, 2.6, 5.6, 1.4},
{ 7.7, 3.0, 6.1, 2.3},
{ 6.3, 3.4, 5.6, 2.4},
{ 6.4, 3.1, 5.5, 1.8},
{ 6.0, 3.0, 4.8, 1.8},
{ 6.9, 3.1, 5.4, 2.1},
{ 6.7, 3.1, 5.6, 2.4},
{ 6.9, 3.1, 5.1, 2.3},
{ 5.8, 2.7, 5.1, 1.9},
{ 6.8, 3.2, 5.9, 2.3},
{ 6.7, 3.3, 5.7, 2.5},
{ 6.7, 3.0, 5.2, 2.3},
{ 6.3, 2.5, 5.0, 1.9},
{ 6.5, 3.0, 5.2, 2.0},
{ 6.2, 3.4, 5.4, 2.3},
{ 5.9, 3.0, 5.1, 1.8}};
Dissimilarities dist = new Dissimilarities(irisData, 0, 1, 1);
double[][] distanceMatrix = dist.getDistanceMatrix();
ClusterHierarchical clink = new ClusterHierarchical(
dist.getDistanceMatrix(),2,0);
int nClusters = 5;
int[] iclus = clink.getClusterMembership(nClusters);
int[] nclus = clink.getObsPerCluster(nClusters);
System.out.println("Cluster Membership");
for (int i=0;i<15;i++){
for (int j=0;j<10;j++)
System.out.print(iclus[i*10+j]+" ");
System.out.println();
}
System.out.println("Observations Per Cluster");
for (int i=0;i<nClusters;i++)
System.out.print(nclus[i]+" ");
System.out.println();
}
}
Cluster Membership 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 4 4 4 3 3 3 3 3 3 3 3 3 4 4 4 4 3 4 3 3 4 4 4 4 3 4 4 4 4 4 3 4 4 2 3 2 3 2 1 4 1 3 2 2 3 2 3 3 2 3 2 1 4 2 3 1 3 2 1 3 3 3 1 1 2 3 3 3 1 2 3 3 2 2 2 3 2 2 2 3 3 2 3 Observations Per Cluster 8 19 44 29 50Link to Java source.