Example: Discriminant Analysis

This example uses linear discrimination with equal prior probabilities on Fisher's (1936) iris data. This example illustrates the use of the DiscriminantAnalysis class.

import java.text.*;
import com.imsl.stat.*;
import com.imsl.math.PrintMatrix;

public class DiscriminantAnalysisEx1 {
    public static void main(String args[]) throws Exception {
        double[][] xorig = {
            {1.0, 5.1, 3.5, 1.4, .2},
            {1.0, 4.9, 3.0, 1.4, .2},
            {1.0, 4.7, 3.2, 1.3, .2},
            {1.0, 4.6, 3.1, 1.5, .2},
            {1.0, 5.0, 3.6, 1.4, .2},
            {1.0, 5.4, 3.9, 1.7, .4},
            {1.0, 4.6, 3.4, 1.4, .3},
            {1.0, 5.0, 3.4, 1.5, .2},
            {1.0, 4.4, 2.9, 1.4, .2},
            {1.0, 4.9, 3.1, 1.5, .1},
            {1.0, 5.4, 3.7, 1.5, .2},
            {1.0, 4.8, 3.4, 1.6, .2},
            {1.0, 4.8, 3.0, 1.4, .1},
            {1.0, 4.3, 3.0, 1.1, .1},
            {1.0, 5.8, 4.0, 1.2, .2},
            {1.0, 5.7, 4.4, 1.5, .4},
            {1.0, 5.4, 3.9, 1.3, .4},
            {1.0, 5.1, 3.5, 1.4, .3},
            {1.0, 5.7, 3.8, 1.7, .3},
            {1.0, 5.1, 3.8, 1.5, .3},
            {1.0, 5.4, 3.4, 1.7, .2},
            {1.0, 5.1, 3.7, 1.5, .4},
            {1.0, 4.6, 3.6, 1.0, .2},
            {1.0, 5.1, 3.3, 1.7, .5},
            {1.0, 4.8, 3.4, 1.9, .2},
            {1.0, 5.0, 3.0, 1.6, .2},
            {1.0, 5.0, 3.4, 1.6, .4},
            {1.0, 5.2, 3.5, 1.5, .2},
            {1.0, 5.2, 3.4, 1.4, .2},
            {1.0, 4.7, 3.2, 1.6, .2},
            {1.0, 4.8, 3.1, 1.6, .2},
            {1.0, 5.4, 3.4, 1.5, .4},
            {1.0, 5.2, 4.1, 1.5, .1},
            {1.0, 5.5, 4.2, 1.4, .2},
            {1.0, 4.9, 3.1, 1.5, .2},
            {1.0, 5.0, 3.2, 1.2, .2},
            {1.0, 5.5, 3.5, 1.3, .2},
            {1.0, 4.9, 3.6, 1.4, .1},
            {1.0, 4.4, 3.0, 1.3, .2},
            {1.0, 5.1, 3.4, 1.5, .2},
            {1.0, 5.0, 3.5, 1.3, .3},
            {1.0, 4.5, 2.3, 1.3, .3},
            {1.0, 4.4, 3.2, 1.3, .2},
            {1.0, 5.0, 3.5, 1.6, .6},
            {1.0, 5.1, 3.8, 1.9, .4},
            {1.0, 4.8, 3.0, 1.4, .3},
            {1.0, 5.1, 3.8, 1.6, .2},
            {1.0, 4.6, 3.2, 1.4, .2},
            {1.0, 5.3, 3.7, 1.5, .2},
            {1.0, 5.0, 3.3, 1.4, .2},
            {2.0, 7.0, 3.2, 4.7, 1.4},
            {2.0, 6.4, 3.2, 4.5, 1.5},
            {2.0, 6.9, 3.1, 4.9, 1.5},
            {2.0, 5.5, 2.3, 4.0, 1.3},
            {2.0, 6.5, 2.8, 4.6, 1.5},
            {2.0, 5.7, 2.8, 4.5, 1.3},
            {2.0, 6.3, 3.3, 4.7, 1.6},
            {2.0, 4.9, 2.4, 3.3, 1.0},
            {2.0, 6.6, 2.9, 4.6, 1.3},
            {2.0, 5.2, 2.7, 3.9, 1.4},
            {2.0, 5.0, 2.0, 3.5, 1.0},
            {2.0, 5.9, 3.0, 4.2, 1.5},
            {2.0, 6.0, 2.2, 4.0, 1.0},
            {2.0, 6.1, 2.9, 4.7, 1.4},
            {2.0, 5.6, 2.9, 3.6, 1.3},
            {2.0, 6.7, 3.1, 4.4, 1.4},
            {2.0, 5.6, 3.0, 4.5, 1.5},
            {2.0, 5.8, 2.7, 4.1, 1.0},
            {2.0, 6.2, 2.2, 4.5, 1.5},
            {2.0, 5.6, 2.5, 3.9, 1.1},
            {2.0, 5.9, 3.2, 4.8, 1.8},
            {2.0, 6.1, 2.8, 4.0, 1.3},
            {2.0, 6.3, 2.5, 4.9, 1.5},
            {2.0, 6.1, 2.8, 4.7, 1.2},
            {2.0, 6.4, 2.9, 4.3, 1.3},
            {2.0, 6.6, 3.0, 4.4, 1.4},
            {2.0, 6.8, 2.8, 4.8, 1.4},
            {2.0, 6.7, 3.0, 5.0, 1.7},
            {2.0, 6.0, 2.9, 4.5, 1.5},
            {2.0, 5.7, 2.6, 3.5, 1.0},
            {2.0, 5.5, 2.4, 3.8, 1.1},
            {2.0, 5.5, 2.4, 3.7, 1.0},
            {2.0, 5.8, 2.7, 3.9, 1.2},
            {2.0, 6.0, 2.7, 5.1, 1.6},
            {2.0, 5.4, 3.0, 4.5, 1.5},
            {2.0, 6.0, 3.4, 4.5, 1.6},
            {2.0, 6.7, 3.1, 4.7, 1.5},
            {2.0, 6.3, 2.3, 4.4, 1.3},
            {2.0, 5.6, 3.0, 4.1, 1.3},
            {2.0, 5.5, 2.5, 4.0, 1.3},
            {2.0, 5.5, 2.6, 4.4, 1.2},
            {2.0, 6.1, 3.0, 4.6, 1.4},
            {2.0, 5.8, 2.6, 4.0, 1.2},
            {2.0, 5.0, 2.3, 3.3, 1.0},
            {2.0, 5.6, 2.7, 4.2, 1.3},
            {2.0, 5.7, 3.0, 4.2, 1.2},
            {2.0, 5.7, 2.9, 4.2, 1.3},
            {2.0, 6.2, 2.9, 4.3, 1.3},
            {2.0, 5.1, 2.5, 3.0, 1.1},
            {2.0, 5.7, 2.8, 4.1, 1.3},
            {3.0, 6.3, 3.3, 6.0, 2.5},
            {3.0, 5.8, 2.7, 5.1, 1.9},
            {3.0, 7.1, 3.0, 5.9, 2.1},
            {3.0, 6.3, 2.9, 5.6, 1.8},
            {3.0, 6.5, 3.0, 5.8, 2.2},
            {3.0, 7.6, 3.0, 6.6, 2.1},
            {3.0, 4.9, 2.5, 4.5, 1.7},
            {3.0, 7.3, 2.9, 6.3, 1.8},
            {3.0, 6.7, 2.5, 5.8, 1.8},
            {3.0, 7.2, 3.6, 6.1, 2.5},
            {3.0, 6.5, 3.2, 5.1, 2.0},
            {3.0, 6.4, 2.7, 5.3, 1.9},
            {3.0, 6.8, 3.0, 5.5, 2.1},
            {3.0, 5.7, 2.5, 5.0, 2.0},
            {3.0, 5.8, 2.8, 5.1, 2.4},
            {3.0, 6.4, 3.2, 5.3, 2.3},
            {3.0, 6.5, 3.0, 5.5, 1.8},
            {3.0, 7.7, 3.8, 6.7, 2.2},
            {3.0, 7.7, 2.6, 6.9, 2.3},
            {3.0, 6.0, 2.2, 5.0, 1.5},
            {3.0, 6.9, 3.2, 5.7, 2.3},
            {3.0, 5.6, 2.8, 4.9, 2.0},
            {3.0, 7.7, 2.8, 6.7, 2.0},
            {3.0, 6.3, 2.7, 4.9, 1.8},
            {3.0, 6.7, 3.3, 5.7, 2.1},
            {3.0, 7.2, 3.2, 6.0, 1.8},
            {3.0, 6.2, 2.8, 4.8, 1.8},
            {3.0, 6.1, 3.0, 4.9, 1.8},
            {3.0, 6.4, 2.8, 5.6, 2.1},
            {3.0, 7.2, 3.0, 5.8, 1.6},
            {3.0, 7.4, 2.8, 6.1, 1.9},
            {3.0, 7.9, 3.8, 6.4, 2.0},
            {3.0, 6.4, 2.8, 5.6, 2.2},
            {3.0, 6.3, 2.8, 5.1, 1.5},
            {3.0, 6.1, 2.6, 5.6, 1.4},
            {3.0, 7.7, 3.0, 6.1, 2.3},
            {3.0, 6.3, 3.4, 5.6, 2.4},
            {3.0, 6.4, 3.1, 5.5, 1.8},
            {3.0, 6.0, 3.0, 4.8, 1.8},
            {3.0, 6.9, 3.1, 5.4, 2.1},
            {3.0, 6.7, 3.1, 5.6, 2.4},
            {3.0, 6.9, 3.1, 5.1, 2.3},
            {3.0, 5.8, 2.7, 5.1, 1.9},
            {3.0, 6.8, 3.2, 5.9, 2.3},
            {3.0, 6.7, 3.3, 5.7, 2.5},
            {3.0, 6.7, 3.0, 5.2, 2.3},
            {3.0, 6.3, 2.5, 5.0, 1.9},
            {3.0, 6.5, 3.0, 5.2, 2.0},
            {3.0, 6.2, 3.4, 5.4, 2.3},
            {3.0, 5.9, 3.0, 5.1, 1.8}};
            int i, j, jj, k;
            int ipermu[] = {2, 3, 4, 5, 1};
            double temp;
            double x[][];

            x = new double[xorig.length][xorig[0].length];

            for (i = 0; i< xorig.length; i++) {
                for (j = 1; j < xorig[0].length; j++) {
                    x[i][j-1] = xorig[i][j];
                }               
            }
            for (i = 0; i< xorig.length; i++) {
                x[i][4] = xorig[i][0];
            }
            
            int nvar = x[0].length -1;
            
            DiscriminantAnalysis da = new DiscriminantAnalysis(nvar, 3);
            da.setCovarianceComputation(da.POOLED);
            da.setClassificationMethod(da.RECLASSIFICATION);
            da.update(x);
            new PrintMatrix("Xmean are:  ").print(da.getMeans());
            new PrintMatrix("Coef:  ").print(da.getCoefficients());
            new PrintMatrix("Counts: ").print(da.getGroupCounts());
            new PrintMatrix("Stats: ").print(da.getStatistics());
            new PrintMatrix("ClassMembership: ").print(da.getClassMembership());
            new PrintMatrix("ClassTable: ").print(da.getClassTable()); 
            double cov[][][] = da.getCovariance();
            for (i= 0; i<cov.length;i++) {
                 new PrintMatrix("Covariance Matrix "+i+" : ").print(cov[i]);
            }
            new PrintMatrix("Prior : ").print(da.getPrior());
            new PrintMatrix("PROB: ").print(da.getProbability());
            new PrintMatrix("MAHALANOBIS: ").print(da.getMahalanobis());
            System.out.println("nrmiss = " + da.getNRowsMissing()); 
    }

}

Output

         Xmean are:  
     0      1      2      3    
0  5.006  3.428  1.462  0.246  
1  5.936  2.77   4.26   1.326  
2  6.588  2.974  5.552  2.026  

                    Coef:  
      0        1       2        3        4     
0   -86.308  23.544  23.588  -16.431  -17.398  
1   -72.853  15.698   7.073    5.211    6.434  
2  -104.368  12.446   3.685   12.767   21.079  

Counts: 
   0   
0  50  
1  50  
2  50  

   Stats: 
       0     
 0  147      
 1    ?      
 2    ?      
 3    ?      
 4    ?      
 5    ?      
 6    ?      
 7   -9.959  
 8   50      
 9   50      
10   50      
11  150      

ClassMembership: 
     0  
  0  1  
  1  1  
  2  1  
  3  1  
  4  1  
  5  1  
  6  1  
  7  1  
  8  1  
  9  1  
 10  1  
 11  1  
 12  1  
 13  1  
 14  1  
 15  1  
 16  1  
 17  1  
 18  1  
 19  1  
 20  1  
 21  1  
 22  1  
 23  1  
 24  1  
 25  1  
 26  1  
 27  1  
 28  1  
 29  1  
 30  1  
 31  1  
 32  1  
 33  1  
 34  1  
 35  1  
 36  1  
 37  1  
 38  1  
 39  1  
 40  1  
 41  1  
 42  1  
 43  1  
 44  1  
 45  1  
 46  1  
 47  1  
 48  1  
 49  1  
 50  2  
 51  2  
 52  2  
 53  2  
 54  2  
 55  2  
 56  2  
 57  2  
 58  2  
 59  2  
 60  2  
 61  2  
 62  2  
 63  2  
 64  2  
 65  2  
 66  2  
 67  2  
 68  2  
 69  2  
 70  3  
 71  2  
 72  2  
 73  2  
 74  2  
 75  2  
 76  2  
 77  2  
 78  2  
 79  2  
 80  2  
 81  2  
 82  2  
 83  3  
 84  2  
 85  2  
 86  2  
 87  2  
 88  2  
 89  2  
 90  2  
 91  2  
 92  2  
 93  2  
 94  2  
 95  2  
 96  2  
 97  2  
 98  2  
 99  2  
100  3  
101  3  
102  3  
103  3  
104  3  
105  3  
106  3  
107  3  
108  3  
109  3  
110  3  
111  3  
112  3  
113  3  
114  3  
115  3  
116  3  
117  3  
118  3  
119  3  
120  3  
121  3  
122  3  
123  3  
124  3  
125  3  
126  3  
127  3  
128  3  
129  3  
130  3  
131  3  
132  3  
133  2  
134  3  
135  3  
136  3  
137  3  
138  3  
139  3  
140  3  
141  3  
142  3  
143  3  
144  3  
145  3  
146  3  
147  3  
148  3  
149  3  

 ClassTable: 
   0   1   2   
0  50   0   0  
1   0  48   2  
2   0   1  49  

    Covariance Matrix 0 : 
     0      1      2      3    
0  0.265  0.093  0.168  0.038  
1  0.093  0.115  0.055  0.033  
2  0.168  0.055  0.185  0.043  
3  0.038  0.033  0.043  0.042  

 Prior : 
     0    
0  0.333  
1  0.333  
2  0.333  

        PROB: 
     0    1      2    
  0  1  0      0      
  1  1  0      0      
  2  1  0      0      
  3  1  0      0      
  4  1  0      0      
  5  1  0      0      
  6  1  0      0      
  7  1  0      0      
  8  1  0      0      
  9  1  0      0      
 10  1  0      0      
 11  1  0      0      
 12  1  0      0      
 13  1  0      0      
 14  1  0      0      
 15  1  0      0      
 16  1  0      0      
 17  1  0      0      
 18  1  0      0      
 19  1  0      0      
 20  1  0      0      
 21  1  0      0      
 22  1  0      0      
 23  1  0      0      
 24  1  0      0      
 25  1  0      0      
 26  1  0      0      
 27  1  0      0      
 28  1  0      0      
 29  1  0      0      
 30  1  0      0      
 31  1  0      0      
 32  1  0      0      
 33  1  0      0      
 34  1  0      0      
 35  1  0      0      
 36  1  0      0      
 37  1  0      0      
 38  1  0      0      
 39  1  0      0      
 40  1  0      0      
 41  1  0      0      
 42  1  0      0      
 43  1  0      0      
 44  1  0      0      
 45  1  0      0      
 46  1  0      0      
 47  1  0      0      
 48  1  0      0      
 49  1  0      0      
 50  0  1      0      
 51  0  0.999  0.001  
 52  0  0.996  0.004  
 53  0  1      0      
 54  0  0.996  0.004  
 55  0  0.999  0.001  
 56  0  0.986  0.014  
 57  0  1      0      
 58  0  1      0      
 59  0  1      0      
 60  0  1      0      
 61  0  0.999  0.001  
 62  0  1      0      
 63  0  0.994  0.006  
 64  0  1      0      
 65  0  1      0      
 66  0  0.981  0.019  
 67  0  1      0      
 68  0  0.96   0.04   
 69  0  1      0      
 70  0  0.253  0.747  
 71  0  1      0      
 72  0  0.816  0.184  
 73  0  1      0      
 74  0  1      0      
 75  0  1      0      
 76  0  0.998  0.002  
 77  0  0.689  0.311  
 78  0  0.993  0.007  
 79  0  1      0      
 80  0  1      0      
 81  0  1      0      
 82  0  1      0      
 83  0  0.143  0.857  
 84  0  0.964  0.036  
 85  0  0.994  0.006  
 86  0  0.998  0.002  
 87  0  0.999  0.001  
 88  0  1      0      
 89  0  1      0      
 90  0  0.999  0.001  
 91  0  0.998  0.002  
 92  0  1      0      
 93  0  1      0      
 94  0  1      0      
 95  0  1      0      
 96  0  1      0      
 97  0  1      0      
 98  0  1      0      
 99  0  1      0      
100  0  0      1      
101  0  0.001  0.999  
102  0  0      1      
103  0  0.001  0.999  
104  0  0      1      
105  0  0      1      
106  0  0.049  0.951  
107  0  0      1      
108  0  0      1      
109  0  0      1      
110  0  0.013  0.987  
111  0  0.002  0.998  
112  0  0      1      
113  0  0      1      
114  0  0      1      
115  0  0      1      
116  0  0.006  0.994  
117  0  0      1      
118  0  0      1      
119  0  0.221  0.779  
120  0  0      1      
121  0  0.001  0.999  
122  0  0      1      
123  0  0.097  0.903  
124  0  0      1      
125  0  0.003  0.997  
126  0  0.188  0.812  
127  0  0.134  0.866  
128  0  0      1      
129  0  0.104  0.896  
130  0  0      1      
131  0  0.001  0.999  
132  0  0      1      
133  0  0.729  0.271  
134  0  0.066  0.934  
135  0  0      1      
136  0  0      1      
137  0  0.006  0.994  
138  0  0.193  0.807  
139  0  0.001  0.999  
140  0  0      1      
141  0  0      1      
142  0  0.001  0.999  
143  0  0      1      
144  0  0      1      
145  0  0      1      
146  0  0.006  0.994  
147  0  0.003  0.997  
148  0  0      1      
149  0  0.018  0.982  

        MAHALANOBIS: 
      0       1        2     
0    0      89.864  179.385  
1   89.864   0       17.201  
2  179.385  17.201    0      

nrmiss = 0
Link to Java source.