JMSL Chart Programmer's Guide
|
Charting 3D Types >> Surface Plot |
Surface Plot
The surface class is used to draw a surface. Surfaces can be specified either by an interface defining a function over a rectangle or by a set of points in three dimensions.
If a function defined over a rectangle is used, the function is evaluated on a rectangular grid of points. The resulting quadrilaterals are plotted.
Shaded Surface
This example shades a surface with a user-specified function, instead of using shading. The same function is used as in the previous example:
z = 2sin (x + y) - cos (2x - 3y)over the square [-1,1] by [-1,1].
The shade color function uses a Colormap
object from the com.imsl.chart
package. This maps a parameter to a color. In this example the surface is colored
using the function
The function value is scaled to a colormap parameter using
s = t1/4 / 1.8.The chart also includes a colormap legend, which is drawn on the background. It is positioned 5 pixels from the right edge and 5 pixels from the top edge of the canvas.
(Download Code)
import com.imsl.chart3d.*; import com.imsl.chart.Colormap; public class SampleShadedSurface extends JFrameChart3D implements Surface.ZFunction, ColorFunction { private Colormap colormap = Colormap.GREEN_RED_BLUE_WHITE; public SampleShadedSurface() { Chart3D chart = getChart3D(); AxisXYZ axis = new AxisXYZ(chart); Surface surface = new Surface(axis, this, -1.0, 1.0, -1.0, 1.0); surface.setColorFunction(this); surface.setSurfaceType(Surface.SURFACE_TYPE_NICEST); double maxColor = Math.pow(1.8,4); ColormapLegend colormapLegend = new ColormapLegend(chart, colormap, 0., maxColor); colormapLegend.setTitle("Color"); colormapLegend.setPosition(-5, 5); render(); } public double f(double x, double y) { return 2*Math.sin(x+y) - Math.cos(2*x-3*y); } public java.awt.Color color(double x, double y, double z) { double t = x*x + y*y + z*z ; double s = Math.pow(t, 0.25) / 1.8; return colormap.color(s); } public static void main(String args[]) { new SampleShadedSurface().setVisible(true); } }
© Visual Numerics, Inc. All rights reserved. |