
Java Dynamic Management Kit 5.1
Getting Started Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–7607
June 4th, 2004



Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without limitation, these
intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or
pending patent applications in the U.S. and other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, Java Coffee Cup logo, JDK, JavaBeans, JDBC, Java Community
Process, JavaScript, J2SE, JMX and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et sans la limitation,
ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets
plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, le logo Java Coffee Cup, JDK, JavaBeans, JDBC, Java
Community Process, JavaScript, J2SE, JMX et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFAÇON.

040518@8606



Contents

Preface 9

1 Overview of the Java Dynamic Management Kit 15

1.1 Introduction to the Java DMK 16
1.1.1 Why Use Java Dynamic Management Technology? 16
1.1.2 What Is the Java DMK? 17
1.1.3 How is a Java Dynamic Management Solution Developed? 19

1.2 Key Concepts 22
1.3 Benefits of a Java Dynamic Management Solution 23

1.3.1 Simplified Design and Development 23
1.3.2 Protocol Independence 24
1.3.3 Dynamic Extensibility and Scalability 25
1.3.4 SNMPv3 Protocol 25
1.3.5 SNMP Master Agent 26

1.4 Overview of the Product Documentation 26
1.4.1 Online HTML Files 26
1.4.2 Printable Documents 26
1.4.3 Programming Examples 27
1.4.4 API Documentation 27

2 Architectural Components 29

2.1 Instrumenting Resources as MBeans 30
2.1.1 Standard MBeans 30
2.1.2 Dynamic MBeans 31
2.1.3 Model MBeans 31

3



2.1.4 Open MBeans 32
2.2 The MBean Server 33
2.3 Communication Components 34

2.3.1 Connectors 34
2.3.2 MBean Server Interceptors 39
2.3.3 Protocol Adaptors 39

2.4 The Notification Model 40
2.4.1 Local Notification Listeners 40
2.4.2 Remote Notification Listeners 41

2.5 Agent Services 42
2.5.1 Querying and Filtering 43
2.5.2 Dynamic Loading 43
2.5.3 Monitoring 44
2.5.4 Scheduling 45
2.5.5 Cascading 45
2.5.6 Discovering Agents 47
2.5.7 Discovery Search Service 48
2.5.8 Discovery Support Service 49
2.5.9 Defining Relations 49

2.6 Security 50
2.6.1 Security for Standard Connectors 51

2.7 The SNMP Toolkit 54
2.7.1 SNMP Packaging in Java DMK 5.1 54
2.7.2 Developing an SNMP Agent 55
2.7.3 SNMP MIB Compiler – mibgen 55
2.7.4 SNMP Manager API 56
2.7.5 SNMPv1 and SNMPv2 Security 57
2.7.6 SNMPv3 Security 58

3 Development Process 63

3.1 Instrumenting Resources 64
3.2 Designing an Agent Application 65
3.3 Designing a Management Application 66

3.3.1 Defining Input and Output 67
3.3.2 Specific Versus Generic 67

4 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



4 Legacy Connectors and Related Features 69

4.1 Legacy Connectors 69

4.1.1 Wrapping of Legacy Connectors 70

4.1.2 Monitoring Legacy Connectors Using the Heartbeat Mechanism 70

4.1.3 Generating Proxies for Legacy Connectors 71

4.2 Generating Proxy MBeans 73

4.3 Cascading Service for Legacy Connectors 74

4.4 Security Mechanisms for Legacy Connectors 74

4.4.1 Password Protection 75

4.4.2 Context Checking 75

4.4.3 Data Encryption 77

4.4.4 Secure Dynamic Loading 77

4.5 Tracing 78

Index 79

5



6 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Figures

FIGURE 1–1 Key Concepts of the Java DMK 22

FIGURE 2–1 Binding Proxy MBeans to Local and Remote Servers 37

FIGURE 2–2 Adding Local Listeners on the Agent Side 40

FIGURE 2–3 Adding Remote Listeners on the Manager Side 41

FIGURE 2–4 The Discovery Search Service 48

FIGURE 3–1 Development Process 63

FIGURE 4–1 Binding Proxy MBeans to Local and Remote Servers 71

FIGURE 4–2 Context Checking Using Stackable MBean Server Objects 76

7



8 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Preface

The Java™ Dynamic Management Kit (Java DMK) 5.1 provides a set of Java classes
and tools for developing dynamic management solutions. This product conforms to
the Java Management Extensions (JMX), v1.2 Maintenance Release, and the JMX
Remote API, v1.0. These specifications define a three-level architecture:

� Instrumentation of resources
� Dynamic agents
� Remote management applications

The JMX architecture is applicable to network management, remote system
maintenance, application provisioning, and the management needs of the
service-based network.

The Java Dynamic Management Kit 5.1 Getting Started Guide presents the architecture of
the Java DMK, introducing the key components of the product and the development
process for management applications.

Changes Between Versions 5.0 and 5.1 of
Java DMK
The following are the main changes and additions to Java DMK since the 5.0 release:

� Instrumentation and Agent services are now compatible with the latest JMX 1.2
Maintenance Release.

� Secure and interoperable remote access is now compatible with the new JMX
Remote API 1.0 Specification, including support for both the RMI-based and
JMXMP-based standard connectors.

� Flexible authentication and privacy based on the Simple Authentication and
Security Layer (SASL) 1.1 Specification and TLS.

9



� SASL mechanisms providing authentication, namely SASL-PLAIN, DIGEST-MD5,
CRAM-MD5, and GSSAPI/Kerberos.

� SASL mechanisms providing connection privacy, namely DIGEST-MD5,
GSSAPI/Kerberos.

� Fine-grained access control based on an authenticated client.

� Wrapping of existing Java DMK 5.0 RMI and HTTP(S) connectors such that
applications based on the standard JMX Remote API can interoperate with existing
Java DMK-based applications.

� Enhanced Cascading service, supporting both the JMX Remote API connectors and
the legacy Java DMK connectors.

� Enhanced Discovery service, allowing the discovery of Java DMK based
applications using legacy connectors as well as applications using the new
connectors.

Who Should Use This Book
This book is aimed at anyone who requires an introduction to the concepts and
components of Java DMK.

You should be familiar with Java programming and the JavaBeans™ component
model. You should also be familiar with the JMX specification, the JMX Remote API
specification, and the Simple Network Management Protocol (SNMP).

This book is not intended to be an exhaustive reference. For more information about
each of the management levels and how they interact, see the Java Dynamic
Management Kit 5.1 Tutorial, and the API documentation generated by the Javadoc™
tool and included in the online documentation package.

After understanding of the concepts of the Java DMK, you should familiarize yourself
with the tools for developing management applications. Then, through the lessons of
the Java Dynamic Management Kit 5.1 Tutorial, learn how to instrument new or existing
resources, write intelligent agent applications, and access these applications from
remote managers written in the Java programming language. You can then design and
develop your own Java dynamic management solution.

10 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



How This Book Is Organized
This book explains the key concepts of Java DMK, introduces the main components of
the product, provides an overview of the development process and outlines the tools
you need to use Java DMK. It is divided into the following chapters:

� Chapter 1 “Java Dynamic Management Kit Overview”
� Chapter 2 “Architectural Components”
� Chapter 3 “The Development Process”

Before You Read This Book
To build and run the sample programs or use the tool commands provided in Java
DMK, you must have a complete installation of the product on your machine. Refer to
the Java Dynamic Management Kit 5.1 Installation README for instructions on how to
install the product components and configure your environment.

Related Documentation
The Java DMK documentation set includes the following documents:

Book Title Part Number

Java Dynamic Management Kit 5.1 Installation README N/A

Java Dynamic Management Kit 5.1 Getting Started Guide 816–7607

Java Dynamic Management Kit 5.1 Tutorial 816–7609

Java Dynamic Management Kit 5.1 Tools Reference Guide 816–7608

Java Dynamic Management Kit 5.1 Release Notes N/A

These books are available online after you have installed the Java DMK
documentation package. The online documentation also includes the API
documentation generated by the Javadoc tool for the Java packages and classes. To
access the online documentation, using any web browser, open the home page
corresponding to your platform.

11



Operating Environment Homepage Location

Solaris / Linux /
Windows 2000

installDir/SUNWjdmk/5.1/doc/index.html

In these file names, installDir refers to the base directory or folder of your Java DMK
installation. In a default installation procedure, installDir is as follows.

� /opt on the Solaris or Linux platforms
� C:\Program Files on the Windows 2000 platform

These conventions are used throughout this book whenever referring to files or
directories that are part of the installation.

The Java Dynamic Management Kit relies on the management architecture of two Java
Specification Requests (JSRs): the JMX specification (JSR 3) and the JMX Remote API
specification (JSR 160). The specification documents and reference implementations of
these JSRs are available at:

http://java.sun.com/products/JavaManagement/download.html

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

12 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004

http://java.sun.com/products/JavaManagement/download.html
http://docs.sun.com
http://docs.sun.com


Typographic Conventions
The following table describes the typographic conventions used in this book.

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine-name% su

Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or
terms, or words to be
emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Shell Prompt

C shell prompt machine-name%

C shell superuser prompt machine-name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

13



14 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



CHAPTER 1

Overview of the Java Dynamic
Management Kit

The Java Dynamic Management Kit (Java DMK) is a Java application programming
interface (API) and a set of development tools for designing and implementing a new
generation of management applications. As an implementation of Java Management
Extensions (JMX), the product provides a framework for the management of Java
objects through Java technology-based applications. Because the product is also an
implementation of the JMX Remote API, it allows your management applications to
monitor and manage resources through your network.

The Java DMK provides a complete architecture for designing distributed
management systems. A Java technology-based solution can embed management
intelligence into your agents, can provide an abstraction of your communication layer,
and can be upgraded and extended dynamically. Your management applications can
also take advantage of other Java APIs such as Swing components for user interfaces
and the JDBC™ API for database access.

In addition, the Java DMK provides a complete toolkit for the simple network
management protocol (SNMP), the most widespread legacy architecture for network
and device management. This gives you the advantages of developing both Java
dynamic management agents and managers that can interoperate with existing
management systems.

This chapter contains the following sections:

� “1.1 Introduction to the Java DMK” on page 16 gives an overview of the product
architecture and functionality.

� “1.2 Key Concepts” on page 22 describes the main components of the Java DMK.
� “1.3 Benefits of a Java Dynamic Management Solution” on page 23 highlights the

benefits of the product for designers and developers.
� “1.4 Overview of the Product Documentation” on page 26 describes the product

documentation delivered with the Java DMK.

15



1.1 Introduction to the Java DMK
This section addresses these fundamental questions about the Java DMK:

� Why use Java dynamic management technology?
� What is the Java Dynamic Management Kit?
� How is a Java dynamic management solution developed?

If this is your first contact with the product, the answers to these questions should
help you understand how your management needs can be solved using Java dynamic
management technology.

1.1.1 Why Use Java Dynamic Management
Technology?
In the past, network management was usually performed by large, centralized
management applications. These management applications monitored and modified
their network by tightly controlling their agents. In addition, agents were usually
situated in or near the network elements they controlled, which meant that these
agents were limited in nature. The agents usually contained little management
intelligence and could perform only basic network management operations.

A Java dynamic management agent exposes its resources in a standard way and
provides management services directly at the resource level. These services provide
the intelligence that enables agent applications to perform management tasks
autonomously. This frees the management application from routine tasks such as
polling and thus reduces the network load as well.

When you implement Java dynamic management technology, the interface to
resources is standardized, meaning your management applications can use any
technology you want. As long as management applications communicate through a
Java dynamic management agent, they can access any resource.

The same flexibility applies to the management services that are deployed in the
agents. Because the management services can control resources through standard
interfaces, they are dynamically interchangeable. When new services become
available, these services can be downloaded and be plugged in dynamically to
upgrade the capabilities of a smart agent. Finally, the Java DMK provides a distributed
model that is protocol independent. Management applications rely on the API, not on
any one protocol.

The Java DMK brings new solutions to the management domain through the
following advantages.

16 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



� Compliance with the JMX specification and the JMX Remote API specification, for
managing Java objects through Java applications, as developed through the Java
Community ProcessSM(JCPSM).

� A single suite of components that provides uniform instrumentation for managing
systems, applications, and networks, and that provides universal access to these
resources.

� A flexible architecture that distributes the management load. This architecture can
also be upgraded in real time for the service-driven network.

The service-driven network is a new approach to network computing that
concentrates on the services you want to provide. These range from the low-level
services that manage relationships between network devices to the value-added
services you provide to end users. These services drive your network and management
needs. In addition, autonomous agent functionality makes it possible to manage a
very large installed base.

With the Java dynamic management architecture, services can be incorporated directly
into agents. Agents are given the intelligence to perform management tasks
themselves, enabling management logic to be distributed throughout the whole
network. New services can be downloaded from a web server at runtime using a
dynamic pull mechanism. Services are not only implemented inside devices, but they
can also be network-based. If your services are network-based, you can download
them through simple web pages in the same way as Java technology-based applets.

You can connect to your agents remotely, using the connector protocols that were
standardized in JMX Remote API. Using the remote method invocation (RMI) and
JMX messaging protocol (JMXMP) connectors, you can access agents across a network
with the connectors remaining completely invisible to either end of the connection.
These connections can be secured using the Secure Sockets Layer (SSL) security
mechanism with the RMI connectors, and with the more advanced Simple
Authentication and Security Layer (SASL) protocol with the JMXMP connector.

This dynamic, on-demand paradigm means that it is no longer necessary to know
what will need to be configured, managed, and monitored in the future or in advance
of network deployment. Services are created, enhanced and deployed as needed. This
unique combination of features gives the Java DMK a wide domain of application as it
integrates the current and future management standards.

1.1.2 What Is the Java DMK?
The Java DMK is a Java API that includes all its class and interface objects,
development tools that speed up the development process, and a complete set of
documentation. The Java DMK is a compliant implementation of the following
specifications:

� The JMX specification
� The JMX Remote API specification

Chapter 1 • Overview of the Java Dynamic Management Kit 17



The programmatic components of the Java DMK include the following.

� New standard communication modules – Version 5.1 of Java DMK defines APIs for
accessing JMX agents remotely. This version includes new standard
communication modules that based on RMI and JMXMP protocols, as defined by
the JMX Remote API specification. The JMXMP connector is a custom connector
that has been created especially for the JMX Remote API. JMXMP is based on Java
serialization over transmission control protocol (TCP) connections.

� RMI, hypertext transport protocol (HTTP), and secure HTTP (HTTPS)
communication modules. You can still use the legacy communication modules
based on the RMI, HTTP, and HTTPS protocols that were included in previous
versions of the product. These legacy communication modules are deprecated in
Java DMK 5.1.

� HTML adaptor. The Java DMK includes an HTML adaptor, which supports access
to an agent from a web browser.

� Agent services. The library of supplied services includes monitoring, scheduling,
dynamic loading, defining relations, new and legacy systems for cascading agent
hierarchies, dynamic agent discovery, and components for implementing security
mechanisms.

� SNMP API. Applications that rely on the SNMP APIs can integrate into existing
network management systems and can help these systems migrate towards a more
dynamic, service-based approach to network management.

� SNMPv3 compliance. Java DMK 5.1 provides an implementation of SNMPv3
security to protect your systems from outside interference.

� Security mechanisms. Java DMK 5.1 allows you to choose the level of security you
require. For example, for an RMI connector over JRMP, you can use an RMI socket
factory, so that the connection between client and server uses the Secure Socket
Layer (SSL). A more advanced level of security is available with the standard
JMXMP connector, which is based on the Java Secure Socket Extension (JSSE), the
Java Authentication and Authorization Service (JAAS), and the Simple
Authentication and Security Layer (SASL).

The development tools are implemented as two standalone applications:

� mibgen – This tool is used when developing SNMP agents. A management
information base (MIB) represents the management interface of resources in an
SNMP agent, and mibgen generates the corresponding Java objects.

� proxygen – This tool is a proxy object generator for use with legacy connectors.
The proxygen tool simplifies the development of Java technology-based
management applications. Proxy objects make the communication layer
transparent to the manager application. Note that if you require proxies for
standard connectors, you should use the dynamic proxies provided by J2SE
(java.lang.reflect.Proxy), not the proxygen tool. The proxygen tool is
deprecated in Java DMK 5.1.

Finally, the Java DMK includes complete documentation for developers:

18 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



� The full description of all classes, interfaces and methods in the APIs, generated by
the Javadoc utility.

� The source code for programming examples, which demonstrate various aspects of
the functionality of the Java DMK.

� A tutorial that explains the programming examples and a reference guide for the
standalone tools.

� Both online HTML and PDF file formats for all documents. The HTML format
complies with the accessibility standards for electronic and information technology
covered by section 508 of the Rehabilitation Act Amendments of 1998.

1.1.3 How is a Java Dynamic Management Solution
Developed?
The instrumentation level of the JMX specification describes how to represent a
resource as a Java object. The JMX agent level describes how resources interact with an
agent. The management level defined by the JMX Remote API specification describes
how to use standard connectors to access agents remotely, and how to implement the
associated security aspects. Using the Java DMK, you can design and develop a
distributed management solution relying on all three levels, and compliant with both
specifications.

1.1.3.1 Instrument Your Resources as MBeans
A resource can be any entity, physical or virtual, that you want to make available and
control through your network. Physical resources can be devices such as network
elements or printers. Virtual resources include applications and computational power
that are available on some host. A resource is seen through its management interface,
that is, the set of attributes, operations, and notifications that a management
application can access.

To instrument a resource is to develop the Java object that represents the resource’s
management interface. The JMX specification defines how to instrument a resource
according to a certain design pattern. These patterns resemble those of the
JavaBeans™ component model. An attribute has getters and setters, operations are
represented by their Java methods, and notifications rely on the Java event model.

A managed bean, or MBean, is the instrumentation of a resource in compliance with the
JMX design patterns. If the resource itself is a Java application, it can be its own
MBean. Otherwise, an MBean is a Java wrapper for native resources or a Java
representation of a device. MBeans can be distant from the managed resource, as long
as they accurately represent its attributes and operations. The MBean developer
determines what attributes and operations are available through the MBean.

Chapter 1 • Overview of the Java Dynamic Management Kit 19



Device manufacturers and application vendors can provide the MBeans that plug into
their customer’s existing agents. Management solution integrators can develop the
MBeans for resources that have not been previously instrumented. Because MBeans
follow the JMX specification, they can be instantiated in any agent that is compliant
with the JMX specification. This compliance makes the MBeans portable and
independent of any proprietary management architecture.

1.1.3.2 Expose Your MBeans in a Smart Agent
A Java dynamic management agent follows the client-server model. The agent
responds to the management requests from any number of client applications that
want to access the resources that the agent contains. The agent centralizes all requests,
dispatches the requests to the target MBeans, and returns any responses. The agent,
rather than the MBeans, handles the communication issues involved with receiving
and sending data.

The central component of an agent is the MBean server. The MBean server is a registry
for MBean instances, that exposes a generic interface through which clients can issue
requests on specific MBeans. Clients can ask for the description of an MBean’s
management interface, to find out what resource is exposed through that MBean.
Using this information, the manager can then formulate a request to the MBean server
to get or set attributes, invoke operations, or register for notifications.

MBeans are accessible only through requests to the MBean server. Manager
applications never have the direct reference of an MBean, only a symbolic object name
which identifies the MBean in the agent. This preserves the client-server model and is
essential to the implementation of query and security features.

The MBean server also provides the framework that allows agent services to interact
with MBeans. Services are themselves implemented as MBeans, which interact with
resource MBeans to perform some task. For example, a manager could decide to
monitor an MBean attribute. The manager instantiates the monitoring service MBean,
configures the threshold, and registers to receive the alarms that might occur. The
manager no longer needs to poll the agent, but will automatically be notified
whenever the attribute exceeds the threshold.

The library of services contains the logic that is necessary for implementing advanced
management policies, such as the following.

� Scheduling events
� Monitoring attributes
� Establishing and enforcing relations
� Discovering other agents
� Creating subagent hierarchies
� Downloading of new MBean objects

You can also develop your own service MBeans to meet your management needs, such
as logging and persistence services, which are typically platform-dependent.

20 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



1.1.3.3 Access Your Agents Remotely
Finally, the Java DMK enables you to access agents and their resources easily from a
remote application. All components for handling the communication are provided,
both in the agent and for the client application. The same API that is exposed by the
MBean server in the agent is also available remotely to the manager. This symmetry
effectively makes the communication layer transparent.

Management applications perform requests by getting or setting attributes or invoking
operations on an MBean identified by its symbolic name. Proxy objects provide a
further level of abstraction by representing an MBean remotely and handling all
communication. The manager can be designed and developed as if all resources were
local. The communication components also handle notification forwarding, so that
remote managers can register to receive notifications from broadcasting MBeans.

Management applications developed in the Java programming language use connectors
to make the communication layer transparent. Connectors for the RMI, RMI/IIOP and
JMXMP protocols are provided, as defined by the JMX Remote API, all with the same
API for interchangeability. The legacy RMI and HTTP-based connectors from previous
versions of Java DMK are retained for reasons of backwards compatibility, but are
deprecated in version 5.1. Wherever possible, you should migrate your remote agents
to the standard JMX Remote API connectors.

Adaptors provide a view of an agent through other protocols for management
applications which are not based on Java technology. For example, the HTML adaptor
represents MBeans as web pages that can be viewed in any web browser. The SNMP
adaptor can expose special MBeans that represent an SNMP MIB and respond to
requests in the SNMP protocols. It is possible to use the SNMP adaptor without
registering the MIB in the MBean server.

All connectors and adaptors are implemented as MBeans. Management applications
can therefore create, configure and remove communication resources dynamically,
according to network conditions or available protocols. Each protocol can have its own
built-in security mechanisms, for example SSL, SASL, or SNMPv3 security. Security
aspects linked to each protocol are therefore handled at the connector or adaptor layer,
making them transparent to the MBean developer.

The flexibility of communicator MBeans and the availability of connectors for multiple
protocols make it possible to deploy management solutions in heterogeneous network
environments. The adaptors create a bridge between agents that are based on the JMX
architecture and existing management systems. You can also create your own
connectors and adaptors to accommodate proprietary protocols and future
management needs.

Chapter 1 • Overview of the Java Dynamic Management Kit 21



1.2 Key Concepts
Figure 1–1 illustrates the key concepts of the Java DMK and shows how the
components relate to each other.

In this example, the MBeans for two resources are registered with the agent’s MBean
server. An agent service such as monitoring is registered as another MBean. The agent
contains a connector server for one of either the RMI or JMXMP connector protocols.
The agent also contains a protocol adaptor, either for SNMP or HTML. An agent can
have any number of communicator components, one for each of the protocols, and one
for each of the ports through which it communicates.

Resource

1

Resource

2

Agent
Service

M

Connector
Server

Protocol
Adaptor

MBean
Server

Java Virtual Machine

Agent Application

Developer’s
Management
Components

1

M

Java Virtual Machine

Remote Manager Application

View of the Agent:

¥ As HTML Pages in a
Web Browser

¥ As a MIB in an SNMP 
manager Console

Connector
Client

1

2

MBean Proxy

Registered MBean

RMI/JMXMP

HTML/SNMP

FIGURE 1–1 Key Concepts of the Java DMK

The remote manager is a Java application running on a distant host. The manager
contains the connector client for the chosen protocol and proxy MBeans representing
the two resources. When the connector client establishes the connection with the

22 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



agent’s connector server, the other components of the application can issue
management requests to the agent. For example, the connector client can call the proxy
objects to invoke an operation on the first resource and configure the monitoring
service to poll the second resource.

With the HTML adaptor, you can view the agent through a web browser, which
provides a simple user interface. Each MBean is represented as a separate HTML page,
from which you can interact with text fields to set attributes and click buttons to
invoke operations. The HTML adaptor also provides an administration page for
creating or removing MBeans from the MBean server.

Each of these concepts is further defined in Chapter 2.

1.3 Benefits of a Java Dynamic
Management Solution
To summarize, the benefits of the Java DMK include the following.

� Simplified design and development of instrumentation, smart agents, and remote
managers

� Deployment flexibility through protocol independence and SNMP compatibility
� Dynamic extensibility and scalability
� Secure SNMPv3 access
� Secure standard communication modules with remote managers

1.3.1 Simplified Design and Development
The JMX architecture standardizes the elements of a management system. All three
levels, instrumentation, agent, and manager, are isolated and their interaction is
defined through the API. This design makes it possible to have modular development,
in which each level is designed and implemented independently. Also, component
reuse is possible. Services developed for one JMX agent will work in all JMX agents.

At the instrumentation level:

� MBeans need only to define their management interface and map the variables and
methods of their resource to the attributes and operations of the interface.

� MBeans can be instantiated into any agent that is compliant with the JMX
specification.

� MBeans do not need to know anything about communication with the outside
world.

Chapter 1 • Overview of the Java Dynamic Management Kit 23



At the agent level:

� The MBean server handles the task of registering MBeans and transmitting
management requests to the designated MBean.

� Any MBean compliant with the JMX specification can be registered and be exposed
for management.

� Any of the provided communication components can be used to respond to remote
requests, and you can develop new adaptors and new connectors to respond to
proprietary requests.

� The library of agent services provides management intelligence in the agent, such
as autonomous operation in the case of a network failure.

At the manager level:

� All management requests on an MBean server are available remotely through a
connector.

� Notification forwarding is already implemented for you.
� Proxies provide an abstraction of the communication layer and simplify the design

of the management application.
� Basic management tasks are implemented in the agent by the agent services.

At all three levels, the modularity also means the simple designs can be implemented
rapidly, and then additional functionality can be added as needed. You can have a
prototype running after your first day of development, because of the programming
examples provided in the product.

1.3.2 Protocol Independence
The design of MBeans, agents, and managers does not depend in any way on the
protocol that an agent uses for communicating with external applications. All
interactions with MBeans are handled by the MBean server and are thus defined by
the JMX APIs.

The provided connectors rely on the API and do not expose any communication
details. A connector server, connector client pair can be replaced by another pair
without loss of functionality, assuming both protocols are in the network environment.
Applications can thus switch protocols according to real-time conditions. For example,
if a manager must access an agent behind a firewall, it can instantiate and use an
HTTP connector.

Because MBeans and agents are protocol independent, they can be accessed
simultaneously through any number of protocols. Connector servers and protocol
adaptors can handle multiple connections, so your agent needs only one of them for
each protocol to which it responds. The MBean server also supports simultaneous
requests, although MBeans are responsible for their own synchronization issues.

24 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



New connectors for new protocols can be developed and be used without rewriting
existing MBeans or external applications. All that is required is that the new connector
client expose the remote API.

The Java DMK 5.1 supports multihome interfaces, allowing you to work in
environments where multiple network protocols are available. The multihome
interface service means that Java DMK 5.1 offers complete support of the internet
protocol version 6 (IPv6), provided it is running on a platform that is IPv6 compatible,
namely JDK™ version 1.4 and higher.

1.3.3 Dynamic Extensibility and Scalability
By definition, all agents and manager applications developed with the Java DMK 5.1
are extensible and scalable. The library of agent services is always available. Managers
can instantiate new services when needed and later remove them to minimize
memory usage. This is especially useful for running agents on small footprint devices.

In the same way, MBeans can be registered and be unregistered with the MBean server
in an agent while the agent is running. This is useful to represent application resources
that can come and go on a given host. The scalability enables an agent to adapt to the
size and complexity of its managed resources, without having to be restarted or be
reinstalled.

The dynamic loading service can download and instantiate MBeans from an arbitrary
location. Therefore, you can extend the functionality of a running agent by making
new classes available at an arbitrary location and requesting that the agent load and
instantiate them. This is effectively a push mechanism that can be used to deploy
services and applications to customers.

In addition, open MBeans contribute to the flexibility and scalability of management
systems by enabling management applications to use new managed objects as the
objects are created.

Finally, conformance to the JMX specification ensures that all components that are
compatible with the JMX specification can be incorporated into Java dynamic
management agents, whether they are manageable resources, new services, or new
communication components.

1.3.4 SNMPv3 Protocol
Java DMK 5.1 provides an implementation of the SNMPv3 protocol. This means that
Java DMK benefits from the security and administration services offered by SNMPv3.

Java DMK supports SNMPv1 and v2 fully, and implements much of SNMPv3. A single
agent can respond to requests from any version of SNMP.

Chapter 1 • Overview of the Java Dynamic Management Kit 25



For more information about security using the SNMPv3 protocol, see “2.6 Security”
on page 50.

1.3.5 SNMP Master Agent
The SNMP support in Java DMK 5.1 allows you to build a master agent. An SNMP
master agent groups together several SNMP subagents and exports their information
through a single point of access. The master agent performs the following two main
functions.

� Registers subagents to handle a MIB or a part of a MIB. A subagent can provide a
local implementation of the MIB, in the form of the usual Java DMK
SnmpMibAgent class. The master agent can also be a proxy, representing a remote
SNMP agent, to which the request will be forwarded.

� Converts requests from the SNMP version supported by the manager into the
version supported by the subagent. The master agent also converts the responses
back, and converts the traps sent by the subagent into the version used by the
manager.

1.4 Overview of the Product
Documentation
Java DMK includes both printable and online documentation, as well as a set of
programming examples.

1.4.1 Online HTML Files
You can view HTML documentation after installation of the product. On the machine
where you installed the product, open one of the following URLs in any browser:

installDir/SUNWjdmk/5.1/doc/index.html

The page contains links to all the product documentation that is supplied online with
Java DMK.

1.4.2 Printable Documents
Complete PDF versions of the books listed in the preceding section are also supplied
with the CD—ROM release of Java DMK 5.1. These files are also located in the /doc
directory on the CD-ROM.

26 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



The documents are formatted for U.S. Letter paper size (8.5 × 11 inches), but they can
be loaded by any appropriate document viewer or printed directly to any printer. The
text area on each page fits on most standard paper sizes.

1.4.3 Programming Examples
Sample applications that demonstrate most of the functionality of the Java DMK are
provided in the examples package of the product. If you installed this package, the
Java source files and README text files for these applications are located in
subdirectories:

� installDir/SUNWjdmk/5.1/examples/current
� installDir/SUNWjdmk/5.1/examples/legacy

The examples in the /legacy subdirectory demonstrate the features that have been
deprecated in Java DMK version 5.1, but retained for reasons of backwards
compatibility.

Note – In the Solaris operating environment, you need to be root user to write to this
directory. To compile the example programs, users should copy the examples
hierarchy to a more accessible location.

The README file for each example gives a brief explanation of the source files and the
instructions for running its application. Further explanation for most examples is
available in the Java Dynamic Management Kit 5.1 Tutorial.

1.4.4 API Documentation
The API documentation generated by the Javadoc utility provides the full description
of all classes, interfaces, and methods in the Java DMK APIs.

The generated API documentation for the Java DMK is found in the following location
after installation:

installDir/SUNWjdmk/5.1/doc/index.html

Chapter 1 • Overview of the Java Dynamic Management Kit 27



28 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



CHAPTER 2

Architectural Components

This chapter presents the components of the Java Dynamic Management Kit (Java
DMK) and explains how you can use them in a complete management solution. Some
features are implemented in a slightly different way for the deprecated legacy
connectors. For further information on features specific to legacy connectors, see
Chapter 4.

This chapter contains the following sections:

� “2.3.1.1 RMI Connectors” on page 35 describes the three ways to instrument a
resource so that it is manageable.

� “2.2 The MBean Server” on page 33 explains how a JMX agent exposes the
MBeans it contains.

� “2.3 Communication Components” on page 34 presents the components that
establish connections between agents and managers.

� “2.4 The Notification Model” on page 40 explains how resources and agents can
signal events and how events are forwarded to remote listeners.

� “2.5 Agent Services” on page 42 briefly explains each agent service.
� “2.6 Security” on page 50 describes the security features built into the

communication components of the Java DMK.
� “2.7 The SNMP Toolkit” on page 54 explains how to develop Java applications for

SNMP agents and managers.

29



2.1 Instrumenting Resources as MBeans
The instrumentation level of the JMX specification defines standards for making
resources manageable in the Java programming language. The instrumentation of a
manageable resource is provided by one or more management beans, or MBeans. An
MBean is a Java object that exposes attributes and operations for management. These
attributes and operations enable any Java dynamic management agent to recognize
and manage the MBean.

The design patterns for MBeans give the developer explicit control over how a
resource, device, or application is managed. For example, attribute patterns enable you
to distinguish between a read-only and a read-write property in an MBean. The set of
all attributes and operations exposed to management through the design patterns is
called the management interface of an MBean.

Any resource that you want to make accessible through an agent can be represented as
an MBean. Both the agent application and remote managers can access MBeans in an
agent. MBeans can generate notification events that are sent to all local or remote
listeners. For more information about managing MBeans remotely, see “2.3
Communication Components” on page 34.

You can make resources accessible through Java DMK agents even if they are not
instrumented as MBeans, by using MBean Interceptors. See “2.6.1.4 Server
authentication” on page 52 for details.

You can also download MBeans from a web server and plug them into an agent at any
time, in response to a demand from the management application. This is called
dynamic class loading and means that future services and applications can be loaded on
the fly and without any downtime. For example, dynamic class loading can be used to
provide rapid, low-cost delivery of end-user applications across very large bases of
Java technology enabled devices, such as desktop PCs or Web phones.

There are four types of MBean:

� Standard MBeans
� Dynamic MBeans
� Model MBeans, which are an extension of dynamic MBeans
� Open MBeans, which are an extension of dynamic MBeans

2.1.1 Standard MBeans
Standard MBeans are Java objects that conform to certain design patterns that are
derived from the JavaBeans component model. Standard MBeans allow you to define
your management interface straightforwardly in a Java interface. The method names

30 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



of this interface determine getters and setters for attributes and the names of
operations. The class implementation of this interface contains the equivalent methods
for reading and writing the MBean’s attributes and for invoking its operations,
respectively.

The management interface of a standard MBean is static, and this interface is exposed
statically. Standard MBeans are static because the management interface is defined by
the source code of the Java interface. Attribute and operation names are determined at
compilation time and cannot be altered at runtime. Changes to the interface must be
recompiled.

Standard MBeans are the quickest and easiest type of MBeans to implement. They are
suited to creating MBeans for new manageable resources and for data structures that
are defined in advance and that are unlikely to change often.

2.1.2 Dynamic MBeans
Dynamic MBeans do not have getter and setter methods for each attribute and
operation. Instead, dynamic MBeans have generic methods for getting or setting an
attribute by name, and for invoking operations by name. These methods are common
to all dynamic MBeans and are defined by the DynamicMBean interface.

The management interface is determined by the set of attribute and operation names
to which these methods respond. The getMBeanInfo method of the DynamicMBean
interface must also return a data structure that describes the management interface.
This metadata contains the attribute and operation names, their types, and the
notifications that can be sent if the MBean is a broadcaster.

Dynamic MBeans provide a simple way to wrap existing Java objects that do not
follow the design patterns for standard MBeans. You can also implement dynamic
MBeans to access resources that are not based on Java technology by using the Java
Native Interface (JNI).

The management interface of a dynamic MBean is static, but this interface is exposed
dynamically when the MBean server calls its getMBeanInfo method. The
implementation of a dynamic MBean can be complex, for example, if the MBean
determines its own management interface based on existing conditions when it is
instantiated.

2.1.3 Model MBeans
A model MBean is a generic, configurable, dynamic MBean that you can use to
instrument a resource at runtime. A model MBean is an MBean template. The caller
tells the model MBean what management interface to expose. The caller also
determines how attributes and operations are implemented, by designating a target
object on which attribute access and operation invocation are actually performed.

Chapter 2 • Architectural Components 31



The model MBean implementation class is mandated by the JMX specification and
therefore is always available for instantiation in an agent. Management applications
can use model MBeans to instrument resources on the fly.

To instrument a resource and expose it dynamically, you need to:

� Instantiate the javax.management.modelmbean.RequiredModelMBean class
in a JMX agent

� Set the model MBean’s management interface
� Designate the target object that implements the management interface
� Register the model MBean in the MBean server

The management interface of a model MBean is dynamic, and it is also exposed
dynamically. The application that configures a model MBean can modify its
management interface at any time. The application can also change its implementation
by designating a new target object.

Management applications access all types of MBeans in the same manner, and most
applications are not aware of the various MBean types. However, if a manager
understands model MBeans, it can obtain additional management information about
the managed resource. This information includes behavioral and runtime metadata
that is specific to model MBeans.

2.1.4 Open MBeans
Open MBeans allow management applications and the users to understand and use
new managed objects as the objects are discovered at runtime. These MBeans are
called open because they rely on a small, predefined set of universal Java types and
they advertise their functionality.

Management applications and open MBeans are thus able to share and use
management data and operations at runtime without requiring the recompiling,
reassembly, or expensive dynamic linking of management applications. In the same
way, human operators can use the newly discovered managed object intelligently
without having to consult additional documentation.

To provide its own description to management applications, an open MBean must be a
dynamic MBean. Beyond the DynamicMBean interface, no corresponding open
interface exists that must be implemented. Instead, an MBean earns its openness by
providing a descriptively rich metadata and by using only certain predefined data
types in its management interface.

An open MBean has attributes, operations, constructors, and possibly notifications like
any other MBeans. An open MBean is a dynamic MBean with the same behavior and
all of the same functionality. An open MBean also has the responsibility of providing
its own description. However, all of the object types that the MBean manipulates, its

32 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



attribute types, its operation parameters and return types, and its constructor
parameters, must belong to a defined set of basic data types. It is the developer’s
responsibility to implement the open MBean fully by using these data types only.

An MBean indicates whether it is open or not through the MBeanInfo object it
returns. Open MBeans return an OpenMBeanInfo interface. This interface is
implemented by OpenMBeanInfoSupport, which inherits from MBeanInfo. If an
MBean is marked as open in this manner, it is a guarantee that a management
application compliant with the JMX specification can immediately make use of all
attributes and operations without requiring additional classes.

Since open MBeans are also dynamic MBeans and they provide their own description,
the MBean server does not check the accuracy of the OpenMBeanInfo object. The
developer of an open MBean must guarantee that the management interface relies on
the basic data types and provides a rich, human-readable description. As a rule, the
description provided by the various parts of an open MBean must be suitable for
displaying to a user through a graphical user interface (GUI).

2.2 The MBean Server
The MBean server is a registry for JMX manageable resources, which it exposes to
management requests. The MBean server provides a protocol-independent and
information model independent framework with services for manipulating JMX
manageable resources.

If you choose to register a resource’s MBean with the MBean server, the MBean
becomes visible to management applications and is exposed to management requests.
The MBean server makes no distinction between the types of MBeans. Standard,
dynamic, model and open MBeans are managed in exactly the same manner.

You can register objects in the MBean server through the following.

� The other objects in the agent application.
� A remote management application, through a connector or a protocol adaptor.

The MBean server responds to the following management requests on registered
MBeans.

� Listing and filtering MBeans by their symbolic name
� Discovery and publication of the management interface of MBeans
� Accessing MBean attributes for reading and writing
� Invoking operations defined in the management interface of MBeans
� Registering and unregistering listeners for MBean notifications

Chapter 2 • Architectural Components 33



The MBean server never provides the programmatic reference of its MBeans. The
MBean server treats an MBean as an abstraction of a management entity, not as a
programmatic object. All management requests are handled by the MBean server,
which dispatches them to the appropriate MBean, thus ensuring the coherence in an
agent.

An MBean is identified by a unique symbolic name, that is called its object name. The
object name can be assigned either by the entity registering the MBean or by the
MBean itself, if its implementation has been designed to provide one. Managers give
this object name to designate the target of their management requests. Unless specified
otherwise, object names are local to a specific MBean server. You can however make
object names global if you want to implement the cascading service (see “2.5.5
Cascading” on page 45).

It is possible to have multiple MBean servers within the same Java virtual machine,
with each MBean server managing a set of resources.

2.3 Communication Components
Connectors and protocol adaptors interact with the Java communication objects such
as sockets to establish connections and respond to requests from other host machines.
Connectors and protocol adaptors enable agents to be accessed and be managed by
remote management applications.

An agent can contain any number of connectors or protocol adaptors, enabling the
agent to be managed simultaneously by several managers, through different protocols.
The agent application is responsible for coordinating all the ports on which it intends
to receive requests.

2.3.1 Connectors
Connectors establish a point-to-point connection between an agent and a management
application, each running in a separate Java virtual machine.

A connector is composed of two parts:

� A connector server, which interacts with the MBean server in an agent
� A connector client, which exposes a manager-side interface that is identical to the

MBean server interface

Therefore, a Java application that instantiates a connector client can perform all
management operations that are available through the agent’s MBean server.

34 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



The Java DMK 5.1 provides the three standard connectors that are defined by the JMX
Remote API 1.0 (JSR 160) specification. The standard connectors are based on RMI,
RMI/IIOP, and JMX Messaging Protocol (JMXMP) which uses Java serialization over
TCP.

The Java DMK 5.1 also provides connectors for the HTTP/TCP, HTTP/SSL, and RMI
protocols. These “legacy” connectors were included in previous versions of the
product, and are deprecated in version 5.1, now that standard connectors are available.
Java DMK 5.1 provides a mechanism to wrap legacy connectors so that they can be
created in the same way as the new connectors. Use of the legacy connectors is
discouraged, although the use of the legacy HTTP(S) connector is acceptable as long as
no native standard HTTP connectors are present.

Every standard connector provides the same remote API, which frees management
applications from protocol dependencies. The API provided by standard connectors is
similar to that provided by legacy connectors, but they are not interchangeable. In
particular, the address format used by standard connectors is different from that used
by legacy connectors.

The addresses of the new connectors are instances of the JMX Remote API interface
JMXServiceURL. The address must adhere to the following syntax.

service:jmx:protocol:sap

Here, protocol is the transport protocol to be used to connect to the connector server,
and sap is the address at which the connector server is found. The following is an
example JMX service URL.

service:jmx:jmxmp://localhost:5555

In this example, the transport protocol is JMXMP and it is found at port 5555 of the
local host. See the API documentation for the JmxServiceURL interface for more
information about the syntax of these addresses.

2.3.1.1 RMI Connectors
The RMI connector is specified by the JMX Remote API. User code uses the same
generic factories to create a client or server as it would to create any other kind of
connector. Every connection to an RMI connector is implemented by means of a
separate RMI object, which is destroyed when the connection is closed.
Communication is always from client to server, even for notifications, which simplifies
configuration and firewall use.

The RMI connector works over both JRMP, (the native Java transport for RMI) and
IIOP. The same remote interfaces are used in both cases. Only the way in which these
interfaces are exported differs. Because of class-loading issues, the RMI/IIOP
connector cannot easily be used to interact with clients or servers that are not written
in the Java language.

Chapter 2 • Architectural Components 35



2.3.1.2 JMXMP Connectors
The JMX Remote API specifies an optional connector using a custom protocol called
JMXMP, that is based on Java serialization running over TCP connections. JMXMP can
optional use one or both of SSL and the Simple Authentication and Security Layer
(SASL) for security.

Communication between a given client and the server happens over a single TCP
connection. Every message is a serialized Java object. Coomunication is conceptually
in two independent streams of messages, from client to server and from server to
client. Thus, there can be many concurrent client requests over the connection at any
given time. Replies do not have to arrive in the same order as the corresponding
requests.

Notifications are handled in the same way as for the RMI connector. A message from
client to server asks for notifications, and a reply message from server to client
supplies them.

2.3.1.3 Monitoring Standard Connectors Using the
Heartbeat Mechanism
All connectors provided in the Java DMK implement a heartbeat mechanism. This is
true for both legacy connectors and the new standard connectors. This section outlines
the heartbeat mechanism used for standard connectors. For information on the
heartbeat mechanism used for legacy connectors, see “4.1.2 Monitoring Legacy
Connectors Using the Heartbeat Mechanism” on page 70.

The heartbeat mechanism monitors the connection between a manager and an agent,
and automates the cleanup procedure when the connection is lost. This allows both
the manager and the agent to free resources that were allocated for maintaining the
connection.

The mechanism is entirely contained in the connector client and connector server
components. No additional objects are involved. In addition, connector clients and
servers send notifications that the manager application can receive to be aware of
changes in the status of a connection.

The connector client generates a periodic heartbeat, by performing an innocuous
operation on the server. If any beat fails because of a communication failure, the
connection is considered to be dead. The server does not need to know that the
heartbeat exists. The innocuous beat operations look like any other client operation.

Furthermore, client death is not detected by heartbeat. Instead, connectors are defined
in such a way that there is no permanent client state on the server. Thus, the server can
close client connections after a specified idle time. If the client is still alive, it will
establish another connection. This is essentially an implicit lease mechanism.

36 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.3.1.4 Generating Proxies
Java DMK supports the notion of proxies. Proxies simplify the interactions between an
application and the MBeans the application wants to manage. The purpose of a proxy
is to invoke the methods that access the attributes and operations of an MBean,
through its MBean server. The proxy performs the task of constructing the method
calls at every invocation, on behalf of the caller:

� Getting or setting attributes
� Invoking operations
� Registering or unregistering for notifications

Conceptually, a proxy instance makes the MBean server and, optionally, a protocol
connector completely transparent. With the exception of MBean registration and
connector connection phases, all management requests on MBeans can be fully served
through proxies, with identical results, apart from some details concerning exceptions.
However, all functionality of the Java DMK is available without using proxies, so their
use is never mandatory.

Figure 2–1 shows management components interacting with an MBean through a
proxy.

Chapter 2 • Architectural Components 37



1
S

1
P

Connector
Server

MBean
Server

Agent-Side Java VM Manager-Side Java VM

Connector Client
(Remote MBean

Server)

Proxy

Standard MBean

Proxy Handler

Management
Components

1
P

Management
Components

FIGURE 2–1 Binding Proxy MBeans to Local and Remote Servers

Figure 2–1 also shows that proxies can be instantiated either locally in the agent or
remotely in the manager. Since the MBean server and the connector client have the
same API, management requests to either of them are identical. This creates a
symmetry so that the same management components can be instantiated either in the
agent or in the manager application. This feature contributes to the scalability of Java
dynamic management applications.

In Java DMK 5.0, proxies were generated using the proxygen tool, supplied with Java
DMK 5.1 but now deprecated. This tool is still needed if proxies are required for
legacy connectors. However, Java DMK 5.1 provides a useful enchancement for
generating proxies. Because Java DMK 5.1 is an implementation of JMX 1.2, you can
generate a proxy object at runtime given just its Java interface, using the dynamic
proxies provided with the J2SE platform (java.lang.reflect.Proxy). These
proxies cannot be used with the legacy connectors.

38 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.3.2 MBean Server Interceptors
As stated previously, the Java DMK does not require every MBean in a Java DMK
agent to be represented by a Java object in that agent. MBean Server interceptors enable
you to intercept operations on MBeans and handle them arbitrarily. Handling the
operations can involve handing the request to other interceptors, possibly after
logging or authenticating them for security. Alternatively, handling can involve
processing the request directly. For example, with very volatile MBeans, direct
handling avoids having to keep up with the creation and deletion of objects. Instead,
the managed object is effectively synthesized when there is a request on it, which for
volatile objects happens much less often than creation and deletion.

Note – In Java DMK version 5.1, it is necessary to use the new
JdmkMBeanServerBuilder class to add interceptor functionality. This can be done
by specifying a Java system property. See the Java Dynamic Management Kit 5.1 Tutorial
for details.

2.3.3 Protocol Adaptors
Protocol adaptors have only a server component and provide a view of an agent and
its MBeans through a different protocol. Protocol adaptors can also translate requests
that are formulated in this protocol into management requests on the JMX agent. The
view of the agent and the range of possible requests depends upon the given protocol.

For example, Java DMK provides an HTML adaptor that presents the agent and its
MBeans as HTML pages that are viewable in any web browser. Because the HTML
protocol is text based, only data types that have a string representation can be viewed
through the HTML adaptor. However, this is sufficient to access most MBeans, view
their attributes, and invoke their operations.

Due to limitations of the chosen protocol, adaptors have the following limitations.

� Not all data types are necessarily supported
� Not all management requests are necessarily supported, because some requests

might rely on unsupported data types
� Notifications from a broadcaster MBean might not be supported
� A given protocol adaptor might require private data structures or helper MBeans

for responding to requests

The SNMP adaptor provided in the Java DMK is limited by the constraints of SNMP.
The richness of the JMX architecture cannot be translated into SNMP, but all the
operations of SNMP can be imitated by methods of the MBean server. This translation

Chapter 2 • Architectural Components 39



requires a structure of MBeans that imitates the MIB. While an SNMP manager cannot
access the full potential of the JMX agent, the MBeans representing the MIB are
available for other managers to access and incorporate into their management
systems.

In general, a protocol adaptor tries to map the elements of the JMX architecture into
the structures provided by the given protocol. However, the completeness or accuracy
of this mapping is not guaranteed.

2.4 The Notification Model
The JMX architecture defines a notification model that enables MBeans to broadcast
notifications. Management applications and other objects register as listeners with the
broadcaster MBean. In this way, MBeans can signal asynchronous events to any
interested parties.

The JMX notification model enables a listener to register only once and still receive all
the various notifications that an MBean can broadcast. A listener object can also
register with any number of broadcasters, but it must then sort all notifications it
receives according to their source.

2.4.1 Local Notification Listeners
In the simplest case, listeners are objects in the same application as the broadcaster
MBean. The listener is registered by calling the addNotificationListener method
on the MBean. The MBean server exposes the same method so that listeners can also
be added to an MBean identified by its symbolic name.

In Figure 2–2, one listener has registered directly with the MBean and another has
registered through the MBean server. The end result is the same, and both listeners
receive the same notifications directly from the broadcaster MBean.

40 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Notification Broadcaster interface

Notification Listener interface

Notification Registration interface

L Listener Objects

Listener Registration

Notification Propagation

MBean
Server

Agent Application

Java Virtual Machine

Broadcaster
MBean

L1

L2

FIGURE 2–2 Adding Local Listeners on the Agent Side

2.4.2 Remote Notification Listeners
The connector client interface also exposes the addNotificationListener method
so that notifications can be received in remote management applications. Standard
proxies expose this method as well and transmit any listener registrations through the
connector client.

Listeners do not need to be aware that they are remote. The connector transmits
registration requests and forwards notifications back to the listeners. The whole
process is transparent to the listener and to the management components.

As shown in Figure 2–3, the connector components implement a complex mechanism
for registering remote listeners and forwarding notifications. Because notifications are
based on the Java event model, broadcasters cannot send notifications outside their
Java virtual machine. So, the connector server instantiates local listeners that receive
all notifications and places them in a cache buffer, to wait to be sent to the manager
application. This enables the connector to avoid saturating the communication layer in
case of a burst of notifications.

Chapter 2 • Architectural Components 41



Connector
Server

MBean
Server

Agent-Side Java VM Manager-Side Java VM

Connector
Client

Standard
MBean

L2i

L1i

Proxy

L1

L2

Management
Components

Notification Broadcaster interface

Client Notification Handler interface

L User’s Listener

L i MBean Server Internal Listener
Listener Registration

Notification Propagation

FIGURE 2–3 Adding Remote Listeners on the Manager Side

Notifications in the new RMI and JMXMP connectors are pulled periodically at the
client’s request. The pull mechanism is used to group notifications and reduce
bandwidth usage. The connector client acts as a broadcaster and sends the
notifications to their intended listeners.

Notifications in the legacy RMI and HTTP connectors are pulled in the same way as
the new connectors. However, the legacy connector notifications can also can be
pushed from the agent to the connector client as they are received.

2.5 Agent Services
To simplify the development of agents for network, system, application, and service
management, the Java DMK supplies a set of agent services. These services are
implemented as MBeans that perform some operations on the other MBeans in an
agent. All the provided agent services are briefly explained in this section.

42 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.5.1 Querying and Filtering
Querying and filtering are performed by the MBean server, not by a separate MBean.
This ensures that such critical services are always available. Queries and filters are
performed in a single operation, whose goal is to select the MBeans on which
management operations are performed.

Usually, a management application performs a query to find the MBeans that are the
target of its management requests. To select MBeans, applications can specify the
following.

� An object name filter, which is a possibly incomplete object name that the MBean
server tries to match with the object names of all registered MBeans. All MBeans
whose names match the filter pattern are selected. Filters can contain wildcards to
select sets of MBeans, or a filter can be a complete object name that must be
matched exactly. Filter rules are explained in detail in the JMX specification.

� A query expression, which is an object that represents a set of constraints applied to
the attribute of an MBean. For each MBean that passes the filter, the MBean server
determines if the current state of the MBean satisfies the query expression. Queries
usually test for attribute values or MBean class names.

For example, a filter could select all the MBeans whose object names contain
MyMBeans and for which the attribute named color is currently equal to red.

The result of a query operation is a list of MBean object names, which can then be
used in other management requests.

2.5.2 Dynamic Loading
Dynamic class loading is performed by loading management applets or m-lets
containing MBeans. This service loads classes from an arbitrary network location and
creates the MBeans that they represent. The m-let service is defined by the JMX
specification. The m-let service makes it possible to create dynamically extensible
agents.

A management applet is an HTML-like tag called <MLET> that specifies information
about the MBeans to be loaded. It resembles the <APPLET> tag, except that it loads
only MBean classes. The tag contains information for downloading the class, such as
the classname and the location of its class file. You can also specify any arguments to
the constructor that is used to instantiate the MBean.

The m-let service loads a URL that identifies the file containing <MLET> tags, one for
each MBean to be instantiated. The service uses a class loader to load the class files
into the application’s Java virtual machine. It then instantiates these classes and
registers them as MBeans in the MBean server.

Chapter 2 • Architectural Components 43



The m-let service is implemented as an MBean and instantiated and registered in the
MBean server. Thus, the m-let service can be used either by other MBeans or by
management applications. For example, an application could make new MBean
classes available at a location, generate the m-let file, and instruct the m-let service in
an agent to load the new MBeans.

Dynamic loading effectively pushes new functionality into agents, allowing
management applications to deploy upgrades and to implement new resources in
their agents.

2.5.3 Monitoring
The monitoring service complies with the JMX specification and provides a polling
mechanism based on the value of MBean attributes. The monitoring service contains
three monitor MBeans, one MBean for counter attributes, another MBean for
gauge-like attributes, and a third MBean for strings. These monitors send notifications
when the observed attribute meets certain conditions, mainly equaling or exceeding a
threshold.

Monitor MBeans observe the variation of an MBean attribute’s value over time. All
monitors have a configurable granularity period that determines how often the
attribute is polled. Each monitor has specific settings for the type of the observed
attribute, as follows.

� Counter monitor, which observes an attribute of the integer type (byte, integer,
short or long) that is monotonically increasing. The counter monitor has a
threshold value and an offset value to detect counting intervals. The counter
monitor resets the threshold if the counter rolls over.

� Gauge monitor, which observes an attribute of integer (byte, integer, short, or
long) or floating-point (float or double) types that fluctuates within a given
range. The gauge monitor has both a high and low threshold, each of which can
trigger a distinct notification. The two thresholds can also be used to avoid
repeated triggering when an attribute oscillates around a threshold.

� String monitor – Observes an attribute of type String. The string monitor
performs a full string comparison between the observed attribute and its match
string. A string monitor sends notifications both when the string matches and
when it differs at the observation time. Repeated notifications are not sent,
meaning that only one notification is sent the first time the string matches or
differs.

Monitor notifications contain the name of the observed MBean, the name of the
observed attribute, and the value that triggered the event, as well as the previous
value for comparison. This information allows listeners to know which MBean
triggered an event. The listeners do not need to access the MBean before taking the
appropriate action.

44 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Monitor MBeans can also send notifications when certain error cases are encountered
during an observation.

2.5.4 Scheduling
The timer service is a notification broadcaster that sends notifications at specific dates
and times. The timer service provides a scheduling mechanism that can be used to
trigger actions in the listeners. Timer notifications can be single events, repeated
events, or indefinitely repeating events. The timer notifications are sent to all of the
service’s listeners when a timer event occurs.

The timer service manages a list of dated notifications, each of which has its own
schedule. Users can add or remove scheduled notifications from this list at any time.
When adding a notification, users provide its schedule, defined by the trigger date and
repetition policy, and information that identifies the notification to its listeners. The
timer service uses a single Java thread to trigger all notifications at their designated
time.

You can stop the timer service to prevent it from sending notifications. When you start
it again, notifications that could not be sent while the timer was stopped are either
sent immediately or discarded, as determined by the configuration of the service.

Like all other agent services, the timer is implemented as an MBean so that it can be
registered in an agent and configured by remote applications. However, the timer
MBean can also be used as a stand-alone object in any application that needs a simple
scheduling service.

For more information about the timer service, see the JMX specification document.

2.5.5 Cascading
Cascading is the term used to describe a hierarchy of agents, where management
requests are passed from a master agent to one of its subagents. A master agent
connects to other agents, possibly remotely, through their connector server
components, much like a manager connects to an agent. In a set of cascading agents,
all MBeans in a subagent are visible as if they are registered in their master agent. The
master agent hides the physical location of subagents and provides client applications
with a centralized access point.

In Java DMK 5.1, the cascading service is implemented over JMX Remote API
connectors. The CascadingServiceMBean makes it possible to mount source MBean
servers, that are possibly located in subagents, into a target MBean server, that is located
in the master agent, in a manner that is somewhat analogous to a File System mount
operation.

Chapter 2 • Architectural Components 45



2.5.5.1 Object Names and Domain Paths
The Java DMK cascading API introduces the notion of a domain path. An ObjectName
is thus decomposed into three parts, as follows.

domain-path/domain-base-name:key-property-list

The domain path is a hierarchical name similar to a File System path name, using the
character ‘/’ as a separator.

2.5.5.2 File System Analogy
The CascadingServiceMBean provided in the Java DMK 5.1 makes it possible to
mount MBeans from a source MBean server under a target domain path in a target
MBean server, in a similar way to a File System mount operation.

Although our API also allows you to implement different cascading schemes, we
recommend that applications only implement those schemes that can be compared to
a regular File System mount, as follows.

� When calling the CascadingServiceMBean.mount operation, always use a non
null targetPath. The target path can be assimilated to a target mount point in the
File System analogy.

� Never use a targetPath under which MBeans are already registered in the target
MBean server. Using such a target path could cause a naming conflict when
mounting the source MBeans to the target MBean server.

� Never give the same targetPath to two different mount operations. Like in the
file system analogy, you should not attempt to mount two sources to the same
target path.

Our implementation does not enforce those rules, but applications which are
concerned with naming consistency and coherency should make sure to respect them.
See the package description in the API documentation for the
com.sun.jdmk.remote.cascading package for details.

2.5.5.3 CascadingServiceMBean
The cascading service proposed in the com.sun.jdmk.remote.cascading package
is based on a simple MBean class, the CascadingServiceMBean.

� The CascadingServiceMBean provides methods that make it possible to mount
MBeans from a source MBean server in a target MBean server under a target
domain path. Usually the target MBean server is the MBean server in which the
CascadingService is registered.

There should be only one CascadingServiceMBean per target MBean server.

46 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



� The CascadingServiceMBean.mount method mounts a partial view of a
source MBean server known by its JMXServiceURL in the target MBean server of
the CascadingServiceMBean.

� The CascadingServiceMBean.unmount method cancels a previous mount
operation. The unmount operation will close the connection that was opened by
the mount operation.

The default CascadingService implementation provided in the Java DMK 5.1 relies
on proxy-based cascading and implements the mount operation by instantiating a
ProxyCascadingAgent behind the scenes. Although the ProxyCascadingAgent
offers a public API, you should not use it directly. Applications should use the
CascadingServiceMBean instead.

CascadingServiceMBeans are also notification emitters, which emit notifications
when mountpoints are unmounted, as a result of a an unmount operation, or because
the underlying connection with the source MBean server has been closed or failed.

2.5.5.4 Cascading over Java DMK legacy connectors
There are two possibilities to implement cascading over Java DMK legacy connectors.

� Use the legacy cascading service that was provided in earlier versions of the Java
DMK. This legacy cascading service is still provided for reasons of backwards
compatibility, but it is now deprecated. This alternative is therefore not
recommended.

� Create a JMXServiceURL from which a JMXConnector wrapping a legacy Java
DMK ConnectorClient can be obtained from the JMXConnectorFactory. You
can then use this JMXServiceURL with the new CascadingServiceMBean API.
See the Java Dynamic Management Kit 5.1 Tutorial for more information about
wrapping legacy connectors.

2.5.6 Discovering Agents
You can use the discovery service to discover Java dynamic management agents in a
network. Only agents that have a discovery responder registered in their MBean
server can be discovered when you use this service.

The discovery service for legacy connectors can be functionally divided into two parts:

� The discovery search service which actively finds other agents
� The discovery support service which listens for other agents to be activated

Chapter 2 • Architectural Components 47



2.5.7 Discovery Search Service
In a discovery search operation, the discovery client sends a discovery request to a
multicast group and waits for responses. To be found by the discovery service, the
agents must have a DiscoveryResponder registered in their MBean server. All
discovery responders that receive the discovery request send a response that contains
information about the connectors and the protocol adaptor that are available in their
agent.

Discovery response object

Discovery Client

Discovery Responder

Unicast discovery response message

Multicast discovery request message

Agent 1

Agent 2

Agent 3

Manager

FIGURE 2–4 The Discovery Search Service

A manager application might use the discovery search service during its initialization
phase, to determine all agents that are accessible in its network environment.

48 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.5.8 Discovery Support Service
The discovery support service passively monitors discovery responders in a multicast
group. When discovery responders are activated or deactivated, indicating that their
agent is starting or stopping, they send a multicast message about their new state. A
discovery monitor object listens for discovery responder objects starting or stopping in
the multicast group.

By registering listeners with the discovery monitor, a management application knows
when agents become available or unavailable. The discovery support message for an
agent that is being started also lists its connector and protocol adaptor.

A management application can use the discovery monitor to maintain a list of active
agents and the protocols they support.

2.5.9 Defining Relations
The Relation Service is used to record relationships between MBeans in an MBean
server. The Relation Service is itself an MBean. More than one instance of a Relation
Service MBean can be registered in an MBean server.

A relation type defines a relationship between MBeans. A relation type contains roles
that the MBeans play in the relationship. Usually, there are at least two roles in a
relation type.

A relation is a named instance of a relation type, where specific MBeans appear in the
roles, represented by their object names.

For example, suppose Module MBeans represent the modules within an application.
A DependsOn relation type could express the relationship that some modules depend
on others, which could be used to determine the order in which the modules are
started or stopped. The DependsOn relation type would have two roles, dependent
and dependedOn.

Every role is typed, meaning that an MBean that appears in that role must be an
instance of the role’s type. In the DependsOn example, both roles would be of type
Module.

Every role has a cardinality, which provides lower and upper bounds on the number of
MBeans that can appear in that role in a given relation instance. Usually, the lower and
upper bounds are both 1, with exactly one MBean appearing in the role. The
cardinality only limits the number of MBeans in the role per relation instance. The
same MBean can appear in the same role in any number of instances of a relation type.
In the DependsOn example, a given module can depend on many other modules, and
be depended on by many others, but any given relation instance links exactly one
dependent module with exactly one dependedOn module.

Chapter 2 • Architectural Components 49



A relation type can be created explicitly, as an object implementing the
RelationType interface, typically a RelationTypeSupport. Alternatively, a
relation type can be created implicitly using the Relation Service’s
createRelationType method. A relation instance can be created explicitly, as an
object implementing the Relation interface, typically a RelationSupport. A
RelationSupport is itself a valid MBean, so it can be registered in the MBean
server, though this is not required. Alternatively, a relation instance can be created
implicitly using the Relation Service’s createRelation method.

Through the relation service, users can create relation types and then create, access,
and delete instances of a relation. All MBeans are referenced by their object name, so
that a relation can be accessed from a remote application. An MBean does not need to
know what relations it participates in. New kinds of relations can be added to an
agent without having to modify the code of the MBeans that they link.

The relation service provides query mechanisms to retrieve MBeans that are related to
each other. The relation service is notified when MBeans in a relation are unregistered,
and it verifies that any relation involving that MBean still has the required cardinality.

The relation service can represent a relation instance either internally or externally. If
the user defines a relation instance through the API of the relation service, the relation
is represented by internal structures that are not accessible to the user. This is the
simplest way to define relations, because the relation service handles all coherence
issues through its internal structures.

A relation instance can also be a separate MBean object that fulfills certain
requirements. The user instantiates and registers these MBeans, ensures that they
represent a coherent relationship, and places these MBeans under the control of the
relation service. This process places the responsibility of maintaining coherency on the
user, but external relations have certain advantages. They can implement operations
on a relation instance. Because external relations are MBeans, these extended
operations are available to remote management applications.

2.6 Security
The Java DMK provides several security mechanisms to protect your agent
applications. As is always the case, simple security that enforces management
privileges is relatively easy to implement. However, full security against mischievous
attacks requires a more sophisticated implementation and deployment scheme.
However, in all cases the security mechanisms preserve the Java dynamic
management architecture and management model.

New connector protocols were brought into Java DMK in version 5.1, with the
integration of the JMX Remote API. These new connectors implement new security
mechanisms.

50 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



The following sections give an overview of the new security features that are provided
through components of the Java DMK.

2.6.1 Security for Standard Connectors
Three main aspects to connector security exist in Java DMK.

� Privacy, ensuring that attackers cannot see potentially sensitive information or
operations over the connection, or inject new operations into it.

� Authentication, determining the identity of the client, and optionally of the server.
� Authorization, limiting the operations that a client can do based on its authenticated

identity.

2.6.1.1 Privacy
The JMXMP connector negotiates security parameters during the initial handshake of
a connection. In particular, the JMXMP connector can negotiate that the connection use
transport layer security (TLS), which is basically the same as SSL 3.0. The server can
require that only connections with TLS are accepted.

The SASL mechanisms DIGEST-MD5 and GSSAPI also provide connection privacy.
See “2.6.1.2 Client Authentication in the JMXMP connector” on page 51.

Privacy can be assured for the RMI connector by using an RMI socket factory to cause
connections to be created using TLS. Java DMK 5.1 includes a socket factory that does
this. The connector server imposes the socket factory, which is serialized into client
stubs so that all clients automatically use it.

2.6.1.2 Client Authentication in the JMXMP connector
Authentication in the JMXMP connector is based on SASL. The handshake phase of a
JMXMP connection can negotiate the SASL mechanism to use. The connector server
can mandate a list of mechanisms, and reject connections that do not negotiate one of
them. When a SASL mechanism successfully completes, it has authenticated a client
identity, which is used to derive the Subject for the connection.

The SASL mechanisms DIGEST-MD5 and GSSAPI also provide connection privacy.
For these mechanisms, a TLS connection is superfluous.

TLS also supports client authentication. The JMXMP connector can exploit this to
accept only clients that can authenticate themselves, but in this case it does not
currently support authorization based on the authenticated identity.

Chapter 2 • Architectural Components 51



2.6.1.3 Client Authentication in the RMI connector
The RMI connector provides a simple way to add authentication. This mechanism is
unambitious, but is powerful enough to build real solutions. However, where security
is a major concern, users should consider using the JMXMP connector instead.

An RMI connector server can supply a JMXAuthenticator. This is a Java object with
a method that takes an arbitrary credentials object and either returns a Java Subject if
the credentials are accepted, or throws an exception if they are not. When a connection
is made, if the authenticator accepts the credentials then subsequent operations over
the connection are performed as the returned Subject. If the authenticator does not
accept the credentials, then the connection is refused.

Challenge-response mechanisms can be introduced into this scheme by having the
authenticator throw a specific exception containing a challenge. The client responds
with new credentials that respond to the challenge.

A simple JMXAuthenticator is included in Java DMK 5.1. This simple authenticator
is also included in Sun’s implementation of the J2SE platform, version 1.5. The
credentials consist of two strings, a role name and a clear text password. The
authenticator consults a text file to validate the credentials. In this file, blank lines and
lines beginning with # are ignored. Other lines must contain two blank-separated
fields, again a role name and a clear text password. If the credentials match one of
these lines then the connection is authenticated with a Subject containing the role
name.

Obviously, where clear text passwords are involved, considerable caution is necessary.
Connection privacy must be established if there is any danger of snooping. We talk of
role names rather than user names so as not to encourage naive users to put real user
passwords in the password file. A template file is included in the relevant examples
that warns in comments that the file must be read-protected, that valuable passwords
should not be used, and that in environments with strong security requirements this
solution is inappropriate. We include this scheme for simple uses and for getting
started, but expect that most deployed systems will prefer a system that does not use
clear text passwords and that integrates into an existing security infrastructure.

Again, TLS also supports client authentication. Using the socket factory mentioned in
“2.2 The MBean Server” on page 33, the RMI connector can be configured to accept
only clients that can authenticate themselves. However, in this case it does not
currently support authorization based on the authenticated identity.

2.6.1.4 Server authentication
The Java DMK’s security model is focused on ensuring that rogue clients cannot harm
legitimate servers. However, a complete security solution must also ensure that, if a
rogue server somehow substitutes itself for the legitimate server a client expects to
find, the client is not compromised. For example, a rogue server could send bogus
data to the client, or overload it, or receive sensitive information from it.

52 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Server authentication can be done using TLS. The SASL mechanisms DIGEST-MD5
and GSSAPI also support server authentication.

2.6.1.5 Authorization
Authorization works in the same way with both connectors. The authentication step
produces a Java Subject, which is a collection of Principals. The security
mechanisms in the Java platform allow permissions to be associated with each
Principal. When a remote operation is performed, the required permissions must be
present, usually because they are associated with one of the authenticated
Principals in the policy file.

A simplified authorization scheme is supported by Java DMK. This scheme is also
used in Sun’s implementation of the J2SE platform, version 1.5. In the simplified
scheme, Java permissions are not involved. This removes the need to create policy files
and to set a security manager, which are relatively complicated. Instead, there are just
two access levels, readonly and readwrite.

The readwrite level gives access to all MBean server operations. The only exceptions
are the creation of m-lets and the addition of URLs to existing m-lets. Since these
operations could allow arbitrary code to be loaded into the MBean server and run,
they are forbidden even at the readwrite level. When there is a security manager,
running arbitrary downloaded code is acceptable because it will have no permissions
by default. But the simplified scheme is specifically intended for the case where there
is no security manager.

The readonly level gives access only to operations that do not change the state of the
MBean server, such as reading attributes or querying existing MBeans.

A text file defines the access levels for different principals. In this file, blank lines and
lines beginning with # are ignored. Other lines must contain two blank-separated
fields. The first is an authenticated principal name, and the second is readonly or
readwrite.

The mechanism that checks authorization in this simplified scheme is intended for
simple uses and for getting started. It is expected that users with strong security
requirements will eventually graduate to using the full Java security model, with
permissions, policy files, and a security manager.

2.6.1.6 Subject Delegation
Java DMK 5.1 provides for subject delegation. The idea is that a single connection
authenticated with a trusted identity, the delegate, can perform operations on behalf of
other identities, without having to authenticate those identities explicitly or to
establish a different connection per identity.

Chapter 2 • Architectural Components 53



The delegate must have a specific permission to perform operations on behalf of each
identity it assumes. This permission can be specified with a wildcard, to allow
delegation from a set of identities. Unlike most permission checks, this one happens
even if there is no Java security manager.

2.7 The SNMP Toolkit
The Java Dynamic Management Kit provides a toolkit for integrating SNMP
management into a JMX architecture. SNMP management includes:

� Developing an SNMP agent with the SNMP protocol adaptor.
� Representing your SNMP management information base (MIB) as MBeans

generated by the mibgen compiler.
� Developing an SNMP manager using the SNMP Manager API, if necessary.
� Different levels of SNMP security, if necessary.

For more information regarding the SNMP toolkit, refer to the Java Dynamic
Management Kit 5.1 Tools Reference Guide and the Java Dynamic Management Kit 5.1
Tutorial.

2.7.1 SNMP Packaging in Java DMK 5.1
The Java packaging of the SNMP classes for Java DMK 5.1 has changed. In Java DMK
5.0, the SNMP classes were included in the SUNWjsnmp package, and they required a
separate Java archive (JAR) file, jsnmpapi.jar. In Java DMK 5.1, the SNMP classes
are packaged in the SUNWjdmk-runtime package, and require the same
jdmkrt.jar JAR file as the rest of the current Java DMK classes. This new
arrangement avoids the issue of potentially conflicting versions of the SUNWjsnmp
package encountered under Java DMK 5.0.

In addition, the SNMP API delivered with Java DMK 5.0 is now deprecated. The
SNMP API in Java DMK 5.1 is effectively a completely new SNMP API, that introduces
a more orthodox system of Java class naming.

To use existing SNMP implementations that you created using Java DMK 5.0
alongside SNMP implementations created using Java DMK 5.1, you must translate the
class names of the 5.0 implementations into the new format. How to perform this
translation is explained in the Release Notes.

To continue to use SNMP implementations you created using version 5.0 of Java DMK
under version 5.1, a new JAR file called legacysnmp.jar is provided. You must add
this new JAR to your classpath when running your Java DMK 5.0 SNMP
implementations under Java DMK 5.1.

54 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



All the examples of SNMP code given in the /examples/current/Snmp directory
have already been translated to implement the new class naming system. However,
should you require them, a full set of SNMP examples that follow the package naming
from Java DMK 5.0 have been retained in the /examples/legacy/Snmp directory.

2.7.2 Developing an SNMP Agent
An SNMP agent is an application that responds to SNMP requests formulated as get,
set, getnext, and getbulk operations on variables defined in a MIB. This behavior
can be fully mapped onto the MBean server and MBean resources of a Java dynamic
management agent, provided that those MBeans specifically implement the MIB. An
SNMP agent can be issued either with or independently from an MBean server.

There are two SNMP protocol adaptors: one that supports SNMPv1 and v2, and
another introduced in the Java DMK 5.0 that supports SNMPv3 as well as the two
previous versions. All features added in the Java DMK 5.0 therefore support SNMPv3
USM MIBs, providing user-based security, and scoped MIBs, that can be registered in
the adaptor using a context name. The addition of multithread support in SNMP
adaptors and timers in Java DMK 5.0 has also improved the performance of SNMP.

The SNMP protocol adaptors respond to requests in SNMP and translate the requests
into management operations on the specific MIB MBeans. The SNMP adaptors also
send traps, the equivalent of a JMX agent notification, in response to SNMP events or
errors.

The SNMP protocol adaptors can manage an unlimited number of different MIBs.
These MIBs can be loaded or unloaded dynamically, by registering and unregistering
the corresponding MBeans. The adaptors attempt to respond to an SNMP request by
accessing all loaded MIBs. However, MIBs are dynamic only through the agent
application, and the SNMP protocol does not support requests for loading or
unloading MIBs.

One advantage of the dual JMX–SNMP agent is that MIBs can be loaded dynamically
in response to network conditions, or even in response to SNMP requests. Other Java
dynamic management applications can also access the MIB through its MBean
interface. For example, the value of a MIB variable might be computed in another
application and written by a call to the MBean setter.

The SNMP protocol adaptors also send inform requests from an SNMP agent to an
SNMP manager. The SNMP manager sends an inform response back to the SNMP
agent.

2.7.3 SNMP MIB Compiler – mibgen
The mibgen tool takes as input a set of SNMP MIBs and generates standard MBeans
that you can customize. MIBs can be expressed using either structure of management
information (SMI) v1 or SMI v2 syntax.

Chapter 2 • Architectural Components 55



A MIB is like a management interface. It defines what is exposed, but it does not
define how to compute the exposed value. Therefore, MBeans generated by mibgen
need to be customized to provide the definitive implementation. The MIB is
implemented through Java objects, meaning that it has access to all Java runtime
libraries and all features of the dynamic agent where it will be instantiated.

The mibgen compiler parses an SNMP MIB and generates the following:

� An MBean representing the whole MIB
� MBeans representing SNMP groups and table entries
� Classes representing SNMP tables
� Classes representing SNMP enumerated types
� A class mapping symbolic names with object identifiers

The resulting classes should be made accessible in the agent application. When the
single MBean representing the whole MIB is registered in the MBean server, all the
associated groups are automatically instantiated and registered as well.

The mibgen compiler supports all data structure of SMI v1 and v2 protocols,
including:

� Tables with cross-references indexed across several MIBs
� MIBs that contain either SMI v1 or v2 definitions
� Nested groups
� Default value variables
� Row status variables

The Java DMK also provides an example program, showing how an agent can act as
an SNMP master agent to access MIBs implemented remotely in subagents. This
allows SNMP managers to access hierarchies of agents through a single master agent.
In this way, some MIBs can be implemented by native devices and others can be
implemented in JMX agents, yet this heterogeneous architecture is completely
transparent to the manager issuing a request.

2.7.4 SNMP Manager API
The SNMP manager API simplifies the development of Java applications for managing
SNMP agents. Its classes represent SNMP manager concepts such as sessions,
parameters, and peers through Java objects. Using this API, you can develop an
application that can issue requests to SNMP agents.

For example, you could create an SNMP resource using the SNMP manager API. You
would define a management interface that corresponds to your resource’s MIB, in
which variables are easily mapped as MBean attributes. In response to calls on the
attribute getters and setters, your MBean would construct and issue an SNMP request
to the SNMP agent that represents the resource.

56 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



The SNMP manager API supports requests in the SNMP v1, v2 or v3 protocol,
including inform requests for communicating between SNMP managers. The manager
API is used to access any compliant SNMP agent, including those developed with the
use of the Java DMK.

2.7.5 SNMPv1 and SNMPv2 Security
Because of backward compatibility, Java DMK 5.1 implements the security aspects of
the SNMP protocol v1 and v2. However, you should implement the superior security
mechanisms of SNMPv3, which are added in the Java DMK 5.1.

2.7.5.1 SNMPv1 and SNMPv2 Access Control
SNMPv1 and v2 define an access control mechanism similar to password
authentication. Lists of authorized manager host names are defined in an access control
list (ACL) stored in a file on the agent side, called the IP ACL file. There are no
passwords, but logical community names (IP addresses) can be associated with
authorized managers to define sets of allowed operations.

The SNMP adaptor performs access control if an ACL file is defined. Because SNMP is
a connection—free protocol, the manager host and community are verified with every
incoming request. By default, the file is not loaded and any SNMP manager can send
requests.

The ACL file is the default access control mechanism in the SNMP protocol adaptor.
However, you can replace this default implementation with your own mechanism. For
example, if your agent runs on a device with no file system, you could implement
access control lists through a simple Java class.

2.7.5.2 SNMPv1 and SNMPv2 Encoding
SNMP requests follow the standardized Basic Encoding Rules (BER) for translating
management operations into data packets. At the communication level, an SNMP
request is represented by an array of bytes in a UDP protocol packet. The SNMP
components in the Java DMK provide access to the byte encoding of these packets.

Your applications can customize the encoding and decoding of SNMP requests, as
follows:

� On the manager side, after the request is translated into bytes, your encoding can
add signature strings and then perform encryption.

� On the agent side, the bytes can be decoded and the signature can be verified
before the bytes are translated into the SNMP request.

A decoded SNMP request contains the manager’s hostname and community string,
the operation, the target object, and any values to be written. Like the context
checking mechanism, you can insert code to filter requests based on any of these

Chapter 2 • Architectural Components 57



criteria. However, inserting your own code would make the protocol proprietary.

2.7.6 SNMPv3 Security
The main addition to Java DMK 5.1 provided by SNMPv3 is the possibility of secure
SNMP operation. The SNMPv3 security in Java Dynamic Management Kit 5.1
implements the following SNMP RFCs:

RFC 2571 Architecture

RFC 2572 Message Processing and Dispatching

RFC 2574 USM

The SNMPv3 protocol implementation provides:

� A dispatcher, the SNMP adaptor, for sending and receiving messages

� The SNMPv3 Message Processing Model (MPM), to prepare messages for sending
and to extract data from messages received

� A User-based Security Model (USM), to provide authentication and privacy for
SNMP operations

� A user-based Access Control Model (ACM), to control access to Java management
agents

� A USM local configuration data file (LCD) that allows configured users persistency

Despite the differences between the previous versions of SNMP and SNMPv3, agents
in Java DMK 5.1 can respond to requests from any version if the SNMPv3 protocol
adaptor is used. SNMP v1 and v2 requests have greater security constraints than v3
requests in an agent compatible with SNMPv3.

The USM MIB is accessible remotely and is not registered to the SNMPv3 adaptor by
default.

The USM MIB can be registered in an MBean server, thus making it accessible through
the HTML adaptor. This is particularly useful when debugging, although it does create
a security risk. Exposing the USM MIB through SNMP without the MBean server,
however, is not insecure.

Users can also be configured into an agent by means of an ASCII text file that acts as
an initial configuration template for all agents created.

58 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.7.6.1 SNMPv3 Authentication and Privacy
Inside SNMP domains, every SNMP entity is issued a unique identifier, the engine ID.
Java DMK 5.1 provide a set of classes to allow you to generate engine IDs based on,
amongst other identifiers, host names, internet protocol (IP) addresses, port numbers
and Internet assigned numbers authority (IANA) numbers.

There are two types of SNMP entity:

� Authoritative entities
� Nonauthoritative entities

Authoritative agent entities receive get, set, getnext, and getbulk requests and
send traps. Nonauthoritative agents send informs.

Authoritative manager entities receive informs. Nonauthoritative managers send get,
set, getnext and getbulk requests and informs, and receive traps. The engine ID
and the number of times the engine has booted can be stored and persisted in the
SNMPv3 security file, so that the timeliness of the incoming requests can be verified.

Under SNMPv3 there are three levels of security:

� No security: Unsecured SNMP requests

� Authenticated requests: Confirmation of the sender’s identity and of the timeliness of
the request, with the content of the request visible to the network

� Authenticated and encrypted requests: Authentication, with the content of the request
encrypted

Managers and agents are both configured with a username, allowing the manager
specific access to that agent. The username has an associated password. Both the agent
and the manager sides must be configured according to the desired security policy. For
requests to be authenticated, the manager and the agent must share knowledge of the
authentication password associated with the username. For requests to be encrypted,
the manager and the agent must additionally share knowledge of the privacy
password associated with the username.

Unsecured SNMP Requests

When an agent receives a request from a manager, it checks its LCD. If the user is
found in the LCD, the request is granted. No timeliness checking is performed, and
the content of the request is not encrypted.

Authenticated Requests

The agent checks the identity of the originator of the request as previously described
and then checks the timeliness of the request to ensure that it has not been delayed or
intercepted for improper purposes. To monitor the timeliness of the arrival of requests,

Chapter 2 • Architectural Components 59



both manager and agent maintain synchronized clocks, and the manager’s local notion
of the authoritative engine’s time of sending is included in the request. If the
difference between the time of sending included in the request and the time of receipt
recorded by the agent exceeds 150 seconds, then the request is not considered timely
and is rejected.

Once the timeliness of the request has been confirmed, the request is authenticated
using either of the HMAC-MD5 or HMAC-SHA protocols. These protocols check that
the message digest included in the message matches the one computed locally in the
receiving agent.

Authenticated and Encrypted Requests

If privacy has been activated, the content of the request is encrypted, using the DES
encryption protocol provided by the Java cryptography extension (JCE) from JDK 1.4.
The secure hash algorithm (SHA) and MD5 encryption protocols provided in JDK 1.2
are also used. The requests are decrypted and forwarded once the identity of the
sender and the timeliness of the request have been established.

Error Messages

If any of the preceding checks fail, one of the following errors will be generated:

unknownUser Unregistered user

unknownEngineID Unregistered SNMP entity

encryptionFailed Encryption error

unsupportedSecurityLevel Unsupported security level

authentificationFailed Password error

notInTimeWindow Timeliness error

Note – You can optionally implement alternative authentication and encryption
algorithms. You cannot, however, plug in customized security or access control models
in Java Dynamic Management Kit 5.1, although this will be possible in future versions.

60 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



2.7.6.2 SNMPv3 Access Control
SNMPv3 access control differs from the access control defined by versions 1 and 2, in
that it is based on contexts and user names, rather than on IP addresses and
community strings. The configuration for SNMPv3 access control is located in a text
file, called the user ACL file. See the Java Dynamic Management Kit 5.1 Tutorial for
information about the user ACL file and how to configure it.

When managers send a requests to an agent, the agent authenticates and, if necessary,
decrypts the request, as explained earlier. It then passes the request through SNMP
context-checking filters to determine whether it is authorized.

2.7.6.3 SNMPv3 Security Configuration
The configuration for SNMPv3 user-based security is located in a text file, called the
security file. Each SNMP engine has its own security file. See the Java Dynamic
Management Kit 5.1 Tutorial for information about the user security file and how to
configure it.

You can view examples of security files at:

installDir/SUNWjdmk/5.1/examples/current/Snmp

Chapter 2 • Architectural Components 61



62 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



CHAPTER 3

Development Process

This chapter outlines the main tasks in developing management solutions using the
Java Dynamic Management Kit (Java DMK).

This chapter is concerned mostly with design issues in the development process. For
an explanation of how to write the code of management applications, see the
programming examples in the Java Dynamic Management Kit 5.1 Tutorial.

The tasks are described in the following sections:

� “3.1 Instrumenting Resources” on page 64
� “3.2 Designing an Agent Application” on page 65
� “3.3 Designing a Management Application” on page 66

Figure 3–1 summarizes these tasks, from crafting MBeans in your factory to deploying
them through the web.

63



http://

MBean Server

Java Dynamic
Management Agent

Management
Application

Proxy
MBeans

MBeans

New and
existing

resources
to be

instrumented

Tools of
the Java
Dynamic

Management
Kit

MBeans
and their

corresponding
Proxy

MBeans

FIGURE 3–1 Development Process

3.1 Instrumenting Resources
MBeans conform to the JMX specification, which standardizes the representation of
the MBean’s management interface. Therefore, the first task in the development
process is to define the management interface of your resources.

If you are creating new resources, you must determine the granularity of the
information about that resource. How many attributes need to be exposed for
management? What operations will be useful when the resource is deployed? When
should the resource send notifications? The answers to these questions determine the
granularity of your MBean’s management interface.

64 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Consider an MBean that represents a printer. If your MBean is exposed to end users, it
might need only to expose a state attribute, ready or offline, and perhaps an operation
such as switch paper trays. However, if your MBean is intended for remote servicing, it
must contain much more information. Operators need to know such information as
the total print count, the toner level, and the location of a paper jam, and they might
want to run self-diagnostics.

Sometimes resources are already manageable through another system. In this case you
need only to translate their existing management interfaces into an MBean. Because
the JMX architecture is rich, you can usually improve the existing management
interface in the translation. Some operations might not be needed because they can be
replaced by an agent service. New attributes might be added now that they can be
computed dynamically.

As more vendors adopt the JMX specification, resources will be supplied with their
instrumentation. Your task will then be to understand the management interface that
is provided and to integrate the MBean classes into your application. In this case you
will be integrating MBeans from various sources and ensuring that they interact as
expected.

3.2 Designing an Agent Application
Given the set of resources you want to manage, you need only to register their
corresponding MBeans in an agent, and they become manageable. However,
designing an effective agent is more complex.

When designing your agents, you must keep in mind the nature of the management
application that will access them. You must strike a balance between services that
unburden your clients and making of your agent application too complex.

The simplest agent is one that contains an MBean server and a connector or protocol
adaptor. The class for this agent can be written in 10 lines of code, yet this agent is
fully manageable. Through the one communication component, a manager can
instantiate agent services and dynamically load new resources. The minimalist agent
can grow to contain as many MBeans as its memory can hold.

At the other extreme, your entire management solution could be located in the agent.
All the policies and all resources you need could be managed locally. This application
can become overburdened with its management tasks and does not take advantage of
distributed management logic. You need to decide between how much management
logic can be performed locally and how much is distributed across your whole
management solution.

Chapter 3 • Development Process 65



The functionality of your agents is most often determined by their environment. Some
agents might be limited by their host machine. When memory or processing power is
limited, an agent can be expected only to expose its MBeans and perhaps run a
monitoring service.

An agent in a more powerful machine has the liberty to run more services and handle
more MBeans. For example, the agent at the top of a cascading hierarchy might
establish relations between MBeans in all the subagents. Desktop machines and
workstations can easily handle agents with thousands of MBeans.

The hierarchical model is very appropriate, because management logic and power are
concentrated toward the top of the hierarchy. The information from many small
devices becomes concentrated on a few large servers where the management consoles
are located. In between are medium-sized agents that perform some management
tasks, such as filtering errors and computing averages across their subagents.

3.3 Designing a Management
Application
This section focuses on developing a management application in the Java
programming language. Java applications access agents through connectors which
preserve the JMX technology-based architecture. All management requests are
available through the connectors, making the communication layer transparent.

Beyond the specifics of establishing connections, accessing MBeans, and using proxies,
there are more general programming issues to consider when implementing a
management application.

Without going into the details, a list of features that managers might need to
implement is given here. A full treatment of these topics would fill several books and
several of these issues will probably remain research topics for years to come:

� Optimizing communications by dynamically configuring the connectors
� Deploying new services and upgrading agents dynamically
� Establishing and managing a hierarchy of agents
� Implementing lookup services to allow connector clients to find connector servers
� Cascading management requests through hierarchies of agents
� Handling errors and exceptions
� Recovery from crashes
� Total security

66 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Do not let this list of complex issues scare you away. Not all of these features are
needed by all managers. Only the largest management applications would implement
full solutions to any one of these issues.

The modularity of the JMX architecture lets you start with a basic manager that is only
concerned with accessing resources in an agent. As your needs evolve you can explore
solutions to the issues listed above.

In parallel to the programming issues, there two major design issues to consider when
developing a management application: the flow of information, and the specificity of
the solution.

3.3.1 Defining Input and Output
A management application serves three purposes: to access resources in order to give
or receive information, to perform some operation on this information, and to expose
the result to others. The operation that a manager performs on its information might
be some form of computation, a concentration of the data, or simply a translation from
one representation to another.

For example, a manager for a network might collect bandwidth data from routers and
calculate averages that are available through some API. The manager also monitors all
data for abnormal values and triggers a notification when they occur. These could
arguably be the tasks of a smart agent, but let us suppose it is an intermediate manger
for very simple agents in the routers.

Now consider a second example: a graphical user interface for managing a pool of
printers. Agents in the printers signal whenever there is an error, the manager reads
other parameters to determine whether the problem is serious and displays a
color-coded icon of the printer: red if the printer needs servicing, orange if it is only a
paper problem, and green if the printer is now back online.

In both cases, the applications can have much more functionality, but each function
can be broken down into its three facets. By identifying what data needs to be
collected, how it needs to be processed and how it needs to be exposed, you can
determine the agents that need to be accessed, the algorithms that need to be
implemented, and the format of the output.

3.3.2 Specific Versus Generic
Another design choice is whether you need a specific manager or a generic
management solution. The two examples above are applications designed for a
specific task. Their inputs are known, their agents are listed in address tables, and they
are programmed to provide a specific output for given inputs.

Chapter 3 • Development Process 67



A generic management solution is much more complex. It takes advantage of all
dynamic features in the JMX architecture. Agents and their resources are not known
ahead of time, data formats are unknowable and the output is at best a set of
guidelines. Generic managers do not implement a task, they implement a system for
integrating new tasks.

Let us extend our printer management system to perform some generic management.
First, we set a guideline of only managing printers whose agents contain discovery
responders. That way, we can detect when printers are plugged in, we can connect to
their agents, and we can add them to the management console automatically. Then we
make a space in our user interface for a custom printer interface. If the printer’s agent
has a resource called HTMLserver, we will load the data from this server into the
screen frame reserved for this printer.

Users of this management system can now install a server-enabled printer, and it will
be managed automatically when it is plugged into the network. Of course, this system
is only viable if you advertise the ways in which it is generic, so that printer
manufacturers are encouraged to add Java dynamic management agents to their
products.

Generic management systems are complex and perhaps difficult to design, but they are
definitely in the range of possibilities offered through the JMX architecture and the
Java Dynamic Management Kit.

68 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



CHAPTER 4

Legacy Connectors and Related
Features

Several features from previous releases of Java Dynamic Management Kit (Java DMK)
have been deprecated in version 5.1. This is mostly due to the support of the Java
Management Extensions specification (JMX) version 1.2 and the JMX Remote API that
were added in Java DMK 5.1. Although these legacy features are now marked as
“deprecated”, they have been retained for reasons of backwards compatibility.

� “4.1 Legacy Connectors” on page 69
� “4.1.1 Wrapping of Legacy Connectors” on page 70
� “4.3 Cascading Service for Legacy Connectors” on page 74
� “4.4 Security Mechanisms for Legacy Connectors” on page 74
� “4.5 Tracing” on page 78

4.1 Legacy Connectors
Java DMK 5.1 includes three legacy connectors, in addition to the standard connectors
described in “2.3.1 Connectors” on page 34. The legacy connectors are deprecated in
favor of the standard ones.

The legacy connector protocols are based on RMI, HTTP, and HTTP/S. The HTTP and
HTTP/S connectors are identical except for the security details of connection
establishment. For more information on security for legacy connectors, see “4.4
Security Mechanisms for Legacy Connectors” on page 74.

A legacy connector is composed of two parts:

� A connector server, which interacts with the MBean server in an agent
� A connector client, which exposes a manager-side interface that is identical to the

MBean server interface

Therefore, a Java application that instantiates a connector client can perform all
management operations that are available through the agent’s MBean server.

69



In the client-server model, it is the connector client that initiates all connections and all
management requests. An agent is identified by an address that contains the agent’s
hostname and port number. The target agent must contain an active connector server
for the desired protocol. The address object is protocol-specific and can contain
additional information needed for a given protocol.

The connector client uses this address to establish a connection with its corresponding
connector server. A connector client can establish only one connection at a time. This
implies that a manager instantiates one connector client for each agent it contacts. The
management application must wait for the connector to be online, meaning that a
connection is established and ready to send requests.

Management applications can then invoke one of the methods of the connector client
to issue a request. These methods have parameters that define the object name of the
MBean and the attribute or operation name to which the request applies. If the request
has a response, it will be returned to the caller.

A connector hides all the details of the protocol encoding from the Java applications.
Agent and manager exchange management requests and responses based on the JMX
architecture. The underlying encoding is hidden and is not accessible to the
applications.

All legacy connectors provide the same remote API, which frees management
applications from protocol dependencies. The API provided by legacy connectors is
similar to that provided by standard connectors, but they are not interchangeable. In
particular, the address format used by legacy connectors is different from that used by
standard connectors.

4.1.1 Wrapping of Legacy Connectors
Although it is recommended that you use the new RMI and JMXMP connector
protocols defined by the JMX Remote API, it is possible for you to continue to use
your existing legacy connectors alongside the new ones. This is achieved by wrapping
the legacy connector so that it appears in a form that is compatible with the new
standard connectors. Wrapping your Java DMK 5.0 RMI and HTTP(S) connectors
allows applications created using Java DMK 5.1 to interoperate with existing Java
DMK applications.

4.1.2 Monitoring Legacy Connectors Using the
Heartbeat Mechanism
All connectors provided in the Java DMK implement a heartbeat mechanism. This is
true for both standard connectors and legacy connectors. This section describes the
heartbeat mechanism used for legacy RMI, HTTP, and HTTPS connections. For
information on the heartbeat mechanism used for standard connectors, see “2.3.1.3
Monitoring Standard Connectors Using the Heartbeat Mechanism” on page 36.

70 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



The heartbeat enables both the agent and manager applications to detect when a
connection is lost, either because the communication channel is interrupted or because
one of the applications has been stopped.

The connector client and connector server components exchange heartbeat messages
periodically. When a heartbeat is not returned or an expected heartbeat is not received,
both components begin a retry and timeout period. If the connection is not
reestablished, both the connector client and the connector server free the resources
allocated for that connection.

The heartbeat mechanism is only configurable on the manager side, the connector
server simply replies to heartbeats. The manager application can set the retry policy as
determined by the heartbeat period and the number of retries. The manager
application can also register for heartbeat notifications that are sent whenever a
connection is established, retried, reestablished, lost, or terminated.

4.1.3 Generating Proxies for Legacy Connectors
This section outlines how to generate proxies for MBeans accessed through legacy
RMI, HTTP and HTTPS connectors.

A proxy MBean is an object that represents a specific MBean instance and that makes it
easier to access that MBean. A management application instantiates a proxy so that it
has a simple handle on a registered MBean, instead of needing to access the MBean
server.

The manager can access MBeans by invoking the methods of their proxy object. The
proxy formulates the corresponding management request to the MBean server. The
operations are those that are possible on an MBean:

� Getting or setting attributes
� Invoking operations
� Registering or unregistering for notifications

Figure 2–1 shows management components interacting with an MBean through a
proxy.

Chapter 4 • Legacy Connectors and Related Features 71



1
S

1
P

Connector
Server

MBean
Server

Agent-Side Java VM Manager-Side Java VM

Connector Client
(Remote MBean

Server)

Proxy

Standard MBean

Proxy Handler

Management
Components

1
P

Management
Components

FIGURE 4–1 Binding Proxy MBeans to Local and Remote Servers

Figure 4–1 also shows that proxies can be instantiated either locally in the agent or
remotely in the manager. Since the MBean server and the connector client have the
same API, management requests to either of them are identical. This creates a
symmetry so that the same management components can be instantiated either in the
agent or in the manager application. This feature contributes to the scalability of Java
dynamic management applications.

A standard proxy is generated from a standard MBean using the proxygen tool,
supplied with the Java DMK. The resulting class then needs to be loaded wherever the
proxy will be instantiated. Generic proxies provide less of an abstraction but do not
need to be generated. They are part of the Java DMK libraries and are thus always
available.

Note – The proxygen tool must only be used to create proxies for MBeans accessed
through legacy Java DMK connectors. It is not for use with standard connectors.

72 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



4.2 Generating Proxy MBeans
Generating proxy objects for your MBeans is an optional step that depends on the
design of your management application. As discussed earlier in this guide, a proxy is
an object that represents an MBean in a remote agent. The manager accesses an MBean
by performing operations on the proxy MBean.

Proxy objects simplify the design of your management application because they
provide an abstraction of remote resources. Your architecture can assume that
resources are local because they appear to be, even if they are not. Of course, proxies
have greater response times than local resources, but the difference is usually
negligible.

Using proxies also simplifies the code of your application. Through the connector
client, the proxy object handles all communication details. Your code invokes a
method that returns a value, and the complete mechanism of performing the remote
management request is hidden. This object-oriented design of having a local object
represent a remote resource is fully in the spirit of the Java programming language.

Assuming that a management application has already established the connection to an
agent, the overhead of a proxy object is minimal, both in terms of resource usage and
required setup. However, it is common sense to instantiate proxies only for resources
that will be accessed often or that are long-lived.

The method used to generate proxies has changed in Java DMK 5.1. The proxygen tool
is now marked as deprecated. Use the proxygen tool only if you require proxies for
legacy remote method invocation (RMI), hypertext transfer protocol (HTTP), and
secure HTTP (HTTP/S) connectors. For new RMI, RMI/IIOP and Java Management
Extensions messaging protocol (JMXMP) connectors that comply with the JMX 1.2 and
JMX Remote API 1.0 specifications, you can generate a proxy object at runtime, given
just its Java interface, using the dynamic proxies defined by the Java 2 Platform,
Standard Edition (J2SE) java.lang.reflect.Proxy interface. These dynamic
proxies cannot be used with the legacy connectors.

In an advanced management solution where resources are discovered only at runtime,
the proxy class can be loaded dynamically in the manager. For example, the resource
might expose an attribute called ProxyURL from which a class loader can retrieve the
proxy object.

Chapter 4 • Legacy Connectors and Related Features 73



4.3 Cascading Service for Legacy
Connectors
The cascading service for legacy connectors is an MBean that establishes a connection
to one subagent. For each of the subagent’s MBeans, the cascading service instantiates
a mirror MBean that is registered in the master agent. The cascading service also
defines a filter and query expression that together determine the set of MBeans in the
subagent that is mirrored.

The mirror MBean is a sort of proxy that is specific to the cascading service. A mirror
MBean exposes the same management interface as its corresponding MBean. All
attributes, operations, and notifications can be accessed through the mirror MBean,
which forwards all management requests through the cascading service to the
corresponding MBean in the subagent.

You can define hierarchies of agents of arbitrary complexity and depth. Because
mirrored MBeans are registered MBeans, they can be mirrored again in a higher
master agent. The cascading service is dynamic, meaning that mirrored MBeans are
added or removed as MBeans in a subagent are added or removed.

The cascading mechanism works only in one direction. While master agents can
manipulate objects in their subagents, subagents have no visibility of their master
agent and are not even aware of their master agent.

The cascading service relies on connector components internally and can therefore be
used with the RMI, HTTP, or HTTPS protocols. The user specifies the protocol and the
subagent’s address when configuring the cascading service.

4.4 Security Mechanisms for Legacy
Connectors
The legacy RMI and HTTP-based connectors implemented different security
mechanisms to those implemented by the new RMI and JMXMP connectors. These
legacy mechanisms are now deprecated, and are presented here for reasons of
backwards compatibility.

74 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



4.4.1 Password Protection
Password-based protection restricts client access to agent applications. All
HTTP-based communication provides login- and password- based authentication, as
does the SNMP protocol adaptor.

Password protection can be used to associate managers with a set of privileges that
determine access right to agents. The user is free to implement whatever access policy
is needed on top of the password authentication mechanism. The SNMP protocols also
provide password protection to agent applications. See “2.7.5 SNMPv1 and SNMPv2
Security” on page 57 and “2.7.6 SNMPv3 Security” on page 58.

4.4.1.1 HTTP Connectors
Both HTTP and HTTPS connectors provide login and password-based authentication.
The server component contains the list of allowed login identifiers and their
passwords. Management applications must specify the login and password
information in the address object when establishing a connection.

If the list of recognized clients is empty, the default behavior is to perform no
authentication and grant access to all clients.

4.4.1.2 HTML Protocol Adaptor
Because the HTML protocol adaptor relies on HTTP messaging, it also implements
password protection. The agent application specifies the list of allowed login
identifiers and their passwords when creating the HTML adaptor. When password
protection is enabled in HTML, the web browser usually displays a dialog box for
users to enter their login and passwords.

In general, the security mechanisms of a protocol adaptor depend on the security
features of the underlying protocol. The ability to use security mechanisms also
depends on the functionality of the management console. If your web browser does
not support the password dialog, you cannot access a password-protected HTML
adaptor.

4.4.2 Context Checking
Whereas password protection grants all-or-nothing access, context checking enables
the agent application to filter each management request individually. Context checking
can be associated with password protection to provide multiple levels of security.

All management requests that arrive through a connector or HTML protocol adaptor
are inspected by the agent application to determine if they are authorized. The
management application filters requests based on the type of request, the MBean for
which they are intended, or the values that are provided in the operation.

Chapter 4 • Legacy Connectors and Related Features 75



For example, context checking could allow an agent to implement a read-only policy
that refuses attribute set operations, all operation invocation, and does not allow
MBean registration or unregistration. A more selective filter could just ensure that the
agent cannot be disconnected: it would disallow MBean unregistrations, stop
operations, and invocations that contain null parameters, but only when applied to
connector servers or protocol adaptor MBeans.

In addition, requests through connector clients can be filtered by an operation context
field, which could be a password or any other identifying data. The context object is
provided by the management application, and it will be sent to the connector server
along with each request. The agent can verify this context and potentially reject the
request if the context is considered invalid or inappropriate for the operation.

To make this context checking possible, the agent provides:

� Stackable MBean server objects – You can insert your own code to perform context
checking and filtering between the communication component and the MBean
server.

� Thread contexts – Your code can retrieve the remote application’s context object that
is stored in the thread object that handles the request. The context is an arbitrary
object that your code can use to determine whether or not to allow the request.

Resource
MBeans

Remote Management
Application Context

Connector/
Protocol Adaptor

MBean Server Interface

Context Checker

MBean Server Implementation

Stop Go

FIGURE 4–2 Context Checking Using Stackable MBean Server Objects

76 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



In Figure 4–2, a context checker object has been inserted between the connector and
the MBean server. Because a context checker object implements the MBeanServer
interface, the connector interacts with it in exactly the same way as it did with the
MBean server. This stacked object retains a reference to the real MBean server, to
which it forwards all requests that are allowed. The context checker can also perform
any other action, such as log all filtered requests and trigger a notification when an
invalid request is received.

For security reasons, only the agent application can insert or remove stackable MBean
server objects. This operation is not exposed to management applications, which
cannot even detect whether requests are being filtered. However, the context checker
might respond with an exception message that explains why a request was denied.

4.4.3 Data Encryption
The last link in the security chain is the integrity of data that is exchanged between
agent and managers. Two issues need to be considered simultaneously:

Authentication: Both agent and manager must be certain of the other’s identity.

Privacy: The data of a management request should be tamper-proof and
undecipherable to nontrusted parties.

These issues are usually resolved by a combination of electronic signatures and data
encryption. Again, the implementation is protocol-dependent.

The SNMP protocols also provide password protection to agent applications. See
“2.7.5 SNMPv1 and SNMPv2 Security” on page 57 and “2.7.6 SNMPv3 Security”
on page 58.

The HTTPS connector enables Java managers to access a Java dynamic management
agent using HTTP over Secure Socket Layer (SSL). SSL security is implemented in the
Java 2 platform. The HTTP/SSL connector provides identity authentication based on
the Challenge-Response Authentication Mechanism using MD5 (CRAM-MD5). The
HTTPS connector server requires client identification by default.

The behavior of the HTTP/SSL connector is governed by the particular SSL
implementation used in your applications. For data encryption, the default cipher
suites of the SSL implementation are used. The SSL implementation must be compliant
with the SSL Standard Extension API.

4.4.4 Secure Dynamic Loading
The m-let service downloads Java classes from arbitrary locations over the network. If
you want to do so, you can enable code signing to ensure that only trusted classes can
be downloaded. Secure loading relies on code signing.

Chapter 4 • Legacy Connectors and Related Features 77



On the Java 2 platform, the java.lang.SecurityManager property determines if
code signing is enforced. When this security is enabled, again only class files signed by
a trusted party will be loaded. On the Java 2 platform, users invoke the keytool,
jarsigner, and policytool utilities to define their security policies.

4.5 Tracing
The implementation of Java DMK 5.1 has changed with regard to the production of
tracing and debugging information:

� The source code of Java DMK 5.1 now uses directly the java.util.logging API
to emit debug and trace messages.

� The com.sun.jdmk.TraceManager class, com.sun.jdmk.trace.* classes and
com.sun.jdmk.Trace class (already deprecated in Java DMK 5.0) are all
deprecated in Java DMK 5.1.

� Backward compatibility with Java DMK 5.0 system properties is preserved:
-DLEVEL_* and -DINFO_* flags still activate the traces.

When java.util.logging is not present, it is still possible to activate the traces by
specifying -DLEVEL_DEBUG or -DLEVEL_TRACE on the Java command line.

78 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



Index

A
access control

SNMPv1 and SNMPv2, 57
SNMPv3, 61

accessing agents remotely, 21
adaptors

HTML, 21, 39
limitations, 39
protocol, 39
SNMP, 21

advantages of Java DMK, 16, 23
agent applications, designing, 65
agent services, 42

cascading, 45
defining relations, 49
dynamic loading, 43
filtering, 43
monitoring attributes, 44
querying, 43
scheduling notifications, 45

attributes
monitoring, 44

authentication, 51, 52
HTML protocol adaptor, 75
HTTPS connectors, 77
legacy HTTP connectors, 75
SNMPv1 and SNMPv2, 57
SNMPv3, 59

authorization, 53

C
cascading, 45

legacy connectors, 74
class

dynamic loading, 30, 43
communication components, 34
connectors, 34

heartbeat mechanism, 36
JMXMP, 21, 34, 36
legacy, 21, 34, 69
RMI, 21, 34, 35
wrapping legacy connectors, 70

D
data encryption, 77
developing a Java dynamic management

solution, 19
development tools

generating proxy MBeans, 73
mibgen tool, 55
proxygen tool, 73
SNMP MIB compiler, 55
summary, 18

discovering agents
discovery search service, 48
discovery support service, 49

discovery monitor object, 49
documentation, 26

HTML, 26
Javadoc, 27
printable, 26

79



documentation (Continued)
programming examples, 27
summary, 18

dynamic class loading, 30, 43
security, 77

dynamic MBeans, 31

E
encryption of data, 77
exposing MBeans, 20

F
filtering, 43

G
generating proxy MBeans, 73

H
heartbeat mechanism

connectors, 36, 70
HTML adaptor, 39
HTTP over SSL, 77

I
instrumenting

resources, 19, 30
interceptors, MBeans, 39
introduction to Java DMK, 16
IPv6, 25

J
JMXMP connector, 21, 34, 36

K
key concepts of Java DMK, 22

L
legacy connectors, 69

heartbeat mechanism, 70
proxy MBeans, 71
wrapping, 70

M
m-let service, 43
managed beans, 30
management applets, 43
management applications

defining input, 67
defining output, 67
designing, 66
generic managers, 67
specific managers, 67

management interface, defining, 64
management solutions, steps to developing, 63
MBeans, 30

dynamic, 31
management interface, 30
MBean server interceptors, 39
mirror, 45
model, 31
monitor, 44
open, 32
proxy, 37
representing in a remote agent, 73
server, 33
standard, 30
types, 30

mibgen tool, 55
model, relation, 49
model MBeans, 31
monitoring attributes, 44

N
notification listeners

adding on the agent side, 40

80 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004



notification listeners (Continued)
adding on the manager side, 41
local, 40
remote, 41

notifications
broadcasting, 40
local listeners, 40
model, 40
monitor, 44
remote listeners, 41
scheduling, 45

O
open MBeans, 32

P
password protection, 75
privacy, 51
protection, See security
protocol adaptors, 39

limitations, 39
protocols, IPv6, 24
proxy MBeans, 37

binding to local and remote servers, 37, 71
generating, 73

proxygen tool, 73

Q
querying, 43

R
registry, 33
relation service, 49
resources

instrumenting, 19, 30, 64
RMI connector, 21, 34, 35

S
SASL, 51
scheduling notifications, 45
security, 50

authentication, 51, 52
authorization, 53
context checking, 75
data encryption, 77
JMXMP, 51
legacy connectors, 74
legacy password protection, 75
privacy, 51
RMI, 52
SASL, 51, 52
secure dynamic loading, 77
server authentication, 52
SNMPv1 and SNMPv2, 57
SNMPv3, 58, 61
subject delegation, 53
TLS, 51, 52

server, MBean, 33
SNMP, 54

Master Agent, 26
packaging, 54
SNMPv3, 25, 55

SNMP agents, developing, 55
SNMP manager API, 56
SNMP MIB compiler, 55
SNMPv1 and SNMPv2

access control list (ACL), 57
encoding, 57
security, 57

SNMPv3
access control, 61
authentication, 59
security, 58
security configuration, 61

standard MBeans, 30
subject delegation, 53

T
timer service, 45

81



82 Java Dynamic Management Kit 5.1 Getting Started Guide • June 4th, 2004


	Java Dynamic Management Kit 5.1 Getting Started Guide
	Preface
	Changes Between Versions 5.0 and 5.1 of Java DMK
	Who Should Use This Book
	How This Book Is Organized
	Before You Read This Book
	Related Documentation
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of the Java Dynamic Management Kit
	1.1 Introduction to the Java DMK
	1.1.1 Why Use Java Dynamic Management Technology?
	1.1.2 What Is the Java DMK?
	1.1.3 How is a Java Dynamic Management Solution Developed?
	1.1.3.1 Instrument Your Resources as MBeans
	1.1.3.2 Expose Your MBeans in a Smart Agent
	1.1.3.3 Access Your Agents Remotely


	1.2 Key Concepts
	1.3 Benefits of a Java Dynamic Management Solution
	1.3.1 Simplified Design and Development
	1.3.2 Protocol Independence
	1.3.3 Dynamic Extensibility and Scalability
	1.3.4 SNMPv3 Protocol
	1.3.5 SNMP Master Agent

	1.4 Overview of the Product Documentation
	1.4.1 Online HTML Files
	1.4.2 Printable Documents
	1.4.3 Programming Examples
	1.4.4 API Documentation


	Architectural Components
	2.1 Instrumenting Resources as MBeans
	2.1.1 Standard MBeans
	2.1.2 Dynamic MBeans
	2.1.3 Model MBeans
	2.1.4 Open MBeans

	2.2 The MBean Server
	2.3 Communication Components
	2.3.1 Connectors
	2.3.1.1 RMI Connectors
	2.3.1.2 JMXMP Connectors
	2.3.1.3 Monitoring Standard Connectors Using the Heartbeat Mechanism
	2.3.1.4 Generating Proxies

	2.3.2 MBean Server Interceptors
	2.3.3 Protocol Adaptors

	2.4 The Notification Model
	2.4.1 Local Notification Listeners
	2.4.2 Remote Notification Listeners

	2.5 Agent Services
	2.5.1 Querying and Filtering
	2.5.2 Dynamic Loading
	2.5.3 Monitoring
	2.5.4 Scheduling
	2.5.5 Cascading
	2.5.5.1 Object Names and Domain Paths
	2.5.5.2 File System Analogy
	2.5.5.3 CascadingServiceMBean
	2.5.5.4 Cascading over Java DMK legacy connectors

	2.5.6 Discovering Agents
	2.5.7 Discovery Search Service
	2.5.8 Discovery Support Service
	2.5.9 Defining Relations

	2.6 Security
	2.6.1 Security for Standard Connectors
	2.6.1.1 Privacy
	2.6.1.2 Client Authentication in the JMXMP connector
	2.6.1.3 Client Authentication in the RMI connector
	2.6.1.4 Server authentication
	2.6.1.5 Authorization
	2.6.1.6 Subject Delegation


	2.7 The SNMP Toolkit
	2.7.1 SNMP Packaging in Java DMK 5.1
	2.7.2 Developing an SNMP Agent
	2.7.3 SNMP MIB Compiler – mibgen
	2.7.4 SNMP Manager API
	2.7.5 SNMPv1 and SNMPv2 Security
	2.7.5.1 SNMPv1 and SNMPv2 Access Control
	2.7.5.2 SNMPv1 and SNMPv2 Encoding

	2.7.6 SNMPv3 Security
	2.7.6.1 SNMPv3 Authentication and Privacy
	Unsecured SNMP Requests
	Authenticated Requests
	Authenticated and Encrypted Requests
	Error Messages

	2.7.6.2 SNMPv3 Access Control
	2.7.6.3 SNMPv3 Security Configuration



	Development Process
	3.1 Instrumenting Resources
	3.2 Designing an Agent Application
	3.3 Designing a Management Application
	3.3.1 Defining Input and Output
	3.3.2 Specific Versus Generic


	Legacy Connectors and Related Features
	4.1 Legacy Connectors
	4.1.1 Wrapping of Legacy Connectors
	4.1.2 Monitoring Legacy Connectors Using the Heartbeat Mechanism
	4.1.3 Generating Proxies for Legacy Connectors

	4.2 Generating Proxy MBeans
	4.3 Cascading Service for Legacy Connectors
	4.4 Security Mechanisms for Legacy Connectors
	4.4.1 Password Protection
	4.4.1.1 HTTP Connectors
	4.4.1.2 HTML Protocol Adaptor

	4.4.2 Context Checking
	4.4.3 Data Encryption
	4.4.4 Secure Dynamic Loading

	4.5 Tracing


