
Java Dynamic Management Kit 5.1
Tools Reference Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–7608
June 4th, 2004



Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without limitation, these
intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or
pending patent applications in the U.S. and other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, Java Coffee Cup logo, JDK, JavaBeans, JDBC, Java Community
Process, JavaScript, J2SE, JMX and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et sans la limitation,
ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets
plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, le logo Java Coffee Cup, JDK, JavaBeans, JDBC, Java
Community Process, JavaScript, J2SE, JMX et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFAÇON.

040518@8606



Contents

Preface 5

1 SNMP MIB Compiler (mibgen) 11

1.1 Overview of the mibgen Compiler 11
1.2 Starting the mibgen Compiler 12
1.3 mibgen Options 12

1.3.1 Advanced mibgen Options 14
1.4 Output From the mibgen Compiler 15

1.4.1 Representation of the Whole MIB 15
1.4.2 Representation of the Whole MIB in an SNMP OidTable 16

1.5 Classes Representing SNMP Groups 16
1.5.1 Skeletal MBeans Representing Groups 16
1.5.2 Metadata Files 17

1.6 Classes Representing SNMP Tables 17
1.6.1 Class Containing the SNMP View of a Table (Metadata Class) 17
1.6.2 Class Containing the MBean View of the Table 17
1.6.3 Skeletal MBeans Representing SNMP Table Entries 18
1.6.4 Metadata Files 19
1.6.5 Classes Representing SNMP Enumerated Types 19

1.7 Information Mapping 19

2 The HTML Protocol Adaptor 21

2.1 HTML Connections 22
2.2 Limitations of the HTML Protocol Adaptor 23

3



3 Legacy MBean Proxy Generator (proxygen) 25

3.1 Overview of the proxygen Tool 26

3.2 Starting the proxygen Tool 26

3.3 proxygen Tool Options 27

3.4 Example of the proxygen Tool 27

� To Generate the Managed Object for the Simple Class 28

3.5 Output of the proxygen Tool 28

3.6 Mapping Rules 29

3.6.1 Mapping of Attributes 29

3.6.2 Mapping of Operations 29

3.6.3 Methods in the Proxy Interface 29

3.7 Using the Generated Code 30

4 Tracing Mechanism 31

4.1 Activating the java.util.logging API 31

4.2 Receiving Trace and Debug Information Using the Deprecated
TraceManager 32

4.3 Specifying the Type of Trace and Debug Information 33

4.4 Specifying the Level of Trace and Debug Information 34

Index 35

4 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



Preface

The Java™ Dynamic Management Kit (Java DMK) 5.1 provides a set of Java classes
and tools for developing dynamic management solutions. This product conforms to
the Java Management Extensions (JMX), v1.2 Maintenance Release, and the JMX
Remote API, v1.0. These specifications define a three-level architecture:

� Instrumentation of resources
� Dynamic agents
� Remote management applications

The JMX architecture is applicable to network management, remote system
maintenance, application provisioning, and the management needs of the
service-based network.

The Java Dynamic Management Kit 5.1 Tools Reference Guide presents the development
tools provided with Java DMK. This book covers the following topics.

� The mibgen tool for generating MBeans and relevant classes from SNMP MIBs.
� The output of the HTML protocol adaptor.
� Legacy proxygen tool for generating manager-side proxy objects.
� Tracing and debugging mechanism.

These tools can help you to develop management solutions to suit your requirements.

Who Should Use This Book
This book is aimed at developers who want to use the tools provided with Java DMK
5.1.

You should be familiar with Java programming, the JavaBeans™ component model,
and the latest versions of the JMX and JMX Remote API specifications.

5



This book is not intended to be an exhaustive reference. For more information about
each of the management levels, see the Java Dynamic Management Kit 5.1 Tutorial, and
the API documentation generated by the Javadoc™ tool and included in the online
documentation package.

Before You Read This Book
To use the tool commands described in this book, you must have a complete
installation of the Java Dynamic Management Kit 5.1 on your system. For information
about hardware and software requirements, how to install the product components
and how to configure your environment, see the Java Dynamic Management Kit 5.1
Installation README.

Related Documentation
The Java DMK documentation set includes the following documents:

Book Title Part Number

Java Dynamic Management Kit 5.1 Installation README N/A

Java Dynamic Management Kit 5.1 Getting Started Guide 816–7607

Java Dynamic Management Kit 5.1 Tutorial 816–7609

Java Dynamic Management Kit 5.1 Tools Reference Guide 816–7608

Java Dynamic Management Kit 5.1 Release Notes N/A

These books are available online after you have installed the Java DMK
documentation package. The online documentation also includes the API
documentation generated by the Javadoc tool for the Java packages and classes. To
access the online documentation, using any web browser, open the home page
corresponding to your platform.

6 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



Operating Environment Homepage Location

Solaris / Linux /
Windows 2000

installDir/SUNWjdmk/5.1/doc/index.html

In these file names, installDir refers to the base directory or folder of your Java DMK
installation. In a default installation procedure, installDir is as follows.

� /opt on the Solaris or Linux platforms
� C:\Program Files on the Windows 2000 platform

These conventions are used throughout this book whenever referring to files or
directories that are part of the installation.

The Java Dynamic Management Kit relies on the management architecture of two Java
Specification Requests (JSRs): the JMX specification (JSR 3) and the JMX Remote API
specification (JSR 160). The specification documents and reference implementations of
these JSRs are available at:

http://java.sun.com/products/JavaManagement/download.html

How This Book Is Organized
This book describes the development tools provided with the Java DMK 5.1and
explains how to use them. It is divided into the following chapters:

� Chapter 1: “SNMP MIB Compiler (mibgen)”
� Chapter 2: “HTML Protocol Adaptor”
� Chapter 3: “Proxy MBean Compiler (proxygen)”
� Chapter 4: “Tracing Mechanism”

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

7

http://java.sun.com/products/JavaManagement/download.html
http://docs.sun.com


Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic conventions used in this book.

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine-name% su

Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or
terms, or words to be
emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

8 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004

http://docs.sun.com


Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Shell Prompt

C shell prompt machine-name%

C shell superuser prompt machine-name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

9



10 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



CHAPTER 1

SNMP MIB Compiler (mibgen)

The Java Dynamic Management Kit (Java DMK) provides a toolkit for developing
SNMP agents and managers. This toolkit includes the SNMP MIB Compiler, mibgen,
which is used for compiling SNMP MIBs into Java source code for agents and
managers.

This chapter describes how to use the mibgen compiler, in the following sections:

� “1.1 Overview of the mibgen Compiler” on page 11
� “1.2 Starting the mibgen Compiler” on page 12
� “1.3 mibgen Options” on page 12
� “1.4 Output From the mibgen Compiler” on page 15
� “1.5 Classes Representing SNMP Groups” on page 16
� “1.6 Classes Representing SNMP Tables” on page 17
� “1.7 Information Mapping” on page 19

1.1 Overview of the mibgen Compiler
The mibgen tool is a Java technology-based SNMP MIB compiler that takes an SNMP
MIB as input and generates a set of Managed Beans (MBeans). These MBeans can be
customized to implement the MIBs, enabling the Java DMK agent to be managed by
an SNMP manager. You can use standard MBeans, model MBeans, dynamic MBeans
and open MBeans in conjunction with the mibgen compiler.

The mibgen compiler is able to process the following:

� Tables with cross–references that are indexed across several MIBs
� Nested groups
� Default value variables
� Row status, namely tables controlled by a columnar object obeying the RowStatus

convention, as defined in RFC 2579.

11



1.2 Starting the mibgen Compiler
To start the mibgen compiler, type the following command.

prompt% installDir/SUNWjdmk/5.1/bin/mibgen [options] mib1 ... mibN

Note – The script for starting the mibgen tool uses the JAVA_HOME environment
variable to determine the path to the Java 2 Platform, Standard Edition (J2SE).
Therefore, even if you have the correct path to the J2SE platform in your PATH
environment variable, this is overwritten by the JAVA_HOME variable.

1.3 mibgen Options
To invoke the java.com.sun.jdmk.tools.MibGen class, you need to invoke
java.com.sun.jdmk.tools.MibGen options mib files.

mibgen options mib files

The options are listed below.

-n Parses the MIB files without generating code.

-d dir Generates code in the specified target directory.

-tp pkgName Generates code within the specified Java package (target package).

-desc Includes the DESCRIPTION clause of OBJECT-TYPE as comment in
generated code.

-mo (manager-only)

Generates code for the SNMP manager only, namely the metadata
file for the MIB variables (SnmpOidTable file). By default, the
mibgen compiler generates code for both SNMP agents and
managers. By selecting the -mo option, you enable the mibgen
compiler to generate code for only the manager and not for agents.
The -mo option is incompatible with the -n option.

-mc (MIB-CORE)

Does not use the default MIB-CORE definitions file provided with
Java DMK. In this case, the user must specify the MIB-CORE
definitions file as one of the MIB files. For example,
java.com.sun.jdmk.tools.MibGen -mc mib my_mib_core.

12 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



-a Generates code for all the MIB files. Without this option, the Java
code is generated only for the first MIB file. In this case, the
following MIB files are used to resolve some definitions of the first
MIB file.

-p prefix Uses the specified prefix for naming generated classes.

-g Generates a generic version of the metadata that will access the
MBeans through the MBean server instead of using a direct
reference. This enables you to plug in dynamic MBeans, instead of
the generated standard MBean skeletons.

-gp prefix Uses the specified prefix to name the generic metadata classes. For
example, the metadata class for group System will be named
SystemprefixMeta. The default is no prefix.

-sp prefix Uses the specified prefix to name the standard metadata classes. For
example: the metadata class for group system will be named
SystemprefixMeta. Default is no prefix.

-help Prints a usage message explaining how to invoke the compiler, as
follows:

<mib files>: By default mibgen generates code only for the
modules specified in the first file. The other files are only used for
closure analysis except when the -a is specified.

The order followed by the mibgen compiler to find the MIB_CORE definitions file is as
follows:

1. The user MIB_CORE definitions file specified in the MIB files using the -mc
mibgen option.

2. The command line parameter specified using the -Dmibcore.file Java property.

3. The default MIB_CORE definitions file provided with the Java DMK in
installDir/etc/mibgen (mib_core.txt). To succeed, you must be able to derive
the installation directory from the CLASSPATH environment variable. Otherwise,
the mibgen compiler looks for the mib_core.txt file in
currentDir/etc/mibgen.

4. When using generic metadata (-g option), backward compatibility is not ensured.
Using the -g option has generic advantages, whereby MBeans are accessed
through the MBean server, any kind of MBeans can be plugged in, but this option
slightly reduces the overall performance.

Note – SNMP MIB implementations generated using the mibgen compiler from Java
DMK 5.0 can run and recompile on Java DMK 5.1 without modification.

Chapter 1 • SNMP MIB Compiler (mibgen) 13



1.3.1 Advanced mibgen Options
Advanced mibgen options are specified with a -X prefix, as shown in the following
list.

mibgen -X:advanced options mib files

-X:advanced options includes the following options.

-X:define Defines a valid mibgen property in the
form name=value

-X:use-display-hint[:on|:off] Uses DISPLAY-HINT.

When on, this option instructs mibgen to
generate an attribute of type String for
any object using a textual convention whose
DISPLAY-HINT is 255a
[com.sun.jdmk.tools.mibgen.options
.use.display.hint=true]

-X:abstract-mib[:on|:off] Generate abstract MIB.

When on, this option instructs mibgen to
generate an abstract MIB. The MIB class is
an abstract class when the MBean factory
methods are abstract.
[com.sun.jdmk.tools.mibgen.options
.mib.factory.abstract=true]

-X:no-table-access[:on|:off] No table accessor.

When on, this option instructs mibgen not
to generate any table accessors in the group
of MBean interfaces.
[com.sun.jdmk.tools.mibgen.options
.mbean.table.accessor=false].

-X:use-unsigned-long[:on|:off] Handles unsigned long values.

-X:target:5.0 Generates MIBs compatible with the Java
DMK 5.0 implementation of SNMP.

-X:help Print this help message.

14 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



1.4 Output From the mibgen Compiler
The mibgen compiler also generates the Java source code that is required for
representing a whole MIB in an SNMP manager. The mibgen compiler parses an
SNMP MIB and generates the following.

� For agents and managers:

– A class mapping symbolic names with object identifiers of MIB variables

� For agents:

– An MBean that represents the whole MIB

– Classes that represents SNMP groups or entities as MBeans and their
corresponding metadata classes

– Classes that represents SNMP tables

– Classes that represents SNMP enumerated types

MBeans generated by the mibgen compiler need to be updated to provide the
definitive implementation. For more information, see the corresponding section in the
Java Dynamic Management Kit 5.1 Tutorial.

1.4.1 Representation of the Whole MIB
The mibgen compiler generates a Java file that represents and initializes the whole
MIB. This class extends the class SnmpMib. SnmpMib is an abstract Java class in the
com.sun.management.snmp.agent package and is a logical abstraction of an
SNMP MIB. The SNMP adaptor uses the SnmpMib class to implement agent behavior.
The generated MIB file offers factory methods for group MBeans.

� To Implement the Generated MIB File
1. Subclass the group MBean skeleton you want to implement, and complete the

getter, checker, and setter methods.

2. Subclass the generated MIB file.

3. Redefine the factory methods for the group MBeans you have implemented, and
ensure that they instantiate the actual implementation class and not the skeleton.

The mibgen compiler uses the module name specified in the MIB definition to name
files representing whole MIBs. The compiler removes special characters and replaces
them with an underscore character (_).

Chapter 1 • SNMP MIB Compiler (mibgen) 15



1.4.2 Representation of the Whole MIB in an SNMP
OidTable
The mibgen compiler generates a Java file that contains the code required to represent
a whole MIB in an SNMP manager OidTable. This class extends the
com.sun.management.snmp.snmpOidTableSupport class, which implements
the com.sun.management.snmp.snmpOidTable class and maintains a database of
MIB variables. A name can be resolved against the database. This file can be used by
both the agent and the manager API and contains metadata definitions for the
compiled MIB. The metadata can then be loaded into the SnmpOid table.

The file is always generated when mibgen is invoked. The generated file is called
MIBnameOidTable. The -mo option generates only the MIBnameOidTable file. This
file is the only file generated for SNMP managers. All other files are dedicated to the
SNMP agents.

1.5 Classes Representing SNMP Groups
For each SNMP group defined in the MIB, the mibgen compiler generates:

� A skeletal MBean, with its interface
� A metadata file

1.5.1 Skeletal MBeans Representing Groups
The mibgen compiler generates an MBean for each group that is defined in the MIB.
These skeletal MBeans need to be completed by adding implementation-specific code,
to provide access methods. The generated code is initialized with default values for
the various MIB variables. If the MIB specifies a default value for an SNMP variable,
this value is used to initialize the corresponding variable in the MBean skeleton.
Therefore, if you compile the generated code directly, you obtain a running agent. In
this case, values returned by the agent when querying the MIBs will be default values
or meaningless values, if no default value has been provided in the MIB file for the
variable.

The mibgen compiler uses the group names specified in the MIB definition to name
MBeans that are generated from groups.

16 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



1.5.2 Metadata Files
In addition to generating skeletal MBeans to represent each group, the mibgen
compiler generates a metadata file. The metadata file contains Java source code that
provides the SNMP view of the MBean. Metadata files do not need to be modified. For
metadata files, the Meta suffix is added.

1.6 Classes Representing SNMP Tables
For each SNMP table defined in the MIB, the mibgen compiler generates:

� A class that contains the view of the table
� A metadata file that corresponds to the SNMP table
� A skeletal MBean that represents a table entry, with its interface
� A metadata file that corresponds to the skeletal MBean

1.6.1 Class Containing the SNMP View of a Table
(Metadata Class)
The metadata class containing the SNMP view of a table contains all the management
of the table index. Usually you do not need to subclass or access the generated table
Metadata classes, except when implementing virtual tables. See SNMP Virtual Table
example in the Java Dynamic Management Kit 5.1 Tutorial for details.

The class name is derived from the name of the table, and is postfixed by Meta. For
example, for a table named sysApplInstallPkgTable in the MIB, mibgen will
generate a Metadata class called SysApplInstallPkgTableMeta.

1.6.2 Class Containing the MBean View of the Table
The class containing the MBean view of a table enables you to add or remove entries
dynamically from the table. This class contains callbacks and factory methods that
enable you to instantiate or delete entries upon receiving requests from a remote
SNMP manager. See the Simple SNMP Tables example and SNMP Table
Insrtrumentation example in the Java Dynamic Management Kit 5.1 Tutorial for details.

The class name is prefixed with Table, followed by the name of the table. For
example, for a table named sysApplInstallPkgTable in the MIB, mibgen will
generate an MBean view of the table class called TableSysApplInstallPkgTable.

Chapter 1 • SNMP MIB Compiler (mibgen) 17



1.6.3 Skeletal MBeans Representing SNMP Table
Entries
For each table in a MIB, the mibgen compiler generates an MBean that represents a
table entry. These skeletal MBeans must be completed by adding implementation
specific code, called access methods. The generated code is initialized with default
values for table–entry fields. Therefore, if you compile the generated code directly, you
obtain a running agent. In this case, values returned by the agent when querying the
MIBs are not meaningful. The mibgen compiler uses the entry names that are specified
in the MIB definition to name MBeans that are generated from table entries. For
example, for a table entry definition named sysApplInstallPkgEntry in the MIB,
mibgen will generate a skeletal MBean class named SysApplInstallPkgEntry and
an interface named SysApplInstallPkgEntryMBean.

Note – Remote creation of table entries is disabled by default, for security reasons. You
can dynamically enable and disable remote creation of table entries by calling the
setCreationEnabled operation on the generated MBean-like object.

The RowStatus convention, that is defined in RFC 2579, is fully supported by the
code generator. When a table is defined using SNMPv2, if it contains a control variable
with row status syntax, the mibgen compiler generates a set of methods allowing this
table to be remotely controlled by this variable. However, the remote creation and
remote deletion of rows remains disabled by default.

Table objects are divided into two categories:

� A metadata class
� An MBean-like object

When remote table-entry creation is enabled, and the creation of a new table is
requested, a factory method is called on the MBean-like object to instantiate the new
table entry. By default, an instance of the skeleton class for that table entry is
instantiated.

� To Instantiate Your Own Implementation Class
1. Subclass the MBean-like object to redefine the factory method for remote entry

creation.

2. Redefine this factory method so that it returns an instance of your
implementation class, instead of the default skeleton.

3. Subclass this table’s group MBean to instantiate your new MBean-like object,
instead of the generated default object.

18 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



This is demonstrated in the RowStatus example, which is presented in the Java
Dynamic Management Kit 5.1 Tutorial.

1.6.4 Metadata Files
In addition to generating skeletal MBeans to represent each table entry, the mibgen
compiler generates a Java file containing the SNMP view of the MBean. Metadata files
do not need to be modified. For metadata files, the Meta suffix is added.

1.6.5 Classes Representing SNMP Enumerated
Types
The mibgen compiler generates a specific class for each enumerated type that is
defined in the MIB. This class contains all the possible values defined in the
enumerated type. The generated class extends the generic class Enumerated, defined
in the com.sun.jdmk package. The HTML adaptor can use the Enumerated class to
display all the labels that are contained in an enumeration. The mibgen compiler can
handle enumerated types defined as part of a type definition or in-line definition.

Generated code representing SNMP enumerated types is prefixed with Enum followed
by the type name or the variable name for inline definition.

Note – The mibgen compiler has an option -p prefix that you can use to prefix the
names of all generated files with a specific string.

For example, in MIB II, TCP connection states are represented by an enumeration
containing all the possible states for a TCP connection. The mibgen compiler
generates a Java class named EnumTcpConnState to represent the enumeration.

1.7 Information Mapping
For each group defined in your MIB, the mibgen compiler generates an MBean. Each
variable in the group is represented as a property of the MBean. If the MIB allows read
access to a variable, the mibgen compiler generates a getter method for the
corresponding property. If the MIB allows write access to a variable, the mibgen
compiler generates a setter method for the property. Tables are seen as indexed

Chapter 1 • SNMP MIB Compiler (mibgen) 19



properties whose type corresponds to the table entry type. The SNMP view of the
table is maintained by a specific table object contained in the generated MBean. The
mibgen compiler maps the MIB variable syntax to a well-defined Java type.

The MBeans that the mibgen compiler generates do not have any dependencies on
specific SNMP objects. Therefore, these MBeans can be easily browsed or integrated
into the various Java DMK components. The translation between the SNMP syntax
and the MBean syntax is performed by the metadata.

MBeans generated by the mibgen compiler must be updated to provide the definitive
implementation. The generated code is an operational agent. Thus, the code can be
compiled, run, and tested without any modification.

As a general rule, use subclassing to implement your custom behavior. Do not edit the
generated file, or your modification will be lost when you regenerate your MIB.
Instead of subclassing the generated skeleton classes, you can also provide your own
implementation that simply implements the corresponding generated interface, as
shown in the SNMP Virtual Tables example in the Java Dynamic Management Kit 5.1
Tutorial.

Example 1–1 shows how to implement a skeletal MBean.

EXAMPLE 1–1 Implementing a Skeletal MBean

public class g1 implements g1MBean, Serializable {
protected Integer myVar = new Integer (1);

public g1(SnmpMib myMib) {
{
public Integer getMyVar() throws SnmpStatusException {

return myVar;
}

public void setMyVar(Integer x) throws SnmpStatusException {
myVar = x;

}

}

You must subclass or provide an implementation of the skeletal MBean to implement
your MIB behavior. For information about developing an SNMP agent, SNMP
Manager, SNMP API, and SNMP Proxy, see the corresponding sections in the Java
Dynamic Management Kit 5.1 Tutorial.

20 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



CHAPTER 2

The HTML Protocol Adaptor

A protocol adaptor provides access to MBeans through a communications protocol. A
protocol adaptor enables management applications to perform management
operations on a Java Dynamic Management Kit (Java DMK) agent. For a Java DMK
agent to be manageable, it must contain at least one adaptor. However, an agent can
contain many adaptors, allowing it to be managed remotely through various protocols.

The HTML protocol adaptor acts as an HTML server. It enables web browsers to
access agents through the HTTP communications protocol, to manage all MBeans in
the agent. The HTML adaptor can be used as a tool for debugging and speeding the
development of agents. The HTML protocol adaptor is implemented as a dynamic
MBean.

The HTML protocol adaptor provides the following main HTML pages for managing
MBeans in an agent:

� Agent View: Provides a list of object names of all the MBeans registered in the
agent.

� Agent Administration: Registers and unregisters MBeans in the agent.

� MBean View: Reads and writes MBean attributes and performs operations on
MBeans in the agent.

The HTML page displayed is generated by the HTML adaptor and enables you to
perform the following operations on MBeans in the agen.:

� Read or write the attributes of an MBean instance
� Perform an operation on an MBean instance
� Instantiate an MBean
� Delete an MBean

21



2.1 HTML Connections
The HTML adaptor is an instance of the
com.sun.jdmk.comm.HtmlAdaptorServer MBean. Your agent application must
instantiate this class, register the MBean, and explicitly start the MBean by invoking its
start method to allow HTML connections. When the HTML protocol adaptor is
started, it creates a TCP/IP socket, listens for manager connections, and waits for
incoming requests. By default, the HTML adaptor listens for incoming requests on
port 8082. You can change this default value by specifying a port number:

� In the object constructor
� By using the setPort method before starting the adaptor

If a manager tries to connect, the HtmlAdaptorServer creates a thread which
receives and processes all subsequent requests from this manager. The number of
managers is limited by the maxActiveClientCount property. The default value of
the maxActiveClientCount is 10.

When an HtmlAdaptorServer is stopped, all current connections are interrupted
(some requests might be terminated abruptly), and the TCP/IP socket is closed. The
HtmlAdaptorServer can perform user authentication. The
addUserAuthenticationInfo method and the
removeUserAuthenticationInfo method can be used to manage users and their
corresponding authentication information. The HTML server uses the Basic
Authentication Scheme, as defined in RFC 1945, section 11.1, to authenticate clients
which connect to the server.

Before connecting a web browser to an agent, you must make sure that:

� The agent is running on a system that you can access by using the HTTP protocol

� The agent contains an instance of an HTML adaptor

� The compiled MBean classes are stored at a location that is specified in the
CLASSPATH environment variable of the agent

To connect a browser to an agent, open the page given by the following URL in a web
browser.

http://host:port

In the URL above, host is the host name of the machine on which the agent is running.
The port is the port number used by the HTML adaptor in the agent. The default port
number is 8082.

22 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



2.2 Limitations of the HTML Protocol
Adaptor
The HTML protocol adaptor has the following limitations:

� The minimum value for the reload period is 5 seconds. The value 0 defaults to no
reloading.

� Arrays of classes are always displayed in read-only mode.
� Arrays of dimension 2 and higher are not fully expanded.
� Supported attribute types for reading and writing are as follows.

– boolean boolean[] Boolean Boolean[]
– byte Byte Byte[]
– char char[] Character Character[]
– Date Date[] (for example, July 21st, 2002 8:49:04 PM CEST)
– double double[] Double Double[]
– float float[] Float Float[]
– int int[] Integer Integer[]
– long Long Long[]
– Number
– javax.management.ObjectName javax.management.ObjectName[]
– short Short Short[]
– String String[]

In addition, com.sun.jdmk.Enumerated is supported for readable attributes.
Because com.sun.jdmk.Enumerated is an abstract class, only write-only
attributes whose actual subclass is declared in the signature of its setter can be set
through the HTML adaptor.

Note – For unsupported read-only attribute types, if not null, the toString()
method is called. If the getter of a read-only or a read-write attribute throws an
exception, the thrown exception name and message are displayed. In this case, this
attribute cannot be set through the HTML adaptor even if it is a read-write
attribute.

� Supported operation and constructor parameter types are as follows:

– boolean Boolean
– byte Byte
– char Character
– Date (for example, July 21st, 2002 8:49:04 PM CEST)
– double Double
– float Float

Chapter 2 • The HTML Protocol Adaptor 23



– int Integer
– long Long
– Number
– javax.management.ObjectName
– short Short
– String

Note – When reading a value of type Number, the server tries to convert it first to
an Integer, then a Long, then a Float, and finally a Double. The server stops at
the first primitive type that succeeds.

Use the “Reload” button displayed in the HTML page of an MBean view rather
than the reload button of the web browser. Otherwise, you might reinvoke the
setters of all attributes, if this was your last action.

24 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



CHAPTER 3

Legacy MBean Proxy Generator
(proxygen)

You can use the proxygen tool supplied with the Java Dynamic Management Kit
(Java DMK) to generate a proxy MBean from its corresponding MBean. A proxy
MBean is an image of an agent-side MBean that exists on the manager side. The
proxygen tool allows you to customize your proxy MBeans depending on how you
want to use them in your management application. For more information about the
relationship between MBeans and proxy MBeans, see the Java Dynamic Management
Kit 5.1 Getting Started Guide.

Note – The proxygen tool is marked as “deprecated” in Java DMK 5.1. Use the
proxygen tool only if you require proxies for legacy remote method invocation
(RMI), hypertext transfer protocol (HTTP), and secure HTTP (HTTP/S) connectors.
For new RMI, RMI/IIOP and Java Management Extensions messaging protocol
(JMXMP) connectors that comply with the JMX 1.2 and JMX Remote API 1.0
specifications, you can generate a proxy object at runtime, given just its Java interface.
These dynamic proxies cannot be used with the legacy connectors. For more
information on dynamic proxies, see the Java Dynamic Management Kit 5.1 Tutorial.

This chapter describes how to use the proxygen tool, in the following sections:

� “3.1 Overview of the proxygen Tool” on page 26
� “3.2 Starting the proxygen Tool” on page 26
� “3.3 proxygen Tool Options” on page 27
� “3.4 Example of the proxygen Tool” on page 27
� “3.5 Output of the proxygen Tool” on page 28
� “3.6 Mapping Rules” on page 29
� “3.7 Using the Generated Code” on page 30

25



3.1 Overview of the proxygen Tool
The proxygen tool takes the compiled Java class of an MBean and generates the Java
interface and Java proxies. The Java proxies consist of Java source code that
implements the interface. To develop a Java manager with code generated by
proxygen, you call the methods of the proxy MBean’s interface.

Options of the proxygen tool enable you to modify the characteristics of the proxies
you generate from an MBean. For example, with some options, you can generate
read-only or read-write proxies. By generating from the same MBean a set of proxies
with different characteristics, you can develop a Java manager whose behavior is
modified at runtime, depending on which proxies are loaded. For example, when the
read-only proxies are loaded, the Java manager cannot modify properties in the
MBean.

A proxy MBean consists of two components:

� A Java interface that defines which operations of the MBean are accessible to a Java
manager

� A Java class that implements the operations defined in the Java interface

For example, if you have an MBean MyClass, the proxygen tool gives you a proxy
MBean that consists of the following files.

� MyClassProxyMBean.java: the Java interface
� MyClassProxy.java: the Java class

The proxygen tool generates Java source code, not compiled Java classes. For your
proxy MBeans to be accessible to a Java manager, you must compile the files that
proxygen generates. Then you must make sure that the compiled Java classes are
stored at the location specified by the CLASSPATH environment variable of the
manager, or are accessible through the class loader of the manager.

3.2 Starting the proxygen Tool
To start the proxygen tool, type the command for your operating environment:

prompt% installDir/SUNWjdmk/5.1/bin/proxygen <options> <classes>

Alternatively, invoke the java com.sun.jdmk.tools.ProxyGen class by first
invoking java com.sun.jdmk.tools.ProxyGen <options> <classes>.
Provide the class name without the .class extension.

26 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



Note – The script for starting the proxygen tool uses the JAVA_HOME environment
variable to determine the path to the Java 2 Platform Standard Edition (J2SE).
Therefore, even if you have the correct path to the J2SE platform in your PATH
environment variable, this setting is overwritten by the JAVA_HOME variable.

3.3 proxygen Tool Options
The proxygen command takes options, as follows:

proxygen options classes

The options include the following.

-d dir Specifies a destination directory for the generated code.

-ro Generates read-only proxy MBeans. Calling setter methods of
these read-only proxies raises a
com.sun.jdmk.RuntimeProxyException.

-tp pkgName Generates code in the target package specified by pkgName.

-classpath path Specifies a class path to use for locating the class to compile. By
default, the system class path is used.

-help Prints a message that briefly describes each proxygen option.

3.4 Example of the proxygen Tool
The following example shows how to generate the managed object for the Simple
class and SimpleMBean interface. You must compile the classes before using the
proxygen tool to generate the managed object. Finally, you must compile the Java
code generated by the proxygen tool.

The source code for the Simple class is contained in the
installDir/SUNWjdmk/5.1/examples/legacy/MonitorMBean directory, where
installDir is the directory under which the Java DMK was installed.

Chapter 3 • Legacy MBean Proxy Generator (proxygen) 27



Note – On the Solaris platform, the installDir file hierarchy is not writable by default. In
this case you must copy the Simple.java and SimpleMBean.java files to a
directory where you have write permissions.

� To Generate the Managed Object for the Simple
Class
1. Add the following to your CLASSPATH:

� In the Solaris or Linux operating environment.

installDir/SUNWjdmk/5.1/lib/jdmkrt.jar
installDir/SUNWjdmk/5.1/lib/jdmktk.jar
installDir/SUNWjdmk/5.1/lib/jmx.jar

� In a Windows 2000 operating environment.

installDir\SUNWjdmk\5.1\lib\jdmkrt.jar
installDir\SUNWjdmk\5.1\lib\jdmktk.jar
installDir\SUNWjdmk\5.1\lib\jmx.jar

2. Type the following commands.

prompt% javac Simple.java SimpleMBean.java
prompt% /.../bin/proxygen -classpath . Simple
Destination directory set to ./.

Starting compilation of Simple.

Starting to generate stub SimpleProxy.java for class Simple
Starting to generate MBean interface SimpleProxyMBean.java for class Simple

Proxy MBeans generated using the proxygen tool in Java DMK 4.2 must be
regenerated to run in Java DMK 5.1, because some of the methods used in version
4.2 have been deprecated. However, proxy MBeans generated using the proxygen
tool in Java DMK 5.0 do not need to be regenerated to run in Java DMK 5.1.

3.5 Output of the proxygen Tool
For an MBean defined in the Java class BeanName, the proxygen tool generates the
following.

� A Java interface (BeanNameProxyMBean), which defines the methods of the MBean
that are accessible to a Java manager

28 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



� A Java proxy (BeanNameProxy), which implements the methods defined in the
Java interface BeanNameProxyMBean

For example, when an MBean representing a Java class named Simple is compiled,
the proxygen tool generates the source code for the following classes.

� A Java interface named SimpleProxyMBean
� A Java class named SimpleProxy, which implements the SimpleProxyMBean

interface

3.6 Mapping Rules
The proxygen tool uses the Java Reflection API for analyzing an MBean and
generating its associated proxy MBean. The proxygen tool parses an MBean using
the JMX-specific design patterns. The mapping rules that proxygen uses for
generating the proxy MBean are described in the following subsections.

3.6.1 Mapping of Attributes
The proxygen tool generates code only for exposed operations of the MBean itself.
Each attribute of the MBean is present in the proxy MBean with the same accessor
getter and setter methods. Therefore, if an attribute is read-only in the MBean, the
property is read-only in the generated proxy MBean.

3.6.2 Mapping of Operations
In addition to the attribute accessors, the proxygen tool generates code only for
exposed operations of the MBean itself.

3.6.3 Methods in the Proxy Interface
The proxy MBeans that the proxygen tool generates also contain methods that are
not present in the MBean. These methods are defined in the Java interface
com.sun.jdmk.Proxy. The proxy MBean that is generated implements this
interface. These methods are public methods that do not follow the design patterns
defined by the JavaBeans component model.

Chapter 3 • Legacy MBean Proxy Generator (proxygen) 29



These methods provide additional functionality for proxy MBeans and the
management applications that instantiate them. The purpose of these methods is
twofold:

� To make sure that the information provided by the proxy MBean is up–to–date. For
example, methods are defined for binding and unbinding a proxy MBean from a
remote MBean server.

� To get the object name and class of the remote MBean represented by the proxy
MBean.

3.7 Using the Generated Code
The proxygen tool generates Java source code that you can use for developing Java
managers. To develop a Java manager with code generated by the proxygen tool, use
the RemoteMBeanServer interface. By using this interface, you can develop Java
managers without having to modify the code that the proxygen tool generates.

Nevertheless, if you want to define a specific view of an MBean, you can modify the
code that the proxygen tool generates. To ensure that the modified code remains
consistent with the MBean that it represents, modify only the proxy and not the
interface.

30 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



CHAPTER 4

Tracing Mechanism

This chapter explains how to use the tracing mechanism to help you trace or debug
the Java Dynamic Management Kit (Java DMK) API. The tracing mechanism gives you
internal runtime information, and you can specify the information type and level of
trace and debug information you want to receive.

Note – The proprietary tracing mechanism classes described in this chapter are all
deprecated as of Java DMK 5.1. These classes have all been superseded by the
java.util.logging classes that are now supported by the Java Management
Extensions (JMX). How to activate logging using the java.util.logging API is
explained in “4.1 Activating the java.util.logging API” on page 31. The
information contained in the rest of this chapter is deprecated and is retained for
purposes of backwards compatibility only.

4.1 Activating the java.util.logging
API
To activate traces using the standard java.util.logging API, you must edit, or
copy and edit, the template.logging.properties file that is provided by Java
DMK in the directory installDir/etc/conf/.

You must uncomment the categories from which you want to obtain traces, and the
level of tracing you require. Then pass the file on the command line when starting
your Java classes, as follows

$ java -Djava.util.logging.config.file=Path_to_logging.properties_file Java_class

31



4.2 Receiving Trace and Debug
Information Using the Deprecated
TraceManager
To receive trace and debug information you must add a notification listener to the
class com.sun.jdmk.TraceManager.

You control the tracing by defining the trace properties specific to the Java DMK.
Three factors affect tracing:

� Various components that send trace messages
� Level of detail
� Output destination

The com.sun.jdmk.trace.Trace class is used to emit trace messages. All the
classes of the Java DMK use this Trace class for sending traces. You can use the
Trace class in your own code for producing debug traces for your own classes.

The com.sun.jdmk.TraceManager class provides methods for receiving trace and
debug messages. Options provided by the TraceManager class are described in the
following sections:

� “4.2 Receiving Trace and Debug Information Using the Deprecated
TraceManager” on page 32

� “4.3 Specifying the Type of Trace and Debug Information” on page 33
� “4.4 Specifying the Level of Trace and Debug Information” on page 34

The com.sun.jdmk.TraceManager class uses the notification mechanism to
distribute the information. You must add a notification listener to receive information
(see example Example 4–1). There are two ways to receive trace information.

� Adding a notification listener with a filter in the code. It is possible to have more
than one notification listener but with different filters. With TraceFilter, you
can specify the type and level of information you want to receive. See Example 4–2
and Example 4–3.

� Specifying system properties in the command to start the Java interpreter when
you run a class. In this case, the code of the class must include a call to the
TraceManager method. When the TraceManager method is called, all the
previously enabled trace and debug information are disabled. Only the properties
currently defined when the method is called are enabled.

EXAMPLE 4–1 Creating a Notification Listener

// Create a listener and save all info to the file /tmp/trace

TraceListener listener = new TraceListener("/tmp/trace");

32 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



EXAMPLE 4–2 Creating a Trace Filter

// create a trace filter with LEVEL_DEBUG and INFO_ALL/

TraceFilter filter = new TraceFilter(Trace.LEVEL_DEBUG, Trace.INFO_ALL);

EXAMPLE 4–3 Adding the Notification Listener to the class

// add the listener to the class Trace/

TraceManager.addNotificationListener(listener, filter, null);

4.3 Specifying the Type of Trace and
Debug Information
It is possible to specify the type of trace and debug information you want to receive.
The following types are specified.

� INFO_MBEANSERVER: information about the MBean server
� INFO_MLET: information from an m-let service
� INFO_MONITOR: information from a monitor
� INFO_TIMER: information from a timer
� INFO_ADAPTOR_CONNECTOR: information concerning all adaptors and connectors
� INFO_ADAPTOR_HTML: information from an HTML adaptor
� INFO_CONNECTOR_RMI: information from a RMI connector
� INFO_CONNECTOR_HTTP: information from HTTP connectors
� INFO_CONNECTOR_HTTPS: information from HTTPS connectors
� INFO_ADAPTOR_SNMP: information from an SNMP adaptor
� INFO_DISCOVERY: information from a discovery service
� INFO_SNMP: information from an SNMP manager service
� INFO_NOTIFICATION: information from notification mechanism
� INFO_HEARTBEAT: information from heartbeat mechanism
� INFO_RELATION: information from relation service
� INFO_MODELMBEAN: information from the model MBean components
� INFO_MISC: information sent from any other classes
� INFO_ALL: information from all classes

The preceding information is held by the TraceTags class

Chapter 4 • Tracing Mechanism 33



4.4 Specifying the Level of Trace and
Debug Information
The level of detail controls the number of messages you receive. The trace level is the
default that gives information about the actions of the MBean server and other
components. The debug level includes all the trace information providing information
to help diagnose Java DMK implementation. If this level is specified, the information
of LEVEL_TRACE is sent too. It is possible to specify the level of trace or debug
information you want to receive. Two levels of information are specified in the
TraceTags class.

LEVEL_TRACE Provides information to help a developer when programming

LEVEL_DEBUG Provides information to help diagnose Java DMK implementation

If you choose the second option, you automatically receive all trace information as
well as debug information. By default, the level is set to LEVEL_TRACE.

34 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004



Index

A
accessing agents

using a web browser
See HTML protocol adaptor

adaptor
HTML protocol

See HTML protocol adaptor

D
debugging, Java DMK API, 31

H
HTML protocol adaptor, 21

limitations, 23
usage, 22

L
legacy debug information

default level, 34
receiving, 32
specifying the level, 34
specifying the type, 33

legacy notification listener, creating, 32
legacy trace information

default level, 34
receiving, 32
specifying the level, 34

legacy trace information (Continued)
specifying the type, 33

legacy tracing mechanism, introduction, 31

M
mapping

mibgen information mapping, 19
proxygen mapping rules, 29

mibgen compiler
advanced options, 14
introduction, 11
options, 12
output, 15
starting, 12

MIBs
representation in a Java file, 15
representation in an SNMP OidTable, 16

N
notification listener, adding to a class, 33

P
proxy MBeans

generating
See proxygen tool

proxygen tool
example, 27

35



proxygen tool (Continued)
introduction, 25
mapping attributes, 29
mapping operations, 29
mapping rules, 29
modifying generated code, 30
options, 27
output, 28
proxy MBean methods, 29
starting, 26
using generated code, 30

S
SNMP groups

representation in a metadata file, 17
representation in an MBean, 16

SNMP MIBs
compiling

See mibgen compiler
representation in a Java file, 15
representation in an SNMP OidTable, 16

SNMP tables, representation by classes, 17

T
trace filter, creating, 33
tracing, Java DMK API, 31

W
web browser, connecting to an agent, 22

36 Java Dynamic Management Kit 5.1 Tools Reference Guide • June 4th, 2004


	Java Dynamic Management Kit 5.1 Tools Reference Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	Related Documentation
	How This Book Is Organized
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	SNMP MIB Compiler (mibgen)
	1.1 Overview of the mibgen Compiler
	1.2 Starting the mibgen Compiler
	1.3 mibgen Options
	1.3.1 Advanced mibgen Options

	1.4 Output From the mibgen Compiler
	1.4.1 Representation of the Whole MIB
	1.4.2 Representation of the Whole MIB in an SNMP OidTable

	1.5 Classes Representing SNMP Groups
	1.5.1 Skeletal MBeans Representing Groups
	1.5.2 Metadata Files

	1.6 Classes Representing SNMP Tables
	1.6.1 Class Containing the SNMP View of a Table (Metadata Class)
	1.6.2 Class Containing the MBean View of the Table
	1.6.3 Skeletal MBeans Representing SNMP Table Entries
	1.6.4 Metadata Files
	1.6.5 Classes Representing SNMP Enumerated Types

	1.7 Information Mapping

	The HTML Protocol Adaptor
	2.1 HTML Connections
	2.2 Limitations of the HTML Protocol Adaptor

	Legacy MBean Proxy Generator (proxygen)
	3.1 Overview of the proxygen Tool
	3.2 Starting the proxygen Tool
	3.3 proxygen Tool Options
	3.4 Example of the proxygen Tool
	3.5 Output of the proxygen Tool
	3.6 Mapping Rules
	3.6.1 Mapping of Attributes
	3.6.2 Mapping of Operations
	3.6.3 Methods in the Proxy Interface

	3.7 Using the Generated Code

	Tracing Mechanism
	4.1 Activating the java.util.logging API
	4.2 Receiving Trace and Debug Information Using the Deprecated TraceManager
	4.3 Specifying the Type of Trace and Debug Information
	4.4 Specifying the Level of Trace and Debug Information


