
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

1.512.434.1511

Java Dynamic Management
™

Kit White Paper

Dynamic Management for the Service Age

Please

Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark

in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, Java Dynamic Management, and Jini are trademarks, registered trademarks, or service

marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc. Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United

States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et

la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, Java Dynamic Management, et Jini sont des marques de fabrique ou des marques

déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous

licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les

produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Netscape est une marque de

Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents
A New Paradigm . 5

Further Than Standards . 6

Java Dynamic ManagementTM Kit: Universal Agent Toolkit . . 7

Managed JavaBeans™ Components 7

Autonomous, JavaTM Technology-Based Agents. 8

Dynamic Push/Pull Service Distribution 8

The Java Dynamic Management Kit Development Process . . . 9

The Resulting Java Dynamic Management Kit Agent. 10

Java Dynamic Management Kit Components 10

Benefits of Java Dynamic Management Kit for Developers . . . 11

Key Features of Java Dynamic Management Kit 11

Autonomous Agents . 12

Agent to Agent Communication . 12

Push/Pull Technology. 13

Cascading . 15
iii

Integration with Existing Management Solutions 16

Scalability . 17

Seamless Jini™ Connection . 17

Benefits of Java Dynamic Management Kit-Enabled Solutions 18

Java Dynamic Management Kit Agents: Areas of Use 19

Webtop Management . 19

System Management . 19

Application Management . 20

Device Management . 21

A New Paradigm . 21
iv

Java Dynamic Management™ Kit

This White Paper describes some of the technology behind Java Dynamic

Management™ Kit: Sun Microsystems’ new paradigm for dynamic management.

Java Dynamic Management Kit is the foundation for building and distributing

dynamic network management intelligence into applications, networks, and devices.

Java Dynamic Management Kit technology provides a unique set of features that

radically changes the way companies solve their real-life management problems. By

leveraging existing standards like SNMP, and combining them with new

technologies based on Web and Java™ technology, it goes beyond the limitations of

current management systems to effectively address the new requirements of the

service age.

A New Paradigm

Corporations and service providers in all industry segments are facing new

challenges in management of service-driven environments. In these environments,

managed resources (which can be applications, devices, services or network policies)

appear, move and disappear across the network, as they are created, installed,

activated and used at a pace never experienced before.

Such challenges can hardly be met by current, second generation management

technologies. These are static in nature and can therefore only work with resources

that are known in advance by all the elements of the management system. A static

management system is incapable of managing today’s new services since they need

to be added faster than the system’s change mechanisms can be updated.

Java technology provides a dynamic alternative, but we would gain little from

rewriting existing static management systems in the Java programming language.
5

Further Than Standards

Sticking to standards is essential. But it doesn’t give you any competitive advantage

in itself. The next step forward in network management will come, not from

improved standards, but from management technology that, while being compatible

with standards, is flexible enough to manage anything, and to cope instantly with

change without much human intervention. Such technology will store continually

management evolving intelligence within the network itself. It will incorporate

standard technologies, and build upon them.

By leveraging existing management standards like SNMP and combining them with

new technologies based on the Web and on the Java platform, Java Dynamic

Management Kit allows you to step toward the future now. Using Java Dynamic

Management Kit, you can maintain compatibility with existing network

infrastructures while you evolve beyond the limitations of current management

systems towards new management solutions that are better adapted to .com

infrastructures.

Java Technology Standard for Management

Java Dynamic Management Kit implements the public specification for Java

Management Extensions. This defines how to manage Java technology-enabled

resources, as well as defining a core set of services for managing these objects, and

the means to interface with existing management solutions. Applications, services or

devices that follow the specification are instantly manageable through Java Dynamic

Management Kit agents.

Java technology has much to offer to the developers of system, network and service

management solutions. Java technology is dynamic, flexible, and portable: these

unique features make it an ideal foundation for building third-generation

management solutions. Such solutions are dynamic in nature and can therefore meet

the requirements of service driven management over heterogeneous networks and

platforms.
6 Java Dynamic Management™ Kit

Java Dynamic Management Kit:
Universal Agent Toolkit

Java Dynamic Management Kit is a Java technology-based solution for building and

distributing management intelligence into network devices. It allows rapid

development of autonomous Java agents for system, network, configuration and

service management.

Java Dynamic Management Kit makes management dynamic, opening the door to

new types of lightweight, flexible management applications which can be created,

deployed, enhanced or deleted in real time. By design, Java Dynamic Management

Kit is suitable for adapting legacy systems, implementing new management

solutions and preparing those of the future, while remaining open to applications

across all industries.

Managed JavaBeans™ Components

The Java Dynamic Management Kit toolkit includes a library of core management

services, in the form of Java technology-based components, called MBeans (Managed

Beans). These are mini applications or parts of applications, which can be used as

they are or combined with each other, to create management services for agents.

MBeans instrument the resources to be managed. Resources can be devices,

computation time, network control, user applications, or virtually any object you

want to handle through a management application.

MBeans follow certain design patterns for exposing attributes and operations so that

any Java Dynamic Management Kit agent can recognize and manage them. Because

the design patterns for MBeans are so simple, existing Java technology-based

resources and services can become manageable at little cost. Even legacy code can

become manageable through a suitable MBeans interface.

Java Dynamic Management Kit MBean technology gives:

■ Standard manageability for any Java application, sometimes in just three to five

additional lines of code

■ The ability to embed all necessary management information in a standard way in

the resource to be managed

■ The ability to provide a wrapper for instrumented resources not based on Java

technology (even proprietary or custom solutions) with Java technology-based

management systems
Java Dynamic Management™ Kit 7

Autonomous, Java Technology-Based Agents

Java Dynamic Management Kit allows management services to be incorporated

directly into agents, so that they can perform management tasks autonomously. This

allows management intelligence to be distributed throughout the network, rather

than being concentrated in manager devices. It also means that agents can actually

perform management tasks themselves, rather than just sending information to

higher level managers.

The benefits include:

■ Reduced network management traffic

■ Fewer alarms escalated to administrators

■ Quicker response to events

■ Reduced administration costs

The management framework in an agent, called the MBean server, is the link

between a manager and the managed resources. The MBean server dispatches

management requests to MBeans and forwards events back to managers. MBeans

can slot in and out of the MBean server, just like hardware elements in a rack.

The MBean server is fully compatible with the PersonalJava™ platform, as are most

of the management services. This means that Java Dynamic Management

applications can connect to a wide range of consumer devices and future products.

Dynamic Push/Pull Service Distribution

Software distribution is also integrated into Java Dynamic Management Kit,

enabling rapid propagation of new services or software over the network.

Management services, in the form of MBeans, can be dynamically distributed to the

network. They can be slotted in and out of the Java Dynamic Management Kit

agent’s MBean server, to add, change or delete services, just as hardware

components are slotted in and out of a rack.

Java Dynamic Management Kit agents can download management services from the

management web server when they access it, for example, at boot time. So they can

pull new management services as soon as these become available. Updated

management services can also be pushed to the agents. This allows new

management services to be implemented and started at any time.

The net result is that with Java Dynamic Management Kit, it is no longer necessary

to know in advance what will need to be configured, monitored and managed in the

future.
8 Java Dynamic Management™ Kit

The Java Dynamic Management Kit
Development Process

To develop an agent using Java Dynamic Management Kit:

■ You select MBean components that implement generic management services, from

those included in the Toolkit, and customize them in order to generate MBeans

for the services you require. Or you create your own MBeans, adapted to your

environment and instrumenting your own resources.

■ You can then either:

■ create a complete agent incorporating the management services, install it on a

device and initialize it

■ or you can decide to create an empty agent framework which you fill with

management services on a real-time basis, using network distribution.

■ If you have chosen the second packaging option, then you upload management

services in the form of MBeans, to the agent over the intranet/Internet, using the

push/pull software distribution mechanisms included in Java Dynamic

Management Kit. The new or updated services slot into the agent's MBean server

and begin to function instantly.

MBeans and
MBean
components

Java Dynamic
Management
Kit

Customized
MBean

WWW

MBean Server

Java Dynamic
Management Kit
agent
Java Dynamic Management™ Kit 9

The Resulting Java Dynamic Management Kit

Agent

The resulting agent is composed of the following elements, running in a Java Virtual

Machine:

■ MBean server: this is a software backplane into which the services defined by

the MBeans can be plugged.

■ Generic management services in the form of MBeans.

■ MBeans created by the developer implementing the specific management

services for the device.

■ Device specific access method created by the developer, using native function

calls (based on the Java Native Interface specification).

Java Dynamic Management Kit
Components

Java Dynamic Management Kit provides the following components:

■ A dynamic management architecture, which provides a set of Web-based

mechanisms for automatic propagation of management services across the

network to the agents.

■ An agent framework, which includes a library of reusable core agent services in

the form of MBeans. These include: object repository, dynamic class loading,

dynamic native library loading, relationship, basic notification, filtering and

monitoring.

■ Protocol adaptors, implemented as JavaBeans components, which provide

transparent communication services to the MBeans. The available protocols are

RMI, HTTP and SNMP.

■ Service creation tools, which include:

■ A proxy generator, which helps developers to create their own specific Java

management applications, by generating the remote client front end for a given

MBean.

■ A Java SNMP MIB Compiler. This takes an SNMP MIB as input, and outputs a

MBean which enables the Java Dynamic Management Kit agent to be managed

by an SNMP manager.

■ A set of APIs.
10 Java Dynamic Management™ Kit

Benefits of Java Dynamic Management
Kit for Developers

The benefits Java Dynamic Management Kit provides for agent developers include

the following:

■ Java Dynamic Management Kit provides a universal Java agent toolkit, which

provides the tools and services needed by developers working on agents for

network, system, application, or service management.

■ Java Dynamic Management Kit tools and services enable very rapid agent
development, through the use and recombination of Java components which

provide basic management services such as filtering, event notification, and so on.

■ By providing generic management services, Java Dynamic Management Kit frees
developers to concentrate on developing value-added device or application-specific

services rather than on (re)creating generic services.

■ JavaBeans applications can be managed by a Java Dynamic Management Kit agent
directly, without needing any instrumentation configuration files, CGI or HTTP

support.

■ The use of MBeans to develop management services facilitates code reuse, limits the

code required to implement new services, and makes maintaining agents easier.

■ Use of Java technology makes the development platform independent of the

target platform, since the resulting agent can be implemented on any platform which

supports a Java Virtual Machine.

■ Use of protocol adaptors enables agents, services and resource instrumentation to

be developed without knowledge of the protocol used for communicating with

the manager.

Key Features of Java Dynamic
Management Kit

The key features of Java Dynamic Management Kit include the following.
Java Dynamic Management™ Kit 11

Autonomous Agents

Using Java Dynamic Management Kit to build a certain amount of intelligence

directly into your agents allows them to perform management tasks directly, without

the intervention of a manager device.

For example, you have a large installation of thousands of networked desktop

devices and you want to monitor their disk space. Using traditional agent

technology, when the device disk is 80% full, the device agent sends an alarm to the

manager, which pages the network administrator, who performs actions by hand on

a management console.

This kind of technology implies management traffic on the network (sending alarms,

receiving action commands), and involves manual intervention by a network

administrator over a management console.

Java Dynamic Management Kit agents eliminate all of that by acting autonomously.

A Java Dynamic Management Kit agent in the same situation could actually go and

look on the device disk and perform housekeeping operations, such as deleting all

.back files more than 6 weeks old.

Agent to Agent Communication

As well as being able to take action autonomously, a Java Dynamic Management Kit

agent can communicate with another Java Dynamic Management Kit agent, in order

to solve the issue without management intervention.

For example, the Java Dynamic Management Kit agent could communicate with the

agent on the local file server, and back up PC files to the server before deleting them

on the PC. This means the management happens horizontally, rather than using the

old vertical, hierarchical model.

This type of structure reduces the management traffic load on the network, means

that low level problems get dealt with without generation of alarm conditions,

makes for quicker responses to critical conditions, and starts the evolution to zero

administration networks which manage themselves without human intervention.

For example, in the case of a cluster configuration providing a high availability

solution, agent to agent communication removes the need for a centralized manager

as a single point of contact in case of failure. When any node of the cluster has a

problem, the agent communicates directly with the agents in the other nodes, rather

than to a centralized manager, which would then have to route the message back

down to the other nodes of the cluster.
12 Java Dynamic Management™ Kit

Push/Pull Technology

The graphic below shows how Java technology pushes management intelligence

using Web technology methods.

The management services are built as MBeans. These are compressed in a .JAR file

which can be downloaded (either pushed or pulled) over the network.

The agent may boot from a specified URL at connection with the management

server. The html page corresponding to the URL contains one or several <MLET>

(management applet) tags. Each <MLET> tag refers to one or several .JAR files. It

also includes extra code to specify details of the management services concerned,

and may define icons, sounds etc.

The .JAR files get pushed to the agent and work straight away, in exactly the same

way as an animated Javatechnology-based applet for a web page.

Agent Profile A B C

Manager

Agent
New management
services can be
pushed via the
network

M
B

ea
n

M
B

ea
n

Web Server

http://URLA/<MLETA>

http://URLB/<MLETB>

http://URLC/<MLETC>

M
B

ea
n

New management
services can be
pulled at boot time
from the Web server

Java Dynamic Management Kit agent

MBean

Management services stored
in <MLET> files

*

Java Dynamic Management™ Kit 13

Different clients can be made to boot from different URLs, which specify different

agent profiles (different <MLET>s). This allows administration of large installations

of heterogeneous devices with minimum effort, since the different agents

automatically receive the management services appropriate to them, when they boot

from the server.

Changes to the management agents get downloaded automatically, as soon as they

are implemented. All the agents are running the right version, since they can be

updated if necessary whenever they boot to the server, or in response to a request

from a management application.
14 Java Dynamic Management™ Kit

Cascading

Cascading services make it easier to distribute management services in very large

installations, with minimal administration effort and cost. Using cascading, agents

distribute services to the agents below them on the hierarchy. Java Dynamic

Management Kit includes a library of cascading services.

Cascading Services

Cascading services allow you to establish cascading hierarchies in which each

certain agents manage a group of lower level agents.

 Agent

Manager

The Manager device

M
B

ea
n

MBean

pushes new services
to the agents below it

Agent

M
B

ea
n

MBean MBean

Agent

M
B

ea
n

Agent

M
B

ea
n

C
as

ca
di

ng
se

rv
ic

es

This agent
pushes the services
to all the agents
below it
Java Dynamic Management™ Kit 15

Cascading services make distribution of software or services easier to manage, by

enabling certain agents to push management services to the agents below them. In

the example shown here, the Manager pushes Java agent services such as Event

Filtering and Logging to certain agents, in which cascading services are installed.

These agents then push this intelligence further down the agent hierarchy, to the

agents below.

Integration with Existing Management Solutions

Java Dynamic Management Kit’s additional management protocol APIs put the

breakthrough technology of Java Dynamic Management Kit within the reach of any

existing management solution.

Java Dynamic Management Kit technology does not attempt to replace existing

legacy systems. This is simply not an option for end-users who must consider the

value of the investment they have made. Introducing new technology beside an

existing management system is also not a viable option, as this would create two

separate management entities unable to cooperate or communicate effectively.

Instead, Java Dynamic Management Kit offers a vertical integration, providing

manager and agent services through the technologies already in place. It thus

provides a means for the seamless introduction of the latest Java technologies into

existing management systems.

Java Dynamic Management Kit includes an open interface that any management

system vendor can leverage. Using this interface, a Java Dynamic Management Kit

agent and its resources can present management information consistent with various

management models, such as:

■ SNMP

■ CIM/WBEM

■ CORBA

■ TMN

■ LDAP

The Java Dynamic Management Kit specification includes the definition of several

management protocol APIs which allow Java Dynamic Management Kit managers to

access agents in a legacy system and communicate with them through an existing

protocol. For example, the SNMP manager API provides the services needed to write

applications that manage SNMP agents or act as SNMP proxies. The definition of a

WBEM client API allows you to write Java applications that access a CIM Object

Manager.
16 Java Dynamic Management™ Kit

SNMP Agents

You can use Java Dynamic Management Kit to develop dynamic SNMP agents.

Using the Java Dynamic Management Kit MIB Compiler you can easily develop an

SNMP agent, based on your own specific MIB. The resulting SNMP agent can

initially be deployed like a traditional SNMP agent, but can be updated easily using

the flexibility of Java Dynamic Management Kit.

When a Java Dynamic Management Kit agent is managed by an SNMP manager, its

Java Dynamic Management Kit-specific capacities remain opaque to the SNMP

manager. However, new applications can be developed easily using Java Dynamic

Management Kit, to integrate the two worlds.

For example, when the Java Dynamic Management Kit agent's icon shows an alarm

condition on the SNMP manager screen, because it has received an SNMP trap, you

could click on the icon to open a Java application which would allow you to

download a specific diagnostic module to the remote device. Such an application

would enable you to benefit from the capacities of Java Dynamic Management Kit

even within the more limited SNMP environment.

Scalability

Java Dynamic Management Kit agents are scalable. They can be deployed in any

device that can run a Java Virtual Machine. These can range from a mobile phone to

a high end server.

Furthermore, Java Dynamic Management Kit agents are dynamically scalable; they

can load and unload services as required, which means that their footprints are

never bigger than they need to be, and can be adjusted to new requirements

instantly.

Java agents range in size from 200 Kilobytes, depending on the number of services

they support.

Seamless Jini™ Connection

Jini™ connectivity technology provides an infrastructure for federating devices,

delivering automatic discovery of services.

Java Dynamic Management Kit acts as a bridge between Jini technology-based

communities and advanced management applications. Once Jini technology-enabled

devices are plugged into the network and discovered, Java Dynamic Management

Kit applications can then access or control the resource. This is called Sun

Spontaneous Management™ technology.
Java Dynamic Management™ Kit 17

Sun Spontaneous Management technology enables service providers to deliver both

user-specific customization and universal access through heterogeneous networks.

This is just one example of how the Java Dynamic Management Kit’s universal

architecture can integrate new technologies as they develop, link them to legacy

systems, and as a result deliver services faster and more efficiently to the customer.

Benefits of Java Dynamic Management
Kit-Enabled Solutions
■ Java Dynamic Management Kit enables “intelligent” management services to be

integrated inside devices. Java Dynamic Management Kit “intelligent” agents can

take pro-active actions without human intervention or administration console

(pro-active actions can be based on device-dependent events or other agent

behavior).

■ Java Dynamic Management Kit reduces management traffic on the network, by

enabling direct agent to agent communication. The conventional approach allows

no horizontal communication, even where it makes sense. Instead, events get

percolated up the network to manager applications, and actions trickle down.

Java Dynamic Management Kit's agent to agent communication enables actions to

be taken without intervention from a manager.

■ Java Dynamic Management Kit agents can be remotely enhanced, upgraded or

updated with new intelligent management services via Internet at any time.

Intelligent management services can be distributed on a large scale with zero

administration, either automatically received, or pushed. For example, this

technology allows the upgrade of large installations of network devices, such as

desktop PCs, with minimal human intervention or management operations.

■ The Java Dynamic Management Kit dynamically extensible object model provides

richer information content than that provided by traditional agents. SNMP MIBs

are static. If you want to enhance them, you have to build an extension at

development time. Afterwards it's too late; deployment of an upgrade at once the

SNMP agents are in place would be too costly. But Java lets a management

application look at whatever it needs to look at (CPU, memory, disk space...). It

also allows you to change what you're looking at from one day to the next,

extending or changing your management applications as you need, in real time.

■ Java Dynamic Management Kit enables devices to be managed via Web Browsers,

Java applications or existing SNMP managers.

■ The scalability of Java agents makes them available for management of even the

smallest devices. Furthermore, the fact that they are dynamically scalable means

that their footprints are never bigger than they need to be, while they can always

be extended as necessary.
18 Java Dynamic Management™ Kit

■ Java Dynamic Management Kit implements the public specification of the Java

Management Extensions (JMX), which define the standard for managing Java

technology-enabled resources.

Java Dynamic Management Kit Agents:
Areas of Use

Since Java Dynamic Management Kit is a universal toolkit, it can be used to develop

agents for a multitude of different functions.

Webtop Management

Java Dynamic Management Kit push technology, combined with a system of

profiling, enables large heterogeneous installations of PCs, Unix systems, NetPCs

and webtop devices to be managed with minimum human intervention. Each device

contains a Java Dynamic Management Kit agent, which corresponds to a particular

profile, and which downloads appropriate services accordingly.

Desktop management becomes easy, since the management application and the

management services in the agents can be changed at any time. New services are

simply pushed to the agents at boot time. Software upgrades become trivial. New

profiles can be added at any time.

System Management

System management agents can be used to manage an entire installed base of

devices, ranging from webphones, webtops and PCs, to high-end machines running

the Solaris operating environment, Unix and Windows NT. System management and

software distribution, using the push/pull capacities inherent in Java Dynamic

Management Kit, becomes an automatic, zero-effort task.

Java Dynamic Management Kit technology takes system management towards the

future. A Java Dynamic Management Kit agent can be integrated into any device

that supports a Java Virtual Machine, which allows for easy and immediate

integration of new devices in the future.
Java Dynamic Management™ Kit 19

Integration of current SNMP management with the new facilities provided by Java

Dynamic Management Kit preserves existing investment while allowing access to

the benefits of Java Dynamic Management Kit. Java Dynamic Management Kit

agents can monitor SNMP variables, and send traps to an SNMP manager. Their

dynamic nature allows them to deploy new SNMP management services as these

become available.

Management information concerning Java Dynamic Management Kit agents is

accessible via any SNMP manager, Java platform management console or Web

browser.

Application Management

Application configuration management agents provide application configuration

and management tools. They make it possible to remotely reconfigure an application

in real time, over the Web.

By combining the JavaBeans components provided with Java Dynamic Management

Kit, with JavaBeans applications you write yourself, you can create new application

configuration management agents quickly and easily.
20 Java Dynamic Management™ Kit

C and C++ Applications

Applications written in C or C++ can be managed by a Java Dynamic Management

Kit agent through a native interface (generally developed by the developer of the

application). The application's native interface acts as the glue which allows the Java

Native Interface to communicate with the application.

Device Management

Device management agents provide management of network devices such as

bridges, routers, modems, PC cards, printers, network access servers and so on.

Any device which can run a Java virtual machine can be managed using Java

Dynamic Management Kit. Obviously a device with a real time operating system

needs to be supplied with an interface allowing the RTOS to interface with the Java

Virtual Machine.

A New Paradigm

Java Dynamic Management Kit opens the door to the future. It enables a new type of

dynamic management application, and represents a huge opportunity for ISPs and

system integrators, making it easy for them to provide services which differentiate

them from their competition.

MBean Server

Java
Virtual
Machine

C++ AppC App C and C++ applications
can be managed via
native interfaces

JNI JNI

Native OS

MBean MBean
Java Dynamic Management™ Kit 21

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

1 (800) 786.7638

1.512.434.1511

http://www.sun.com/software/java-dynamic

April 2000

	Java Dynamic Management™ Kit White Paper
	Dynamic Management for the Service Age

	Contents
	Java Dynamic Management™ Kit
	A New Paradigm
	Further Than Standards
	Java Technology Standard for Management

	Java Dynamic Management Kit: Universal Agent Toolkit
	Managed JavaBeans™ Components
	Autonomous, Java Technology-Based Agents
	Dynamic Push/Pull Service Distribution

	The Java Dynamic Management Kit Development Process
	The Resulting Java Dynamic Management Kit Agent

	Java Dynamic Management Kit Components
	Benefits of Java Dynamic Management Kit for Developers
	Key Features of Java Dynamic Management Kit
	Autonomous Agents
	Agent to Agent Communication
	Push/Pull Technology
	Cascading
	Cascading Services

	Integration with Existing Management Solutions
	SNMP Agents

	Scalability
	Seamless Jini™ Connection

	Benefits of Java Dynamic Management Kit-Enabled Solutions
	Java Dynamic Management Kit Agents: Areas of Use
	Webtop Management
	System Management
	Application Management
	C and C++ Applications

	Device Management

	A New Paradigm

