
C Style and Coding Standards for SunOS

Bill Shannon

Copyright 1993 by Sun Microsystems, Inc.
All rights reserved.

Version 1.8 of 96/08/19.

ABSTRACT

This document describes a set of coding standards and recommendations that are
local standards for programs written in C for the SunOS product. The purpose of these
standards is to facilitate sharing of each other’s code, as well as to enable construction
of tools (e.g., editors, formatters) that, by incorporating knowledge of these standards,
can help the programmer in the preparation of programs.

This document is based on a similar document written by L.W. Cannon, R.A.
Elliott, L.W. Kirchhoff, J.H. Miller, J.M. Milner, R.W. Mitze, E.P. Schan, N.O. Whit-
tington at Bell Labs. It also incorporates several items from a similar paper written by
S. Shah. The current version was derived from an earlier version written by the author
and Warren Teitelman.

96/08/19

C Style and Coding Standards for SunOS

Bill Shannon

Copyright 1993 by Sun Microsystems, Inc.
All rights reserved.

Version 1.8 of 96/08/19.

1. Introduction

The scope of this document is the coding style used in writing C programs for the SunOS product. To
the extent that we do adhere to a common style, it will be easier for several people to cooperate in the
development of the same program. It also will facilitate understanding and maintaining code developed
by someone else.

More important than the particular coding style used is consistency of coding style. Within a particular
module, package, or project, a consistent coding style should be used throughout. This is particularly
important when modifying an existing program; the modifications should be coded in the same style as
the program being modified, not in the programmer’s personal style, nor necessarily in the style advo-
cated by this document.

This document discusses ANSI C only briefly, and C++ is hardly mentioned. A future version of this
document will discuss ANSI C more fully, describing when to use such new features as const. In
addition, rules for writing C code that must interact with C++ code, and vice versa, will be covered.
Style rules for pure C++ programs will be left to a separate document.

Of necessity, these standards cannot cover all situations. Experience and informed judgment count for
much. Inexperienced programmers who encounter unusual situations should consult 1) code written by
experienced C programmers following these rules, or 2) experienced C programmers.

2. File Naming Conventions

UNIX† requires certain suffix conventions for names of files to be processed by the cc command1.
Other suffixes are simply conventions that we require. The following suffixes are required:

• C source file names end in .c

• Assembler source file names end in .s

• Relocatable object file names end in .o

• Include header file names end in .h

• Archived library files end in .a

• Fortran source file names end in .f

• Pascal source file names end in .p

• C-shell source file names end in .csh

• Bourne shell source file names end in .sh

• Yacc source file names end in .y

† UNIX is a trademark of Bell Laboratories.

1. In addition to the suffix conventions given here, it is conventional to use ‘Makefile’ (not ‘makefile’) for the control file for
make and ‘README’ for a summary of the contents of a directory or directory tree.

- 2 -

• Lex source file names end in .l

3. Program Organization

The choices made in organizing a program often affect its understandability and ease of maintenance.
Many modern programming languages provide mechanisms for defining the modules of a program.
Although C does not have these language features, they can be approximated using the techniques and
conventions described below.

A module is a group of procedures and data that together implement some abstraction, for example, a
symbol table. Those procedures and data that can be accessed by other modules are called public. Pro-
cedures and data known only inside the module are called private. Modules are defined using two files:
an interface file and an implementation file. The interface file contains the public definitions of the
module. The implementation file contains the private definitions and the code for the procedures in the
module.

In C, the role of an interface file is provided by a header file. As mentioned above, the name of a header
file ends in .h. The implementation file for a particular header file often has the same root name, but
ends in .c instead of .h. Private definitions in the implementation file are declared to be static.

As an example, here are the interface and implementation files for a symbol table package:

symtab.h

/*
* Symbol table interface.
*/

typedef struct symbol Symbol;
struct symbol {

char *name
int value;
symbol chain;

};

Symbol *insert();
Symbol *lookup();

symtab.c

/*
* Symbol table implementation.
*/

#include "symtab.h"

#define HASHTABLESIZE 101

static Symbol hashtable[HASHTABLESIZE];
static unsigned hash();

- 3 -

/*
* insert(name) inserts "name" into the symbol table.
* It returns a pointer to the symbol table entry.
*/
Symbol *
insert(name)

char *name;
{

...
}

/*
* lookup(name) checks to see if name is in the symbol table.
* It returns a pointer to the symbol table entry if it
* exists or NULL if not.
*/
Symbol *
lookup(name)

char *name;
{

...
}

/*
* hash(name) is the hash function used by insert and lookup.
*/
static unsigned
hash(name)

char *name;
{

...
}

When the implementation of an abstraction is too large for a single file, a similar technique is used.
There is an interface file, or in some cases, several interface files, which contain the public definitions
that clients of the package will see, and a collection of implementation files. If it is necessary for
several implementation files to share definitions or data that should not be seen by clients of the pack-
age, these definitions are placed in a private header file shared by those files. A convention for naming
such header files is to append ’_impl’ to the root name of the public interface file, e.g., symtab_impl.h,
although this convention isn’t widely followed. Generally speaking, such implementation header files
should not be shipped to customers2.

4. File Organization

A file consists of various sections that should be separated by blank lines. Although there is no max-
imum length requirement for source files, files with more than about 3000 lines are cumbersome to deal
with. Lines longer than 80 columns are not handled well by all terminals and should be avoided if pos-
sible3.

2. Traditionally many kernel implementation header files have been shipped, for use by programs that read /dev/kmem.
Following this tradition for kernel header files is allowed but not required. In other areas of the system, shipping
implementation header files is strongly discouraged.

3. Excessively long lines which result from deep indenting are often a symptom of poorly organized code.

- 4 -

The suggested order of sections for a header file is as follows (see the Appendix for a detailed exam-
ple):

1. The first thing in the file should be a comment including the copyright notice. This comment
might also describe the purpose of this file.

2. The second thing in the file should be an #ifndef that checks whether the header file has been
previously included, and if it has, ignores the rest of the file (see section 5).

3. Next should be a #pragma ident line4.

4. If this header file needs to include any other header files, the #include statements should be
next.

5. Next should be a guard to allow the header file to be used by C++ programs.

6. If it did not appear at the beginning of the file, next there should be a block comment describing
the contents of the file5. A description of the purpose of the objects in the files (whether they be
functions, external data declarations or definitions, or something else) is more useful than just a
list of the object names. Keep the description short and to the point. A list of authors and
modification history is not appropriate here.

7. Any #defines that apply to the file as a whole are next.

8. Any typedefs are next.

9. Next come the structure declarations. If a set of #defines applies to a particular piece of global
data (such as a flags word), the #defines should be immediately after the data declaration.

10. Next come the global variable declarations6. Declarations of global variables should use the
extern keyword. (Never declare static variables in a header file.)

11. Finally come the declarations of functions. All external functions should be declared, even those
that return int, or do not return a value (declare them to return void).

12. The end of the header should close with the match to the C++ guard and the match to the multiple
inclusion guard.

The suggested order of sections for a .c file (implementation file) is roughly the same as a header file,
eliminating unneeded constructs (such as the multiple inclusion and C++ guards). Don’t forget the
copyright notice and #pragma ident.

After all the declarations come the definitions of the procedures themselves, each preceded by a block
comment. They should be in some sort of meaningful order. Top-down is generally better than
bottom-up7, and a breadth-first approach (functions on a similar level of abstraction together) is pre-
ferred over depth-first (functions defined as soon as possible after their calls). Considerable judgement is
called for here. If defining large numbers of essentially independent utility functions, consider alphabeti-
cal order.

5. Header Files

Header files are files that are included in other files prior to compilation by the C preprocessor. Some
are defined at the system level like <stdio.h> which must be included by any program using the standard
I/O library. Header files are also used to contain data declarations and #defines that are needed by
more than one program8. Header files should be functionally organized, i.e., declarations for separate

4. The form #pragma ident is preferred over the obsolete and less portable form #ident.

5. This comment sometimes appears between items 3 and 4. Any of these locations is acceptable.

6. It should be noted that declaring variables in a header file is often a poor idea. Frequently it is a symptom of poor
partitioning of code between files.

7. Declaring all functions before any are defined allows the implementor to use the top-down ordering without running afoul
of the single pass C compilers.

8. Don’t use absolute pathnames when including header files. Use the <name> construction for getting them from a standard

- 5 -

subsystems should be in separate header files. Also, if a set of declarations is likely to change when
code is ported from one machine to another, those declarations should be in a separate header file.

It is often convenient to be able to nest header files, for example, to provide the user with a single
header file which includes, in the right order, a number of other header files needed for a particular
application. However, some objects like typedefs and initialized data definitions cannot be seen twice
by the compiler in one compilation. Therefore, to provide for the possibility that two master header files
will both include the same header file, each header file should contain a check for whether it has previ-
ously been included. The standard way of doing this is to define a variable whose name consists of the
name of the header file, including any leading directories, but with characters that are otherwise illegal
in a variable name replaced with underscores, and with a leading underscore added. The entire header
file is then bracketed in an #ifndef statement which checks whether that variable has been defined.
For example, here is a header file that would be referenced with #include <bool.h> which defines
the enumerated type Bool:

bool.h

/*
* Copyright (c) 1993 by Sun Microsystems, Inc.
* All rights reserved.
*/

#ifndef _BOOL_H
#define _BOOL_H

#pragma ident "%Z%%M% %I% %E% SMI"

#ifdef __cplusplus
extern "C" {
#endif

typedef enum { FALSE = 0, TRUE = 1 } Bool;

#ifdef __cplusplus
}
#endif

#endif /* _BOOL_H */

It is a requirement that exported system header files be acceptable to non-ANSI (K&R) C compilers,
ANSI C compilers, and C++ compilers. ANSI C defines the new keywords const, signed, and
volatile. These keywords should only be used within ANSI C compatible parts of the header file.
The biggest difference between ANSI C and K&R C is the ability to declare the types of function
parameters. To handle both forms of declarations for external functions, the following style should be
used.

place, or define them relative to the current directory. The – I option of the C compiler is the best way to handle extensive
private libraries of header files; it permits reorganizing the directory structure without altering source files.

- 6 -

#if defined(__STDC__)
extern bool_t bool_from_string(char *);
extern char *bool_to_string(bool_t);
#else
extern bool_t bool_from_string();
extern char *bool_to_string();
#endif

Some people find it helpful to include the parameter types in comments in the K&R form of the declara-
tion.

extern bool_t bool_from_string(/* char * */);
extern char *bool_to_string(/* bool_t */);

While ANSI C allows you to use parameter names (as well as types) in function declarations, and many
people find that the names provide useful documentation of the function parameters, the names must be
chosen extremely carefully. A user’s #define using the same name can render the function declara-
tion syntactically invalid.

The extern "C" guard is required in the header file for C++ compatibility. In addition, the follow-
ing C++ keywords should not be used in headers.

asm friend overload public throw
catch inline private template try
class new protected this virtual
delete operator

Note that there are many additional rules for header files that are specified by various standards, such as
ANSI C, POSIX, and XPG.

6. Indentation

Only eight-space indentation should be used, and a tab should be used rather than eight spaces. If
eight-space indentation causes the code to be too wide to fit in 80 columns, it is often the case that the
nesting structure is too complex and the code would be clearer if it were rewritten. The rules for how to
indent particular C constructs such as if statements, for statements, switch statements, etc., are
described below in the section on compound statements.

7. Comments in C Programs

Comments should be used to give overviews of code and provide additional information that isn’t
readily available in the code itself. Comments should only contain information that is germane to read-
ing and understanding the program. For example, information about how the corresponding package is
built or in what directory it should reside should not be included as a comment in a source file. Nor
should comments include a list of authors or a modification history for the file; this information belongs
in the SCCS history. Discussion of nontrivial design decisions is appropriate, but avoid duplicating
information that is present in (and clear from) the code. It’s too easy for such redundant information to
get out-of-date. In general, avoid including in comments information that is likely to become out-of-
date.

Comments should not be enclosed in large boxes drawn with asterisks or other characters. Comments
should never include special characters, such as form-feed and backspace.

There are three styles of comments: block, single-line, and trailing. These are discussed next.

- 7 -

7.1. Block Comments

The opening /* of a block comment that appears outside of any function should be in column one.
There should be a * in column 2 before each line of text in the block comment, and the closing */
should be in columns 2-3 (so that the *’s line up). This enables grep ˆ.* to catch all of the block com-
ments in a file. There is never any text on the first or last lines of the block comment. The initial text
line is separated from the * by a single space, although later text lines may be further indented, as
appropriate.

/*
* Here is a block comment.
* The comment text should be spaced or tabbed over
* and the opening slash-star and closing star-slash
* should be alone on a line.
*/

Block comments are used to provide English descriptions of the contents of files, the functions of pro-
cedures, and to describe data structures and algorithms. Block comments should be used at the begin-
ning of each file and before each procedure. The comment at the beginning of the file containing
main() should include a description of what the program does and its command line syntax. The com-
ments at the beginning of other files should describe the contents of those files.

The block comment that precedes each procedure should document its function, input parameters, algo-
rithm, and returned value. For example,

/*
* index(c, str) returns a pointer to the first occurrence of
* character c in string str, or NULL if c doesn’t occur
* in the string.
*/

In many cases, block comments inside a function are appropriate, and they should be indented to the
same indentation level as the code that they describe.

Block comments should generally contain complete English sentences and should follow the English
rules for punctuation and capitalization. The other types of comments described below will more often
contain sentence fragments, phrases, etc.

7.2. Single-Line Comments

Short comments may appear on a single line indented over to the indentation level of the code that fol-
lows.

if (argc > 1) {
/* get input file from command line */
if (freopen(argv[1], "r", stdin) == NULL)

error("can’t open %s\n", argv[1]);
}

Two single-line comments can appear in a row if one line isn’t enough, but this is strongly discouraged.
The comment text should be separated from the opening /* and closing */ by a space10. The closing
*/’s of several adjacent single-line comments should not be forced to be aligned vertically. In general, a
block comment should be used when a single line is insufficient.

10. Except for the special lint comments /*ARGSUSED*/ and /*VARARGSn*/ (which should appear alone on a line
immediately preceding the function to which they apply), and /*NOTREACHED*/, in which the spaces are not required.

- 8 -

7.3. Trailing Comments

Very short comments may appear on the same line as the code they describe, but should be tabbed over
far enough to separate them from the statements. If more than one short comment appears in a block of
code, they should all be tabbed to the same tab setting.

if (a == 2)
return (TRUE); /* special case */

else
return (isprime(a)); /* works only for odd a */

Trailing comments are most useful for documenting declarations. Avoid the assembly language style of
commenting every line of executable code with a trailing comment.

Trailing comments are often also used on preprocessor #else and #endif statements if they are far
away from the corresponding test. Occasionally, trailing comments will be used to match right braces
with the corresponding C statement, but this style is discouraged except in cases where the correspond-
ing statement is many pages away11.

8. Declarations

There is considerable variation at Sun in the formatting of declarations with regard to the number of
declarations per line, and whether using tabs within declarations makes them more readable.

8.1. How Many Declarations Per Line?

There is a weak consensus that one declaration per line is to be preferred, because it encourages com-
menting. In other words,

int level; /* indentation level */
int size; /* size of symbol table */
int lines; /* lines read from input */

is preferred over:

int level, size, lines;

However, the latter style is frequently used, especially for declaration of several temporary variables of
primitive types such as int or char. In no case should variables and functions be declared on the
same line, e.g.,

long dbaddr, get_dbaddr(); /* WRONG */

8.2. Indentation Within Declarations

Many programmers at Sun like to insert tabs in their variable declarations to align the variables. They
feel this makes their code more readable. For example:

int x;
extern int y;
register int count;
char **pointer_to_string;

If variables with long type names are declared along with variables with short type names, it may be
best to indent the variables one or two tab stops, and only use a single space after the long type names,
e.g.,

11. Many editors include a command to find a matching brace, making it easy to navigate from the right brace back to the
corresponding statement.

- 9 -

int x, y, z;
extern int i;
register int count;
struct very_long_name *p;

It is also acceptable to use only a single space between the type name and the variable name:

int x;
char c;
enum rainbow y;

There is no Sun standard regarding how far over to indent variable names. The user should choose a
value that looks pleasing to him, taking into consideration how frequently he employs lengthy declara-
tions, but note that declarations such as the following probably make the code harder to read:

struct very_long_structure_name *p;
struct another_very_long_structure_name *q;
char *s;
int i;
short r;

Note that the use of #define to declare constants and macros follows indentation rules similar to
those for other declarations. In particular, the #define, the macro name, and the macro text should
all be separated from each other by tabs and properly aligned.

8.3. Local Declarations

Do not declare the same variable name in an inner block12. For example,

func()
{

int cnt;
...
if (condition) {

register int cnt; /* WRONG */
...

}
...

}

Even though this is valid C, the potential confusion is enough that lint will complain about it when
given the – h option.

8.4. External Declarations

External declarations should begin in column 1. Each declaration should be on a separate line. A com-
ment describing the role of the object being declared should be included, with the exception that a list of
defined constants does not need comments if the constant names are sufficient documentation. The com-
ments should be tabbed so that they line up underneath each other13. Use the tab character rather than
blanks. For structure and union template declarations, each element should be alone on a line with a
comment describing it. The opening brace ({) should be on the same line as the structure tag, and the
closing brace should be alone on a line in column 1, e.g.,

12. In fact, avoid any local declarations that override declarations at higher levels.

13. So should the constant names and their defined values.

- 10 -

struct boat {
int wllength; /* water line length in feet */
int type; /* see below */
long sarea; /* sail area in square feet */

};

/*
* defines for boat.type
*/
#define KETCH 1
#define YAWL 2
#define SLOOP 3
#define SQRIG 4
#define MOTOR 5

In any file which is part of a larger whole rather than a self-contained program, maximum use should be
made of the static keyword to make functions and variables local to single files. Variables in partic-
ular should be accessible from other files only when there is a clear need that cannot be filled in another
way. Such usages should be commented to make it clear that another file’s variables are being used.

8.5. Function Definitions

Each function should be preceded by a block comment prologue that gives the name and a short descrip-
tion of what the function does. The type of the value returned should be alone on a line in column 1
(int should be specified explicitly). If the function does not return a value then it should be given the
return type void. If the value returned requires a long explanation, it should be given in the prologue.
Functions that are not used outside of the file in which they are declared should be declared as
static. This lets the reader know explicitly that a function is private, and also eliminates the possibil-
ity of name conflicts with variables and procedures in other files.

When defining functions using the old K&R syntax, the function name and formal parameters should be
alone on a line beginning in column 1. This line is followed by the declarations of the formal parame-
ters. Each parameter should be declared (do not default to int), and tabbed over one indentation level.
The opening brace of the function body should also be alone on a line beginning in column 1.

For functions defined using the ANSI C syntax, the style is much the same. The examples below illus-
trate the acceptable forms of ANSI C declarations.

All local declarations and code within the function body should be tabbed over at least one tab. (Labels
may appear in column 1.) If the function uses any external variables or functions that are not otherwise
declared extern, these should have their own declarations in the function body using the extern
keyword. If the external variable is an array, the array bounds must be repeated in the extern
declaration.

If an external variable or a parameter of type pointer is changed by the function, that fact should be
noted in the comment.

All comments about parameters and local variables should be tabbed so that they line up underneath
each other. The declarations should be separated from the function’s statements by a blank line.

The following examples illustrate many of the rules for function definitions.

- 11 -

/*
* sky_is_blue()
*
* Return true if the sky is blue, else false.
*/
int
sky_is_blue()
{

extern int hour;

if (hour < MORNING || hour > EVENING)
return (0); /* black */

else
return (1); /* blue */

}

/*
* tail(nodep)
*
* Find the last element in the linked list
* pointed to by nodep and return a pointer to it.
*/
Node *
tail(nodep)

Node *nodep;
{

register Node *np; /* current pointer advances to NULL */
register Node *lp; /* last pointer follows np */

np = lp = nodep;
while ((np = np->next) != NULL)

lp = np;
return (lp);

}

/*
* ANSI C Form 1.
* Use this form when the arguments easily fit on one line,
* and no per-argument comments are needed.
*/
int
foo(int alpha, char *beta, struct bar gamma)
{

...
}

- 12 -

/*
* ANSI C Form 2.
* This is a variation on form 1, using the standard continuation
* line technique (indent by 4 spaces). Use this form when no
* per-argument comments are needed, but all argument declarations
* won’t fit on one line. This form is generally frowned upon,
* but acceptable.
*/
int
foo(int alpha, char *beta,

struct bar gamma)
{

...
}

/*
* ANSI C Form 3.
* Use this form when per-argument comments are needed.
* Note that each line of arguments is indented by a full
* tab stop. Note carefully the placement of the left
* and right parentheses.
*/
int
foo(

int alpha, /* first arg */
char *beta, /* arg with a vert long comment needed */

/* to describe its purpose */
struct bar gamma) /* big arg */

{
...

}

8.6. Type Declarations

Many programmers at Sun use named types, i.e., typedefs, liberally. They feel that the use of
typedefs simplifies declaration lists and can make program modification easier when types must
change. Other programmers feel that the use of a typedef hides the underlying type when they want
to know what the type is. This is particularly true for programmers who need to be concerned with
efficiency, e.g., kernel programmers, and therefore need to be aware of the implementation details. The
choice of whether or not to use typedefs is left to the implementor.

It should be noted, however, that typedefs should be used to isolate implementation details, rather
than to save keystrokes14. For instance, the following example demonstrates two inappropriate uses of
typedef. In both cases, the code would pass lint15, but nevertheless depends on the underlying types
and would break if these were to change:

14. An exception is made in the cases of u_char, u_short, etc. that are defined in <sys/types.h>.

15. Some people claim that this is a bug in lint.

- 13 -

typedef char *Mything1; /* These typedefs are inappropriately */
typedef int Mything2; /* used in the code that follows. */

int
can_read(t1)

Mything1 t1;
{

Mything2 t2;

t2 = access(t1, R_OK); /* access() expects a (char *) */
if (t2 == -1) /* and returns an (int) */

takeaction();
return (t2); /* can_read() returns an (int) */

}

If one elects to use a typedef in conjunction with a pointer type, the underlying type should be
typedef-ed, rather than typedef-ing a pointer to underlying type, because it is often necessary and
usually helpful to be able to tell if a type is a pointer. Thus, in the example in section 3, Symbol is
defined to be a struct symbol, rather than struct symbol *, and insert() defined to
return Symbol *.

9. Statements

Each line should contain at most one statement. In particular, do not use the comma operator to group
multiple statements on one line, or to avoid using braces. For example,

argv++; argc--; /* WRONG */

if (err)
fprintf(stderr, "error"), exit(1); /* VERY WRONG */

Do not nest the ternary conditional operator (?:). For example:

num = cnt < tcnt ? (cnt < fcnt ? fcnt : cnt) :
tcnt < bcnt ? tcnt : bcnt > fcnt ? fcnt : bcnt; /* WRONG */

If the return statement is used to return a value, the expression should always be enclosed in
parentheses.

Functions that return no value should not include a return statement as the last statement in the func-
tion.

9.1. Compound Statements

Compound statements are statements that contain lists of statements enclosed in {} braces. The
enclosed list should be indented one more level than the compound statement itself. The opening left
brace should be at the end of the line beginning the compound statement and the closing right brace
should be alone on a line, positioned under the beginning of the compound statement. (See examples
below.) Note that the left brace that begins a function body is the only occurrence of a left brace which
should be alone on a line.

Braces are also used around a single statement when it is part of a control structure, such as an if-
else or for statement, as in:

if (condition) {
if (other_condition)

statement;
}

- 14 -

Some programmers feel that braces should be used to surround all statements that are part of control
structures, even singletons, because this makes it easier to add or delete statements without thinking
about whether braces should be added or removed16. Thus, they would write:

if (condition) {
return (0);

}

In either case, if one arm of an if-else statement contains braces, all arms should contain braces.
Also, if the body of a for or while loop is empty, no braces are needed:

while (*p++ != c)
;

9.2. Examples

if, if-else, if-else if-else statements

if (condition) {
statements;

}

if (condition) {
statements;

} else {
statements;

}

if (condition) {
statements;

} else if (condition) {
statements;

}

Note that the right brace before the else and the right brace before the while of a do-while
statement (see below) are the only places where a right brace appears that is not alone on a line.

for statements

for (initialization; condition; update) {
statements;

}

When using the comma operator in the initialization or update clauses of a for statement, it is sug-
gested that no more than three variables should be updated. More than this tends to make the expres-
sion too complex. In this case it is generally better to use separate statements outside the for loop (for
the initialization clause), or at the end of the loop (for the update clause).

The infinite loop is written using a for loop.

for (;;) {
statements;

16. Some programmers reason that, since some apparent function calls might actually be macros that expand into multiple
statements, always using braces allows such macros to always work safely. Instead, we strongly discourage the use of such
macros. If such macros must be used, they should be all upper case so as to clearly distinguish them as macros; see the
Naming Conventions section.

- 15 -

}

while statements

while (condition) {
statements;

}

do-while statements

do {
statements;

} while (condition);

switch statements

switch (condition) {
case ABC:
case DEF:

statements;
break;

case XYZ:
statements;
break;

default:
statements;
break;

}

The last break17 is, strictly speaking, redundant, but it is recommended form nonetheless because it
prevents a fall-through error if another case is added later after the last one. In general, the fall-
through feature of the C switch statement should rarely, if ever, be used (except for multiple case
labels as shown in the example). If it is, it should be commented for future maintenance.

All switch statements should include a default case18. Don’t assume that the list of cases covers all
possible cases. New, unanticipated, cases may be added later, or bugs elsewhere in the program may
cause variables to take on unexpected values.

The case statement should be indented to the same level as the switch statement. The case state-
ment should be on a line separate from the statements within the case.

The next example shows the format that should be used for a switch whenever the blocks of statements
contain more than a couple of lines. Note the use of blank lines to set off the individual arms of the
switch. Note also the use of a block local to one case to declare variables.

17. A return statement is sometimes substituted for the break statement, especially in the default case.

18. With the possible exception of a switch on an enum variable for which all possible values of the enum are listed.

- 16 -

switch (condition) {

case ABC:
case DEF:

statement1;
.
.
statementn;
break;

case XYZ: {
int var1;

statement1;
.
.
statementm;
break;

}

default:
statements;
break;

}

10. Using White Space

10.1. Vertical White Space

The previous example illustrates the use of blank lines to improve the readability of a complicated
switch statement. Blank lines improve readability by setting off sections of code that are logically
related. Generally, the more white space in code (within reasonable limits), the more readable it is.

A blank line should always be used in the following circumstances:

• After the #include section.

• After blocks of #defines of constants, and before and after #defines of macros.

• Between structure declarations.

• Between procedures.

• After local variable declarations.

Form-feeds should never be used to separate functions. Instead, separate functions into separate files, if
desired.

10.2. Horizontal White Space

Here are the guidelines for blank spaces:

• A blank should follow a keyword19 whenever a parenthesis follows the keyword. Blanks should
not be used between procedure names (or macro calls) and their argument list. This helps to dis-
tinguish keywords from procedure calls.

19. Note that sizeof and return are keywords, whereas strlen and exit are not.

- 17 -

if (strcmp(x, "done") == 0) /* no space between strcmp and ’(’ */
return (0); /* space between return and ’(’ */

• Blanks should appear after the commas in argument lists.

• Blanks should not appear immediately after a left parenthesis or immediately before a right
parenthesis.

• All binary operators except . and –> should be separated from their operands by blanks20. In
other words, blanks should appear around assignment, arithmetic, relational, and logical operators.
Blanks should never separate unary operators such as unary minus, address (‘&’), indirection (‘*’),
increment (‘++’), and decrement (‘--’) from their operands. Note that this includes the unary *
that is a part of pointer declarations.

Examples:

a += c + d;
a = (a + b) / (c * d);
strp–>field = str.fl - ((x & MASK) >> DISP);
while (*d++ = *s++)

n++;

• The expressions in a for statement should be separated by blanks, e.g.,

for (expr1; expr2; expr3)

• Casts should not be followed by a blank, with the exception of function calls whose return values
are ignored, e.g.,

(void) myfunc((unsigned)ptr, (char *)x);

10.3. Hidden White Space

There are many uses of blanks that will not be visible when viewed on a terminal, and it is often
difficult to distinguish blanks from tabs. However, inconsistent use of blanks and tabs may produce
unexpected results when the code is printed with a pretty-printer, and may make simple regular expres-
sion searches fail unexpectedly. The following guidelines are helpful:

• Avoid spaces and tabs at the end of a line.

• Avoid spaces between tabs and tabs between spaces.

• Use tabs to line things up in columns (e.g., for indenting code, and to line up elements within a
series of declarations) and spaces to separate items within a line.

• Use tabs to separate single line comments from the corresponding code.

11. Parenthesization

Since C has some unexpected precedence rules, it is generally a good idea to use parentheses liberally in
expressions involving mixed operators. It is also important to remember that complex expressions can
be used as parameters to macros, and operator-precedence problems can arise unless all occurrences of
parameters in the body of a macro definition have parentheses around them.

12. Naming Conventions

Identifier conventions can make programs more understandable by making them easier to read. They
can also give information about the function of the identifier, e.g., constant, named type, that can be
helpful in understanding code. Individual projects will no doubt have their own naming conventions.

20. Some judgment is called for in the case of complex expressions, which may be clearer if the ‘‘inner’’ operators are not
surrounded by spaces and the ‘‘outer’’ ones are.

- 18 -

However, each programmer should be consistent about his use of naming conventions.

Here are some general rules about naming.

• Variable and function names should be short yet meaningful. One character variable names
should be avoided except for temporary ‘‘throwaway’’ variables. Use variables i, j, k, m, n
for integers, c, d, e for characters, p, q for pointers, and s, t for character pointers. Avoid
variable l because it is hard to distinguish l from 1 on some printers and displays.

• Pointer variables should have a ‘‘p’’ appended to their names for each level of indirection. For
example, a pointer to the variable dbaddr (which contains disk block addresses) can be named
dbaddrp (or perhaps simply dp). Similarly, dbaddrpp would be a pointer to a pointer to the
variable dbaddr.

• Separate "words" in a long variable name with underscores, e.g., create_panel_item21. An
initial underscore should never be used in any user-program names22. Trailing underscores should
be avoided too.

• #define names for constants should be in all CAPS.

• Two conventions are used for named types, i.e., typedefs. Within the kernel named types are
given a name ending in _t, e.g.,

typedef enum { FALSE, TRUE } bool_t;
typedef struct node node_t;

In many user programs named types have their first letter capitalized, e.g.,

typedef enum { FALSE, TRUE } Bool;
typedef struct node Node;

• Macro names may be all CAPS or all lower case. Some macros (such as getchar and putchar) are
in lower case since they may also exist as functions. There is a slight preference for all upper
case macro names.

• Variable names, structure tag names, and function names should be in lower case.

Note: in general, with the exception of named types, it is best to avoid names that differ only in case,
like foo and FOO. The potential for confusion is considerable. However, it is acceptable to use as a
typedef a name which differs only in capitalization from its base type, e.g.,

typedef struct node Node;

It is also acceptable to give a variable of this type a name that is the all lower case version of the type
name, e.g.,

Node node;

• The individual items of enums should be guaranteed unique names by prefixing them with a tag
identifying the package to which they belong. For example,

enum rainbow { RB_red, RB_orange, RB_yellow, RB_green, RB_blue };

The dbx debugger supports enums in that it can print out the value of an enum, and can also per-
form assignment statements using an item in the range of an enum. Thus, the use of enums over
equivalent #defines may make program debugging easier. For example, rather than writing:

#define SUNDAY 0
#define MONDAY 1

write:

21. Mixed case names, e.g., CreatePanelItem, are strongly discouraged.

22. Initial underscores are reserved for global names that are internal to software library packages.

- 19 -

enum day_of_week { dw_sunday, dw_monday, ... };

• Implementors of libraries should take care to hide the names of any variables and functions that
have been declared extern because they are shared by several modules in the library, but
nevertheless are private to the library. One technique for doing this is to prefix the name with an
underscore and a tag that is unique to the package, e.g., _panel_caret_mpr.

13. Continuation Lines

Occasionally, an expression will not fit in the available space in a line, for example, a procedure call
with many arguments, or a conjunction or disjunction with many arms. Such occurrences are especially
likely when blocks are nested deeply or long identifiers are used. If this happens, the expression should
be broken after the last comma in the case of a function call (never in the middle of a parameter expres-
sion), or after the last operator that fits on the line (the continuation line should never start with a binary
operator). The next line should be further indented by half a tab stop. If they are needed, subsequent
continuation lines should be broken in the same manner, and aligned with each other. For example,

if (long_logical_test_1 || long_logical_test_2 ||
long_logical_test_3) {

statements;
}

a = (long_identifier_term1 - long_identifier_term2) *
long_identifier_term3;

function(long_complicated_expression1, long_complicated_expression2,
long_complicated_expression3, long_complicated_expression4,
long_complicated_expression5, long_complicated_expression6)

14. Constants

Numerical constants should not be coded directly. The #define feature of the C preprocessor should
be used to assign a meaningful name. This will also make it easier to administer large programs since
the constant value can be changed uniformly by changing only the #define. The enum data type is
the preferred way to handle situations where a variable takes on only a discrete set of values, since addi-
tional type checking is available through lint. As mentioned above, the dbx debugger also provides sup-
port for enums.

There are some cases where the constants 0 and 1 may appear as themselves instead of as #defines.
For example if a for loop indexes through an array, then

for (i = 0; i < ARYBOUND; i++)

is reasonable while the code

fptr = fopen(filename, "r");
if (fptr == 0)

error("can’t open %s\n", filename);

is not. In the last example, the defined constant NULL is available as part of the standard I/O library’s
header file <stdio.h>, and should be used in place of the 0.

In rare cases, other constants may appear as themselves. Some judgement is required to determine
whether the semantic meaning of the constant is obvious from its value, or whether the code would be
easier to understand if a symbolic name were used for the value.

- 20 -

15. Goto

While not completely avoidable, use of goto is discouraged. In many cases, breaking a procedure into
smaller pieces, or using a different language construct will enable elimination of gotos. For example,
instead of:

again:
if (s = proc(args))

if (s == -1 && errno == EINTR)
goto again;

write:

do {
s = proc(args);

} while (s == -1 && errno == EINTR); /* note23 */

The main place where gotos can be usefully employed is to break out of several levels of switch,
for, and while nesting24, e.g.,

for (...)
for (...) {

...
if (disaster)

goto error;
}

...
error:

clean up the mess

Never use a goto outside of a given block to branch to a label within a block:

goto label; /* WRONG */
...
for (...) {

...
label:

statement;
...

}

When a goto is necessary, the accompanying label should be alone on a line and positioned one inden-
tation level to the left of the code that follows. If a label is not followed by a program statement (e.g.,
if the next token is a closing brace (})) a NULL statement (;) must follow the label.

16. Variable Initialization

C permits initializing a variable where it is declared. Programmers at Sun are equally divided about
whether or not this is a good idea:

"I like to think of declarations and executable code as separate units. Intermixing them only
confuses the issue. If only a scattered few declarations are initialized, it is easy not to see
them."

"The major purpose of code style is clarity. I think the less hunting around for the connec-
tions between different places in the code, the better. I don’t think variables should be

23. These two expressions are equivalent unless s is asynchronously modified, e.g., if s is an I/O register.

24. The need to do such a thing may indicate that the inner constructs should be broken out into a separate function, with a
success/failure return code.

- 21 -

initialized for no reason, however. If the variable doesn’t need to be initialized, don’t waste
the reader’s time by making him/her think that it does."

A convention used by some programmers is to only initialize automatic variables in declarations if the
value of the variable is constant throughout the block.

The decision about whether or not to initialize a variable in a declaration is therefore left to the imple-
mentor. Use good taste. For example, don’t bury a variable initialization in the middle of a long declara-
tion, e.g.,

int a, b, c, d = 4, e, f; /* This is NOT good style */

17. Multiple Assignments

C also permits assigning several variables to the same value in a single statement, e.g.,

x = y = z = 0;

Good taste is required here also. For example, assigning several variables that are used the same way in
the program in a single statement clarifies the relationship between the variables by making it more
explicit, e.g.,

x = y = z = 0;
vx = vy = vz = 1;
count = 0;
scale = 1;

is good, whereas:

x = y = z = count = 0;
vx = vy = vz = scale = 1;

sacrifices clarity for brevity. In any case, the variables that are so assigned should all be of the same
type (or all pointers being initialized to NULL). It is not a good idea (because it is hard to read) to use
multiple assignments for complex expressions, e.g.,

foo_bar.fb_name.firstchar = bar_foo.fb_name.lastchar = ’c’; /* Yecch */

18. Preprocessor

Do not rename members of a structure using #define within a subsystem; instead, use a union. How-
ever, #define can be used to define shorthand notations for referencing members of a union. For
example, instead of

struct proc {
...
int p_lock;
...

};
...
in a subsystem:
#define p_label p_lock

use

- 22 -

struct proc {
...
union {

int p_Lock;
int p_Label;

} p_un;
...

};
#define p_lock p_un.p_Lock
#define p_label p_un.p_Label

Be extremely careful when choosing names for #defines. For example, never use something like

#define size 10

especially in a header file, since it is not unlikely that the user might want to declare a variable named
size.

Remember that names used in #define statements come out of a global preprocessor name space and
can conflict with names in any other namespace. For this reason, this use of #define is discouraged.

Note that #define follows indentation rules similar to other declarations; see the section on indenta-
tion for details.

Care is needed when defining macros that replace functions since functions pass their parameters by
value whereas macros pass their arguments by name substitution.

At the end of an #ifdef construct used to select among a required set of options (such as machine
types), include a final #else clause containing a useful but illegal statement so that the compiler will
generate an error message if none of the options has been defined:

#ifdef vax
...

#elif sun
...

#elif u3b2
...

#else
#error unknown machine type;
#endif /* machine type */

Note that #elif is an ANSI C construct and should not be used in header files that must be able to be
processed be older K&R C compilers. Note also the use of the ANSI C #error statement, which also
has the desired effect when using a K&R C compiler.

Don’t change C syntax via macro substitution, e.g.,

#define BEGIN {

It makes the program unintelligible to all but the perpetrator.

19. Miscellaneous Comments on Good Taste

Try to make the structure of your program match the intent. For example, replace:

if (boolean_expression)
return (TRUE);

else
return (FALSE);

with:

- 23 -

return (boolean_expression);

Similarly,

if (condition)
return (x);

return (y);

is usually clearer when written as:

if (condition)
return (x);

else
return (y);

or even better, if the condition and return expressions are short;

return (condition ? x : y);

Do not default the boolean test for nonzero, i.e.

if (f() != FAIL)

is better than

if (f())

even though FAIL may have the value 0 which is considered to mean false by C25. This will help you
out later when somebody decides that a failure return should be – 1 instead of 0. An exception is com-
monly made for predicates, which are functions which meet the following restrictions:

• Has no other purpose than to return true or false.

• Returns 0 for false, non-zero for true.

• Is named so that the meaning of (say) a ‘true’ return is absolutely obvious. Call a predicate
is_valid or valid, not check_valid.

Never use the boolean negation operator (!) with non-boolean expressions. In particular, never use it to
test for a NULL pointer or to test for success of the strcmp function, e.g.,

char *p;
...
if (!p) /* WRONG */

return;

if (!strcmp(*argv, "-a")) /* WRONG */
aflag++;

Do not use the assignment operator in a place where it could be easily confused with the equality opera-
tor For instance, in the simple expression

if (x = y)
statement;

it is hard to tell whether the programmer really meant assignment or the equality test. Instead, use

if ((x = y) != 0)
statement;

or something similar if the assignment is needed within the if statement.

25. A particularly notorious case is using strcmp to test for string equality, where the result should never be defaulted.

- 24 -

There is a time and a place for embedded assignments26. In some constructs there is no better way to
accomplish the results without making the code bulkier and less readable. For example:

while ((c = getchar()) != EOF) {
process the character

}

Using embedded assignments to improve run-time performance is also possible. However, one should
consider the tradeoff between increased speed and decreased maintainability that results when embedded
assignments are used in artificial places. For example, the code:

a = b + c;
d = a + r;

should not be replaced by

d = (a = b + c) + r;

even though the latter may save one cycle. Note that in the long run the time difference between the
two will decrease as the optimizer gains maturity, while the difference in ease of maintenance will
increase as the human memory of what’s going on in the latter piece of code begins to fade27.

There is also a time and place for the ternary ? : operator and the binary comma operator. If an
expression containing a binary operator appears before the ?, it should be parenthesized:

(x >= 0) ? x : –x

Nested ? : operators can be confusing and should be avoided if possible. There are some macros like
getchar where they can be useful. The comma operator can also be useful in for statements to pro-
vide multiple initializations or incrementations.

20. Portability

The advantages of portable code are well known. This section gives some guidelines for writing port-
able code, where the definition of portable is a source file can be compiled and executed on different
machines with the only source change being the inclusion of (possibly different) header files. The
header files will contain #defines and typedefs that may vary from machine to machine.

There are two aspects of portability that must be considered: hardware compatibility and interface com-
patibility. The former category encompasses problems arising from differing machine types, e.g., byte-
ordering differences. The second category deals with the multiplicity of UNIX operating system inter-
faces, e.g., BSD4.3 and System V. As the POSIX standard (IEEE P1003.1 Portable Operating System
Interface) becomes widely used, it will be preferable to write programs and software packages that use
POSIX semantics exclusively. Where this is not possible (for example, POSIX does not define the BSD
socket interface), the required extensions should be documented in a comment near the top of the source
file and/or in accompanying manuals28.

The POSIX standards provide for portability across a wide range of systems. The X/Open XPG stan-
dards are emerging as important standards for portability across a wide range of systems. Generally it is
best to avoid vendor-specific extensions and use the standard interface that best matches your require-
ments for portability, performance, functionality, etc.

The following is a list of pitfalls to be avoided and recommendations to be considered when designing
portable code:

• First, one must recognize that some things are inherently non-portable. Examples are code to deal
with particular hardware registers such as the program status word, and code that is designed to

26. The ++ and – – operators count as assignments. So, for many purposes, do functions with side effects.

27. Note also that side effects within expressions can result in code whose semantics are compiler-dependent, since C’s order of
evaluation is explicitly undefined in most places. Compilers do differ.

28. Stringent documentation requirements are defined for programs that claim POSIX conformance.

- 25 -

support a particular piece of hardware such as an assembler or I/O driver. Even in these cases
there are many routines and data organizations that can be made machine-independent. Source
files should be organized so that the machine-independent code and the machine-dependent code
are in separate files. Then if the program is to be moved to a new machine, it is a much easier
task to determine what needs to be changed29. It is also possible that code in the machine-
independent files may have uses in other programs as well.

• Pay attention to word sizes. The following sizes apply to basic types in C for some common
machines:

type PDP11 VAX Mac PC/DOS 680x0 SPARC PC/UNIX_ __
char 8 8 8 8 8 8 8
short 16 16 16 16 16 16 16
int 16 32 16 16 32 32 32
long 32 32 32 32 32 32 32
pointer 16 32 32 16 32 32 32

In general, if the word size is important, short or long should be used to get 16- or 32-bit
items on any of the above machines30. If a simple loop counter is being used where either 16 or
32 bits will do, then use int, since it will get the most efficient (natural) unit for the current
machine.

• Word size also affects shifts and masks. The code

x &= 0177770

will clear only the three rightmost bits of an int on a DOS PC. On a SPARC it will also clear the
entire upper halfword. Use

x &= ~07

instead which works properly on all machines31.

• Beware of making assumptions about the size of pointers. They are not always the same size as
int32. Also, be aware of potential pointer alignment problems. On machines that do not support
a uniform address space (unlike, e.g., SPARC), the conversion of a pointer-to-character to a
pointer-to-int may result in an invalid address.

• Watch out for signed characters. On the SPARC, characters are sign extended when used in
expressions, which is not the case on some other machines. In particular, getchar is an integer-
valued function (or macro) since the value of EOF for the standard I/O library is – 1, which is not
possible for a character on the IBM 37033. If the code depends on the character being signed
rather than unsigned, it’s probably best to use the ANSI C signed keyword.

• On some processors on which C exists the bits (or bytes) are numbered from right to left within a
word. Other machines number the bits from left to right. Hence any code that depends on the
left-right orientation of bits in a word deserves special scrutiny. Bit fields within structure
members will only be portable so long as two separate fields are never concatenated and treated as

29. If you #ifdef dependencies, make sure that if no machine is specified, the result is a syntax error, not a default machine!

30. Any unsigned type other than plain unsigned int should be typedefed, as such types are highly compiler-
dependent. This is also true of long and short types other than long int and short int. Large programs should
have a central header file which supplies typedefs for commonly used width-sensitive types, to make it easier to change
them and to aid in finding width-sensitive code.

31. The or operator () does not have these problems, nor do bitfields.

32. Nor are all pointers always the same size, or freely interchangeable. Pointer-to-character is a particular trouble spot on
machines that do not address to the byte.

33. Actually, this is not quite the real reason why getchar returns int, but the comment is valid: code that assumes either that
characters are signed or that they are unsigned is unportable. It is best to completely avoid using char to hold numbers.
Manipulation of characters as if they were numbers is also often unportable.

- 26 -

a unit. The same applies to variables in general. Alignment considerations and loader peculiari-
ties make it very rash to assume that two consecutively declared variables are together in memory,
or that a variable of one type is aligned appropriately to be used as another type.

• Become familiar with existing library functions and #defines34. You should not be writing
your own string compare routine, or making your own #defines for system structures35. Not
only does this waste your time, but it prevents your program from taking advantage of any micro-
code assists or other means of improving performance of system routines36.

• Use lint and make (see next sections).

21. Lint

Lint is a C program checker that examines C source files to detect and report type incompatibilities,
inconsistencies between function definitions and calls, potential program bugs, etc. It is a good idea to
use lint on programs that are being released to a wide audience.

It should be noted that the best way to use lint is not as a barrier that must be overcome before official
acceptance of a program, but rather as a tool to use whenever major changes or additions to the code
have been made. Lint can find obscure bugs and insure portability before problems occur.

22. Make

Make is a program that interprets a description file (Makefile) in order to produce shell commands
that generate target files from their sources. All projects should have a Makefile in the top-level
source directory that contains rules to build all of the relevant targets. In general, the top-level
Makefile will be very simple, containing rules that invoke recursive makes in the sub-directories.

In addition to project-dependent targets, the Makefile should contain rules to build the following tar-
gets:

all builds all targets

install installs all targets and header files in the appropriate directories

clean removes all intermediate files

clobber removes all targets and intermediate files

lint executes lint on all targets

For SunOS, more detailed Makefile guidelines are specified elsewhere.

23. Project-Dependent Standards

Individual projects may wish to establish additional standards beyond those given here. The following
issues are some of those that should be addressed by projects.

• What additional naming conventions should be followed? In particular, systematic prefix conven-
tions for functional grouping of global data and also for structure or union member names can be
useful.

• What kind of include file organization is appropriate for the project’s particular data hierarchy?

• What procedures should be established for reviewing lint complaints? A tolerance level needs to
be established in concert with the lint options to prevent unimportant complaints from hiding com-
plaints about real bugs or inconsistencies.

34. But not too familiar. The internal details of library facilities, as opposed to their external interfaces, are subject to change
without warning. They are also often quite unportable.

35. Or, especially, writing your own code to control terminals. Use the termcap, terminfo, or curses packages.

36. It also makes your code less readable, because the reader has to figure out whether you’re doing something special in the
reimplemented stuff to justify its existence. Furthermore, it’s a fruitful source of bugs.

- 27 -

• If a project establishes its own archive libraries, it should plan on supplying a lint library file to
the system administrators. This will allow lint to check for compatible use of library functions.

24. Conclusion

A set of standards has been presented for C programming style. One of the most important points is the
proper use of white space and comments so that the structure of the program is evident from the layout
of the code. Another good idea to keep in mind when writing code is that it is likely that you or some-
one else will be asked to modify it or make it run on a different machine some time in the future.

- 28 -

Bibliography

[1] S. Shah, C Coding Guidelines for UNIX System Development Issue 3, AT&T (internal document)
1987.

[2] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall 1978.

[3] S.P. Harbison and G.L. Steele, A C Reference Manual, Prentice-Hall 1984.

[4] Evan Adams, Dave Goldberg, et al, Naming Conventions for Software Packages, Sun Microsys-
tems (internal document) 1987.

[5] ANSI/X3.159-198x, Programming Language C Standard, (Draft) 1986.

[6] IEEE/P1003.1, Portable Operating System for Computer Environments, (Draft) 1987.

- 29 -

25. Appendix 1: SCCS ident strings and copyrights

The following are SCCS ident strings and copyrights for various kinds of files. (Omit the Copyright
comment if not relevant.) Note that %W% is an acceptable substitute for %Z%%M% %I%. Note also that
there are tabs between the %M%, %I%, %E%, and %W% keywords, to make the output of the what(1)
command more readable.

Header Files

/*
* Copyright (c) 1993 by Sun Microsystems, Inc.
* All rights reserved.
*/

#ifndef guard
#define guard

#pragma ident "%Z%%M% %I% %E% SMI"

#ifdef __cplusplus
extern "C" {
#endif

body of header

#ifdef __cplusplus
}
#endif

#endif guard

C or Assembler Files

/*
* Copyright (c) 1993 by Sun Microsystems, Inc.
* All rights reserved.
*/

#pragma ident "%Z%%M% %I% %E% SMI"

Makefiles

#
%Z%%M% %I% %E% SMI
#

Shell Files

- 30 -

#!/bin/sh (or /bin/ksh, or /bin/csh)
#
%Z%%M% %I% %E% SMI
#

Manual Pages

.\" %Z%%M% %I% %E% SMI

