
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Linux | Open source projects : Linux articles |
Open source projects articles

Common threads : OpenSSH key management, Part 2

Contents:
Introducing ssh-agent

Enter keychain

Keychain options

Resources

About the author

Rate this article

Related content:
OpenSSH key management,
Part 1

More dW Linux resources

More dW Open source
project resources

Introducing ssh-agent and keychain

Daniel Robbins (drobbins@gentoo.org)
President/CEO, Gentoo Technologies, Inc.
September 2001

Many developers use the excellent OpenSSH as a secure, encrypted replacement
for the venerable telnet and rsh commands. One of OpenSSH's more intriguing
features is its ability to authenticate users using the RSA and DSA authentication
protocols, which are based upon a pair of complementary numerical "keys". One
of the main appeals of RSA and DSA authentication is the promise of being able
to establish connections to remote systems without supplying a password. In this
second article, Daniel introduces ssh-agent (a private key cache) and
keychain, a special bash script designed to make key-based authentication
incredibly convenient and flexible.

Introducing ssh-agent
ssh-agent, included with the OpenSSH distribution, is a special program designed to
make dealing with RSA and DSA keys both pleasant and secure (see Part 1 of this series
for an introduction to RSA and DSA authentication.) ssh-agent, unlike ssh, is a
long-running daemon designed for the sole purpose of caching your decrypted private keys.

ssh includes built-in support that allows it to communicate with ssh-agent, allowing ssh to acquire your
decrypted private keys without prompting you for a password for every single new connection. With ssh-agent you
simply use ssh-add to add your private keys to ssh-agent's cache. It's a one-time process; after using ssh-add,
ssh will grab your private key from ssh-agent, rather than bugging you by prompting for a passphrase.

Using ssh-agent
Let's take a look at how this whole ssh-agent key caching system works. When ssh-agent starts up, it spits out
a few important environment variables before detaching from the shell and continuing to run in the background. Here's
some example output generated by ssh-agent when it begins:

% ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-XX4LkMJS/agent.26916; export SSH_AUTH_SOCK;
SSH_AGENT_PID=26917; export SSH_AGENT_PID;
echo Agent pid 26917;

As you can see, ssh-agent's output is actually a series of bash commands; if executed, these commands would set a
couple of environment variables, SSH_AUTH_SOCK and SSH_AGENT_PID. Due to the included export commands,
these environment variables would be made available to any additional commands run later. Well, all that would
happen if these lines were actually evaluated by the shell, but right now they're simply printed to stdout. To fix this, we
can invoke ssh-agent in the following way:

eval `ssh-agent`

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (1 of 7) [9/10/2001 7:03:44 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/linux/
http://www-106.ibm.com/developerworks/opensource/
http://www-105.ibm.com/developerworks/papers.nsf/dw/linux-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/opensource/
http://www.ibm.com/developerworks/opensource/
mailto:drobbins@gentoo.org
http://www.openssh.com/
http://www-106.ibm.com/developerworks/library/l-keyc.html

This command tells bash to run ssh-agent and then evaluate ssh-agent's output. Invoked this way (with
back-quotes, not normal single quotes), the SSH_AGENT_PID and SSH_AUTH_SOCK variables get set and exported
by your shell, making these variables available to any new processes you may start during your login session.

The best way to start ssh-agent is to add the above line to your ~/.bash_profile; that way, all programs started in
your login shell will see the environment variables, be able to locate ssh-agent and query it for keys as needed. The
environment variable of particular importance is SSH_AUTH_SOCK; the SSH_AUTH_SOCK contains a path to a
UNIX domain socket that ssh and scp can use to establish a dialogue with ssh-agent.

Using ssh-add
But of course, ssh-agent starts up with an empty cache of decrypted private keys. Before we can really use
ssh-agent, we first need to add add our private key(s) to ssh-agent's cache using the ssh-add command. In
the following example, I use ssh-add to add my ~/.ssh/identity private RSA key to ssh-agent's cache:

ssh-add ~/.ssh/identity
Need passphrase for /home/drobbins/.ssh/identity
Enter passphrase for /home/drobbins/.ssh/identity
(enter passphrase)

As you can see, ssh-add asked for my passphrase so that the private key can be decrypted and stored in
ssh-agent's cache, ready for use. Once you've used ssh-add to add your private key (or keys) to ssh-agent's
cache and SSH_AUTH_SOCK is defined in your current shell (which it should be, if you started ssh-agent from
your ~/.bash_profile), then you can use scp and ssh to establish connections with remote systems without supplying
your passphrase.

Limitations of ssh-agent
ssh-agent is really cool, but its default configuration still leaves us with a few minor inconveniences. Let's take a
look at them.

For one, with eval `ssh-agent` in ~/.bash_profile, a new copy of ssh-agent is launched for every login
session; not only is this a tad bit wasteful, but it also means that you need to use ssh-add to add a private key to each
new copy of ssh-agent. If you only open a single terminal or console on your system, this is no big deal, but most
of us open quite a few terminals and need to type in our passphrase every single time we open a new console.
Technically, there's no reason why we should need to do this since a single ssh-agent process really should suffice.

Another problem with the default ssh-agent setup is that it's not compatible with cron jobs. Since cron jobs are
started by the cron process, they won't inherit the SSH_AUTH_SOCK variable from their environment, and thus won't
know that a ssh-agent process is running or how to contact it. It turns out that this problem is also fixable.

Enter keychain
To solve these problems, I wrote a handy bash-based ssh-agent front-end called keychain. What makes
keychain special is the fact that it allows you to use a single ssh-agent process per system, not just per login
session. This means that you only need to do one ssh-add per private key, period. As we'll see in a bit, keychain
even helps to optimize the ssh-add process by only trying to add private keys that aren't already in the running
ssh-agent's cache.

Here's a run-through of how keychain works. When started from your ~/.bash_profile, it will first check to see
whether an ssh-agent is already running. If not, then it will start ssh-agent and record the important
SSH_AUTH_SOCK and SSH_AGENT_PID variables in the ~/.ssh-agent file for safe keeping and later use. Here's the
best way to start keychain; like using plain old ssh-agent, we perform the necessary setup inside
~/.bash_profile:

#!/bin/bash
#example ~/.bash_profile file
/usr/bin/keychain ~/.ssh/id_rsa
#redirect ~/.ssh-agent output to /dev/null to zap the annoying
#"Agent PID" message
source ~/.ssh-agent > /dev/null

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (2 of 7) [9/10/2001 7:03:44 AM]

As you can see, with keychain we source the ~/.ssh-agent file rather than evaluating output as we did when using
ssh-agent directly. However, the result is the same -- our ever-important SSH_AUTH_SOCK is defined, and
ssh-agent is running and ready for use. And because SSH_AUTH_SOCK is recorded in ~/.ssh-agent, our own
shell scripts and cron jobs can easily connect with ssh-agent just by sourcing the ~/.ssh-agent file. keychain
itself also takes advantage of this file; you'll remember that when keychain starts up, it checks to see whether an
existing ssh-agent is running. If so, it uses the ~/.ssh-agent file to acquire the proper SSH_AUTH_SOCK setting,
thus allowing it to use the existing agent rather than starting a new one. keychain will start a new ssh-agent
process only if the ~/.ssh-agent file is stale (points to a non-existent ssh-agent) or if ~/.ssh-agent itself does not
exist.

Installing keychain
Installing keychain is easy. First, head over to the keychain project page and download the most recent available
version of the keychain source archive. Then, install as follows:

tar xzvf keychain-1.0.tar.gz
cd keychain-1.0
install -m0755 keychain /usr/bin

Now that keychain is in /usr/bin/, add it to your ~/.bash_profile, supplying paths to your private keys as arguments.
Here's a good standard keychain-enabled ~/.bash_profile:

An example keychain-enabled ~/.bash_profile

#!/bin/bash
#on this next line, we start keychain and point it to the private keys that
#we'd like it to cache
/usr/bin/keychain ~/.ssh/id_rsa ~/.ssh/id_dsa
source ~/.ssh-agent > /dev/null
#sourcing ~/.bashrc is a good thing
source ~/.bashrc

Keychain in action
Once you've configured your ~/.bash_profile to call keychain at every login, log out and log back in. When you do,
keychain will start ssh-agent, record the agent's environment variable settings in ~/.ssh-agent, and then prompt
you for passphrases for any private keys specified on the keychain command-line in ~/.bash_profile:

Keychain starts for the first time

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (3 of 7) [9/10/2001 7:03:44 AM]

http://www.gentoo.org/projects/keychain.html

Once you enter your passphrases, you private keys will be cached, and keychain will exit. Then, ~/.ssh-agent will
be sourced, initializing your login session for use with ssh-agent. Now, if you log out and log back in again, you'll
find that keychain will find the existing ssh-agent process; it didn't terminate when you logged out. In addition,
keychain will verify that the private key(s) you specified are already in ssh-agent's cache. If not, then you'll be
prompted for the appropriate passphrases, but if all goes well, your existing ssh-agent will still contain the private
key that you previously added; this means that you're not prompted for a password:

Keychain finds an existing ssh-agent

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (4 of 7) [9/10/2001 7:03:44 AM]

Congratulations; you've just logged in and should be able to ssh and scp to remote systems; you didn't need to use
ssh-add right after login, and ssh and scp won't prompt you for a passphrase either. In fact, as long as your initial
ssh-agent process keeps running, you'll be able to log in and establish ssh connections without supplying a
password. And it's very likely that your ssh-agent process will continue to run until the machine is rebooted; since
you're most likely setting this up on a Linux system, it's possible that you may not need to enter your passphrase for
several months! Welcome to the world of secure, passwordless connections using RSA and DSA authentication.

Go ahead and create several new login sessions, and you'll see that keychain will "hook in" to the exact same
ssh-agent process each time. Don't forget that you can also get your cron jobs and scripts to "hook in" to the
running ssh-agent process. To use ssh or scp commands from your shell scripts and cron jobs, just make sure
that they source your ~/.ssh-agent file first:

source ~/.ssh-agent

Then, any following ssh or scp commands will be able to find the currently-running ssh-agent and establish
secure passwordless connections just like you can from the shell.

Keychain options
After you have keychain up and running, be sure to type keychain --help to familiarize yourself with all of
keychain's command-line options. We're going to take a look at one in particular: the --clear option.

You'll recall that in Part 1, I explained that using unencrypted private keys is a dangerous practice, because it allows
someone to steal your private key and use it to log in to your remote accounts from any other system without
supplying a password. Well, while keychain isn't vulnerable to this kind of abuse (as long as you use encrypted
private keys, that is), there is a potentially exploitable weakness directly related to the fact that keychain makes it so
easy to "hook in" to a long-running ssh-agent process. What would happen, I thought, if some intruder were
somehow able to figure out my password or passphrase and log into my local system? If they were somehow able to

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (5 of 7) [9/10/2001 7:03:44 AM]

http://www-106.ibm.com/developerworks/library/l-keyc.html

log in under my username, keychain would grant them instant access to my decrypted private keys, making it a
no-brainer for them to access my other accounts.

Now, before I continue, let's put this security threat in perspective. If some malicious user were somehow able to log in
as me, keychain would indeed allow them to access my remote accounts. Yet, even so, it would be very difficult for
the intruder to steal my decrypted private keys since they are still encrypted on disk. Also, gaining access to my
private keys would require a user to actually log in as me, not just read files in my directory. So, abusing ssh-agent
would be a much more difficult task than simply stealing an unencrypted private key, which only requires that an
intruder somehow gain access to my files in ~/.ssh, whether logged in as me or not. Nevertheless, if an intruder were
successfully able to log in as me, they could do quite a bit of additional damage by using my decrypted private keys.
So, if you happen to be using keychain on a server that you don't log into very often or don't actively monitor for
security breaches, then consider using the --clear option to provide an additional layer of security.

The --clear option allows you to tell keychain to assume that every new login to your account should be
considered a potential security breach until proven otherwise. When you start keychain with the --clear option,
keychain immediately flushes all your private keys from ssh-agent's cache when you log in, before performing
its normal duties. Thus, if you're an intruder, keychain will prompt you for passphrases rather than giving you
access to your existing set of cached keys. However, even though this enhances security, it does make things a bit
more inconvenient and very similar to running ssh-agent all by itself, without keychain. Here, as is often the
case, one can opt for greater security or greater convenience, but not both.

Despite this, using keychain with --clear still has advantages over using ssh-agent all by itself; remember,
when you use keychain --clear, your cron jobs and scripts will still be able to establish passwordless
connections; this is because your private keys are flushed at login, not logout. Since a logout from the system does not
constitute a potential security breach, there's no reason for keychain to respond by flushing ssh-agent's keys.
Thus, the --clear option an ideal choice for infrequently accessed servers that need to perform occasional secure
copying tasks, such as backup servers, firewalls, and routers.

We're done!
Now that the OpenSSH key management series is complete, you should be very familiar with RSA and DSA keys and
know how to use them in a convenient yet secure way. Be sure to also check out the following resources:

Resources

Read Part 1 of Daniel's series on OpenSSH key management on developerWorks.●

Visit the home of OpenSSH development.●

Get the most recent version of keychain .●

Find the latest OpenSSH source tarballs and RPMs.●

Check out the OpenSSH FAQ.●

PuTTY is an excellent ssh client for Windows machines.●

You may find O'Reilly's "SSH, The Secure Shell: The Definitive Guide" book helpful. The Authors' site
contains information about the book, a FAQ, news, and updates.

●

Browse more Linux resources on developerWorks.●

Browse more Open source resources on developerWorks.●

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo Technologies,
Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the Portage system, a
next-generation ports system for Linux. He has also served as a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, SuSE Linux Unleashed, and Samba Unleashed. Daniel has been
involved with computers in some fashion since the second grade, when he was first exposed to the Logo

programming language as well as a potentially dangerous dose of Pac Man. This probably explains why he has since
served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel enjoys spending time with his
wife, Mary, and his new baby daughter, Hadassah. You can contact Daniel at drobbins@gentoo.org.

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (6 of 7) [9/10/2001 7:03:44 AM]

http://www-106.ibm.com/developerworks/library/l-keyc.html
http://www.openssh.com/
http://www.gentoo.org/projects/keychain.html
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/
http://www.openssh.com/faq.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.snailbook.com/
http://www-106.ibm.com/developerworks/linux/?article=lr
http://www-106.ibm.com/developerworks/opensource/?article=osr
http://www.gentoo.org/
mailto:drobbins@gentoo.org

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

 About IBM | Privacy | Legal | Contact

developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/ (7 of 7) [9/10/2001 7:03:44 AM]

javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Linux | Open source projects : Common threads : OpenSSH key management, Part 2

	DFEOOPIJDOFLDLLIPBPIMDDBAIGCAPPO:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Common threads : OpenSSH key management, Part 2
	f2: Linux, Open source
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

