Chapter 2. Entity Beans

2.1. Intro

This section covers EJB 3.0 entity bean annotations and Hibernate-specific extensions.

2.2. Mapping with EJB3 Annotations

EJB3 entity beans are plain POJOs. Actually they represent the exact same concept as the Hibernate persistent entities. Their mappings are defined through JDK 5.0 annotations (an XML descriptor syntax for overriding will be defined in the EJB3 specification, but it's not finalized so far). Annotations can be split in two categories, the logical mapping annotations (allowing you to describe the object model, the class associations, etc.) and the physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will mix annotations from both categories in the following code examples.

EJB3 annotations are in the javax.persistence.* package. Most JDK 5 compliant IDE (like Eclipse, IntelliJ IDEA and Netbeans) can autocomplete annotation interfaces and attributes for you (even without a specific "EJB3" module, since EJB3 annotations are plain JDK 5 annotations).

For more and runnable concrete examples read the JBoss EJB 3.0 tutorial or review the Hibernate Annotations test suite. Most of the unit tests have been designed to represent a concrete example and be a inspiration source.

2.2.1. Declaring an entity bean

Every bound persistent POJO class is an entity bean and is declared using the @Entity annotation (at the class level):

@Entity
public class Flight implements Serializable {
    Long id;

    @Id
    public Long getId() { return id; }

    public void setId(Long id) { this.id = id; }
}
         

@Entity declares the class as an entity bean (i.e. a persistent POJO class), @Id declares the identifier property of this entity bean. The other mapping declarations are implicit. This configuration by exception concept is central to the new EJB3 specification and a major improvement. The class Flight is mapped to the Flight table, using the column id as its primary key column.

Depending on whether you annotate fields or methods, the access type used by Hibernate will be field or property. The EJB3 spec requires that you declare annotations on the element type that will be accessed, i.e. the getter method if you use property access, the field if you use field access. Mixing EJB3 annotations in both fields and methods should be avoided. Hibernate will guess the access type from the position of @Id or @EmbeddedId.

2.2.1.1. Defining the table

@Table is set at the class level; it allows you to define the table, catalog, and schema names for your entity bean mapping. If no @Table is defined the default values are used: the unqualified class name of the entity.

@Entity
@Table(name="tbl_sky")
public class Sky implements Serializable {
...
            

The @Table element also contains a schema and a catalog attributes, if they need to be defined. You can also define unique constraints to the table using the @UniqueConstraint annotation in conjunction with @Table (for a unique constraint bound to a single column, refer to @Column).

@Table(name="tbl_sky",
    uniqueConstraints = {@UniqueConstraint(columnNames={"month", "day"})}
)

A unique constraint is applied to the tuple month, day. Note that the columnNames array refers to the logical column names.

The logical column name is defined by the Hibernate NamingStrategy implementation. The default EJB3 naming strategy use the physical column name as the logical column name. Note that this may be different than the property name (if the column name is explicit). Unless you override the NamingStrategy, you shouldn't worry about that.

2.2.1.2. Versioning for optimistic locking

You can add optimistic locking capability to an entity bean using the @Version annotation:

@Entity
public class Flight implements Serializable {
...
    @Version
    @Column(name="OPTLOCK")
    public Integer getVersion() { ... }
}           

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).

The version column may be a numeric (the recommended solution) or a timestamp as per the EJB3 spec. Hibernate support any kind of type provided that you define and implement the appropriate UserVersionType.

2.2.2. Mapping simple properties

2.2.2.1. Declaring basic property mappings

Every non static non transient property (field or method) of an entity bean is considered persistent, unless you annotate it as @Transient. Not having an annotation for your property is equivalent to the appropriate @Basic annotation. The @Basic annotation allows you to declare the fetching strategy for a property:

public transient int counter; //transient property

private String firstname; //persistent property

@Transient
String getLengthInMeter() { ... } //transient property

String getName() {... } // persistent property

@Basic
int getLength() { ... } // persistent property

@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property

@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property           

@Enumerated(STRING)
Starred getNote() { ... } //enum persisted as String in database

counter, a transient field, and lengthInMeter, a method annotated as @Transient, and will be ignored by the entity manager. name, length, and firstname properties are mapped persistent and eagerly fetched (the default for simple properties). The detailedComment property value will be lazily fetched from the database once a lazy property of the entity is accessed for the first time. Usually you don't need to lazy simple properties (not to be confused with lazy association fetching).

Note

To enable property level lazy fetching, your classes have to be instrumented: bytecode is added to the original one to enable such feature, please refer to the Hibernate reference documentation. If your classes are not instrumented, property level lazy loading is silently ignored.

The recommended alternative is to use the projection capability of EJB-QL or Criteria queries.

EJB3 support property mapping of all basic types supported by Hibernate (all basic Java types , their respective wrappers and serializable classes). Hibernate Annotations support out of the box Enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the enum string representation): the persistence representation, defaulted to ordinal, can be overriden through the @Enumerated annotation as shown in the note property example.

In core Java APIs, the temporal precision is not defined. When dealing with temporal data you might want to describe the expected precision in database. Temporal data can have DATE, TIME, or TIMESTAMP precision (ie the actual date, only the time, or both). Use the @Temporal annotation to fine tune that.

@Lob indicates that the property should be persisted in a Blob or a Clob depending on the property type: java.sql.Clob, Character[], char[] and java.lang.String will be persisted in a Clob. java.sql.Blob, Byte[], byte[] and serializable type will be persisted in a Blob.

@Lob
public String getFullText() {
    return fullText;
}

@Lob 
public byte[] getFullCode() {
    return fullCode;
}
 

If the property type implements java.io.Serializable and is not a basic type, and if the property is not annotated with @Lob, then the Hibernate serializable type is used.

2.2.2.2. Declaring column attributes

The column(s) used for a property mapping can be defined using the @Column annotation. Use it to override default values (see the EJB3 specification for more information on the defaults). You can use this annotation at the property level for properties that are:

  • not annotated at all

  • annotated with @Basic

  • annotated with @Version

  • annotated with @Lob

  • annotated with ²@Temporal

  • annotated with @org.hibernate.annotations.CollectionOfElements (for Hibernate only)

@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
            

The name property is mapped to the flight_name column, which is not nullable, has a length of 50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @Id or @Version properties.

@Column(
    name="columnName";                                (1)
    boolean unique() default false;                   (2)
    boolean nullable() default true;                  (3)
    boolean insertable() default true;                (4)
    boolean updatable() default true;                 (5)
    String columnDefinition() default "";             (6)
    String table() default "";                        (7)
    int length() default 255;                         (8)
    int precision() default 0; // decimal precision   (9)
    int scale() default 0; // decimal scale
(1)

name (optional): the column name (default to the property name)

(2)

unique (optional): set a unique constraint on this column or not (default false)

(3)

nullable (optional): set the column as nullable (default false).

(4)

insertable (optional): whether or not the column will be part of the insert statement (default true)

(5)

updatable (optional): whether or not the column will be part of the update statement (default true)

(6)

columnDefinition (optional): override the sql DDL fragment for this particular column (non portable)

(7)

table (optional): define the targeted table (default primary table)

(8)

length (optional): column length (default 255)

(8)

precision (optional): column decimal precision (default 0)

(10)

scale (optional): column decimal scale if useful (default 0)

2.2.2.3. Embedded objects (aka components)

It is possible to declare an embedded component inside an entity and even override its column mapping. Component classes have to be annotated at the class level with the @Embeddable annotation. It is possible to override the column mapping of an embedded object for a particular entity using the @Embedded and @AttributeOverride annotation in the associated property:

@Entity
public class Person implements Serializable {

    // Persistent component using defaults
    Address homeAddress;

    @Embedded
    @AttributeOverrides( {
            @AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
            @AttributeOverride(name="name", column = @Column(name="bornCountryName") )
    } )
    Country bornIn;
    ...
}
            
@Embeddable
public class Address implements Serializable {
    String city;
    Country nationality; //no overriding here
}
            
@Embeddable
public class Country implements Serializable {
    private String iso2;
    @Column(name="countryName") private String name;

    public String getIso2() { return iso2; }
    public void setIso2(String iso2) { this.iso2 = iso2; }

    
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }
    ...
}
            

A embeddable object inherit the access type of its owning entity (note that you can override that using the Hibernate specific @AccessType annotations (see Hibernate Annotation Extensions).

The Person entity bean has two component properties, homeAddress and bornIn. Note that the homeAddress property has not been annotated. Hibernate will guess that it is a persistent component by looking for the @Embeddable annotation in the Address class. We also override the mapping of a column name (to bornCountryName) with the @Embedded and @AttributeOverride annotations for each mapped attribute of Country. As you can see, Country is also a nested component of Address, again using auto-detection by Hibernate and EJB3 defaults. Overriding columns of embedded objects of embedded objects is currently not supported in the EJB3 spec, however, Hibernate Annotations supports it through dotted expressions.

    @Embedded
    @AttributeOverrides( {
            @AttributeOverride(name="city", column = @Column(name="fld_city") )
            @AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
            @AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
            //nationality columns in homeAddress are overridden
    } )
    Address homeAddress;

Hibernate Annotations supports one more feature that is not explicitly supported by the EJB3 specification. You can annotate a embedded object with the @MappedSuperclass annotation to make the superclass properties persistent (see @MappedSuperclass for more informations).

You cannot use association annotations in an embeddable object (ie no @*ToOne nor @*ToMany). This is disallowed by the spec, and not yet supported in Hibernate Annotations.

If you want to have the same embeddable object type twice in the same entity, the column name defaulting will not work: at least one of the columns will have to be explicit. Hibernate goes beyond the EJB3 spec and allows you to enhance the defaulting mechanism through the NamingStrategy. DefaultComponentSafeNamingStrategy is a small improvement over the default EJB3NamingStrategy that allows embedded objects to be defaulted even if used twice in the same entity.

2.2.2.4. Non-annotated property defaults

If a property is not annotated, the following rules apply:

  • If the property is of a single type, it is mapped as @Basic
  • Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as @Embedded
  • Otherwise, if the type of the property is Serializable, it is mapped as @Basic in a column holding the object in its serialized version
  • Otherwise, if the type of the property is java.sql.Clob or java.sql.Blob, it is mapped as @Lob with the appropriate LobType

2.2.. Mapping identifier properties

The @Id annotation lets you define which property is the identifier of your entity bean. This property can be set by the application itself or be generated by Hibernate (preferred). You can define the identifier generation strategy thanks to the @GeneratedValue annotation:

  • AUTO - either identity column, sequence or table depending on the underlying DB
  • TABLE - table holding the id
  • IDENTITY - identity column
  • SEQUENCE - sequence

Hibernate provides more id generators than the basic EJB3 ones. Check Hibernate Annotation Extensions for more informations.

The following example shows a sequence generator using the SEQ_STORE configuration (see below)

@Id @GeneratedValue(strategy=GeneratorType.SEQUENCE, generator="SEQ_STORE")
public Integer getId() { ... }
         

The next example uses the identity generator:

@Id @GeneratedValue(strategy=GeneratorType.IDENTITY)
public Long getId() { ... }
         

The AUTO generator is the preferred type for portable applications (across several DB vendors). The identifier generation configuration can be shared for several @Id mappings with the generator attribute. There are several configurations available through @SequenceGenerator and @TableGenerator. The scope of a generator can be the application or the class. Class-defined generators are not visible outside the class and can override application level generators. Application level generators are defined at package level (see package-info.java):

@javax.persistence.TableGenerator(
    name="EMP_GEN",
    table="GENERATOR_TABLE",
    pkColumnName = "key",
    valueColumnName = "hi"
    pkColumnValue="EMP",
    allocationSize=20
)
@javax.persistence.SequenceGenerator(
    name="SEQ_GEN",
    sequenceName="my_sequence"
)
package org.hibernate.test.metadata;
         

If package-info.java in the org.hibernate.test.metadata package is used to initialize the EJB configuration, EMP_GEN and SEQ_GEN are application level generators. EMP_GEN defines a table based id generator using the hilo algorithm with a max_lo of 20. The hi value is kept in a table "GENERATOR_TABLE". The information is kept in a row where pkColumnName "key" is equals to pkColumnValue "EMP" and column valueColumnName "hi" contains the the next high value used.

SEQ_GEN defines a sequence generator using a sequence named my_sequence. Note that this version of Hibernate Annotations does not handle initialValue and allocationSize parameters in the sequence generator.

The next example shows the definition of a sequence generator in a class scope:

@Entity
@javax.persistence.SequenceGenerator(
    name="SEQ_STORE",
    sequenceName="my_sequence"
)
public class Store implements Serializable {
    private Long id;

    @Id @GeneratedValue(strategy=GeneratorType.SEQUENCE, generator="SEQ_STORE")
    public Long getId() { return id; }
}
         

This class will use a sequence named my_sequence and the SEQ_STORE generator is not visible in other classes. Note that you can check the Hibernate Annotations tests in the org.hibernate.test.metadata.id package for more examples.

You can define a composite primary key through several syntaxes:

  • annotate the component property as @Id and make the component class @Embeddable
  • annotate the component property as @EmbeddedId
  • annotate the class as @IdClass and annotate each property of the entity involved in the primary key with @Id

While quite common to the EJB2 developer, @IdClass is likely new for Hibernate users. The composite primary key class corresponds to multiple fields or properties of the entity class, and the names of primary key fields or properties in the primary key class and those of the entity class must match and their types must be the same. Let's look at an example:

@Entity
@IdClass(FootballerPk.class)
public class Footballer {
    //part of the id key
    @Id public String getFirstname() {
        return firstname;
    }

    public void setFirstname(String firstname) {
        this.firstname = firstname;
    }

    //part of the id key
    @Id public String getLastname() {
        return lastname;
    }

    public void setLastname(String lastname) {
        this.lastname = lastname;
    }

    public String getClub() {
        return club;
    }

    public void setClub(String club) {
        this.club = club;
    }

    //appropriate equals() and hashCode() implementation
}

@Embeddable
public class FootballerPk implements Serializable {
    //same name and type as in Footballer
    public String getFirstname() {
        return firstname;
    }

    public void setFirstname(String firstname) {
        this.firstname = firstname;
    }

    //same name and type as in Footballer
    public String getLastname() {
        return lastname;
    }

    public void setLastname(String lastname) {
        this.lastname = lastname;
    }

    //appropriate equals() and hashCode() implementation
}

As you may have seen, @IdClass points to the corresponding primary key class.

2.2.4. Mapping inheritance

EJB3 supports the three types of inheritance:

  • Table per Class Strategy: the <union-class> element in Hibernate
  • Single Table per Class Hierarchy Strategy: the <subclass> element in Hibernate
  • Joined Subclass Strategy: the <joined-subclass> element in Hibernate

The chosen strategy is declared at the class level of the top level entity in the hierarchy using the @Inheritance annotation.

Note

Annotating interfaces is currently not supported.

2.2.4.1. Table per class

This strategy has many drawbacks (esp. with polymorphic queries and associations) explained in the EJB3 spec, the Hibernate reference documentation, Hibernate in Action, and many other places. Hibernate work around most of them implementing this strategy using SQL UNION queries. It is commonly used for the top level of an inheritance hierarchy:

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable {
            

This strategy support one to many associations provided that they are bidirectional. This strategy does not support the IDENTITY generator strategy: the id has to be shared across several tables. Consequently, when using this strategy, you should not use AUTO nor IDENTITY.

2.2.4.2. Single table per class hierarchy

All properties of all super- and subclasses are mapped into the same table, instances are distinguished by a special discriminator column:

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="planetype",
    discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }

@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }
            

Plane is the superclass, it defines the inheritance strategy InheritanceType.SINGLE_TABLE. It also defines the discriminator column through the @DiscriminatorColumn annotation, a discriminator column can also define the discriminator type. Finally, the @DiscriminatorValue annotation defines the value used to differentiate a class in the hierarchy. All of these attributes have sensible default values. The default name of the discriminator column is TYPE, and (for Hibernate) the default discriminator value is the fully qualified class name. A320 is a subclass; you only have to define discriminator value if you don't want to use the default value. The strategy and the discriminator type is implicit.

@Inheritance and @DiscriminatorColumn should only be defined at the top of the entity hierarchy.

2.2.4.3. Joined subclasses

The @PrimaryKeyJoinColumn and @PrimaryKeyJoinColumns annotations define the primary key(s) of the joined subclass table:

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Boat implements Serializable { ... }

@Entity
public class Ferry extends Boat { ... }

@Entity
@PrimaryKeyJoinColumn(name="BOAT_ID")
public class AmericaCupClass  extends Boat { ... }
            

All of the above entities use the JOINED strategy, the Ferry table is joined with the Boat table using the same primary key names. The AmericaCupClass table is joined with Boat using the join condition Boat.id = AmericaCupClass.BOAT_ID.

2.2.4.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business superclass without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you can map them as @MappedSuperclass.

@MappedSuperclass
public class BaseEntity {
    @Basic
    @Temporal(TemporalType.TIMESTAMP)
    public Date getLastUpdate() { ... }
    public String getLastUpdater() { ... }
    ...
}

@Entity class Order extends BaseEntity {
    @Id public Integer getId() { ... }
    ...
}

In database, this hierarchy will be represented as an Order table having the id, lastUpdate and lastUpdater columns. The embedded superclass property mappings are copied into their entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

Note

Properties from superclasses not mapped as @MappedSuperclass are ignored.

Note

The access type (field or methods), is inherited from the root entity, unless you use the Hibernate annotation @AccessType

Note

The same notion can be applied to @Embeddable objects to persist properties from their superclasses. You also need to use @MappedSuperclass to do that (this should not be considered as a standard EJB3 feature though)

Note

It is allowed to mark a class as @MappedSuperclass in the middle of the mapped inheritance hierarchy.

Note

Any class in the hierarchy non annotated with @MappedSuperclass nor @Entity will be ignored.

You can override columns defined in entity superclasses at the root entity level using the @AttributeOverride annotation.

@MappedSuperclass
public class FlyingObject implements Serializable {

    public int getAltitude() {
        return altitude;
    }

    @Transient
    public int getMetricAltitude() {
        return metricAltitude;
    }
    ...
}

@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
public class Plane extends FlyingObject {
    ...
}

The altitude property will be persisted in an fld_altitude column of table Plane.

2.2.5. Mapping entity bean associations/relationships

2.2.5.1. One-to-one

You can associate entity beans through a one-to-one relationship using @OneToOne. There are two cases for one-to-one associations: either the associated entities share the same primary keys values or a foreign key is held by one of the entities (note that this FK column in the database should be constrained unique to simulate one-to-one multiplicity).

First, we map a real one-to-one association using shared primary keys:

@Entity
public class Body {
    @Id
    public Long getId() { return id; }

    @OneToOne(cascade = CascadeType.ALL)
    @PrimaryKeyJoinColumn
    public Heart getHeart() {
        return heart;
    }
    ...
}
            
@Entity
public class Heart {
    @Id
    public Long getId() { ...}
}
            

The one to one is marked as true by using the @PrimaryKeyJoinColumn annotation.

In the following example, the associated entities are linked through a foreign key column:

@Entity
public class Customer implements Serializable {
    @OneToOne(cascade = CascadeType.ALL)
    @JoinColumn(name="passport_fk")
    public Passport getPassport() {
        ...
    }

@Entity
public class Passport implements Serializable {
    @OneToOne(mappedBy = "passport")
    public Customer getOwner() {
    ...
}
            

A Customer is linked to a Passport, with a foreign key column named passport_fk in the Customer table. The join column is declared with the @JoinColumn annotation which looks like the @Column annotation. It has one more parameters named referencedColumnName. This parameter declares the column in the targeted entity that will be used to the join. Note that when using referencedColumnName to a non primary key column, the associated class has to be Serializable. Also note that the referencedColumnName to a non primary key column has to be mapped to a property having a single column (other cases might not work).

The association may be bidirectional. In a bidirectional relationship, one of the sides (and only one) has to be the owner: the owner is responsible for the association column(s) update. To declare a side as not responsible for the relationship, the attribute mappedBy is used. mappedBy refers to the property name of the association on the owner side. In our case, this is passport. As you can see, you don't have to (must not) declare the join column since it has already been declared on the owners side.

If no @JoinColumn is declared on the owner side, the defaults apply. A join column(s) will be created in the owner table and its name will be the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column(s) in the owned side. In this example passport_id because the property name is passport and the column id of Passport is id.

2.2.5.2. Many-to-one

Many-to-one associations are declared at the property level with the annotation @ManyToOne:

@Entity()
public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.CREATE, CascadeType.MERGE} )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}
            

The @JoinColumn attribute is optional, the default value(s) is like in one to one, the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column in the owned side. In this example company_id because the property name is company and the column id of Company is id.

@ManyToOne has a parameter named targetEntity which describes the target entity name. You usually don't need this parameter since the default value (the type of the property that stores the association) is good in almost all cases. However this is useful when you want to use interfaces as the return type instead of the regular entity.

@Entity()
public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.CREATE, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}

public interface Company {
    ...
            

2.2.5.3. Collections

2.2.5.3.1. Overview

You can map Collection, List (ie ordered lists, not indexed lists), Map and Set. The EJB3 specification describes how to map an ordered list (ie a list ordered at load time) using @javax.persistence.OrderBy annotation: this annotation takes into parameter a list of comma separated (target entity) properties to order the collection by (eg firstname asc, age desc), if the string is empty, the collection will be ordered by id. @OrderBy currently works only on collections having no association table. For true indexed collections, please refer to the Hibernate Annotation Extensions. EJB3 allows you to map Maps using as a key one of the target entity property using @MapKey(name="myProperty") (myProperty is a property name in the target entity). When using @MapKey (without property name), the target entity primary key is used. Be aware that once loaded, the key is no longer kept in sync with the property, in other words, if you change the property value, the key will not change automatically in your Java model (Map support the way Hibernate 3 does is currently not supported in this release).

Hibernate has several notions of collections.

Table 2.1. Collections semantics

Semanticjava representationannotations
Bag semanticjava.util.List, java.util.Collection@org.hibernate.annotations.CollectionOfElements, @OneToMany, @ManyToMany
List semanticjava.util.List@org.hibernate.annotations.CollectionOfElements, @OneToMany, @ManyToMany + @OrderBy, @org.hibernate.annotations.IndexColumn
Set semanticjava.util.Set@org.hibernate.annotations.CollectionOfElements, @OneToMany, @ManyToMany
Map semanticjava.util.Map@org.hibernate.annotations.CollectionOfElements, @OneToMany, @ManyToMany + @MapKey
So specifically, java.util.List collections wo @OrderBy nor @org.hibernate.annotations.IndexColumn are going to be considered as bags.

Collection of primitive, core type or embedded objects is not supported by the EJB3 specification. Hibernate Annotations allows them however (see Hibernate Annotation Extensions).

@Entity public class City {
    @OneToMany(mappedBy="city")
    @OrderBy("streetName")
    public List<Street> getStreets() {
        return streets;
    }
...
}

@Entity public class Street {
    public String getStreetName() {
        return streetName;
    }

    @ManyToOne
    public City getCity() {
        return city;
    }
    ...
}


@Entity
public class Software {
    @OneToMany(mappedBy="software")
    @MapKey(name="codeName")
    public Map<String, Version> getVersions() {
        return versions;
    }
...
}

@Entity
@Table(name="tbl_version")
public class Version {
    public String getCodeName() {...}

    @ManyToOne
    public Software getSoftware() { ... }
...
}

So City has a collection of Streets that are ordered by streetName (of Street) when the collection is loaded. Software has a map of Versions which key is the Version codeName.

Unless the collection is a generic, you will have to define targetEntity. This is a annotation attribute that take the target entity class as a value.

2.2.5.3.2. One-to-many

One-to-many associations are declared at the property level with the annotation @OneToMany. One to many associations may be bidirectional.

2.2.5.3.2.1. Bidirectional

Since many to one are (almost) always the owner side of a bidirectional relationship in the EJB3 spec, the one to many association is annotated by @OneToMany( mappedBy=... )

@Entity
public class Troop {
    @OneToMany(mappedBy="troop")
    public Set<Soldier> getSoldiers() {
    ...
}

@Entity
public class Soldier {
    @ManyToOne
    @JoinColumn(name="troop_fk")
    public Troop getTroop() {
    ...
}              

Troop has a bidirectional one to many relationship with Soldier through the troop property. You don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove the mappedBy element and set the many to one @JoinColumn as insertable and updatable to false. This solution is obviously not optimized from the number of needed statements.

@Entity
public class Troop {
    @OneToMany
    @JoinColumn(name="troop_fk") //we need to duplicate the physical information
    public Set<Soldier> getSoldiers() {
    ...
}

@Entity
public class Soldier {
    @ManyToOne
    @JoinColumn(name="troop_fk", insertable=false, updatable=false)
    public Troop getTroop() {
    ...
}
2.2.5.3.2.2. Unidirectional

A unidirectional one to many using a foreign key column in the owned entity is not that common and not really recommended. We strongly advise you to use a join table for this kind of association (as explained in the next section). This kind of association is described through a @JoinColumn

@Entity
public class Customer implements Serializable {
    @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
    @JoinColumn(name="CUST_ID")
    public Set<Ticket> getTickets() {
    ...
}

@Entity
public class Ticket implements Serializable {
    ... //no bidir
}
               

Customer describes a unidirectional relationship with Ticket using the join column CUST_ID.

2.2.5.3.2.3. Unidirectional with join table

A unidirectional one to many with join table is much preferred. This association is described through an @JoinTable.

@Entity
public class Trainer {
    @OneToMany
    @JoinTable(
            name="TrainedMonkeys",
            joinColumns = { @JoinColumn( name="trainer_id") },
            inverseJoinColumns = @JoinColumn( name="monkey_id")
    )
    public Set<Monkey> getTrainedMonkeys() {
    ...
}

@Entity
public class Monkey {
    ... //no bidir
}
               

Trainer describes a unidirectional relationship with Monkey using the join table TrainedMonkeys, with a foreign key trainer_id to Trainer (joinColumns) and a foreign key monkey_id to Monkey (inversejoinColumns).

2.2.5.3.2.4. Defaults

Without describing any physical mapping, a unidirectional one to many with join table is used. The table name is the concatenation of the owner table name, _, and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table, _, and the owner primary key column(s) name. The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s) name. A unique constraint is added to the foreign key referencing the other side table to reflect the one to many.

@Entity
public class Trainer {
    @OneToMany
    public Set<Tiger> getTrainedTigers() {
    ...
}

@Entity
public class Tiger {
    ... //no bidir
}
               

Trainer describes a unidirectional relationship with Tiger using the join table Trainer_Tiger, with a foreign key trainer_id to Trainer (table name, _, trainer id) and a foreign key trainedTigers_id to Monkey (property name, _, Tiger primary column).

2.2.5.3.3. Many-to-many
2.2.5.3.3.1. Definition

A many-to-many association is defined logically using the @ManyToMany annotation. You also have to describe the association table and the join conditions using the @JoinTable annotation. If the association is bidirectional, one side has to be the owner and one side has to be the inverse end (ie. it will be ignored when updating the relationship values in the association table):

@Entity
public class Employer implements Serializable {
    @ManyToMany(
        targetEntity=org.hibernate.test.metadata.manytomany.Employee.class,
        cascade={CascadeType.CREATE, CascadeType.MERGE}
    )
    @JoinTable(
        name="EMPLOYER_EMPLOYEE",
        joinColumns={@JoinColumn(name="EMPER_ID")},
        inverseJoinColumns={@JoinColumn(name="EMPEE_ID")}
    )
    public Collection getEmployees() {
        return employees;
    }
    ...
}
               
@Entity
public class Employee implements Serializable {
    @ManyToMany(
        cascade={CascadeType.CREATE, CascadeType.MERGE},
        mappedBy="employees"
        targetEntity=Employer.class
    )
    public Collection getEmployers() {
        return employers;
    }
}
               

We've already shown the many declarations and the detailed attributes for associations. We'll go deeper in the @JoinTable description, it defines a name, an array of join columns (an array in annotation is defined using { A, B, C }), and an array of inverse join columns. The latter ones are the columns of the association table which refer to the Employee primary key (the "other side").

As seen previously, the other side don't have to (must not) describe the physical mapping: a simple mappedBy argument containing the owner side property name bind the two.

2.2.5.3.3.2. Default values

As any other annotations, most values are guessed in a many to many relationship. Without describing any physical mapping in a unidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the owner table name, _ and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.

@Entity
public class Store {
    @ManyToMany(cascade = CascadeType.PERSIST)
    public Set<City> getImplantedIn() {
        ...
    }
}

@Entity
public class City {
    ... //no bidirectional relationship
}
               

A Store_Table is used as the join table. The Store_id column is a foreign key to the Store table. The implantedIn_id column is a foreign key to the City table.

Without describing any physical mapping in a bidirectional many to many the following rules applied. The table name is the concatenation of the owner table name, _ and the other side table name. The foreign key name(s) referencing the owner table is the concatenation of the other side property name, _, and the owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property name, _, and the other side primary key column(s). These are the same rules used for a unidirectional one to many relationship.

@Entity
public class Store {
    @ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
    public Set<Customer> getCustomers() {
        ...
    }
}

@Entity
public class Customer {
    @ManyToMany(mappedBy="customers")
    public Set<Store> getStores() {
        ...
    }
}
               

A Store_Customer is used as the join table. The stores_id column is a foreign key to the Store table. The customers_id column is a foreign key to the City table.

2.2.5.4. Transitive persistence with cascading

You probably have noticed the cascade attribute taking an array of CascadeType as a value. The cascade concept in EJB3 is very is similar to the transitive persistence and cascading of operations in Hibernate, but with slightly different semantics and cascading types:

  • CascadeType.PERSIST: cascades the persist (create) operation to associated entities persist() is called or if the entity is managed
  • CascadeType.MERGE: cascades the merge operation to associated entities if merge() is called or if the entity is managed
  • CascadeType.REMOVE: cascades the remove operation to associated entities if delete() is called
  • CascadeType.REFRESH: cascades the refresh operation to associated entities if refresh() is called
  • CascadeType.ALL: all of the above

Please refer to the chapter 6.3 of the EJB3 specification for more information on cascading and create/merge semantics.

2.2.5.5. Association fetching

You have the ability to either eagerly or lazily fetch associated entities. The fetch parameter can be set to FetchType.LAZY or FetchType.EAGER. EAGER will try to use an outer join select to retrieve the associated object, while LAZY is the default and will only trigger a select when the associated object is accessed for the first time. EJBQL also has a fetch keyword that allows you to override laziness when doing a particular query. This is very useful to improve performance and is decided on a use case to use case basis.

2.2.6. Mapping composite primary and foreign keys

Composite primary keys use a embedded class as the primary key representation, so you'd use the @Id and @Embeddable annotations. Alternatively, you can use the @EmbeddedId annotation. Note that the dependent class has to be serializable and implements equals()/hashCode(). You can also use @IdClass as described in Mapping identifier properties.

@Entity
public class RegionalArticle implements Serializable {

    @Id
    public RegionalArticlePk getPk() { ... }
}

@Embeddable
public class RegionalArticlePk implements Serializable { ... }
         

or alternatively

@Entity
public class RegionalArticle implements Serializable {

    @EmbeddedId
    public RegionalArticlePk getPk() { ... }
}

public class RegionalArticlePk implements Serializable { ... }
         

@Embeddable inherit the access type of its owning entity unless the Hibernate specific annotation @AccessType is used. Composite foreign keys (if not using the default sensitive values) are defined on associations using the @JoinColumns element, which is basically an array of @JoinColumn. It is considered a good practice to express referencedColumnNames explicitly. Otherwise, Hibernate will suppose that you use the same order of columns as in the primary key declaration.

@Entity
public class Parent implements Serializable {
    @Id
    public ParentPk id;
    public int age;

    @OneToMany(cascade=CascadeType.ALL)
    @JoinColumns ({
        @JoinColumn(name="parentCivility", referencedColumnName = "isMale"),
        @JoinColumn(name="parentLastName", referencedColumnName = "lastName"),
        @JoinColumn(name="parentFirstName", referencedColumnName = "firstName")
    })
    public Set<Child> children; //unidirectional
    ...
}
         
@Entity
public class Child implements Serializable {
    @Id @GeneratedValue
    public Integer id;

    @ManyToOne
    @JoinColumns ({
        @JoinColumn(name="parentCivility", referencedColumnName = "isMale"),
        @JoinColumn(name="parentLastName", referencedColumnName = "lastName"),
        @JoinColumn(name="parentFirstName", referencedColumnName = "firstName")
    })
    public Parent parent; //unidirectional
}
         
@Embeddable
public class ParentPk implements Serializable {
    String firstName;
    String lastName;
    ...
}
         

Note the explicit usage of the referencedColumnName.

2.2.7. Mapping secondary tables

You can map a single entity bean to several tables using the @SecondaryTable or @SecondaryTables class level annotations. To express that a column is in a particular table, use the table parameter of @Column or @JoinColumn.

@Entity
@Table(name="MainCat")
@SecondaryTables({
    @SecondaryTable(name="Cat1", pkJoinColumns={
        @PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
    ),
    @SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {

    private Integer id;
    private String name;
    private String storyPart1;
    private String storyPart2;

    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }

    public String getName() {
        return name;
    }
    
    @Column(table="Cat1")
    public String getStoryPart1() {
        return storyPart1;
    }

    @Column(table="Cat2")
    public String getStoryPart2() {
        return storyPart2;
    }

In this example, name will be in MainCat. storyPart1 will be in Cat1 and storyPart2 will be in Cat2. Cat1 will be joined to MainCat using the cat_id as a foreign key, and Cat2 using id (ie the same column name, the MainCat id column has). Plus a unique constraint on storyPart2 has been set.

Check out the JBoss EJB 3 tutorial or the Hibernate Annotations unit test suite for more examples.

2.3. Mapping Queries

2.3.1. Mapping EJBQL/HQL queries

You can map EJBQL/HQL queries using annotations. @NamedQuery and @NamedQueries can be defined at the class or at the package level. However their definitions are global to the session factory/entity manager factory scope. A named query is defined by its name and the actual query string.

javax.persistence.NamedQueries(
    @javax.persistence.NamedQuery(name="plane.getAll", query="select p from Plane p")
)
package org.hibernate.test.annotations.query;

...

@Entity
@NamedQuery(name="night.moreRecentThan", query="select n from Night n where n.date >= :date")
public class Night {
    ...
}

public class MyDao {
    doStuff() {
        Query q = s.getNamedQuery("night.moreRecentThan");
        q.setDate( "date", aMonthAgo );
        List results = q.list();
        ...
    }
    ...
}
        

You can also provide some hints to a query through an array of QueryHint through a hints attribute.

The availabe Hibernate hints are

Table 2.2. Query hints

hintdescription
org.hibernate.cacheableWhether the query should interact with the second level cache (defualt to false)
org.hibernate.cacheRegionCache region name (default used otherwise)
org.hibernate.timeoutQuery timeout
org.hibernate.fetchSizeresultset fetch size
org.hibernate.flushModeFlush mode used for this query
org.hibernate.cacheModeCache mode used for this query
org.hibernate.readOnlyEntities loaded by this query should be in read only mode or not (default to false)
org.hibernate.commentQuery comment added to the generated SQL

2.3.2. Mapping native queries

You can also map a native query (ie a plain SQL query). To achieve that, you need to describe the SQL resultset structure using @SqlResultSetMapping. Like @NamedQuery, a @SqlResultSetMapping can be defined at both package level or class level. However its scope is global to the application. As we will see, a resultSetMapping parameter is defined the @NamedNativeQuery, it represents the name of a defined @SqlResultSetMapping. The resultset mapping declares the entities retrieved by this native query. Each field of the entity is bound to an SQL alias (or column name). All fields of the entity including the ones of subclasses and the foreign key columns of related entities have to be present in the SQL query. Field definitions are optional provided that they map to the same column name as the one declared on the class property.

@NamedNativeQuery(name="night&area", query="select night.id nid, night.night_duration, "
    + " night.night_date, area.id aid, night.area_id, area.name "
    + "from Night night, Area area where night.area_id = area.id", resultSetMapping="joinMapping")
@SqlResultSetMapping(name="joinMapping", entities={
    @EntityResult(name="org.hibernate.test.annotations.query.Night", fields = {
        @FieldResult(name="id", column="nid"),
        @FieldResult(name="duration", column="night_duration"),
        @FieldResult(name="date", column="night_date"),
        @FieldResult(name="area", column="area_id"),
        discriminatorColumn="disc"
    }),
    @EntityResult(name="org.hibernate.test.annotations.query.Area", fields = {
        @FieldResult(name="id", column="aid"),
        @FieldResult(name="name", column="name")
    })
    }
)

In the above example, the night&area named query use the joinMapping result set mapping. This mapping returns 2 entities, Night and Area, each property is declared and associated to a column name, actually the column name retrieved by the query. Let's now see an implicit declaration of the property / column.

@Entity
@SqlResultSetMapping(name="implicit", entities=@EntityResult(name="org.hibernate.test.annotations.query.SpaceShip"))
@NamedNativeQuery(name="implicitSample", query="select * from SpaceShip", resultSetMapping="implicit")
public class SpaceShip {
    private String name;
    private String model;
    private double speed;

    @Id(generate = GeneratorType.NONE)
    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Column(name="model_txt")
    public String getModel() {
        return model;
    }

    public void setModel(String model) {
        this.model = model;
    }

    public double getSpeed() {
        return speed;
    }

    public void setSpeed(double speed) {
        this.speed = speed;
    }
}

In this example, we only describe the entity member of the result set mapping. The property / column mappings is done using the entity mapping values. In this case the model property is bound to the model_txt column. If the association to a related entity involve a composite primary key, a @FieldResult element should be used for each foreign key column. The @FieldResult name is composed of the property name for the relationship, followed by a dot ("."), followed by the name or the field or property of the primary key.

@Entity
@SqlResultSetMapping(name="compositekey",
        entities=@EntityResult(name="org.hibernate.test.annotations.query.SpaceShip",
            fields = {
                    @FieldResult(name="name", column = "name"),
                    @FieldResult(name="model", column = "model"),
                    @FieldResult(name="speed", column = "speed"),
                    @FieldResult(name="captain.firstname", column = "firstn"),
                    @FieldResult(name="captain.lastname", column = "lastn"),
                    @FieldResult(name="dimensions.length", column = "length"),
                    @FieldResult(name="dimensions.width", column = "width")
                    }),
        columns = { @ColumnResult(name = "surface"),
                    @ColumnResult(name = "volume") } )

@NamedNativeQuery(name="compositekey",
    query="select name, model, speed, lname as lastn, fname as firstn, length, width, length * width as surface from SpaceShip", 
    resultSetMapping="compositekey")
} )
//we're missins @SqlREsultSetMappings so look at Captain
public class SpaceShip {
    private String name;
    private String model;
    private double speed;
    private Captain captain;
    private Dimensions dimensions;

    @Id
    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @ManyToOne(fetch= FetchType.LAZY)
    @JoinColumns( {
            @JoinColumn(name="fname", referencedColumnName = "firstname"),
            @JoinColumn(name="lname", referencedColumnName = "lastname")
            } )
    public Captain getCaptain() {
        return captain;
    }

    public void setCaptain(Captain captain) {
        this.captain = captain;
    }

    public String getModel() {
        return model;
    }

    public void setModel(String model) {
        this.model = model;
    }

    public double getSpeed() {
        return speed;
    }

    public void setSpeed(double speed) {
        this.speed = speed;
    }

    public Dimensions getDimensions() {
        return dimensions;
    }

    public void setDimensions(Dimensions dimensions) {
        this.dimensions = dimensions;
    }
}

@Entity
@IdClass(Identity.class)
public class Captain implements Serializable {
    private String firstname;
    private String lastname;

    @Id
    public String getFirstname() {
        return firstname;
    }

    public void setFirstname(String firstname) {
        this.firstname = firstname;
    }

    @Id
    public String getLastname() {
        return lastname;
    }

    public void setLastname(String lastname) {
        this.lastname = lastname;
    }
}

Note

If you look at the dimension property, you'll see that Hibernate supports the dotted notation for embedded objects (you can even have nested embedded objects). EJB3 implementations do not have to support this feature, we do :-)

If you retrieve a single entity and if you use the default mapping, you can use the resultClass attribute instead of resultSetMapping:

@NamedNativeQuery(name="implicitSample", query="select * from SpaceShip", 
    resultClass=SpaceShip.class)
public class SpaceShip {

In some of your native queries, you'll have to return scalar values, for example when building report queries. You can map them in the @SqlResultsetMapping through @ColumnResult. You actually can even mix, entities and scalar returns in the same native query (this is probably not that common though).

@SqlResultSetMapping(name="scalar", columns=@ColumnResult(name="dimension"))
@NamedNativeQuery(name="scalar", query="select length*width as dimension from SpaceShip", resultSetMapping="scalar")

An other query hint specific to native queries has been introduced: org.hibernate.callable which can be true or false depending on whether the query is a stored procedure or not.

2.4. Hibernate Annotation Extensions

Hibernate 3.1 offers a variety of additional annotations that you can mix/match with your EJB 3 entities. They have been designed as a natural extension of EJB3 annotations.

To empower the EJB3 capabilities, hibernate provides specific annotations that match hibernate features. The org.hibernate.annotations package contains all these annotations extensions.

2.4.1. Entity

You can fine tune some of the actions done by Hibernate on entities beyond what the EJB3 spec offers.

@org.hibernate.annotations.Entity adds additional metadata that may be needed beyond what is defined in the standard @Entity

  • mutable: whether this entity is mutable or not
  • dynamicInsert: allow dynamic SQL for inserts
  • dynamicUpdate: allow dynamic SQL for updates
  • selectBeforeUpdate: Specifies that Hibernate should never perform an SQL UPDATE unless it is certain that an object is actually modified.
  • polymorphism: whether the entity polymorphism is of PolymorphismType.IMPLICIT (default) or PolymorphismType.EXPLICIT
  • persister: allow the overriding of the default persister implementation
  • optimisticLock: optimistic locking strategy (OptimisticLockType.VERSION, OptimisticLockType.NONE, OptimisticLockType.DIRTY or OptimisticLockType.ALL)

Note

@javax.persistence.Entity is still mandatory, @org.hibernate.annotations.Entity is not a replacement.

Here are some additional Hibernate annotation extensions

@org.hibernate.annotations.BatchSize allows you to define the batch size when fetching instances of this entity ( eg. @BatchSize(size=4) ). When loading a given entity, Hibernate will then load all the uninitialized entities of the same type in the persistence context up to the batch size.

@org.hibernate.annotations.Proxy defines the laziness attributes of the entity. lazy (default to true) define whether the class is lazy or not. proxyClassName is the interface used to generate the proxy (default is the class itself).

@org.hibernate.annotations.Where defines an optional SQL WHERE clause used when instances of this class is retrieved.

@org.hibernate.annotations.Check defines an optional check constraints defined in the DDL statetement.

@OnDelete(action=OnDeleteAction.CASCADE) on joined subclasses: use a SQL cascade delete on deletion instead of the regular Hibernate mechanism.

@Table(name="tableName", indexes = { @Index(name="index1", columnNames={"column1", "column2"} ) } ) creates the defined indexes on the columns of table tableName. This can be applied on the primary table or any secondary table. The @Tables annotation allows your to apply indexes on different tables. This annotation is expected where @javax.persistence.Table or @javax.persistence.SecondaryTable(s) occurs. @org.hibernate.annotations.Table is a complement, not a replacement to @javax.persistence.Table

@Entity
@BatchSize(size=5)
@org.hibernate.annotations.Entity(
        selectBeforeUpdate = true,
        dynamicInsert = true, dynamicUpdate = true,
        optimisticLock = OptimisticLockType.ALL,
        polymorphism = PolymorphismType.EXPLICIT)
@Where(clause="1=1")
@org.hibernate.annotations.Table(name="Forest", indexes = { @Index(name="idx", columnNames = { "name", "length" } ) } )
public class Forest { ... }
@Entity
@Inheritance(
    strategy=InheritanceType.JOINED
)
public class Vegetable { ... }

@Entity
@OnDelete(action=OnDeleteAction.CASCADE)
public class Carrot extends Vegetable { ... }

2.4.2. Identifier

@org.hibernate.annotations.GenericGenerator allows you to define an Hibernate specific id generator.

@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {

@Id @GeneratedValue(generator="hibseq")
@GenericGenerator(name="hibseq", strategy = "seqhilo",
    parameters = {
        @Parameter(name="max_lo", value = "5"),
        @Parameter(name="sequence", value="heybabyhey")
    }
)
public Integer getId() {

strategy is the short name of an Hibernate3 generator strategy or the fully qualified class name of an IdentifierGenerator implementation. You can add some parameters through the parameters attribute

2.4.3. Property

2.4.3.1. Access type

The access type is guessed from the position of @Id or @EmbeddedId in the entity hierarchy. Sub-entities, embedded objects and mapped superclass inherit the access type from the root entity.

In Hibernate, you can override the access type to:

  • use a custom access type strategy

  • fine tune the access type at the class level or at the property level

An @AccessType annotation has been introduced to support this behavior. You can define the access type on

  • an entity

  • a superclass

  • an embeddable object

  • a property

The access type is overriden for the annotated element, if overriden on a class, all the properties of the given class inherit the access type. For root entities, the access type is considered to be the default one for the whole hierarchy (overridable at class or property level).

If the access type is marked as "property", the getters are scanned for annotations, if the access type is marked as "field", the fields are scanned for annotations. Otherwise the elements marked with @Id or @embeddedId are scanned.

You can override an access type for a property, but the element to annotate will not be influenced: for example an entity having access type field, can annotate a field with @AccessType("property"), the access type will then be property for this attribute, the the annotations still have to be carried on the field.

If a superclass or an embeddable object is not annotated, the root entity access type is used (even if an access type has been define on an intermediate superclass or embeddable object). The russian doll principle does not apply.

@Entity
public class Person implements Serializable {
    @Id  @GeneratedValue //access type field
    Integer id;

    @Embedded
    @AttributeOverrides({
    @AttributeOverride(name = "iso2", column = @Column(name = "bornIso2")),
    @AttributeOverride(name = "name", column = @Column(name = "bornCountryName"))
            })
    Country bornIn;
}

@Embeddable
@AccessType("property") //override access type for all properties in Country
public class Country implements Serializable {
    private String iso2;
    private String name;

    public String getIso2() {
        return iso2;
    }

    public void setIso2(String iso2) {
        this.iso2 = iso2;
    }

    @Column(name = "countryName")
    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }
}

2.4.3.2. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you might also create some kind of virtual column. You can use a SQL fragment (aka formula) instead of mapping a property into a column. This kind of property is read only (its value is calculated by your formula fragment).

@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()

The SQL fragment can be as complex as you want avec even include subselects.

2.4.3.3. Type

@org.hibernate.annotations.Type overrides the default hibernate type used: this is generally not necessary since the type is correctly inferred by Hibernate. Please refer to the Hibernate reference guide for more informations on the Hibernate types.

@org.hibernate.annotations.TypeDef and @org.hibernate.annotations.TypeDefs allows you to declare type definitions. These annotations are placed at the class or package level. Note that these definitions will be global for the session factory (even at the class level) and that type definition has to be defined before any usage.

@TypeDefs(
    {
    @TypeDef(
        name="caster",
        typeClass = CasterStringType.class,
        parameters = {
            @Parameter(name="cast", value="lower")
        }
    )
    }
)
package org.hibernate.test.annotations.entity;

...
public class Forest {
    @Type(type="caster")
    public String getSmallText() {
    ...
}
         

When using composite user type, you will have to express column definitions. The @Columns has been introduced for that purpose.

@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {
    @Column(name="r_amount"),
    @Column(name="r_currency")
})
public MonetaryAmount getAmount() {
    return amount;
}


public class MonetaryAmount implements Serializable {
    private BigDecimal amount;
    private Currency currency;
    ...
}

2.4.3.4. Index

You can define an index on a particular column using the @Index annotation on a one column property, the columnNames attribute will then be ignored

@Column(secondaryTable="Cat1")
@Index(name="story1index")
public String getStoryPart1() {
    return storyPart1;
}

2.4.4. Inheritance

SINGLE_TABLE is a very powerful strategy but sometimes, and especially for legacy systems, you cannot add an additional discriminator column. For that purpose Hibernate has introduced the notion of discriminator formula: @DiscriminatorFormula is a replacement of @DiscriminatorColumn and use a SQL fragment as a formula for discriminator resolution (no need to have a dedicated column).

@Entity
@DiscriminatorForumla("case when forest_type is null then 0 else forest_type end")
public class Forest { ... }

2.4.5. Association related annotations

By default, when Hibernate cannot resolve the association because the expected associated element is not in database (wrong id on the association column), an exception is raised by Hibernate. This might be inconvenient for lecacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead of raising an exception using the @NotFound annotation. This annotation can be used on a @OneToOne (with FK), @ManyToOne, @OneToMany or @ManyToMany association.

@Entity
public class Child {
    ...
    @ManyToOne
    @NotFound(action=NotFoundAction.IGNORE)
    public Parent getParent() { ... }
    ...
}

2.4.6. Collection related annotations

2.4.6.1. Parameter annotations

It is possible to set

  • the batch size for collections using @BatchSize
  • the where clause, using @Where
  • the check clause, using @Check
  • the SQL order by clause, using @OrderBy
  • the delete cascade strategy through @OnDelete(action=OnDeleteAction.CASCADE)

You can also declare a sort comparator. Use the @Sort annotation. Expressing the comparator type you want between unsorted, natural or custom comparator. If you want to use your own comparator implementation, you'll also have to express the implementation class using the comparator attribute.

    @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
    @JoinColumn(name="CUST_ID")
    @Sort(type = SortType.COMPARATOR, comparator = TicketComparator.class)
    @Where(clause="1=1")
    @OnDelete(action=OnDeleteAction.CASCADE)
    public SortedSet<Ticket> getTickets() {
        return tickets;
    }

Please refer to the previous descriptions of these annotations for more informations.

2.4.6.2. Extra collection types

Beyond EJB3, Hibernate Annotations supports true List and Array. Map your collection the same way as usual and add the @IndexColumn. This annotation allows you to describe the column that will hold the index. You can also declare the index value in DB that represent the first element (aka as base index). The usual value is 0 or 1.

@OneToMany(cascade = CascadeType.ALL)
@IndexColumn(name = "drawer_position", base=1)
public List<Drawer> getDrawers() {
    return drawers;
}

Note

If you forgot to set @IndexColumn, the bag semantic is applied

Hibernate Annotations also supports collections of core types (Integer, String, Enums, ...), collections of embeddable objects and even arrays of primitive types. This is known as collection of elements.

A collection of elements as to be annotated as @CollectionOfElements (as a replacement of @OneToMany) To define the collection table, the @JoinTable annotation is used on the association property, joinColumns defines the join columns between the entity primary table and the collection table (inverseJoincolumn is useless and should be left empty). For collection of core types or array of primitive types, you can override the element column definition using a @Column on the association property. You can also override the columns of a collection of embeddable object using @AttributeOverride.

@Entity
public class Boy {
    private Integer id;
    private Set<String> nickNames = new HashSet<String>();
    private int[] favoriteNumbers;
    private Set<Toy> favoriteToys = new HashSet<Toy>();
    private Set<Character> characters = new HashSet<Character>();

    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }

    @CollectionOfElements
    public Set<String> getNickNames() {
        return nickNames;
    }

    @CollectionOfElements
    @JoinTable(
            table=@Table(name="BoyFavoriteNumbers"),
            joinColumns = @JoinColumn(name="BoyId")
    )
    @Column(name="favoriteNumber", nullable=false)
    @IndexColumn(name="nbr_index")
    public int[] getFavoriteNumbers() {
        return favoriteNumbers;
    }

    @CollectionOfElements
    @AttributeOverride( name="serial", column=@Column(name="serial_nbr") )
    public Set<Toy> getFavoriteToys() {
        return favoriteToys;
    }

    @CollectionOfElements
    public Set<Character> getCharacters() {
        return characters;
    }
    ...
}

public enum Character {
    GENTLE,
    NORMAL,
    AGGRESSIVE,
    ATTENTIVE,
    VIOLENT,
    CRAFTY
}

@Embeddable
public class Toy {
    public String name;
    public String serial;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getSerial() {
        return serial;
    }

    public void setSerial(String serial) {
        this.serial = serial;
    }

    public boolean equals(Object o) {
        if ( this == o ) return true;
        if ( o == null || getClass() != o.getClass() ) return false;

        final Toy toy = (Toy) o;

        if ( !name.equals( toy.name ) ) return false;
        if ( !serial.equals( toy.serial ) ) return false;

        return true;
    }

    public int hashCode() {
        int result;
        result = name.hashCode();
        result = 29 * result + serial.hashCode();
        return result;
    }
}

Note

Previous versions of Hibernate Annotations used the @OneToMany to mark a collection of elements. Due to semantic inconsistencies, we've introduced the annotation @CollectionOfElements. Marking collections of elements the old way still work but is considered deprecated and is going to be unsupported in future releases

2.4.7. Cache

In order to optimize your database accesses, you can activave the so called second level cache of Hibernate. This cache is configurable on a per entity and per collection basis.

@org.hibernate.annotations.Cache defines the caching strategy and region of a given second level cache. This annotation can be applied on the root entity (not the sub entities), and on the collections.

@Entity
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class Forest { ... }
    @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
    @JoinColumn(name="CUST_ID")
    @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
    public SortedSet<Ticket> getTickets() {
        return tickets;
    }

@Cache(
    CacheConcurrencyStrategy usage();                 (1)
    String region() default "";                       (2)
    String include() default "all";                   (3)
)
(1)

usage: the given cache concurrency strategy (NONE, READ_ONLY, NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL)

(2)

region (optional): the cache region (default to the fqcn of the class or the fq role name of the collection)

(3)

include (optional): all to include all properties, non-lazy to only include non lazy properties (default all).

2.4.8. Filters

Hibernate has the notion of data filter that can be applied at runtime on a given session. Those filters has to be defined first.

@org.hibernate.annotations.FilterDef or @FilterDefs define filter definition(s) used by filter(s) using the same name. A filter definition has a name() and an array of parameters(). A @ParamDef has a name and a type. You can also define a defaultCondition() parameter for a given @filterDef to set the default condition to use when none are defined in the @Filter. A @FilterDef(s) can be defined at the class or package level.

We now need to define the SQL filter clause applied to either the entity load or the collection load. @Filter is used and placed either on the entity or the collection element

@Entity
@FilterDef(name="minLength", parameters={ @ParamDef( name="minLength", type="integer" ) } )
@Filters( {
    @Filter(name="betweenLength", condition=":minLength <= length and :maxLength >= length"),
    @Filter(name="minLength", condition=":minLength <= length")
} )
public class Forest { ... }

2.4.9. Queries

Since Hibernate has more features on named queries than the one defined in the EJB3 specification, @org.hibernate.annotations.NamedQuery, @org.hibernate.annotations.NamedQueries, @org.hibernate.annotations.NamedNativeQuery and @org.hibernate.annotations.NamedNativeQueries have been introduced. They add some attributes to the standard version and can be used as a replacement:

  • flushMode: define the query flush mode (Always, Auto, Commit or Never)

  • cacheable: whether the query should be cached or not

  • cacheRegion: cache region used if the query is cached

  • fetchSize: JDBC statement fetch size for this query

  • timeout: query time out

  • callable: for native queries only, to be set to true for stored procedures

  • comment: if comments are activated, the comment seen when the query is sent to the database.

  • cacheMode: Cache interaction mode (get, ignore, normal, put or refresh)

  • readOnly: whether or not the elements retrievent from the query are in read only mode.

Note, that the EJB3 public final draft has introduced the notion of @QueryHint, which is probably a better way to define those hints.