JMSLTM Numerical Library 4.0
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

ADJUSTED_R_SQUARED_CRITERION - Static variable in class com.imsl.stat.SelectionRegression
Indicates R^2_a (adjusted R^2) criterion regression.
AFTER_SUCCESSFUL_STEP - Static variable in class com.imsl.math.OdeRungeKutta
Used by method examineStep to indicate examining after a successful step
AFTER_UNSUCCESSFUL_STEP - Static variable in class com.imsl.math.OdeRungeKutta
Used by method examineStep to indicate examining after an unsuccessful step
ALPHA_FACTOR_ANALYSIS - Static variable in class com.imsl.stat.FactorAnalysis
Indicates alpha factor analysis.
ANNUAL - Static variable in class com.imsl.finance.Bond
Coupon payments are made annually.
ANOVA - class com.imsl.stat.ANOVA.
Analysis of Variance table and related statistics.
ANOVA(double[][]) - Constructor for class com.imsl.stat.ANOVA
Analyzes a one-way classification model.
ANOVA(double, double, double, double, double) - Constructor for class com.imsl.stat.ANOVA
Construct an analysis of variance table and related statistics.
ANOVAFactorial - class com.imsl.stat.ANOVAFactorial.
Analyzes a balanced factorial design with fixed effects.
ANOVAFactorial(int, int[], double[]) - Constructor for class com.imsl.stat.ANOVAFactorial
Constructor for ANOVAFactorial.
ARMA - class com.imsl.stat.ARMA.
Computes least-square estimates of parameters for an ARMA model.
ARMA(int, int, double[]) - Constructor for class com.imsl.stat.ARMA
Constructor for ARMA.
ARMA.IllConditionedException - exception com.imsl.stat.ARMA.IllConditionedException.
The problem is ill-conditioned.
ARMA.IllConditionedException(String) - Constructor for class com.imsl.stat.ARMA.IllConditionedException
Constructs an IllConditionedException with the specified detail message.
ARMA.IllConditionedException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.IllConditionedException
Constructs an IllConditionedException with the specified detail message.
ARMA.IncreaseErrRelException - exception com.imsl.stat.ARMA.IncreaseErrRelException.
The bound for the relative error is too small.
ARMA.IncreaseErrRelException(String) - Constructor for class com.imsl.stat.ARMA.IncreaseErrRelException
Constructs an IncreaseErrRelException with the specified detail message.
ARMA.IncreaseErrRelException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.IncreaseErrRelException
Constructs an IncreaseErrRelException with the specified detail message.
ARMA.MatrixSingularException - exception com.imsl.stat.ARMA.MatrixSingularException.
The input matrix is singular.
ARMA.MatrixSingularException(String) - Constructor for class com.imsl.stat.ARMA.MatrixSingularException
Constructs an MatrixSingularException with the specified detail message.
ARMA.MatrixSingularException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.MatrixSingularException
Constructs an MatrixSingularException with the specified detail message.
ARMA.NewInitialGuessException - exception com.imsl.stat.ARMA.NewInitialGuessException.
The iteration has not made good progress.
ARMA.NewInitialGuessException(String) - Constructor for class com.imsl.stat.ARMA.NewInitialGuessException
Constructs an NewInitialGuessException with the specified detail message.
ARMA.NewInitialGuessException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.NewInitialGuessException
Constructs an NewInitialGuessException with the specified detail message.
ARMA.TooManyCallsException - exception com.imsl.stat.ARMA.TooManyCallsException.
The number of calls to the function has exceeded the maximum number of iterations.
ARMA.TooManyCallsException(String) - Constructor for class com.imsl.stat.ARMA.TooManyCallsException
Constructs an TooManyCallsException with the specified detail message.
ARMA.TooManyCallsException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.TooManyCallsException
Constructs an TooManyCallsException with the specified detail message.
ARMA.TooManyFcnEvalException - exception com.imsl.stat.ARMA.TooManyFcnEvalException.
Maximum number of function evaluations exceeded.
ARMA.TooManyFcnEvalException(String) - Constructor for class com.imsl.stat.ARMA.TooManyFcnEvalException
Constructs an TooManyFcnEvalException with the specified detail message.
ARMA.TooManyFcnEvalException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.TooManyFcnEvalException
Constructs an TooManyFcnEvalException with the specified detail message.
ARMA.TooManyITNException - exception com.imsl.stat.ARMA.TooManyITNException.
Maximum number of iterations exceeded.
ARMA.TooManyITNException(String) - Constructor for class com.imsl.stat.ARMA.TooManyITNException
Constructs an TooManyITNException with the specified detail message.
ARMA.TooManyITNException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.TooManyITNException
 
ARMA.TooManyJacobianEvalException - exception com.imsl.stat.ARMA.TooManyJacobianEvalException.
Maximum number of Jacobian evaluations exceeded.
ARMA.TooManyJacobianEvalException(String) - Constructor for class com.imsl.stat.ARMA.TooManyJacobianEvalException
Constructs an TooManyJacobianEvalException with the specified detail message.
ARMA.TooManyJacobianEvalException(String, Object[]) - Constructor for class com.imsl.stat.ARMA.TooManyJacobianEvalException
Constructs an TooManyJacobianEvalException with the specified detail message.
AT_BEGINNING_OF_PERIOD - Static variable in class com.imsl.finance.Finance
Flag used to indicate that payment is made at the beginning of each period.
AT_END_OF_PERIOD - Static variable in class com.imsl.finance.Finance
Flag used to indicate that payment is made at the end of each period.
AUTOSCALE_DATA - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that autoscaling is to be done by scanning the data nodes.
AUTOSCALE_DENSITY - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that autoscaling is to adjust the "Density" attribute.
AUTOSCALE_NUMBER - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that autoscaling is to adjust the "Number" attribute.
AUTOSCALE_OFF - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that autoscaling is turned off.
AUTOSCALE_WINDOW - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that autoscaling is to be done by using the "Window" attribute.
AXIS_TITLE_AT_END - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "AxisTitlePosition" indicating that the axis title should be placed at the end of the axis.
AXIS_TITLE_PARALLEL - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "AxisTitlePosition" indicating that the axis title should be placed parallel to the axis.
AXIS_X - Static variable in class com.imsl.chart.AbstractChartNode
Flag to indicate x-axis.
AXIS_X_TOP - Static variable in class com.imsl.chart.ChartNode
Flag to indicate x-axis placed on top of the chart.
AXIS_Y - Static variable in class com.imsl.chart.AbstractChartNode
Flag to indicate y-axis.
AXIS_Y_RIGHT - Static variable in class com.imsl.chart.ChartNode
Flag to indicate y-axis placed to the right of the chart.
AXIS_Z - Static variable in class com.imsl.chart.AbstractChartNode
Flag to indicate z-axis.
AbstractChartNode - class com.imsl.chart.AbstractChartNode.
The base class of all of the nodes in both the 2D and 3D chart trees.
AbstractChartNode(AbstractChartNode) - Constructor for class com.imsl.chart.AbstractChartNode
 
AbstractFlatFile - class com.imsl.io.AbstractFlatFile.
Reads a text or binary file as a ResultSet.
AbstractFlatFile() - Constructor for class com.imsl.io.AbstractFlatFile
Initializes an AbstractFlatFile.
AbstractFlatFile.FlatFileSQLException - exception com.imsl.io.AbstractFlatFile.FlatFileSQLException.
A SQLException thrown by the AbstractFlatFile class.
Activation - interface com.imsl.datamining.neural.Activation.
Interface implemented by perceptron activation functions.
AmbientLight - class com.imsl.chart3d.AmbientLight.
An ambient light.
AmbientLight(Chart3D) - Constructor for class com.imsl.chart3d.AmbientLight
Creates an ambient light.
AutoCorrelation - class com.imsl.stat.AutoCorrelation.
Computes the sample autocorrelation function of a stationary time series.
AutoCorrelation(double[], int) - Constructor for class com.imsl.stat.AutoCorrelation
Constructor to compute the sample autocorrelation function of a stationary time series.
AutoCorrelation.NonPosVariancesException - exception com.imsl.stat.AutoCorrelation.NonPosVariancesException.
The problem is ill-conditioned.
AutoCorrelation.NonPosVariancesException(String) - Constructor for class com.imsl.stat.AutoCorrelation.NonPosVariancesException
Constructs an NonPosVariancesException with the specified detail message.
AutoCorrelation.NonPosVariancesException(String, Object[]) - Constructor for class com.imsl.stat.AutoCorrelation.NonPosVariancesException
Constructs an NonPosVariancesException with the specified detail message.
Axis - class com.imsl.chart.Axis.
The Axis node provides the mapping for all of its children from the user coordinate space to the device (screen) space.
Axis(Chart) - Constructor for class com.imsl.chart.Axis
Contructs an Axis node.
Axis1D - class com.imsl.chart.Axis1D.
An x-axis or a y-axis.
Axis3D - class com.imsl.chart3d.Axis3D.
An x-axis, y-axis or a z-axis.
AxisBox - class com.imsl.chart3d.AxisBox.
Box behind the axis.
AxisLabel - class com.imsl.chart.AxisLabel.
The labels on an axis.
AxisLabel - class com.imsl.chart3d.AxisLabel.
The labels on an axis.
AxisLine - class com.imsl.chart.AxisLine.
The axis line.
AxisLine - class com.imsl.chart3d.AxisLine.
The axis line.
AxisR - class com.imsl.chart.AxisR.
The R-axis in a polar plot.
AxisRLabel - class com.imsl.chart.AxisRLabel.
The labels on an axis.
AxisRLine - class com.imsl.chart.AxisRLine.
The radius axis line in a polar plot.
AxisRMajorTick - class com.imsl.chart.AxisRMajorTick.
The major tick marks for the radius axis in a polar plot.
AxisTheta - class com.imsl.chart.AxisTheta.
The angular axis in a polar plot.
AxisTitle - class com.imsl.chart.AxisTitle.
The title on an axis.
AxisTitle - class com.imsl.chart3d.AxisTitle.
Axis title.
AxisUnit - class com.imsl.chart.AxisUnit.
The unit title on an axis.
AxisXY - class com.imsl.chart.AxisXY.
The axes for an x-y chart.
AxisXY(Chart) - Constructor for class com.imsl.chart.AxisXY
Create an AxisXY.
AxisXYZ - class com.imsl.chart3d.AxisXYZ.
The axes for an x-y-z chart.
AxisXYZ(Chart3D) - Constructor for class com.imsl.chart3d.AxisXYZ
Create an AxisXYZ.
abs(Complex) - Static method in class com.imsl.math.Complex
Returns the absolute value (modulus) of a Complex, |z|.
abs(int) - Static method in class com.imsl.math.JMath
Returns the absolute value of an int.
abs(long) - Static method in class com.imsl.math.JMath
Returns the absolute value of a long.
abs(float) - Static method in class com.imsl.math.JMath
Returns the absolute value of a float.
abs(double) - Static method in class com.imsl.math.JMath
Returns the absolute value of a double.
absolute(int) - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the given row number in this ResultSet object.
accrint(GregorianCalendar, GregorianCalendar, GregorianCalendar, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the interest which has accrued on a security that pays interest periodically.
accrintm(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the interest which has accrued on a security that pays interest at maturity.
acos(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse cosine (arc cosine) of a Complex, with branch cuts outside the interval [-1,1] along the real axis.
acos(double) - Static method in class com.imsl.math.JMath
Returns the inverse (arc) cosine of a double.
acosh(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse hyperbolic cosine (arc cosh) of a Complex, with a branch cut at values less than one along the real axis.
acosh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the inverse hyperbolic cosine of its argument.
add(Complex, Complex) - Static method in class com.imsl.math.Complex
Returns the sum of two Complex objects, x+y.
add(Complex, double) - Static method in class com.imsl.math.Complex
Returns the sum of a Complex and a double, x+y.
add(double, Complex) - Static method in class com.imsl.math.Complex
Returns the sum of a double and a Complex, x+y.
add(Complex[][], Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Add two rectangular Complex arrays, a + b.
add(double[][], double[][]) - Static method in class com.imsl.math.Matrix
Add two rectangular arrays, a + b.
add(Physical, Physical) - Static method in class com.imsl.math.Physical
Add two compatible Physical objects.
addLegendItem(int, ChartNode) - Method in class com.imsl.chart.Chart
Adds a legend to this ChartNode
addMouseListener(MouseListener) - Method in class com.imsl.chart.Chart
Adds a MouseListener to the component associated with this chart.
addMouseMotionListener(MouseMotionListener) - Method in class com.imsl.chart.Chart
Adds a MouseMotionListener to the component associated with this chart.
addNode(Node) - Method in class com.imsl.datamining.neural.Layer
Associates a Perceptron with this Layer.
addPickListener(PickListener) - Method in class com.imsl.chart.ChartNode
Adds a PickListener to this node.
addPostRenderPaint(Canvas3DChart.Paint) - Method in class com.imsl.chart3d.Canvas3DChart
Adds a Paint object to draw to the canvas after the the 3D image is rendered.
addPreRenderPaint(Canvas3DChart.Paint) - Method in class com.imsl.chart3d.Canvas3DChart
Adds a Paint object to draw to the canvas before the the 3D image is rendered.
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AmbientLight
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.Axis3D
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AxisBox
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AxisLabel
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AxisLine
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AxisTitle
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.AxisXYZ
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.Background
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.Chart3D
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.ChartLights
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.ChartNode3D
Called to add this object to the scene graph.
addToSceneGraph(Group) - Method in class com.imsl.chart3d.ColormapLegend
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.Data
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.DirectionalLight
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.MajorTick
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.PointLight
 
addToSceneGraph(Group) - Method in class com.imsl.chart3d.Surface
 
afterLast() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the end of this ResultSet object, just after the last row.
allConverged() - Method in class com.imsl.math.ZeroFunction
Returns true if the iterations for all of the roots have converged.
amordegrc(double, GregorianCalendar, GregorianCalendar, double, int, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the depreciation for each accounting period.
amorlinc(double, GregorianCalendar, GregorianCalendar, double, int, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the depreciation for each accounting period.
argument(Complex) - Static method in class com.imsl.math.Complex
Returns the argument (phase) of a Complex, in radians, with a branch cut along the negative real axis.
ascending(double[], int[]) - Static method in class com.imsl.stat.Sort
Sort an array into ascending order.
ascending(int[], int[]) - Static method in class com.imsl.stat.Sort
Sort an array into ascending order.
ascending(double[]) - Static method in class com.imsl.stat.Sort
Sort an array into ascending order.
ascending(int[]) - Static method in class com.imsl.stat.Sort
Function to sort an integer array into ascending order.
ascending(double[][], int) - Static method in class com.imsl.stat.Sort
Sort a matrix into ascending order by specified keys.
ascending(double[][], int[]) - Static method in class com.imsl.stat.Sort
Sort a matrix into ascending order by specified keys.
ascending(double[][], int, int[]) - Static method in class com.imsl.stat.Sort
Sort an array into ascending order by specified keys.
ascending(double[][], int[], int[]) - Static method in class com.imsl.stat.Sort
Sort a matrix into ascending order by specified keys.
asin(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse sine (arc sine) of a Complex, with branch cuts outside the interval [-1,1] along the real axis.
asin(double) - Static method in class com.imsl.math.JMath
Returns the inverse (arc) sine of a double.
asinh(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse hyperbolic sine (arc sinh) of a Complex, with branch cuts outside the interval [-i,i].
asinh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the inverse hyperbolic sine of its argument.
atan(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse tangent (arc tangent) of a Complex, with branch cuts outside the interval [-i,i] along the imaginary axis.
atan(double) - Static method in class com.imsl.math.JMath
Returns the inverse (arc) tangent of a double.
atan2(double, double) - Static method in class com.imsl.math.JMath
Returns the angle corresponding to a Cartesian point.
atanh(Complex) - Static method in class com.imsl.math.Complex
Returns the inverse hyperbolic tangent (arc tanh) of a Complex, with branch cuts outside the interval [-1,1] on the real axis.
atanh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the inverse hyperbolic tangent of its argument.

B

BACKWARD_REGRESSION - Static variable in class com.imsl.stat.StepwiseRegression
Indicates backward regression.
BARTLETTS_FORMULA - Static variable in class com.imsl.stat.AutoCorrelation
Indicates standard error computation using Bartlett's formula.
BARTLETTS_FORMULA - Static variable in class com.imsl.stat.CrossCorrelation
Indicates standard error computation using Bartlett's formula.
BARTLETTS_FORMULA_NOCC - Static variable in class com.imsl.stat.CrossCorrelation
Indicates standard error computation using Bartlett's formula with the assumption of no cross-correlation.
BAR_TYPE_HORIZONTAL - Static variable in class com.imsl.chart.ChartNode
Flag to indicate a horizontal bar chart.
BAR_TYPE_VERTICAL - Static variable in class com.imsl.chart.ChartNode
Flag to indicate a vertical bar chart.
BEFORE_STEP - Static variable in class com.imsl.math.OdeRungeKutta
Used by method examineStep to indicate examining before the next step
BEGIN_COLUMN_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a column label is to be returned.
BEGIN_COLUMN_LABELS - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for beginning a column label row is to be returned.
BEGIN_ENTRY - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for beginning an entry is to be returned.
BEGIN_MATRIX - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for beginning a matrix is to be returned.
BEGIN_ROW - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for beginning a row is to be returned.
BEGIN_ROW_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for beginning a row label is to be returned.
BINARY_VARIABLE - Static variable in class com.imsl.io.MPSReader
Variable must be either 0 or 1.
BLUE - Static variable in interface com.imsl.chart.Colormap
Linear blue colormap.
BLUE_GREEN_RED_YELLOW - Static variable in interface com.imsl.chart.Colormap
Blue/green/red/yellow colormap.
BLUE_RED - Static variable in interface com.imsl.chart.Colormap
Blue/red colormap.
BLUE_WHITE - Static variable in interface com.imsl.chart.Colormap
Blue/white colormap.
BOUNDED_SCALING - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate bounded scaling.
BOUNDED_Z_SCORE_SCALING_MEAN_STDEV - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate bounded z-score scaling using the mean and standard deviation.
BOUNDED_Z_SCORE_SCALING_MEDIAN_MAD - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate bounded z-score scaling using the median and mean absolute difference.
BOXPLOT_TYPE_HORIZONTAL - Static variable in class com.imsl.chart.BoxPlot
Value for attribute "BoxPlotType" indicating that this is a horizontal box plot.
BOXPLOT_TYPE_VERTICAL - Static variable in class com.imsl.chart.BoxPlot
Value for attribute "BoxPlotType" indicating that this is a horizontal box plot.
BSpline - class com.imsl.math.BSpline.
BSpline represents and evaluates univariate B-splines.
BSpline() - Constructor for class com.imsl.math.BSpline
 
BW_LINEAR - Static variable in interface com.imsl.chart.Colormap
Black and white (grayscale) colormap.
Background - class com.imsl.chart.Background.
The background of a chart.
Background - class com.imsl.chart3d.Background.
Background of the chart.
Bar - class com.imsl.chart.Bar.
A bar chart.
Bar(AxisXY) - Constructor for class com.imsl.chart.Bar
Constructs a bar chart.
Bar(AxisXY, double[]) - Constructor for class com.imsl.chart.Bar
Constructs a simple bar chart using supplied y data.
Bar(AxisXY, double[], double[]) - Constructor for class com.imsl.chart.Bar
Constructs a simple bar chart using supplied x and y data.
Bar(AxisXY, double[][]) - Constructor for class com.imsl.chart.Bar
Constructs a grouped bar chart using supplied x and y data.
Bar(AxisXY, double[], double[][]) - Constructor for class com.imsl.chart.Bar
Constructs a grouped bar chart using supplied x and y data.
Bar(AxisXY, double[][][]) - Constructor for class com.imsl.chart.Bar
Constructs a stacked, grouped bar chart using supplied y data.
Bar(AxisXY, double[], double[][][]) - Constructor for class com.imsl.chart.Bar
Constructs a stacked, grouped bar chart using supplied x and y data.
BarItem - class com.imsl.chart.BarItem.
A single bar in a bar chart.
BarSet - class com.imsl.chart.BarSet.
A set of bars in a bar chart.
Basis30e360 - Static variable in class com.imsl.finance.DayCountBasis
Computations based on the assumption of 30 days per month and 360 days per year.
BasisActual360 - Static variable in class com.imsl.finance.DayCountBasis
Computations are based on the number of days in a month based on the actual calendar value and the number of days, but assuming 360 days per year.
BasisActual365 - Static variable in class com.imsl.finance.DayCountBasis
Computations are based on the number of days in a month based on the actual calendar value and the number of days, but assuming 365 days per year.
BasisActualActual - Static variable in class com.imsl.finance.DayCountBasis
Computations are based on the actual calendar.
BasisNASD - Static variable in class com.imsl.finance.DayCountBasis
Computations based on the assumption of 30 days per month and 360 days per year.
BasisPart - interface com.imsl.finance.BasisPart.
Component of DayCountBasis.
BasisPart30E360 - Static variable in class com.imsl.finance.DayCountBasis
Computations based on the assumption of 30 days per month and 360 days per year.
BasisPart365 - Static variable in class com.imsl.finance.DayCountBasis
Computations based on the assumption of 365 days per year.
BasisPartActual - Static variable in class com.imsl.finance.DayCountBasis
Computations are based on the actual calendar.
BasisPartNASD - Static variable in class com.imsl.finance.DayCountBasis
Computations based on the assumption of 30 days per month and 360 days per year.
Bessel - class com.imsl.math.Bessel.
Collection of Bessel functions.
BinaryClassification - class com.imsl.datamining.neural.BinaryClassification.
Classifies patterns into two classes.
BinaryClassification(Network) - Constructor for class com.imsl.datamining.neural.BinaryClassification
Creates a binary classifier.
Bond - class com.imsl.finance.Bond.
Collection of bond functions.
Bond() - Constructor for class com.imsl.finance.Bond
 
BoundedLeastSquares - class com.imsl.math.BoundedLeastSquares.
Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.
BoundedLeastSquares(BoundedLeastSquares.Function, int, int, int, double[], double[]) - Constructor for class com.imsl.math.BoundedLeastSquares
Constructor for BoundedLeastSquares.
BoundedLeastSquares.FalseConvergenceException - exception com.imsl.math.BoundedLeastSquares.FalseConvergenceException.
False convergence - The iterates appear to be converging to a noncritical point.
BoundedLeastSquares.FalseConvergenceException(String) - Constructor for class com.imsl.math.BoundedLeastSquares.FalseConvergenceException
Constructs an FalseConvergenceException with the specified detail message.
BoundedLeastSquares.FalseConvergenceException(String, Object[]) - Constructor for class com.imsl.math.BoundedLeastSquares.FalseConvergenceException
Constructs an FalseConvergenceException with the specified detail message.
BoundedLeastSquares.Function - interface com.imsl.math.BoundedLeastSquares.Function.
Public interface for the user-supplied function to evaluate the function that defines the least-squares problem.
BoundedLeastSquares.Jacobian - interface com.imsl.math.BoundedLeastSquares.Jacobian.
Public interface for the user-supplied function to compute the Jacobian.
BoxPlot - class com.imsl.chart.BoxPlot.
Draws a multiple-group Box plot.
BoxPlot(AxisXY, double[], double[][]) - Constructor for class com.imsl.chart.BoxPlot
Constructs a box plot chart node with specified x values.
BoxPlot(AxisXY, double[], BoxPlot.Statistics[]) - Constructor for class com.imsl.chart.BoxPlot
Constructs a box plot chart node with specified x values.
BoxPlot(AxisXY, double[][]) - Constructor for class com.imsl.chart.BoxPlot
Constructs a box plot chart.
BoxPlot.Statistics - class com.imsl.chart.BoxPlot.Statistics.
Computes the statistics for one set of observations in a Boxplot.
BoxPlot.Statistics(double[]) - Constructor for class com.imsl.chart.BoxPlot.Statistics
Creates a new instance of BoxPlot.Statistics.
BsInterpolate - class com.imsl.math.BsInterpolate.
Extension of the BSpline class to interpolate data points.
BsInterpolate(double[], double[]) - Constructor for class com.imsl.math.BsInterpolate
Constructs a B-spline that interpolates the given data points.
BsInterpolate(double[], double[], int) - Constructor for class com.imsl.math.BsInterpolate
Constructs a B-spline that interpolates the given data points and order, using a default "not-a-knot" spline knot sequence.
BsInterpolate(double[], double[], int, double[]) - Constructor for class com.imsl.math.BsInterpolate
Constructs a B-spline that interpolates the given data points, using the specified order and knots.
BsLeastSquares - class com.imsl.math.BsLeastSquares.
Extension of the BSpline class to compute a least squares spline approximation to data points.
BsLeastSquares(double[], double[], int) - Constructor for class com.imsl.math.BsLeastSquares
Constructs a least squares B-spline approximation to the given data points.
BsLeastSquares(double[], double[], int, int) - Constructor for class com.imsl.math.BsLeastSquares
Constructs a least squares B-spline approximation to the given data points.
BsLeastSquares(double[], double[], int, int, double[], double[]) - Constructor for class com.imsl.math.BsLeastSquares
Constructs a least squares B-spline approximation to the given data points.
BufferedPaint - class com.imsl.chart3d.BufferedPaint.
A Paint object cached into an image.
BufferedPaint(Canvas3DChart.Paint, int, int, int, int, Component) - Constructor for class com.imsl.chart3d.BufferedPaint
The paint method in Canvas3DChart.Paint is written into an image of size width by height.
backward(Complex[]) - Method in class com.imsl.math.ComplexFFT
Compute the complex periodic sequence from its Fourier coefficients.
backward(double[]) - Method in class com.imsl.math.FFT
Compute the real periodic sequence from its Fourier coefficients.
basis(int, double) - Method in interface com.imsl.stat.RegressionBasis
Public interface for the nonlinear least-squares function.
beforeFirst() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the front of this ResultSet object, just before the first row.
beginGet() - Method in class com.imsl.io.AbstractFlatFile
This method should be called at the start of every getType method.
beta(double, double) - Static method in class com.imsl.math.Sfun
Returns the value of the Beta function.
beta(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the beta cumulative probability distribution function.
betaIncomplete(double, double, double) - Static method in class com.imsl.math.Sfun
Returns the incomplete Beta function ratio.
betaMean(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the mean of the beta cumulative probability distribution function
betaProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the beta probability density function.
betaVariance(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the variance of the beta cumulative probability distribution function
binomial(int, int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the binomial cumulative probability distribution function.
binomialProb(int, int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the binomial probability density function.
bivariateNormal(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the bivariate normal cumulative probability distribution function.
breakPoint - Variable in class com.imsl.math.Spline
The breakpoint array of length n, where n is the number of piecewise polynomials.
byteValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as a byte.

C

COLUMN_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for a given column label is to be returned.
CONTINUOUS_VARIABLE - Static variable in class com.imsl.io.MPSReader
Variable is a real number.
CORRECTED_SSCP_MATRIX - Static variable in class com.imsl.stat.Covariances
Indicates corrected sums of squares and crossproducts matrix.
CORRELATION_MATRIX - Static variable in class com.imsl.stat.Covariances
Indicates correlation matrix.
CORRELATION_MATRIX - Static variable in class com.imsl.stat.FactorAnalysis
Indicates correlation matrix.
CURRENT - Static variable in class com.imsl.math.Physical
 
Candlestick - class com.imsl.chart.Candlestick.
Candlestick plot of stock data.
Candlestick(AxisXY, Date, double[], double[], double[], double[]) - Constructor for class com.imsl.chart.Candlestick
Constructs a candlestick chart node beginning with specified start date.
Candlestick(AxisXY, double[], double[], double[], double[], double[]) - Constructor for class com.imsl.chart.Candlestick
Constructs a candlestick chart node at specified axis points.
CandlestickItem - class com.imsl.chart.CandlestickItem.
A candlestick for the up days or the down days.
Canvas3DChart - class com.imsl.chart3d.Canvas3DChart.
A canvas for rendering a 3D chart.
Canvas3DChart() - Constructor for class com.imsl.chart3d.Canvas3DChart
Creates a Canvas3DChart with a new Chart3D object.
Canvas3DChart(Chart3D) - Constructor for class com.imsl.chart3d.Canvas3DChart
Creates a Canvas3DChart with a given Chart3D object.
Canvas3DChart.Paint - interface com.imsl.chart3d.Canvas3DChart.Paint.
Interface for 2D drawing on the canvas before or after the the 3D image is drawn.
CategoricalGenLinModel - class com.imsl.stat.CategoricalGenLinModel.
Analyzes categorical data using logistic, probit, Poisson, and other linear models.
CategoricalGenLinModel(double[][], int) - Constructor for class com.imsl.stat.CategoricalGenLinModel
Constructs a new CategoricalGenLinModel.
CategoricalGenLinModel.ClassificationVariableException - exception com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException.
The ClassificationVariable vector has not been initialized.
CategoricalGenLinModel.ClassificationVariableException() - Constructor for class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
Constructs a ClassificationVariableException.
CategoricalGenLinModel.ClassificationVariableLimitException - exception com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException.
The Classification Variable limit set by the user through setUpperBound has been exceeded.
CategoricalGenLinModel.ClassificationVariableLimitException(int) - Constructor for class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
Constructs a ClassificationVariableLimitException.
CategoricalGenLinModel.ClassificationVariableValueException - exception com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException.
The number of distinct values for each Classification Variable must be greater than 1.
CategoricalGenLinModel.ClassificationVariableValueException(int, int) - Constructor for class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException
Constructs a ClassificationVariableValueException.
CategoricalGenLinModel.DeleteObservationsException - exception com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException.
The number of observations to be deleted (set by setObservationMax) has grown too large.
CategoricalGenLinModel.DeleteObservationsException(int) - Constructor for class com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException
Constructs a DeleteObservationsException.
Cdf - class com.imsl.stat.Cdf.
Cumulative probability distribution functions, probability density functions, and their inverses.
CdfFunction - interface com.imsl.stat.CdfFunction.
Public interface for the user-supplied cumulative distribution function to be used by InverseCdf and ChiSquaredTest.
Chart - class com.imsl.chart.Chart.
The root node of the chart tree.
Chart() - Constructor for class com.imsl.chart.Chart
This is the root of our tree, it has no parent.
Chart(Component) - Constructor for class com.imsl.chart.Chart
This is the root of our tree, it has no parent.
Chart(Image) - Constructor for class com.imsl.chart.Chart
This is the root of our tree, it has no parent.
Chart3D - class com.imsl.chart3d.Chart3D.
Root node of a 3d chart tree.
Chart3D() - Constructor for class com.imsl.chart3d.Chart3D
Creates a new instance of Chart3D
ChartFunction - interface com.imsl.chart.ChartFunction.
An interface that allows a function to be plotted.
ChartLights - class com.imsl.chart3d.ChartLights.
Default set of lights.
ChartNode - class com.imsl.chart.ChartNode.
The base class of all of the nodes in the 2D chart tree.
ChartNode(ChartNode) - Constructor for class com.imsl.chart.ChartNode
Construct a ChartNode object.
ChartNode3D - class com.imsl.chart3d.ChartNode3D.
The base class of all of the nodes in the 3D chart tree.
ChartNode3D(ChartNode3D) - Constructor for class com.imsl.chart3d.ChartNode3D
Construct a ChartNode3D object.
ChartServlet - class com.imsl.chart.ChartServlet.
The base class for chart servlets.
ChartServlet() - Constructor for class com.imsl.chart.ChartServlet
 
ChartSpline - class com.imsl.chart.ChartSpline.
Wrap a spline into a ChartFunction to be plotted.
ChartSpline(Spline) - Constructor for class com.imsl.chart.ChartSpline
Creates a ChartSpline from a Spline.
ChartSpline(Spline, int) - Constructor for class com.imsl.chart.ChartSpline
Creates a ChartSpline from the derivative of a Spline.
ChartTitle - class com.imsl.chart.ChartTitle.
The main title of a chart.
ChartXML - class com.imsl.chart.xml.ChartXML.
Create a Chart from an XML file.
ChartXML(String) - Constructor for class com.imsl.chart.xml.ChartXML
Creates a ChartXML from an XML file.
ChartXML(String, boolean) - Constructor for class com.imsl.chart.xml.ChartXML
Creates a ChartXML from an XML file.
ChartXML(InputSource, boolean) - Constructor for class com.imsl.chart.xml.ChartXML
Creates a ChartXML from an XML source.
ChartXML(Document) - Constructor for class com.imsl.chart.xml.ChartXML
Creates a ChartXML from a DOM tree.
ChiSquaredTest - class com.imsl.stat.ChiSquaredTest.
Chi-squared goodness-of-fit test.
ChiSquaredTest(CdfFunction, double[], int) - Constructor for class com.imsl.stat.ChiSquaredTest
Constructor for the Chi-squared goodness-of-fit test.
ChiSquaredTest(CdfFunction, int, int) - Constructor for class com.imsl.stat.ChiSquaredTest
Constructor for the Chi-squared goodness-of-fit test
ChiSquaredTest(int) - Method in class com.imsl.stat.NormalityTest
Performs the chi-squared goodness-of-fit test.
ChiSquaredTest.DidNotConvergeException - exception com.imsl.stat.ChiSquaredTest.DidNotConvergeException.
The iteration did not converge
ChiSquaredTest.DidNotConvergeException(String) - Constructor for class com.imsl.stat.ChiSquaredTest.DidNotConvergeException
 
ChiSquaredTest.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.stat.ChiSquaredTest.DidNotConvergeException
 
ChiSquaredTest.NoObservationsException - exception com.imsl.stat.ChiSquaredTest.NoObservationsException.
There are no observations.
ChiSquaredTest.NoObservationsException(String, Object[]) - Constructor for class com.imsl.stat.ChiSquaredTest.NoObservationsException
 
ChiSquaredTest.NotCDFException - exception com.imsl.stat.ChiSquaredTest.NotCDFException.
The function is not a Cumulative Distribution Function (CDF).
ChiSquaredTest.NotCDFException(String, Object[]) - Constructor for class com.imsl.stat.ChiSquaredTest.NotCDFException
 
Cholesky - class com.imsl.math.Cholesky.
Cholesky factorization of a matrix of type double.
Cholesky(double[][]) - Constructor for class com.imsl.math.Cholesky
Create the Cholesky factorization of a symmetric positive definite matrix of type double.
Cholesky.NotSPDException - exception com.imsl.math.Cholesky.NotSPDException.
The matrix is not symmetric, positive definite.
Cholesky.NotSPDException() - Constructor for class com.imsl.math.Cholesky.NotSPDException
 
ClusterHierarchical - class com.imsl.stat.ClusterHierarchical.
Performs a hierarchical cluster analysis from a distance matrix.
ClusterHierarchical(double[][], int, int) - Constructor for class com.imsl.stat.ClusterHierarchical
Constructor for ClusterHierarchical.
ClusterKMeans - class com.imsl.stat.ClusterKMeans.
Perform a K-means (centroid) cluster analysis.
ClusterKMeans(double[][], double[][]) - Constructor for class com.imsl.stat.ClusterKMeans
Constructor for ClusterKMeans.
ClusterKMeans.ClusterNoPointsException - exception com.imsl.stat.ClusterKMeans.ClusterNoPointsException.
There is a cluster with no points
ClusterKMeans.ClusterNoPointsException(String) - Constructor for class com.imsl.stat.ClusterKMeans.ClusterNoPointsException
 
ClusterKMeans.ClusterNoPointsException(String, Object[]) - Constructor for class com.imsl.stat.ClusterKMeans.ClusterNoPointsException
 
ClusterKMeans.NoConvergenceException - exception com.imsl.stat.ClusterKMeans.NoConvergenceException.
Convergence did not occur within the maximum number of iterations.
ClusterKMeans.NoConvergenceException(String) - Constructor for class com.imsl.stat.ClusterKMeans.NoConvergenceException
 
ClusterKMeans.NoConvergenceException(String, Object[]) - Constructor for class com.imsl.stat.ClusterKMeans.NoConvergenceException
 
ClusterKMeans.NonnegativeFreqException - exception com.imsl.stat.ClusterKMeans.NonnegativeFreqException.
Frequencies must be nonnegative.
ClusterKMeans.NonnegativeFreqException(String) - Constructor for class com.imsl.stat.ClusterKMeans.NonnegativeFreqException
 
ClusterKMeans.NonnegativeFreqException(String, Object[]) - Constructor for class com.imsl.stat.ClusterKMeans.NonnegativeFreqException
 
ClusterKMeans.NonnegativeWeightException - exception com.imsl.stat.ClusterKMeans.NonnegativeWeightException.
Weights must be nonnegative.
ClusterKMeans.NonnegativeWeightException(String) - Constructor for class com.imsl.stat.ClusterKMeans.NonnegativeWeightException
 
ClusterKMeans.NonnegativeWeightException(String, Object[]) - Constructor for class com.imsl.stat.ClusterKMeans.NonnegativeWeightException
 
ColorFunction - interface com.imsl.chart3d.ColorFunction.
Interface to define value dependent colors.
Colormap - interface com.imsl.chart.Colormap.
Colormaps are mappings from the unit interval to Colors.
ColormapLegend - class com.imsl.chart3d.ColormapLegend.
Adds a legend for a Colormap gradient to the background of the canvas.
ColormapLegend(Chart3D, Colormap, double[]) - Constructor for class com.imsl.chart3d.ColormapLegend
Creates a legend for a Colormap and adds it to the canvas.
ColormapLegend(Chart3D, Colormap, double, double) - Constructor for class com.imsl.chart3d.ColormapLegend
 
Complex - class com.imsl.math.Complex.
Set of mathematical functions for complex numbers.
Complex(Complex) - Constructor for class com.imsl.math.Complex
Constructs a Complex equal to the argument.
Complex(double, double) - Constructor for class com.imsl.math.Complex
Constructs a Complex with real and imaginary parts given by the input arguments.
Complex(double) - Constructor for class com.imsl.math.Complex
Constructs a Complex with a zero imaginary part.
Complex() - Constructor for class com.imsl.math.Complex
Constructs a Complex equal to zero.
ComplexFFT - class com.imsl.math.ComplexFFT.
Complex FFT.
ComplexFFT(int) - Constructor for class com.imsl.math.ComplexFFT
Constructs a complex FFT object.
ComplexLU - class com.imsl.math.ComplexLU.
LU factorization of a matrix of type Complex.
ComplexLU(Complex[][]) - Constructor for class com.imsl.math.ComplexLU
Creates the LU factorization of a square matrix of type Complex.
ComplexMatrix - class com.imsl.math.ComplexMatrix.
Complex matrix manipulation functions.
ContingencyTable - class com.imsl.stat.ContingencyTable.
Performs a chi-squared analysis of a two-way contingency table.
ContingencyTable(double[][]) - Constructor for class com.imsl.stat.ContingencyTable
Constructs and performs a chi-squared analysis of a two-way contingency table.
Contour - class com.imsl.chart.Contour.
A Contour chart shows level curves of a two-dimensional function.
Contour(AxisXY, double[], double[], double[][], double[]) - Constructor for class com.imsl.chart.Contour
Create a Contour chart from rectangularly gridded data.
Contour(AxisXY, double[], double[], double[][]) - Constructor for class com.imsl.chart.Contour
Create a Contour chart from rectangularly gridded data with computed contour levels.
Contour(AxisXY, double[], double[], double[]) - Constructor for class com.imsl.chart.Contour
Create a Contour chart from scattered data with computed contour levels.
Contour(AxisXY, double[], double[], double[], double[], int) - Constructor for class com.imsl.chart.Contour
Create a Contour chart from scattered data.
Contour.Legend - class com.imsl.chart.Contour.Legend.
A legend for a contour chart.
ContourLevel - class com.imsl.chart.ContourLevel.
ContourLevel draws a level curve line and the fill area between the level curve and the next smaller level curve.
Covariances - class com.imsl.stat.Covariances.
Computes the sample variance-covariance or correlation matrix.
Covariances(double[][]) - Constructor for class com.imsl.stat.Covariances
Constructor for Covariances.
Covariances.DiffObsDeletedException - exception com.imsl.stat.Covariances.DiffObsDeletedException.
Different observations are being deleted from return matrix than were originally entered.
Covariances.DiffObsDeletedException(String) - Constructor for class com.imsl.stat.Covariances.DiffObsDeletedException
 
Covariances.DiffObsDeletedException(String, Object[]) - Constructor for class com.imsl.stat.Covariances.DiffObsDeletedException
 
Covariances.MoreObsDelThanEnteredException - exception com.imsl.stat.Covariances.MoreObsDelThanEnteredException.
More observations are being deleted from the output covariance matrix than were originally entered (the corresponding row, column of the incidence matrix is less than zero).
Covariances.MoreObsDelThanEnteredException(String) - Constructor for class com.imsl.stat.Covariances.MoreObsDelThanEnteredException
 
Covariances.MoreObsDelThanEnteredException(String, Object[]) - Constructor for class com.imsl.stat.Covariances.MoreObsDelThanEnteredException
 
Covariances.NonnegativeFreqException - exception com.imsl.stat.Covariances.NonnegativeFreqException.
Frequencies must be nonnegative.
Covariances.NonnegativeFreqException(String) - Constructor for class com.imsl.stat.Covariances.NonnegativeFreqException
 
Covariances.NonnegativeFreqException(String, Object[]) - Constructor for class com.imsl.stat.Covariances.NonnegativeFreqException
 
Covariances.NonnegativeWeightException - exception com.imsl.stat.Covariances.NonnegativeWeightException.
Weights must be nonnegative.
Covariances.NonnegativeWeightException(String) - Constructor for class com.imsl.stat.Covariances.NonnegativeWeightException
 
Covariances.NonnegativeWeightException(String, Object[]) - Constructor for class com.imsl.stat.Covariances.NonnegativeWeightException
 
Covariances.TooManyObsDeletedException - exception com.imsl.stat.Covariances.TooManyObsDeletedException.
More observations have been deleted than were originally entered (the sum of frequencies has become negative).
Covariances.TooManyObsDeletedException(String) - Constructor for class com.imsl.stat.Covariances.TooManyObsDeletedException
 
Covariances.TooManyObsDeletedException(String, Object[]) - Constructor for class com.imsl.stat.Covariances.TooManyObsDeletedException
 
CrossCorrelation - class com.imsl.stat.CrossCorrelation.
Computes the sample cross-correlation function of two stationary time series.
CrossCorrelation(double[], double[], int) - Constructor for class com.imsl.stat.CrossCorrelation
Constructor to compute the sample cross-correlation function of two stationary time series.
CrossCorrelation.NonPosVariancesException - exception com.imsl.stat.CrossCorrelation.NonPosVariancesException.
The problem is ill-conditioned.
CrossCorrelation.NonPosVariancesException(String) - Constructor for class com.imsl.stat.CrossCorrelation.NonPosVariancesException
 
CrossCorrelation.NonPosVariancesException(String, Object[]) - Constructor for class com.imsl.stat.CrossCorrelation.NonPosVariancesException
 
CsAkima - class com.imsl.math.CsAkima.
Extension of the Spline class to handle the Akima cubic spline.
CsAkima(double[], double[]) - Constructor for class com.imsl.math.CsAkima
Constructs the Akima cubic spline interpolant to the given data points.
CsInterpolate - class com.imsl.math.CsInterpolate.
Extension of the Spline class to interpolate data points.
CsInterpolate(double[], double[]) - Constructor for class com.imsl.math.CsInterpolate
Constructs a cubic spline that interpolates the given data points.
CsInterpolate(double[], double[], int, double, int, double) - Constructor for class com.imsl.math.CsInterpolate
Constructs a cubic spline that interpolates the given data points with specified derivative endpoint conditions.
CsPeriodic - class com.imsl.math.CsPeriodic.
Extension of the Spline class to interpolate data points with periodic boundary conditions.
CsPeriodic(double[], double[]) - Constructor for class com.imsl.math.CsPeriodic
Constructs a cubic spline that interpolates the given data points with periodic boundary conditions.
CsShape - class com.imsl.math.CsShape.
Extension of the Spline class to interpolate data points consistent with the concavity of the data.
CsShape(double[], double[]) - Constructor for class com.imsl.math.CsShape
Construct a cubic spline interpolant which is consistent with the concavity of the data.
CsShape.TooManyIterationsException - exception com.imsl.math.CsShape.TooManyIterationsException.
Too many iterations.
CsShape.TooManyIterationsException() - Constructor for class com.imsl.math.CsShape.TooManyIterationsException
 
CsShape.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.math.CsShape.TooManyIterationsException
 
CsShape.TooManyIterationsException(Object[]) - Constructor for class com.imsl.math.CsShape.TooManyIterationsException
 
CsSmooth - class com.imsl.math.CsSmooth.
Extension of the Spline class to construct a smooth cubic spline from noisy data points.
CsSmooth(double[], double[]) - Constructor for class com.imsl.math.CsSmooth
Constructs a smooth cubic spline from noisy data using cross-validation to estimate the smoothing parameter.
CsSmooth(double[], double[], double[]) - Constructor for class com.imsl.math.CsSmooth
Constructs a smooth cubic spline from noisy data using cross-validation to estimate the smoothing parameter.
CsSmoothC2 - class com.imsl.math.CsSmoothC2.
Extension of the Spline class used to construct a spline for noisy data points using an alternate method.
CsSmoothC2(double[], double[], double) - Constructor for class com.imsl.math.CsSmoothC2
Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch (1967).
CsSmoothC2(double[], double[], double[], double) - Constructor for class com.imsl.math.CsSmoothC2
Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch (1967) with weights supplied by the user.
cancelRowUpdates() - Method in class com.imsl.io.AbstractFlatFile
Cancels the updates made to the current row in this ResultSet object.
cdf(double) - Method in interface com.imsl.stat.CdfFunction
Public interface for the user-supplied cumulative distribution function to be used by InverseCdf.
ceil(double) - Static method in class com.imsl.math.JMath
Returns the value of a double rounded toward positive infinity to an integral value.
chart - Variable in class com.imsl.chart.JPanelChart
The embedded chart.
check(int) - Static method in class com.imsl.Messages
 
check(int) - Method in class com.imsl.chart.Draw
 
checkCompatibility(Physical, Physical) - Static method in class com.imsl.math.Physical
Checks the compatibility of two Physical objects.
checkMatrix(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Check that all of the rows in the Complex matrix have the same length.
checkMatrix(double[][]) - Static method in class com.imsl.math.Matrix
Check that all of the rows in the matrix have the same length.
checkSquareMatrix(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Check that the Complex matrix is square.
checkSquareMatrix(double[][]) - Static method in class com.imsl.math.Matrix
Check that the matrix is square.
checkerboard(int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a checkerboard pattern.
chi(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the chi-squared cumulative probability distribution function.
chiMean(double) - Static method in class com.imsl.stat.Cdf
Evaluates the mean of the chi-squared cumulative probability distribution function
chiProb(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the chi-squared probability density function
chiVariance(double) - Static method in class com.imsl.stat.Cdf
Evaluates the variance of the chi-squared cumulative probability distribution function
circle(int, int, int) - Method in class com.imsl.chart.DrawMap
Sets a circle as the target.
cleanup() - Method in class com.imsl.chart3d.Chart3D
Cleanup memory use and references used by the chart.
clearWarnings() - Method in class com.imsl.io.AbstractFlatFile
Clears all warnings reported on this ResultSet object.
clone(Map) - Method in class com.imsl.chart.AbstractChartNode
Returns a deep-copy clone of this node.
clone(Object, Map) - Method in class com.imsl.chart.AbstractChartNode
Returns a deep copy of an Object.
clone(Map, Map) - Method in class com.imsl.chart.AbstractChartNode
Returns a deep copy of a Hashtable.
clone(List, Map) - Method in class com.imsl.chart.AbstractChartNode
Returns a deep copy of a vector of ChartNode's.
clone() - Method in class com.imsl.chart.Chart
Returns a clone of the graphics tree.
clone(Map) - Method in class com.imsl.chart.Chart
Returns a clone of this node.
clone() - Method in class com.imsl.chart3d.Chart3D
Returns a clone of the graphics tree.
clone(Map) - Method in class com.imsl.chart3d.Chart3D
Returns a clone of this node.
clone() - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Clones a copy of the trainer.
clone() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Clones a copy of the trainer.
clone() - Method in class com.imsl.math.DenseLP
Creates and returns a copy of this object.
clone() - Method in class com.imsl.math.LinearProgramming
Creates and returns a copy of this object.
clone() - Method in class com.imsl.stat.FaureSequence
Returns a copy of this object.
clone() - Method in class com.imsl.stat.MersenneTwister
Returns a clone of this object.
clone() - Method in class com.imsl.stat.MersenneTwister64
Returns a clone of this object.
close() - Method in class com.imsl.io.AbstractFlatFile
Releases this ResultSet object's database and JDBC resources immediately instead of waiting for this to happen when it is automatically closed.
coef - Variable in class com.imsl.math.BSpline
The B-spline coefficient array.
coef - Variable in class com.imsl.math.Spline
Coefficients of the piecewise polynomials.
color(double) - Method in interface com.imsl.chart.Colormap
Maps the parameterization interval [0,1] into Colors.
color(double, double, double) - Method in interface com.imsl.chart3d.ColorFunction
 
com.imsl - package com.imsl
 
com.imsl.chart - package com.imsl.chart
 
com.imsl.chart.xml - package com.imsl.chart.xml
 
com.imsl.chart3d - package com.imsl.chart3d
 
com.imsl.datamining.neural - package com.imsl.datamining.neural
 
com.imsl.finance - package com.imsl.finance
 
com.imsl.io - package com.imsl.io
 
com.imsl.math - package com.imsl.math
 
com.imsl.stat - package com.imsl.stat
 
compareTo(Object) - Method in class com.imsl.math.Complex
Compares this Complex to another Object.
compareTo(Complex) - Method in class com.imsl.math.Complex
Compares two Complex objects.
compute(double[], double[]) - Method in interface com.imsl.math.BoundedLeastSquares.Function
Public interface for the user-supplied function to evaluate the function that defines the least-squares problem.
compute(double[], double[]) - Method in interface com.imsl.math.BoundedLeastSquares.Jacobian
Public interface for the user-supplied function to compute the Jacobian.
compute() - Method in class com.imsl.stat.ANOVAFactorial
Analyzes a balanced factorial design with fixed effects.
compute() - Method in class com.imsl.stat.ARMA
Computes least-square estimates of parameters for an ARMA model.
compute() - Method in class com.imsl.stat.ClusterKMeans
Computes the cluster means.
compute(int) - Method in class com.imsl.stat.Covariances
Computes the matrix.
compute(double[], int[]) - Method in class com.imsl.stat.Difference
Computes a Difference series.
compute() - Method in class com.imsl.stat.GARCH
Computes estimates of the parameters of a GARCH(p,q) model.
compute() - Static method in class com.imsl.stat.KaplanMeierECDF
Computes the empirical CDF
compute() - Method in class com.imsl.stat.MultipleComparisons
Performs Student-Newman-Keuls multiple comparisons test.
compute(double[][], double[]) - Method in class com.imsl.stat.SelectionRegression
Computes the best multiple linear regression models.
compute(double[][], double[], double[]) - Method in class com.imsl.stat.SelectionRegression
Computes the best weighted multiple linear regression models.
compute(double[][], double[], double[], double[]) - Method in class com.imsl.stat.SelectionRegression
Computes the best weighted multiple linear regression models using frequencies for each observation.
compute(double[][], int) - Method in class com.imsl.stat.SelectionRegression
Computes the best multiple linear regression models using a user-supplied covariance matrix.
compute() - Method in class com.imsl.stat.SignTest
Performs a sign test.
compute() - Method in class com.imsl.stat.StepwiseRegression
Builds the multiple linear regression models using forward selection, backward selection, or stepwise selection.
compute() - Method in class com.imsl.stat.WilcoxonRankSum
Performs a Wilcoxon rank sum test.
computeLags(int[], int[], double[]) - Method in class com.imsl.datamining.neural.TimeSeriesClassFilter
Computes lags of an array sorted first by class designations and then descending chronological order.
computeLags(int, double[][]) - Method in class com.imsl.datamining.neural.TimeSeriesFilter
Lags time series data to a format used for input to a neural network.
computeMin(MinUncon.Function) - Method in class com.imsl.math.MinUncon
Return the minimum of a smooth function of a single variable of type double using function values only or using function values and derivatives.
computeMin(MinUnconMultiVar.Function) - Method in class com.imsl.math.MinUnconMultiVar
Return the minimum point of a function of n variables of type double using a finite-difference gradient or using a user-supplied gradient.
computeRoots(double[]) - Method in class com.imsl.math.ZeroPolynomial
Computes the roots of the polynomial with real coefficients.
computeRoots(Complex[]) - Method in class com.imsl.math.ZeroPolynomial
Computes the roots of the polynomial with Complex coefficients.
computeStatistics(double[][], int[]) - Method in class com.imsl.datamining.neural.BinaryClassification
Computes the classification error statistics for the supplied network patterns and their associated classifications.
computeStatistics(double[][], int[]) - Method in class com.imsl.datamining.neural.MultiClassification
Computes classification statistics for the supplied network patterns and their associated classifications.
computeStatistics(double[][], double[][]) - Method in class com.imsl.datamining.neural.Network
Computes error statistics.
computeZeros(ZeroFunction.Function, double[]) - Method in class com.imsl.math.ZeroFunction
Returns the zeros of a univariate function.
condition(Complex[][]) - Method in class com.imsl.math.ComplexLU
Return an estimate of the reciprocal of the L1 condition number.
condition(double[][]) - Method in class com.imsl.math.LU
Return an estimate of the reciprocal of the L1 condition number of a matrix.
confidenceMean(double) - Method in class com.imsl.stat.Summary
Returns the confidence interval for the mean (assuming normality).
confidenceVariance(double) - Method in class com.imsl.stat.Summary
Returns the confidence interval for the variance (assuming normality).
conjugate(Complex) - Static method in class com.imsl.math.Complex
Returns the complex conjugate of a Complex object.
constant(String) - Static method in class com.imsl.math.Physical
Returns the value of a constant, given its name.
constant(String, String) - Static method in class com.imsl.math.Physical
Returns the value of a constant, given its name, in the specified units.
convert(Physical, String) - Static method in class com.imsl.math.Physical
Converts a value to a different set of units.
convexity(GregorianCalendar, GregorianCalendar, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the convexity for a security.
copy() - Method in class com.imsl.chart.Chart
Copy the chart to the clipboard.
copyAndSortData(double[], double[]) - Method in class com.imsl.math.Spline
Copy and sort xData into breakPoint and yData into the first column of coef.
copyAndSortData(double[], double[], double[]) - Method in class com.imsl.math.Spline
Copy and sort xData into breakPoint and yData into the first column of coef.
copysign(double, double) - Static method in class com.imsl.math.IEEE
Returns a value with the magnitude of x and with the sign bit of y.
cos(Complex) - Static method in class com.imsl.math.Complex
Returns the cosine of a Complex.
cos(double) - Static method in class com.imsl.math.JMath
Returns the cosine of a double.
cosh(Complex) - Static method in class com.imsl.math.Complex
Returns the hyperbolic cosh of a Complex.
cosh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the hyperbolic cosine of its argument.
cot(double) - Static method in class com.imsl.math.Sfun
Returns the cotangent of a double.
countTokens() - Method in class com.imsl.io.Tokenizer
Returns the number of times that the nextToken method can be called without generating an exception.
coupdaybs(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the number of days starting with the beginning of the coupon period and ending with the settlement date.
coupdays(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the number of days in the coupon period containing the settlement date.
coupdaysnc(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the number of days starting with the settlement date and ending with the next coupon date.
coupncd(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the first coupon date which follows the settlement date.
coupnum(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the number of coupons payable between the settlement date and the maturity date.
couppcd(GregorianCalendar, GregorianCalendar, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the coupon date which immediately precedes the settlement date.
createCustomMarker() - Method in interface com.imsl.chart3d.Data.CustomMarkerFactory
Returns a custom marker.
createHiddenLayer() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Creates a HiddenLayer.
createHiddenLayer() - Method in class com.imsl.datamining.neural.Network
Creates the next HiddenLayer in the Network.
createInput() - Method in class com.imsl.datamining.neural.InputLayer
Creates an InputNode in the InputLayer of the neural network.
createInputs(int) - Method in class com.imsl.datamining.neural.InputLayer
Creates a number of InputNodes in this Layer of the neural network.
createPerceptron(Activation, double) - Method in class com.imsl.datamining.neural.HiddenLayer
Creates a Perceptron in this Layer with a specified activation function and bias.
createPerceptron() - Method in class com.imsl.datamining.neural.HiddenLayer
Creates a Perceptron in this Layer of the neural network.
createPerceptron(Activation, double) - Method in class com.imsl.datamining.neural.OutputLayer
Creates a Perceptron in this Layer with a specified Activation and bias.
createPerceptron() - Method in class com.imsl.datamining.neural.OutputLayer
Creates a Perceptron in this Layer of the neural network.
createPerceptrons(int) - Method in class com.imsl.datamining.neural.HiddenLayer
Creates a number of Perceptrons in this Layer of the neural network.
createPerceptrons(int, Activation, double) - Method in class com.imsl.datamining.neural.HiddenLayer
Creates a number of Perceptrons in this Layer with the specified bias.
createPerceptrons(int) - Method in class com.imsl.datamining.neural.OutputLayer
Creates a number of Perceptrons in this Layer of the neural network.
createPerceptrons(int, Activation, double) - Method in class com.imsl.datamining.neural.OutputLayer
Creates a number of Perceptrons in this Layer with specified activation and bias.
crosshatch(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a horizonal and vertical crosshatch pattern.
cumipmt(double, int, double, int, int, int) - Static method in class com.imsl.finance.Finance
Returns the cumulative interest paid between two periods.
cumprinc(double, int, double, int, int, int) - Static method in class com.imsl.finance.Finance
Returns the cumulative principal paid between two periods.
currentType - Variable in class com.imsl.chart.Draw
 

D

DASH_PATTERN_DASH - Static variable in class com.imsl.chart.ChartNode
Flag to draw a dashed line.
DASH_PATTERN_DASH_DOT - Static variable in class com.imsl.chart.ChartNode
Flag to draw a dash-dot pattern line.
DASH_PATTERN_DOT - Static variable in class com.imsl.chart.ChartNode
Flag to draw a dotted line.
DASH_PATTERN_SOLID - Static variable in class com.imsl.chart.ChartNode
Flag to draw solid line.
DATA_TYPE_ERROR_X - Static variable in class com.imsl.chart.ErrorBar
Value for attribute "DataType" indicating that this is a horizontal error bar.
DATA_TYPE_ERROR_Y - Static variable in class com.imsl.chart.ErrorBar
Value for attribute "DataType" indicating that this is a vertical error bar.
DATA_TYPE_FILL - Static variable in class com.imsl.chart.ChartNode
Value for attribute "DataType" indicating that the area between the lines connecting the data points and the horizontal reference line (y = attribute "Reference") should be filled.
DATA_TYPE_LINE - Static variable in class com.imsl.chart.ChartNode
Value for attribute "DataType" indicating that the data points should be connected with line segments.
DATA_TYPE_LINE - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "DataType" indicating that the data points should be connected with line segments.
DATA_TYPE_MARKER - Static variable in class com.imsl.chart.ChartNode
Value for attribute "DataType" indicating that a marker should be drawn at each data point.
DATA_TYPE_MARKER - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "DataType" indicating that a marker should be drawn at each data point.
DATA_TYPE_PICTURE - Static variable in class com.imsl.chart.ChartNode
Value for attribute "DataType" indicating that an image (attribute "Image") should be drawn at each data point.
DATA_TYPE_PICTURE - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "DataType" indicating that an image (attribute "Image") should be drawn at each data point.
DATA_TYPE_TUBE - Static variable in class com.imsl.chart.ChartNode
Value for attribute "DataType" indicating that an a tube connecting the data points should be drawn.
DATA_TYPE_TUBE - Static variable in class com.imsl.chart3d.ChartNode3D
Value for attribute "DataType" indicating that a tube connecting the data points should be drawn.
DAY - Static variable in class com.imsl.chart.HighLowClose
Milliseconds per day
DENDROGRAM_TYPE_HORIZONTAL - Static variable in class com.imsl.chart.ChartNode
Flag to indicate a horizontal dendrogram.
DENDROGRAM_TYPE_VERTICAL - Static variable in class com.imsl.chart.ChartNode
Flag to indicate a vertical dendrogram.
Data - class com.imsl.chart.Data.
Draws a data node.
Data(ChartNode) - Constructor for class com.imsl.chart.Data
Creates a data node.
Data(ChartNode, double[]) - Constructor for class com.imsl.chart.Data
Creates a data node with y values.
Data(ChartNode, ChartFunction, double, double) - Constructor for class com.imsl.chart.Data
Creates a data node with y values.
Data(ChartNode, double[], double[]) - Constructor for class com.imsl.chart.Data
Creates a data node with x and y values.
Data - class com.imsl.chart3d.Data.
Draws a 3D data node.
Data(AxisXYZ) - Constructor for class com.imsl.chart3d.Data
Creates a data node.
Data(AxisXYZ, double[], double[], double[]) - Constructor for class com.imsl.chart3d.Data
Creates a data node with x, y and z values.
Data.CustomMarkerFactory - interface com.imsl.chart3d.Data.CustomMarkerFactory.
Factory to create customized markers.
DayCountBasis - class com.imsl.finance.DayCountBasis.
The Day Count Basis.
DayCountBasis(BasisPart, BasisPart) - Constructor for class com.imsl.finance.DayCountBasis
Creates a new DayCountBasis.
Dendrogram - class com.imsl.chart.Dendrogram.
A Dendrogram chart for cluster analysis.
Dendrogram(AxisXY, ClusterHierarchical) - Constructor for class com.imsl.chart.Dendrogram
Constructs a vertical dendrogram chart using supplied ClusterHierarchical object.
Dendrogram(AxisXY, double[], int[], int[]) - Constructor for class com.imsl.chart.Dendrogram
Constructs a vertical dendrogram chart using supplied data.
Dendrogram(AxisXY, ClusterHierarchical, int) - Constructor for class com.imsl.chart.Dendrogram
Constructs a dendrogram chart using supplied ClusterHierarchical object.
Dendrogram(AxisXY, double[], int[], int[], int) - Constructor for class com.imsl.chart.Dendrogram
Constructs a dendrogram chart using supplied data.
DenseLP - class com.imsl.math.DenseLP.
Solves a linear programming problem using an active set strategy.
DenseLP(MPSReader) - Constructor for class com.imsl.math.DenseLP
Constructor using an MPSReader object.
DenseLP(double[][], double[], double[]) - Constructor for class com.imsl.math.DenseLP
Constructor variables of type double.
DenseLP.BoundsInconsistentException - exception com.imsl.math.DenseLP.BoundsInconsistentException.
The bounds given are inconsistent.
DenseLP.BoundsInconsistentException(String) - Constructor for class com.imsl.math.DenseLP.BoundsInconsistentException
 
DenseLP.BoundsInconsistentException(String, Object[]) - Constructor for class com.imsl.math.DenseLP.BoundsInconsistentException
 
DenseLP.NoAcceptablePivotException - exception com.imsl.math.DenseLP.NoAcceptablePivotException.
No acceptable pivot could be found.
DenseLP.NoAcceptablePivotException(String) - Constructor for class com.imsl.math.DenseLP.NoAcceptablePivotException
 
DenseLP.NoAcceptablePivotException(String, Object[]) - Constructor for class com.imsl.math.DenseLP.NoAcceptablePivotException
 
DenseLP.ProblemUnboundedException - exception com.imsl.math.DenseLP.ProblemUnboundedException.
The problem is unbounded.
DenseLP.ProblemUnboundedException(String) - Constructor for class com.imsl.math.DenseLP.ProblemUnboundedException
 
DenseLP.ProblemUnboundedException(String, Object[]) - Constructor for class com.imsl.math.DenseLP.ProblemUnboundedException
 
Difference - class com.imsl.stat.Difference.
Differences a seasonal or nonseasonal time series.
Difference() - Constructor for class com.imsl.stat.Difference
Constructor for Difference.
DirectionalLight - class com.imsl.chart3d.DirectionalLight.
A directional light.
DirectionalLight(Chart3D) - Constructor for class com.imsl.chart3d.DirectionalLight
Creates a directional light pointing in the negative z direction.
DirectionalLight(Chart3D, double, double, double) - Constructor for class com.imsl.chart3d.DirectionalLight
Creates a directional light pointing with a specified direction.
DiscriminantAnalysis - class com.imsl.stat.DiscriminantAnalysis.
Performs a linear or a quadratic discriminant function analysis among several known groups and the use of either reclassification, split sample, or the leaving-out-one methods in order to evaluate the rule.
DiscriminantAnalysis(int, int) - Constructor for class com.imsl.stat.DiscriminantAnalysis
Constructor for DiscriminantAnalysis.
DiscriminantAnalysis.CovarianceSingularException - exception com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException.
The variance-Covariance matrix is singular.
DiscriminantAnalysis.CovarianceSingularException(String) - Constructor for class com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException
 
DiscriminantAnalysis.CovarianceSingularException(String, Object[]) - Constructor for class com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException
 
DiscriminantAnalysis.EmptyGroupException - exception com.imsl.stat.DiscriminantAnalysis.EmptyGroupException.
There are no observations in a group.
DiscriminantAnalysis.EmptyGroupException(String) - Constructor for class com.imsl.stat.DiscriminantAnalysis.EmptyGroupException
 
DiscriminantAnalysis.EmptyGroupException(String, Object[]) - Constructor for class com.imsl.stat.DiscriminantAnalysis.EmptyGroupException
 
DiscriminantAnalysis.SumOfWeightsNegException - exception com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException.
The sum of the weights have become negative.
DiscriminantAnalysis.SumOfWeightsNegException(String) - Constructor for class com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException
 
DiscriminantAnalysis.SumOfWeightsNegException(String, Object[]) - Constructor for class com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException
 
Dissimilarities - class com.imsl.stat.Dissimilarities.
Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a matrix.
Dissimilarities(double[][], int, int, int) - Constructor for class com.imsl.stat.Dissimilarities
Constructor for Dissimilarities.
Dissimilarities(double[][], int, int, int, int[]) - Constructor for class com.imsl.stat.Dissimilarities
Constructor for Dissimilarities.
Dissimilarities.NoPositiveVarianceException - exception com.imsl.stat.Dissimilarities.NoPositiveVarianceException.
No variable has positive variance.
Dissimilarities.NoPositiveVarianceException() - Constructor for class com.imsl.stat.Dissimilarities.NoPositiveVarianceException
Constructs a NoPositiveVarianceException.
Dissimilarities.ScaleFactorZeroException - exception com.imsl.stat.Dissimilarities.ScaleFactorZeroException.
The computations cannot continue because a scale factor is zero.
Dissimilarities.ScaleFactorZeroException(int) - Constructor for class com.imsl.stat.Dissimilarities.ScaleFactorZeroException
Constructs a ScaleFactorZeroException.
Dissimilarities.ZeroNormException - exception com.imsl.stat.Dissimilarities.ZeroNormException.
The computations cannot continue because the Euclidean norm of the column is equal to zero.
Dissimilarities.ZeroNormException(int) - Constructor for class com.imsl.stat.Dissimilarities.ZeroNormException
Constructs a ZeroNormException.
Draw - class com.imsl.chart.Draw.
Chart tree renderer.
Draw(Graphics, Dimension) - Constructor for class com.imsl.chart.Draw
Contructs a Draw object.
DrawMap - class com.imsl.chart.DrawMap.
Creates an HTML client-side imagemap from a chart tree.
DrawMap(Graphics, Dimension) - Constructor for class com.imsl.chart.DrawMap
Contructs a DrawMap object.
DrawPick - class com.imsl.chart.DrawPick.
The DrawPick class.
DrawPick(MouseEvent, Graphics, Dimension) - Constructor for class com.imsl.chart.DrawPick
Contructs a DrawPick object.
Dummy - class com.imsl.Dummy.
 
Dummy() - Constructor for class com.imsl.Dummy
 
dataRange(double[]) - Method in class com.imsl.chart.Bar
Overrides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart.BarItem
Overides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart.BarSet
 
dataRange(double[]) - Method in class com.imsl.chart.BoxPlot
Overrides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart.Contour
Update the data range.
dataRange(double[]) - Method in class com.imsl.chart.Data
Update the data range.
dataRange(double[]) - Method in class com.imsl.chart.Dendrogram
Overrides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart.ErrorBar
Overrides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart.Heatmap
Update the data range.
dataRange(double[]) - Method in class com.imsl.chart.HighLowClose
Overrides Data.dataRange.
dataRange(double[]) - Method in class com.imsl.chart3d.Data
Update the data range.
dataRange(double[]) - Method in class com.imsl.chart3d.Surface
Update the data range.
daysBetween(GregorianCalendar, GregorianCalendar) - Method in interface com.imsl.finance.BasisPart
Returns the number of days from date1 to date2.
daysInPeriod(GregorianCalendar, int) - Method in interface com.imsl.finance.BasisPart
Returns the number of days in a coupon period.
db(double, double, int, int, int) - Static method in class com.imsl.finance.Finance
Returns the depreciation of an asset using the fixed-declining balance method.
ddb(double, double, int, int, double) - Static method in class com.imsl.finance.Finance
Returns the depreciation of an asset using the double-declining balance method.
decode(double) - Method in class com.imsl.datamining.neural.ScaleFilter
Unscales a value.
decode(double[]) - Method in class com.imsl.datamining.neural.ScaleFilter
Unscales an array of values.
decode(int, double[][]) - Method in class com.imsl.datamining.neural.ScaleFilter
Unscales a single column of a two dimensional array of values.
decode(int[]) - Method in class com.imsl.datamining.neural.UnsupervisedNominalFilter
Decodes a binary encoded array into its nominal category.
decode(int[][]) - Method in class com.imsl.datamining.neural.UnsupervisedNominalFilter
Decodes a matrix representing the binary encoded columns of the nominal variable.
decode(double) - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Decodes an encoded ordinal variable.
decode(double[]) - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Decodes an array of encoded ordinal values.
defineConstant(String, Physical) - Static method in class com.imsl.math.Physical
Defines a new constant.
definePrefix(String, double) - Static method in class com.imsl.math.Physical
Defines a new prefix.
defineUnit(String, Physical) - Static method in class com.imsl.math.Physical
Defines a new unit.
deleteRow() - Method in class com.imsl.io.AbstractFlatFile
Deletes the current row from this ResultSet object and from the underlying database.
derivative(double, double) - Method in interface com.imsl.datamining.neural.Activation
Returns the value of the derivative of the activation function.
derivative(double) - Method in class com.imsl.math.BSpline
Returns the value of the first derivative of the B-spline at a point.
derivative(double, int) - Method in class com.imsl.math.BSpline
Returns the value of the derivative of the B-spline at a point.
derivative(double[], int) - Method in class com.imsl.math.BSpline
Returns the value of the derivative of the B-spline at each point of an array.
derivative(double) - Method in class com.imsl.math.Spline
Returns the value of the first derivative of the spline at a point.
derivative(double, int) - Method in class com.imsl.math.Spline
Returns the value of the derivative of the spline at a point.
derivative(double[], int) - Method in class com.imsl.math.Spline
Returns the value of the derivative of the spline at each point of an array.
derivative(double[], int, double[], double[], double[]) - Method in interface com.imsl.stat.NonlinearRegression.Derivative
Computes the weight, frequency, and partial derivatives of the residual given the parameter vector theta for a single observation.
descending(double[], int[]) - Static method in class com.imsl.stat.Sort
Sort an array into descending order.
descending(double[]) - Static method in class com.imsl.stat.Sort
Sort an array into descending order.
descending(double[][], int) - Static method in class com.imsl.stat.Sort
Function to sort a matrix into descending order by specified keys.
descending(double[][], int[]) - Static method in class com.imsl.stat.Sort
Function to sort a matrix into descending order by specified keys.
descending(double[][], int, int[]) - Static method in class com.imsl.stat.Sort
Function to sort an array into descending order by specified keys.
descending(double[][], int[], int[]) - Static method in class com.imsl.stat.Sort
Function to sort a matrix into descending order by specified keys.
determinant() - Method in class com.imsl.math.ComplexLU
Return the determinant of the matrix used to construct this instance.
determinant() - Method in class com.imsl.math.LU
Return the determinant of the matrix used to construct this instance.
diagonal(int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a diagonal pattern.
diamond(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a diamond pattern (a checkerboard rotated 45 degrees).
diamondHatch(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a crosshatch on a 45 degree angle.
dim - Variable in class com.imsl.math.Physical
 
disc(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the implied interest rate of a discount bond.
discreteUniform(int, int) - Static method in class com.imsl.stat.Cdf
Evaluates the discrete uniform cumulative probability distribution function.
discreteUniformProb(int, int) - Static method in class com.imsl.stat.Cdf
Evaluates the discrete uniform probability density function.
divide(Complex, Complex) - Static method in class com.imsl.math.Complex
Returns the result of a Complex object divided by a Complex object, x/y.
divide(Complex, double) - Static method in class com.imsl.math.Complex
Returns the result of a Complex object divided by a double, x/y.
divide(double, Complex) - Static method in class com.imsl.math.Complex
Returns the result of a double divided by a Complex object, x/y.
divide(Physical, Physical) - Static method in class com.imsl.math.Physical
Divide two Physical objects.
divide(Physical, double) - Static method in class com.imsl.math.Physical
Divide a Physical object by a double.
divide(double, Physical) - Static method in class com.imsl.math.Physical
Divide a double by a Physical object.
doGet(HttpServletRequest, HttpServletResponse) - Method in class com.imsl.chart.ChartServlet
Returns the chart as a PNG image.
doGetBytes(int) - Method in class com.imsl.io.AbstractFlatFile
Implements the actual getBytes().
doGetBytes(int) - Method in class com.imsl.io.FlatFile
Gets the value of the designated column in the current row as a byte array.
doNext() - Method in class com.imsl.io.AbstractFlatFile
Implements the operations on the file required by the method next().
doNext() - Method in class com.imsl.io.FlatFile
Moves the cursor down one row from its current position.
dollarde(double, int) - Static method in class com.imsl.finance.Finance
Converts a fractional price to a decimal price.
dollarfr(double, int) - Static method in class com.imsl.finance.Finance
Converts a decimal price to a fractional price.
dot(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a pattern that is an array of circles.
doubleValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as a double.
doubleValue() - Method in class com.imsl.math.Physical
Returns the value of this dimensionless object.
downdate(double[]) - Method in class com.imsl.math.Cholesky
Downdates the factorization by subtracting a rank-1 matrix.
downdateX(double[]) - Method in class com.imsl.stat.NormTwoSample
Removes the observations in x from the first sample.
downdateY(double[]) - Method in class com.imsl.stat.NormTwoSample
Removes the observations in y from the second sample.
drawArc(int, int, int, int, int, int) - Method in class com.imsl.chart.Draw
Draws the outline of a circular or elliptical arc covering the specified rectangle.
drawArc(int, int, int, int, int, int) - Method in class com.imsl.chart.DrawMap
Draws the outline of a circular or elliptical arc covering the specified rectangle.
drawArc(int, int, int, int, int, int) - Method in class com.imsl.chart.DrawPick
Draw an arc.
drawErrorBar(int, int, int, int, int) - Method in class com.imsl.chart.Draw
Draw an error bar.
drawErrorBar(int, int, int, int, int) - Method in class com.imsl.chart.DrawMap
Draw an error bar.
drawErrorBar(int, int, int, int) - Method in class com.imsl.chart.DrawPick
Draw ErrorBar
drawImage(Image, int, int) - Method in class com.imsl.chart.Draw
Draw an image.
drawImage(Image, int, int) - Method in class com.imsl.chart.DrawMap
Draw Image
drawImage(Image, int, int) - Method in class com.imsl.chart.DrawPick
Draw Image
drawLine(int, int, int, int) - Method in class com.imsl.chart.Draw
Draw a line from (x0,y0) to (x1,y1).
drawLine(int, int, int, int) - Method in class com.imsl.chart.DrawMap
Draw a line from (x0,y0) to (x1,y1).
drawLine(int, int, int, int) - Method in class com.imsl.chart.DrawPick
Draw a line from (x0,y0) to (x1,y1).
drawMarker(int, int) - Method in class com.imsl.chart.Draw
Draw a marker.
drawMarker(int, int) - Method in class com.imsl.chart.DrawMap
Draw a marker.
drawMarker(int, int) - Method in class com.imsl.chart.DrawPick
Draw a marker.
drawRotatedText(Text, int, int, float) - Method in class com.imsl.chart.Draw
Draws a text object, at the specified angle, with its lower left point being at (x,y).
drawText(Text, int, int) - Method in class com.imsl.chart.Draw
Draws a text object.
drawText(Text, int, int, boolean) - Method in class com.imsl.chart.Draw
Draws a text object.
drawText(Graphics, Text) - Method in class com.imsl.chart.Draw
Draws the text.
drawText(Text, int, int, boolean) - Method in class com.imsl.chart.DrawMap
 
drawText(Text, int, int) - Method in class com.imsl.chart.DrawPick
 
duration(GregorianCalendar, GregorianCalendar, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the Macauley's duration of a security where the security has periodic interest payments.

E

E - Static variable in class com.imsl.math.JMath
 
END_COLUMN_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a column label is to be returned.
END_COLUMN_LABELS - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a column label row is to be returned.
END_ENTRY - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for ending an entry is to be returned.
END_MATRIX - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a matrix is to be returned.
END_ROW - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a row is to be returned.
END_ROW_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatting string for ending a row label is to be returned.
ENTRY - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for a given entry is to be returned.
EPSILON_LARGE - Static variable in class com.imsl.math.Sfun
The largest relative spacing for doubles.
EPSILON_LARGE - Static variable in class com.imsl.math.Spline
The largest relative spacing for double.
EPSILON_SMALL - Static variable in class com.imsl.math.QuadraticProgramming
The smallest relative spacing for doubles.
EPSILON_SMALL - Static variable in class com.imsl.math.Sfun
The smallest relative spacing for doubles.
EPSILON_SMALL - Static variable in class com.imsl.math.ZeroPolynomial
The smallest relative spacing for doubles.
ERROR_BAR - Static variable in class com.imsl.chart.Draw
 
Eigen - class com.imsl.math.Eigen.
Collection of Eigen System functions.
Eigen(double[][]) - Constructor for class com.imsl.math.Eigen
Constructs the eigenvalues and the eigenvectors of a real square matrix.
Eigen(double[][], boolean) - Constructor for class com.imsl.math.Eigen
Constructs the eigenvalues and (optionally) the eigenvectors of a real square matrix.
Eigen.DidNotConvergeException - exception com.imsl.math.Eigen.DidNotConvergeException.
The iteration did not converge
Eigen.DidNotConvergeException(String) - Constructor for class com.imsl.math.Eigen.DidNotConvergeException
 
Eigen.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.math.Eigen.DidNotConvergeException
 
EmpiricalQuantiles - class com.imsl.stat.EmpiricalQuantiles.
Computes empirical quantiles.
EmpiricalQuantiles(double[], double[]) - Constructor for class com.imsl.stat.EmpiricalQuantiles
Constructor for EmpiricalQuantiles.
EmpiricalQuantiles.ScaleFactorZeroException - exception com.imsl.stat.EmpiricalQuantiles.ScaleFactorZeroException.
The computations cannot continue because a scale factor is zero.
EmpiricalQuantiles.ScaleFactorZeroException(int) - Constructor for class com.imsl.stat.EmpiricalQuantiles.ScaleFactorZeroException
Constructs a ScaleFactorZeroException.
EpochTrainer - class com.imsl.datamining.neural.EpochTrainer.
Two-stage training using randomly selected training patterns in stage I.
EpochTrainer(Trainer) - Constructor for class com.imsl.datamining.neural.EpochTrainer
Creates a single stage EpochTrainer.
EpochTrainer(Trainer, Trainer) - Constructor for class com.imsl.datamining.neural.EpochTrainer
Creates an two-stage EpochTrainer.
EpsilonAlgorithm - class com.imsl.math.EpsilonAlgorithm.
The class is used to determine the limit of a sequence of approximations, by means of the Epsilon algorithm of P.
EpsilonAlgorithm() - Constructor for class com.imsl.math.EpsilonAlgorithm
Initializes an EpsilonAlgorithm with a maximum table size of 50.
EpsilonAlgorithm(int) - Constructor for class com.imsl.math.EpsilonAlgorithm
Initializes an EpsilonAlgorithm.
ErrorBar - class com.imsl.chart.ErrorBar.
Data points with error bars.
ErrorBar(AxisXY, double[], double[], double[], double[]) - Constructor for class com.imsl.chart.ErrorBar
Creates a set of error bars centered at (x[k],y[k]) and with extents low[k],high[k].
effect(double, int) - Static method in class com.imsl.finance.Finance
Returns the effective annual interest rate.
encode(double) - Method in class com.imsl.datamining.neural.ScaleFilter
Scales a value.
encode(double[]) - Method in class com.imsl.datamining.neural.ScaleFilter
Scales an array of values.
encode(int, double[][]) - Method in class com.imsl.datamining.neural.ScaleFilter
Scales a single column of a two dimensional array of values.
encode(int[]) - Method in class com.imsl.datamining.neural.UnsupervisedNominalFilter
Encodes class data prior to its use in neural network training.
encode(int) - Method in class com.imsl.datamining.neural.UnsupervisedNominalFilter
Apply forward encoding to a value.
encode(int[]) - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Encodes an array of ordinal categories into an array of transformed percentages.
encode(int) - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Encodes an ordinal category.
endErrorBar() - Method in class com.imsl.chart.Draw
Stop drawing an error bar.
endErrorBar() - Method in class com.imsl.chart.DrawMap
 
endErrorBar() - Method in class com.imsl.chart.DrawPick
End ErrorBar
endFill() - Method in class com.imsl.chart.Draw
Stop drawing a filled region.
endFill() - Method in class com.imsl.chart.DrawMap
 
endFill() - Method in class com.imsl.chart.DrawPick
End fill
endImage() - Method in class com.imsl.chart.Draw
Stop drawing an image.
endImage() - Method in class com.imsl.chart.DrawMap
 
endImage() - Method in class com.imsl.chart.DrawPick
End Image
endLine() - Method in class com.imsl.chart.Draw
Finish drawing lines.
endLine() - Method in class com.imsl.chart.DrawMap
 
endLine() - Method in class com.imsl.chart.DrawPick
Finish drawing lines.
endMarker() - Method in class com.imsl.chart.Draw
Finish drawing markers.
endMarker() - Method in class com.imsl.chart.DrawMap
 
endMarker() - Method in class com.imsl.chart.DrawPick
Finish drawing markers.
endText() - Method in class com.imsl.chart.Draw
Stop drawing text.
endText() - Method in class com.imsl.chart.DrawMap
 
endText() - Method in class com.imsl.chart.DrawPick
End Text
equals(Complex) - Method in class com.imsl.math.Complex
Compares with another Complex.
equals(Object) - Method in class com.imsl.math.Complex
Compares this object against the specified object.
erf(double) - Static method in class com.imsl.math.Sfun
Returns the error function of a double.
erfInverse(double) - Static method in class com.imsl.math.Sfun
Returns the inverse of the error function.
erfc(double) - Static method in class com.imsl.math.Sfun
Returns the complementary error function of a double.
erfcInverse(double) - Static method in class com.imsl.math.Sfun
Returns the inverse of the complementary error function.
error(String, Object[]) - Method in class com.imsl.chart.xml.ChartXML
Handles error messages.
error(SAXParseException) - Method in class com.imsl.chart.xml.ChartXML
Receive notification of a recoverable error.
error(double[], double[]) - Method in interface com.imsl.datamining.neural.QuasiNewtonTrainer.Error
Returns the contribution to the error from a single training output target.
errorGradient(double[], double[]) - Method in interface com.imsl.datamining.neural.QuasiNewtonTrainer.Error
Returns the derivative of the error function with respect to the forecast output.
eval(HyperRectangleQuadrature.Function) - Method in class com.imsl.math.HyperRectangleQuadrature
Returns the value of the integral over the unit cube.
eval(HyperRectangleQuadrature.Function, double[], double[]) - Method in class com.imsl.math.HyperRectangleQuadrature
Returns the value of the integral over a cube.
eval(Quadrature.Function, double, double) - Method in class com.imsl.math.Quadrature
Returns the value of the integral from a to b.
eval(double, double) - Method in class com.imsl.stat.InverseCdf
Evaluates the inverse CDF function.
examineStep(int, double, double[]) - Method in class com.imsl.math.OdeRungeKutta
Called before and after each internal step.
excludeFirst(boolean) - Method in class com.imsl.stat.Difference
If set to true, the observations lost due to differencing will be excluded.
exp(Complex) - Static method in class com.imsl.math.Complex
Returns the exponential of a Complex z, exp(z).
exp(double) - Static method in class com.imsl.math.JMath
Returns the exponential of a double.
expectedNormalOrderStatistic(int, int) - Static method in class com.imsl.stat.Ranks
Returns the expected value of a normal order statistic.
expm1(double) - Static method in class com.imsl.math.Hyperbolic
Returns exp(x)-1, the exponential of x minus 1.
exponential(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the exponential cumulative probability distribution function.
exponentialProb(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the exponential probability density function
extrapolate(double) - Method in class com.imsl.math.EpsilonAlgorithm
Extrapolates the convergence limit of a sequence.
extremeValue(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the extreme value cumulative probability distribution function.
extremeValueProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the extreme value probability density function.

F

F(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the F cumulative probability distribution function.
FACE_XA - Static variable in class com.imsl.chart3d.AxisBox
Show the x = a face of the box.
FACE_XB - Static variable in class com.imsl.chart3d.AxisBox
Show the x = b face of the box.
FACE_YA - Static variable in class com.imsl.chart3d.AxisBox
Show the y = a face of the box.
FACE_YB - Static variable in class com.imsl.chart3d.AxisBox
Show the y = b face of the box.
FACE_ZA - Static variable in class com.imsl.chart3d.AxisBox
Show the z = a face of the box.
FACE_ZB - Static variable in class com.imsl.chart3d.AxisBox
Show the z = b face of the box.
FFT - class com.imsl.math.FFT.
FFT functions.
FFT(int) - Constructor for class com.imsl.math.FFT
Constructs an FFT object.
FILL - Static variable in class com.imsl.chart.Draw
 
FILL_TYPE_GRADIENT - Static variable in class com.imsl.chart.ChartNode
Value for attribute "FillType" indicating that the region is to be drawn in a color gradient as specified by the attribute Gradient.
FILL_TYPE_NONE - Static variable in class com.imsl.chart.ChartNode
Value for attribute "FillType" and "FillOutlineType" indicating that the region is not to be drawn.
FILL_TYPE_PAINT - Static variable in class com.imsl.chart.ChartNode
Value for attribute "FillType" indicating that the region is to be drawn using the texture specified by the attribute FillPaint.
FILL_TYPE_SOLID - Static variable in class com.imsl.chart.ChartNode
Value for attribute "FillType" and "FillOutlineType" indicating that the region is to be drawn using the solid color specified by the attribute FillColor or FillOutlineColor.
FIRST_DERIVATIVE - Static variable in class com.imsl.math.CsInterpolate
 
FORWARD_REGRESSION - Static variable in class com.imsl.stat.StepwiseRegression
Indicates forward regression.
FProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the F probability density function.
FULL - Static variable in class com.imsl.math.PrintMatrix
This flag as the argument to setMatrixType, indicates that the full matrix is to be printed.
FactorAnalysis - class com.imsl.stat.FactorAnalysis.
Performs Principal Component Analysis or Factor Analysis on a covariance or correlation matrix.
FactorAnalysis(double[][], int, int) - Constructor for class com.imsl.stat.FactorAnalysis
Constructor for FactorAnalysis.
FactorAnalysis.BadVarianceException - exception com.imsl.stat.FactorAnalysis.BadVarianceException.
Bad variance error.
FactorAnalysis.BadVarianceException(String) - Constructor for class com.imsl.stat.FactorAnalysis.BadVarianceException
 
FactorAnalysis.BadVarianceException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.BadVarianceException
 
FactorAnalysis.EigenvalueException - exception com.imsl.stat.FactorAnalysis.EigenvalueException.
Eigenvalue error.
FactorAnalysis.EigenvalueException(String) - Constructor for class com.imsl.stat.FactorAnalysis.EigenvalueException
 
FactorAnalysis.EigenvalueException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.EigenvalueException
 
FactorAnalysis.NoDegreesOfFreedomException - exception com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException.
No degrees of freedom error.
FactorAnalysis.NoDegreesOfFreedomException(String) - Constructor for class com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException
 
FactorAnalysis.NoDegreesOfFreedomException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException
 
FactorAnalysis.NonPositiveEigenvalueException - exception com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException.
Non positive eigenvalue error.
FactorAnalysis.NonPositiveEigenvalueException(String) - Constructor for class com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException
 
FactorAnalysis.NonPositiveEigenvalueException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException
 
FactorAnalysis.NotPositiveDefiniteException - exception com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException.
Covariance matrix not positive definite.
FactorAnalysis.NotPositiveDefiniteException(String) - Constructor for class com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException
 
FactorAnalysis.NotPositiveDefiniteException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException
 
FactorAnalysis.NotPositiveSemiDefiniteException - exception com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException.
Covariance matrix not positive semi-definite.
FactorAnalysis.NotPositiveSemiDefiniteException(String) - Constructor for class com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException
 
FactorAnalysis.NotPositiveSemiDefiniteException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException
 
FactorAnalysis.NotSemiDefiniteException - exception com.imsl.stat.FactorAnalysis.NotSemiDefiniteException.
Hessian matrix not semi-definite.
FactorAnalysis.NotSemiDefiniteException(String) - Constructor for class com.imsl.stat.FactorAnalysis.NotSemiDefiniteException
 
FactorAnalysis.NotSemiDefiniteException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.NotSemiDefiniteException
 
FactorAnalysis.RankException - exception com.imsl.stat.FactorAnalysis.RankException.
Rank of covariance matrix error.
FactorAnalysis.RankException(String) - Constructor for class com.imsl.stat.FactorAnalysis.RankException
 
FactorAnalysis.RankException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.RankException
 
FactorAnalysis.SingularException - exception com.imsl.stat.FactorAnalysis.SingularException.
Covariance matrix singular error.
FactorAnalysis.SingularException(String) - Constructor for class com.imsl.stat.FactorAnalysis.SingularException
 
FactorAnalysis.SingularException(String, Object[]) - Constructor for class com.imsl.stat.FactorAnalysis.SingularException
 
FaureSequence - class com.imsl.stat.FaureSequence.
Generates the low-discrepancy Faure sequence.
FaureSequence(int) - Constructor for class com.imsl.stat.FaureSequence
Creates a Faure sequence with the default base.
FaureSequence(int, int, int) - Constructor for class com.imsl.stat.FaureSequence
Creates a Faure sequence.
FeedForwardNetwork - class com.imsl.datamining.neural.FeedForwardNetwork.
A representation of a feed forward neural network.
FeedForwardNetwork() - Constructor for class com.imsl.datamining.neural.FeedForwardNetwork
Creates a new instance of FeedForwardNetwork.
FillPaint - class com.imsl.chart.FillPaint.
A collection of methods to create Paint objects for fill areas.
Finance - class com.imsl.finance.Finance.
Collection of finance functions.
FlatFile - class com.imsl.io.FlatFile.
Reads a text file as a ResultSet.
FlatFile(BufferedReader, Tokenizer) - Constructor for class com.imsl.io.FlatFile
Creates a FlatFile from a BufferedReader.
FlatFile(BufferedReader) - Constructor for class com.imsl.io.FlatFile
Creates a FlatFile with the CSV tokenizer.
FlatFile(String) - Constructor for class com.imsl.io.FlatFile
Creates a FlatFile from a CSV file.
FlatFile(String, Tokenizer) - Constructor for class com.imsl.io.FlatFile
Creates a FlatFile from a file with the default tokenizer.
FlatFile.Parser - interface com.imsl.io.FlatFile.Parser.
Defines a method that parses a String into an Object.
f(double) - Method in interface com.imsl.chart.ChartFunction
Function to be charted.
f(double) - Method in class com.imsl.chart.ChartSpline
Function to be charted.
f(double, double) - Method in interface com.imsl.chart3d.Surface.ZFunction
Define the surface function.
f(double[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective
 
f(double[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockObjective
 
f(double[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
 
f(double[]) - Method in interface com.imsl.math.HyperRectangleQuadrature.Function
Returns the value of the function at the given point.
f(double[]) - Method in interface com.imsl.math.MinConGenLin.Function
Public interface for the function to be minimized.
f(double[], int, boolean[]) - Method in interface com.imsl.math.MinConNLP.Function
Compute the value of the function at the given point.
f(int, int, double[], boolean[], double[]) - Method in interface com.imsl.math.MinConNonlin.Function
Deprecated. Returns the value of the function at the given point.
f(double) - Method in interface com.imsl.math.MinUncon.Function
Public interface for the smooth function of a single variable to be minimized.
f(double[]) - Method in interface com.imsl.math.MinUnconMultiVar.Function
Public interface for the multivariate function to be minimized.
f(double[], double[]) - Method in interface com.imsl.math.NonlinLeastSquares.Function
Public interface for the nonlinear least-squares function.
f(double, double[], double[]) - Method in interface com.imsl.math.OdeRungeKutta.Function
Returns the value of the function at the given point.
f(double) - Method in interface com.imsl.math.Quadrature.Function
Returns the value of the function at the given point.
f(double) - Method in interface com.imsl.math.RadialBasis.Function
A radial basis function.
f(double) - Method in class com.imsl.math.RadialBasis.Gaussian
 
f(double) - Method in class com.imsl.math.RadialBasis.HardyMultiquadric
 
f(double) - Method in interface com.imsl.math.ZeroFunction.Function
Returns the value of the function at the given point.
f(double[], double[]) - Method in interface com.imsl.math.ZeroSystem.Function
Returns the value of the function at the given point.
f(double[], int, double[], double[], double[]) - Method in interface com.imsl.stat.NonlinearRegression.Function
Computes the weight, frequency, and residual given the parameter vector theta for a single observation.
fact(int) - Static method in class com.imsl.math.Sfun
Returns the factorial of an integer.
factor - Variable in class com.imsl.math.ComplexLU
LU factorization of A with partial pivoting
factor - Variable in class com.imsl.math.LU
LU factorization of A with partial pivoting
fatalError(SAXParseException) - Method in class com.imsl.chart.xml.ChartXML
Receive notification of a non-recoverable error.
fillArc(int, int, int, int, int, int) - Method in class com.imsl.chart.Draw
Fills a circular or elliptical arc covering the specified rectangle.
fillArc(int, int, int, int, int, int) - Method in class com.imsl.chart.DrawMap
Fills a circular or elliptical arc covering the specified rectangle.
fillArc(int, int, int, int, int, int) - Method in class com.imsl.chart.DrawPick
Fills a circular or elliptical arc covering the specified rectangle.
fillColor - Variable in class com.imsl.chart.Draw
 
fillOutlineColor - Variable in class com.imsl.chart.Draw
 
fillOutlineType - Variable in class com.imsl.chart.Draw
 
fillPaint - Variable in class com.imsl.chart.Draw
 
fillPolygon(int[], int[], int) - Method in class com.imsl.chart.Draw
Fill a polygon.
fillPolygon(Polygon) - Method in class com.imsl.chart.Draw
Fill a polygon defined by a Polygon object.
fillPolygon(int[], int[], int) - Method in class com.imsl.chart.DrawMap
Fill a polygon.
fillPolygon(Polygon) - Method in class com.imsl.chart.DrawMap
Fill a polygon defined by a Polygon object.
fillPolygon(int[], int[], int) - Method in class com.imsl.chart.DrawPick
Fill a polygon.
fillPolygon(Polygon) - Method in class com.imsl.chart.DrawPick
Fill a polygon defined by a Polygon object.
fillRectangle(int, int, int, int) - Method in class com.imsl.chart.Draw
Fill a rectangle.
fillRectangle(int, int, int, int) - Method in class com.imsl.chart.DrawMap
Fill a rectangle.
fillRectangle(int, int, int, int) - Method in class com.imsl.chart.DrawPick
Fill a rectangle.
fillType - Variable in class com.imsl.chart.Draw
 
filter() - Method in class com.imsl.stat.KalmanFilter
Performs Kalman filtering and evaluates the likelihood function for the state-space model.
finalize() - Method in class com.imsl.chart.Chart
 
finalize() - Method in class com.imsl.chart3d.Chart3D
 
findColumn(String) - Method in class com.imsl.io.AbstractFlatFile
Maps the given ResultSet column name to its ResultSet column index.
findColumnName(int) - Method in class com.imsl.io.AbstractFlatFile
Maps the given columnIndex into its column name.
findLink(Node, Node) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the Link between two Nodes.
findLinks(Node) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns all of the Links to a given Node.
finite(double) - Static method in class com.imsl.math.IEEE
Finite number test on an argument of type double.
fire() - Method in class com.imsl.chart.DrawPick
Fires the pickListeners for all of the picked nodes.
firePickListeners(MouseEvent) - Method in class com.imsl.chart.ChartNode
Fires the pick listeners defined at this node and at all of its ancestors, if the event "hits" the node.
first() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the first row in this ResultSet object.
floatValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as a float.
floatValue() - Method in class com.imsl.math.Physical
Returns the value of this dimensionless object.
floor(double) - Static method in class com.imsl.math.JMath
Returns the value of a double rounded toward negative infinity to an integral value.
forecast(double[]) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Computes a forecast using the Network.
forecast(double[]) - Method in class com.imsl.datamining.neural.Network
Returns a forecast for each of the Network's outputs computed from the trained Network.
forecast(int) - Method in class com.imsl.stat.ARMA
Computes forecasts and their associated probability limits for an ARMA model.
format(LogRecord) - Method in class com.imsl.math.MinConNLP.Formatter
 
format(int, Object, int, int, ParsePosition) - Method in class com.imsl.math.PrintMatrixFormat
Returns a formatted string.
formatLabel(double, double) - Method in class com.imsl.chart.Data
 
formatMessage(String, String, Object[]) - Static method in class com.imsl.Messages
A message is formatted using a MessageFormat string retrieved from the named resource bundle using the given key.
formatMessage(String, String) - Static method in class com.imsl.Messages
A message is formatted, without arguments, using a MessageFormat string retrieved from the named resource bundle using the given key.
forward(Complex[]) - Method in class com.imsl.math.ComplexFFT
Compute the Fourier coefficients of a complex periodic sequence.
forward(double[]) - Method in class com.imsl.math.FFT
Compute the Fourier coefficients of a real periodic sequence.
frobeniusNorm(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Return the Frobenius norm of a Complex matrix.
frobeniusNorm(double[][]) - Static method in class com.imsl.math.Matrix
Return the Frobenius norm of a matrix.
fv(double, int, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the future value of an investment.
fvschedule(double, double[]) - Static method in class com.imsl.finance.Finance
Returns the future value of an initial principal taking into consideration a schedule of compound interest rates.

G

GARCH - class com.imsl.stat.GARCH.
Computes estimates of the parameters of a GARCH(p,q) model.
GARCH(int, int, double[], double[]) - Constructor for class com.imsl.stat.GARCH
Constructor for GARCH.
GARCH.ConstrInconsistentException - exception com.imsl.stat.GARCH.ConstrInconsistentException.
The equality constraints are inconsistent.
GARCH.ConstrInconsistentException(String) - Constructor for class com.imsl.stat.GARCH.ConstrInconsistentException
 
GARCH.ConstrInconsistentException(String, Object[]) - Constructor for class com.imsl.stat.GARCH.ConstrInconsistentException
 
GARCH.EqConstrInconsistentException - exception com.imsl.stat.GARCH.EqConstrInconsistentException.
The equality constraints and the bounds on the variables are found to be inconsistent.
GARCH.EqConstrInconsistentException(String) - Constructor for class com.imsl.stat.GARCH.EqConstrInconsistentException
 
GARCH.EqConstrInconsistentException(String, Object[]) - Constructor for class com.imsl.stat.GARCH.EqConstrInconsistentException
 
GARCH.NoVectorXException - exception com.imsl.stat.GARCH.NoVectorXException.
No vector X satisfies all of the constraints.
GARCH.NoVectorXException(String) - Constructor for class com.imsl.stat.GARCH.NoVectorXException
 
GARCH.NoVectorXException(String, Object[]) - Constructor for class com.imsl.stat.GARCH.NoVectorXException
 
GARCH.TooManyIterationsException - exception com.imsl.stat.GARCH.TooManyIterationsException.
Number of function evaluations exceeded 1000.
GARCH.TooManyIterationsException(String) - Constructor for class com.imsl.stat.GARCH.TooManyIterationsException
 
GARCH.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.stat.GARCH.TooManyIterationsException
 
GARCH.VarsDeterminedException - exception com.imsl.stat.GARCH.VarsDeterminedException.
The variables are determined by the equality constraints.
GARCH.VarsDeterminedException(String) - Constructor for class com.imsl.stat.GARCH.VarsDeterminedException
 
GARCH.VarsDeterminedException(String, Object[]) - Constructor for class com.imsl.stat.GARCH.VarsDeterminedException
 
GENERALIZED_LEAST_SQUARES - Static variable in class com.imsl.stat.FactorAnalysis
Indicates generalized least squares method.
GREEN - Static variable in interface com.imsl.chart.Colormap
Linear green colormap.
GREEN_PINK - Static variable in interface com.imsl.chart.Colormap
Green/pink colormap.
GREEN_RED_BLUE_WHITE - Static variable in interface com.imsl.chart.Colormap
Green/red/blue/white colormap.
GREEN_WHITE_EXPONENTIAL - Static variable in interface com.imsl.chart.Colormap
Exponential green/white colormap.
GREEN_WHITE_LINEAR - Static variable in interface com.imsl.chart.Colormap
Linear green/white colormap.
Grid - class com.imsl.chart.Grid.
Draws the grid lines perpendicular to an axis.
GridPolar - class com.imsl.chart.GridPolar.
Draws the grid lines for a polar plot.
g(double) - Method in interface com.imsl.datamining.neural.Activation
Returns the value of the activation function.
g(double) - Method in interface com.imsl.math.MinUncon.Derivative
Public interface for the smooth function of a single variable to be minimized.
g(double) - Method in interface com.imsl.math.RadialBasis.Function
The derivative of the radial basis function.
g(double) - Method in class com.imsl.math.RadialBasis.Gaussian
 
g(double) - Method in class com.imsl.math.RadialBasis.HardyMultiquadric
 
gamma(double) - Static method in class com.imsl.math.Sfun
Returns the Gamma function of a double.
gamma(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the gamma cumulative probability distribution function.
gammaProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the gamma probability density function.
geometric(int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the discrete geometric cumulative probability distribution function.
geometricProb(int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the discrete geometric probability density function.
get(String) - Method in class com.imsl.chart.xml.ChartXML
Returns a generated object given the id attribute in the XML tag that created the object.
getALT() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ALT" attribute.
getALT() - Method in class com.imsl.chart.DrawMap
Returns the current ALT string.
getANOVA() - Method in class com.imsl.math.RadialBasis
Returns the ANOVA statistics from the linear regression.
getANOVA() - Method in class com.imsl.stat.LinearRegression
Get an analysis of variance table and related statistics.
getANOVA() - Method in class com.imsl.stat.StepwiseRegression
Get an analysis of variance table and related statistics.
getANOVA() - Method in class com.imsl.stat.UserBasisRegression
Get an analysis of variance table and related statistics.
getANOVATable() - Method in class com.imsl.stat.ANOVAFactorial
Returns the analysis of variance table.
getAR() - Method in class com.imsl.stat.ARMA
Returns the final autoregressive parameter estimates.
getAR() - Method in class com.imsl.stat.GARCH
Returns the estimated values of autoregressive (AR) parameters.
getAbstractParent() - Method in class com.imsl.chart.AbstractChartNode
Returns the parent of this node.
getActivation() - Method in class com.imsl.datamining.neural.Perceptron
Returns the activation function.
getAdjustedRSquared() - Method in class com.imsl.stat.ANOVA
Returns the adjusted R-squared (in percent).
getAkaike() - Method in class com.imsl.stat.GARCH
Returns the value of Akaike Information Criterion evaluated at the estimated parameter array.
getAlignment() - Method in class com.imsl.chart.Text
Gets the alignment for this Text object.
getArray(int) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as an Array object in the Java programming language.
getArray(String) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as an Array object in the Java programming language.
getArray() - Method in class com.imsl.stat.ANOVA
Returns the ANOVA values as an array.
getAsciiStream(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a stream of ASCII characters.
getAsciiStream(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a stream of ASCII characters.
getAttribute(String) - Method in class com.imsl.chart.AbstractChartNode
Gets an attribute.
getAutoCorrelationX() - Method in class com.imsl.stat.CrossCorrelation
Returns the autocorrelations of the time series x.
getAutoCorrelationY() - Method in class com.imsl.stat.CrossCorrelation
Returns the autocorrelations of the time series y.
getAutoCorrelations() - Method in class com.imsl.stat.AutoCorrelation
Returns the autocorrelations of the time series x.
getAutoCovariance() - Method in class com.imsl.stat.ARMA
Returns the autocovariances of the time series z.
getAutoCovarianceX() - Method in class com.imsl.stat.CrossCorrelation
Returns the autocovariances of the time series x.
getAutoCovarianceY() - Method in class com.imsl.stat.CrossCorrelation
Returns the autocovariances of the time series y.
getAutoCovariances() - Method in class com.imsl.stat.AutoCorrelation
Returns the variance and autocovariances of the time series x.
getAutoscaleInput() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "AutoscaleInput" attribute.
getAutoscaleMinimumTimeInterval() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "AutoscaleMinimumTimeInterval" attribute.
getAutoscaleOutput() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "AutoscaleOutput" attribute.
getAxis() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Axis" attribute.
getAxisBox() - Method in class com.imsl.chart3d.AxisXYZ
Return the axis box node.
getAxisLabel() - Method in class com.imsl.chart.Axis1D
Returns the label node associated with this axis.
getAxisLabel() - Method in class com.imsl.chart3d.Axis3D
Returns the label node associated with this axis.
getAxisLine() - Method in class com.imsl.chart.Axis1D
Returns the axis line node associated with this axis.
getAxisLine() - Method in class com.imsl.chart3d.Axis3D
Returns the axis line node associated with this axis.
getAxisR() - Method in class com.imsl.chart.Polar
Return the radius axis node.
getAxisRLabel() - Method in class com.imsl.chart.AxisR
Returns the AxisRLabel node.
getAxisRLine() - Method in class com.imsl.chart.AxisR
Returns the AxisRLine node.
getAxisRMajorTick() - Method in class com.imsl.chart.AxisR
Returns the major tick node associated with this axis.
getAxisTheta() - Method in class com.imsl.chart.Polar
Return the angular axis node.
getAxisTitle() - Method in class com.imsl.chart.Axis1D
Returns the title node associated with this axis.
getAxisTitle() - Method in class com.imsl.chart3d.Axis3D
Returns the title node associated with this axis.
getAxisTitlePosition() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "AxisTitlePosition" attribute.
getAxisUnit() - Method in class com.imsl.chart.Axis1D
Returns the unit node associated with this axis.
getAxisX() - Method in class com.imsl.chart.AxisXY
Return the x-axis node.
getAxisX() - Method in class com.imsl.chart3d.AxisXYZ
Return the x-axis node.
getAxisY() - Method in class com.imsl.chart.AxisXY
Return the y-axis node.
getAxisY() - Method in class com.imsl.chart3d.AxisXYZ
Return the y-axis node.
getAxisZ() - Method in class com.imsl.chart3d.AxisXYZ
Return the z-axis node.
getBackground() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Background" attribute.
getBackground() - Method in class com.imsl.chart3d.Chart3D
Returns the value of the "Background" attribute.
getBalancedTable() - Method in class com.imsl.stat.TableMultiWay
Returns an object containing the balanced table.
getBarData() - Method in class com.imsl.chart.Bar
Returns the "BarData" attribute.
getBarGap() - Method in class com.imsl.chart.ChartNode
Returns the value of the "BarGap" attribute.
getBarItem() - Method in class com.imsl.chart.BarSet
Returns an array of BarItems.
getBarItem(int) - Method in class com.imsl.chart.BarSet
Returns the BarItem given the index.
getBarSet() - Method in class com.imsl.chart.Bar
Returns the BarSet object.
getBarSet(int, int) - Method in class com.imsl.chart.Bar
Returns the BarSet object.
getBarSet(int) - Method in class com.imsl.chart.Bar
Returns the BarSet object.
getBarType() - Method in class com.imsl.chart.ChartNode
Returns the value of the "BarType" attribute.
getBarWidth() - Method in class com.imsl.chart.ChartNode
Returns the value of the "BarWidth" attribute.
getBase() - Method in class com.imsl.stat.FaureSequence
Returns the base.
getBias() - Method in class com.imsl.datamining.neural.Perceptron
Returns the bias for this perceptron.
getBigDecimal(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.math.BigDecimal with full precision.
getBigDecimal(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.math.BigDecimal with full precision.
getBinaryStream(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a binary stream of uninterpreted bytes.
getBinaryStream(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a stream of uninterpreted bytes.
getBlob(int) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Blob object in the Java programming language.
getBlob(String) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Blob object in the Java programming language.
getBlomScores(double[]) - Method in class com.imsl.stat.Ranks
Gets the Blom version of normal scores for each observation.
getBodies() - Method in class com.imsl.chart.BoxPlot
Returns a node containing the body elements in the Box plot.
getBoolean(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a boolean in the Java programming language.
getBoolean(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a boolean in the Java programming language.
getBooleanAttribute(String, boolean) - Method in class com.imsl.chart.AbstractChartNode
Convenience routine to get a Boolean-valued attribute.
getBoundingSphere() - Method in class com.imsl.chart3d.ChartNode3D
Gets the spherical bounding region object BoundingSphere.
getBounds() - Method in class com.imsl.datamining.neural.ScaleFilter
Retrieves bounds used during bounded scaling.
getBoxPlotType() - Method in class com.imsl.chart.BoxPlot
Returns the value of the "BoxPlotType" attribute.
getBreakpoints() - Method in class com.imsl.math.Spline
Returns a copy of the breakpoints.
getByte(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a byte in the Java programming language.
getByte(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a byte in the Java programming language.
getBytes(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a byte array in the Java programming language.
getBytes(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a byte array in the Java programming language.
getCDF() - Static method in class com.imsl.stat.KaplanMeierECDF
Retrieve CDF values up to, but not including the time values in x
getCanvas() - Method in class com.imsl.chart3d.Chart3D
 
getCanvas() - Method in class com.imsl.chart3d.JFrameChart3D
Returns the Canvas3DChart into which the chart is drawn.
getCaseAnalysis() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the case analysis.
getCaseStatistics(double[], double) - Method in class com.imsl.stat.LinearRegression
Returns the case statistics for an observation.
getCaseStatistics(double[], double, double) - Method in class com.imsl.stat.LinearRegression
Returns the case statistics for an observation and a weight.
getCaseStatistics(double[], double, int) - Method in class com.imsl.stat.LinearRegression
Returns the case statistics for an observation and future response count for the desired prediction interval.
getCaseStatistics(double[], double, double, int) - Method in class com.imsl.stat.LinearRegression
Returns the case statistics for an observation, weight, and future response count for the desired prediction interval.
getCellCounts() - Method in class com.imsl.stat.ChiSquaredTest
Returns the cell counts.
getCenter() - Method in class com.imsl.datamining.neural.ScaleFilter
Retrieves the measure of center to be used during z-score scaling.
getCharacterStream(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.io.Reader object.
getCharacterStream(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.io.Reader object.
getChart() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Chart" attribute.
getChart(HttpServletRequest) - Method in class com.imsl.chart.ChartServlet
Returns the chart found in the session saved with the key "chart"+id, where id is the value of the "id" parameter in the request.
getChart() - Method in class com.imsl.chart.JFrameChart
Return the Chart object.
getChart() - Method in class com.imsl.chart.JPanelChart
Return the Chart object.
getChart() - Method in class com.imsl.chart.xml.ChartXML
Returns the root node of the chart tree.
getChart3D() - Method in class com.imsl.chart3d.Canvas3DChart
Returns the Chart3D associated with this canvas.
getChart3D() - Method in class com.imsl.chart3d.JFrameChart3D
Return the Chart object.
getChartServletName() - Method in class com.imsl.chart.JspBean
Returns the URL of the servlet used to render the chart.
getChartTitle() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ChartTitle" attribute.
getChiSquared() - Method in class com.imsl.stat.ChiSquaredTest
Returns the chi-squared statistic.
getChiSquared() - Method in class com.imsl.stat.ContingencyTable
Returns the Pearson chi-squared test statistic.
getChiSquared() - Method in class com.imsl.stat.NormalityTest
Returns the chi-square statistic for the chi-squared goodness-of-fit test.
getChiSquaredTest() - Method in class com.imsl.stat.NormOneSample
Returns the test statistic associated with the chi-squared test for variances.
getChiSquaredTest() - Method in class com.imsl.stat.NormTwoSample
Returns the test statistic associated with the chi-squared test for common, or pooled, variances.
getChiSquaredTestDF() - Method in class com.imsl.stat.NormOneSample
Returns the degrees of freedom associated with the chi-squared test for variances.
getChiSquaredTestDF() - Method in class com.imsl.stat.NormTwoSample
Returns the degrees of freedom associated with the chi-squared test for the common, or pooled, variances.
getChiSquaredTestP() - Method in class com.imsl.stat.NormOneSample
Returns the probability of a larger chi-squared associated with the chi-squared test for variances.
getChiSquaredTestP() - Method in class com.imsl.stat.NormTwoSample
Returns the probability of a larger chi-squared associated with the chi-squared test for common, or pooled, variances.
getChildList() - Method in class com.imsl.chart.AbstractChartNode
Returns the children of this node.
getChildren() - Method in class com.imsl.chart.ChartNode
Returns an array of the children of this node.
getChildren() - Method in class com.imsl.chart3d.ChartNode3D
Returns an array of the children of this node.
getClassMembership() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the group number to which the observation was classified.
getClassTable() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the classification table.
getClassificationVariableCounts() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the number of values taken by each classification variable.
getClassificationVariableValues() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the distinct values of the classification variables in ascending order.
getClipBounds() - Method in class com.imsl.chart.Draw
Get the clipping rectangle.
getClipData() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ClipData" attribute.
getClob(int) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Clob object in the Java programming language.
getClob(String) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Clob object in the Java programming language.
getClose() - Method in class com.imsl.chart.HighLowClose
Gets the value of the attribute "Close".
getClusterCounts() - Method in class com.imsl.stat.ClusterKMeans
Returns the number of observations in each cluster.
getClusterLeftSons() - Method in class com.imsl.stat.ClusterHierarchical
Returns the left sons of each merged cluster.
getClusterLevel() - Method in class com.imsl.stat.ClusterHierarchical
Returns the level at which the clusters are joined.
getClusterMembership(int) - Method in class com.imsl.stat.ClusterHierarchical
Returns the cluster membership of each observation.
getClusterMembership() - Method in class com.imsl.stat.ClusterKMeans
Returns the cluster membership for each observation.
getClusterRightSons() - Method in class com.imsl.stat.ClusterHierarchical
Returns the right sons of each merged cluster.
getClusterSSQ() - Method in class com.imsl.stat.ClusterKMeans
Returns the within sum of squares for each cluster.
getCoefficient(int) - Method in class com.imsl.stat.LinearRegression.CoefficientTTests
Returns the estimate for a coefficient.
getCoefficient(int) - Method in class com.imsl.stat.NonlinearRegression
Returns the estimate for a coefficient.
getCoefficient(int) - Method in class com.imsl.stat.StepwiseRegression.CoefficientTTests
Returns the estimate for a coefficient of the independent variable.
getCoefficientOfVariation() - Method in class com.imsl.stat.ANOVA
Returns the coefficient of variation (in percent).
getCoefficientStatistics(int) - Method in class com.imsl.stat.SelectionRegression.Statistics
Returns the coefficients statistics for each of the best regressions found for each subset considered.
getCoefficientTTests() - Method in class com.imsl.stat.LinearRegression
Returns statistics relating to the regression coefficients.
getCoefficientTTests() - Method in class com.imsl.stat.StepwiseRegression
Returns the student-t test statistics for the regression coefficients.
getCoefficientVIF() - Method in class com.imsl.stat.StepwiseRegression
Returns the variance inflation factors for the final model in this invocation.
getCoefficients() - Method in class com.imsl.io.MPSReader.Row
Returns the coeffients of this row as a dense array.
getCoefficients() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the linear discriminant function coefficients.
getCoefficients() - Method in class com.imsl.stat.LinearRegression
Returns the regression coefficients.
getCoefficients() - Method in class com.imsl.stat.NonlinearRegression
Returns the regression coefficients.
getCoefficients() - Method in class com.imsl.stat.UserBasisRegression
Returns the regression coefficients.
getColorAttribute(String) - Method in class com.imsl.chart.AbstractChartNode
Convenience routine to get a Color-valued attribute.
getColorFunction() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "ColorFunction" attribute.
getColormap() - Method in class com.imsl.chart.Heatmap
Returns the value of the "Colormap" attribute.
getColumn() - Method in class com.imsl.io.MPSReader.Element
Returns the column index.
getColumnClass(int) - Method in class com.imsl.io.AbstractFlatFile
Returns the class of the items in the specified column.
getColumnCount() - Method in class com.imsl.io.AbstractFlatFile
Returns the number of columns in this ResultSet object.
getColumnCount() - Method in class com.imsl.io.FlatFile
Returns the number of columns in this ResultSet object.
getComponent() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Component" attribute.
getConcatenatedViewport() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Viewport" attribute concatenated with the "Viewport" attributes set in its ancestor nodes.
getConcatenatedViewport() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Viewport" attribute concatenated with the "Viewport" attributes set in its ancestor nodes.
getConcurrency() - Method in class com.imsl.io.AbstractFlatFile
Returns the concurrency mode of this ResultSet object.
getConfidenceInterval() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Confidence Interval on the mean for an observation.
getConstant() - Method in class com.imsl.stat.ARMA
Returns the constant parameter estimate.
getConstraintResiduals() - Method in class com.imsl.math.MinConNLP
Returns the constraint residuals.
getContingencyCoef() - Method in class com.imsl.stat.ContingencyTable
Returns contingency coefficient.
getContourLegend() - Method in class com.imsl.chart.Contour
Returns the contour chart legend.
getContourLevel() - Method in class com.imsl.chart.Contour
Returns all of the contour levels.
getContourLevel(int) - Method in class com.imsl.chart.Contour
Returns a ContourLevel.
getContributions() - Method in class com.imsl.stat.ContingencyTable
Returns the contributions to chi-squared for each cell in the table.
getCooksDistance() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns Cook's Distance for an observation.
getCoordinates() - Method in class com.imsl.chart.Dendrogram
Convenience routine to get the "Coordinates" attribute.
getCorrelations() - Method in class com.imsl.stat.FactorAnalysis
Returns the correlations of the principal components.
getCount() - Method in class com.imsl.stat.FaureSequence
 
getCovB() - Method in class com.imsl.stat.KalmanFilter
Returns the mean squared error matrix for b divided by sigma squared.
getCovV() - Method in class com.imsl.stat.KalmanFilter
Returns the variance-covariance matrix of v divided by sigma squared.
getCovariance() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the array of covariances.
getCovarianceMatrix() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the estimated asymptotic covariance matrix of the coefficients.
getCovariancesSwept() - Method in class com.imsl.stat.StepwiseRegression
Returns the results after cov has been swept for the columns corresponding to the variables in the model.
getCramersV() - Method in class com.imsl.stat.ContingencyTable
Returns Cramer's V.
getCreateImageMap() - Method in class com.imsl.chart.JspBean
Returns true if a client-side imagemap is to be created.
getCriterionOption() - Method in class com.imsl.stat.SelectionRegression
Returns the criterion option used to calculate the regression estimates.
getCriterionValues(int) - Method in class com.imsl.stat.SelectionRegression.Statistics
Returns an array containing the values of the best criterion for the number of variables considered.
getCross() - Method in class com.imsl.chart.AxisXY
Returns the value of the "Cross" attribute.
getCrossCorrelation() - Method in class com.imsl.stat.CrossCorrelation
Returns the cross-correlations between the time series x and y.
getCrossCorrelation() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the cross-correlations between the channels of x and y.
getCrossCovariance() - Method in class com.imsl.stat.CrossCorrelation
Returns the cross-covariances between the time series x and y.
getCrossCovariance() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the cross-covariances between the channels of x and y.
getCursorName() - Method in class com.imsl.io.AbstractFlatFile
Gets the name of the SQL cursor used by this ResultSet object.
getCustomMarkerFactory() - Method in class com.imsl.chart3d.Data
Returns a custom marker factory.
getCustomTransform() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "CustomTransform" attribute.
getCutpoints() - Method in class com.imsl.stat.ChiSquaredTest
Returns the cutpoints.
getDFError() - Method in class com.imsl.stat.NonlinearRegression
Returns the degrees of freedom for error.
getDFFITS() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns DFFITS for an observation.
getDataType() - Method in class com.imsl.chart.ChartNode
Returns the value of the "DataType" attribute.
getDataType() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "DataType" attribute.
getDate(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.
getDate(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.
getDate(int, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.
getDate(String, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Date object in the Java programming language.
getDaysInYear(GregorianCalendar, GregorianCalendar) - Method in interface com.imsl.finance.BasisPart
Returns the number of days in the year.
getDegreesOfFreedom() - Method in class com.imsl.stat.ChiSquaredTest
Returns the degrees of freedom in chi-squared.
getDegreesOfFreedom() - Method in class com.imsl.stat.ContingencyTable
Returns the degrees of freedom for the chi-squared tests associated with the table.
getDegreesOfFreedom() - Method in class com.imsl.stat.NormalityTest
Returns the degrees of freedom for the chi-squared goodness-of-fit test.
getDegreesOfFreedomForError() - Method in class com.imsl.stat.ANOVA
Returns the degrees of freedom for error.
getDegreesOfFreedomForModel() - Method in class com.imsl.stat.ANOVA
Returns the degrees of freedom for model.
getDensity() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Density" attribute.
getDesignVariableMeans() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the means of the design variables.
getDeviations() - Method in class com.imsl.stat.ARMA
Returns the deviations from each forecast that give the confidence percent probability limits.
getDeviceMarkerSize() - Method in class com.imsl.chart.Draw
Returns the marker size in device corrdinates.
getDiffMean() - Method in class com.imsl.stat.NormTwoSample
Returns the difference in means, mean of x - mean of y.
getDimension() - Method in class com.imsl.stat.FaureSequence
Returns the dimension of the sequence.
getDimension() - Method in interface com.imsl.stat.RandomSequence
Returns the dimension of the sequence.
getDirection() - Method in class com.imsl.chart3d.DirectionalLight
Returns the value of the "Direction" attribute.
getDistanceMatrix() - Method in class com.imsl.stat.Dissimilarities
Returns the distance matrix.
getDouble(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a double in the Java programming language.
getDouble(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a double in the Java programming language.
getDoubleAttribute(String, double) - Method in class com.imsl.chart.AbstractChartNode
Convenience routine to get a Double-valued attribute.
getDoubleBuffering() - Method in class com.imsl.chart.ChartNode
Returns the value of the "DoubleBuffering" attribute.
getDown() - Method in class com.imsl.chart.Candlestick
Returns the CandlestickItem for down days.
getDual() - Method in class com.imsl.math.QuadraticProgramming
Returns the dual (Lagrange multipliers).
getDualSolution() - Method in class com.imsl.math.DenseLP
Returns the dual solution.
getDualSolution() - Method in class com.imsl.math.LinearProgramming
Returns the dual solution.
getDunnSidak(int, int) - Method in class com.imsl.stat.ANOVA
Computes the confidence interval of i-th mean - j-th mean, using the Dunn-Sidak method.
getEnumValue(String) - Static method in class com.imsl.chart.xml.ChartXML
Returns the int corresponding to an enumeration.
getEpochSize() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the number of sample training patterns in each stage 1 epoch.
getError() - Method in class com.imsl.datamining.neural.BinaryClassification
Returns the error function for use by QuasiNewtonTrainer for training a binary classification network.
getError() - Method in class com.imsl.datamining.neural.MultiClassification
Returns the error function for use by QuasiNewtonTrainer for training a classification network.
getError() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the function used to compute the error to be minimized.
getErrorEstimate() - Method in class com.imsl.math.EpsilonAlgorithm
Returns the current error estimate.
getErrorEstimate() - Method in class com.imsl.math.HyperRectangleQuadrature
Returns an estimate of the relative error in the computed result.
getErrorEstimate() - Method in class com.imsl.math.Quadrature
Returns an estimate of the relative error in the computed result.
getErrorGradient() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the value of the gradient of the error function with respect to the weights.
getErrorGradient() - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Returns the value of the gradient of the error function with respect to the weights.
getErrorGradient() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the value of the gradient of the error function with respect to the weights.
getErrorGradient() - Method in interface com.imsl.datamining.neural.Trainer
Returns the value of the gradient of the error function with respect to the weights.
getErrorMeanSquare() - Method in class com.imsl.stat.ANOVA
Returns the error mean square.
getErrorNumber() - Method in class com.imsl.LicenseManagerException
Returns the FlexLM error number for this exception.
getErrorStatus() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the training error status.
getErrorStatus() - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Returns the error status from the trainer.
getErrorStatus() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the error status from the trainer.
getErrorStatus() - Method in interface com.imsl.datamining.neural.Trainer
Returns the error status.
getErrorStatus() - Method in class com.imsl.math.MinUnconMultiVar
Returns the non-fatal error status.
getErrorStatus() - Method in class com.imsl.math.NonlinLeastSquares
Get information about the performance of NonlinLeastSquares.
getErrorStatus() - Method in class com.imsl.math.Quadrature
Returns the non-fatal error status.
getErrorStatus() - Method in class com.imsl.stat.NonlinearRegression
Gets information about the performance of NonlinearRegression.
getErrorValue() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the value of the error function.
getErrorValue() - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Returns the final value of the error function.
getErrorValue() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the final value of the error function.
getErrorValue() - Method in interface com.imsl.datamining.neural.Trainer
Returns the value of the error function minimized by the trainer.
getExactMean() - Method in class com.imsl.stat.ContingencyTable
Returns exact mean.
getExactStdev() - Method in class com.imsl.stat.ContingencyTable
Returns exact standard deviation.
getExpectedCounts() - Method in class com.imsl.stat.ChiSquaredTest
Returns the expected counts.
getExpectedValues() - Method in class com.imsl.stat.ContingencyTable
Returns the expected values of each cell in the table.
getExplode() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Explode" attribute.
getExtendedLikelihoodObservations() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns a vector indicating which observations are included in the extended likelihood.
getF() - Method in class com.imsl.stat.ANOVA
Returns the F statistic.
getFTest() - Method in class com.imsl.stat.NormTwoSample
Returns the F test value of the F test for equality of variances.
getFTestDFdenominator() - Method in class com.imsl.stat.NormTwoSample
Returns the denominator degrees of freedom of the F test for equality of variances.
getFTestDFnumerator() - Method in class com.imsl.stat.NormTwoSample
Returns the numerator degrees of freedom of the F test for equality of variances.
getFTestP() - Method in class com.imsl.stat.NormTwoSample
Returns the probability of a larger F in absolute value for the F test for equality of variances, assuming equal variances.
getFactorLoadings() - Method in class com.imsl.stat.FactorAnalysis
Returns the unrotated factor loadings.
getFarMarkers() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the array of far markers.
getFarMarkers() - Method in class com.imsl.chart.BoxPlot
Returns the FarMarkers node.
getFeature() - Method in class com.imsl.LicenseManagerException
Returns the name of the feature that could not be licensed.
getFetchDirection() - Method in class com.imsl.io.AbstractFlatFile
Returns the fetch direction for this ResultSet object.
getFetchSize() - Method in class com.imsl.io.AbstractFlatFile
Returns the fetch size for this ResultSet object.
getFillColor() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "FillColor" attribute.
getFillOutlineColor() - Method in class com.imsl.chart.ChartNode
Returns the value of the "FillOutlineColor" attribute.
getFillOutlineType() - Method in class com.imsl.chart.ChartNode
Returns the value of the "FillOutlineType" attribute.
getFillPaint() - Method in class com.imsl.chart.ChartNode
Returns the value of the "FillPaint" attribute.
getFillType() - Method in class com.imsl.chart.ChartNode
Returns the value of the "FillType" attribute.
getFinalActiveConstraints() - Method in class com.imsl.math.MinConGenLin
Returns the indices of the final active constraints.
getFinalActiveConstraintsNum() - Method in class com.imsl.math.MinConGenLin
Returns the final number of active constraints.
getFirstTick() - Method in class com.imsl.chart.Axis1D
Convenience routine to get the "FirstTick" attribute.
getFirstTick() - Method in class com.imsl.chart3d.Axis3D
Convenience routine to get the "FirstTick" attribute.
getFloat(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a float in the Java programming language.
getFloat(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a float in the Java programming language.
getFont() - Method in class com.imsl.chart.AbstractChartNode
Convenience routine which gets a Font object based on the "FontName", "FontStyle" and "FontSize" attributes.
getFontName() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "FontName" attribute.
getFontSize() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "FontSize" attribute.
getFontStyle() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "FontStyle" attribute.
getForecastGradient(double[]) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the derivatives of the outputs with respect to the weights.
getForecastGradient(double[]) - Method in class com.imsl.datamining.neural.Network
Returns the derivatives of the outputs with respect to the weights.
getFormatter() - Static method in class com.imsl.datamining.neural.EpochTrainer
Returns the logging Formatter object.
getFormatter() - Static method in class com.imsl.datamining.neural.LeastSquaresTrainer
Returns the logging Formatter object.
getFormatter() - Static method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the logging formatter object.
getFrequencyTable() - Method in class com.imsl.stat.TableOneWay
Returns the one-way frequency table.
getFrequencyTable(double, double) - Method in class com.imsl.stat.TableOneWay
Returns a one-way frequency table using known bounds.
getFrequencyTable() - Method in class com.imsl.stat.TableTwoWay
Returns the two-way frequency table.
getFrequencyTable(double, double, double, double) - Method in class com.imsl.stat.TableTwoWay
Compute a two-way frequency table using intervals of equal length and user supplied upper and lower bounds, xLowerBound, xUpperBound, yLowerBound, yUpperBound.
getFrequencyTableUsingClassmarks(double[]) - Method in class com.imsl.stat.TableOneWay
Returns the one-way frequency table using class marks.
getFrequencyTableUsingClassmarks(double[], double[]) - Method in class com.imsl.stat.TableTwoWay
Returns the two-way frequency table using either cutpoints or class marks.
getFrequencyTableUsingCutpoints(double[]) - Method in class com.imsl.stat.TableOneWay
Returns the one-way frequency table using cutpoints.
getFrequencyTableUsingCutpoints(double[], double[]) - Method in class com.imsl.stat.TableTwoWay
Returns the two-way frequency table using cutpoints.
getFrom() - Method in class com.imsl.datamining.neural.Link
Returns the origination Node for this Link.
getGSquared() - Method in class com.imsl.stat.ContingencyTable
Returns the likelihood ratio G2 (chi-squared).
getGSquaredP() - Method in class com.imsl.stat.ContingencyTable
Returns the probability of a larger G2 (chi-squared).
getGradient() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Gradient" attribute.
getGrid() - Method in class com.imsl.chart.Axis1D
Returns the grid node associated with this axis.
getGridPolar() - Method in class com.imsl.chart.Polar
Returns the grid.
getGroupCounts() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the group counts.
getGroupInformation() - Method in class com.imsl.stat.ANOVA
Returns information concerning the groups.
getGroups() - Method in class com.imsl.stat.TableMultiWay
Returns the number of observations (rows) in each group.
getHREF() - Method in class com.imsl.chart.ChartNode
Returns the value of the "HREF" attribute.
getHREF() - Method in class com.imsl.chart.DrawMap
Returns the current HREF string.
getHeatmapLabels() - Method in class com.imsl.chart.Heatmap
Returns the value of the "HeatmapLabels" attribute.
getHeatmapLegend() - Method in class com.imsl.chart.Heatmap
Returns the heatmap legend.
getHessian() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the Hessian computed at the initial parameter estimates.
getHiddenLayers() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the HiddenLayers in this network.
getHigh() - Method in class com.imsl.chart.ErrorBar
Convenience routine to get the "High" attribute.
getHigh() - Method in class com.imsl.chart.HighLowClose
Convenience routine to get the "High" attribute.
getHistory() - Method in class com.imsl.stat.StepwiseRegression
Returns the stepwise regression history for the independent variables.
getId() - Method in class com.imsl.chart.JspBean
Returns the identifier number for the chart.
getImage() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Image" attribute.
getImageMap() - Method in class com.imsl.chart.JspBean
Returns an HTML for the client-side imagemap.
getImageTag() - Method in class com.imsl.chart.JspBean
Returns an HTML image tag.
getIncidenceMatrix() - Method in class com.imsl.stat.Covariances
Returns the incidence matrix.
getIndependentVariables(int) - Method in class com.imsl.stat.SelectionRegression.Statistics
Returns the identification numbers for the independent variables for the number of variables considered and in the same order as the criteria returned by SelectionRegression.Statistics.getCriterionValues(int).
getIndex() - Method in class com.imsl.datamining.neural.Layer
Returns the index of this Layer.
getInfo() - Method in class com.imsl.math.SVD
Returns convergence information about S, U, and V.
getInputLayer() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the InputLayer.
getInputLayer() - Method in class com.imsl.datamining.neural.Network
Returns the InputLayer object.
getInt(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as an int in the Java programming language.
getInt(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as an int in the Java programming language.
getIntegerAttribute(String, int) - Method in class com.imsl.chart.AbstractChartNode
Convenience routine to get an Integer-valued attribute.
getIterationCount() - Method in class com.imsl.math.DenseLP
Returns the iteration count.
getIterations() - Method in class com.imsl.math.MinConNLP
Returns the actual number of iterations used.
getIterations() - Method in class com.imsl.math.MinUnconMultiVar
Returns the number of iterations used to compute a minimum.
getIterations(int) - Method in class com.imsl.math.ZeroFunction
Returns the number of iterations used to compute a root.
getJackknifeResidual() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Jackknife Residual for an observation.
getJacobian() - Method in class com.imsl.math.BoundedLeastSquares
Returns the Jacobian at the approximate solution.
getKeyboard() - Method in class com.imsl.chart3d.Chart3D
Returns the value of the "Keyboard" attribute.
getKnots() - Method in class com.imsl.math.BSpline
Returns a copy of the knot sequence.
getKurtosis() - Method in class com.imsl.stat.Summary
Returns the kurtosis.
getLabelType() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "LabelType" attribute.
getLabels() - Method in class com.imsl.chart.AxisLabel
Returns the "Labels" attribute.
getLabels() - Method in class com.imsl.chart.AxisRLabel
Returns the "Labels" attribute.
getLabels() - Method in class com.imsl.chart3d.AxisLabel
Returns the "Labels" attribute.
getLagrangeMultiplierEst() - Method in class com.imsl.math.MinConGenLin
Returns the Lagrange multiplier estimates of the final active constraints.
getLagrangeMultiplierEst() - Method in class com.imsl.math.MinConNLP
Returns the Lagrange multiplier estimates of the constraints.
getLastParameterUpdates() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the last parameter updates (excluding step halvings).
getLayer() - Method in class com.imsl.datamining.neural.Node
Returns the Layer in which this Node exists.
getLeftSons() - Method in class com.imsl.chart.Dendrogram
Convenience routine to get the "LeftSons" attribute.
getLegend() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Legend" attribute.
getLevels() - Method in class com.imsl.chart.Dendrogram
Convenience routine to get the "Levels" attribute.
getLeverage() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Leverage for an observation.
getLicensePath() - Method in class com.imsl.LicenseManagerException
Returns the license file path for this exception.
getLightColor() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "LightColor" attribute.
getLineColor() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "LineColor" attribute.
getLineDashPattern() - Method in class com.imsl.chart.ChartNode
Returns the value of the "LineDashPattern" attribute.
getLineWidth() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "LineWidth" attribute.
getLinks() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Return all of the Links in this Network.
getLinks() - Method in class com.imsl.datamining.neural.Network
Returns an array containing the Link objects in the Network.
getListCells() - Method in class com.imsl.stat.TableMultiWay.UnbalancedTable
Returns for each row, a list of the levels of nKeys corresponding classification variables that describe a cell.
getLocale() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Locale" attribute.
getLocalizedMessage() - Method in class com.imsl.LicenseManagerException
Returns the localized error message for this exception.
getLogDeterminant() - Method in class com.imsl.stat.KalmanFilter
Returns the natural log of the product of the nonzero eigenvalues of P where P * sigma2 is the variance-covariance matrix of the observations.
getLogLikelihood() - Method in class com.imsl.stat.GARCH
Returns the value of Log-likelihood function evaluated at the estimated parameter array.
getLogger() - Static method in class com.imsl.datamining.neural.EpochTrainer
Returns the Logger object.
getLogger() - Static method in class com.imsl.datamining.neural.LeastSquaresTrainer
Returns the Logger object.
getLogger() - Static method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the Logger object.
getLogger() - Method in class com.imsl.math.MinConNLP
Returns the logger object.
getLong(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a long in the Java programming language.
getLong(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a long in the Java programming language.
getLow() - Method in class com.imsl.chart.ErrorBar
Convenience routine to get the "Low" attribute.
getLow() - Method in class com.imsl.chart.HighLowClose
Convenience routine to get the "Low" attribute.
getLowerAdjacentValue() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the lower adjacent value.
getLowerBound(int) - Method in class com.imsl.io.MPSReader
Returns the lower bound for a variable.
getLowerCICommonVariance() - Method in class com.imsl.stat.NormTwoSample
Returns the lower confidence limits for the common, or pooled, variance.
getLowerCIDiff() - Method in class com.imsl.stat.NormTwoSample
Returns the lower confidence limit for the mean of the first population minus the mean of the second for equal or unequal variances depending on the value set by setUnequalVariances.
getLowerCIMean() - Method in class com.imsl.stat.NormOneSample
Returns the lower confidence limit for the mean.
getLowerCIRatioVariance() - Method in class com.imsl.stat.NormTwoSample
Returns the approximate lower confidence limit for the ratio of the variance of the first population to the second.
getLowerCIVariance() - Method in class com.imsl.stat.NormOneSample
Returns the lower confidence limits for the variance.
getLowerQuartile() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the lower quartile value.
getLowerRange(int) - Method in class com.imsl.io.MPSReader
Returns the lower range value for a constraint equation.
getMA() - Method in class com.imsl.stat.ARMA
Returns the final moving average parameter estimates.
getMA() - Method in class com.imsl.stat.GARCH
Returns the estimated values of moving average (MA) parameters.
getMahalanobis() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the Mahalanobis distances between the group means.
getMajorTick() - Method in class com.imsl.chart.Axis1D
Returns the major tick node associated with this axis.
getMajorTick() - Method in class com.imsl.chart3d.Axis3D
Returns the major tick node associated with this axis.
getMap() - Method in class com.imsl.chart.DrawMap
Returns the body of the HTML imagemap.
getMapName() - Method in class com.imsl.chart.JspBean
Returns the name of the client-size imagemap.
getMarkerColor() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "MarkerColor" attribute.
getMarkerDashPattern() - Method in class com.imsl.chart.ChartNode
Returns the value of the "MarkerPattern" attribute.
getMarkerPulsingCycle() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerPulsingCycle" attribute.
getMarkerPulsingCycleOffset() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerPulsingCycleOffset" attribute.
getMarkerPulsingMaximumScale() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerPulsingMaximumScale" attribute.
getMarkerPulsingMinimumScale() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerPulsingMinimumScale" attribute.
getMarkerRotatingAxis() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerRotatingAxis" attribute.
getMarkerRotatingCycle() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerRotatingCycle" attribute.
getMarkerRotatingCycleOffset() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerRotatingCycleOffset" attribute.
getMarkerSize() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "MarkerSize" attribute.
getMarkerThickness() - Method in class com.imsl.chart.ChartNode
Returns the value of the "MarkerThickness" attribute.
getMarkerType() - Method in class com.imsl.chart.ChartNode
Returns the value of the "MarkerType" attribute.
getMarkerType() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "MarkerType" attribute.
getMaterial() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Material" attribute.
getMaxDifference() - Method in class com.imsl.stat.NormalityTest
Returns the maximum absolute difference between the empirical and the theoretical distributions for the Lilliefors test.
getMaximum() - Method in class com.imsl.stat.Summary
Returns the maximum.
getMaximum() - Method in class com.imsl.stat.TableOneWay
Returns maximum value of x.
getMaximumTime() - Method in class com.imsl.math.MinConNLP
Returns the maximum time allowed for the solve step.
getMaximumValue() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the maximum value of the observations.
getMaximumX() - Method in class com.imsl.stat.TableTwoWay
Returns the maximum value of x.
getMaximumY() - Method in class com.imsl.stat.TableTwoWay
Returns the maximum value of y.
getMean() - Method in class com.imsl.stat.AutoCorrelation
Returns the mean of the time series x.
getMean() - Method in class com.imsl.stat.NormOneSample
Returns the mean of the sample.
getMean() - Method in class com.imsl.stat.Summary
Returns the population mean.
getMeanEstimate() - Method in class com.imsl.stat.ARMA
Returns an update of the mean of the time series z.
getMeanOfY() - Method in class com.imsl.stat.ANOVA
Returns the mean of the response (dependent variable).
getMeanX() - Method in class com.imsl.stat.CrossCorrelation
Returns the mean of the time series x.
getMeanX() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the mean of each channel of x.
getMeanX() - Method in class com.imsl.stat.NormTwoSample
Returns the mean of the first sample, x.
getMeanY() - Method in class com.imsl.stat.CrossCorrelation
Returns the mean of the time series y.
getMeanY() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the mean of each channel of y.
getMeanY() - Method in class com.imsl.stat.NormTwoSample
Returns the mean of the second sample, y.
getMeans() - Method in class com.imsl.stat.ANOVAFactorial
Returns the subgroup means.
getMeans() - Method in class com.imsl.stat.Covariances
Returns the means of the variables in x.
getMeans() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the variable means.
getMedian() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the median value.
getMedianLowerConfidenceInterval() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the lower confidence interval for the median.
getMedianUpperConfidenceInterval() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the upper confidence interval for the median.
getMetaData() - Method in class com.imsl.io.AbstractFlatFile
Retrieves the number, types and properties of this ResultSet object's columns.
getMinimum() - Method in class com.imsl.stat.Summary
Returns the minimum.
getMinimum() - Method in class com.imsl.stat.TableOneWay
Returns the minimum value of x.
getMinimumValue() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the minimum value of the observations.
getMinimumX() - Method in class com.imsl.stat.TableTwoWay
Returns the minimum value of x.
getMinimumY() - Method in class com.imsl.stat.TableTwoWay
Returns the minimum value of y.
getMinorTick() - Method in class com.imsl.chart.Axis1D
Returns the minor tick node associated with this axis.
getModelErrorStdev() - Method in class com.imsl.stat.ANOVA
Returns the estimated standard deviation of the model error.
getModelMeanSquare() - Method in class com.imsl.stat.ANOVA
Returns the model mean square.
getMonthBasis() - Method in class com.imsl.finance.DayCountBasis
Returns the (days in month) portion of the Day Count Basis.
getNCells() - Method in class com.imsl.stat.TableMultiWay.UnbalancedTable
Returns the number of non-empty cells.
getNRowsMissing() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the number of rows of data in x that contain missing values in one or more specific columns of x.
getNRowsMissing() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the number of rows of data encountered containing missing values (NaN).
getNTimes() - Static method in class com.imsl.stat.KaplanMeierECDF
Retrieves the number of points in the empirical CDF
getName() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Name" attribute.
getName() - Method in class com.imsl.io.MPSReader.Row
Returns the name of this row.
getName() - Method in class com.imsl.io.MPSReader
Returns the name of the MPS problem.
getNameBounds() - Method in class com.imsl.io.MPSReader
Returns the name of the BOUNDS set.
getNameColumn(int) - Method in class com.imsl.io.MPSReader
Returns the name of a constraint column.
getNameObjective() - Method in class com.imsl.io.MPSReader
Returns the name of the free row containing the objective.
getNameRHS() - Method in class com.imsl.io.MPSReader
Returns the name of the RHS section.
getNameRanges() - Method in class com.imsl.io.MPSReader
Returns the name of the RANGES set.
getNameRow(int) - Method in class com.imsl.io.MPSReader
Returns the name of a contraint row.
getNetwork() - Method in class com.imsl.datamining.neural.BinaryClassification
Returns the network being used for classification.
getNetwork() - Method in class com.imsl.datamining.neural.MultiClassification
Returns the network being used for classification.
getNode() - Method in class com.imsl.chart.PickEvent
Gets this ChartNode.
getNodes() - Method in class com.imsl.datamining.neural.InputLayer
Return the Perceptrons in the InputLayer.
getNodes() - Method in class com.imsl.datamining.neural.Layer
Return a list of the Perceptrons in this Layer.
getNodes() - Method in class com.imsl.datamining.neural.OutputLayer
Return the Perceptrons in the OutputLayer.
getNormalScores(double[]) - Method in class com.imsl.stat.Ranks
Gets the expected value of normal order statistics (for tied observations, the average of the expected normal scores).
getNotch() - Method in class com.imsl.chart.BoxPlot
Gets the "Notch" attribute value.
getNumPositiveDev() - Method in class com.imsl.stat.SignTest
Returns the number of positive differences.
getNumRowMissing() - Method in class com.imsl.stat.Covariances
Returns the total number of observations that contain any missing values (Double.NaN).
getNumZeroDev() - Method in class com.imsl.stat.SignTest
Returns the number of zero differences.
getNumber() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Number" attribute.
getNumberFormat() - Method in class com.imsl.math.PrintMatrixFormat
Returns the NumberFormat to be used in formatting double and Complex entries.
getNumberGridPointsX() - Method in class com.imsl.chart3d.Surface
Returns the value of the "NumberGridPointsX" attribute.
getNumberGridPointsY() - Method in class com.imsl.chart3d.Surface
Returns the value of the "NumberGridPointsY" attribute.
getNumberObservations() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the number of observations.
getNumberOfBinaryConstraints() - Method in class com.imsl.io.MPSReader
Returns the number of binary constraints.
getNumberOfClasses() - Method in class com.imsl.datamining.neural.UnsupervisedNominalFilter
Retrieves the number of classes in the nominal variable.
getNumberOfClasses() - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Retrieves the number of categories associated with this ordinal variable.
getNumberOfColumns() - Method in class com.imsl.io.MPSReader
Returns the number of columns in the constraint matrix.
getNumberOfEpochs() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the number of epochs used during stage I training.
getNumberOfInputs() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the number of inputs to the Network.
getNumberOfInputs() - Method in class com.imsl.datamining.neural.Network
Returns the number of Network inputs.
getNumberOfIntegerConstraints() - Method in class com.imsl.io.MPSReader
Returns the number of integer constraints.
getNumberOfLinks() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the number of Links in the Network.
getNumberOfLinks() - Method in class com.imsl.datamining.neural.Network
Returns the number of Network Links among the nodes.
getNumberOfNonZeros() - Method in class com.imsl.io.MPSReader.Row
Returns the number of nonzero elements in this row.
getNumberOfNonZeros() - Method in class com.imsl.io.MPSReader
Returns the number of nonzeros in the constraint matrix.
getNumberOfOutputs() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the number of outputs from the Network.
getNumberOfOutputs() - Method in class com.imsl.datamining.neural.Network
Returns the number of Network output Perceptrons.
getNumberOfRows() - Method in class com.imsl.io.MPSReader
Returns the number of rows in the constraint matrix.
getNumberOfThreads() - Method in class com.imsl.datamining.neural.EpochTrainer
Gets the number of threads to use during stage I training.
getNumberOfWeights() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the number of weights in the Network.
getNumberOfWeights() - Method in class com.imsl.datamining.neural.Network
Returns the number of weights in the Network.
getNvalues() - Method in class com.imsl.stat.TableMultiWay.BalancedTable
Returns an array of length nKeys containing in its i-th element (i=0,1,...nKeys-1), the number of levels or categories of the i-th classification variable (column).
getObject(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
getObject(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
getObject(int, Map) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
getObject(String, Map) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
getObject(int) - Method in class com.imsl.io.FlatFile
Gets the value of the designated column in the current row of this ResultSet object as an Object in the Java programming language.
getObjective() - Method in class com.imsl.io.MPSReader
Returns the objective as a Row.
getObjectiveCoefficients() - Method in class com.imsl.io.MPSReader
Returns the coefficents of the objective row.
getObjectiveValue() - Method in class com.imsl.math.MinConGenLin
Returns the value of the objective function.
getObsPerCluster(int) - Method in class com.imsl.stat.ClusterHierarchical
Returns the number of observations in each cluster.
getObservations() - Method in class com.imsl.stat.Covariances
Returns the sum of the frequencies.
getObservationsLost() - Method in class com.imsl.stat.Difference
Returns the number of observations lost because of differencing the time series.
getObservedResponse() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the observed response for an observation.
getOffset() - Method in class com.imsl.chart.Text
Returns the offset.
getOpen() - Method in class com.imsl.chart.HighLowClose
Gets the value of the attribute "Open".
getOptimalValue() - Method in class com.imsl.math.DenseLP
Returns the optimal value of the objective function.
getOptimalValue() - Method in class com.imsl.math.LinearProgramming
Returns the optimal value of the objective function.
getOptimizedCriterion() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the optimized criterion.
getOrbit() - Method in class com.imsl.chart3d.Chart3D
Returns the value of the "Orbit" attribute.
getOrder() - Method in class com.imsl.chart.Dendrogram
Convenience routine to get the "Order" attribute.
getOutputLayer() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the OutputLayer.
getOutputLayer() - Method in class com.imsl.datamining.neural.Network
Returns the OutputLayer.
getOutsideMarkers() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the array of outside markers.
getOutsideMarkers() - Method in class com.imsl.chart.BoxPlot
Returns the OutsideMarkers node.
getP() - Method in class com.imsl.stat.ANOVA
Returns the p-value.
getP() - Method in class com.imsl.stat.ChiSquaredTest
Returns the p-value for the chi-squared statistic.
getP() - Method in class com.imsl.stat.ContingencyTable
Returns the Pearson chi-squared p-value for independence of rows and columns.
getPValue(int) - Method in class com.imsl.stat.LinearRegression.CoefficientTTests
Returns the p-value for the two-sided test.
getPValue(int) - Method in class com.imsl.stat.StepwiseRegression.CoefficientTTests
Returns the p-value for the two-sided test H_0 : {
  beta} = 0 vs.
getPaint() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Paint" attribute.
getPanel() - Method in class com.imsl.chart.JFrameChart
Returns the JPanelChart into which the chart is drawn.
getParamEstimatesCovariance() - Method in class com.imsl.stat.ARMA
Returns the covariances of parameter estimates.
getParameterUpdates() - Method in class com.imsl.stat.FactorAnalysis
Returns the parameter updates.
getParameters() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the parameter estimates and associated statistics.
getParent() - Method in class com.imsl.chart.ChartNode
Returns the parent of this node.
getParent() - Method in class com.imsl.chart3d.ChartNode3D
Returns the parent of this node.
getPartialAutoCorrelations() - Method in class com.imsl.stat.AutoCorrelation
Returns the sample partial autocorrelation function of the stationary time series x.
getPercentages() - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Retrieves the cumulative percentages used for encoding and decoding.
getPercents() - Method in class com.imsl.stat.FactorAnalysis
Returns the cumulative percent of the total variance explained by each principal component.
getPerceptrons() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the Perceptrons in this Network.
getPerceptrons() - Method in class com.imsl.datamining.neural.Network
Returns an array containing the Perceptrons in the Network.
getPermute() - Method in class com.imsl.math.QR
Returns an integer vector containing information about the permutation of the elements of the matrix during pivoting.
getPhi() - Method in class com.imsl.stat.ContingencyTable
Returns phi.
getPieSlice() - Method in class com.imsl.chart.Pie
Returns the PieSlice objects.
getPieSlice(int) - Method in class com.imsl.chart.Pie
Returns a specified PieSlice.
getPooledVariance() - Method in class com.imsl.stat.NormTwoSample
Returns the Pooled variance for the two samples.
getPosition() - Method in class com.imsl.chart3d.ColormapLegend
Returns the position of the legend.
getPosition() - Method in class com.imsl.chart3d.PointLight
Returns the value of the "Position" attribute.
getPredictedResponse() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the predicted response for an observation.
getPredictionError() - Method in class com.imsl.stat.KalmanFilter
Returns the one-step-ahead prediction error.
getPredictionInterval() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Prediction Interval for an observation.
getPrimalSolution() - Method in class com.imsl.math.DenseLP
Returns the solution x of the linear programming problem.
getPrimalSolution() - Method in class com.imsl.math.LinearProgramming
Returns the solution x of the linear programming problem.
getPrior() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the prior probabilities.
getProbability() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns the posterior probabilities for each observation.
getProduct() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the inverse of the Hessian times the gradient vector computed at the input parameter estimates.
getPsiWeights() - Method in class com.imsl.stat.ARMA
Returns the psi weights of the infinite order moving average form of the model.
getQ() - Method in class com.imsl.math.QR
Returns the orthogonal or unitary matrix Q.
getQ() - Method in class com.imsl.stat.EmpiricalQuantiles
Returns the empirical quantiles.
getR() - Method in class com.imsl.math.Cholesky
Returns the R matrix that results from the Cholesky factorization.
getR() - Method in class com.imsl.math.QR
Returns the upper trapezoidal matrix R.
getR() - Method in class com.imsl.stat.LinearRegression
Returns a copy of the R matrix.
getR() - Method in class com.imsl.stat.NonlinearRegression
Returns a copy of the R matrix.
getRSquared() - Method in class com.imsl.stat.ANOVA
Returns the R-squared (in percent).
getRadialFunction() - Method in class com.imsl.math.RadialBasis
Returns the radial function.
getRadius(int) - Method in class com.imsl.math.ZeroPolynomial
Returns an a-posteriori absolute error bound on the root.
getRandom() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the random number generator used to perturb the stage 1 guesses.
getRandomSampleIndicies() - Method in class com.imsl.datamining.neural.EpochTrainer
Gets the random number generators used to select random training patterns in stage 1.
getRank() - Method in class com.imsl.math.QR
Returns the rank of the matrix used to construct this instance.
getRank() - Method in class com.imsl.math.SVD
Returns the rank of the matrix used to construct this instance.
getRank() - Method in class com.imsl.stat.KalmanFilter
Returns the rank of the variance-covariance matrix for all the observations.
getRank() - Method in class com.imsl.stat.LinearRegression
Returns the rank of the matrix.
getRank() - Method in class com.imsl.stat.NonlinearRegression
Returns the rank of the matrix.
getRanks(double[]) - Method in class com.imsl.stat.Ranks
Gets the rank for each observation.
getRef(int) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Ref object in the Java programming language.
getRef(String) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a Ref object in the Java programming language.
getReference() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Reference" attribute.
getResidual() - Method in class com.imsl.stat.ARMA
Returns the residuals.
getResidual() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Residual for an observation.
getResiduals() - Method in class com.imsl.math.BoundedLeastSquares
Returns the residuals at the approximate solution.
getRightSons() - Method in class com.imsl.chart.Dendrogram
Convenience routine to get the "RightSons" attribute.
getRoot(int) - Method in class com.imsl.math.ZeroPolynomial
Returns a zero of the polynomial.
getRoots() - Method in class com.imsl.math.ZeroPolynomial
Returns the zeros of the polynomial.
getRow() - Method in class com.imsl.io.AbstractFlatFile
Retrieves the current row number.
getRow(int) - Method in class com.imsl.io.MPSReader
Returns a row of the constraint matrix or a free row.
getRowCoefficients(int) - Method in class com.imsl.io.MPSReader
Returns the coefficents of a row.
getS() - Method in class com.imsl.math.SVD
Returns the singular values.
getSSE() - Method in class com.imsl.stat.NonlinearRegression
Returns the sums of squares for error.
getSSResidual() - Method in class com.imsl.stat.ARMA
Returns the sum of squares of the random shock.
getSampleStandardDeviation() - Method in class com.imsl.stat.Summary
Returns the sample standard deviation.
getSampleVariance() - Method in class com.imsl.stat.Summary
Returns the sample variance.
getSavageScores(double[]) - Method in class com.imsl.stat.Ranks
Gets the Savage scores (the expected value of exponential order statistics).
getScaleFont() - Method in class com.imsl.chart.Draw
Returns the factor by which fonts are to be scaled.
getScreenAxis() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ScreenAxis" attribute.
getScreenSize() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ScreenSize" attribute.
getScreenViewport() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Viewport" attribute scaled by the screen size.
getShapiroWilkW() - Method in class com.imsl.stat.NormalityTest
Returns the Shapiro-Wilk W statistic for the Shapiro-Wilk W test.
getShort(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a short in the Java programming language.
getShort(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a short in the Java programming language.
getSigma() - Method in class com.imsl.stat.GARCH
Returns the estimated value of sigma squared.
getSize() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Size" attribute.
getSize(Text) - Method in class com.imsl.chart.Draw
Returns the size of the bounding box for a text object.
getSize() - Method in class com.imsl.chart.JspBean
Returns the size of the generated image.
getSkewness() - Method in class com.imsl.stat.Summary
Returns the skewness.
getSkip() - Method in class com.imsl.stat.FaureSequence
Returns the number of points skipped at the beginning of the sequence.
getSkipWeekends() - Method in class com.imsl.chart.ChartNode
Returns the value of the "SkipWeekends" attribute.
getSolution() - Method in class com.imsl.math.BoundedLeastSquares
Returns the solution.
getSolution() - Method in class com.imsl.math.MinConGenLin
Returns the computed solution.
getSolution() - Method in class com.imsl.math.MinConNLP
Returns the solution.
getSolution() - Method in class com.imsl.math.QuadraticProgramming
Returns the solution.
getSpline() - Method in class com.imsl.math.BSpline
Returns a Spline representation of the B-spline.
getSpread() - Method in class com.imsl.datamining.neural.ScaleFilter
Retrieves the measure of spread to be used during scaling.
getStage1Trainer() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the stage 1 trainer.
getStage2Trainer() - Method in class com.imsl.datamining.neural.EpochTrainer
Returns the stage 1 trainer.
getStandardDeviation() - Method in class com.imsl.stat.Summary
Returns the population standard deviation.
getStandardError(int) - Method in class com.imsl.stat.LinearRegression.CoefficientTTests
Returns the estimated standard error for a coefficient estimate.
getStandardError(int) - Method in class com.imsl.stat.StepwiseRegression.CoefficientTTests
Returns the estimated standard error for a coefficient estimate.
getStandardErrors(int) - Method in class com.imsl.stat.AutoCorrelation
Returns the standard errors of the autocorrelations of the time series x.
getStandardErrors(int) - Method in class com.imsl.stat.CrossCorrelation
Returns the standard errors of the cross-correlations between the time series x and y.
getStandardErrors() - Method in class com.imsl.stat.FactorAnalysis
Returns the estimated asymptotic standard errors of the eigenvalues.
getStandardizedResidual() - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Returns the Standardized Residual for an observation.
getStateVector() - Method in class com.imsl.stat.KalmanFilter
Returns the estimated state vector at time k + 1 given the observations through time k.
getStatement() - Method in class com.imsl.io.AbstractFlatFile
Returns the Statement object that produced this ResultSet object.
getStatistics() - Method in class com.imsl.chart.BoxPlot
Returns an array of BoxPlot.Statistics objects, one for each set of observations.
getStatistics(int) - Method in class com.imsl.chart.BoxPlot
Returns a BoxPlot.Statistics for a set of observations.
getStatistics() - Method in class com.imsl.stat.ContingencyTable
Returns the statistics associated with this table.
getStatistics() - Method in class com.imsl.stat.DiscriminantAnalysis
Returns statistics.
getStatistics() - Method in class com.imsl.stat.FactorAnalysis
Returns statistics.
getStatistics() - Method in class com.imsl.stat.SelectionRegression
Returns a new Statistics object.
getStatistics() - Method in class com.imsl.stat.WilcoxonRankSum
Returns the statistics.
getStatus(int) - Method in class com.imsl.math.ZeroPolynomial
Returns the error status of a root.
getStdDev() - Method in class com.imsl.stat.NormOneSample
Returns the standard deviation of the sample.
getStdDevX() - Method in class com.imsl.stat.NormTwoSample
Returns the standard deviation of the first sample.
getStdDevY() - Method in class com.imsl.stat.NormTwoSample
Returns the standard deviation of the second sample.
getString() - Method in class com.imsl.chart.Text
Gets the string for this Text object.
getString(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a String in the Java programming language.
getString(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a String in the Java programming language.
getStringAttribute(String) - Method in class com.imsl.chart.AbstractChartNode
Convenience routine to get a String-valued attribute.
getSumOfSquares() - Method in class com.imsl.stat.KalmanFilter
Returns the generalized sum of squares.
getSumOfSquaresForError() - Method in class com.imsl.stat.ANOVA
Returns the sum of squares for error.
getSumOfSquaresForModel() - Method in class com.imsl.stat.ANOVA
Returns the sum of squares for model.
getSumOfWeights() - Method in class com.imsl.stat.Covariances
Returns the sum of the weights of all observations.
getSurfaceType() - Method in class com.imsl.chart3d.Surface
Returns the attribute "SurfaceType".
getSwept() - Method in class com.imsl.stat.StepwiseRegression
Returns an array containing information indicating whether or not a particular variable is in the model.
getTStatistic(int) - Method in class com.imsl.stat.LinearRegression.CoefficientTTests
Returns the t-statistic for the test that the i-th coefficient is zero.
getTStatistic(int) - Method in class com.imsl.stat.StepwiseRegression.CoefficientTTests
Returns the student-t test statistic for testing the i-th coefficient equal to zero ({beta}_{index} = 0).
getTTest() - Method in class com.imsl.stat.NormOneSample
Returns the test statistic associated with the t test.
getTTest() - Method in class com.imsl.stat.NormTwoSample
Returns the test statistic for the Satterthwaite's approximation.
getTTestDF() - Method in class com.imsl.stat.NormOneSample
Returns the degrees of freedom associated with the t test for the mean.
getTTestDF() - Method in class com.imsl.stat.NormTwoSample
Returns the degrees of freedom for the Satterthwaite's approximation for t-test for either equal or unequal variances, depending on the value set by setUnequalVariances.
getTTestP() - Method in class com.imsl.stat.NormOneSample
Returns the probability associated with the t test of a larger t in absolute value.
getTTestP() - Method in class com.imsl.stat.NormTwoSample
Returns the approximate probability of a larger t for the Satterthwaite's approximation for equal or unequal variances.
getTable() - Method in class com.imsl.stat.TableMultiWay.BalancedTable
Returns an array containing the frequencies for each variable.
getTable() - Method in class com.imsl.stat.TableMultiWay.UnbalancedTable
Returns the frequency for each cell.
getTerminationCriterion() - Method in class com.imsl.math.MinConNLP
Returns the reason the solve step terminated.
getTestEffects() - Method in class com.imsl.stat.ANOVAFactorial
Returns statistics relating to the sums of squares for the effects in the model.
getTextAngle() - Method in class com.imsl.chart.ChartNode
Returns the value of the "TextAngle" attribute.
getTextColor() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "TextColor" attribute.
getTextColor() - Method in class com.imsl.chart.ChartNode
Returns the value of the "TextColor" attribute.
getTextFormat() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "TextFormat" attribute.
getTickInterval() - Method in class com.imsl.chart.Axis1D
Retrieves the tick interval.
getTickInterval() - Method in class com.imsl.chart.AxisR
Retrieves the tick interval.
getTickInterval() - Method in class com.imsl.chart3d.Axis3D
Retrieves the tick interval.
getTickLength() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "TickLength" attribute.
getTicks() - Method in class com.imsl.chart.Axis1D
Returns the value of the "Ticks" attribute, if set.
getTicks() - Method in class com.imsl.chart.AxisR
Returns the value of the "Ticks" attribute, if set.
getTicks() - Method in class com.imsl.chart.AxisTheta
Returns the value of the "Ticks" attribute, if set.
getTicks() - Method in class com.imsl.chart3d.Axis3D
Returns the value of the "Ticks" attribute, if set.
getTicks() - Method in class com.imsl.chart3d.ColormapLegend
Returns the value of the "Ticks" attribute, if set.
getTime(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.
getTime(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.
getTime(int, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.
getTime(String, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Time object in the Java programming language.
getTimes() - Static method in class com.imsl.stat.KaplanMeierECDF
Retrieves the time values where the step function CDF jumps to a greater value.
getTimestamp(int) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object in the Java programming language.
getTimestamp(String) - Method in class com.imsl.io.AbstractFlatFile
Gets the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object.
getTimestamp(int, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object in the Java programming language.
getTimestamp(String, Calendar) - Method in class com.imsl.io.AbstractFlatFile
Returns the value of the designated column in the current row of this ResultSet object as a java.sql.Timestamp object in the Java programming language.
getTitle() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Title" attribute.
getTitle() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Title" attribute.
getTo() - Method in class com.imsl.datamining.neural.Link
Returns the destination Node for this Link.
getTolerance() - Method in class com.imsl.chart.DrawMap
Get the minimum distance that an event can be from a point or a line and still be considered a hit.
getTolerance() - Method in class com.imsl.chart.DrawPick
Get the minimum distance that an event can be from a point or a line and still be considered a hit.
getTolerance() - Method in class com.imsl.math.MinConNLP
Returns the desired precision of the solution.
getToolTip() - Method in class com.imsl.chart.ChartNode
Returns the value of the "ToolTip" attribute.
getTotalDegreesOfFreedom() - Method in class com.imsl.stat.ANOVA
Returns the total degrees of freedom.
getTotalMissing() - Method in class com.imsl.stat.ANOVA
Returns the total number of missing values.
getTotalMissing() - Method in class com.imsl.stat.EmpiricalQuantiles
Returns the total number of missing values.
getTotalSumOfSquares() - Method in class com.imsl.stat.ANOVA
Returns the total sum of squares.
getTrainingIterations() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the number of iterations used during training.
getTransform() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Transform" attribute.
getTransform() - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Retrieves the transform flag used for encoding and decoding.
getTukeyScores(double[]) - Method in class com.imsl.stat.Ranks
Gets the Tukey version of normal scores for each observation.
getType() - Method in class com.imsl.chart.Axis1D
Returns the axis type.
getType() - Method in class com.imsl.chart.Grid
Returns the axis type.
getType() - Method in class com.imsl.chart3d.Axis3D
Returns the axis type.
getType() - Method in class com.imsl.io.AbstractFlatFile
Returns the type of this ResultSet object.
getTypeVariable(int) - Method in class com.imsl.io.MPSReader
Returns the type of a variable.
getU() - Method in class com.imsl.math.SVD
Returns the left singular vectors.
getURL(String) - Method in class com.imsl.io.AbstractFlatFile
Retrieves the value of the designated column in the current row of this ResultSet object as a java.net.URL object.
getURL(int) - Method in class com.imsl.io.AbstractFlatFile
Retrieves the value of the designated column in the current row of this ResultSet object as a java.net.URL object.
getUnbalancedTable() - Method in class com.imsl.stat.TableMultiWay
Returns an object containing the unbalanced table.
getUp() - Method in class com.imsl.chart.Candlestick
Returns the CandlestickItem for up days.
getUpperAdjacentValue() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the lower adjacent value.
getUpperBound(int) - Method in class com.imsl.io.MPSReader
Returns the upper bound for a variable.
getUpperCICommonVariance() - Method in class com.imsl.stat.NormTwoSample
Returns the upper confidence limits for the common, or pooled, variance.
getUpperCIDiff() - Method in class com.imsl.stat.NormTwoSample
Returns the upper confidence limit for the mean of the first population minus the mean of the second for equal or unequal variances depending on the value set by setUnequalVariances.
getUpperCIMean() - Method in class com.imsl.stat.NormOneSample
Returns the upper confidence limit for the mean.
getUpperCIRatioVariance() - Method in class com.imsl.stat.NormTwoSample
Returns the approximate upper confidence limit for the ratio of the variance of the first population to the second.
getUpperCIVariance() - Method in class com.imsl.stat.NormOneSample
Returns the upper confidence limits for the variance.
getUpperQuartile() - Method in class com.imsl.chart.BoxPlot.Statistics
Returns the upper quartile value.
getUpperRange(int) - Method in class com.imsl.io.MPSReader
Returns the upper range value for a constraint equation.
getUseBackPropagation() - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Returns the use back propagation setting.
getV() - Method in class com.imsl.math.SVD
Returns the right singular vectors.
getValue() - Method in class com.imsl.datamining.neural.InputNode
Returns the value of this node.
getValue() - Method in class com.imsl.datamining.neural.OutputPerceptron
Returns the value of the output perceptron determined using the current network state and inputs.
getValue() - Method in class com.imsl.io.MPSReader.Element
Returns the value of the element.
getValues() - Method in class com.imsl.math.Eigen
Returns the eigenvalues of a matrix of type double.
getValues() - Method in class com.imsl.math.SymEigen
Returns the eigenvalues
getValues() - Method in class com.imsl.stat.FactorAnalysis
Returns the eigenvalues.
getValues() - Method in class com.imsl.stat.TableMultiWay.BalancedTable
Returns the values of the classification variables.
getVanDerWaerdenScores(double[]) - Method in class com.imsl.stat.Ranks
Gets the Van der Waerden version of normal scores for each observation.
getVarCovarMatrix() - Method in class com.imsl.stat.GARCH
Returns the variance-covariance matrix.
getVariance() - Method in class com.imsl.stat.ARMA
Returns the variance of the time series z.
getVariance() - Method in class com.imsl.stat.AutoCorrelation
Returns the variance of the time series x.
getVariance() - Method in class com.imsl.stat.Summary
Returns the population variance.
getVarianceX() - Method in class com.imsl.stat.CrossCorrelation
Returns the variance of time series x.
getVarianceX() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the variances of the channels of x.
getVarianceY() - Method in class com.imsl.stat.CrossCorrelation
Returns the variance of time series y.
getVarianceY() - Method in class com.imsl.stat.MultiCrossCorrelation
Returns the variances of the channels of y.
getVariances() - Method in class com.imsl.stat.FactorAnalysis
Gets the unique variances.
getVectors() - Method in class com.imsl.math.Eigen
Returns the eigenvectors.
getVectors() - Method in class com.imsl.math.SymEigen
Return the eigenvectors of a symmetric matrix of type double.
getVectors() - Method in class com.imsl.stat.FactorAnalysis
Returns the eigenvectors.
getViewPlatformTransformation(Transform3D) - Method in class com.imsl.chart3d.Chart3D
Sets the transformation for the view platform.
getViewport() - Method in class com.imsl.chart.ChartNode
Returns the value of the "Viewport" attribute.
getViewport() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Viewport" attribute.
getVirtualUniverse() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Universe" attribute.
getVisibleFaces() - Method in class com.imsl.chart3d.AxisBox
Returns the flag indicating which faces of the box are to be drawn.
getWarning() - Static method in class com.imsl.Warning
Gets the WarningObject.
getWarnings() - Method in class com.imsl.io.AbstractFlatFile
Returns the first warning reported by calls on this ResultSet object.
getWeight() - Method in class com.imsl.datamining.neural.Link
Returns the weight for this Link.
getWeights() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Returns the weights for the Links in this network.
getWeights() - Method in class com.imsl.datamining.neural.Network
Returns the weights.
getWhiskers() - Method in class com.imsl.chart.BoxPlot
Returns the Whiskers node.
getWindow() - Method in class com.imsl.chart.Axis1D
Returns the window for an Axis1D.
getWindow() - Method in class com.imsl.chart.AxisR
Returns the Window attribute.
getWindow() - Method in class com.imsl.chart.AxisTheta
Returns the window for an AxisTheta.
getWindow() - Method in class com.imsl.chart3d.Axis3D
Returns the window for an Axis1D.
getWindow() - Method in class com.imsl.chart3d.ColormapLegend
Returns the window for a ColormapLegend.
getX() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "X" attribute.
getX() - Method in class com.imsl.stat.GARCH
Returns the estimated parameter array, x.
getXHi() - Method in class com.imsl.stat.EmpiricalQuantiles
Returns the smallest element of x greater than or equal to the desired quantile.
getXLo() - Method in class com.imsl.stat.EmpiricalQuantiles
Returns the largest element of x less than or equal to the desired quantile.
getY() - Method in class com.imsl.chart.AbstractChartNode
Returns the value of the "Y" attribute.
getYearBasis() - Method in class com.imsl.finance.DayCountBasis
Returns the (days in year) portion of the Day Count Basis.
getZ() - Method in class com.imsl.chart3d.ChartNode3D
Returns the value of the "Z" attribute.
go_to(int) - Static method in class com.imsl.Dummy
 
gradient(double[], double[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective
 
gradient(double[], double[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
 
gradient(double[], double[]) - Method in interface com.imsl.math.MinConGenLin.Gradient
Public interface for the user-supplied function to compute the gradient at point x.
gradient(double[], int, double[]) - Method in interface com.imsl.math.MinConNLP.Gradient
Computes the value of the gradient of the function at the given point.
gradient(int, int, double[], boolean[], double, double[], double[], double[][]) - Method in interface com.imsl.math.MinConNonlin.Gradient
Deprecated. Computes the value of the gradient of the function at the given point.
gradient(double[], double[]) - Method in interface com.imsl.math.MinUnconMultiVar.Gradient
Public interface for the gradient of the multivariate function to be minimized.
gradient(double[]) - Method in class com.imsl.math.RadialBasis
Returns the gradient of the radial basis approximation at a point.
graphics - Variable in class com.imsl.chart.Draw
 

H

Heatmap - class com.imsl.chart.Heatmap.
Heatmap creates a chart from a two-dimensional array of double precision values or Color values.
Heatmap(AxisXY, double, double, double, double, Color[][]) - Constructor for class com.imsl.chart.Heatmap
Creates a Heatmap from an array of Color values.
Heatmap(AxisXY, double, double, double, double, double, double, double[][], Colormap) - Constructor for class com.imsl.chart.Heatmap
Creates a Heatmap from an array of double values and a Colormap.
Heatmap.Legend - class com.imsl.chart.Heatmap.Legend.
A legend for use with a heatmap.
HiddenLayer - class com.imsl.datamining.neural.HiddenLayer.
Hidden layer in a neural network.
HighLowClose - class com.imsl.chart.HighLowClose.
High-low-close plot of stock data.
HighLowClose(AxisXY, Date, double[], double[], double[]) - Constructor for class com.imsl.chart.HighLowClose
Constructs a high-low-close chart node beginning with specified start date.
HighLowClose(AxisXY, Date, double[], double[], double[], double[]) - Constructor for class com.imsl.chart.HighLowClose
Constructs a high-low-close-open chart node beginning with specified start date.
HighLowClose(AxisXY, double[], double[], double[], double[]) - Constructor for class com.imsl.chart.HighLowClose
Constructs a high-low-close chart node at specified axis points.
HighLowClose(AxisXY, double[], double[], double[], double[], double[]) - Constructor for class com.imsl.chart.HighLowClose
Constructs a high-low-close-open chart node at specified axis points.
HyperRectangleQuadrature - class com.imsl.math.HyperRectangleQuadrature.
HyperRectangleQuadrature integrates a function over a hypercube.
HyperRectangleQuadrature(int) - Constructor for class com.imsl.math.HyperRectangleQuadrature
Constructs a HyperRectangleQuadrature object.
HyperRectangleQuadrature(RandomSequence) - Constructor for class com.imsl.math.HyperRectangleQuadrature
Constructs a HyperRectangleQuadrature object.
HyperRectangleQuadrature.Function - interface com.imsl.math.HyperRectangleQuadrature.Function.
Public interface function for the HyperRectangleQuadrature class.
Hyperbolic - class com.imsl.math.Hyperbolic.
Pure Java implementation of the hyperbolic functions and their inverses.
hasMoreTokens() - Method in class com.imsl.io.Tokenizer
Returns true if a call to nextToken will not generate an exception.
hashCode() - Method in class com.imsl.math.Complex
Returns a hashcode for this Complex.
haveErrorBarProperties - Variable in class com.imsl.chart.Draw
 
haveFillProperties - Variable in class com.imsl.chart.Draw
 
haveImageProperties - Variable in class com.imsl.chart.Draw
 
haveLineProperties - Variable in class com.imsl.chart.Draw
 
haveMarkerProperties - Variable in class com.imsl.chart.Draw
 
haveTextProperties - Variable in class com.imsl.chart.Draw
 
horizontalStripe(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a horizontally striped pattern.
hypergeometric(int, int, int, int) - Static method in class com.imsl.stat.Cdf
Evaluates the hypergeometric cumulative probability distribution function.
hypergeometricProb(int, int, int, int) - Static method in class com.imsl.stat.Cdf
Evaluates the hypergeometric probability density function.

I

I(double, int) - Static method in class com.imsl.math.Bessel
Evaluates a sequence of modified Bessel functions of the first kind with integer order and real argument.
I(double, double, int) - Static method in class com.imsl.math.Bessel
Evaluates a sequence of modified Bessel functions of the first kind with real order and real argument.
IEEE - class com.imsl.math.IEEE.
Pure Java implementation of the IEEE 754 functions as specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).
IEEEremainder(double, double) - Static method in class com.imsl.math.JMath
Returns the IEEE remainder from x divided by p.
IMAGE - Static variable in class com.imsl.chart.Draw
 
IMAGE_FACTOR_ANALYSIS - Static variable in class com.imsl.stat.FactorAnalysis
Indicates image factor analysis.
IMSLException - exception com.imsl.IMSLException.
Signals that a mathematical exception has occurred.
IMSLException() - Constructor for class com.imsl.IMSLException
Constructs an IMSLException with no detail message.
IMSLException(String) - Constructor for class com.imsl.IMSLException
Constructs an IMSLException with the specified detail message.
IMSLException(String, String, Object[]) - Constructor for class com.imsl.IMSLException
Constructs an IMSLException with the specified detail message.
IMSLRuntimeException - exception com.imsl.IMSLRuntimeException.
Signals that an error has occurred.
IMSLRuntimeException() - Constructor for class com.imsl.IMSLRuntimeException
Constructs an IMSLRuntimeException with no detail message.
IMSLRuntimeException(String) - Constructor for class com.imsl.IMSLRuntimeException
Constructs an IMSLRuntimeException with the specified detail message.
IMSLRuntimeException(String, String, Object[]) - Constructor for class com.imsl.IMSLRuntimeException
Constructs an IMSLRuntimeException with the specified detail message.
INTEGER_VARIABLE - Static variable in class com.imsl.io.MPSReader
Variable must be an integer.
InputLayer - class com.imsl.datamining.neural.InputLayer.
Input layer in a neural network.
InputNode - class com.imsl.datamining.neural.InputNode.
A Node in the InputLayer.
InverseCdf - class com.imsl.stat.InverseCdf.
Inverse of user-supplied cumulative distribution function.
InverseCdf(CdfFunction) - Constructor for class com.imsl.stat.InverseCdf
Constructor for the inverse of a user-supplied cummulative distribution function.
InverseCdf.DidNotConvergeException - exception com.imsl.stat.InverseCdf.DidNotConvergeException.
The iteration did not converge
InverseCdf.DidNotConvergeException(String) - Constructor for class com.imsl.stat.InverseCdf.DidNotConvergeException
 
InverseCdf.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.stat.InverseCdf.DidNotConvergeException
 
i - Static variable in class com.imsl.math.Complex
The imaginary unit.
ilogb(double) - Static method in class com.imsl.math.IEEE
Return the binary exponent of non-zero x.
imag() - Method in class com.imsl.math.Complex
Returns the imaginary part of a Complex object.
imag(Complex) - Static method in class com.imsl.math.Complex
Returns the imaginary part of a Complex object.
image(ImageIcon) - Static method in class com.imsl.chart.FillPaint
Returns a tiling of an image.
imageObserver - Variable in class com.imsl.chart.Draw
 
incrementEpochCount() - Method in class com.imsl.datamining.neural.EpochTrainer
Increments the epoch counter.
infinityNorm(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Return the infinity norm of a Complex matrix.
infinityNorm(double[][]) - Static method in class com.imsl.math.Matrix
Return the infinity norm of a matrix.
init() - Method in class com.imsl.chart.ChartServlet
 
insertRow() - Method in class com.imsl.io.AbstractFlatFile
Inserts the contents of the insert row into this ResultSet object and into the database.
intValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as an int.
intValue() - Method in class com.imsl.math.Physical
Returns the value of this dimensionless object.
integral(double, double) - Method in class com.imsl.math.BSpline
Returns the value of an integral of the B-spline.
integral(double, double) - Method in class com.imsl.math.Spline
Returns the value of an integral of the spline.
intrate(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the interest rate of a fully invested security.
inverse() - Method in class com.imsl.math.Cholesky
Returns the inverse of this matrix
inverse() - Method in class com.imsl.math.ComplexLU
Compute the inverse of a matrix of type Complex.
inverse() - Method in class com.imsl.math.LU
Returns the inverse of the matrix used to construct this instance.
inverse() - Method in class com.imsl.math.SVD
Compute the Moore-Penrose generalized inverse of a real matrix.
inverseBeta(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the beta cumulative probability distribution function.
inverseChi(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the chi-squared cumulative probability distribution function.
inverseDiscreteUniform(double, int) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the discrete uniform cumulative probability distribution function.
inverseExponential(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the exponential cumulative probability distribution function.
inverseExtremeValue(double, double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the extreme value cumulative probability distribution function.
inverseF(double, double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the F cumulative probability distribution function.
inverseGamma(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the gamma cumulative probability distribution function.
inverseGeometric(double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the discrete geometric cumulative probability distribution function.
inverseLogNormal(double, double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the standard lognormal cumulative probability distribution function.
inverseNoncentralchi(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the noncentral chi-squared cumulative probability distribution function.
inverseNoncentralstudentsT(double, int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the noncentral Student's t cumulative probability distribution function.
inverseNormal(double) - Static method in class com.imsl.stat.Cdf
Evaluates the inverse of the normal (Gaussian) cumulative probability distribution function.
inverseRayleigh(double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the Rayleigh cumulative probability distribution function.
inverseStudentsT(double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the Student's t cumulative probability distribution function.
inverseUniform(double, double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the uniform cumulative probability distribution function.
inverseWeibull(double, double, double) - Static method in class com.imsl.stat.Cdf
Returns the inverse of the Weibull cumulative probability distribution function.
ipmt(double, int, int, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the interest payment for an investment for a given period.
ipvt - Variable in class com.imsl.math.ComplexLU
Pivot sequence for the factorization
ipvt - Variable in class com.imsl.math.LU
Pivot sequence for the factorization
irr(double[]) - Static method in class com.imsl.finance.Finance
Returns the internal rate of return for a schedule of cash flows.
irr(double[], double) - Static method in class com.imsl.finance.Finance
Returns the internal rate of return for a schedule of cash flows.
isAfterLast() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the cursor is after the last row in this ResultSet object.
isAncestorOf(AbstractChartNode) - Method in class com.imsl.chart.AbstractChartNode
Returns true if this node is an ancestor of the argument node.
isAttributeSet(String) - Method in class com.imsl.chart.AbstractChartNode
Determines if an attribute is defined (may have been inherited).
isAttributeSetAtThisNode(String) - Method in class com.imsl.chart.AbstractChartNode
Determines if an attribute is defined in this node (not inherited).
isBeforeFirst() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the cursor is before the first row in this ResultSet object.
isBitSet(int, int) - Static method in class com.imsl.chart.AbstractChartNode
Returns true if the bit set in flag is set in mask.
isBitSet(int, int) - Static method in class com.imsl.chart.ChartNode
Returns true if the bit set in flag is set in mask.
isFirst() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the cursor is on the first row of this ResultSet object.
isLast() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the cursor is on the last row of this ResultSet object.
isNaN(double) - Static method in class com.imsl.math.IEEE
NaN test on an argument of type double.
isNoMoreProgress() - Method in class com.imsl.math.QuadraticProgramming
Returns true if due to computer rounding error, a change in the variables fail to improve the objective function.
isProportionalWidth() - Method in class com.imsl.chart.BoxPlot
Returns the value of the attribute "ProportionalWidth".
isWeekday(GregorianCalendar) - Method in class com.imsl.chart.TransformDate
Returns true if the specified date is a weekday.
iterator() - Method in class com.imsl.io.MPSReader.Row
Returns an iterator over the elements in this row.

J

J(double, int) - Static method in class com.imsl.math.Bessel
Evaluates a sequence of Bessel functions of the first kind with integer order and real argument.
J(double, double, int) - Static method in class com.imsl.math.Bessel
Evaluate a sequence of Bessel functions of the first kind with real order and real positive argument.
JFrameChart - class com.imsl.chart.JFrameChart.
JFrameChart is a JFrame that contains a chart.
JFrameChart() - Constructor for class com.imsl.chart.JFrameChart
Creates new JFrameChart to display a chart.
JFrameChart(Chart) - Constructor for class com.imsl.chart.JFrameChart
Creates new JFrameChart to display a given chart.
JFrameChart3D - class com.imsl.chart3d.JFrameChart3D.
JFrameChart3D is a JFrame that contains a chart.
JFrameChart3D() - Constructor for class com.imsl.chart3d.JFrameChart3D
Creates new JFrameChart3D to display a chart.
JFrameChart3D(Chart3D) - Constructor for class com.imsl.chart3d.JFrameChart3D
Creates new JFrameChart3D to display a given chart.
JMath - class com.imsl.math.JMath.
Pure Java implementation of the standard java.lang.Math class.
JPanelChart - class com.imsl.chart.JPanelChart.
A Swing JPanel that contains a chart.
JPanelChart() - Constructor for class com.imsl.chart.JPanelChart
Creates new JPanelChart.
JPanelChart(Chart) - Constructor for class com.imsl.chart.JPanelChart
Creates new JPanelChart using a given Chart object.
JspBean - class com.imsl.chart.JspBean.
JspBean is used to refer to charts in a Java Server Page that are later rendered using the ChartServlet.
JspBean() - Constructor for class com.imsl.chart.JspBean
Creates a JspBean object.
jacobian(double[], double[][]) - Method in interface com.imsl.math.NonlinLeastSquares.Jacobian
Public interface for the nonlinear least squares function.
jacobian(double[], double[][]) - Method in interface com.imsl.math.ZeroSystem.Jacobian
Returns the value of the Jacobian at the given point.

K

K(double, int) - Static method in class com.imsl.math.Bessel
Evaluates a sequence of modified Bessel functions of the third kind with integer order and real argument.
K(double, double, int) - Static method in class com.imsl.math.Bessel
Evaluates a sequence of modified Bessel functions of the third kind with fractional order and real argument.
KalmanFilter - class com.imsl.stat.KalmanFilter.
Performs Kalman filtering and evaluates the likelihood function for the state-space model.
KalmanFilter(double[], double[], int, double, double) - Constructor for class com.imsl.stat.KalmanFilter
Constructor for KalmanFilter.
KaplanMeierECDF - class com.imsl.stat.KaplanMeierECDF.
Computes the Kaplan-Meier reliability function estimates or the CDF based on failure data that may be multi-censored.
KaplanMeierECDF(double[]) - Constructor for class com.imsl.stat.KaplanMeierECDF
Constructor for ARMA.
keySet() - Method in class com.imsl.chart.xml.ChartXML
Returns the Set view of all id's defined in the XML file.
knot - Variable in class com.imsl.math.BSpline
The knot array of length n + order, where n is the number of coefficients in the B-spline.
kurtosis(double[]) - Static method in class com.imsl.stat.Summary
Returns the kurtosis of the given data set.
kurtosis(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the kurtosis of the given data set and associated weights.

L

LABEL_TYPE_NONE - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate the an element is not to be labeled.
LABEL_TYPE_PERCENT - Static variable in class com.imsl.chart.ChartNode
Flag used to indicate that a pie slice is to be labeled with a percentage value.
LABEL_TYPE_TITLE - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that an element is to be labeled with the value of its title attribute.
LABEL_TYPE_X - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that an element is to be labeled with the value of its x-coordinate.
LABEL_TYPE_Y - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that an element is to be labeled with the value of its y-coordinate.
LABEL_TYPE_Z - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that an element is to be labeled with the value of its y-coordinate.
LAST - Static variable in class com.imsl.chart.Draw
Flag for the last data marker.
LEAST_SQUARES - Static variable in class com.imsl.stat.ARMA
Indicates autoregressive and moving average parameters are estimated by a least-squares procedure.
LEAVE_OUT_ONE - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates leave-out-one as the Classicfication Method.
LENGTH - Static variable in class com.imsl.math.Physical
 
LINE - Static variable in class com.imsl.chart.Draw
 
LINEAR - Static variable in interface com.imsl.datamining.neural.Activation
The identity activation function, g(x) = x.
LINEAR - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates a linear discrimination method.
LOGISTIC - Static variable in interface com.imsl.datamining.neural.Activation
The logistic activation function, g(x)=frac{1}{1+e^{-x}}.
LOGISTIC_TABLE - Static variable in interface com.imsl.datamining.neural.Activation
The logistic activation function computed using a table.
LOWER_TRIANGULAR - Static variable in class com.imsl.math.PrintMatrix
This flag as the argument to setMatrixType, indicates that only the lower triangular elements of the matrix are to be printed.
LU - class com.imsl.math.LU.
LU factorization of a matrix of type double.
LU(double[][]) - Constructor for class com.imsl.math.LU
Creates the LU factorization of a square matrix of type double.
Layer - class com.imsl.datamining.neural.Layer.
The base class for Layers in a neural network.
Layer(FeedForwardNetwork) - Constructor for class com.imsl.datamining.neural.Layer
Constructs a Layer.
LeastSquaresTrainer - class com.imsl.datamining.neural.LeastSquaresTrainer.
Trains a FeedForwardNetwork using a Levenberg-Marquardt algorithm for minimizing a sum of squares error.
LeastSquaresTrainer() - Constructor for class com.imsl.datamining.neural.LeastSquaresTrainer
Creates a LeastSquaresTrainer.
Legend - class com.imsl.chart.Legend.
The chart legend.
Legend(Chart) - Constructor for class com.imsl.chart.Legend
 
LicenseManagerException - exception com.imsl.LicenseManagerException.
A LicenseManagerException exception is thrown if a license to use the product cannot be obtained.
LillieforsTest() - Method in class com.imsl.stat.NormalityTest
Performs the Lilliefors test.
LinearProgramming - class com.imsl.math.LinearProgramming.
Linear programming problem using the revised simplex algorithm.
LinearProgramming(double[][], double[], double[]) - Constructor for class com.imsl.math.LinearProgramming
Constructor variables of type double.
LinearProgramming.BoundsInconsistentException - exception com.imsl.math.LinearProgramming.BoundsInconsistentException.
The bounds given are inconsistent.
LinearProgramming.BoundsInconsistentException(String) - Constructor for class com.imsl.math.LinearProgramming.BoundsInconsistentException
 
LinearProgramming.BoundsInconsistentException(String, Object[]) - Constructor for class com.imsl.math.LinearProgramming.BoundsInconsistentException
 
LinearProgramming.NumericDifficultyException - exception com.imsl.math.LinearProgramming.NumericDifficultyException.
Numerical difficulty occurred.
LinearProgramming.NumericDifficultyException(String) - Constructor for class com.imsl.math.LinearProgramming.NumericDifficultyException
 
LinearProgramming.NumericDifficultyException(String, Object[]) - Constructor for class com.imsl.math.LinearProgramming.NumericDifficultyException
 
LinearProgramming.ProblemInfeasibleException - exception com.imsl.math.LinearProgramming.ProblemInfeasibleException.
The problem is not feasible.
LinearProgramming.ProblemInfeasibleException(String) - Constructor for class com.imsl.math.LinearProgramming.ProblemInfeasibleException
 
LinearProgramming.ProblemInfeasibleException() - Constructor for class com.imsl.math.LinearProgramming.ProblemInfeasibleException
 
LinearProgramming.ProblemUnboundedException - exception com.imsl.math.LinearProgramming.ProblemUnboundedException.
The problem is unbounded.
LinearProgramming.ProblemUnboundedException(String) - Constructor for class com.imsl.math.LinearProgramming.ProblemUnboundedException
 
LinearProgramming.ProblemUnboundedException() - Constructor for class com.imsl.math.LinearProgramming.ProblemUnboundedException
 
LinearRegression - class com.imsl.stat.LinearRegression.
Fits a multiple linear regression model with or without an intercept.
LinearRegression(int, boolean) - Constructor for class com.imsl.stat.LinearRegression
Constructs a new linear regression object.
LinearRegression.CaseStatistics - class com.imsl.stat.LinearRegression.CaseStatistics.
Inner Class CaseStatistics allows for the computation of predicted values, confidence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression.
LinearRegression.CoefficientTTests - class com.imsl.stat.LinearRegression.CoefficientTTests.
Contains statistics related to the regression coefficients.
Link - class com.imsl.datamining.neural.Link.
A link in a neural network.
label(int) - Static method in class com.imsl.Dummy
 
last() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the last row in this ResultSet object.
lineColor - Variable in class com.imsl.chart.Draw
 
lineDashPattern - Variable in class com.imsl.chart.Draw
 
lineWidth - Variable in class com.imsl.chart.Draw
 
link(Node, Node) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Establishes a Link between two Nodes.
link(Node, Node, double) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Establishes a Link between two Nodes with a specified weight.
linkAll(Layer, Layer) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Link all of the Nodes in one Layer to all of the Nodes in another Layer.
linkAll() - Method in class com.imsl.datamining.neural.FeedForwardNetwork
For each Layer in the Network, link each Node in the Layer to each Node in the next Layer.
log(Complex) - Static method in class com.imsl.math.Complex
Returns the logarithm of a Complex z, with a branch cut along the negative real axis.
log(double) - Static method in class com.imsl.math.JMath
Returns the natural logarithm of a double.
log10(double) - Static method in class com.imsl.math.Sfun
Returns the common (base 10) logarithm of a double.
log1p(double) - Static method in class com.imsl.math.Hyperbolic
Returns log(1+x), the logarithm of (x plus 1).
logBeta(double, double) - Static method in class com.imsl.math.Sfun
Returns the logarithm of the Beta function.
logGamma(double) - Static method in class com.imsl.math.Sfun
Returns the logarithm of the Gamma function of the absolute value of a double.
logNormal(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the standard lognormal cumulative probability distribution function.
logNormalProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the standard lognormal probability density function.
longValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as a long.
longValue() - Method in class com.imsl.math.Physical
Returns the value of this dimensionless object.

M

MALLOWS_CP_CRITERION - Static variable in class com.imsl.stat.SelectionRegression
Indicates Mallow's C_p criterion regression.
MARKER - Static variable in class com.imsl.chart.Draw
 
MARKER_SCALE - Static variable in class com.imsl.chart.Draw
Normal marker size in pixels is screen width times MARKER_SCALE.
MARKER_TYPE_ASTERISK - Static variable in class com.imsl.chart.ChartNode
Flag for a asterisk data marker.
MARKER_TYPE_CIRCLE_CIRCLE - Static variable in class com.imsl.chart.ChartNode
Flag for a circle in a circle data marker.
MARKER_TYPE_CIRCLE_PLUS - Static variable in class com.imsl.chart.ChartNode
Flag for a plus in a circle data marker.
MARKER_TYPE_CIRCLE_X - Static variable in class com.imsl.chart.ChartNode
Flag for an x in a circle data marker.
MARKER_TYPE_CUBE - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a cube data marker.
MARKER_TYPE_CUSTOM - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a custom marker
MARKER_TYPE_DIAMOND_PLUS - Static variable in class com.imsl.chart.ChartNode
Flag for a plus in a diamond data marker.
MARKER_TYPE_FILLED_CIRCLE - Static variable in class com.imsl.chart.ChartNode
Flag for a filled circle data marker.
MARKER_TYPE_FILLED_DIAMOND - Static variable in class com.imsl.chart.ChartNode
Flag for a filled diamond data marker.
MARKER_TYPE_FILLED_SQUARE - Static variable in class com.imsl.chart.ChartNode
Flag for a filled square data marker.
MARKER_TYPE_FILLED_TRIANGLE - Static variable in class com.imsl.chart.ChartNode
Flag for a filled triangle data marker.
MARKER_TYPE_HOLLOW_CIRCLE - Static variable in class com.imsl.chart.ChartNode
Flag for a hollow circle data marker.
MARKER_TYPE_HOLLOW_DIAMOND - Static variable in class com.imsl.chart.ChartNode
Flag for a hollow diamond data marker.
MARKER_TYPE_HOLLOW_SQUARE - Static variable in class com.imsl.chart.ChartNode
Flag for a hollow square data marker.
MARKER_TYPE_HOLLOW_TRIANGLE - Static variable in class com.imsl.chart.ChartNode
Flag for hollow triangle data marker.
MARKER_TYPE_OCTAGON_PLUS - Static variable in class com.imsl.chart.ChartNode
Flag for a plus in an octagon data marker.
MARKER_TYPE_OCTAGON_X - Static variable in class com.imsl.chart.ChartNode
Flag for a x in an octagon data marker.
MARKER_TYPE_PLUS - Static variable in class com.imsl.chart.ChartNode
Flag for a plus-shaped data marker.
MARKER_TYPE_PLUS - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a 3D plus sign data marker.
MARKER_TYPE_SIMPLE_CUBE - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a simple cube (no edge) data marker.
MARKER_TYPE_SIMPLE_PLUS - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a simple 2D plus sign (no edge) data marker.
MARKER_TYPE_SIMPLE_TETRAHEDRON - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a simple tetrahedron (no edge) data marker.
MARKER_TYPE_SPHERE - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a sphere data marker.
MARKER_TYPE_SQUARE_PLUS - Static variable in class com.imsl.chart.ChartNode
Flag for a plus in a square data marker.
MARKER_TYPE_SQUARE_X - Static variable in class com.imsl.chart.ChartNode
Flag for an x in a square data marker.
MARKER_TYPE_TETRAHEDRON - Static variable in class com.imsl.chart3d.ChartNode3D
Flag for a tetrahedron data marker.
MARKER_TYPE_X - Static variable in class com.imsl.chart.ChartNode
Flag for a x-shaped data marker.
MASS - Static variable in class com.imsl.math.Physical
 
MAXIMUM_LIKELIHOOD - Static variable in class com.imsl.stat.FactorAnalysis
Indicates maximum likelihood method.
METHOD_OF_MOMENTS - Static variable in class com.imsl.stat.ARMA
Indicates autoregressive and moving average parameters are estimated by a method of moments procedure.
MODEL0 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates an exponential function is used to model the distribution parameter.
MODEL1 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates a logistic function is used to model the distribution parameter.
MODEL2 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates a logistic function is used to model the distribution parameter.
MODEL3 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates a logistic function is used to model the distribution parameter.
MODEL4 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates a probit function is used to model the distribution parameter.
MODEL5 - Static variable in class com.imsl.stat.CategoricalGenLinModel
Indicates a log-log function is used to model the distribution parameter.
MORANS_FORMULA - Static variable in class com.imsl.stat.AutoCorrelation
Indicates standard error computation using Moran's formula.
MPSReader - class com.imsl.io.MPSReader.
Reads a linear programming problem from an MPS file.
MPSReader() - Constructor for class com.imsl.io.MPSReader
 
MPSReader.Element - class com.imsl.io.MPSReader.Element.
An element in the sparse contraint matrix.
MPSReader.InvalidMPSFileException - exception com.imsl.io.MPSReader.InvalidMPSFileException.
The MPS file is invalid.
MPSReader.InvalidMPSFileException(String) - Constructor for class com.imsl.io.MPSReader.InvalidMPSFileException
 
MPSReader.InvalidMPSFileException(String, Object[]) - Constructor for class com.imsl.io.MPSReader.InvalidMPSFileException
 
MPSReader.Row - class com.imsl.io.MPSReader.Row.
A row either in the constraint matrix or a free row.
MajorTick - class com.imsl.chart.MajorTick.
The major tick marks.
MajorTick - class com.imsl.chart3d.MajorTick.
Major ticks marks.
Matrix - class com.imsl.math.Matrix.
Matrix manipulation functions.
MersenneTwister - class com.imsl.stat.MersenneTwister.
A 32-bit Mersenne Twister generator.
MersenneTwister(int) - Constructor for class com.imsl.stat.MersenneTwister
Constructor for the MersenneTwister class with supplied seed.
MersenneTwister(int[]) - Constructor for class com.imsl.stat.MersenneTwister
Constructor for the MersenneTwister class with supplied array.
MersenneTwister64 - class com.imsl.stat.MersenneTwister64.
A 64-bit Mersenne Twister generator.
MersenneTwister64(long) - Constructor for class com.imsl.stat.MersenneTwister64
Constructor for the MersenneTwister64 class with supplied seed.
MersenneTwister64(long[]) - Constructor for class com.imsl.stat.MersenneTwister64
Constructor for the MersenneTwister64 class with supplied array.
Messages - class com.imsl.Messages.
Retrieve and format message strings.
Messages() - Constructor for class com.imsl.Messages
 
MinConGenLin - class com.imsl.math.MinConGenLin.
Minimizes a general objective function subject to linear equality/inequality constraints.
MinConGenLin(MinConGenLin.Function, int, int, int, double[], double[], double[], double[]) - Constructor for class com.imsl.math.MinConGenLin
Constructor for MinConGenLin.
MinConGenLin.ConstraintsInconsistentException - exception com.imsl.math.MinConGenLin.ConstraintsInconsistentException.
The equality constraints are inconsistent.
MinConGenLin.ConstraintsInconsistentException(String) - Constructor for class com.imsl.math.MinConGenLin.ConstraintsInconsistentException
 
MinConGenLin.ConstraintsInconsistentException(String, Object[]) - Constructor for class com.imsl.math.MinConGenLin.ConstraintsInconsistentException
 
MinConGenLin.ConstraintsNotSatisfiedException - exception com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException.
No vector x satisfies all of the constraints.
MinConGenLin.ConstraintsNotSatisfiedException(String) - Constructor for class com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException
 
MinConGenLin.ConstraintsNotSatisfiedException(String, Object[]) - Constructor for class com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException
 
MinConGenLin.EqualityConstraintsException - exception com.imsl.math.MinConGenLin.EqualityConstraintsException.
the variables are determined by the equality constraints.
MinConGenLin.EqualityConstraintsException(String) - Constructor for class com.imsl.math.MinConGenLin.EqualityConstraintsException
 
MinConGenLin.EqualityConstraintsException(String, Object[]) - Constructor for class com.imsl.math.MinConGenLin.EqualityConstraintsException
 
MinConGenLin.Function - interface com.imsl.math.MinConGenLin.Function.
Public interface for the user-supplied function to evaluate the function to be minimized.
MinConGenLin.Gradient - interface com.imsl.math.MinConGenLin.Gradient.
Public interface for the user-supplied function to compute the gradient.
MinConGenLin.VarBoundsInconsistentException - exception com.imsl.math.MinConGenLin.VarBoundsInconsistentException.
The equality constraints and the bounds on the variables are found to be inconsistent.
MinConGenLin.VarBoundsInconsistentException(String) - Constructor for class com.imsl.math.MinConGenLin.VarBoundsInconsistentException
 
MinConGenLin.VarBoundsInconsistentException(String, Object[]) - Constructor for class com.imsl.math.MinConGenLin.VarBoundsInconsistentException
 
MinConNLP - class com.imsl.math.MinConNLP.
General nonlinear programming solver.
MinConNLP(int, int, int) - Constructor for class com.imsl.math.MinConNLP
Nonlinear programming solver constructor.
MinConNLP.BadInitialGuessException - exception com.imsl.math.MinConNLP.BadInitialGuessException.
Penalty function point infeasible for original problem.
MinConNLP.BadInitialGuessException(String) - Constructor for class com.imsl.math.MinConNLP.BadInitialGuessException
 
MinConNLP.BadInitialGuessException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.BadInitialGuessException
 
MinConNLP.ConstraintEvaluationException - exception com.imsl.math.MinConNLP.ConstraintEvaluationException.
Constraint evaluation returns an error with current point.
MinConNLP.ConstraintEvaluationException(String) - Constructor for class com.imsl.math.MinConNLP.ConstraintEvaluationException
 
MinConNLP.ConstraintEvaluationException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.ConstraintEvaluationException
 
MinConNLP.Formatter - class com.imsl.math.MinConNLP.Formatter.
Simple formatter for MinConNLP logging
MinConNLP.Formatter() - Constructor for class com.imsl.math.MinConNLP.Formatter
 
MinConNLP.Function - interface com.imsl.math.MinConNLP.Function.
Public interface for the user supplied function to the MinConNLP object.
MinConNLP.Gradient - interface com.imsl.math.MinConNLP.Gradient.
Public interface for the user supplied function to compute the gradient for MinConNLP object.
MinConNLP.IllConditionedException - exception com.imsl.math.MinConNLP.IllConditionedException.
Problem is singular or ill-conditioned.
MinConNLP.IllConditionedException(String) - Constructor for class com.imsl.math.MinConNLP.IllConditionedException
 
MinConNLP.IllConditionedException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.IllConditionedException
 
MinConNLP.LimitingAccuracyException - exception com.imsl.math.MinConNLP.LimitingAccuracyException.
Limiting accuracy reached for a singular problem.
MinConNLP.LimitingAccuracyException(String) - Constructor for class com.imsl.math.MinConNLP.LimitingAccuracyException
 
MinConNLP.LimitingAccuracyException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.LimitingAccuracyException
 
MinConNLP.LinearlyDependentGradientsException - exception com.imsl.math.MinConNLP.LinearlyDependentGradientsException.
Working set gradients are linearly dependent.
MinConNLP.LinearlyDependentGradientsException(String) - Constructor for class com.imsl.math.MinConNLP.LinearlyDependentGradientsException
 
MinConNLP.LinearlyDependentGradientsException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.LinearlyDependentGradientsException
 
MinConNLP.NoAcceptableStepsizeException - exception com.imsl.math.MinConNLP.NoAcceptableStepsizeException.
No acceptable stepsize in [SIGMA,SIGLA].
MinConNLP.NoAcceptableStepsizeException(String) - Constructor for class com.imsl.math.MinConNLP.NoAcceptableStepsizeException
 
MinConNLP.NoAcceptableStepsizeException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.NoAcceptableStepsizeException
 
MinConNLP.ObjectiveEvaluationException - exception com.imsl.math.MinConNLP.ObjectiveEvaluationException.
Objective evaluation returns an error with current point.
MinConNLP.ObjectiveEvaluationException(String) - Constructor for class com.imsl.math.MinConNLP.ObjectiveEvaluationException
 
MinConNLP.ObjectiveEvaluationException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.ObjectiveEvaluationException
 
MinConNLP.PenaltyFunctionPointInfeasibleException - exception com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException.
Penalty function point infeasible.
MinConNLP.PenaltyFunctionPointInfeasibleException(String) - Constructor for class com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException
 
MinConNLP.PenaltyFunctionPointInfeasibleException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException
 
MinConNLP.QPInfeasibleException - exception com.imsl.math.MinConNLP.QPInfeasibleException.
QP problem seemingly infeasible.
MinConNLP.QPInfeasibleException(String) - Constructor for class com.imsl.math.MinConNLP.QPInfeasibleException
 
MinConNLP.QPInfeasibleException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.QPInfeasibleException
 
MinConNLP.SingularException - exception com.imsl.math.MinConNLP.SingularException.
Problem is singular.
MinConNLP.SingularException(String) - Constructor for class com.imsl.math.MinConNLP.SingularException
 
MinConNLP.SingularException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.SingularException
 
MinConNLP.TerminationCriteriaNotSatisfiedException - exception com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException.
Termination criteria are not satisfied.
MinConNLP.TerminationCriteriaNotSatisfiedException(String) - Constructor for class com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException
 
MinConNLP.TerminationCriteriaNotSatisfiedException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException
 
MinConNLP.TooManyIterationsException - exception com.imsl.math.MinConNLP.TooManyIterationsException.
Maximum number of iterations exceeded.
MinConNLP.TooManyIterationsException(String) - Constructor for class com.imsl.math.MinConNLP.TooManyIterationsException
 
MinConNLP.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.TooManyIterationsException
 
MinConNLP.TooMuchTimeException - exception com.imsl.math.MinConNLP.TooMuchTimeException.
Maximum time allowed for solve exceeded.
MinConNLP.TooMuchTimeException(long) - Constructor for class com.imsl.math.MinConNLP.TooMuchTimeException
 
MinConNLP.WorkingSetSingularException - exception com.imsl.math.MinConNLP.WorkingSetSingularException.
Working set is singular in dual extended QP.
MinConNLP.WorkingSetSingularException(String) - Constructor for class com.imsl.math.MinConNLP.WorkingSetSingularException
 
MinConNLP.WorkingSetSingularException(String, Object[]) - Constructor for class com.imsl.math.MinConNLP.WorkingSetSingularException
 
MinConNonlin.Function - interface com.imsl.math.MinConNonlin.Function.
Deprecated. Public interface for the user supplied function to the MinConNonlin object.
MinConNonlin.Gradient - interface com.imsl.math.MinConNonlin.Gradient.
Deprecated. Public interface for the user supplied function to MinConNonlin object.
MinConNonlin.LineSearchException - exception com.imsl.math.MinConNonlin.LineSearchException.
Deprecated. The line search used more than 5 function calls, therefore it has been declared unsuccessful.
MinConNonlin.LineSearchException(String) - Constructor for class com.imsl.math.MinConNonlin.LineSearchException
Deprecated.  
MinConNonlin.LineSearchException(String, Object[]) - Constructor for class com.imsl.math.MinConNonlin.LineSearchException
Deprecated.  
MinConNonlin.QPConstraintsException - exception com.imsl.math.MinConNonlin.QPConstraintsException.
Deprecated. The constraints for the QP subproblem are inconsistent.
MinConNonlin.QPConstraintsException(String) - Constructor for class com.imsl.math.MinConNonlin.QPConstraintsException
Deprecated.  
MinConNonlin.QPConstraintsException(String, Object[]) - Constructor for class com.imsl.math.MinConNonlin.QPConstraintsException
Deprecated.  
MinConNonlin.TooManyIterationsException - exception com.imsl.math.MinConNonlin.TooManyIterationsException.
Deprecated. Maximum number of iterations exceeded.
MinConNonlin.TooManyIterationsException(String) - Constructor for class com.imsl.math.MinConNonlin.TooManyIterationsException
Deprecated.  
MinConNonlin.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.math.MinConNonlin.TooManyIterationsException
Deprecated.  
MinConNonlin.UphillSearchCalcException - exception com.imsl.math.MinConNonlin.UphillSearchCalcException.
Deprecated. The algorithm calculated an uphill search direction.
MinConNonlin.UphillSearchCalcException(String) - Constructor for class com.imsl.math.MinConNonlin.UphillSearchCalcException
Deprecated.  
MinConNonlin.UphillSearchCalcException(String, Object[]) - Constructor for class com.imsl.math.MinConNonlin.UphillSearchCalcException
Deprecated.  
MinConNonlin.ZeroSearchDirectionException - exception com.imsl.math.MinConNonlin.ZeroSearchDirectionException.
Deprecated. The search direction is close to zero.
MinConNonlin.ZeroSearchDirectionException(String) - Constructor for class com.imsl.math.MinConNonlin.ZeroSearchDirectionException
Deprecated.  
MinConNonlin.ZeroSearchDirectionException(String, Object[]) - Constructor for class com.imsl.math.MinConNonlin.ZeroSearchDirectionException
Deprecated.  
MinUncon - class com.imsl.math.MinUncon.
Unconstrained minimization.
MinUncon() - Constructor for class com.imsl.math.MinUncon
Unconstrained minimum constructor for a smooth function of a single variable of type double.
MinUncon.Derivative - interface com.imsl.math.MinUncon.Derivative.
Public interface for the user supplied function to the MinUncon object.
MinUncon.Function - interface com.imsl.math.MinUncon.Function.
Public interface for the user supplied function to the MinUncon object.
MinUnconMultiVar - class com.imsl.math.MinUnconMultiVar.
Unconstrained multivariate minimization.
MinUnconMultiVar(int) - Constructor for class com.imsl.math.MinUnconMultiVar
Unconstrained minimum constructor for a function of n variables of type double.
MinUnconMultiVar.ApproximateMinimumException - exception com.imsl.math.MinUnconMultiVar.ApproximateMinimumException.
Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or the scaled step tolerance is too big.
MinUnconMultiVar.ApproximateMinimumException(String) - Constructor for class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
 
MinUnconMultiVar.ApproximateMinimumException(String, Object[]) - Constructor for class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
 
MinUnconMultiVar.FalseConvergenceException - exception com.imsl.math.MinUnconMultiVar.FalseConvergenceException.
False convergence error; the iterates appear to be converging to a noncritical point.
MinUnconMultiVar.FalseConvergenceException(String) - Constructor for class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
 
MinUnconMultiVar.FalseConvergenceException(String, Object[]) - Constructor for class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
 
MinUnconMultiVar.Function - interface com.imsl.math.MinUnconMultiVar.Function.
Public interface for the user supplied function to the MinUnconMultiVar object.
MinUnconMultiVar.Gradient - interface com.imsl.math.MinUnconMultiVar.Gradient.
Public interface for the user supplied gradient to the MinUnconMultiVar object.
MinUnconMultiVar.MaxIterationsException - exception com.imsl.math.MinUnconMultiVar.MaxIterationsException.
Maximum number of iterations exceeded.
MinUnconMultiVar.MaxIterationsException(String) - Constructor for class com.imsl.math.MinUnconMultiVar.MaxIterationsException
 
MinUnconMultiVar.MaxIterationsException(String, Object[]) - Constructor for class com.imsl.math.MinUnconMultiVar.MaxIterationsException
 
MinUnconMultiVar.UnboundedBelowException - exception com.imsl.math.MinUnconMultiVar.UnboundedBelowException.
Five consecutive steps of the maximum allowable stepsize have been taken, either the function is unbounded below, or has a finite asymptote in some direction or the maximum allowable step size is too small.
MinUnconMultiVar.UnboundedBelowException(String) - Constructor for class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
 
MinUnconMultiVar.UnboundedBelowException(String, Object[]) - Constructor for class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
 
MinorTick - class com.imsl.chart.MinorTick.
The minor tick marks.
MultiClassification - class com.imsl.datamining.neural.MultiClassification.
Classifies patterns into three or more classes.
MultiClassification(Network) - Constructor for class com.imsl.datamining.neural.MultiClassification
Creates a classifier.
MultiCrossCorrelation - class com.imsl.stat.MultiCrossCorrelation.
Computes the multichannel cross-correlation function of two mutually stationary multichannel time series.
MultiCrossCorrelation(double[][], double[][], int) - Constructor for class com.imsl.stat.MultiCrossCorrelation
Constructor to compute the multichannel cross-correlation function of two mutually stationary multichannel time series.
MultiCrossCorrelation.NonPosVariancesException - exception com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException.
The problem is ill-conditioned.
MultiCrossCorrelation.NonPosVariancesException(String) - Constructor for class com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException
 
MultiCrossCorrelation.NonPosVariancesException(String, Object[]) - Constructor for class com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException
 
MultipleComparisons - class com.imsl.stat.MultipleComparisons.
Performs Student-Newman-Keuls multiple comparisons test.
MultipleComparisons(double[], int, double) - Constructor for class com.imsl.stat.MultipleComparisons
Constructor for MultipleComparisons.
main(String[]) - Static method in class com.imsl.Version
Print the version information about the envirnoment and this library.
main(String[]) - Static method in class com.imsl.chart.xml.ChartXML
Displays a chart created from an XML file.
mapCubeToUser(double, double, double, double[]) - Method in class com.imsl.chart3d.AxisXYZ
Map the cube coordinates to user coordinates.
mapDeviceToUser(int, int, double[]) - Method in class com.imsl.chart.Axis
Maps the device coordinates to user coordinates.
mapDeviceToUser(int, int, double[]) - Method in class com.imsl.chart.AxisXY
Map the device coordinates to user coordinates.
mapDeviceToUser(int, int, double[]) - Method in class com.imsl.chart.Pie
Maps the device coordinates to user coordinates.
mapDeviceToUser(int, int, double[]) - Method in class com.imsl.chart.Polar
Map the device coordinates to polar coordinates.
mapUnitToUser(double) - Method in interface com.imsl.chart.Transform
Maps points in the interval [0,1] to user coordinates.
mapUnitToUser(double) - Method in class com.imsl.chart.TransformDate
Maps points in the interval [0,1] to user coordinates.
mapUserToCube(double, double, double, double[]) - Method in class com.imsl.chart3d.AxisXYZ
Map the user coordinates (userX,userY) to the cube coordinates cubeXYZ.
mapUserToDevice(double, double, int[]) - Method in class com.imsl.chart.Axis
Maps the user coordinates (userX,userY) to the device coordinates devXY.
mapUserToDevice(double, double, int[]) - Method in class com.imsl.chart.AxisXY
Map the user coordinates (userX,userY) to the device coordinates devXY.
mapUserToDevice(double, double, int[]) - Method in class com.imsl.chart.Pie
Maps the user coordinates (userX,userY) to the device coordinates devXY.
mapUserToDevice(double, double, int[]) - Method in class com.imsl.chart.Polar
Map the polar coordinates (userRadius,userAngle) to the device coordinates devXY.
mapUserToUnit(double) - Method in interface com.imsl.chart.Transform
Maps user coordinate to the interval [0,1].
mapUserToUnit(double) - Method in class com.imsl.chart.TransformDate
Maps user coordinate to the interval [0,1].
markerColor - Variable in class com.imsl.chart.Draw
 
markerDashPattern - Variable in class com.imsl.chart.Draw
 
markerSize - Variable in class com.imsl.chart.Draw
 
markerThickness - Variable in class com.imsl.chart.Draw
 
markerType - Variable in class com.imsl.chart.Draw
 
max(int, int) - Static method in class com.imsl.math.JMath
Returns the larger of two ints.
max(long, long) - Static method in class com.imsl.math.JMath
Returns the larger of two longs.
max(float, float) - Static method in class com.imsl.math.JMath
Returns the larger of two floats.
max(double, double) - Static method in class com.imsl.math.JMath
Returns the larger of two doubles.
maximum(double[]) - Static method in class com.imsl.stat.Summary
Returns the maximum of the given data set.
mduration(GregorianCalendar, GregorianCalendar, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the modified Macauley duration for a security with an assumed par value of $100.
mean(double[]) - Static method in class com.imsl.stat.Summary
Returns the mean of the given data set.
mean(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the mean of the given data set with associated weights.
median(double[]) - Static method in class com.imsl.stat.Summary
Returns the median of the given data set.
min(int, int) - Static method in class com.imsl.math.JMath
Returns the smaller of two ints.
min(long, long) - Static method in class com.imsl.math.JMath
Returns the smaller of two longs.
min(float, float) - Static method in class com.imsl.math.JMath
Returns the smaller of two floats.
min(double, double) - Static method in class com.imsl.math.JMath
Returns the smaller of two doubles.
minimum(double[]) - Static method in class com.imsl.stat.Summary
Returns the minimum of the given data set.
mirr(double[], double, double) - Static method in class com.imsl.finance.Finance
Returns the modified internal rate of return for a schedule of periodic cash flows.
mode(double[]) - Static method in class com.imsl.stat.Summary
Returns the mode of the given data set.
mouseDragged(MouseEvent) - Method in class com.imsl.chart.ToolTip
Part of the MouseMotionListener interface.
mouseMoved(MouseEvent) - Method in class com.imsl.chart.ToolTip
Part of the MouseMotionListener interface.
moveToCurrentRow() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the remembered cursor position, usually the current row.
moveToInsertRow() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the insert row.
multiply(Complex, Complex) - Static method in class com.imsl.math.Complex
Returns the product of two Complex objects, x * y.
multiply(Complex, double) - Static method in class com.imsl.math.Complex
Returns the product of a Complex object and a double, x * y.
multiply(double, Complex) - Static method in class com.imsl.math.Complex
Returns the product of a double and a Complex object, x * y.
multiply(Complex[], Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Return the product of the row vector x and the rectangular array a, both Complex.
multiply(Complex[][], Complex[]) - Static method in class com.imsl.math.ComplexMatrix
Multiply the rectangular array a and the column vector x, both Complex.
multiply(Complex[][], Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Multiply two Complex rectangular arrays, a * b.
multiply(double[], double[][]) - Static method in class com.imsl.math.Matrix
Return the product of the row array x and the rectangular array a.
multiply(double[][], double[]) - Static method in class com.imsl.math.Matrix
Multiply the rectangular array a and the column array x.
multiply(double[][], double[][]) - Static method in class com.imsl.math.Matrix
Multiply two rectangular arrays, a * b.
multiply(Physical, Physical) - Static method in class com.imsl.math.Physical
Multiply two Physical objects.
multiply(Physical, double) - Static method in class com.imsl.math.Physical
Multiply a Physical object and a double
multiply(double, Physical) - Static method in class com.imsl.math.Physical
Multiply a double and a Physical object
multiplyImag(Complex, double) - Static method in class com.imsl.math.Complex
Returns the product of a Complex object and a pure imaginary double, x * iy.
multiplyImag(double, Complex) - Static method in class com.imsl.math.Complex
Returns the product of a pure imaginary double and a Complex object, ix * y.

N

NONE - Static variable in class com.imsl.chart.Draw
 
NOT_A_KNOT - Static variable in class com.imsl.math.CsInterpolate
 
NO_SCALING - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate no scaling.
Network - class com.imsl.datamining.neural.Network.
Neural network base class.
Network() - Constructor for class com.imsl.datamining.neural.Network
Default constructor for Network.
Node - class com.imsl.datamining.neural.Node.
A Node in a neural network.
NonlinLeastSquares - class com.imsl.math.NonlinLeastSquares.
Nonlinear least squares.
NonlinLeastSquares(int, int) - Constructor for class com.imsl.math.NonlinLeastSquares
Creates an object to solve a nonlinear least squares problem.
NonlinLeastSquares.FalseConvergenceException - exception com.imsl.math.NonlinLeastSquares.FalseConvergenceException.
The iterates appear to be converging to a non-critical point.
NonlinLeastSquares.FalseConvergenceException(String) - Constructor for class com.imsl.math.NonlinLeastSquares.FalseConvergenceException
 
NonlinLeastSquares.FalseConvergenceException(String, Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.FalseConvergenceException
 
NonlinLeastSquares.Function - interface com.imsl.math.NonlinLeastSquares.Function.
Public interface for the user supplied function to the NonlinLeastSquares object.
NonlinLeastSquares.Jacobian - interface com.imsl.math.NonlinLeastSquares.Jacobian.
Public interface for the user supplied function to the NonlinLeastSquares object.
NonlinLeastSquares.RelativeFunctionConvergenceException - exception com.imsl.math.NonlinLeastSquares.RelativeFunctionConvergenceException.
The scaled and predicted reductions in the function are less than or equal to the relative function convergence tolerance.
NonlinLeastSquares.RelativeFunctionConvergenceException(String) - Constructor for class com.imsl.math.NonlinLeastSquares.RelativeFunctionConvergenceException
 
NonlinLeastSquares.RelativeFunctionConvergenceException(String, Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.RelativeFunctionConvergenceException
 
NonlinLeastSquares.StepMaxException - exception com.imsl.math.NonlinLeastSquares.StepMaxException.
Either the function is unbounded below, has a finite asymptote in some direction, or the maximum stepsize is too small.
NonlinLeastSquares.StepMaxException(String) - Constructor for class com.imsl.math.NonlinLeastSquares.StepMaxException
 
NonlinLeastSquares.StepMaxException(String, Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.StepMaxException
 
NonlinLeastSquares.StepToleranceException - exception com.imsl.math.NonlinLeastSquares.StepToleranceException.
Various possible errors involving the step tolerance.
NonlinLeastSquares.StepToleranceException(String) - Constructor for class com.imsl.math.NonlinLeastSquares.StepToleranceException
 
NonlinLeastSquares.StepToleranceException(String, Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.StepToleranceException
 
NonlinLeastSquares.TooManyIterationsException - exception com.imsl.math.NonlinLeastSquares.TooManyIterationsException.
Too many iterations.
NonlinLeastSquares.TooManyIterationsException() - Constructor for class com.imsl.math.NonlinLeastSquares.TooManyIterationsException
 
NonlinLeastSquares.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.TooManyIterationsException
 
NonlinLeastSquares.TooManyIterationsException(Object[]) - Constructor for class com.imsl.math.NonlinLeastSquares.TooManyIterationsException
 
NonlinearRegression - class com.imsl.stat.NonlinearRegression.
Fits a multivariate nonlinear regression model using least squares.
NonlinearRegression(int) - Constructor for class com.imsl.stat.NonlinearRegression
Constructs a new nonlinear regression object.
NonlinearRegression.Derivative - interface com.imsl.stat.NonlinearRegression.Derivative.
Public interface for the user supplied function to compute the derivative for NonlinearRegression.
NonlinearRegression.Function - interface com.imsl.stat.NonlinearRegression.Function.
Public interface for the user supplied function for NonlinearRegression.
NonlinearRegression.NegativeFreqException - exception com.imsl.stat.NonlinearRegression.NegativeFreqException.
A negative frequency was encountered.
NonlinearRegression.NegativeFreqException(int, int, double) - Constructor for class com.imsl.stat.NonlinearRegression.NegativeFreqException
Constructs a NegativeFreqException.
NonlinearRegression.NegativeWeightException - exception com.imsl.stat.NonlinearRegression.NegativeWeightException.
A negative weight was encountered.
NonlinearRegression.NegativeWeightException(int, int, double) - Constructor for class com.imsl.stat.NonlinearRegression.NegativeWeightException
Constructs a NegativeWeightException.
NonlinearRegression.TooManyIterationsException - exception com.imsl.stat.NonlinearRegression.TooManyIterationsException.
The number of iterations has exceeded the maximum allowed.
NonlinearRegression.TooManyIterationsException() - Constructor for class com.imsl.stat.NonlinearRegression.TooManyIterationsException
Constructs a TooManyIterationsException.
NormOneSample - class com.imsl.stat.NormOneSample.
Computes statistics for mean and variance inferences using a sample from a normal population.
NormOneSample(double[]) - Constructor for class com.imsl.stat.NormOneSample
Constructor to compute statistics for mean and variance inferences using a sample from a normal population.
NormTwoSample - class com.imsl.stat.NormTwoSample.
Computes statistics for mean and variance inferences using samples from two normal populations.
NormTwoSample(double[], double[]) - Constructor for class com.imsl.stat.NormTwoSample
Constructor to compute statistics for mean and variance inferences using samples from two normal populations.
NormalityTest - class com.imsl.stat.NormalityTest.
Performs a test for normality.
NormalityTest(double[]) - Constructor for class com.imsl.stat.NormalityTest
Constructor for NormalityTest.
NormalityTest.NoVariationInputException - exception com.imsl.stat.NormalityTest.NoVariationInputException.
There is no variation in the input data.
NormalityTest.NoVariationInputException(String) - Constructor for class com.imsl.stat.NormalityTest.NoVariationInputException
 
NormalityTest.NoVariationInputException(String, Object[]) - Constructor for class com.imsl.stat.NormalityTest.NoVariationInputException
 
nCoef - Variable in class com.imsl.math.BsLeastSquares
Number of B-spline coefficients.
nFunctionEvaluations - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
 
nFunctionEvaluations - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
 
nObs - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
 
nObs - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
 
nY - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
 
nY - Variable in class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
 
negate(Complex) - Static method in class com.imsl.math.Complex
Returns the negative of a Complex object, -z.
negate(Physical) - Static method in class com.imsl.math.Physical
Negate a Physical object.
next() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor down one row from its current position.
next(int) - Method in class com.imsl.stat.MersenneTwister
Generates the next pseudorandom number.
next(int) - Method in class com.imsl.stat.MersenneTwister64
Generates the next pseudorandom number.
next(int) - Method in interface com.imsl.stat.Random.BaseGenerator
Generates the next pseudorandom number.
next(int) - Method in class com.imsl.stat.Random
Generates the next pseudorandom number.
nextAfter(double, double) - Static method in class com.imsl.math.IEEE
Returns the next machine floating-point number next to x in the direction toward y.
nextBeta(double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a beta distribution.
nextBinomial(int, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a binomial distribution.
nextCauchy() - Method in class com.imsl.stat.Random
Generates a pseudorandom number from a Cauchy distribution.
nextChiSquared(double) - Method in class com.imsl.stat.Random
Generates a pseudorandom number from a Chi-squared distribution.
nextDouble() - Method in class com.imsl.stat.FaureSequence
Returns the first value of the next point in the sequence.
nextDouble() - Method in class com.imsl.stat.MersenneTwister
Generates the next pseudorandom, uniformly distributed double value from this random number generator's sequence.
nextDouble() - Method in class com.imsl.stat.MersenneTwister64
Generates the next pseudorandom, uniformly distributed double value from this random number generator's sequence.
nextExponential() - Method in class com.imsl.stat.Random
Generates a pseudorandom number from a standard exponential distribution.
nextExponentialMix(double, double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a mixture of two exponential distributions.
nextExtremeValue(double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from an extreme value distribution.
nextF(double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from the F distribution.
nextFloat() - Method in class com.imsl.stat.MersenneTwister
Generates the next pseudorandom, uniformly distributed float value from this random number generator's sequence.
nextFloat() - Method in class com.imsl.stat.MersenneTwister64
Generates the next pseudorandom, uniformly distributed float value from this random number generator's sequence.
nextGamma(double) - Method in class com.imsl.stat.Random
Generates a pseudorandom number from a standard gamma distribution.
nextGeometric(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a geometric distribution.
nextHypergeometric(int, int, int) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a hypergeometric distribution.
nextInt() - Method in class com.imsl.stat.MersenneTwister
Generates the next pseudorandom number.
nextLogNormal(double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a lognormal distribution.
nextLogarithmic(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a logarithmic distribution.
nextLong() - Method in class com.imsl.stat.MersenneTwister64
Generates the next pseudorandom, uniformly distributed long value from this random number generator's sequence.
nextMultivariateNormal(int, Cholesky) - Method in class com.imsl.stat.Random
Generate pseudorandom numbers from a multivariate normal distribution.
nextNegativeBinomial(double, double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a negative binomial distribution.
nextNormal() - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a standard normal distribution using an inverse CDF method.
nextNormalAR() - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a standard normal distribution using an acceptance/rejection method.
nextPoint() - Method in class com.imsl.stat.FaureSequence
Returns the next point in the sequence.
nextPoint() - Method in interface com.imsl.stat.RandomSequence
Returns the next multidimensional point in the sequence.
nextPoisson(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a Poisson distribution.
nextPrime(int) - Static method in class com.imsl.stat.FaureSequence
Returns the smallest prime greater than or equal to n.
nextRayleigh(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a Rayleigh distribution.
nextStudentsT(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a Student's t distribution.
nextToken() - Method in class com.imsl.io.Tokenizer
Returns the next token.
nextTriangular() - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a triangular distribution on the interval (0,1).
nextVonMises(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a von Mises distribution.
nextWeibull(double) - Method in class com.imsl.stat.Random
Generate a pseudorandom number from a Weibull distribution.
node - Variable in class com.imsl.chart.Draw
 
nominal(double, int) - Static method in class com.imsl.finance.Finance
Returns the nominal annual interest rate.
noncentralchi(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the noncentral chi-squared cumulative probability distribution function.
noncentralstudentsT(double, int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the noncentral Student's t cumulative probability distribution function.
normal(double) - Static method in class com.imsl.stat.Cdf
Evaluates the normal (Gaussian) cumulative probability distribution function.
nper(double, double, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the number of periods for an investment for which periodic, and constant payments are made and the interest rate is constant.
npv(double, double[]) - Static method in class com.imsl.finance.Finance
Returns the net present value of a stream of equal periodic cash flows, which are subject to a given discount rate.
numberFormat - Variable in class com.imsl.math.PrintMatrixFormat
The NumberFormat to be used in formatting double and Complex entries.

O

OdeRungeKutta - class com.imsl.math.OdeRungeKutta.
Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.
OdeRungeKutta(OdeRungeKutta.Function) - Constructor for class com.imsl.math.OdeRungeKutta
Constructs an ODE solver to solve the initial value problem dy/dx = f(x,y)
OdeRungeKutta.DidNotConvergeException - exception com.imsl.math.OdeRungeKutta.DidNotConvergeException.
The iteration did not converge.
OdeRungeKutta.DidNotConvergeException(String) - Constructor for class com.imsl.math.OdeRungeKutta.DidNotConvergeException
 
OdeRungeKutta.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.math.OdeRungeKutta.DidNotConvergeException
 
OdeRungeKutta.Function - interface com.imsl.math.OdeRungeKutta.Function.
Public interface for user supplied function to OdeRungeKutta object.
OdeRungeKutta.ToleranceTooSmallException - exception com.imsl.math.OdeRungeKutta.ToleranceTooSmallException.
Tolerance is too small.
OdeRungeKutta.ToleranceTooSmallException(String, Object[]) - Constructor for class com.imsl.math.OdeRungeKutta.ToleranceTooSmallException
 
OutputLayer - class com.imsl.datamining.neural.OutputLayer.
Output layer in a neural network.
OutputPerceptron - class com.imsl.datamining.neural.OutputPerceptron.
A Perceptron in the output layer.
oneNorm(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Return the Complex matrix one norm.
oneNorm(double[][]) - Static method in class com.imsl.math.Matrix
Return the matrix one norm.
order - Variable in class com.imsl.math.BSpline
Order of the spline.
out - Variable in class com.imsl.WarningObject
The warning stream.
outline - Static variable in class com.imsl.chart.Draw
Markers defined on a [-1,1] x [-1,1] grid.

P

PARSE_BYTE - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Byte.
PARSE_DOUBLE - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Double.
PARSE_FLOAT - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Float.
PARSE_INTEGER - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Integer.
PARSE_LONG - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Long.
PARSE_SHORT - Static variable in class com.imsl.io.FlatFile
Implements a Parser that converts a String to a Short.
PI - Static variable in class com.imsl.math.JMath
 
POOLED - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates Pooled covariances computed.
POOLED_GROUP - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates Pooled, group covariances computed.
POOL_INTERACTIONS - Static variable in class com.imsl.stat.ANOVAFactorial
Indicates factor nSubscripts is not error.
PRINCIPAL_COMPONENT_MODEL - Static variable in class com.imsl.stat.FactorAnalysis
Indicates principal component model.
PRINCIPAL_FACTOR_MODEL - Static variable in class com.imsl.stat.FactorAnalysis
Indicates principal factor model.
PRIOR_EQUAL - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates prior probability type is to be prior equal.
PRIOR_PROPORTIONAL - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates prior probability type is to be prior proportional.
PRISM - Static variable in interface com.imsl.chart.Colormap
Prism colormap.
PURE_ERROR - Static variable in class com.imsl.stat.ANOVAFactorial
Indicates factor nSubscripts is error.
Perceptron - class com.imsl.datamining.neural.Perceptron.
A Perceptron node in a neural network.
Physical - class com.imsl.math.Physical.
Return the value of various mathematical and physical constants.
Physical() - Constructor for class com.imsl.math.Physical
Constructs a new 0-valued, dimensionless object.
Physical(Physical) - Constructor for class com.imsl.math.Physical
Constructs a copy of a Physical object.
Physical(double, String) - Constructor for class com.imsl.math.Physical
Constructs a new Physical object and initializes this object to a double value.
Physical(double, int, int, int, int, int) - Constructor for class com.imsl.math.Physical
Constructs a new Physical object and initializes this object to a double value along with int values for length, mass, time, current, and temperature.
PickEvent - class com.imsl.chart.PickEvent.
An event that indicates that a chart element has been selected.
PickEvent(MouseEvent) - Constructor for class com.imsl.chart.PickEvent
Construct a PickEvent object.
PickEvent(Component, int, long, int, int, int, int, boolean) - Constructor for class com.imsl.chart.PickEvent
Construct a PickEvent object at point (x,y).
PickListener - interface com.imsl.chart.PickListener.
The listener interface for receiving pick events.
Pie - class com.imsl.chart.Pie.
A pie chart.
Pie(Chart) - Constructor for class com.imsl.chart.Pie
Constructs a Pie chart object.
Pie(Chart, double[]) - Constructor for class com.imsl.chart.Pie
Constructs a Pie chart object with a specified number of slices.
PieSlice - class com.imsl.chart.PieSlice.
One wedge of a pie chart.
PointLight - class com.imsl.chart3d.PointLight.
A point light source.
PointLight(Chart3D) - Constructor for class com.imsl.chart3d.PointLight
Creates a point light source at the origin.
PointLight(Chart3D, double, double, double) - Constructor for class com.imsl.chart3d.PointLight
Creates a point light at a specified position.
Polar - class com.imsl.chart.Polar.
This Axis node is used for polar charts.
Polar(Chart) - Constructor for class com.imsl.chart.Polar
Create an AxisPolar.
PrintMatrix - class com.imsl.math.PrintMatrix.
Matrix printing utilities.
PrintMatrix() - Constructor for class com.imsl.math.PrintMatrix
Creates an instance of the PrintMatrix class.
PrintMatrix(PrintStream) - Constructor for class com.imsl.math.PrintMatrix
Creates an instance of the PrintMatrix class with the specified PrintStream.
PrintMatrix(String) - Constructor for class com.imsl.math.PrintMatrix
Creates a PrintMatrix object and sets its title.
PrintMatrix(PrintStream, String) - Constructor for class com.imsl.math.PrintMatrix
Creates a PrintMatrix object with the specified PrintStream and sets its title.
PrintMatrixFormat - class com.imsl.math.PrintMatrixFormat.
This class can be used to customize the actions of PrintMatrix.
PrintMatrixFormat() - Constructor for class com.imsl.math.PrintMatrixFormat
Constructs a PrintMatrixFormat object.
paint(Draw) - Method in class com.imsl.chart.Axis
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Axis1D
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisLabel
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisLine
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisR
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisRLabel
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisRLine
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisRMajorTick
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisTheta
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisTitle
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisUnit
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.AxisXY
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Background
Paint this node.
paint(Draw) - Method in class com.imsl.chart.Bar
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.BarItem
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.BarSet
 
paint(Draw) - Method in class com.imsl.chart.BoxPlot
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Candlestick
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.CandlestickItem
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Chart
Paints this node and all of its children.
paint(Graphics) - Method in class com.imsl.chart.Chart
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.ChartNode
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.ChartTitle
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Contour.Legend
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Contour
 
paint(Draw) - Method in class com.imsl.chart.ContourLevel
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Data
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Dendrogram
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.ErrorBar
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Grid
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.GridPolar
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Heatmap.Legend
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Heatmap
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.HighLowClose
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Legend
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.MajorTick
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.MinorTick
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.PieSlice
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.Polar
Paints this node and all of its children.
paint(Draw) - Method in class com.imsl.chart.ToolTip
Paints this node and all of its children.
paint(Graphics) - Method in class com.imsl.chart3d.BufferedPaint
Paint the image onto the canvas.
paint(Graphics) - Method in interface com.imsl.chart3d.Canvas3DChart.Paint
 
paint(Graphics) - Method in class com.imsl.chart3d.Canvas3DChart
Paint method overriden to correct a problem in JDK 1.4.
paintChart(Graphics) - Method in class com.imsl.chart.Chart
Draw the chart using the given Graphics object.
paintComponent(Graphics) - Method in class com.imsl.chart.JPanelChart
Calls the UI delegate's paint method, if the UI delegate is non-null.
paintImage() - Method in class com.imsl.chart.Chart
Returns an Image of the chart.
parse(String) - Method in interface com.imsl.io.FlatFile.Parser
Parse a String into an Object.
parse(String) - Method in class com.imsl.io.Tokenizer
Sets the line to be tokenized.
parseColor(String) - Static method in class com.imsl.chart.AbstractChartNode
Returns a color specified by name or a red-green-blue triple.
path - Variable in class com.imsl.chart.Draw
 
performanceIndex(double[][]) - Method in class com.imsl.math.Eigen
Returns the performance index of a real eigensystem.
performanceIndex(double[][]) - Method in class com.imsl.math.SymEigen
Returns the performance index of a real symmetric eigensystem.
pick(MouseEvent) - Method in class com.imsl.chart.Chart
Fire the PickListeners for the nodes hit by the event.
pickNode() - Method in class com.imsl.chart.DrawPick
Register the currentNode as the "picked" node if the "PickListener" attribute is defined for the current node.
pickPerformed(PickEvent) - Method in interface com.imsl.chart.PickListener
Public interface for PickListener.
pickPerformed(PickEvent) - Method in class com.imsl.chart.ToolTip
Part of the PickListener interface.
pmt(double, int, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the periodic payment for an investment.
poch(double, double) - Static method in class com.imsl.math.Sfun
Returns a generalization of Pochhammer's symbol.
pointToLine(int, int, int[], int[]) - Static method in class com.imsl.chart.PickEvent
Compute the distance from the point (Px,Py) to the line segment AB.
poisson(int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Poisson cumulative probability distribution function.
poissonProb(int, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Poisson probability density function.
poly(int[], int[]) - Method in class com.imsl.chart.DrawMap
Sets a polygon as the target.
postRender() - Method in class com.imsl.chart3d.Canvas3DChart
Calls the Paint objects added to the post-render list.
postSwap() - Method in class com.imsl.chart3d.Canvas3DChart
Writes the chart to a file as a bitmap image.
pow(Complex, double) - Static method in class com.imsl.math.Complex
Returns the Complex z raised to the x power, with a branch cut for the first parameter (z) along the negative real axis.
pow(Complex, Complex) - Static method in class com.imsl.math.Complex
Returns the Complex x raised to the Complex y power.
pow(double, double) - Static method in class com.imsl.math.JMath
Returns x to the power y.
ppmt(double, int, int, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the payment on the principal for a specified period.
preRender() - Method in class com.imsl.chart3d.Canvas3DChart
Calls the Paint objects added to the pre-render list.
predictedClass(double[]) - Method in class com.imsl.datamining.neural.BinaryClassification
Calculates the classification probablities for the input pattern x, and returns either 0 or 1 identifying the class with the highest probability.
predictedClass(double[]) - Method in class com.imsl.datamining.neural.MultiClassification
Calculates the classification probablities for the input pattern x, and returns the class with the highest probability.
previous() - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor to the previous row in this ResultSet object.
price(GregorianCalendar, GregorianCalendar, double, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the price, per $100 face value, of a security that pays periodic interest.
pricedisc(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the price of a discount bond given the discount rate.
pricemat(GregorianCalendar, GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the price, per $100 face value, of a discount bond.
priceyield(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the price of a discount bond given the yield.
print(Object, String, String, Object[]) - Static method in class com.imsl.Warning
Issue a warning message.
print(Object, String, String, Object[]) - Method in class com.imsl.WarningObject
Issue a warning message.
print(Graphics, PageFormat, int) - Method in class com.imsl.chart.Chart
This method implements the Printable interface.
print() - Method in class com.imsl.chart.JPanelChart
Print the chart, centered on a page.
print(String) - Method in class com.imsl.math.PrintMatrix
Print a string.
print(Object) - Method in class com.imsl.math.PrintMatrix
Prints an nRows by nColumns matrix with specified format.
print(PrintMatrixFormat, Object) - Method in class com.imsl.math.PrintMatrix
Prints an nRows by nColumns matrix with specified format.
printHTML(PrintMatrixFormat, Object, int, int) - Method in class com.imsl.math.PrintMatrix
Prints an nRows by nColumns matrix with specified format for HTML output.
println() - Method in class com.imsl.math.PrintMatrix
Print a newline.
probabilities(double[]) - Method in class com.imsl.datamining.neural.BinaryClassification
Returns classification probabilities for the input pattern x.
probabilities(double[]) - Method in class com.imsl.datamining.neural.MultiClassification
Returns classification probabilities for the input pattern x.
processCommand(String, String) - Method in class com.imsl.io.MPSReader
Process a section of the MPS file.
pv(double, int, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the net present value of a stream of equal periodic cash flows, which are subject to a given discount rate.

Q

QR - class com.imsl.math.QR.
QR Decomposition of a matrix.
QR(double[][]) - Constructor for class com.imsl.math.QR
Constructs the QR decomposition of a matrix with elements of type double.
QUADRATIC - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates a quadratic discrimination method.
QUARTERLY - Static variable in class com.imsl.finance.Bond
Coupon payments are made quarterly.
QuadraticProgramming - class com.imsl.math.QuadraticProgramming.
Solves the convex quadratic programming problem subject to equality or inequality constraints.
QuadraticProgramming(double[][], double[], double[][], double[], double[][], double[]) - Constructor for class com.imsl.math.QuadraticProgramming
Solve a quadratic programming problem.
QuadraticProgramming.InconsistentSystemException - exception com.imsl.math.QuadraticProgramming.InconsistentSystemException.
Inconsistent system.
QuadraticProgramming.InconsistentSystemException() - Constructor for class com.imsl.math.QuadraticProgramming.InconsistentSystemException
 
Quadrature - class com.imsl.math.Quadrature.
Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error.
Quadrature() - Constructor for class com.imsl.math.Quadrature
Constructs a Quadrature object.
Quadrature.Function - interface com.imsl.math.Quadrature.Function.
Public interface function for the Quadrature class.
QuasiNewtonTrainer - class com.imsl.datamining.neural.QuasiNewtonTrainer.
Trains a network using the quasi-Newton method, MinUnconMultiVar.
QuasiNewtonTrainer() - Constructor for class com.imsl.datamining.neural.QuasiNewtonTrainer
Constructs a QuasiNewtonTrainer object.
QuasiNewtonTrainer.BlockGradObjective - class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective.
 
QuasiNewtonTrainer.BlockGradObjective() - Constructor for class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective
 
QuasiNewtonTrainer.BlockObjective - class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockObjective.
 
QuasiNewtonTrainer.BlockObjective() - Constructor for class com.imsl.datamining.neural.QuasiNewtonTrainer.BlockObjective
 
QuasiNewtonTrainer.Error - interface com.imsl.datamining.neural.QuasiNewtonTrainer.Error.
Error function to be minimized by trainer.
QuasiNewtonTrainer.GradObjective - class com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective.
The Objective class is passed to the optimizer.
QuasiNewtonTrainer.Objective - class com.imsl.datamining.neural.QuasiNewtonTrainer.Objective.
The Objective class is passed to the optimizer.

R

RADIAN - Static variable in class com.imsl.chart.Draw
 
RECLASSIFICATION - Static variable in class com.imsl.stat.DiscriminantAnalysis
Indicates reclassification as the classicfication method.
RED - Static variable in interface com.imsl.chart.Colormap
Linear red colormap.
RED_PURPLE - Static variable in interface com.imsl.chart.Colormap
Red/purple colormap.
RED_TEMPERATURE - Static variable in interface com.imsl.chart.Colormap
Red temperature colormap.
ROW_LABEL - Static variable in class com.imsl.math.PrintMatrixFormat
This flag as the type argument to format, indicates that the formatted string for a given row label is to be returned.
R_SQUARED_CRITERION - Static variable in class com.imsl.stat.SelectionRegression
Indicates R^2 criterion regression.
RadialBasis - class com.imsl.math.RadialBasis.
RadialBasis computes a least-squares fit to scattered data in {bf R}^d, where d is the dimension.
RadialBasis(int, int) - Constructor for class com.imsl.math.RadialBasis
Creates a new instance of RadialBasis.
RadialBasis.Function - interface com.imsl.math.RadialBasis.Function.
Public interface for the user supplied function to the RadialBasis object.
RadialBasis.Gaussian - class com.imsl.math.RadialBasis.Gaussian.
The Gaussian basis function, e^{-ax^2}.
RadialBasis.Gaussian(double) - Constructor for class com.imsl.math.RadialBasis.Gaussian
 
RadialBasis.HardyMultiquadric - class com.imsl.math.RadialBasis.HardyMultiquadric.
The Hardy multiquadric basis function, sqrt{r^2+delta^2}.
RadialBasis.HardyMultiquadric(double) - Constructor for class com.imsl.math.RadialBasis.HardyMultiquadric
Creates a Hardy multiquadric basis function.
Random - class com.imsl.stat.Random.
Generate uniform and non-uniform random number distributions.
Random() - Constructor for class com.imsl.stat.Random
Constructor for the Random number generator class.
Random(long) - Constructor for class com.imsl.stat.Random
Constructor for the Random number generator class with supplied seed.
Random(Random.BaseGenerator) - Constructor for class com.imsl.stat.Random
Constructor for the Random number generator class with an alternate basic number generator.
Random.BaseGenerator - interface com.imsl.stat.Random.BaseGenerator.
Base pseudorandom number.
RandomSequence - interface com.imsl.stat.RandomSequence.
Interface implemented by generators of random or quasi-random multidimension sequences.
Ranks - class com.imsl.stat.Ranks.
Compute the ranks, normal scores, or exponential scores for a vector of observations.
Ranks() - Constructor for class com.imsl.stat.Ranks
Constructor for the Ranks class.
Rayleigh(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Rayleigh cumulative probability distribution function.
RayleighProb(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Rayleigh probability density function.
RegressionBasis - interface com.imsl.stat.RegressionBasis.
Public interface for user supplied function to UserBasisRegression object.
r9lgmc(double) - Static method in class com.imsl.math.Sfun
Returns the log gamma correction term for argument values greater than or equal to 10.0.
random() - Static method in class com.imsl.math.JMath
Returns a random number from a uniform distribution.
rank(double) - Method in class com.imsl.math.QR
Returns the rank of the matrix given an input tolerance.
rate(int, double, double, double, int) - Static method in class com.imsl.finance.Finance
Returns the interest rate per period of an annuity.
rate(int, double, double, double, int, double) - Static method in class com.imsl.finance.Finance
Returns the interest rate per period of an annuity with an initial guess.
read(Reader) - Method in class com.imsl.io.MPSReader
Reads and parses the MPS file.
readLine() - Method in class com.imsl.io.FlatFile
Reads and returns a line from the input.
real() - Method in class com.imsl.math.Complex
Returns the real part of a Complex object.
real(Complex) - Static method in class com.imsl.math.Complex
Returns the real part of a Complex object.
received(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the amount one receives when a fully invested security reaches the maturity date.
rect(int, int, int, int) - Method in class com.imsl.chart.DrawMap
Sets a rectangle as the target.
refreshRow() - Method in class com.imsl.io.AbstractFlatFile
Refreshes the current row with its most recent value in the database.
registerChart(Chart, HttpServletRequest) - Method in class com.imsl.chart.JspBean
Saves the chart and sets the chart attribute "Size".
relative(int) - Method in class com.imsl.io.AbstractFlatFile
Moves the cursor a relative number of rows, either positive or negative.
remove() - Method in class com.imsl.chart.AbstractChartNode
Removes the node from its parents list of children.
remove(Link) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Removes a Link from the network.
removePickListener(PickListener) - Method in class com.imsl.chart.ChartNode
Removes a PickListener from this node.
removePostRenderPaint(Canvas3DChart.Paint) - Method in class com.imsl.chart3d.Canvas3DChart
Removes a Paint object from the list of post-render Paint objects.
removePreRenderPaint(Canvas3DChart.Paint) - Method in class com.imsl.chart3d.Canvas3DChart
Removes a Paint object from the list of pre-render Paint objects.
render() - Method in class com.imsl.chart3d.Canvas3DChart
Creates a scene graph from the chart tree and starts rendering the scene graph into this canvas.
render() - Method in class com.imsl.chart3d.JFrameChart3D
Renders the 3D chart node tree into a Java 3D scene graph.
repaint() - Method in class com.imsl.chart.Chart
Prepares the chart to be repainted by deleting any double buffering image.
resetViewPlatformTransformation() - Method in class com.imsl.chart3d.Chart3D
Resets the view platform transformation to its default value.
rint(double) - Static method in class com.imsl.math.JMath
Returns the value of a double rounded toward the closest integral value.
round(float) - Static method in class com.imsl.math.JMath
Returns the integer closest to a given float.
round(double) - Static method in class com.imsl.math.JMath
Returns the long closest to a given double.
rowDeleted() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether a row has been deleted.
rowInserted() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the current row has had an insertion.
rowUpdated() - Method in class com.imsl.io.AbstractFlatFile
Indicates whether the current row has been updated.

S

SECOND_DERIVATIVE - Static variable in class com.imsl.math.CsInterpolate
 
SEMIANNUAL - Static variable in class com.imsl.finance.Bond
Coupon payments are made semiannually.
SOFTMAX - Static variable in interface com.imsl.datamining.neural.Activation
The softmax activation function.
SPECTRAL - Static variable in interface com.imsl.chart.Colormap
Spectral colormap.
SQUASH - Static variable in interface com.imsl.datamining.neural.Activation
The squash activation function, g(x) = frac{x}{1+|x|}
STANDARD_GAMMA - Static variable in interface com.imsl.chart.Colormap
Standard gamma colormap.
STDEV_CORRELATION_MATRIX - Static variable in class com.imsl.stat.Covariances
Indicates correlation matrix except for the diagonal elements which are the standard deviations
STEPWISE_REGRESSION - Static variable in class com.imsl.stat.StepwiseRegression
Indicates stepwise regression.
STRICT_LOWER_TRIANGULAR - Static variable in class com.imsl.math.PrintMatrix
This flag as the argument to setMatrixType, indicates that only the strict lower triangular elements of the matrix are to be printed.
STRICT_UPPER_TRIANGULAR - Static variable in class com.imsl.math.PrintMatrix
This flag as the argument to setMatrixType, indicates that only the strict upper triangular elements of the matrix are to be printed.
SUM_OF_SQUARES - Static variable in class com.imsl.datamining.neural.QuasiNewtonTrainer
Compute the sum of squares error.
SURFACE_TYPE_FLAT - Static variable in class com.imsl.chart3d.Surface
Draws the surface using flat shading.
SURFACE_TYPE_GOURAUD - Static variable in class com.imsl.chart3d.Surface
Draws the surface using Gouraud shading.
SURFACE_TYPE_MESH - Static variable in class com.imsl.chart3d.Surface
Draws the surface as a mesh.
SURFACE_TYPE_NICEST - Static variable in class com.imsl.chart3d.Surface
Draws the surface using the best shading available.
SVD - class com.imsl.math.SVD.
Singular Value Decomposition (SVD) of a rectangular matrix of type double.
SVD(double[][], double) - Constructor for class com.imsl.math.SVD
Construct the singular value decomposition of a rectangular matrix with a given tolerance.
SVD(double[][]) - Constructor for class com.imsl.math.SVD
Construct the singular value decomposition of a rectangular matrix with default tolerance.
SVD.DidNotConvergeException - exception com.imsl.math.SVD.DidNotConvergeException.
The iteration did not converge
SVD.DidNotConvergeException(String) - Constructor for class com.imsl.math.SVD.DidNotConvergeException
 
SVD.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.math.SVD.DidNotConvergeException
 
ScaleFilter - class com.imsl.datamining.neural.ScaleFilter.
Scales or unscales continuous data prior to its use in neural network training, testing, or forecasting.
ScaleFilter(int) - Constructor for class com.imsl.datamining.neural.ScaleFilter
Constructor for ScaleFilter.
SelectionRegression - class com.imsl.stat.SelectionRegression.
Selects the best multiple linear regression models.
SelectionRegression(int) - Constructor for class com.imsl.stat.SelectionRegression
Constructs a new SelectionRegression object.
SelectionRegression.NoVariablesException - exception com.imsl.stat.SelectionRegression.NoVariablesException.
No Variables can enter the model.
SelectionRegression.NoVariablesException() - Constructor for class com.imsl.stat.SelectionRegression.NoVariablesException
Constructs a NoVariablesException.
SelectionRegression.Statistics - class com.imsl.stat.SelectionRegression.Statistics.
Statistics contains statistics related to the regression coefficients.
Sfun - class com.imsl.math.Sfun.
Collection of special functions.
ShapiroWilkWTest() - Method in class com.imsl.stat.NormalityTest
Performs the Shapiro-Wilk W test.
SignTest - class com.imsl.stat.SignTest.
Performs a sign test.
SignTest(double[]) - Constructor for class com.imsl.stat.SignTest
Constructor for SignTest.
SingularMatrixException - exception com.imsl.math.SingularMatrixException.
The matrix is singular.
SingularMatrixException() - Constructor for class com.imsl.math.SingularMatrixException
 
Sort - class com.imsl.stat.Sort.
A collection of sorting functions.
Sort() - Constructor for class com.imsl.stat.Sort
 
Spline - class com.imsl.math.Spline.
Spline represents and evaluates univariate piecewise polynomial splines.
Spline() - Constructor for class com.imsl.math.Spline
 
SplineData - class com.imsl.chart.SplineData.
A data set created from a Spline.
SplineData(ChartNode, Spline) - Constructor for class com.imsl.chart.SplineData
Creates a data node from Spline values.
StepwiseRegression - class com.imsl.stat.StepwiseRegression.
Builds multiple linear regression models using forward selection, backward selection, or stepwise selection.
StepwiseRegression(double[][], double[]) - Constructor for class com.imsl.stat.StepwiseRegression
Creates a new instance of StepwiseRegression.
StepwiseRegression(double[][], double[], double[]) - Constructor for class com.imsl.stat.StepwiseRegression
Creates a new instance of weighted StepwiseRegression.
StepwiseRegression(double[][], double[], double[], double[]) - Constructor for class com.imsl.stat.StepwiseRegression
Creates a new instance of weighted StepwiseRegression using observation frequencies.
StepwiseRegression(double[][], int) - Constructor for class com.imsl.stat.StepwiseRegression
Creates a new instance of StepwiseRegression from a user-supplied variance-covariance matrix.
StepwiseRegression.CoefficientTTests - class com.imsl.stat.StepwiseRegression.CoefficientTTests.
CoefficientTTests contains statistics related to the student-t test, for each regression coefficient.
StepwiseRegression.CyclingIsOccurringException - exception com.imsl.stat.StepwiseRegression.CyclingIsOccurringException.
Cycling is occurring.
StepwiseRegression.CyclingIsOccurringException(int) - Constructor for class com.imsl.stat.StepwiseRegression.CyclingIsOccurringException
Constructs a CyclingIsOccurringException.
StepwiseRegression.NoVariablesEnteredException - exception com.imsl.stat.StepwiseRegression.NoVariablesEnteredException.
No Variables can enter the model.
StepwiseRegression.NoVariablesEnteredException() - Constructor for class com.imsl.stat.StepwiseRegression.NoVariablesEnteredException
Constructs a NoVariablesEnteredException.
Summary - class com.imsl.stat.Summary.
Computes basic univariate statistics.
Summary() - Constructor for class com.imsl.stat.Summary
Constructs a new summary statistics object.
Surface - class com.imsl.chart3d.Surface.
Surface from a function or from a set of scattered data points.
Surface(AxisXYZ, Surface.ZFunction, double, double, double, double) - Constructor for class com.imsl.chart3d.Surface
Creates a surface from a function.
Surface(AxisXYZ, double[], double[], double[][]) - Constructor for class com.imsl.chart3d.Surface
Creates a surface from a gridded data set.
Surface(AxisXYZ, double[], double[], double[][], Color[][]) - Constructor for class com.imsl.chart3d.Surface
Creates a colored surface from a gridded data set.
Surface(AxisXYZ, double[], double[], double[]) - Constructor for class com.imsl.chart3d.Surface
Creates a surface from a scattered set of 3D points.
Surface(AxisXYZ, double[], double[], double[], Color[]) - Constructor for class com.imsl.chart3d.Surface
Creates a surface from a scattered set of 3D points with a color given at each point.
Surface.ZFunction - interface com.imsl.chart3d.Surface.ZFunction.
Functional representation of a surface.
SymEigen - class com.imsl.math.SymEigen.
Computes the eigenvalues and eigenvectors of a real symmetric matrix.
SymEigen(double[][]) - Constructor for class com.imsl.math.SymEigen
Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.
SymEigen(double[][], boolean) - Constructor for class com.imsl.math.SymEigen
Constructs the eigenvalues and (optionally) the eigenvectors for a real symmetric matrix.
sampleStandardDeviation(double[]) - Static method in class com.imsl.stat.Summary
Returns the sample standard deviation of the given data set.
sampleStandardDeviation(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the sample standard deviation of the given data set and associated weights.
sampleVariance(double[]) - Static method in class com.imsl.stat.Summary
Returns the sample variance of the given data set.
sampleVariance(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the sample variance of the given data set and associated weights.
saveChart(Chart, HttpServletRequest) - Method in class com.imsl.chart.JspBean
Saves the chart so that a servlet can later render it.
scalbn(double, int) - Static method in class com.imsl.math.IEEE
Returns 2n computed by exponent manipulation rather than by actually performing an exponentiation or a multiplication.
scaleFont - Variable in class com.imsl.chart.Draw
 
scaledK(double, double, int) - Static method in class com.imsl.math.Bessel
Evaluate a sequence of exponentially scaled modified Bessel functions of the third kind with fractional order and real argument.
serialVersionUID - Static variable in class com.imsl.chart.AbstractChartNode
 
serialVersionUID - Static variable in class com.imsl.chart.AxisR
 
serialVersionUID - Static variable in class com.imsl.chart.AxisRLabel
 
serialVersionUID - Static variable in class com.imsl.chart.AxisRLine
 
serialVersionUID - Static variable in class com.imsl.chart.AxisRMajorTick
 
serialVersionUID - Static variable in class com.imsl.chart.AxisTheta
 
serialVersionUID - Static variable in class com.imsl.chart.BoxPlot.Statistics
 
serialVersionUID - Static variable in class com.imsl.chart.BoxPlot
 
serialVersionUID - Static variable in class com.imsl.chart.Candlestick
 
serialVersionUID - Static variable in class com.imsl.chart.CandlestickItem
 
serialVersionUID - Static variable in class com.imsl.chart.ChartServlet
 
serialVersionUID - Static variable in class com.imsl.chart.Contour.Legend
 
serialVersionUID - Static variable in class com.imsl.chart.Contour
 
serialVersionUID - Static variable in class com.imsl.chart.ContourLevel
 
serialVersionUID - Static variable in class com.imsl.chart.Dendrogram
 
serialVersionUID - Static variable in class com.imsl.chart.GridPolar
 
serialVersionUID - Static variable in class com.imsl.chart.Heatmap.Legend
 
serialVersionUID - Static variable in class com.imsl.chart.Heatmap
 
serialVersionUID - Static variable in class com.imsl.chart.HighLowClose
 
serialVersionUID - Static variable in class com.imsl.chart.JFrameChart
 
serialVersionUID - Static variable in class com.imsl.chart.JPanelChart
 
serialVersionUID - Static variable in class com.imsl.chart.JspBean
 
serialVersionUID - Static variable in class com.imsl.chart3d.AmbientLight
 
serialVersionUID - Static variable in class com.imsl.chart3d.Axis3D
 
serialVersionUID - Static variable in class com.imsl.chart3d.AxisBox
 
serialVersionUID - Static variable in class com.imsl.chart3d.AxisLabel
 
serialVersionUID - Static variable in class com.imsl.chart3d.AxisLine
 
serialVersionUID - Static variable in class com.imsl.chart3d.AxisTitle
 
serialVersionUID - Static variable in class com.imsl.chart3d.AxisXYZ
 
serialVersionUID - Static variable in class com.imsl.chart3d.Background
 
serialVersionUID - Static variable in class com.imsl.chart3d.Chart3D
 
serialVersionUID - Static variable in class com.imsl.chart3d.ChartLights
 
serialVersionUID - Static variable in class com.imsl.chart3d.ChartNode3D
 
serialVersionUID - Static variable in class com.imsl.chart3d.ColormapLegend
 
serialVersionUID - Static variable in class com.imsl.chart3d.Data
 
serialVersionUID - Static variable in class com.imsl.chart3d.DirectionalLight
 
serialVersionUID - Static variable in class com.imsl.chart3d.JFrameChart3D
 
serialVersionUID - Static variable in class com.imsl.chart3d.MajorTick
 
serialVersionUID - Static variable in class com.imsl.chart3d.PointLight
 
serialVersionUID - Static variable in class com.imsl.chart3d.Surface
 
serialVersionUID - Static variable in interface com.imsl.datamining.neural.Activation
 
serialVersionUID - Static variable in class com.imsl.datamining.neural.HiddenLayer
 
serialVersionUID - Static variable in class com.imsl.datamining.neural.InputLayer
 
serialVersionUID - Static variable in class com.imsl.datamining.neural.Layer
 
serialVersionUID - Static variable in class com.imsl.datamining.neural.OutputLayer
 
serialVersionUID - Static variable in class com.imsl.datamining.neural.Perceptron
 
serialVersionUID - Static variable in class com.imsl.io.MPSReader.Element
 
serialVersionUID - Static variable in class com.imsl.io.MPSReader.Row
 
serialVersionUID - Static variable in class com.imsl.math.DenseLP.NoAcceptablePivotException
 
serialVersionUID - Static variable in class com.imsl.math.DenseLP.ProblemUnboundedException
 
serialVersionUID - Static variable in class com.imsl.math.LinearProgramming.ProblemInfeasibleException
 
serialVersionUID - Static variable in class com.imsl.math.LinearProgramming.ProblemUnboundedException
 
serialVersionUID - Static variable in class com.imsl.math.MinConNLP
 
serialVersionUID - Static variable in class com.imsl.math.RadialBasis
 
serialVersionUID - Static variable in class com.imsl.stat.FaureSequence
 
serialVersionUID - Static variable in class com.imsl.stat.KaplanMeierECDF
 
serialVersionUID - Static variable in class com.imsl.stat.LinearRegression.CoefficientTTests
 
serialVersionUID - Static variable in class com.imsl.stat.StepwiseRegression.CoefficientTTests
 
serialVersionUID - Static variable in class com.imsl.stat.TableMultiWay
 
setALT(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "ALT" attribute.
setARLags(int[]) - Method in class com.imsl.stat.ARMA
Sets the order of the autoregressive parameters.
setAbsoluteError(double) - Method in class com.imsl.math.HyperRectangleQuadrature
Sets the absolute error tolerance.
setAbsoluteError(double) - Method in class com.imsl.math.Quadrature
Sets the absolute error tolerance.
setAbsoluteError(double) - Method in class com.imsl.math.ZeroFunction
Sets first stopping criterion.
setAbsoluteFcnTol(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the absolute function tolerance.
setAbsoluteTolerance(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the absolute function tolerance.
setAbsoluteTolerance(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the absolute function tolerance.
setAccuracy(double) - Method in class com.imsl.math.MinUncon
Set the required absolute accuracy in the final value returned by member function computeMin.
setActivation(Activation) - Method in class com.imsl.datamining.neural.Perceptron
Sets the activation function.
setAlignment(int) - Method in class com.imsl.chart.Text
Sets the alignment for this Text object.
setAlpha(double) - Method in class com.imsl.stat.MultipleComparisons
Sets the significance level of the test
setAngles(double, double) - Method in class com.imsl.chart.PieSlice
Sets the angles, in degrees, that determine the extent of this slice.
setAttribute(String, Object) - Method in class com.imsl.chart.AbstractChartNode
Sets an attribute.
setAutoscaleInput(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "AutoscaleInput" attribute.
setAutoscaleMinimumTimeInterval(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "AutoscaleMinimumTimeInterval" attribute.
setAutoscaleOutput(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "AutoscaleOutput" attribute.
setAxisTitlePosition(int) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "AxisTitlePosition" attribute.
setBackcasting(int, double) - Method in class com.imsl.stat.ARMA
Sets backcasting option.
setBackwardOrigin(int) - Method in class com.imsl.stat.ARMA
Sets the maximum backward origin.
setBarData(double[][][]) - Method in class com.imsl.chart.Bar
Convenience routine to set the "BarData" attribute.
setBarGap(double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "BarGap" attribute.
setBarType(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "BarType" attribute.
setBarWidth(double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "BarWidth" attribute.
setBias(double) - Method in class com.imsl.datamining.neural.Perceptron
Sets the bias for this perceptron.
setBindingThreshold(double) - Method in class com.imsl.math.MinConNLP
Set the binding threshold for constraints.
setBound(double) - Method in class com.imsl.math.MinUncon
Set the amount by which X may be changed from its initial value, xguess.
setBoundViolationBound(double) - Method in class com.imsl.math.MinConNLP
Set the amount by which bounds may be violated during numerical differentiation.
setBoundingSphere(BoundingSphere) - Method in class com.imsl.chart3d.ChartNode3D
Sets the spherical bounding region object BoundingSphere.
setBounds(double, double, double, double) - Method in class com.imsl.datamining.neural.ScaleFilter
Sets bounds to be used during bounded scaling and unscaling.
setBoxPlotType(int) - Method in class com.imsl.chart.BoxPlot
Sets the "BoxPlotType" attribute value.
setCanvas(Canvas3D) - Method in class com.imsl.chart3d.Chart3D
 
setCensor(int[]) - Static method in class com.imsl.stat.KaplanMeierECDF
Set flags to note right-censoring
setCensorColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x which contains the interval type for each observation.
setCenter(double) - Method in class com.imsl.datamining.neural.ScaleFilter
Set the measure of center to be used during z-score scaling.
setCenter(boolean) - Method in class com.imsl.stat.ARMA
Sets center option.
setChart(Chart) - Method in class com.imsl.chart.JFrameChart
Sets the chart to be handled.
setChart(Chart) - Method in class com.imsl.chart.JPanelChart
Sets the Chart to be handled by this container.
setChartServletName(String) - Method in class com.imsl.chart.JspBean
Sets the URL of the servlet used to render the chart.
setChartTitle(ChartTitle) - Method in class com.imsl.chart.ChartNode
Sets the value of the "ChartTitle" attribute.
setChiSquaredTestNull(double) - Method in class com.imsl.stat.NormOneSample
Sets the null hypothesis value for the chi-squared test.
setChiSquaredTestNull(double) - Method in class com.imsl.stat.NormTwoSample
Sets the null hypothesis value for the chi-squared test.
setClassificationMethod(int) - Method in class com.imsl.stat.DiscriminantAnalysis
Sets the classification method.
setClassificationVariableColumn(int[]) - Method in class com.imsl.stat.CategoricalGenLinModel
Initializes an index vector to contain the column numbers in x that are classification variables.
setClip(Rectangle) - Method in class com.imsl.chart.Draw
Set the clipping rectangle.
setClipData(boolean) - Method in class com.imsl.chart.ChartNode
Sets the value of the "ClipData" attribute.
setClose(double[]) - Method in class com.imsl.chart.HighLowClose
Sets the attribute "Close".
setColorFunction(ColorFunction) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "ColorFunction" attribute.
setColormap(Colormap) - Method in class com.imsl.chart.Heatmap
Sets the value of the "Colormap" attribute.
setColumnClass(int, Class) - Method in class com.imsl.io.AbstractFlatFile
Sets a column class.
setColumnClass(int, Class) - Method in class com.imsl.io.FlatFile
 
setColumnLabels(String[]) - Method in class com.imsl.math.PrintMatrixFormat
Turns on column labeling using the given labels.
setColumnName(int, String) - Method in class com.imsl.io.AbstractFlatFile
Sets a column name.
setColumnParser(int, FlatFile.Parser) - Method in class com.imsl.io.FlatFile
Sets the Parser for the specified column.
setColumnSpacing(int) - Method in class com.imsl.math.PrintMatrix
Sets the number of spaces between columns.
setComponent(Component) - Method in class com.imsl.chart.Chart
Sets the Component for this chart.
setConLevelMean(double) - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Sets the confidence level for two-sided interval estimates on the mean, in percent.
setConLevelPred(double) - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Sets the confidence level for two-sided prediction intervals, in percent.
setConfidence(double) - Method in class com.imsl.stat.ARMA
Sets the confidence percent probability limits of the forecasts.
setConfidenceMean(double) - Method in class com.imsl.stat.NormOneSample
Sets the confidence level (in percent) for a two-sided interval estimate of the mean.
setConfidenceMean(double) - Method in class com.imsl.stat.NormTwoSample
Sets the confidence level (in percent) for a two-sided interval estimate of the mean of x - the mean of y, in percent.
setConfidenceVariance(double) - Method in class com.imsl.stat.NormOneSample
Sets the confidence level (in percent) for two-sided interval estimate of the variances.
setConfidenceVariance(double) - Method in class com.imsl.stat.NormTwoSample
Sets the confidence level (in percent) for two-sided interval estimate of the variances.
setConstraintType(int[]) - Method in class com.imsl.math.DenseLP
Sets the types of general constraints in the matrix a.
setConstraintType(int[]) - Method in class com.imsl.math.LinearProgramming
Sets the types of general constraints in the matrix a.
setConvergenceCriterion1(double) - Method in class com.imsl.stat.FactorAnalysis
Sets the convergence criterion used to terminate the iterations.
setConvergenceCriterion2(double) - Method in class com.imsl.stat.FactorAnalysis
Sets the convergence criterion used to switch to exact second derivatives.
setConvergenceTolerance(double) - Method in class com.imsl.stat.ARMA
Sets the tolerance level used to determine convergence of the nonlinear least-squares algorithm.
setConvergenceTolerance(double) - Method in class com.imsl.stat.CategoricalGenLinModel
Set the convergence criterion.
setCoordinates(double[][]) - Method in class com.imsl.chart.Dendrogram
Convenience routine to set the "Coordinates" attribute.
setCovarianceComputation(int) - Method in class com.imsl.stat.DiscriminantAnalysis
Sets the type of covariance matrices to be computed.
setCreateImageMap(boolean) - Method in class com.imsl.chart.JspBean
Sets a flag indicating if a client-size imagemap is to be generated.
setCriterionOption(int) - Method in class com.imsl.stat.SelectionRegression
Sets the Criterion to be used.
setCross(double, double) - Method in class com.imsl.chart.AxisXY
Sets the value of the "Cross" attribute.
setCross(double[]) - Method in class com.imsl.chart.AxisXY
Sets the value of the "Cross" attribute.
setCustomMarker(Data.CustomMarkerFactory) - Method in class com.imsl.chart3d.Data
Sets a custom marker factory.
setCustomTransform(Transform) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "CustomTransform" attribute.
setCustomTransform(Transform) - Method in class com.imsl.chart.ChartNode
Sets the value of the "CustomTransform" attribute.
setCutpoints(double[]) - Method in class com.imsl.stat.ChiSquaredTest
Sets the cutpoints.
setData(double[]) - Method in class com.imsl.chart.Pie
Changes the data in a Pie chart object.
setDataType(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "DataType" attribute.
setDataType(int) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "DataType" attribute.
setDateAxis(String) - Method in class com.imsl.chart.HighLowClose
Sets up the x-axis for high-low-close plot.
setDateColumnParser(int, String, Locale) - Method in class com.imsl.io.FlatFile
Creates for a pattern string and sets the Parser for the specified column.
setDefaultAlignment(int) - Method in class com.imsl.chart.Text
Sets the alignment to use, if it has not been set using setAlignment(int).
setDefaultOffset(double) - Method in class com.imsl.chart.Text
Sets the default value of the offset.
setDegreesOfFreedom(int) - Method in class com.imsl.stat.FactorAnalysis
Sets the number of degrees of freedom.
setDensity(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Density" attribute.
setDerivtol(double) - Method in class com.imsl.math.MinUncon
Set the derivative tolerance used by member function computeMin to decide if the current point is a local minimum.
setDiagonalScalingMatrix(double[]) - Method in class com.imsl.math.BoundedLeastSquares
Sets the diagonal scaling matrix for the functions.
setDifferentiationType(int) - Method in class com.imsl.math.MinConNLP
Set the type of numerical differentiation to be used.
setDigits(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the number of good digits in the function.
setDigits(int) - Method in class com.imsl.math.NonlinLeastSquares
Set the number of good digits in the function.
setDigits(int) - Method in class com.imsl.stat.NonlinearRegression
Sets the number of good digits in the residuals.
setDirection(double, double, double) - Method in class com.imsl.chart3d.DirectionalLight
Sets the value of the "Direction" attribute to a light direction.
setDirection(Vector3f) - Method in class com.imsl.chart3d.DirectionalLight
Sets the value of the "Direction" attribute to a light direction.
setDiscriminationMethod(int) - Method in class com.imsl.stat.DiscriminantAnalysis
Sets the discrimination method.
setDoubleBuffering(boolean) - Method in class com.imsl.chart.ChartNode
Sets the value of the "DoubleBuffering" attribute.
setEffects(int[], int[]) - Method in class com.imsl.stat.CategoricalGenLinModel
Initializes an index vector to contain the column numbers in x associated with each effect.
setEffects(int) - Method in class com.imsl.stat.LinearRegression.CaseStatistics
Sets the effect option.
setEpochNumber(int) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the epoch number for the trainer.
setEpochNumber(int) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the epoch number for the trainer.
setEpochSize(int) - Method in class com.imsl.datamining.neural.EpochTrainer
Sets the number of randomly selected training patterns in stage 1 epoch.
setEqualColumnWidths(boolean) - Method in class com.imsl.math.PrintMatrix
Force all of the columns to have the same width.
setEqualWeights(double[][]) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Initializes network weights using equal weighting.
setError(QuasiNewtonTrainer.Error) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the function used to compute the network error.
setErrorIncludeType(int) - Method in class com.imsl.stat.ANOVAFactorial
Sets error included type.
setExplode(double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Explode" attribute.
setExtendedLikelihoodObservations(int[]) - Method in class com.imsl.stat.CategoricalGenLinModel
Initializes a vector indicating which observations are to be included in the extended likelihood.
setExtrapolation(boolean) - Method in class com.imsl.math.Quadrature
If true, the epsilon-algorithm for extrapolation is enabled.
setFactorLoadingEstimationMethod(int) - Method in class com.imsl.stat.FactorAnalysis
Sets the factor loading estimation method.
setFalseConvergenceTolerance(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Set the false convergence tolerance.
setFalseConvergenceTolerance(double) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Set the false convergence tolerance for the Trainer.
setFalseConvergenceTolerance(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the false convergence tolerance.
setFalseConvergenceTolerance(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the false convergence tolerance.
setFalseConvergenceTolerance(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the false convergence tolerance.
setFetchDirection(int) - Method in class com.imsl.io.AbstractFlatFile
Gives a hint as to the direction in which the rows in this ResultSet object will be processed.
setFetchSize(int) - Method in class com.imsl.io.AbstractFlatFile
Gives the JDBC driver a hint as to the number of rows that should be fetched from the database when more rows are needed for this ResultSet object.
setFillColor(Color) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "FillColor" attribute.
setFillColor(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the "FillColor" attribute to a color specified by name.
setFillOutlineColor(Color) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillOutlineColor" attribute.
setFillOutlineColor(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillOutlineColor" attribute to a color specified by name.
setFillOutlineType(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillOutlineType" attribute.
setFillPaint(Paint) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillPaint" attribute.
setFillPaint(ImageIcon) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillPaint" attribute.
setFillPaint(URL) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillPaint" attribute.
setFillType(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "FillType" attribute.
setFirstColumnNumber(int) - Method in class com.imsl.math.PrintMatrixFormat
Turns on column labeling with index numbers and sets the index for the label of the first column.
setFirstRowNumber(int) - Method in class com.imsl.math.PrintMatrixFormat
Turns on row labeling with index numbers and sets the index for the label of the first row.
setFirstTick(double) - Method in class com.imsl.chart.Axis1D
Convenience routine to set the "FirstTick" attribute.
setFirstTick(double) - Method in class com.imsl.chart3d.Axis3D
Convenience routine to set the "FirstTick" attribute.
setFixedParameterColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x that contains a fixed parameter for each observation that is added to the linear response prior to computing the model parameter.
setFloor(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the value used in the norm computation.
setFont(Font) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the font attributes.
setFontName(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "FontName" attribute.
setFontSize(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "FontSize" attribute.
setFontStyle(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "FontStyle" attribute.
setForce(int) - Method in class com.imsl.stat.StepwiseRegression
Forces independent variables into the model based on their level assigned from setlevels.
setFrequencies(double[]) - Method in class com.imsl.stat.ClusterKMeans
Sets the frequency for each observation.
setFrequencies(double[]) - Method in class com.imsl.stat.Covariances
Sets the frequency for each observation.
setFrequencies(double[]) - Method in class com.imsl.stat.TableMultiWay
 
setFrequency(int[]) - Static method in class com.imsl.stat.KaplanMeierECDF
Sets the frequency for each entry in y
setFrequencyColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x that contains the frequency of response for each observation.
setFscale(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the function scaling value for scaling the gradient.
setFscale(double[]) - Method in class com.imsl.math.NonlinLeastSquares
Set the diagonal scaling matrix for the functions.
setFunctionPrecision(double) - Method in class com.imsl.math.MinConNLP
Set the relative precision of the function evaluation routine.
setFuzz(double) - Method in class com.imsl.stat.Ranks
Sets the fuzz factor used in determining ties.
setFuzz(double) - Method in class com.imsl.stat.WilcoxonRankSum
Sets the nonnegative constant used to determine ties in computing ranks in the combined samples.
setGoodDigit(int) - Method in class com.imsl.math.BoundedLeastSquares
Sets the number of good digits in the function.
setGradient(Color, Color, Color, Color) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Gradient" attribute.
setGradient(String, String, String, String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Gradient" attribute using named colors.
setGradient(Color[]) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Gradient" attribute.
setGradientPrecision(double) - Method in class com.imsl.math.MinConNLP
Set the relative precision in gradients.
setGradientTol(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the scaled gradient tolerance.
setGradientTolerance(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Set the gradient tolerance.
setGradientTolerance(double) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Set the gradient tolerance.
setGradientTolerance(double) - Method in class com.imsl.math.MinUnconMultiVar
Sets the gradient tolerance.
setGradientTolerance(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the gradient tolerance used to compute the gradient.
setGradientTolerance(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the gradient tolerance used to compute the gradient.
setGuess(double[]) - Method in class com.imsl.math.BoundedLeastSquares
Sets the initial guess of the solution.
setGuess(double[]) - Method in class com.imsl.math.MinConGenLin
Sets an initial guess of the solution.
setGuess(double[]) - Method in class com.imsl.math.MinConNLP
Set the initial guess of the minimum point of the input function.
setGuess(double) - Method in class com.imsl.math.MinUncon
Set the initial guess of the minimum point of the input function.
setGuess(double[]) - Method in class com.imsl.math.MinUnconMultiVar
Set the initial guess of the minimum point of the input function.
setGuess(double[]) - Method in class com.imsl.math.NonlinLeastSquares
Set the initial guess of the minimum point of the input function.
setGuess(double[]) - Method in class com.imsl.math.ZeroSystem
Sets the initial guess for the array x.
setGuess(double[]) - Method in class com.imsl.stat.NonlinearRegression
Sets the initial guess of the parameter values
setHREF(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "HREF" attribute.
setHeatmapLabels(String[][]) - Method in class com.imsl.chart.Heatmap
Sets the value of the "HeatmapLabels" attribute.
setHeatmapLabels(Text[][]) - Method in class com.imsl.chart.Heatmap
Sets the value of the "HeatmapLabels" attribute.
setHigh(double[]) - Method in class com.imsl.chart.ErrorBar
Convenience routine to set the "High" attribute.
setHigh(double[]) - Method in class com.imsl.chart.HighLowClose
Convenience routine to set the "High" attribute.
setIhess(int) - Method in class com.imsl.math.MinUnconMultiVar
Set the Hessian initialization parameter.
setImage(ImageIcon) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Image" attribute.
setImage(Image) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Image" attribute.
setInfiniteEstimateMethod(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the method to be used for handling infinite estimates.
setInitialEstimates(double[], double[]) - Method in class com.imsl.stat.ARMA
Sets preliminary estimates.
setInitialEstimates(int, double[]) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the initial parameter estimates option.
setInitialStepsize(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the initial internal step size.
setInitialTrustRegion(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the intial trust region.
setInitialTrustRegion(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the initial trust region radius.
setInitialTrustRegion(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the initial trust region radius.
setInternalScale() - Method in class com.imsl.math.BoundedLeastSquares
Sets the internal variable scaling option.
setJacobian(BoundedLeastSquares.Jacobian) - Method in class com.imsl.math.BoundedLeastSquares
Sets the Jacobian.
setKeyboard(boolean) - Method in class com.imsl.chart3d.Chart3D
Sets the value of the "Keyboard" attribute.
setLabelType(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LabelType" attribute.
setLabels(String[]) - Method in class com.imsl.chart.AxisLabel
Sets the axis label values for this node to be used instead of the default numbers.
setLabels(String[]) - Method in class com.imsl.chart.AxisRLabel
Sets the axis label values for this node to be used instead of the default numbers.
setLabels(String[], int) - Method in class com.imsl.chart.Bar
Sets up an axis with bar labels.
setLabels(String[]) - Method in class com.imsl.chart.Bar
Sets up an axis with bar labels.
setLabels(String[], int) - Method in class com.imsl.chart.BoxPlot
Sets up an axis with labels.
setLabels(String[]) - Method in class com.imsl.chart.BoxPlot
Sets up an axis with labels.
setLabels(String[]) - Method in class com.imsl.chart.Dendrogram
Sets up the axis labels for dendrogram plot.
setLabels(String[]) - Method in class com.imsl.chart3d.AxisLabel
Sets the axis label values for this node to be used instead of the default numbers.
setLeftSons(int[]) - Method in class com.imsl.chart.Dendrogram
Convenience routine to set the "LeftSons" attribute.
setLevels(double[]) - Method in class com.imsl.chart.Dendrogram
Convenience routine to set the "Levels" attribute.
setLevels(int[]) - Method in class com.imsl.stat.StepwiseRegression
Sets the levels of priority for variables entering and leaving the regression.
setLightColor(Color) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LightColor" attribute.
setLightColor(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LightColor" attribute to a color specified by name.
setLineColor(Color) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LineColor" attribute.
setLineColor(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LineColor" attribute.
setLineColor(String[]) - Method in class com.imsl.chart.Dendrogram
Define colors for individual clusters.
setLineColor(Color[]) - Method in class com.imsl.chart.Dendrogram
Define colors for individual clusters.
setLineDashPattern(double[]) - Method in class com.imsl.chart.ChartNode
Sets the value of the "LineDashPattern" attribute.
setLineWidth(double) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "LineWidth" attribute.
setLocale(Locale) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Locale" attribute.
setLow(double[]) - Method in class com.imsl.chart.ErrorBar
Convenience routine to set the "Low" attribute.
setLow(double[]) - Method in class com.imsl.chart.HighLowClose
Convenience routine to set the "Low" attribute.
setLowerBound(double[]) - Method in class com.imsl.math.DenseLP
Sets the lower bound, x_l, on the variables.
setLowerBound(double[]) - Method in class com.imsl.math.LinearProgramming
Sets the lower bound on the variables.
setLowerEndpointColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x that contains the lower endpoint of the observation interval for full interval and right interval observations.
setMALags(int[]) - Method in class com.imsl.stat.ARMA
Sets the order of the moving average parameters.
setMarkerColor(Color) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "MarkerColor" attribute.
setMarkerColor(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "MarkerColor" attribute to a color specified by name.
setMarkerDashPattern(double[]) - Method in class com.imsl.chart.ChartNode
Sets the value of the "MarkerDashPattern" attribute.
setMarkerPulsingCycle(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerPulsingCycle" attribute.
setMarkerPulsingCycleOffset(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerPulsingCycleOffset" attribute.
setMarkerPulsingMaximumScale(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerPulsingMaximumScale" attribute.
setMarkerPulsingMinimumScale(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerPulsingMinimumScale" attribute.
setMarkerRotatingAxis(double, double, double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerRotatingAxis" attribute.
setMarkerRotatingCycle(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerRotatingCycle" attribute.
setMarkerRotatingCycleOffset(double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerRotatingCycleOffset" attribute.
setMarkerSize(double) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "MarkerSize" attribute.
setMarkerThickness(double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "MarkerThickness" attribute.
setMarkerType(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "MarkerType" attribute.
setMarkerType(int) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "MarkerType" attribute.
setMaterial(Material) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "Material" attribute.
setMatrixType(int) - Method in class com.imsl.math.PrintMatrix
Set matrix type.
setMaxIterations(int) - Method in class com.imsl.math.MinConNLP
Set the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.math.MinUnconMultiVar
Set the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.math.NonlinLeastSquares
Set the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.math.ZeroFunction
Sets the maximum number of iterations allowed per root.
setMaxIterations(int) - Method in class com.imsl.math.ZeroPolynomial
Sets the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.math.ZeroSystem
Sets the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.stat.ARMA
Sets the maximum number of iterations.
setMaxIterations(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Set the maximum number of iterations allowed.
setMaxIterations(int) - Method in class com.imsl.stat.ClusterKMeans
Sets the maximum number of iterations.
setMaxIterations(int) - Method in class com.imsl.stat.FactorAnalysis
Sets the maximum number of iterations in the iterative procedure.
setMaxIterations(int) - Method in class com.imsl.stat.NonlinearRegression
Sets the maximum number of iterations allowed during optimization
setMaxSigma(double) - Method in class com.imsl.stat.GARCH
Sets the value of the upperbound on the first element (sigma) of the array of returned estimated coefficients.
setMaxStep(int) - Method in class com.imsl.stat.FactorAnalysis
Sets the maximum number of step halvings allowed during an iteration.
setMaxSteps(int) - Method in class com.imsl.math.OdeRungeKutta
Sets the maximum number of internal steps allowed.
setMaxStepsize(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the maximum allowable stepsize.
setMaxSubintervals(int) - Method in class com.imsl.math.Quadrature
Sets the maximum number of subintervals allowed.
setMaximumBestFound(int) - Method in class com.imsl.stat.SelectionRegression
Sets the maximum number of best regressions to be found.
setMaximumFunctionEvals(int) - Method in class com.imsl.math.BoundedLeastSquares
Sets the maximum number of function evaluations.
setMaximumGoodSaved(int) - Method in class com.imsl.stat.SelectionRegression
Sets the maximum number of good regressions for each subset size saved.
setMaximumIteration(int) - Method in class com.imsl.math.BoundedLeastSquares
Sets the maximum number of iterations.
setMaximumIteration(int) - Method in class com.imsl.math.LinearProgramming
Sets the maximum number of iterations.
setMaximumJacobianEvals(int) - Method in class com.imsl.math.BoundedLeastSquares
Sets the maximum number of Jacobian evaluations.
setMaximumStepSize(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the maximum allowable step size.
setMaximumStepsize(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the maximum step size.
setMaximumStepsize(double) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the maximum step size.
setMaximumStepsize(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the maximum allowable stepsize to use.
setMaximumStepsize(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the maximum allowable stepsize to use.
setMaximumStepsize(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the maximum internal step size.
setMaximumSubsetSize(int) - Method in class com.imsl.stat.SelectionRegression
Sets the maximum subset size if R^2 criterion is used.
setMaximumTime(long) - Method in class com.imsl.math.MinConNLP
Sets the maximum time allowed for the solve step.
setMaximumTrainingIterations(int) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the maximum number of iterations used by the nonlinear least squares solver.
setMaximumTrainingIterations(int) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the maximum number of iterations to use in a training.
setMean(double) - Method in class com.imsl.stat.AutoCorrelation
Estimate mean of the time series x.
setMeanEstimate(double) - Method in class com.imsl.stat.ARMA
Sets an initial estimate of the mean of the time series z.
setMeanX(double) - Method in class com.imsl.stat.CrossCorrelation
Estimate of the mean of time series x.
setMeanX(double[]) - Method in class com.imsl.stat.MultiCrossCorrelation
Estimate of the mean of each channel of x.
setMeanY(double) - Method in class com.imsl.stat.CrossCorrelation
Estimate of the mean of time series y.
setMeanY(double[]) - Method in class com.imsl.stat.MultiCrossCorrelation
Estimate of the mean of each channel of y.
setMethod(int) - Method in class com.imsl.stat.ARMA
Sets the method to be used by the class.
setMethod(int) - Method in class com.imsl.stat.StepwiseRegression
Specifies the stepwise selection method, forward, backward, or stepwise Regression.
setMinimumStepsize(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the minimum internal step size.
setMissingValueMethod(int) - Method in class com.imsl.stat.Covariances
Sets the method used to exclude missing values in x from the computations, where Double.NaN is interpreted as the missing value code.
setModelIntercept(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the intercept option.
setModelOrder(int) - Method in class com.imsl.stat.ANOVAFactorial
Sets the number of factors to be included in the highest-way interaction in the model.
setMultiplier(int) - Method in class com.imsl.stat.Random
Sets the multiplier for a linear congruential random number generator.
setMultiplierError(double) - Method in class com.imsl.math.MinConNLP
Set the error allowed in the multipliers.
setName(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Name" attribute.
setNameBounds(String) - Method in class com.imsl.io.MPSReader
Sets the name of the BOUNDS set to be used.
setNameObjective(String) - Method in class com.imsl.io.MPSReader
Sets the name of the free row containing the objective.
setNameRHS(String) - Method in class com.imsl.io.MPSReader
Sets the name of the RHS set to be used.
setNameRanges(String) - Method in class com.imsl.io.MPSReader
Sets the name of the RANGES set to be used.
setNoColumnLabels() - Method in class com.imsl.math.PrintMatrixFormat
Turns off column labels.
setNoRowLabels() - Method in class com.imsl.math.PrintMatrixFormat
Turns off row labels.
setNode(ChartNode) - Method in class com.imsl.chart.Draw
Set the current ChartNode.
setNode(ChartNode) - Method in class com.imsl.chart.DrawMap
Set the current ChartNode.
setNode(ChartNode) - Method in class com.imsl.chart.DrawPick
Set the current ChartNode.
setNode(ChartNode) - Method in class com.imsl.chart.PickEvent
Sets the ChartNode.
setNorm(int) - Method in class com.imsl.math.OdeRungeKutta
Sets the switch for determining the error norm.
setNotch(boolean) - Method in class com.imsl.chart.BoxPlot
Sets the attribute "Notch".
setNumber(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Number" attribute.
setNumberFormat(NumberFormat) - Method in class com.imsl.math.PrintMatrixFormat
Sets the NumberFormat to be used in formatting double and Complex entries.
setNumberGridPointsX(int) - Method in class com.imsl.chart3d.Surface
Sets the value of the "NumberGridPointsX" attribute.
setNumberGridPointsY(int) - Method in class com.imsl.chart3d.Surface
Sets the value of the "NumberGridPointsY" attribute.
setNumberOfEpochs(int) - Method in class com.imsl.datamining.neural.EpochTrainer
Sets the number of epochs.
setNumberOfThreads(int) - Method in class com.imsl.datamining.neural.EpochTrainer
Sets the number of threads to use during stage I training.
setObservationMax(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the maximum number of observations that can be handled in the linear programming.
setOffset(double) - Method in class com.imsl.chart.Text
Sets the offset.
setOpen(double[]) - Method in class com.imsl.chart.HighLowClose
Sets the attribute "Open".
setOptionalDistributionParameterColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x that contains an optional distribution parameter for each observation.
setOrbit(boolean) - Method in class com.imsl.chart3d.Chart3D
Sets the value of the "Orbit" attribute.
setOrder(int[]) - Method in class com.imsl.chart.Dendrogram
Convenience routine to set the "Order" attribute.
setOrders(int[]) - Method in class com.imsl.stat.Difference
Sets the orders for the Difference object
setOut(PrintStream) - Static method in class com.imsl.Warning
Reassigns the output stream.
setOut(PrintStream) - Method in class com.imsl.WarningObject
Reassigns the output stream.
setPValueIn(double) - Method in class com.imsl.stat.StepwiseRegression
Defines the largest p-value for variables entering the model.
setPValueOut(double) - Method in class com.imsl.stat.StepwiseRegression
Defines the smallest p-value for removing variables.
setPageWidth(int) - Method in class com.imsl.math.PrintMatrix
Sets the page width.
setPaint(boolean) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Paint" attribute.
setParallelMode(ArrayList[]) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the trainer to be used in multi-threaded EpochTainer.
setParallelMode(ArrayList[]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the trainer to be used in multi-threaded EpochTainer.
setPenaltyBound(double) - Method in class com.imsl.math.MinConNLP
Set the universal bound for describing how much the unscaled penalty-term may deviate from zero.
setPercentage(double) - Method in class com.imsl.stat.SignTest
Sets the percentage percentile of the population.
setPercentages(double[]) - Method in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Set the untransformed cumulative percentages used during encoding and decoding.
setPercentile(double) - Method in class com.imsl.stat.SignTest
Sets the hypothesized percentile of the population.
setPosition(int, int) - Method in class com.imsl.chart3d.ColormapLegend
Sets the position of the legend.
setPosition(double, double, double) - Method in class com.imsl.chart3d.PointLight
Sets the value of the "Point" attribute to a light point.
setPosition(Point3f) - Method in class com.imsl.chart3d.PointLight
Sets the value of the "Point" attribute to a light point.
setPrior(int) - Method in class com.imsl.stat.DiscriminantAnalysis
Sets the type of prior probabilities to be computed.
setPrior(double[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Sets the prior probabilities.
setProportionalWidth(boolean) - Method in class com.imsl.chart.BoxPlot
Sets the value of the attribute "ProportionalWidth".
setQ(double[][]) - Method in class com.imsl.stat.KalmanFilter
Sets the Q matrix.
setRadialFunction(RadialBasis.Function) - Method in class com.imsl.math.RadialBasis
Sets the radial function.
setRandom(Random) - Method in class com.imsl.datamining.neural.EpochTrainer
Sets the random number generator used to perturb the initial stage 1 guesses.
setRandom(Random) - Method in class com.imsl.stat.Ranks
Sets the Random object.
setRandomSamples(Random, Random) - Method in class com.imsl.datamining.neural.EpochTrainer
Sets the random number generators used to select random training patterns in stage 1.
setRandomWeights(double[][], Random) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Initializes network weights using random weights.
setRange(double, double) - Method in class com.imsl.stat.ChiSquaredTest
Sets endpoints of the range of the distribution.
setReference(double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Reference" attribute.
setRefinementType(int) - Method in class com.imsl.math.DenseLP
Set the type of refinement used.
setRelativeError(double) - Method in class com.imsl.math.HyperRectangleQuadrature
Sets the relative error tolerance.
setRelativeError(double) - Method in class com.imsl.math.Quadrature
Sets the relative error tolerance.
setRelativeError(double) - Method in class com.imsl.math.ZeroFunction
Sets second stopping criterion is the relative error.
setRelativeError(double) - Method in class com.imsl.math.ZeroSystem
Sets the relative error tolerance.
setRelativeError(double) - Method in class com.imsl.stat.ARMA
Sets the stopping criterion for use in the nonlinear equation solver.
setRelativeFcnTol(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the relative function tolerance.
setRelativeTolerance(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Sets the relative tolerance.
setRelativeTolerance(double) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the relative tolerence.
setRelativeTolerance(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the relative function tolerance.
setRelativeTolerance(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the relative function tolerance.
setRelativeTolerance(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the relative function tolerance
setRightSons(int[]) - Method in class com.imsl.chart.Dendrogram
Convenience routine to set the "RightSons" attribute.
setRule(int) - Method in class com.imsl.math.Quadrature
Set the Gauss-Kronrod rule.
setScale(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the scaling factor.
setScale(double[]) - Method in class com.imsl.stat.NonlinearRegression
Sets the scaling array for theta.
setScaleFont(double) - Method in class com.imsl.chart.Draw
Set a factor by which fonts are to be scaled.
setScaledStepTol(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the scaled step tolerance.
setScalingBound(double) - Method in class com.imsl.math.MinConNLP
Set the scaling bound for the internal automatic scaling of the objective function.
setScalingVector(double[]) - Method in class com.imsl.math.BoundedLeastSquares
Sets the scaling vector for the variables.
setScreenSize(Dimension) - Method in class com.imsl.chart.ChartNode
Sets the value of the "ScreenSize" attribute.
setSeed(long) - Method in class com.imsl.stat.Random
Sets the seed.
setSize(Dimension) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Size" attribute.
setSize(Dimension) - Method in class com.imsl.chart.JspBean
Sets the size of the generated image.
setSize(int, int) - Method in class com.imsl.chart.JspBean
Sets the size of the generated image.
setSkipWeekends(boolean) - Method in class com.imsl.chart.ChartNode
Sets the value of the "SkipWeekends" attribute.
setSpread(double) - Method in class com.imsl.datamining.neural.ScaleFilter
Set the measure of spread to be used during z-score scaling.
setSpread(double) - Method in class com.imsl.math.ZeroFunction
Sets the spread.
setSpreadTolerance(double) - Method in class com.imsl.math.ZeroFunction
Sets the spread criteria for multiple zeros.
setStep(double) - Method in class com.imsl.math.MinUncon
Set the stepsize to use when changing x.
setStepTolerance(double) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Set the step tolerance used to step between weights.
setStepTolerance(double) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets the scaled step tolerance.
setStepTolerance(double) - Method in class com.imsl.math.MinUnconMultiVar
Set the scaled step tolerance to use when changing x.
setStepTolerance(double) - Method in class com.imsl.math.NonlinLeastSquares
Set the step tolerance used to step between two points.
setStepTolerance(double) - Method in class com.imsl.stat.NonlinearRegression
Sets the step tolerance used to step between two points.
setString(String) - Method in class com.imsl.chart.Text
Sets the string for this Text object.
setSurfaceType(int) - Method in class com.imsl.chart3d.Surface
Sets the attribute "SurfaceType".
setTTestNull(double) - Method in class com.imsl.stat.NormOneSample
Sets the Null hypothesis value for t test for the mean.
setTTestNull(double) - Method in class com.imsl.stat.NormTwoSample
Sets the Null hypothesis value for t-test for the mean.
setTextAngle(int) - Method in class com.imsl.chart.ChartNode
Sets the value of the "TextAngle" attribute.
setTextColor(Color) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "TextColor" attribute.
setTextColor(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "TextColor" attribute to a color specified by name.
setTextColor(Color) - Method in class com.imsl.chart.ChartNode
Sets the value of the "TextColor" attribute.
setTextColor(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "TextColor" attribute to a color specified by name.
setTextFormat(Format) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "TextFormat" attribute.
setTextFormat(String) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "TextFormat" attribute.
setTickInterval(double) - Method in class com.imsl.chart.Axis1D
Sets the tick interval.
setTickInterval(double) - Method in class com.imsl.chart.AxisR
Sets the tick interval.
setTickInterval(double) - Method in class com.imsl.chart3d.Axis3D
Sets the tick interval.
setTickLength(double) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "TickLength" attribute.
setTicks(double[]) - Method in class com.imsl.chart.Axis1D
Sets the value of the "Ticks" attribute.
setTicks(double[]) - Method in class com.imsl.chart3d.Axis3D
Sets the value of the "Ticks" attribute.
setTicks(double[]) - Method in class com.imsl.chart3d.ColormapLegend
Sets the value of the "Ticks" attribute.
setTieBreaker(int) - Method in class com.imsl.stat.Ranks
Sets the tie breaker for Ranks.
setTitle(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Title" attribute.
setTitle(Text) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Title" attribute.
setTitle(String) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "Title" attribute.
setTitle(String) - Method in class com.imsl.math.PrintMatrix
Sets matrix title
setTolerance(int) - Method in class com.imsl.chart.DrawMap
Set the minimum distance that an event can be from a point or a line and still be considered a hit.
setTolerance(int) - Method in class com.imsl.chart.DrawPick
Set the minimum distance that an event can be from a point or a line and still be considered a hit.
setTolerance(double) - Method in class com.imsl.math.MinConGenLin
Sets the nonnegative tolerance on the first order conditions at the calculated solution.
setTolerance(double) - Method in class com.imsl.math.MinConNLP
Set the desired precision of the solution.
setTolerance(double) - Method in class com.imsl.math.OdeRungeKutta
Sets the error tolerance.
setTolerance(double) - Method in class com.imsl.stat.InverseCdf
Sets the tolerance to be used as the convergence criterion.
setTolerance(double) - Method in class com.imsl.stat.KalmanFilter
Sets the tolerance used in determining linear dependence.
setTolerance(double) - Method in class com.imsl.stat.StepwiseRegression
The tolerance used to detect linear dependence among the independent variables.
setToolTip(String) - Method in class com.imsl.chart.ChartNode
Sets the value of the "ToolTip" attribute.
setTransform(int) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Transform" attribute.
setTransitionMatrix(double[][]) - Method in class com.imsl.stat.KalmanFilter
Sets the transition matrix.
setTrustRegion(double) - Method in class com.imsl.math.BoundedLeastSquares
Sets the size of initial trust region radius.
setType(int) - Method in class com.imsl.chart.Axis1D
Sets the type of this node.
setUnequalVariances(boolean) - Method in class com.imsl.stat.NormTwoSample
Specifies whether to return statistics based on equal or unequal variances.
setUpperBound(double[]) - Method in class com.imsl.math.DenseLP
Sets the upper bound, x_u, on the variables.
setUpperBound(double[]) - Method in class com.imsl.math.LinearProgramming
Sets the upper bound on the variables.
setUpperBound(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the upper bound on the sum of the number of distinct values taken on by each classification variable.
setUpperEndpointColumn(int) - Method in class com.imsl.stat.CategoricalGenLinModel
Sets the column number in x that contains the upper endpoint of the observation interval for full interval and left interval observations.
setUpperLimit(double[]) - Method in class com.imsl.math.DenseLP
Sets the upper limit of the constraints.
setUpperLimit(double[]) - Method in class com.imsl.math.LinearProgramming
Sets the upper limit of the constraints.
setUseBackPropagation(boolean) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Sets whether or not to use the back propagation algorithm for gradient calculations during network training.
setValue(double) - Method in class com.imsl.datamining.neural.InputNode
Sets the value of this Node.
setVarianceEstimationMethod(int) - Method in class com.imsl.stat.FactorAnalysis
Sets the variance estimation method.
setVariances(double[]) - Method in class com.imsl.stat.FactorAnalysis
Sets the variances.
setViewPlatformTransformation(Transform3D) - Method in class com.imsl.chart3d.Chart3D
Sets the transformation for the view platform.
setViewport(double[]) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Viewport" attribute.
setViewport(double, double, double, double) - Method in class com.imsl.chart.ChartNode
Sets the value of the "Viewport" attribute.
setViewport(double[]) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "Viewport" attribute.
setViewport(double, double, double, double, double, double) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "Viewport" attribute.
setViolationBound(double) - Method in class com.imsl.math.MinConNLP
Set the scalar which defines allowable constraint violations of the final accepted result.
setVisibleFaces(int) - Method in class com.imsl.chart3d.AxisBox
Sets the "VisibleFaces" attribute indicating which faces of the box are to be drawn.
setWarning(WarningObject) - Static method in class com.imsl.Warning
Sets a new WarningObject.
setWarning(SQLWarning) - Method in class com.imsl.io.AbstractFlatFile
Sets a SQLWarning.
setWeight(double) - Method in class com.imsl.datamining.neural.Link
Sets the weight for this Link.
setWeights(double[]) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Sets the weights for the Links in this Network.
setWeights(double[]) - Method in class com.imsl.datamining.neural.Network
Sets the weights.
setWeights(double[]) - Method in class com.imsl.stat.ClusterKMeans
Sets the weight for each observation.
setWeights(double[]) - Method in class com.imsl.stat.Covariances
Sets the weight for each observation.
setWindow(double, double) - Method in class com.imsl.chart.Axis1D
Sets the window for an Axis1D.
setWindow(double[]) - Method in class com.imsl.chart.Axis1D
Sets the window for an Axis1D.
setWindow(double) - Method in class com.imsl.chart.AxisR
Sets the Window attribute.
setWindow(double, double) - Method in class com.imsl.chart.AxisTheta
Sets the window for an AxisTheta.
setWindow(double[]) - Method in class com.imsl.chart.AxisTheta
Sets the window for an AxisTheta.
setWindow(double[]) - Method in class com.imsl.chart.AxisXY
Sets the window in user coordinates along an axis.
setWindow(double, double) - Method in class com.imsl.chart3d.Axis3D
Sets the window for an Axis1D.
setWindow(double[]) - Method in class com.imsl.chart3d.Axis3D
Sets the window for an Axis1D.
setWindow(double, double) - Method in class com.imsl.chart3d.ColormapLegend
Sets the window for a ColormapLegend.
setWindow(double[]) - Method in class com.imsl.chart3d.ColormapLegend
Sets the window for a ColormapLegend.
setX(Object) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "X" attribute.
setXlowerBound(double[]) - Method in class com.imsl.math.MinConNLP
Set the lower bounds on the variables.
setXscale(double[]) - Method in class com.imsl.math.MinConNLP
Set the internal scaling of the variables.
setXscale(double[]) - Method in class com.imsl.math.MinUnconMultiVar
Set the diagonal scaling matrix for the variables.
setXscale(double[]) - Method in class com.imsl.math.NonlinLeastSquares
Set the diagonal scaling matrix for the variables.
setXupperBound(double[]) - Method in class com.imsl.math.MinConNLP
Set the upper bounds on the variables.
setY(Object) - Method in class com.imsl.chart.AbstractChartNode
Sets the value of the "Y" attribute.
setZ(Object) - Method in class com.imsl.chart3d.ChartNode3D
Sets the value of the "Z" attribute.
setupMapping() - Method in class com.imsl.chart.Axis
Initializes the mappings between user and coordinate space.
setupMapping() - Method in class com.imsl.chart.AxisXY
Initializes the mappings between user and coordinate space.
setupMapping() - Method in class com.imsl.chart.Pie
Initializes the mappings between user and coordinate space.
setupMapping() - Method in class com.imsl.chart.Polar
Initializes the mappings between user and coordinate space.
setupMapping(Axis1D) - Method in interface com.imsl.chart.Transform
Initializes the mappings between user and coordinate space.
setupMapping(Axis1D) - Method in class com.imsl.chart.TransformDate
Initializes the mappings between user and coordinate space.
shortValue() - Method in class com.imsl.math.Complex
Returns the value of the real part as a short.
sign(double, double) - Static method in class com.imsl.math.Sfun
Returns the value of x with the sign of y.
sin(Complex) - Static method in class com.imsl.math.Complex
Returns the sine of a Complex.
sin(double) - Static method in class com.imsl.math.JMath
Returns the sine of a double.
sinh(Complex) - Static method in class com.imsl.math.Complex
Returns the hyperbolic sine of a Complex.
sinh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the hyperbolic sine of its argument.
skewness(double[]) - Static method in class com.imsl.stat.Summary
Returns the skewness of the given data set.
skewness(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the skewness of the given data set and associated weights.
skip(int) - Method in class com.imsl.stat.Random
Resets the seed to skip ahead in the base linear congruential generator.
sln(double, double, int) - Static method in class com.imsl.finance.Finance
Returns the depreciation of an asset using the straight line method.
solve() - Method in class com.imsl.math.BoundedLeastSquares
Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.
solve(double[]) - Method in class com.imsl.math.Cholesky
Solve Ax = b where A is a positive definite matrix with elements of type double.
solve(Complex[]) - Method in class com.imsl.math.ComplexLU
Return the solution x of the linear system Ax = b using the LU factorization of A.
solve(Complex[][], Complex[]) - Static method in class com.imsl.math.ComplexLU
Solve ax=b for x using the LU factorization of a.
solve() - Method in class com.imsl.math.DenseLP
Solves the problem using an active set method.
solve(double[]) - Method in class com.imsl.math.LU
Return the solution x of the linear system Ax = b using the LU factorization of A.
solve(double[][], double[]) - Static method in class com.imsl.math.LU
Solve ax=b for x using the LU factorization of a.
solve() - Method in class com.imsl.math.LinearProgramming
Solves the program using the revised simplex algorithm.
solve() - Method in class com.imsl.math.MinConGenLin
Minimizes a general objective function subject to linear equality/inequality constraints.
solve(MinConNLP.Function) - Method in class com.imsl.math.MinConNLP
Solve a general nonlinear programming problem using the successive quadratic programming algorithm with a finite-difference gradient or with a user-supplied gradient.
solve(NonlinLeastSquares.Function) - Method in class com.imsl.math.NonlinLeastSquares
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a Jacobian.
solve(double, double, double[]) - Method in class com.imsl.math.OdeRungeKutta
Integrates the ODE system from x to xEnd.
solve(double[]) - Method in class com.imsl.math.QR
Returns the solution to the least-squares problem Ax = b.
solve(double[], double) - Method in class com.imsl.math.QR
Returns the solution to the least-squares problem Ax = b using an input tolerance.
solve(ZeroSystem.Function) - Method in class com.imsl.math.ZeroSystem
Solve a system of nonlinear equations using the Levenberg-Marquardt algorithm
solve() - Method in class com.imsl.stat.CategoricalGenLinModel
Returns the parameter estimates and associated statistics for a CategoricalGenLinModel object.
solve(NonlinearRegression.Function) - Method in class com.imsl.stat.NonlinearRegression
Solves the least squares problem and returns the regression coefficients.
solveTranspose(Complex[]) - Method in class com.imsl.math.ComplexLU
Return the solution x of the linear system A^T x = b.
solveTranspose(double[]) - Method in class com.imsl.math.LU
Return the solution x of the linear system A^T = b.
sqrt(Complex) - Static method in class com.imsl.math.Complex
Returns the square root of a Complex, with a branch cut along the negative real axis.
sqrt(double) - Static method in class com.imsl.math.JMath
Returns the square root of a double.
standardDeviation(double[]) - Static method in class com.imsl.stat.Summary
Returns the population standard deviation of the given data set.
standardDeviation(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the population standard deviation of the given data set and associated weights.
start(Chart) - Method in class com.imsl.chart.Draw
Called just before a chart is drawn.
startErrorBar() - Method in class com.imsl.chart.Draw
Start drawing an error bar.
startErrorBar() - Method in class com.imsl.chart.DrawMap
 
startErrorBar() - Method in class com.imsl.chart.DrawPick
Start ErrorBar
startFill() - Method in class com.imsl.chart.Draw
Start drawing a filled region.
startFill() - Method in class com.imsl.chart.DrawMap
 
startFill() - Method in class com.imsl.chart.DrawPick
Fill
startImage() - Method in class com.imsl.chart.Draw
Start drawing an image.
startImage() - Method in class com.imsl.chart.DrawMap
 
startImage() - Method in class com.imsl.chart.DrawPick
Start Image
startLine() - Method in class com.imsl.chart.Draw
Start drawing lines.
startLine() - Method in class com.imsl.chart.DrawMap
Start drawing lines.
startLine() - Method in class com.imsl.chart.DrawPick
Start drawing lines.
startMarker() - Method in class com.imsl.chart.Draw
Start drawing markers.
startMarker() - Method in class com.imsl.chart.DrawMap
Start drawing markers.
startMarker() - Method in class com.imsl.chart.DrawPick
Start drawing markers.
startText() - Method in class com.imsl.chart.Draw
Start drawing text.
startText() - Method in class com.imsl.chart.DrawMap
 
startText() - Method in class com.imsl.chart.DrawPick
Start drawing text
stop() - Method in class com.imsl.chart.Draw
Called when a chart is finished being drawn.
stringToObject(Class, String) - Method in class com.imsl.chart.xml.ChartXML
Converts a String into an Object of the given class.
studentsT(double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Student's t cumulative probability distribution function.
subtract(Complex, Complex) - Static method in class com.imsl.math.Complex
Returns the difference of two Complex objects, x-y.
subtract(Complex, double) - Static method in class com.imsl.math.Complex
Returns the difference of a Complex object and a double, x-y.
subtract(double, Complex) - Static method in class com.imsl.math.Complex
Returns the difference of a double and a Complex object, x-y.
subtract(Complex[][], Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Subtract two Complex rectangular arrays, a - b.
subtract(double[][], double[][]) - Static method in class com.imsl.math.Matrix
Subtract two rectangular arrays, a - b.
subtract(Physical, Physical) - Static method in class com.imsl.math.Physical
Subtract two compatible Physical objects.
suffix - Static variable in class com.imsl.math.Complex
String used in converting Complex to String.
syd(double, double, int, int) - Static method in class com.imsl.finance.Finance
Returns the depreciation of an asset using the sum-of-years digits method.

T

TANH - Static variable in interface com.imsl.datamining.neural.Activation
The hyperbolic tangent activation function, g(x)=tanh{x}=
  frac{e^x-e^{-x}}{e^x+e^{-x}}.
TEMPERATURE - Static variable in class com.imsl.math.Physical
 
TEXT - Static variable in class com.imsl.chart.Draw
 
TEXT_X_CENTER - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be centered.
TEXT_X_LEFT - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be left adjusted.
TEXT_X_RIGHT - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be right adjusted.
TEXT_Y_BOTTOM - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be drawn on the baseline.
TEXT_Y_CENTER - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be vertically centered.
TEXT_Y_TOP - Static variable in class com.imsl.chart.ChartNode
Value for attribute "TextAlignment" indicating that the text should be drawn with the top of the letters touching the top of the drawing region.
TIE_AVERAGE - Static variable in class com.imsl.stat.Ranks
In case of ties, use the average of the scores of the tied observations.
TIE_HIGHEST - Static variable in class com.imsl.stat.Ranks
In case of ties, use the highest score in the group of ties.
TIE_LOWEST - Static variable in class com.imsl.stat.Ranks
In case of ties, use the lowest score in the group of ties.
TIE_RANDOM - Static variable in class com.imsl.stat.Ranks
In case of ties, use one of the group of ties chosen at random.
TIME - Static variable in class com.imsl.math.Physical
 
TRANSFORM_ASIN_SQRT - Static variable in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Flag to indicate the arcsine square root transform will be applied to the percentages.
TRANSFORM_CUSTOM - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that the axis using a custom transformation.
TRANSFORM_LINEAR - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that the axis uses linear scaling.
TRANSFORM_LOG - Static variable in class com.imsl.chart.AbstractChartNode
Flag used to indicate that the axis uses logarithmic scaling.
TRANSFORM_NONE - Static variable in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Flag to indicate no transformation of percentages.
TRANSFORM_SQRT - Static variable in class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Flag to indicate the square root transform will be applied to the percentages.
TableMultiWay - class com.imsl.stat.TableMultiWay.
Tallies observations into a multi-way frequency table.
TableMultiWay(double[][], int) - Constructor for class com.imsl.stat.TableMultiWay
Constructor for TableMultiWay.
TableMultiWay(double[][], int[]) - Constructor for class com.imsl.stat.TableMultiWay
Constructor for TableMultiWay.
TableMultiWay.BalancedTable - class com.imsl.stat.TableMultiWay.BalancedTable.
Tallies the number of unique values of each variable.
TableMultiWay.UnbalancedTable - class com.imsl.stat.TableMultiWay.UnbalancedTable.
Tallies the frequency of each cell in x.
TableOneWay - class com.imsl.stat.TableOneWay.
Tallies observations into a one-way frequency table.
TableOneWay(double[], int) - Constructor for class com.imsl.stat.TableOneWay
Constructor for TableOneWay.
TableTwoWay - class com.imsl.stat.TableTwoWay.
Tallies observations into a two-way frequency table.
TableTwoWay(double[], int, double[], int) - Constructor for class com.imsl.stat.TableTwoWay
Constructor for TableTwoWay.
Text - class com.imsl.chart.Text.
The value of the attribute "Title".
Text(String) - Constructor for class com.imsl.chart.Text
Construct a Text object.
Text(String, int) - Constructor for class com.imsl.chart.Text
Construct a Text object with specified alignment.
Text(Format, double) - Constructor for class com.imsl.chart.Text
Creates a text object by applying a java.text.Format to a double.
TimeSeriesClassFilter - class com.imsl.datamining.neural.TimeSeriesClassFilter.
Converts time series data contained within nominal categories to a lagged format for processing by a neural network.
TimeSeriesClassFilter(int) - Constructor for class com.imsl.datamining.neural.TimeSeriesClassFilter
Constructor for TimeSeriesClassFilter.
TimeSeriesFilter - class com.imsl.datamining.neural.TimeSeriesFilter.
Converts time series data to a lagged format used as input to a neural network.
TimeSeriesFilter() - Constructor for class com.imsl.datamining.neural.TimeSeriesFilter
Constructor for TimeSeriesClassFilter.
Tokenizer - class com.imsl.io.Tokenizer.
Breaks a line into tokens.
Tokenizer(String, char, boolean) - Constructor for class com.imsl.io.Tokenizer
Creates a Tokenizer.
ToolTip - class com.imsl.chart.ToolTip.
A ToolTip for a chart element.
ToolTip(ChartNode) - Constructor for class com.imsl.chart.ToolTip
Creates a ToolTip node that enables ToolTips on charts.
Trainer - interface com.imsl.datamining.neural.Trainer.
Interface implemented by classes used to train a network.
Transform - interface com.imsl.chart.Transform.
Defines a custom transformation along an axis.
TransformDate - class com.imsl.chart.TransformDate.
Defines a transformation along an axis that skips weekend dates.
TransformDate() - Constructor for class com.imsl.chart.TransformDate
 
tan(Complex) - Static method in class com.imsl.math.Complex
Returns the tangent of a Complex.
tan(double) - Static method in class com.imsl.math.JMath
Returns the tangent of a double.
tanh(Complex) - Static method in class com.imsl.math.Complex
Returns the hyperbolic tanh of a Complex.
tanh(double) - Static method in class com.imsl.math.Hyperbolic
Returns the hyperbolic tangent of its argument.
tbilleq(GregorianCalendar, GregorianCalendar, double) - Static method in class com.imsl.finance.Bond
Returns the bond-equivalent yield of a Treasury bill.
tbillprice(GregorianCalendar, GregorianCalendar, double) - Static method in class com.imsl.finance.Bond
Returns the price, per $100 face value, of a Treasury bill.
tbillyield(GregorianCalendar, GregorianCalendar, double) - Static method in class com.imsl.finance.Bond
Returns the yield of a Treasury bill.
textAngle - Variable in class com.imsl.chart.Draw
 
textColor - Variable in class com.imsl.chart.Draw
 
textFont - Variable in class com.imsl.chart.Draw
 
throwIllegalArgumentException(String, String, Object[]) - Static method in class com.imsl.Messages
Throws an IllegalArgumentException with a formatted String argument.
toString() - Method in class com.imsl.chart.AbstractChartNode
Returns the name of this ChartNode
toString() - Method in class com.imsl.math.Complex
Returns a String representation for the specified Complex.
toString() - Method in class com.imsl.math.Physical
Returns a String containing the value and units, if any.
train(Trainer, double[][], int[]) - Method in class com.imsl.datamining.neural.BinaryClassification
Trains the classification neural network using supplied trainer and patterns.
train(Network, double[][], double[][]) - Method in class com.imsl.datamining.neural.EpochTrainer
Trains the neural network using supplied training patterns.
train(Network, double[][], double[][]) - Method in class com.imsl.datamining.neural.LeastSquaresTrainer
Trains the neural network using supplied training patterns.
train(Trainer, double[][], int[]) - Method in class com.imsl.datamining.neural.MultiClassification
Trains the classification neural network using supplied training patterns.
train(Network, double[][], double[][]) - Method in class com.imsl.datamining.neural.QuasiNewtonTrainer
Trains the neural network using supplied training patterns.
train(Network, double[][], double[][]) - Method in interface com.imsl.datamining.neural.Trainer
Trains the neural network using supplied training patterns.
translate(int, int) - Method in class com.imsl.chart.Draw
Translates the origin to the point (x,y)
translate(int, int) - Method in class com.imsl.chart.DrawMap
Translates the origin to the point (x,y)
translate(int, int) - Method in class com.imsl.chart.DrawPick
Translates the origin to the point (x,y)
transpose(Complex[][]) - Static method in class com.imsl.math.ComplexMatrix
Return the transpose of a Complex matrix.
transpose(double[][]) - Static method in class com.imsl.math.Matrix
Return the transpose of a matrix.
trim() - Method in class com.imsl.chart3d.BufferedPaint
Returns a subimage with the white space trimmed off.

U

UNBOUNDED_Z_SCORE_SCALING_MEAN_STDEV - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate unbounded z-score scaling using the mean and standard deviation.
UNBOUNDED_Z_SCORE_SCALING_MEDIAN_MAD - Static variable in class com.imsl.datamining.neural.ScaleFilter
Flag to indicate unbounded z-score scaling using the median and mean absolute difference.
UNWEIGHTED_LEAST_SQUARES - Static variable in class com.imsl.stat.FactorAnalysis
Indicates unweighted least squares method.
UPPER_TRIANGULAR - Static variable in class com.imsl.math.PrintMatrix
This flag as the argument to setMatrixType, indicates that only the upper triangular elements of the matrix are to be printed.
UnsupervisedNominalFilter - class com.imsl.datamining.neural.UnsupervisedNominalFilter.
Converts nominal data into a series of binary encoded columns for input to a neural network.
UnsupervisedNominalFilter(int) - Constructor for class com.imsl.datamining.neural.UnsupervisedNominalFilter
Constructor for UnsupervisedNominalFilter.
UnsupervisedOrdinalFilter - class com.imsl.datamining.neural.UnsupervisedOrdinalFilter.
Encodes ordinal data into percentages for input to a neural network.
UnsupervisedOrdinalFilter(int, int) - Constructor for class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
Constructor for UnsupervisedOrdinalFilter.
UserBasisRegression - class com.imsl.stat.UserBasisRegression.
Generates summary statistics using user supplied functions in a nonlinear regression model
UserBasisRegression(RegressionBasis, int, boolean) - Constructor for class com.imsl.stat.UserBasisRegression
Constructs a UserBasisRegression object
uniform(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the uniform cumulative probability distribution function.
unitsString() - Method in class com.imsl.math.Physical
Returns a String containing the units only.
unordered(double, double) - Static method in class com.imsl.math.IEEE
Unordered test on a pair of doubles.
update(Graphics) - Method in class com.imsl.chart.Chart
 
update() - Method in class com.imsl.chart3d.Data
Update the surface by reevaluation of the z-function and the color function.
update(double[]) - Method in class com.imsl.math.Cholesky
Updates the factorization by adding a rank-1 matrix.
update(double[], double) - Method in class com.imsl.math.RadialBasis
Adds a data point with weight = 1.
update(double[], double, double) - Method in class com.imsl.math.RadialBasis
Adds a data point with a specified weight.
update(double[][], double[]) - Method in class com.imsl.math.RadialBasis
Adds a set of data points, all with weight = 1.
update(double[][], double[], double[]) - Method in class com.imsl.math.RadialBasis
Adds a set of data points with user-specified weights.
update(double[], double[]) - Method in class com.imsl.stat.ChiSquaredTest
Adds new observations to the test.
update(double, double) - Method in class com.imsl.stat.ChiSquaredTest
Adds a new observation to the test.
update(double[][]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], double[], double[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and associated frequencies and weights then performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int, int[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int, double[], double[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and associated frequencies and weights then performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int[], double[], double[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and associated frequencies and weights then performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[][], int, int[], double[], double[]) - Method in class com.imsl.stat.DiscriminantAnalysis
Processes a set of observations and associated frequencies and weights then performs a linear or quadratic discriminant function analysis among the several known groups.
update(double[], double[][], double[][]) - Method in class com.imsl.stat.KalmanFilter
Performs computation of the update equations.
update(double[], double) - Method in class com.imsl.stat.LinearRegression
Updates the regression object with a new observation.
update(double[], double, double) - Method in class com.imsl.stat.LinearRegression
Updates the regression object with a new observation and weight.
update(double[][], double[]) - Method in class com.imsl.stat.LinearRegression
Updates the regression object with a new set of observations.
update(double[][], double[], double[]) - Method in class com.imsl.stat.LinearRegression
Updates the regression object with a new set of observations and weights.
update(double[], double[]) - Method in class com.imsl.stat.NormTwoSample
Concatenates samples x and y to the samples provided in the constructor.
update(double) - Method in class com.imsl.stat.Summary
Adds an observation to the Summary object.
update(double, double) - Method in class com.imsl.stat.Summary
Adds an observation and associated weight to the Summary object.
update(double[]) - Method in class com.imsl.stat.Summary
Adds a set of observations to the Summary object.
update(double[], double[]) - Method in class com.imsl.stat.Summary
Adds a set of observations and associated weights to the Summary object.
update(double, double, double) - Method in class com.imsl.stat.UserBasisRegression
Adds a new observation and associated weight to the RegressionBasis object.
updateArray(String, Array) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Array value.
updateArray(int, Array) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Array value.
updateAsciiStream(int, InputStream, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an ascii stream value.
updateAsciiStream(String, InputStream, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an ascii stream value.
updateBigDecimal(int, BigDecimal) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.math.BigDecimal value.
updateBigDecimal(String, BigDecimal) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.BigDecimal value.
updateBinaryStream(int, InputStream, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a binary stream value.
updateBinaryStream(String, InputStream, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a binary stream value.
updateBlob(int, Blob) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Blob value.
updateBlob(String, Blob) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Blob value.
updateBoolean(int, boolean) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a boolean value.
updateBoolean(String, boolean) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a boolean value.
updateByte(int, byte) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a byte value.
updateByte(String, byte) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a byte value.
updateBytes(int, byte[]) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a byte array value.
updateBytes(String, byte[]) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a byte value.
updateCharacterStream(int, Reader, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a character stream value.
updateCharacterStream(String, Reader, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a character stream value.
updateClob(String, Clob) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Clob value.
updateClob(int, Clob) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Clob value.
updateDate(int, Date) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Date value.
updateDate(String, Date) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Date value.
updateDouble(int, double) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a double value.
updateDouble(String, double) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a double value.
updateFloat(int, float) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a float value.
updateFloat(String, float) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a float value.
updateInt(int, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an int value.
updateInt(String, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an int value.
updateLong(int, long) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a long value.
updateLong(String, long) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a long value.
updateNull(int) - Method in class com.imsl.io.AbstractFlatFile
Gives a nullable column a null value.
updateNull(String) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a null value.
updateObject(int, Object, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Object value.
updateObject(int, Object) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Object value.
updateObject(String, Object, int) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Object value.
updateObject(String, Object) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an Object value.
updateRef(String, Ref) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Ref value.
updateRef(int, Ref) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with an java.sql.Ref value.
updateRow() - Method in class com.imsl.io.AbstractFlatFile
Updates the underlying database with the new contents of the current row of this ResultSet object.
updateShort(int, short) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a short value.
updateShort(String, short) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a short value.
updateString(int, String) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a String value.
updateString(String, String) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a String value.
updateTime(int, Time) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Time value.
updateTime(String, Time) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Time value.
updateTimestamp(int, Timestamp) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Timestamp value.
updateTimestamp(String, Timestamp) - Method in class com.imsl.io.AbstractFlatFile
Updates the designated column with a java.sql.Timestamp value.
updateX(double[]) - Method in class com.imsl.stat.NormTwoSample
Concatenates the values in x to the first sample provided in the constructor.
updateY(double[]) - Method in class com.imsl.stat.NormTwoSample
Concatenates the values in y to the second sample provided in the constructor.

V

VARIANCE_COVARIANCE_MATRIX - Static variable in class com.imsl.stat.Covariances
Indicates variance-covariance matrix.
VARIANCE_COVARIANCE_MATRIX - Static variable in class com.imsl.stat.FactorAnalysis
Indicates variance-covariance matrix.
Version - class com.imsl.Version.
Print the version information.
Version() - Constructor for class com.imsl.Version
 
validateLink(Node, Node) - Method in class com.imsl.datamining.neural.FeedForwardNetwork
Checks that a Link between two Nodes is valid.
value(double) - Method in class com.imsl.math.BSpline
Returns the value of the B-spline at a point.
value(double[]) - Method in class com.imsl.math.BSpline
Returns the value of the B-spline at each point of an array.
value - Variable in class com.imsl.math.Physical
 
value(double[]) - Method in class com.imsl.math.RadialBasis
Returns the value of the radial basis approximation at a point.
value(double[][]) - Method in class com.imsl.math.RadialBasis
Returns the value of the radial basis at a point.
value(double) - Method in class com.imsl.math.Spline
Returns the value of the spline at a point.
value(double[]) - Method in class com.imsl.math.Spline
Returns the value of the spline at each point of an array.
valueOf(String) - Static method in class com.imsl.math.Complex
Parses a String into a Complex.
variance(double[]) - Static method in class com.imsl.stat.Summary
Returns the population variance of the given data set.
variance(double[], double[]) - Static method in class com.imsl.stat.Summary
Returns the population variance of the given data set and associated weights.
vdb(double, double, int, int, int, double, boolean) - Static method in class com.imsl.finance.Finance
Returns the depreciation of an asset for any given period using the variable-declining balance method.
verticalStripe(int, int, Color, Color) - Static method in class com.imsl.chart.FillPaint
Returns a vertically striped pattern.
vnorm(double[], double[], double[]) - Method in class com.imsl.math.OdeRungeKutta
Returns the norm of a vector.

W

WHITE_BLUE_LINEAR - Static variable in interface com.imsl.chart.Colormap
Linear blue/white colormap.
Warning - class com.imsl.Warning.
Handle warning messages.
Warning() - Constructor for class com.imsl.Warning
 
WarningObject - class com.imsl.WarningObject.
Handle warning messages.
WarningObject() - Constructor for class com.imsl.WarningObject
 
Weibull(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Weibull cumulative probability distribution function.
WeibullProb(double, double, double) - Static method in class com.imsl.stat.Cdf
Evaluates the Weibull probability density function.
WilcoxonRankSum - class com.imsl.stat.WilcoxonRankSum.
Performs a Wilcoxon rank sum test.
WilcoxonRankSum(double[], double[]) - Constructor for class com.imsl.stat.WilcoxonRankSum
Constructor for WilcoxonRankSum.
warning(SAXParseException) - Method in class com.imsl.chart.xml.ChartXML
Receive notification of a warning.
wasNull() - Method in class com.imsl.io.AbstractFlatFile
Reports whether the last column read had a value of SQL NULL.
weight - Variable in class com.imsl.math.BsLeastSquares
The weight array of length n, where n is the number of data points fit.
write(String, String) - Method in class com.imsl.chart3d.Canvas3DChart
Write the canvas as an image file after it is next redrawn.
writePNG(OutputStream, int, int) - Method in class com.imsl.chart.Chart
Writes the chart as an PNG file.
writeSVG(Writer, boolean) - Method in class com.imsl.chart.Chart
Writes the chart as an SVG file.

X

xirr(double[], Date[]) - Static method in class com.imsl.finance.Finance
Returns the internal rate of return for a schedule of cash flows.
xirr(double[], Date[], double) - Static method in class com.imsl.finance.Finance
Returns the internal rate of return for a schedule of cash flows with a user supplied initial guess.
xnpv(double, double[], Date[]) - Static method in class com.imsl.finance.Finance
Returns the present value for a schedule of cash flows.

Y

Y(double, double, int) - Static method in class com.imsl.math.Bessel
Evaluate a sequence of Bessel functions of the second kind with real nonnegative order and real positive argument.
yearfrac(GregorianCalendar, GregorianCalendar, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the fraction of a year represented by the number of whole days between two dates.
yield(GregorianCalendar, GregorianCalendar, double, double, double, int, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the yield of a security that pays periodic interest.
yielddisc(GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the annual yield of a discount bond.
yieldmat(GregorianCalendar, GregorianCalendar, GregorianCalendar, double, double, DayCountBasis) - Static method in class com.imsl.finance.Bond
Returns the annual yield of a security that pays interest at maturity.

Z

ZeroFunction - class com.imsl.math.ZeroFunction.
Muller's method to find the zeros of a univariate function, f(x).
ZeroFunction() - Constructor for class com.imsl.math.ZeroFunction
Creates an instance of the solver.
ZeroFunction.Function - interface com.imsl.math.ZeroFunction.Function.
Public interface for the user supplied function to ZeroFunction.
ZeroPolynomial - class com.imsl.math.ZeroPolynomial.
The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients, Aberth's method.
ZeroPolynomial() - Constructor for class com.imsl.math.ZeroPolynomial
Creates an instance of the solver.
ZeroPolynomial.DidNotConvergeException - exception com.imsl.math.ZeroPolynomial.DidNotConvergeException.
The iteration did not converge
ZeroPolynomial.DidNotConvergeException(String) - Constructor for class com.imsl.math.ZeroPolynomial.DidNotConvergeException
 
ZeroPolynomial.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.math.ZeroPolynomial.DidNotConvergeException
 
ZeroSystem - class com.imsl.math.ZeroSystem.
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.
ZeroSystem(int) - Constructor for class com.imsl.math.ZeroSystem
Creates an object to find the zeros of a system of n equations.
ZeroSystem.DidNotConvergeException - exception com.imsl.math.ZeroSystem.DidNotConvergeException.
The iteration did not converge.
ZeroSystem.DidNotConvergeException(String) - Constructor for class com.imsl.math.ZeroSystem.DidNotConvergeException
 
ZeroSystem.DidNotConvergeException(String, Object[]) - Constructor for class com.imsl.math.ZeroSystem.DidNotConvergeException
 
ZeroSystem.Function - interface com.imsl.math.ZeroSystem.Function.
Public interface for user supplied function to ZeroSystem object.
ZeroSystem.Jacobian - interface com.imsl.math.ZeroSystem.Jacobian.
Public interface for user supplied function to ZeroSystem object.
ZeroSystem.ToleranceTooSmallException - exception com.imsl.math.ZeroSystem.ToleranceTooSmallException.
Tolerance too small
ZeroSystem.ToleranceTooSmallException(String, Object[]) - Constructor for class com.imsl.math.ZeroSystem.ToleranceTooSmallException
 
ZeroSystem.TooManyIterationsException - exception com.imsl.math.ZeroSystem.TooManyIterationsException.
Too many iterations.
ZeroSystem.TooManyIterationsException() - Constructor for class com.imsl.math.ZeroSystem.TooManyIterationsException
 
ZeroSystem.TooManyIterationsException(String, Object[]) - Constructor for class com.imsl.math.ZeroSystem.TooManyIterationsException
 
ZeroSystem.TooManyIterationsException(Object[]) - Constructor for class com.imsl.math.ZeroSystem.TooManyIterationsException
 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
JMSLTM Numerical Library 4.0

Copyright 1970-2006 Visual Numerics, Inc.
Built June 1 2006.